1 //===-- tsan_rtl.cc -------------------------------------------------------===// 2 // 3 // This file is distributed under the University of Illinois Open Source 4 // License. See LICENSE.TXT for details. 5 // 6 //===----------------------------------------------------------------------===// 7 // 8 // This file is a part of ThreadSanitizer (TSan), a race detector. 9 // 10 // Main file (entry points) for the TSan run-time. 11 //===----------------------------------------------------------------------===// 12 13 #include "sanitizer_common/sanitizer_atomic.h" 14 #include "sanitizer_common/sanitizer_common.h" 15 #include "sanitizer_common/sanitizer_libc.h" 16 #include "sanitizer_common/sanitizer_stackdepot.h" 17 #include "sanitizer_common/sanitizer_placement_new.h" 18 #include "sanitizer_common/sanitizer_symbolizer.h" 19 #include "tsan_defs.h" 20 #include "tsan_platform.h" 21 #include "tsan_rtl.h" 22 #include "tsan_mman.h" 23 #include "tsan_suppressions.h" 24 #include "tsan_symbolize.h" 25 #include "ubsan/ubsan_init.h" 26 27 #ifdef __SSE3__ 28 // <emmintrin.h> transitively includes <stdlib.h>, 29 // and it's prohibited to include std headers into tsan runtime. 30 // So we do this dirty trick. 31 #define _MM_MALLOC_H_INCLUDED 32 #define __MM_MALLOC_H 33 #include <emmintrin.h> 34 typedef __m128i m128; 35 #endif 36 37 volatile int __tsan_resumed = 0; 38 39 extern "C" void __tsan_resume() { 40 __tsan_resumed = 1; 41 } 42 43 namespace __tsan { 44 45 #if !SANITIZER_GO && !SANITIZER_MAC 46 __attribute__((tls_model("initial-exec"))) 47 THREADLOCAL char cur_thread_placeholder[sizeof(ThreadState)] ALIGNED(64); 48 #endif 49 static char ctx_placeholder[sizeof(Context)] ALIGNED(64); 50 Context *ctx; 51 52 // Can be overriden by a front-end. 53 #ifdef TSAN_EXTERNAL_HOOKS 54 bool OnFinalize(bool failed); 55 void OnInitialize(); 56 #else 57 SANITIZER_WEAK_CXX_DEFAULT_IMPL 58 bool OnFinalize(bool failed) { 59 return failed; 60 } 61 SANITIZER_WEAK_CXX_DEFAULT_IMPL 62 void OnInitialize() {} 63 #endif 64 65 static char thread_registry_placeholder[sizeof(ThreadRegistry)]; 66 67 static ThreadContextBase *CreateThreadContext(u32 tid) { 68 // Map thread trace when context is created. 69 char name[50]; 70 internal_snprintf(name, sizeof(name), "trace %u", tid); 71 MapThreadTrace(GetThreadTrace(tid), TraceSize() * sizeof(Event), name); 72 const uptr hdr = GetThreadTraceHeader(tid); 73 internal_snprintf(name, sizeof(name), "trace header %u", tid); 74 MapThreadTrace(hdr, sizeof(Trace), name); 75 new((void*)hdr) Trace(); 76 // We are going to use only a small part of the trace with the default 77 // value of history_size. However, the constructor writes to the whole trace. 