1 //===-- tsan_rtl.h ----------------------------------------------*- C++ -*-===// 2 // 3 // This file is distributed under the University of Illinois Open Source 4 // License. See LICENSE.TXT for details. 5 // 6 //===----------------------------------------------------------------------===// 7 // 8 // This file is a part of ThreadSanitizer (TSan), a race detector. 9 // 10 // Main internal TSan header file. 11 // 12 // Ground rules: 13 // - C++ run-time should not be used (static CTORs, RTTI, exceptions, static 14 // function-scope locals) 15 // - All functions/classes/etc reside in namespace __tsan, except for those 16 // declared in tsan_interface.h. 17 // - Platform-specific files should be used instead of ifdefs (*). 18 // - No system headers included in header files (*). 19 // - Platform specific headres included only into platform-specific files (*). 20 // 21 // (*) Except when inlining is critical for performance. 22 //===----------------------------------------------------------------------===// 23 24 #ifndef TSAN_RTL_H 25 #define TSAN_RTL_H 26 27 #include "sanitizer_common/sanitizer_allocator.h" 28 #include "sanitizer_common/sanitizer_allocator_internal.h" 29 #include "sanitizer_common/sanitizer_asm.h" 30 #include "sanitizer_common/sanitizer_common.h" 31 #include "sanitizer_common/sanitizer_deadlock_detector_interface.h" 32 #include "sanitizer_common/sanitizer_libignore.h" 33 #include "sanitizer_common/sanitizer_suppressions.h" 34 #include "sanitizer_common/sanitizer_thread_registry.h" 35 #include "sanitizer_common/sanitizer_vector.h" 36 #include "tsan_clock.h" 37 #include "tsan_defs.h" 38 #include "tsan_flags.h" 39 #include "tsan_mman.h" 40 #include "tsan_sync.h" 41 #include "tsan_trace.h" 42 #include "tsan_report.h" 43 #include "tsan_platform.h" 44 #include "tsan_mutexset.h" 45 #include "tsan_ignoreset.h" 46 #include "tsan_stack_trace.h" 47 48 #if SANITIZER_WORDSIZE != 64 49 # error "ThreadSanitizer is supported only on 64-bit platforms" 50 #endif 51 52 namespace __tsan { 53 54 #if !SANITIZER_GO 55 struct MapUnmapCallback; 56 #if defined(__mips64) || defined(__aarch64__) || defined(__powerpc__) 57 static const uptr kAllocatorRegionSizeLog = 20; 58 static const uptr kAllocatorNumRegions = 59 SANITIZER_MMAP_RANGE_SIZE >> kAllocatorRegionSizeLog; 60 typedef TwoLevelByteMap<(kAllocatorNumRegions >> 12), 1 << 12, 61 MapUnmapCallback> ByteMap; 62 struct AP32 { 63 static const uptr kSpaceBeg = 0; 64 static const u64 kSpaceSize = SANITIZER_MMAP_RANGE_SIZE; 65 static const uptr kMetadataSize = 0; 66 typedef __sanitizer::CompactSizeClassMap SizeClassMap; 67 static const uptr kRegionSizeLog = kAllocatorRegionSizeLog; 68 typedef __tsan::ByteMap ByteMap; 69 typedef __tsan::MapUnmapCallback MapUnmapCallback; 70 static const uptr kFlags = 0; 71 }; 72 typedef SizeClassAllocator32<AP32> PrimaryAllocator; 73 #else 74 struct AP64 { // Allocator64 parameters. Deliberately using a short name. 75 static const uptr kSpaceBeg = Mapping::kHeapMemBeg; 76 static const uptr kSpaceSize = Mapping::kHeapMemEnd - Mapping::kHeapMemBeg; 77 static const uptr kMetadataSize = 0; 78 typedef DefaultSizeClassMap SizeClassMap; 79 typedef __tsan::MapUnmapCallback MapUnmapCallback; 80 static const uptr kFlags = 0; 81 }; 82 typedef SizeClassAllocator64<AP64> PrimaryAllocator; 83 #endif 84 typedef SizeClassAllocatorLocalCache<PrimaryAllocator> AllocatorCache; 85 typedef LargeMmapAllocator<MapUnmapCallback> SecondaryAllocator; 86 typedef CombinedAllocator<PrimaryAllocator, AllocatorCache, 87 SecondaryAllocator> Allocator; 88 Allocator *allocator(); 89 #endif 90 91 void TsanCheckFailed(const char *file, int line, const