1 //===-- tsan_rtl.cc -------------------------------------------------------===// 2 // 3 // This file is distributed under the University of Illinois Open Source 4 // License. See LICENSE.TXT for details. 5 // 6 //===----------------------------------------------------------------------===// 7 // 8 // This file is a part of ThreadSanitizer (TSan), a race detector. 9 // 10 // Main file (entry points) for the TSan run-time. 11 //===----------------------------------------------------------------------===// 12 13 #include "sanitizer_common/sanitizer_atomic.h" 14 #include "sanitizer_common/sanitizer_common.h" 15 #include "sanitizer_common/sanitizer_file.h" 16 #include "sanitizer_common/sanitizer_libc.h" 17 #include "sanitizer_common/sanitizer_stackdepot.h" 18 #include "sanitizer_common/sanitizer_placement_new.h" 19 #include "sanitizer_common/sanitizer_symbolizer.h" 20 #include "tsan_defs.h" 21 #include "tsan_platform.h" 22 #include "tsan_rtl.h" 23 #include "tsan_mman.h" 24 #include "tsan_suppressions.h" 25 #include "tsan_symbolize.h" 26 #include "ubsan/ubsan_init.h" 27 28 #ifdef __SSE3__ 29 // <emmintrin.h> transitively includes <stdlib.h>, 30 // and it's prohibited to include std headers into tsan runtime. 31 // So we do this dirty trick. 32 #define _MM_MALLOC_H_INCLUDED 33 #define __MM_MALLOC_H 34 #include <emmintrin.h> 35 typedef __m128i m128; 36 #endif 37 38 volatile int __tsan_resumed = 0; 39 40 extern "C" void __tsan_resume() { 41 __tsan_resumed = 1; 42 } 43 44 namespace __tsan { 45 46 #if !SANITIZER_GO && !SANITIZER_MAC 47 __attribute__((tls_model("initial-exec"))) 48 THREADLOCAL char cur_thread_placeholder[sizeof(ThreadState)] ALIGNED(64); 49 #endif 50 static char ctx_placeholder[sizeof(Context)] ALIGNED(64); 51 Context *ctx; 52 53 // Can be overriden by a front-end. 54 #ifdef TSAN_EXTERNAL_HOOKS 55 bool OnFinalize(bool failed); 56 void OnInitialize(); 57 #else 58 SANITIZER_WEAK_CXX_DEFAULT_IMPL 59 bool OnFinalize(bool failed) { 60 return failed; 61 } 62 SANITIZER_WEAK_CXX_DEFAULT_IMPL 63 void OnInitialize() {} 64 #endif 65 66 static char thread_registry_placeholder[sizeof(ThreadRegistry)]; 67 68 static ThreadContextBase *CreateThreadContext(u32 tid) { 69 // Map thread trace when context is created. 70 char name[50]; 71 internal_snprintf(name, sizeof(name), "trace %u", tid); 72 MapThreadTrace(GetThreadTrace(tid), TraceSize() * sizeof(Event), name); 73 const uptr hdr = GetThreadTraceHeader(tid); 74 internal_snprintf(name, sizeof(name), "trace header %u", tid); 75 MapThreadTrace(hdr, sizeof(Trace), name); 76 new((void*)hdr) Trace(); 77 // We are going to use only a small part of the trace with the default 78 // value of history_size. However, the constructor writes to the whole trace. 79 // Unmap the unused part. 80 uptr hdr_end = hdr + sizeof(Trace); 81 hdr_end -= sizeof(TraceHeader) * (kTraceParts - TraceParts()); 82 hdr_end = RoundUp(hdr_end, GetPageSizeCached()); 83 if (hdr_end < hdr + sizeof(Trace)) 84 UnmapOrDie((void*)hdr_end, hdr + sizeof(Trace) - hdr_end); 85 void *mem = internal_alloc(MBlockThreadContex, sizeof(ThreadContext)); 86 return new(mem) ThreadContext(tid); 87 } 88 89 #if !SANITIZER_GO 90 static const u32 kThreadQuarantineSize = 16; 91 #else 92 static const u32 kThreadQuarantineSize = 64; 93 #endif 94 95 Context::Context() 96 : initialized() 97 , report_mtx(MutexTypeReport, StatMtxReport) 98 , nreported() 99 , nmissed_expected() 100 , thread_registry(new(thread_registry_placeholder) ThreadRegistry( 101 CreateThreadContext, kMaxTid, kThreadQuarantineSize, kMaxTidReuse)) 102 , racy_mtx(MutexTypeRacy, StatMtxRacy) 103 , racy_stacks() 104 , racy_addresses() 105 , fired_suppressions_mtx(MutexTypeFired, StatMtxFired) 106 , clock_alloc("clock allocator") { 107 fired_suppressions.reserve(8); 108 } 109 110 // The objects are allocated in TLS, so one may rely on zero-initialization. 