78 // Unmap the unused part. 79 uptr hdr_end = hdr + sizeof(Trace); 80 hdr_end -= sizeof(TraceHeader) * (kTraceParts - TraceParts()); 81 hdr_end = RoundUp(hdr_end, GetPageSizeCached()); 82 if (hdr_end < hdr + sizeof(Trace)) 83 UnmapOrDie((void*)hdr_end, hdr + sizeof(Trace) - hdr_end); 84 void *mem = internal_alloc(MBlockThreadContex, sizeof(ThreadContext)); 85 return new(mem) ThreadContext(tid); 86 } 87 88 #if !SANITIZER_GO 89 static const u32 kThreadQuarantineSize = 16; 90 #else 91 static const u32 kThreadQuarantineSize = 64; 92 #endif 93 94 Context::Context() 95 : initialized() 96 , report_mtx(MutexTypeReport, StatMtxReport) 97 , nreported() 98 , nmissed_expected() 99 , thread_registry(new(thread_registry_placeholder) ThreadRegistry( 100 CreateThreadContext, kMaxTid, kThreadQuarantineSize, kMaxTidReuse)) 101 , racy_mtx(MutexTypeRacy, StatMtxRacy) 102 , racy_stacks(MBlockRacyStacks) 103 , racy_addresses(MBlockRacyAddresses) 104 , fired_suppressions_mtx(MutexTypeFired, StatMtxFired) 105 , fired_suppressions(8) { 106 } 107 108 // The objects are allocated in TLS, so one may rely on zero-initialization. 109 ThreadState::ThreadState(Context *ctx, int tid, int unique_id, u64 epoch, 110 unsigned reuse_count, 111 uptr stk_addr, uptr stk_size, 112 uptr tls_addr, uptr tls_size) 113 : fast_state(tid, epoch) 114 // Do not touch these, rely on zero initialization, 115 // they may be accessed before the ctor. 116 // , ignore_reads_and_writes() 117 // , ignore_interceptors() 118 , clock(tid, reuse_count) 119 #if !SANITIZER_GO 120 , jmp_bufs(MBlockJmpBuf) 121 #endif 122 , tid(tid) 123 , unique_id(unique_id) 124 , stk_addr(stk_addr) 125 , stk_size(stk_size) 126 , tls_addr(tls_addr) 127 , tls_size(tls_size) 128 #if !SANITIZER_GO 129 , last_sleep_clock(tid) 130 #endif 131 { 132 } 133 134 #if !SANITIZER_GO 135 static void MemoryProfiler(Context *ctx, fd_t fd, int i) { 136 uptr n_threads; 137 uptr n_running_threads; 138 ctx->thread_registry->GetNumberOfThreads(&n_threads, &n_running_threads); 139 InternalScopedBuffer<char> buf(4096); 140 WriteMemoryProfile(buf.data(), buf.size(), n_threads, n_running_threads); 141 WriteToFile(fd, buf.data(), internal_strlen(buf.data())); 142 } 143 144 static void BackgroundThread(void *arg) { 145 // This is a non-initialized non-user thread, nothing to see here. 146 // We don't use ScopedIgnoreInterceptors, because we want ignores to be 147 // enabled even when the thread function exits (e.g. during pthread thread 148 // shutdown code). 149 cur_thread()->ignore_interceptors++; 150 const u64 kMs2Ns = 1000 * 1000; 151 152 fd_t mprof_fd = kInvalidFd; 153 if (flags()->profile_memory && flags()->profile_memory[0]) { 154 if (internal_strcmp(flags()->profile_memory, "stdout") == 0) { 155 mprof_fd = 1; 156 } else if (internal_strcmp(flags()->profile_memory, "stderr") == 0) { 157 mprof_fd = 2; 158 } else { 159 InternalScopedString filename(kMaxPathLength); 160 filename.append("%s.%d", flags()->profile_memory, (int)internal_getpid()); 161 fd_t fd = OpenFile(filename.data(), WrOnly); 162 if (fd == kInvalidFd) { 163 Printf("ThreadSanitizer: failed to open memory profile file '%s'\n", 164 &filename[0]); 165 } else { 166 mprof_fd = fd; 167 } 168 } 169 } 170 171 u64 last_flush = NanoTime(); 172 uptr last_rss = 0; 173 for (int i = 0; 174 atomic_load(&ctx->stop_background_thread, memory_order_relaxed) == 0; 175 i++) { 176 SleepForMillis(100); 177 u64 now = NanoTime(); 178 179 // Flush memory if requested. 