char *cond, 92 u64 v1, u64 v2); 93 94 const u64 kShadowRodata = (u64)-1; // .rodata shadow marker 95 96 // FastState (from most significant bit): 97 // ignore : 1 98 // tid : kTidBits 99 // unused : - 100 // history_size : 3 101 // epoch : kClkBits 102 class FastState { 103 public: 104 FastState(u64 tid, u64 epoch) { 105 x_ = tid << kTidShift; 106 x_ |= epoch; 107 DCHECK_EQ(tid, this->tid()); 108 DCHECK_EQ(epoch, this->epoch()); 109 DCHECK_EQ(GetIgnoreBit(), false); 110 } 111 112 explicit FastState(u64 x) 113 : x_(x) { 114 } 115 116 u64 raw() const { 117 return x_; 118 } 119 120 u64 tid() const { 121 u64 res = (x_ & ~kIgnoreBit) >> kTidShift; 122 return res; 123 } 124 125 u64 TidWithIgnore() const { 126 u64 res = x_ >> kTidShift; 127 return res; 128 } 129 130 u64 epoch() const { 131 u64 res = x_ & ((1ull << kClkBits) - 1); 132 return res; 133 } 134 135 void IncrementEpoch() { 136 u64 old_epoch = epoch(); 137 x_ += 1; 138 DCHECK_EQ(old_epoch + 1, epoch()); 139 (void)old_epoch; 140 } 141 142 void SetIgnoreBit() { x_ |= kIgnoreBit; } 143 void ClearIgnoreBit() { x_ &= ~kIgnoreBit; } 144 bool GetIgnoreBit() const { return (s64)x_ < 0; } 145 146 void SetHistorySize(int hs) { 147 CHECK_GE(hs, 0); 148 CHECK_LE(hs, 7); 149 x_ = (x_ & ~(kHistoryMask << kHistoryShift)) | (u64(hs) << kHistoryShift); 150 } 151 152 ALWAYS_INLINE 153 int GetHistorySize() const { 154 return (int)((x_ >> kHistoryShift) & kHistoryMask); 155 } 156 157 void ClearHistorySize() { 158 SetHistorySize(0); 159 } 160 161 ALWAYS_INLINE 162 u64 GetTracePos() const { 163 const int hs = GetHistorySize(); 164 // When hs == 0, the trace consists of 2 parts. 165 const u64 mask = (1ull << (kTracePartSizeBits + hs + 1)) - 1; 166 return epoch() & mask; 167 } 168 169 private: 170 friend class Shadow; 171 static const int kTidShift = 64 - kTidBits - 1; 172 static const u64 kIgnoreBit = 1ull << 63; 173 static const u64 kFreedBit = 1ull << 63; 174 static const u64 kHistoryShift = kClkBits; 175 static const u64 kHistoryMask = 7; 176 u64 x_; 177 }; 178 179 // Shadow (from most significant bit): 180 // freed : 1 181 // tid : kTidBits 182 // is_atomic : 1 183 // is_read : 1 184 // size_log : 2 185 // addr0 : 3 186 // epoch : kClkBits 187 class Shadow : public FastState { 188 public: 189 explicit Shadow(u64 x) 190 : FastState(x) { 191 } 192 193 explicit Shadow(const FastState &s) 194 : FastState(s.x_) { 195 ClearHistorySize(); 196 } 197 198 void SetAddr0AndSizeLog(u64 addr0, unsigned kAccessSizeLog) { 199 DCHECK_EQ((x_ >> kClkBits) & 31, 0); 200 DCHECK_LE(addr0, 7); 201 DCHECK_LE(kAccessSizeLog, 3); 202 x_ |= ((kAccessSizeLog << 3) | addr0) << kClkBits; 203 DCHECK_EQ(kAccessSizeLog, size_log()); 204 DCHECK_EQ(addr0, this->addr0()); 205 } 206 207 void SetWrite(unsigned kAccessIsWrite) { 208 DCHECK_EQ(x_ & kReadBit, 0); 209 if (!kAccessIsWrite) 210 x_ |= kReadBit; 211 DCHECK_EQ(kAccessIsWrite, IsWrite()); 212 } 213 214 void SetAtomic(bool kIsAtomic) { 215 DCHECK(!IsAtomic()); 216 if (kIsAtomic) 217 x_ |= kAtomicBit; 218 DCHECK_EQ(IsAtomic(), kIsAtomic); 219 } 220 221 bool IsAtomic() const { 222 return x_ & kAtomicBit; 223 } 224 225 bool IsZero() const { 226 return x_ == 0; 227 } 228 229 static inline bool TidsAreEqual(const Shadow s1, const Shadow s2) { 230 u64 shifted_xor = (s1.x_ ^ s2.x_) >> kTidShift; 231 DCHECK_EQ(shifted_xor == 0, s1.TidWithIgnore() == s2.TidWithIgnore()); 232 return shifted_xor == 0; 233 } 234 235 static ALWAYS_INLINE 236 bool Addr0AndSizeAreEqual(const Shadow s1, const Shadow s2) { 237 u64 masked_xor = ((s1.x_ ^ s2.x_) >> kClkBits) & 31; 238 return masked_xor == 0; 239 } 240 241 static ALWAYS_INLINE bool