111 ThreadState::ThreadState(Context *ctx, int tid, int unique_id, u64 epoch, 112 unsigned reuse_count, 113 uptr stk_addr, uptr stk_size, 114 uptr tls_addr, uptr tls_size) 115 : fast_state(tid, epoch) 116 // Do not touch these, rely on zero initialization, 117 // they may be accessed before the ctor. 118 // , ignore_reads_and_writes() 119 // , ignore_interceptors() 120 , clock(tid, reuse_count) 121 #if !SANITIZER_GO 122 , jmp_bufs() 123 #endif 124 , tid(tid) 125 , unique_id(unique_id) 126 , stk_addr(stk_addr) 127 , stk_size(stk_size) 128 , tls_addr(tls_addr) 129 , tls_size(tls_size) 130 #if !SANITIZER_GO 131 , last_sleep_clock(tid) 132 #endif 133 { 134 } 135 136 #if !SANITIZER_GO 137 static void MemoryProfiler(Context *ctx, fd_t fd, int i) { 138 uptr n_threads; 139 uptr n_running_threads; 140 ctx->thread_registry->GetNumberOfThreads(&n_threads, &n_running_threads); 141 InternalMmapVector<char> buf(4096); 142 WriteMemoryProfile(buf.data(), buf.size(), n_threads, n_running_threads); 143 WriteToFile(fd, buf.data(), internal_strlen(buf.data())); 144 } 145 146 static void BackgroundThread(void *arg) { 147 // This is a non-initialized non-user thread, nothing to see here. 148 // We don't use ScopedIgnoreInterceptors, because we want ignores to be 149 // enabled even when the thread function exits (e.g. during pthread thread 150 // shutdown code). 151 cur_thread()->ignore_interceptors++; 152 const u64 kMs2Ns = 1000 * 1000; 153 154 fd_t mprof_fd = kInvalidFd; 155 if (flags()->profile_memory && flags()->profile_memory[0]) { 156 if (internal_strcmp(flags()->profile_memory, "stdout") == 0) { 157 mprof_fd = 1; 158 } else if (internal_strcmp(flags()->profile_memory, "stderr") == 0) { 159 mprof_fd = 2; 160 } else { 161 InternalScopedString filename(kMaxPathLength); 162 filename.append("%s.%d", flags()->profile_memory, (int)internal_getpid()); 163 fd_t fd = OpenFile(filename.data(), WrOnly); 164 if (fd == kInvalidFd) { 165 Printf("ThreadSanitizer: failed to open memory profile file '%s'\n", 166 &filename[0]); 167 } else { 168 mprof_fd = fd; 169 } 170 } 171 } 172 173 u64 last_flush = NanoTime(); 174 uptr last_rss = 0; 175 for (int i = 0; 176 atomic_load(&ctx->stop_background_thread, memory_order_relaxed) == 0; 177 i++) { 178 SleepForMillis(100); 179 u64 now = NanoTime(); 180 181 // Flush memory if requested. 182 if (flags()->flush_memory_ms > 0) { 183 if (last_flush + flags()->flush_memory_ms * kMs2Ns < now) { 184 VPrintf(1, "ThreadSanitizer: periodic memory flush\n"); 185 FlushShadowMemory(); 186 last_flush = NanoTime(); 187 } 188 } 189 // GetRSS can be expensive on huge programs, so don't do it every 100ms. 190 if (flags()->memory_limit_mb > 0) { 191 uptr rss = GetRSS(); 192 uptr limit = uptr(flags()->memory_limit_mb) << 20; 193 VPrintf(1, "ThreadSanitizer: memory flush check" 194 " RSS=%llu LAST=%llu LIMIT=%llu\n", 195 (u64)rss >> 20, (u64)last_rss >> 20, (u64)limit >> 20); 196 if (2 * rss > limit + last_rss) { 197 VPrintf(1, "ThreadSanitizer: flushing memory due to RSS\n"); 198 FlushShadowMemory(); 199 rss = GetRSS(); 200 VPrintf(1, "ThreadSanitizer: memory flushed RSS=%llu\n", (u64)rss>>20); 201 } 202 last_rss = rss; 203 } 204 205 // Write memory profile if requested. 206 if (mprof_fd != kInvalidFd) 207 MemoryProfiler(ctx, mprof_fd, i); 208 209 // Flush symbolizer cache if requested. 210 if (flags()->flush_symbolizer_ms > 0) { 211 u64 last = atomic_load(&ctx->last_symbolize_time_ns, 212 memory_order_relaxed); 213 if (last != 0 && last + flags()->flush_symbolizer_ms * kMs2Ns < now) { 214 Lock l(&ctx->report_mtx); 215 ScopedErrorReportLock l2; 216 SymbolizeFlush(); 217 atomic_store(&ctx->last_symbolize_time_ns, 0, memory_order_relaxed); 218 } 219 } 220 } 221 } 222 223 static void StartBackgroundThread() { 224 ctx->background_thread = internal_start_thread(&BackgroundThread, 0); 225 } 226 227 #ifndef __mips__ 228 static void StopBackgroundThread() { 229 atomic_store(&ctx->stop_background_thread, 1, memory_order_relaxed); 230 internal_join_thread(ctx->background_thread); 231 ctx->background_thread = 0; 232 } 233 #endif 234 #endif 235 236 void DontNeedShadowFor(uptr addr, uptr size) { 237 ReleaseMemoryPagesToOS(MemToShadow(addr), MemToShadow(addr + size)); 238 } 239 240 void MapShadow(uptr addr, uptr size) { 241 // Global data is not 64K aligned, but there are no adjacent mappings, 242 // so we can get away with unaligned mapping. 243 // CHECK_EQ(addr, addr & ~((64 << 10) - 1)); // windows wants 64K alignment 244 const uptr kPageSize = GetPageSizeCached(); 245 uptr shadow_begin = RoundDownTo((uptr)MemToShadow(addr), kPageSize); 246 uptr shadow_end = RoundUpTo((uptr)MemToShadow(addr + size), kPageSize); 247 if (!MmapFixedNoReserve(shadow_begin, shadow_end - shadow_begin, "shadow")) 248 Die(); 249 250 // Meta shadow is 2:1, so tread carefully. 251 static bool data_mapped = false; 252 static uptr mapped_meta_end = 0; 253 uptr meta_begin = (uptr)MemToMeta(addr); 254 uptr meta_end = (uptr)MemToMeta(addr + size); 255 meta_begin = RoundDownTo(meta_begin, 64 << 10); 256 meta_end = RoundUpTo(meta_end, 64 << 10); 257 if (!data_mapped) { 258 // First call maps data+bss. 259 data_mapped = true; 260 if (!MmapFixedNoReserve(meta_begin, meta_end - meta_begin, "meta shadow")) 261 Die(); 262 } else { 263 // Mapping continous heap. 264 // Windows wants 64K alignment. 