180 if (flags()->flush_memory_ms > 0) { 181 if (last_flush + flags()->flush_memory_ms * kMs2Ns < now) { 182 VPrintf(1, "ThreadSanitizer: periodic memory flush\n"); 183 FlushShadowMemory(); 184 last_flush = NanoTime(); 185 } 186 } 187 // GetRSS can be expensive on huge programs, so don't do it every 100ms. 188 if (flags()->memory_limit_mb > 0) { 189 uptr rss = GetRSS(); 190 uptr limit = uptr(flags()->memory_limit_mb) << 20; 191 VPrintf(1, "ThreadSanitizer: memory flush check" 192 " RSS=%llu LAST=%llu LIMIT=%llu\n", 193 (u64)rss >> 20, (u64)last_rss >> 20, (u64)limit >> 20); 194 if (2 * rss > limit + last_rss) { 195 VPrintf(1, "ThreadSanitizer: flushing memory due to RSS\n"); 196 FlushShadowMemory(); 197 rss = GetRSS(); 198 VPrintf(1, "ThreadSanitizer: memory flushed RSS=%llu\n", (u64)rss>>20); 199 } 200 last_rss = rss; 201 } 202 203 // Write memory profile if requested. 204 if (mprof_fd != kInvalidFd) 205 MemoryProfiler(ctx, mprof_fd, i); 206 207 // Flush symbolizer cache if requested. 208 if (flags()->flush_symbolizer_ms > 0) { 209 u64 last = atomic_load(&ctx->last_symbolize_time_ns, 210 memory_order_relaxed); 211 if (last != 0 && last + flags()->flush_symbolizer_ms * kMs2Ns < now) { 212 Lock l(&ctx->report_mtx); 213 SpinMutexLock l2(&CommonSanitizerReportMutex); 214 SymbolizeFlush(); 215 atomic_store(&ctx->last_symbolize_time_ns, 0, memory_order_relaxed); 216 } 217 } 218 } 219 } 220 221 static void StartBackgroundThread() { 222 ctx->background_thread = internal_start_thread(&BackgroundThread, 0); 223 } 224 225 #ifndef __mips__ 226 static void StopBackgroundThread() { 227 atomic_store(&ctx->stop_background_thread, 1, memory_order_relaxed); 228 internal_join_thread(ctx->background_thread); 229 ctx->background_thread = 0; 230 } 231 #endif 232 #endif 233 234 void DontNeedShadowFor(uptr addr, uptr size) { 235 uptr shadow_beg = MemToShadow(addr); 236 uptr shadow_end = MemToShadow(addr + size); 237 ReleaseMemoryToOS(shadow_beg, shadow_end - shadow_beg); 238 } 239 240 void MapShadow(uptr addr, uptr size) { 241 // Global data is not 64K aligned, but there are no adjacent mappings, 242 // so we can get away with unaligned mapping. 243 // CHECK_EQ(addr, addr & ~((64 << 10) - 1)); // windows wants 64K alignment 244 const uptr kPageSize = GetPageSizeCached(); 245 uptr shadow_begin = RoundDownTo((uptr)MemToShadow(addr), kPageSize); 246 uptr shadow_end = RoundUpTo((uptr)MemToShadow(addr + size), kPageSize); 247 MmapFixedNoReserve(shadow_begin, shadow_end - shadow_begin, "shadow"); 248 249 // Meta shadow is 2:1, so tread carefully. 250 static bool data_mapped = false; 251 static uptr mapped_meta_end = 0; 252 uptr meta_begin = (uptr)MemToMeta(addr); 253 uptr meta_end = (uptr)MemToMeta(addr + size); 254 meta_begin = RoundDownTo(meta_begin, 64 << 10); 255 meta_end = RoundUpTo(meta_end, 64 << 10); 256 if (!data_mapped) { 257 // First call maps data+bss. 258 data_mapped = true; 259 MmapFixedNoReserve(meta_begin, meta_end - meta_begin, "meta shadow"); 260 } else { 261 // Mapping continous heap. 262 // Windows wants 64K alignment. 