TwoRangesIntersect(Shadow s1, Shadow s2, 242 unsigned kS2AccessSize) { 243 bool res = false; 244 u64 diff = s1.addr0() - s2.addr0(); 245 if ((s64)diff < 0) { // s1.addr0 < s2.addr0 // NOLINT 246 // if (s1.addr0() + size1) > s2.addr0()) return true; 247 if (s1.size() > -diff) 248 res = true; 249 } else { 250 // if (s2.addr0() + kS2AccessSize > s1.addr0()) return true; 251 if (kS2AccessSize > diff) 252 res = true; 253 } 254 DCHECK_EQ(res, TwoRangesIntersectSlow(s1, s2)); 255 DCHECK_EQ(res, TwoRangesIntersectSlow(s2, s1)); 256 return res; 257 } 258 259 u64 ALWAYS_INLINE addr0() const { return (x_ >> kClkBits) & 7; } 260 u64 ALWAYS_INLINE size() const { return 1ull << size_log(); } 261 bool ALWAYS_INLINE IsWrite() const { return !IsRead(); } 262 bool ALWAYS_INLINE IsRead() const { return x_ & kReadBit; } 263 264 // The idea behind the freed bit is as follows. 265 // When the memory is freed (or otherwise unaccessible) we write to the shadow 266 // values with tid/epoch related to the free and the freed bit set. 267 // During memory accesses processing the freed bit is considered 268 // as msb of tid. So any access races with shadow with freed bit set 269 // (it is as if write from a thread with which we never synchronized before). 270 // This allows us to detect accesses to freed memory w/o additional 271 // overheads in memory access processing and at the same time restore 272 // tid/epoch of free. 273 void MarkAsFreed() { 274 x_ |= kFreedBit; 275 } 276 277 bool IsFreed() const { 278 return x_ & kFreedBit; 279 } 280 281 bool GetFreedAndReset() { 282 bool res = x_ & kFreedBit; 283 x_ &= ~kFreedBit; 284 return res; 285 } 286 287 bool ALWAYS_INLINE IsBothReadsOrAtomic(bool kIsWrite, bool kIsAtomic) const { 288 bool v = x_ & ((u64(kIsWrite ^ 1) << kReadShift) 289 | (u64(kIsAtomic) << kAtomicShift)); 290 DCHECK_EQ(v, (!IsWrite() && !kIsWrite) || (IsAtomic() && kIsAtomic)); 291 return v; 292 } 293 294 bool ALWAYS_INLINE IsRWNotWeaker(bool kIsWrite, bool kIsAtomic) const { 295 bool v = ((x_ >> kReadShift) & 3) 296 <= u64((kIsWrite ^ 1) | (kIsAtomic << 1)); 297 DCHECK_EQ(v, (IsAtomic() < kIsAtomic) || 298 (IsAtomic() == kIsAtomic && !IsWrite() <= !kIsWrite)); 299 return v; 300 } 301 302 bool ALWAYS_INLINE IsRWWeakerOrEqual(bool kIsWrite, bool kIsAtomic) const { 303 bool v = ((x_ >> kReadShift) & 3) 304 >= u64((kIsWrite ^ 1) | (kIsAtomic << 1)); 305 DCHECK_EQ(v, (IsAtomic() > kIsAtomic) || 306 (IsAtomic() == kIsAtomic && !IsWrite() >= !kIsWrite)); 307 return v; 308 } 309 310 private: 311 static const u64 kReadShift = 5 + kClkBits; 312 static const u64 kReadBit = 1ull << kReadShift; 313 static const u64 kAtomicShift = 6 + kClkBits; 314 static const u64 kAtomicBit = 1ull << kAtomicShift; 315 316 u64 size_log() const { return (x_ >> (3 + kClkBits)) & 3; } 317 318 static bool TwoRangesIntersectSlow(const Shadow s1, const Shadow s2) { 319 if (s1.addr0() == s2.addr0()) return true; 320 if (s1.addr0() < s2.addr0() && s1.addr0() + s1.size() > s2.addr0()) 321 return true; 322 if (s2.addr0() < s1.addr0() && s2.addr0() + s2.size() > s1.addr0()) 323 return true; 324 return false; 325 } 326 }; 327 328 struct ThreadSignalContext; 329 330 struct JmpBuf { 331 uptr sp; 332 uptr mangled_sp; 333 int int_signal_send; 334 bool in_blocking_func; 335 uptr in_signal_handler; 336 uptr *shadow_stack_pos; 337 }; 338 339 // A Processor represents a physical thread, or a P for Go. 340 // It is used to store internal resources like allocate cache, and does not 341 // participate in race-detection logic (invisible to end user). 342 // In C++ it is tied to an OS thread just like ThreadState, however ideally 343 // it should be tied to a CPU (this way we will have fewer allocator caches). 