265 meta_begin = RoundDownTo(meta_begin, 64 << 10); 266 meta_end = RoundUpTo(meta_end, 64 << 10); 267 if (meta_end <= mapped_meta_end) 268 return; 269 if (meta_begin < mapped_meta_end) 270 meta_begin = mapped_meta_end; 271 if (!MmapFixedNoReserve(meta_begin, meta_end - meta_begin, "meta shadow")) 272 Die(); 273 mapped_meta_end = meta_end; 274 } 275 VPrintf(2, "mapped meta shadow for (%p-%p) at (%p-%p)\n", 276 addr, addr+size, meta_begin, meta_end); 277 } 278 279 void MapThreadTrace(uptr addr, uptr size, const char *name) { 280 DPrintf("#0: Mapping trace at %p-%p(0x%zx)\n", addr, addr + size, size); 281 CHECK_GE(addr, TraceMemBeg()); 282 CHECK_LE(addr + size, TraceMemEnd()); 283 CHECK_EQ(addr, addr & ~((64 << 10) - 1)); // windows wants 64K alignment 284 if (!MmapFixedNoReserve(addr, size, name)) { 285 Printf("FATAL: ThreadSanitizer can not mmap thread trace (%p/%p)\n", 286 addr, size); 287 Die(); 288 } 289 } 290 291 static void CheckShadowMapping() { 292 uptr beg, end; 293 for (int i = 0; GetUserRegion(i, &beg, &end); i++) { 294 // Skip cases for empty regions (heap definition for architectures that 295 // do not use 64-bit allocator). 296 if (beg == end) 297 continue; 298 VPrintf(3, "checking shadow region %p-%p\n", beg, end); 299 uptr prev = 0; 300 for (uptr p0 = beg; p0 <= end; p0 += (end - beg) / 4) { 301 for (int x = -(int)kShadowCell; x <= (int)kShadowCell; x += kShadowCell) { 302 const uptr p = RoundDown(p0 + x, kShadowCell); 303 if (p < beg || p >= end) 304 continue; 305 const uptr s = MemToShadow(p); 306 const uptr m = (uptr)MemToMeta(p); 307 VPrintf(3, " checking pointer %p: shadow=%p meta=%p\n", p, s, m); 308 CHECK(IsAppMem(p)); 309 CHECK(IsShadowMem(s)); 310 CHECK_EQ(p, ShadowToMem(s)); 311 CHECK(IsMetaMem(m)); 312 if (prev) { 313 // Ensure that shadow and meta mappings are linear within a single 314 // user range. Lots of code that processes memory ranges assumes it. 315 const uptr prev_s = MemToShadow(prev); 316 const uptr prev_m = (uptr)MemToMeta(prev); 317 CHECK_EQ(s - prev_s, (p - prev) * kShadowMultiplier); 318 CHECK_EQ((m - prev_m) / kMetaShadowSize, 319 (p - prev) / kMetaShadowCell); 320 } 321 prev = p; 322 } 323 } 324 } 325 } 326 327 #if !SANITIZER_GO 328 static void OnStackUnwind(const SignalContext &sig, const void *, 329 BufferedStackTrace *stack) { 330 uptr top = 0; 331 uptr bottom = 0; 332 bool fast = common_flags()->fast_unwind_on_fatal; 333 if (fast) GetThreadStackTopAndBottom(false, &top, &bottom); 334 stack->Unwind(kStackTraceMax, sig.pc, sig.bp, sig.context, top, bottom, fast); 335 } 336 337 static void TsanOnDeadlySignal(int signo, void *siginfo, void *context) { 338 HandleDeadlySignal(siginfo, context, GetTid(), &OnStackUnwind, nullptr); 339 } 340 #endif 341 342 void Initialize(ThreadState *thr) { 343 // Thread safe because done before all threads exist. 344 static bool is_initialized = false; 345 if (is_initialized) 346 return; 347 is_initialized = true; 348 // We are not ready to handle interceptors yet. 349 ScopedIgnoreInterceptors ignore; 350 SanitizerToolName = "ThreadSanitizer"; 351 // Install tool-specific callbacks in sanitizer_common. 352 SetCheckFailedCallback(TsanCheckFailed); 353 354 ctx = new(ctx_placeholder) Context; 355 const char *options = GetEnv(SANITIZER_GO ? "GORACE" : "TSAN_OPTIONS"); 356 CacheBinaryName(); 357 CheckASLR(); 358 InitializeFlags(&ctx->flags, options); 359 AvoidCVE_2016_2143(); 360 InitializePlatformEarly(); 361 #if !SANITIZER_GO 362 // Re-exec ourselves if we need to set additional env or command line args. 363 MaybeReexec(); 364 365 InitializeAllocator(); 366 ReplaceSystemMalloc(); 367 #endif 368 if (common_flags()->detect_deadlocks) 369 ctx->dd = DDetector::Create(flags()); 370 Processor *proc = ProcCreate(); 371 ProcWire(proc, thr); 372 InitializeInterceptors(); 373 CheckShadowMapping(); 374 InitializePlatform(); 375 InitializeMutex(); 376 InitializeDynamicAnnotations(); 377 #if !SANITIZER_GO 378 InitializeShadowMemory(); 379 InitializeAllocatorLate(); 380 InstallDeadlySignalHandlers(TsanOnDeadlySignal); 381 #endif 382 // Setup correct file descriptor for error reports. 