263 meta_begin = RoundDownTo(meta_begin, 64 << 10); 264 meta_end = RoundUpTo(meta_end, 64 << 10); 265 if (meta_end <= mapped_meta_end) 266 return; 267 if (meta_begin < mapped_meta_end) 268 meta_begin = mapped_meta_end; 269 MmapFixedNoReserve(meta_begin, meta_end - meta_begin, "meta shadow"); 270 mapped_meta_end = meta_end; 271 } 272 VPrintf(2, "mapped meta shadow for (%p-%p) at (%p-%p)\n", 273 addr, addr+size, meta_begin, meta_end); 274 } 275 276 void MapThreadTrace(uptr addr, uptr size, const char *name) { 277 DPrintf("#0: Mapping trace at %p-%p(0x%zx)\n", addr, addr + size, size); 278 CHECK_GE(addr, TraceMemBeg()); 279 CHECK_LE(addr + size, TraceMemEnd()); 280 CHECK_EQ(addr, addr & ~((64 << 10) - 1)); // windows wants 64K alignment 281 uptr addr1 = (uptr)MmapFixedNoReserve(addr, size, name); 282 if (addr1 != addr) { 283 Printf("FATAL: ThreadSanitizer can not mmap thread trace (%p/%p->%p)\n", 284 addr, size, addr1); 285 Die(); 286 } 287 } 288 289 static void CheckShadowMapping() { 290 uptr beg, end; 291 for (int i = 0; GetUserRegion(i, &beg, &end); i++) { 292 // Skip cases for empty regions (heap definition for architectures that 293 // do not use 64-bit allocator). 294 if (beg == end) 295 continue; 296 VPrintf(3, "checking shadow region %p-%p\n", beg, end); 297 uptr prev = 0; 298 for (uptr p0 = beg; p0 <= end; p0 += (end - beg) / 4) { 299 for (int x = -(int)kShadowCell; x <= (int)kShadowCell; x += kShadowCell) { 300 const uptr p = RoundDown(p0 + x, kShadowCell); 301 if (p < beg || p >= end) 302 continue; 303 const uptr s = MemToShadow(p); 304 const uptr m = (uptr)MemToMeta(p); 305 VPrintf(3, " checking pointer %p: shadow=%p meta=%p\n", p, s, m); 306 CHECK(IsAppMem(p)); 307 CHECK(IsShadowMem(s)); 308 CHECK_EQ(p, ShadowToMem(s)); 309 CHECK(IsMetaMem(m)); 310 if (prev) { 311 // Ensure that shadow and meta mappings are linear within a single 312 // user range. Lots of code that processes memory ranges assumes it. 313 const uptr prev_s = MemToShadow(prev); 314 const uptr prev_m = (uptr)MemToMeta(prev); 315 CHECK_EQ(s - prev_s, (p - prev) * kShadowMultiplier); 316 CHECK_EQ((m - prev_m) / kMetaShadowSize, 317 (p - prev) / kMetaShadowCell); 318 } 319 prev = p; 320 } 321 } 322 } 323 } 324 325 void Initialize(ThreadState *thr) { 326 // Thread safe because done before all threads exist. 327 static bool is_initialized = false; 328 if (is_initialized) 329 return; 330 is_initialized = true; 331 // We are not ready to handle interceptors yet. 332 ScopedIgnoreInterceptors ignore; 333 SanitizerToolName = "ThreadSanitizer"; 334 // Install tool-specific callbacks in sanitizer_common. 