344 // In Go it is tied to a P, so there are significantly fewer Processor's than 345 // ThreadState's (which are tied to Gs). 346 // A ThreadState must be wired with a Processor to handle events. 347 struct Processor { 348 ThreadState *thr; // currently wired thread, or nullptr 349 #if !SANITIZER_GO 350 AllocatorCache alloc_cache; 351 InternalAllocatorCache internal_alloc_cache; 352 #endif 353 DenseSlabAllocCache block_cache; 354 DenseSlabAllocCache sync_cache; 355 DenseSlabAllocCache clock_cache; 356 DDPhysicalThread *dd_pt; 357 }; 358 359 #if !SANITIZER_GO 360 // ScopedGlobalProcessor temporary setups a global processor for the current 361 // thread, if it does not have one. Intended for interceptors that can run 362 // at the very thread end, when we already destroyed the thread processor. 363 struct ScopedGlobalProcessor { 364 ScopedGlobalProcessor(); 365 ~ScopedGlobalProcessor(); 366 }; 367 #endif 368 369 // This struct is stored in TLS. 370 struct ThreadState { 371 FastState fast_state; 372 // Synch epoch represents the threads's epoch before the last synchronization 373 // action. It allows to reduce number of shadow state updates. 374 // For example, fast_synch_epoch=100, last write to addr X was at epoch=150, 375 // if we are processing write to X from the same thread at epoch=200, 376 // we do nothing, because both writes happen in the same 'synch epoch'. 377 // That is, if another memory access does not race with the former write, 378 // it does not race with the latter as well. 379 // QUESTION: can we can squeeze this into ThreadState::Fast? 380 // E.g. ThreadState::Fast is a 44-bit, 32 are taken by synch_epoch and 12 are 381 // taken by epoch between synchs. 382 // This way we can save one load from tls. 383 u64 fast_synch_epoch; 384 // This is a slow path flag. On fast path, fast_state.GetIgnoreBit() is read. 385 // We do not distinguish beteween ignoring reads and writes 386 // for better performance. 387 int ignore_reads_and_writes; 388 int ignore_sync; 389 int suppress_reports; 390 // Go does not support ignores. 391 #if !SANITIZER_GO 392 IgnoreSet mop_ignore_set; 393 IgnoreSet sync_ignore_set; 394 #endif 395 // C/C++ uses fixed size shadow stack embed into Trace. 396 // Go uses malloc-allocated shadow stack with dynamic size. 397 uptr *shadow_stack; 398 uptr *shadow_stack_end; 399 uptr *shadow_stack_pos; 400 u64 *racy_shadow_addr; 401 u64 racy_state[2]; 402 MutexSet mset; 403 ThreadClock clock; 404 #if !SANITIZER_GO 405 Vector<JmpBuf> jmp_bufs; 406 int ignore_interceptors; 407 #endif 408 #if TSAN_COLLECT_STATS 409 u64 stat[StatCnt]; 410 #endif 411 const int tid; 412 const int unique_id; 413 bool in_symbolizer; 414 bool in_ignored_lib; 415 bool is_inited; 416 bool is_dead; 417 bool is_freeing; 418 bool is_vptr_access; 419 const uptr stk_addr; 420 const uptr stk_size; 421 const uptr tls_addr; 422 const uptr tls_size; 423 ThreadContext *tctx; 424 425 #if SANITIZER_DEBUG && !SANITIZER_GO 426 InternalDeadlockDetector internal_deadlock_detector; 427 #endif 428 DDLogicalThread *dd_lt; 429 430 // Current wired Processor, or nullptr. Required to handle any events. 431 Processor *proc1; 432 #if !SANITIZER_GO 433 Processor *proc() { return proc1; } 434 #else 435 Processor *proc(); 436 #endif 437 438 atomic_uintptr_t in_signal_handler; 439 ThreadSignalContext *signal_ctx; 440 441 #if !SANITIZER_GO 442 u32 last_sleep_stack_id; 443 ThreadClock last_sleep_clock; 444 #endif 445 446 // Set in regions of runtime that must be signal-safe and fork-safe. 447 // If set, malloc must not be called. 