383 __sanitizer_set_report_path(common_flags()->log_path); 384 InitializeSuppressions(); 385 #if !SANITIZER_GO 386 InitializeLibIgnore(); 387 Symbolizer::GetOrInit()->AddHooks(EnterSymbolizer, ExitSymbolizer); 388 #endif 389 390 VPrintf(1, "***** Running under ThreadSanitizer v2 (pid %d) *****\n", 391 (int)internal_getpid()); 392 393 // Initialize thread 0. 394 int tid = ThreadCreate(thr, 0, 0, true); 395 CHECK_EQ(tid, 0); 396 ThreadStart(thr, tid, GetTid(), /*workerthread*/ false); 397 #if TSAN_CONTAINS_UBSAN 398 __ubsan::InitAsPlugin(); 399 #endif 400 ctx->initialized = true; 401 402 #if !SANITIZER_GO 403 Symbolizer::LateInitialize(); 404 #endif 405 406 if (flags()->stop_on_start) { 407 Printf("ThreadSanitizer is suspended at startup (pid %d)." 408 " Call __tsan_resume().\n", 409 (int)internal_getpid()); 410 while (__tsan_resumed == 0) {} 411 } 412 413 OnInitialize(); 414 } 415 416 void MaybeSpawnBackgroundThread() { 417 // On MIPS, TSan initialization is run before 418 // __pthread_initialize_minimal_internal() is finished, so we can not spawn 419 // new threads. 420 #if !SANITIZER_GO && !defined(__mips__) 421 static atomic_uint32_t bg_thread = {}; 422 if (atomic_load(&bg_thread, memory_order_relaxed) == 0 && 423 atomic_exchange(&bg_thread, 1, memory_order_relaxed) == 0) { 424 StartBackgroundThread(); 425 SetSandboxingCallback(StopBackgroundThread); 426 } 427 #endif 428 } 429 430 431 int Finalize(ThreadState *thr) { 432 bool failed = false; 433 434 if (common_flags()->print_module_map == 1) PrintModuleMap(); 435 436 if (flags()->atexit_sleep_ms > 0 && ThreadCount(thr) > 1) 437 SleepForMillis(flags()->atexit_sleep_ms); 438 439 // Wait for pending reports. 440 ctx->report_mtx.Lock(); 441 { ScopedErrorReportLock l; } 442 ctx->report_mtx.Unlock(); 443 444 #if !SANITIZER_GO 445 if (Verbosity()) AllocatorPrintStats(); 446 #endif 447 448 ThreadFinalize(thr); 449 450 if (ctx->nreported) { 451 failed = true; 452 #if !SANITIZER_GO 453 Printf("ThreadSanitizer: reported %d warnings\n", ctx->nreported); 454 #else 455 Printf("Found %d data race(s)\n", ctx->nreported); 456 #endif 457 } 458 459 if (ctx->nmissed_expected) { 460 failed = true; 461 Printf("ThreadSanitizer: missed %d expected races\n", 462 ctx->nmissed_expected); 463 } 464 465 if (common_flags()->print_suppressions) 466 PrintMatchedSuppressions(); 467 #if !SANITIZER_GO 468 if (flags()->print_benign) 469 PrintMatchedBenignRaces(); 470 #endif 471 472 failed = OnFinalize(failed); 473 474 #if TSAN_COLLECT_STATS 475 StatAggregate(ctx->stat, thr->stat); 476 StatOutput(ctx->stat); 477 #endif 478 479 return failed ? common_flags()->exitcode : 0; 480 } 481 482 #if !SANITIZER_GO 483 void ForkBefore(ThreadState *thr, uptr pc) { 484 ctx->thread_registry->Lock(); 485 ctx->report_mtx.Lock(); 486 } 487 488 void ForkParentAfter(ThreadState *thr, uptr pc) { 489 ctx->report_mtx.Unlock(); 490 ctx->thread_registry->Unlock(); 491 } 492 493 void ForkChildAfter(ThreadState *thr, uptr pc) { 494 ctx->report_mtx.Unlock(); 495 ctx->thread_registry->Unlock(); 496 497 uptr nthread = 0; 498 ctx->thread_registry->GetNumberOfThreads(0, 0, &nthread /* alive threads */); 499 VPrintf(1, "ThreadSanitizer: forked new process with pid %d," 500 " parent had %d threads\n", (int)internal_getpid(), (int)nthread); 501 if (nthread == 1) { 502 StartBackgroundThread(); 503 } else { 504 // We've just forked a multi-threaded process. We cannot reasonably function 505 // after that (some mutexes may be locked before fork). So just enable 506 // ignores for everything in the hope that we will exec soon. 507 ctx->after_multithreaded_fork = true; 508 thr->ignore_interceptors++; 509 ThreadIgnoreBegin(thr, pc); 510 ThreadIgnoreSyncBegin(thr, pc); 511 } 512 } 513 #endif 514 515 #if SANITIZER_GO 516 NOINLINE 517 void GrowShadowStack(ThreadState *thr) { 518 const int sz = thr->shadow_stack_end - thr->shadow_stack; 519 const int newsz = 2 * sz; 520 uptr *newstack = (uptr*)internal_alloc(MBlockShadowStack, 521 newsz * sizeof(uptr)); 522 internal_memcpy(newstack, thr->shadow_stack, sz * sizeof(uptr)); 523 internal_free(thr->shadow_stack); 524 thr->shadow_stack = newstack; 525 thr->shadow_stack_pos = newstack + sz; 526 thr->shadow_stack_end = newstack + newsz; 527 } 528 #endif 529 530 u32 CurrentStackId(ThreadState *thr, uptr pc) { 531 if (!thr->is_inited) // May happen during bootstrap. 