335 SetCheckFailedCallback(TsanCheckFailed); 336 337 ctx = new(ctx_placeholder) Context; 338 const char *options = GetEnv(SANITIZER_GO ? "GORACE" : "TSAN_OPTIONS"); 339 CacheBinaryName(); 340 InitializeFlags(&ctx->flags, options); 341 AvoidCVE_2016_2143(); 342 InitializePlatformEarly(); 343 #if !SANITIZER_GO 344 // Re-exec ourselves if we need to set additional env or command line args. 345 MaybeReexec(); 346 347 InitializeAllocator(); 348 ReplaceSystemMalloc(); 349 #endif 350 if (common_flags()->detect_deadlocks) 351 ctx->dd = DDetector::Create(flags()); 352 Processor *proc = ProcCreate(); 353 ProcWire(proc, thr); 354 InitializeInterceptors(); 355 CheckShadowMapping(); 356 InitializePlatform(); 357 InitializeMutex(); 358 InitializeDynamicAnnotations(); 359 #if !SANITIZER_GO 360 InitializeShadowMemory(); 361 InitializeAllocatorLate(); 362 #endif 363 // Setup correct file descriptor for error reports. 364 __sanitizer_set_report_path(common_flags()->log_path); 365 InitializeSuppressions(); 366 #if !SANITIZER_GO 367 InitializeLibIgnore(); 368 Symbolizer::GetOrInit()->AddHooks(EnterSymbolizer, ExitSymbolizer); 369 // On MIPS, TSan initialization is run before 370 // __pthread_initialize_minimal_internal() is finished, so we can not spawn 371 // new threads. 372 #ifndef __mips__ 373 StartBackgroundThread(); 374 SetSandboxingCallback(StopBackgroundThread); 375 #endif 376 #endif 377 378 VPrintf(1, "***** Running under ThreadSanitizer v2 (pid %d) *****\n", 379 (int)internal_getpid()); 380 381 // Initialize thread 0. 382 int tid = ThreadCreate(thr, 0, 0, true); 383 CHECK_EQ(tid, 0); 384 ThreadStart(thr, tid, internal_getpid()); 385 #if TSAN_CONTAINS_UBSAN 386 __ubsan::InitAsPlugin(); 387 #endif 388 ctx->initialized = true; 389 390 #if !SANITIZER_GO 391 Symbolizer::LateInitialize(); 392 #endif 393 394 if (flags()->stop_on_start) { 395 Printf("ThreadSanitizer is suspended at startup (pid %d)." 396 " Call __tsan_resume().\n", 397 (int)internal_getpid()); 398 while (__tsan_resumed == 0) {} 399 } 400 401 OnInitialize(); 402 } 403 404 int Finalize(ThreadState *thr) { 405 bool failed = false; 406 407 if (flags()->atexit_sleep_ms > 0 && ThreadCount(thr) > 1) 408 SleepForMillis(flags()->atexit_sleep_ms); 409 410 // Wait for pending reports. 411 ctx->report_mtx.Lock(); 412 CommonSanitizerReportMutex.Lock(); 413 CommonSanitizerReportMutex.Unlock(); 414 ctx->report_mtx.Unlock(); 415 416 #if !SANITIZER_GO 417 if (Verbosity()) AllocatorPrintStats(); 418 #endif 419 420 ThreadFinalize(thr); 421 422 if (ctx->nreported) { 423 failed = true; 424 #if !SANITIZER_GO 425 Printf("ThreadSanitizer: reported %d warnings\n", ctx->nreported); 426 #else 427 Printf("Found %d data race(s)\n", ctx->nreported); 428 #endif 429 } 430 431 if (ctx->nmissed_expected) { 432 failed = true; 433 Printf("ThreadSanitizer: missed %d expected races\n", 434 ctx->nmissed_expected); 435 } 436 437 if (common_flags()->print_suppressions) 438 PrintMatchedSuppressions(); 439 #if !SANITIZER_GO 440 if (flags()->print_benign) 441 PrintMatchedBenignRaces(); 442 #endif 443 444 failed = OnFinalize(failed); 445 446 #if TSAN_COLLECT_STATS 447 StatAggregate(ctx->stat, thr->stat); 448 StatOutput(ctx->stat); 449 #endif 450 451 return failed ? common_flags()->exitcode : 0; 452 } 453 454 #if !SANITIZER_GO 455 void ForkBefore(ThreadState *thr, uptr pc) { 456 ctx->thread_registry->Lock(); 457 ctx->report_mtx.Lock(); 458 } 459 460 void ForkParentAfter(ThreadState *thr, uptr pc) { 461 ctx->report_mtx.Unlock(); 462 ctx->thread_registry->Unlock(); 