448 int nomalloc; 449 450 const ReportDesc *current_report; 451 452 explicit ThreadState(Context *ctx, int tid, int unique_id, u64 epoch, 453 unsigned reuse_count, 454 uptr stk_addr, uptr stk_size, 455 uptr tls_addr, uptr tls_size); 456 }; 457 458 #if !SANITIZER_GO 459 #if SANITIZER_MAC || SANITIZER_ANDROID 460 ThreadState *cur_thread(); 461 void cur_thread_finalize(); 462 #else 463 __attribute__((tls_model("initial-exec"))) 464 extern THREADLOCAL char cur_thread_placeholder[]; 465 INLINE ThreadState *cur_thread() { 466 return reinterpret_cast<ThreadState *>(&cur_thread_placeholder); 467 } 468 INLINE void cur_thread_finalize() { } 469 #endif // SANITIZER_MAC || SANITIZER_ANDROID 470 #endif // SANITIZER_GO 471 472 class ThreadContext : public ThreadContextBase { 473 public: 474 explicit ThreadContext(int tid); 475 ~ThreadContext(); 476 ThreadState *thr; 477 u32 creation_stack_id; 478 SyncClock sync; 479 // Epoch at which the thread had started. 480 // If we see an event from the thread stamped by an older epoch, 481 // the event is from a dead thread that shared tid with this thread. 482 u64 epoch0; 483 u64 epoch1; 484 485 // Override superclass callbacks. 486 void OnDead() override; 487 void OnJoined(void *arg) override; 488 void OnFinished() override; 489 void OnStarted(void *arg) override; 490 void OnCreated(void *arg) override; 491 void OnReset() override; 492 void OnDetached(void *arg) override; 493 }; 494 495 struct RacyStacks { 496 MD5Hash hash[2]; 497 bool operator==(const RacyStacks &other) const { 498 if (hash[0] == other.hash[0] && hash[1] == other.hash[1]) 499 return true; 500 if (hash[0] == other.hash[1] && hash[1] == other.hash[0]) 501 return true; 502 return false; 503 } 504 }; 505 506 struct RacyAddress { 507 uptr addr_min; 508 uptr addr_max; 509 }; 510 511 struct FiredSuppression { 512 ReportType type; 513 uptr pc_or_addr; 514 Suppression *supp; 515 }; 516 517 struct Context { 518 Context(); 519 520 bool initialized; 521 #if !SANITIZER_GO 522 bool after_multithreaded_fork; 523 #endif 524 525 MetaMap metamap; 526 527 Mutex report_mtx; 528 int nreported; 529 int nmissed_expected; 530 atomic_uint64_t last_symbolize_time_ns; 531 532 void *background_thread; 533 atomic_uint32_t stop_background_thread; 534 535 ThreadRegistry *thread_registry; 536 537 Mutex racy_mtx; 538 Vector<RacyStacks> racy_stacks; 539 Vector<RacyAddress> racy_addresses; 540 // Number of fired suppressions may be large enough. 541 Mutex fired_suppressions_mtx; 542 InternalMmapVector<FiredSuppression> fired_suppressions; 543 DDetector *dd; 544 545 ClockAlloc clock_alloc; 546 547 Flags flags; 548 549 u64 stat[StatCnt]; 550 u64 int_alloc_cnt[MBlockTypeCount]; 551 u64 int_alloc_siz[MBlockTypeCount]; 552 }; 553 554 extern Context *ctx; // The one and the only global runtime context. 555 556 ALWAYS_INLINE Flags *flags() { 557 return &ctx->flags; 558 } 559 560 struct ScopedIgnoreInterceptors { 561 ScopedIgnoreInterceptors() { 562 #if !SANITIZER_GO 563 cur_thread()->ignore_interceptors++; 564 #endif 565 } 566 567 ~ScopedIgnoreInterceptors() { 568 #if !SANITIZER_GO 569 cur_thread()->ignore_interceptors--; 570 #endif 571 } 572 }; 573 574 const char *GetObjectTypeFromTag(uptr tag); 575 const char *GetReportHeaderFromTag(uptr tag); 576 uptr TagFromShadowStackFrame(uptr pc); 577 578 class ScopedReportBase { 579 public: 580 void AddMemoryAccess(uptr addr, uptr external_tag, Shadow s, StackTrace stack, 581 const MutexSet *mset); 582 void AddStack(StackTrace stack, bool suppressable = false); 583 void AddThread(const ThreadContext *tctx, bool suppressable = false); 584 void AddThread(int unique_tid, bool suppressable = false); 585 void AddUniqueTid(int unique_tid); 586 void AddMutex(const SyncVar *s); 587 u64 AddMutex(u64 id); 588 void AddLocation(uptr addr, uptr size); 589 void AddSleep(u32 stack_id); 590 void SetCount(int count); 591 592 const ReportDesc *GetReport() const; 593 594 protected: 595 ScopedReportBase(ReportType typ, uptr tag); 596 ~ScopedReportBase(); 597 598 private: 599 ReportDesc *rep_; 600 // Symbolizer makes lots of intercepted calls. If we try to process them, 601 // at best it will cause deadlocks on internal mutexes. 