532 return 0; 533 if (pc != 0) { 534 #if !SANITIZER_GO 535 DCHECK_LT(thr->shadow_stack_pos, thr->shadow_stack_end); 536 #else 537 if (thr->shadow_stack_pos == thr->shadow_stack_end) 538 GrowShadowStack(thr); 539 #endif 540 thr->shadow_stack_pos[0] = pc; 541 thr->shadow_stack_pos++; 542 } 543 u32 id = StackDepotPut( 544 StackTrace(thr->shadow_stack, thr->shadow_stack_pos - thr->shadow_stack)); 545 if (pc != 0) 546 thr->shadow_stack_pos--; 547 return id; 548 } 549 550 void TraceSwitch(ThreadState *thr) { 551 #if !SANITIZER_GO 552 if (ctx->after_multithreaded_fork) 553 return; 554 #endif 555 thr->nomalloc++; 556 Trace *thr_trace = ThreadTrace(thr->tid); 557 Lock l(&thr_trace->mtx); 558 unsigned trace = (thr->fast_state.epoch() / kTracePartSize) % TraceParts(); 559 TraceHeader *hdr = &thr_trace->headers[trace]; 560 hdr->epoch0 = thr->fast_state.epoch(); 561 ObtainCurrentStack(thr, 0, &hdr->stack0); 562 hdr->mset0 = thr->mset; 563 thr->nomalloc--; 564 } 565 566 Trace *ThreadTrace(int tid) { 567 return (Trace*)GetThreadTraceHeader(tid); 568 } 569 570 uptr TraceTopPC(ThreadState *thr) { 571 Event *events = (Event*)GetThreadTrace(thr->tid); 572 uptr pc = events[thr->fast_state.GetTracePos()]; 573 return pc; 574 } 575 576 uptr TraceSize() { 577 return (uptr)(1ull << (kTracePartSizeBits + flags()->history_size + 1)); 578 } 579 580 uptr TraceParts() { 581 return TraceSize() / kTracePartSize; 582 } 583 584 #if !SANITIZER_GO 585 extern "C" void __tsan_trace_switch() { 586 TraceSwitch(cur_thread()); 587 } 588 589 extern "C" void __tsan_report_race() { 590 ReportRace(cur_thread()); 591 } 592 #endif 593 594 ALWAYS_INLINE 595 Shadow LoadShadow(u64 *p) { 596 u64 raw = atomic_load((atomic_uint64_t*)p, memory_order_relaxed); 597 return Shadow(raw); 598 } 599 600 ALWAYS_INLINE 601 void StoreShadow(u64 *sp, u64 s) { 602 atomic_store((atomic_uint64_t*)sp, s, memory_order_relaxed); 603 } 604 605 ALWAYS_INLINE 606 void StoreIfNotYetStored(u64 *sp, u64 *s) { 607 StoreShadow(sp, *s); 608 *s = 0; 609 } 610 611 ALWAYS_INLINE 612 void HandleRace(ThreadState *thr, u64 *shadow_mem, 613 Shadow cur, Shadow old) { 614 thr->racy_state[0] = cur.raw(); 615 thr->racy_state[1] = old.raw(); 616 thr->racy_shadow_addr = shadow_mem; 617 #if !SANITIZER_GO 618 HACKY_CALL(__tsan_report_race); 619 #else 620 ReportRace(thr); 621 #endif 622 } 623 624 static inline bool HappensBefore(Shadow old, ThreadState *thr) { 625 return thr->clock.get(old.TidWithIgnore()) >= old.epoch(); 626 } 627 628 ALWAYS_INLINE 629 void MemoryAccessImpl1(ThreadState *thr, uptr addr, 630 int kAccessSizeLog, bool kAccessIsWrite, bool kIsAtomic, 631 u64 *shadow_mem, Shadow cur) { 632 StatInc(thr, StatMop); 633 StatInc(thr, kAccessIsWrite ? StatMopWrite : StatMopRead); 634 StatInc(thr, (StatType)(StatMop1 + kAccessSizeLog)); 635 636 // This potentially can live in an MMX/SSE scratch register. 637 // The required intrinsics are: 638 // __m128i _mm_move_epi64(__m128i*); 639 // _mm_storel_epi64(u64*, __m128i); 640 u64 store_word = cur.raw(); 641 642 // scan all the shadow values and dispatch to 4 categories: 643 // same, replace, candidate and race (see comments below). 644 // we consider only 3 cases regarding access sizes: 645 // equal, intersect and not intersect. initially I considered 646 // larger and smaller as well, it allowed to replace some 647 // 'candidates' with 'same' or 'replace', but I think 648 // it's just not worth it (performance- and complexity-wise). 649 650 Shadow old(0); 651 652 // It release mode we manually unroll the loop, 653 // because empirically gcc generates better code this way. 654 // However, we can't afford unrolling in debug mode, because the function 655 // consumes almost 4K of stack. Gtest gives only 4K of stack to death test 656 // threads, which is not enough for the unrolled loop. 657 #if SANITIZER_DEBUG 658 for (int idx = 0; idx < 4; idx++) { 659 #include "tsan_update_shadow_word_inl.h" 660 } 661 #else 662 int idx = 0; 663 #include "tsan_update_shadow_word_inl.h" 664 idx = 1; 665 #include "tsan_update_shadow_word_inl.h" 666 idx = 2; 667 #include "tsan_update_shadow_word_inl.h" 668 idx = 3; 669 #include "tsan_update_shadow_word_inl.h" 670 #endif 671 672 // we did not find any races and had already stored 673 // the current access info, so we are done 674 if (LIKELY(store_word == 0)) 675 return; 676 // choose a random candidate slot and replace it 677 StoreShadow(shadow_mem + (cur.epoch() % kShadowCnt), store_word); 678 StatInc(thr, StatShadowReplace); 679 return; 680 RACE: 681 HandleRace(thr, shadow_mem, cur, old); 682 return; 683 } 684 685 void UnalignedMemoryAccess(ThreadState *thr, uptr pc, uptr addr, 686 int size, bool kAccessIsWrite, bool kIsAtomic) { 687 while (size) { 688 int size1 = 1; 689 int kAccessSizeLog = kSizeLog1; 690 if (size >= 8 && (addr & ~7) == ((addr + 7) & ~7)) { 691 size1 = 8; 692 kAccessSizeLog = kSizeLog8; 693 } else if (size >= 4 && (addr & ~7) == ((addr + 3) & ~7)) { 694 size1 = 4; 695 kAccessSizeLog = kSizeLog4; 696 } else if (size >= 2 && (addr & ~7) == ((addr + 1) & ~7)) { 697 size1 = 2; 698 kAccessSizeLog = kSizeLog2; 699 } 700 MemoryAccess(thr, pc, addr, kAccessSizeLog, kAccessIsWrite, kIsAtomic); 701 addr += size1; 702 size -= size1; 703 } 704 } 705 706 ALWAYS_INLINE 707 bool ContainsSameAccessSlow(u64 *s, u64 a, u64 sync_epoch, bool is_write) { 708 Shadow cur(a); 709 for (uptr i = 0; i < kShadowCnt; i++) { 710 Shadow old(LoadShadow(&s[i])); 711 if (Shadow::Addr0AndSizeAreEqual(cur, old) && 712 old.TidWithIgnore() == cur.TidWithIgnore() && 713 old.epoch() > sync_epoch && 714 old.IsAtomic() == cur.IsAtomic() && 715 old.IsRead() <= cur.IsRead()) 716 return true; 717 } 718 return false; 719 } 720 721 #if defined(__SSE3__) 722 #define SHUF(v0, v1, i0, i1, i2, i3) _mm_castps_si128(_mm_shuffle_ps( \ 723 _mm_castsi128_ps(v0), _mm_castsi128_ps(v1), \ 724 (i0)*1 + (i1)*4 + (i2)*16 + (i3)*64)) 725 ALWAYS_INLINE 726 bool ContainsSameAccessFast(u64 *s, u64 a, u64 sync_epoch, bool is_write) { 727 // This is an optimized version of ContainsSameAccessSlow. 728 // load current access into access[0:63] 729 const m128 access = _mm_cvtsi64_si128(a); 730 // duplicate high part of access in addr0: 731 // addr0[0:31] = access[32:63] 732 // addr0[32:63] = access[32:63] 733 // addr0[64:95] = access[32:63] 734 // addr0[96:127] = access[32:63] 735 const m128 addr0 = SHUF(access, access, 1, 1, 1, 1); 736 // load 4 shadow slots 737 const m128 shadow0 = _mm_load_si128((__m128i*)s); 738 const m128 shadow1 = _mm_load_si128((__m128i*)s + 1); 739 // load high parts of 4 shadow slots into addr_vect: 740 // addr_vect[0:31] = shadow0[32:63] 741 // addr_vect[32:63] = shadow0[96:127] 742 // addr_vect[64:95] = shadow1[32:63] 743 // addr_vect[96:127] = shadow1[96:127] 744 m128 addr_vect = SHUF(shadow0, shadow1, 1, 3, 1, 3); 745 if (!is_write) { 746 // set IsRead bit in addr_vect 747 const m128 rw_mask1 = _mm_cvtsi64_si128(1<<15); 748 const m128 rw_mask = SHUF(rw_mask1, rw_mask1, 0, 0, 0, 0); 749 addr_vect = _mm_or_si128(addr_vect, rw_mask); 750 } 751 // addr0 == addr_vect? 752 const m128 addr_res = _mm_cmpeq_epi32(addr0, addr_vect); 753 // epoch1[0:63] = sync_epoch 754 const m128 epoch1 = _mm_cvtsi64_si128(sync_epoch); 755 // epoch[0:31] = sync_epoch[0:31] 756 // epoch[32:63] = sync_epoch[0:31] 757 // epoch[64:95] = sync_epoch[0:31] 758 // epoch[96:127] = sync_epoch[0:31] 759 const m128 epoch = SHUF(epoch1, epoch1, 0, 0, 0, 0); 760 // load low parts of shadow cell epochs into epoch_vect: 761 // epoch_vect[0:31] = shadow0[0:31] 762 // epoch_vect[32:63] = shadow0[64:95] 763 // epoch_vect[64:95] = shadow1[0:31] 764 // epoch_vect[96:127] = shadow1[64:95] 765 const m128 epoch_vect = SHUF(shadow0, shadow1, 0, 2, 0, 2); 766 // epoch_vect >= sync_epoch? 767 const m128 epoch_res = _mm_cmpgt_epi32(epoch_vect, epoch); 768 // addr_res & epoch_res 769 const m128 res = _mm_and_si128(addr_res, epoch_res); 770 // mask[0] = res[7] 771 // mask[1] = res[15] 772 // ... 773 // mask[15] = res[127] 774 const int mask = _mm_movemask_epi8(res); 775 return mask != 0; 776 } 777 #endif 778 779 ALWAYS_INLINE 780 bool ContainsSameAccess(u64 *s, u64 a, u64 sync_epoch, bool is_write) { 781 #if defined(__SSE3__) 782 bool res = ContainsSameAccessFast(s, a, sync_epoch, is_write); 783 // NOTE: this check can fail if the shadow is concurrently mutated 784 // by other threads. But it still can be useful if you modify 785 // ContainsSameAccessFast and want to ensure that it's not completely broken. 786 // DCHECK_EQ(res, ContainsSameAccessSlow(s, a, sync_epoch, is_write)); 787 return res; 788 #else 789 return ContainsSameAccessSlow(s, a, sync_epoch, is_write); 790 #endif 791 } 792 793 ALWAYS_INLINE USED 794 void MemoryAccess(ThreadState *thr, uptr pc, uptr addr, 795 int kAccessSizeLog, bool kAccessIsWrite, bool kIsAtomic) { 796 u64 *shadow_mem = (u64*)MemToShadow(addr); 797 DPrintf2("#%d: MemoryAccess: @%p %p size=%d" 798 " is_write=%d shadow_mem=%p {%zx, %zx, %zx, %zx}\n", 799 (int)thr->fast_state.tid(), (void*)pc, (void*)addr, 800 (int)(1 << kAccessSizeLog), kAccessIsWrite, shadow_mem, 801 (uptr)shadow_mem[0], (uptr)shadow_mem[1], 802 (uptr)shadow_mem[2], (uptr)shadow_mem[3]); 803 #if SANITIZER_DEBUG 804 if (!IsAppMem(addr)) { 805 Printf("Access to non app mem %zx\n", addr); 806 DCHECK(IsAppMem(addr)); 807 } 808 if (!IsShadowMem((uptr)shadow_mem)) { 809 Printf("Bad shadow addr %p (%zx)\n", shadow_mem, addr); 810 DCHECK(IsShadowMem((uptr)shadow_mem)); 811 } 812 #endif 813 814 if (!SANITIZER_GO && *shadow_mem == kShadowRodata) { 815 // Access to .rodata section, no races here. 816 // Measurements show that it can be 10-20% of all memory accesses. 