602 ScopedIgnoreInterceptors ignore_interceptors_; 603 604 void AddDeadMutex(u64 id); 605 606 ScopedReportBase(const ScopedReportBase &) = delete; 607 void operator=(const ScopedReportBase &) = delete; 608 }; 609 610 class ScopedReport : public ScopedReportBase { 611 public: 612 explicit ScopedReport(ReportType typ, uptr tag = kExternalTagNone); 613 ~ScopedReport(); 614 615 private: 616 ScopedErrorReportLock lock_; 617 }; 618 619 ThreadContext *IsThreadStackOrTls(uptr addr, bool *is_stack); 620 void RestoreStack(int tid, const u64 epoch, VarSizeStackTrace *stk, 621 MutexSet *mset, uptr *tag = nullptr); 622 623 // The stack could look like: 624 // <start> | <main> | <foo> | tag | <bar> 625 // This will extract the tag and keep: 626 // <start> | <main> | <foo> | <bar> 627 template<typename StackTraceTy> 628 void ExtractTagFromStack(StackTraceTy *stack, uptr *tag = nullptr) { 629 if (stack->size < 2) return; 630 uptr possible_tag_pc = stack->trace[stack->size - 2]; 631 uptr possible_tag = TagFromShadowStackFrame(possible_tag_pc); 632 if (possible_tag == kExternalTagNone) return; 633 stack->trace_buffer[stack->size - 2] = stack->trace_buffer[stack->size - 1]; 634 stack->size -= 1; 635 if (tag) *tag = possible_tag; 636 } 637 638 template<typename StackTraceTy> 639 void ObtainCurrentStack(ThreadState *thr, uptr toppc, StackTraceTy *stack, 640 uptr *tag = nullptr) { 641 uptr size = thr->shadow_stack_pos - thr->shadow_stack; 642 uptr start = 0; 643 if (size + !!toppc > kStackTraceMax) { 644 start = size + !!toppc - kStackTraceMax; 645 size = kStackTraceMax - !!toppc; 646 } 647 stack->Init(&thr->shadow_stack[start], size, toppc); 648 ExtractTagFromStack(stack, tag); 649 } 650 651 #define GET_STACK_TRACE_FATAL(thr, pc) \ 652 VarSizeStackTrace stack; \ 653 ObtainCurrentStack(thr, pc, &stack); \ 654 stack.ReverseOrder(); 655 656 #if TSAN_COLLECT_STATS 657 void StatAggregate(u64 *dst, u64 *src); 658 void StatOutput(u64 *stat); 659 #endif 660 661 void ALWAYS_INLINE StatInc(ThreadState *thr, StatType typ, u64 n = 1) { 662 #if TSAN_COLLECT_STATS 663 thr->stat[typ] += n; 664 #endif 665 } 666 void ALWAYS_INLINE StatSet(ThreadState *thr, StatType typ, u64 n) { 667 #if TSAN_COLLECT_STATS 668 thr->stat[typ] = n; 669 #endif 670 } 671 672 void MapShadow(uptr addr, uptr size); 673 void MapThreadTrace(uptr addr, uptr size, const char *name); 674 void DontNeedShadowFor(uptr addr, uptr size); 675 void InitializeShadowMemory(); 676 void InitializeInterceptors(); 677 void InitializeLibIgnore(); 678 void InitializeDynamicAnnotations(); 679 680 void ForkBefore(ThreadState *thr, uptr pc); 681 void ForkParentAfter(ThreadState *thr, uptr pc); 682 void ForkChildAfter(ThreadState *thr, uptr pc); 683 684 void ReportRace(ThreadState *thr); 685 bool OutputReport(ThreadState *thr, const ScopedReport &srep); 686 bool IsFiredSuppression(Context *ctx, ReportType type, StackTrace trace); 687 bool IsExpectedReport(uptr addr, uptr size); 688 void PrintMatchedBenignRaces(); 689 690 #if defined(TSAN_DEBUG_OUTPUT) && TSAN_DEBUG_OUTPUT >= 1 691 # define DPrintf Printf 692 #else 693 # define DPrintf(...) 694 #endif 695 696 #if defined(TSAN_DEBUG_OUTPUT) && TSAN_DEBUG_OUTPUT >= 2 697 # define DPrintf2 Printf 698 #else 699 # define DPrintf2(...) 700 #endif 701 702 u32 CurrentStackId(ThreadState *thr, uptr pc); 703 ReportStack *SymbolizeStackId(u32 stack_id); 704 void PrintCurrentStack(ThreadState *thr, uptr pc); 705 void PrintCurrentStackSlow(uptr pc); // uses libunwind 706 707 void Initialize(ThreadState *thr); 708 void MaybeSpawnBackgroundThread(); 709 int Finalize(ThreadState *thr); 710 711 void OnUserAlloc(ThreadState *thr, uptr pc, uptr p, uptr sz, bool write); 712 void OnUserFree(ThreadState *thr, uptr pc, uptr p, bool write); 713 714 void MemoryAccess(ThreadState *thr, uptr pc, uptr addr, 715 int kAccessSizeLog, bool kAccessIsWrite, bool kIsAtomic); 716 void MemoryAccessImpl(ThreadState *thr, uptr addr, 717 int kAccessSizeLog, bool kAccessIsWrite, bool kIsAtomic, 718 u64 *shadow_mem, Shadow cur); 719 void MemoryAccessRange(ThreadState *thr, uptr pc, uptr addr, 720 uptr size, bool is_write); 721 void MemoryAccessRangeStep(ThreadState *thr, uptr pc, uptr addr, 722 uptr size, uptr step, bool is_write); 723 void UnalignedMemoryAccess(ThreadState *thr, uptr pc, uptr addr, 724 int size, bool kAccessIsWrite, bool kIsAtomic); 725 726 const int kSizeLog1 = 0; 727 const int kSizeLog2 = 1; 728 const int kSizeLog4 = 2; 729 const int kSizeLog8 = 3; 730 731 void ALWAYS_INLINE MemoryRead(ThreadState *thr, uptr pc, 732 uptr addr, int kAccessSizeLog) { 733 MemoryAccess(thr, pc, addr, kAccessSizeLog, false, false); 734 } 735 736 void ALWAYS_INLINE MemoryWrite(ThreadState *thr, uptr pc, 737 uptr addr, int kAccessSizeLog) { 738 MemoryAccess(thr, pc, addr, kAccessSizeLog, true, false); 739 } 740 741 void ALWAYS_INLINE MemoryReadAtomic(ThreadState *thr, uptr pc, 742 uptr addr, int kAccessSizeLog) { 743 MemoryAccess(thr, pc, addr, kAccessSizeLog, false, true); 744 } 745 746 void ALWAYS_INLINE MemoryWriteAtomic(ThreadState *thr, uptr pc, 747 uptr addr, int kAccessSizeLog) { 748 MemoryAccess(thr, pc, addr, kAccessSizeLog, true, true); 749 } 750 751 void MemoryResetRange(ThreadState *thr, uptr pc, uptr addr, uptr size); 752 void MemoryRangeFreed(ThreadState *thr, uptr pc, uptr addr, uptr size); 753 void MemoryRangeImitateWrite(ThreadState *thr, uptr pc, uptr addr, uptr size); 754 755 void ThreadIgnoreBegin(ThreadState *thr, uptr pc, bool save_stack = true); 756 void ThreadIgnoreEnd(ThreadState *thr, uptr pc); 757 void ThreadIgnoreSyncBegin(ThreadState *thr, uptr pc, bool save_stack = true); 758 void ThreadIgnoreSyncEnd(ThreadState *thr, uptr pc); 759 760 void FuncEntry(ThreadState *thr, uptr pc); 761 void FuncExit(ThreadState *thr); 762 763 int ThreadCreate(ThreadState *thr, uptr pc, uptr uid, bool detached); 764 void ThreadStart(ThreadState *thr, int tid, tid_t os_id, bool workerthread); 765 void ThreadFinish(ThreadState *thr); 766 int ThreadTid(ThreadState *thr, uptr pc, uptr uid); 767 void ThreadJoin(ThreadState *thr, uptr pc, int tid); 768 void ThreadDetach(ThreadState *thr, uptr pc, int tid); 769 void ThreadFinalize(ThreadState *thr); 770 void ThreadSetName(ThreadState *thr, const char *name); 771 int ThreadCount(ThreadState *thr); 772 void ProcessPendingSignals(ThreadState *thr); 773 774 Processor *ProcCreate(); 775 void ProcDestroy(Processor *proc); 776 void ProcWire(Processor *proc, ThreadState *thr); 777 void ProcUnwire(Processor *proc, ThreadState *thr); 778 779 // Note: the parameter is called flagz, because flags is already taken 780 // by the global function that returns flags. 