817 StatInc(thr, StatMop); 818 StatInc(thr, kAccessIsWrite ? StatMopWrite : StatMopRead); 819 StatInc(thr, (StatType)(StatMop1 + kAccessSizeLog)); 820 StatInc(thr, StatMopRodata); 821 return; 822 } 823 824 FastState fast_state = thr->fast_state; 825 if (fast_state.GetIgnoreBit()) { 826 StatInc(thr, StatMop); 827 StatInc(thr, kAccessIsWrite ? StatMopWrite : StatMopRead); 828 StatInc(thr, (StatType)(StatMop1 + kAccessSizeLog)); 829 StatInc(thr, StatMopIgnored); 830 return; 831 } 832 833 Shadow cur(fast_state); 834 cur.SetAddr0AndSizeLog(addr & 7, kAccessSizeLog); 835 cur.SetWrite(kAccessIsWrite); 836 cur.SetAtomic(kIsAtomic); 837 838 if (LIKELY(ContainsSameAccess(shadow_mem, cur.raw(), 839 thr->fast_synch_epoch, kAccessIsWrite))) { 840 StatInc(thr, StatMop); 841 StatInc(thr, kAccessIsWrite ? StatMopWrite : StatMopRead); 842 StatInc(thr, (StatType)(StatMop1 + kAccessSizeLog)); 843 StatInc(thr, StatMopSame); 844 return; 845 } 846 847 if (kCollectHistory) { 848 fast_state.IncrementEpoch(); 849 thr->fast_state = fast_state; 850 TraceAddEvent(thr, fast_state, EventTypeMop, pc); 851 cur.IncrementEpoch(); 852 } 853 854 MemoryAccessImpl1(thr, addr, kAccessSizeLog, kAccessIsWrite, kIsAtomic, 855 shadow_mem, cur); 856 } 857 858 // Called by MemoryAccessRange in tsan_rtl_thread.cc 859 ALWAYS_INLINE USED 860 void MemoryAccessImpl(ThreadState *thr, uptr addr, 861 int kAccessSizeLog, bool kAccessIsWrite, bool kIsAtomic, 862 u64 *shadow_mem, Shadow cur) { 863 if (LIKELY(ContainsSameAccess(shadow_mem, cur.raw(), 864 thr->fast_synch_epoch, kAccessIsWrite))) { 865 StatInc(thr, StatMop); 866 StatInc(thr, kAccessIsWrite ? StatMopWrite : StatMopRead); 867 StatInc(thr, (StatType)(StatMop1 + kAccessSizeLog)); 868 StatInc(thr, StatMopSame); 869 return; 870 } 871 872 MemoryAccessImpl1(thr, addr, kAccessSizeLog, kAccessIsWrite, kIsAtomic, 873 shadow_mem, cur); 874 } 875 876 static void MemoryRangeSet(ThreadState *thr, uptr pc, uptr addr, uptr size, 877 u64 val) { 878 (void)thr; 879 (void)pc; 880 if (size == 0) 881 return; 882 // FIXME: fix me. 883 uptr offset = addr % kShadowCell; 884 if (offset) { 885 offset = kShadowCell - offset; 886 if (size <= offset) 887 return; 888 addr += offset; 889 size -= offset; 890 } 891 DCHECK_EQ(addr % 8, 0); 892 // If a user passes some insane arguments (memset(0)), 893 // let it just crash as usual. 894 if (!IsAppMem(addr) || !IsAppMem(addr + size - 1)) 895 return; 896 // Don't want to touch lots of shadow memory. 897 // If a program maps 10MB stack, there is no need reset the whole range. 898 size = (size + (kShadowCell - 1)) & ~(kShadowCell - 1); 899 // UnmapOrDie/MmapFixedNoReserve does not work on Windows. 900 if (SANITIZER_WINDOWS || size < common_flags()->clear_shadow_mmap_threshold) { 901 u64 *p = (u64*)MemToShadow(addr); 902 CHECK(IsShadowMem((uptr)p)); 903 CHECK(IsShadowMem((uptr)(p + size * kShadowCnt / kShadowCell - 1))); 904 // FIXME: may overwrite a part outside the region 905 for (uptr i = 0; i < size / kShadowCell * kShadowCnt;) { 906 p[i++] = val; 907 for (uptr j = 1; j < kShadowCnt; j++) 908 p[i++] = 0; 909 } 910 } else { 911 // The region is big, reset only beginning and end. 912 const uptr kPageSize = GetPageSizeCached(); 913 u64 *begin = (u64*)MemToShadow(addr); 914 u64 *end = begin + size / kShadowCell * kShadowCnt; 915 u64 *p = begin; 916 // Set at least first kPageSize/2 to page boundary. 917 while ((p < begin + kPageSize / kShadowSize / 2) || ((uptr)p % kPageSize)) { 918 *p++ = val; 919 for (uptr j = 1; j < kShadowCnt; j++) 920 *p++ = 0; 921 } 922 // Reset middle part. 923 u64 *p1 = p; 924 p = RoundDown(end, kPageSize); 925 UnmapOrDie((void*)p1, (uptr)p - (uptr)p1); 926 if (!MmapFixedNoReserve((uptr)p1, (uptr)p - (uptr)p1)) 927 Die(); 928 // Set the ending. 929 while (p < end) { 930 *p++ = val; 931 for (uptr j = 1; j < kShadowCnt; j++) 932 *p++ = 0; 933 } 934 } 935 } 936 937 void MemoryResetRange(ThreadState *thr, uptr pc, uptr addr, uptr size) { 938 MemoryRangeSet(thr, pc, addr, size, 0); 939 } 940 941 void MemoryRangeFreed(ThreadState *thr, uptr pc, uptr addr, uptr size) { 942 // Processing more than 1k (4k of shadow) is expensive, 943 // can cause excessive memory consumption (user does not necessary touch 944 // the whole range) and most likely unnecessary. 