781 void MutexCreate(ThreadState *thr, uptr pc, uptr addr, u32 flagz = 0); 782 void MutexDestroy(ThreadState *thr, uptr pc, uptr addr, u32 flagz = 0); 783 void MutexPreLock(ThreadState *thr, uptr pc, uptr addr, u32 flagz = 0); 784 void MutexPostLock(ThreadState *thr, uptr pc, uptr addr, u32 flagz = 0, 785 int rec = 1); 786 int MutexUnlock(ThreadState *thr, uptr pc, uptr addr, u32 flagz = 0); 787 void MutexPreReadLock(ThreadState *thr, uptr pc, uptr addr, u32 flagz = 0); 788 void MutexPostReadLock(ThreadState *thr, uptr pc, uptr addr, u32 flagz = 0); 789 void MutexReadUnlock(ThreadState *thr, uptr pc, uptr addr); 790 void MutexReadOrWriteUnlock(ThreadState *thr, uptr pc, uptr addr); 791 void MutexRepair(ThreadState *thr, uptr pc, uptr addr); // call on EOWNERDEAD 792 void MutexInvalidAccess(ThreadState *thr, uptr pc, uptr addr); 793 794 void Acquire(ThreadState *thr, uptr pc, uptr addr); 795 // AcquireGlobal synchronizes the current thread with all other threads. 796 // In terms of happens-before relation, it draws a HB edge from all threads 797 // (where they happen to execute right now) to the current thread. We use it to 798 // handle Go finalizers. Namely, finalizer goroutine executes AcquireGlobal 799 // right before executing finalizers. This provides a coarse, but simple 800 // approximation of the actual required synchronization. 801 void AcquireGlobal(ThreadState *thr, uptr pc); 802 void Release(ThreadState *thr, uptr pc, uptr addr); 803 void ReleaseStore(ThreadState *thr, uptr pc, uptr addr); 804 void AfterSleep(ThreadState *thr, uptr pc); 805 void AcquireImpl(ThreadState *thr, uptr pc, SyncClock *c); 806 void ReleaseImpl(ThreadState *thr, uptr pc, SyncClock *c); 807 void ReleaseStoreImpl(ThreadState *thr, uptr pc, SyncClock *c); 808 void AcquireReleaseImpl(ThreadState *thr, uptr pc, SyncClock *c); 809 810 // The hacky call uses custom calling convention and an assembly thunk. 811 // It is considerably faster that a normal call for the caller 812 // if it is not executed (it is intended for slow paths from hot functions). 813 // The trick is that the call preserves all registers and the compiler 814 // does not treat it as a call. 815 // If it does not work for you, use normal call. 816 #if !SANITIZER_DEBUG && defined(__x86_64__) && !SANITIZER_MAC 817 // The caller may not create the stack frame for itself at all, 818 // so we create a reserve stack frame for it (1024b must be enough). 819 #define HACKY_CALL(f) \ 820 __asm__ __volatile__("sub $1024, %%rsp;" \ 821 CFI_INL_ADJUST_CFA_OFFSET(1024) \ 822 ".hidden " #f "_thunk;" \ 823 "call " #f "_thunk;" \ 824 "add $1024, %%rsp;" \ 825 CFI_INL_ADJUST_CFA_OFFSET(-1024) \ 826 ::: "memory", "cc"); 827 #else 828 #define HACKY_CALL(f) f() 829 #endif 830 831 void TraceSwitch(ThreadState *thr); 832 uptr TraceTopPC(ThreadState *thr); 833 uptr TraceSize(); 834 uptr TraceParts(); 835 Trace *ThreadTrace(int tid); 836 837 extern "C" void __tsan_trace_switch(); 838 void ALWAYS_INLINE TraceAddEvent(ThreadState *thr, FastState fs, 839 EventType typ, u64 addr) { 840 if (!kCollectHistory) 841 return; 842 DCHECK_GE((int)typ, 0); 843 DCHECK_LE((int)typ, 7); 844 DCHECK_EQ(GetLsb(addr, kEventPCBits), addr); 845 StatInc(thr, StatEvents); 846 u64 pos = fs.GetTracePos(); 847 if (UNLIKELY((pos % kTracePartSize) == 0)) { 848 #if !SANITIZER_GO 849 HACKY_CALL(__tsan_trace_switch); 850 #else 851 TraceSwitch(thr); 852 #endif 853 } 854 Event *trace = (Event*)GetThreadTrace(fs.tid()); 855 Event *evp = &trace[pos]; 856 Event ev = (u64)addr | ((u64)typ << kEventPCBits); 857 *evp = ev; 858 } 859 860 #if !SANITIZER_GO 861 uptr ALWAYS_INLINE HeapEnd() { 862 return HeapMemEnd() + PrimaryAllocator::AdditionalSize(); 863 } 864 #endif 865 866 } // namespace __tsan 867 868 #endif // TSAN_RTL_H 869