945 if (size > 1024) 946 size = 1024; 947 CHECK_EQ(thr->is_freeing, false); 948 thr->is_freeing = true; 949 MemoryAccessRange(thr, pc, addr, size, true); 950 thr->is_freeing = false; 951 if (kCollectHistory) { 952 thr->fast_state.IncrementEpoch(); 953 TraceAddEvent(thr, thr->fast_state, EventTypeMop, pc); 954 } 955 Shadow s(thr->fast_state); 956 s.ClearIgnoreBit(); 957 s.MarkAsFreed(); 958 s.SetWrite(true); 959 s.SetAddr0AndSizeLog(0, 3); 960 MemoryRangeSet(thr, pc, addr, size, s.raw()); 961 } 962 963 void MemoryRangeImitateWrite(ThreadState *thr, uptr pc, uptr addr, uptr size) { 964 if (kCollectHistory) { 965 thr->fast_state.IncrementEpoch(); 966 TraceAddEvent(thr, thr->fast_state, EventTypeMop, pc); 967 } 968 Shadow s(thr->fast_state); 969 s.ClearIgnoreBit(); 970 s.SetWrite(true); 971 s.SetAddr0AndSizeLog(0, 3); 972 MemoryRangeSet(thr, pc, addr, size, s.raw()); 973 } 974 975 ALWAYS_INLINE USED 976 void FuncEntry(ThreadState *thr, uptr pc) { 977 StatInc(thr, StatFuncEnter); 978 DPrintf2("#%d: FuncEntry %p\n", (int)thr->fast_state.tid(), (void*)pc); 979 if (kCollectHistory) { 980 thr->fast_state.IncrementEpoch(); 981 TraceAddEvent(thr, thr->fast_state, EventTypeFuncEnter, pc); 982 } 983 984 // Shadow stack maintenance can be replaced with 985 // stack unwinding during trace switch (which presumably must be faster). 986 DCHECK_GE(thr->shadow_stack_pos, thr->shadow_stack); 987 #if !SANITIZER_GO 988 DCHECK_LT(thr->shadow_stack_pos, thr->shadow_stack_end); 989 #else 990 if (thr->shadow_stack_pos == thr->shadow_stack_end) 991 GrowShadowStack(thr); 992 #endif 993 thr->shadow_stack_pos[0] = pc; 994 thr->shadow_stack_pos++; 995 } 996 997 ALWAYS_INLINE USED 998 void FuncExit(ThreadState *thr) { 999 StatInc(thr, StatFuncExit); 1000 DPrintf2("#%d: FuncExit\n", (int)thr->fast_state.tid()); 1001 if (kCollectHistory) { 1002 thr->fast_state.IncrementEpoch(); 1003 TraceAddEvent(thr, thr->fast_state, EventTypeFuncExit, 0); 1004 } 1005 1006 DCHECK_GT(thr->shadow_stack_pos, thr->shadow_stack); 1007 #if !SANITIZER_GO 1008 DCHECK_LT(thr->shadow_stack_pos, thr->shadow_stack_end); 1009 #endif 1010 thr->shadow_stack_pos--; 1011 } 1012 1013 void ThreadIgnoreBegin(ThreadState *thr, uptr pc, bool save_stack) { 1014 DPrintf("#%d: ThreadIgnoreBegin\n", thr->tid); 1015 thr->ignore_reads_and_writes++; 1016 CHECK_GT(thr->ignore_reads_and_writes, 0); 1017 thr->fast_state.SetIgnoreBit(); 1018 #if !SANITIZER_GO 1019 if (save_stack && !ctx->after_multithreaded_fork) 1020 thr->mop_ignore_set.Add(CurrentStackId(thr, pc)); 1021 #endif 1022 } 1023 1024 void ThreadIgnoreEnd(ThreadState *thr, uptr pc) { 1025 DPrintf("#%d: ThreadIgnoreEnd\n", thr->tid); 1026 CHECK_GT(thr->ignore_reads_and_writes, 0); 1027 thr->ignore_reads_and_writes--; 1028 if (thr->ignore_reads_and_writes == 0) { 1029 thr->fast_state.ClearIgnoreBit(); 1030 #if !SANITIZER_GO 1031 thr->mop_ignore_set.Reset(); 1032 #endif 1033 } 1034 } 1035 1036 #if !SANITIZER_GO 1037 extern "C" SANITIZER_INTERFACE_ATTRIBUTE 1038 uptr __tsan_testonly_shadow_stack_current_size() { 1039 ThreadState *thr = cur_thread(); 1040 return thr->shadow_stack_pos - thr->shadow_stack; 1041 } 1042 #endif 1043 1044 void ThreadIgnoreSyncBegin(ThreadState *thr, uptr pc, bool save_stack) { 1045 DPrintf("#%d: ThreadIgnoreSyncBegin\n", thr->tid); 1046 thr->ignore_sync++; 1047 CHECK_GT(thr->ignore_sync, 0); 1048 #if !SANITIZER_GO 1049 if (save_stack && !ctx->after_multithreaded_fork) 1050 thr->sync_ignore_set.Add(CurrentStackId(thr, pc)); 1051 #endif 1052 } 1053 1054 void ThreadIgnoreSyncEnd(ThreadState *thr, uptr pc) { 1055 DPrintf("#%d: ThreadIgnoreSyncEnd\n", thr->tid); 1056 CHECK_GT(thr->ignore_sync, 0); 1057 thr->ignore_sync--; 1058 #if !SANITIZER_GO 1059 if (thr->ignore_sync == 0) 1060 thr->sync_ignore_set.Reset(); 1061 #endif 1062 } 1063 1064 bool MD5Hash::operator==(const MD5Hash &other) const { 1065 return hash[0] == other.hash[0] && hash[1] == other.hash[1]; 1066 } 1067 1068 #if SANITIZER_DEBUG 1069 void build_consistency_debug() {} 1070 #else 1071 void build_consistency_release() {} 1072 #endif 1073 1074 #if TSAN_COLLECT_STATS 1075 void build_consistency_stats() {} 1076 #else 1077 void build_consistency_nostats() {} 1078 #endif 1079 1080 } // namespace __tsan 1081 1082 #if !SANITIZER_GO 1083 // Must be included in this file to make sure everything is inlined. 1084 #include "tsan_interface_inl.h" 1085 #endif 1086