463 } 464 465 void ForkChildAfter(ThreadState *thr, uptr pc) { 466 ctx->report_mtx.Unlock(); 467 ctx->thread_registry->Unlock(); 468 469 uptr nthread = 0; 470 ctx->thread_registry->GetNumberOfThreads(0, 0, &nthread /* alive threads */); 471 VPrintf(1, "ThreadSanitizer: forked new process with pid %d," 472 " parent had %d threads\n", (int)internal_getpid(), (int)nthread); 473 if (nthread == 1) { 474 StartBackgroundThread(); 475 } else { 476 // We've just forked a multi-threaded process. We cannot reasonably function 477 // after that (some mutexes may be locked before fork). So just enable 478 // ignores for everything in the hope that we will exec soon. 479 ctx->after_multithreaded_fork = true; 480 thr->ignore_interceptors++; 481 ThreadIgnoreBegin(thr, pc); 482 ThreadIgnoreSyncBegin(thr, pc); 483 } 484 } 485 #endif 486 487 #if SANITIZER_GO 488 NOINLINE 489 void GrowShadowStack(ThreadState *thr) { 490 const int sz = thr->shadow_stack_end - thr->shadow_stack; 491 const int newsz = 2 * sz; 492 uptr *newstack = (uptr*)internal_alloc(MBlockShadowStack, 493 newsz * sizeof(uptr)); 494 internal_memcpy(newstack, thr->shadow_stack, sz * sizeof(uptr)); 495 internal_free(thr->shadow_stack); 496 thr->shadow_stack = newstack; 497 thr->shadow_stack_pos = newstack + sz; 498 thr->shadow_stack_end = newstack + newsz; 499 } 500 #endif 501 502 u32 CurrentStackId(ThreadState *thr, uptr pc) { 503 if (!thr->is_inited) // May happen during bootstrap. 504 return 0; 505 if (pc != 0) { 506 #if !SANITIZER_GO 507 DCHECK_LT(thr->shadow_stack_pos, thr->shadow_stack_end); 508 #else 509 if (thr->shadow_stack_pos == thr->shadow_stack_end) 510 GrowShadowStack(thr); 511 #endif 512 thr->shadow_stack_pos[0] = pc; 513 thr->shadow_stack_pos++; 514 } 515 u32 id = StackDepotPut( 516 StackTrace(thr->shadow_stack, thr->shadow_stack_pos - thr->shadow_stack)); 517 if (pc != 0) 518 thr->shadow_stack_pos--; 519 return id; 520 } 521 522 void TraceSwitch(ThreadState *thr) { 523 thr->nomalloc++; 524 Trace *thr_trace = ThreadTrace(thr->tid); 525 Lock l(&thr_trace->mtx); 526 unsigned trace = (thr->fast_state.epoch() / kTracePartSize) % TraceParts(); 527 TraceHeader *hdr = &thr_trace->headers[trace]; 528 hdr->epoch0 = thr->fast_state.epoch(); 529 ObtainCurrentStack(thr, 0, &hdr->stack0); 530 hdr->mset0 = thr->mset; 531 thr->nomalloc--; 532 } 533 534 Trace *ThreadTrace(int tid) { 535 return (Trace*)GetThreadTraceHeader(tid); 536 } 537 538 uptr TraceTopPC(ThreadState *thr) { 539 Event *events = (Event*)GetThreadTrace(thr->tid); 540 uptr pc = events[thr->fast_state.GetTracePos()]; 541 return pc; 542 } 543 544 uptr TraceSize() { 545 return (uptr)(1ull << (kTracePartSizeBits + flags()->history_size + 1)); 546 } 547 548 uptr TraceParts() { 549 return TraceSize() / kTracePartSize; 550 } 551 552 #if !SANITIZER_GO 553 extern "C" void __tsan_trace_switch() { 554 TraceSwitch(cur_thread()); 555 } 556 557 extern "C" void __tsan_report_race() { 558 ReportRace(cur_thread()); 559 } 560 #endif 561 562 ALWAYS_INLINE 563 Shadow LoadShadow(u64 *p) { 564 u64 raw = atomic_load((atomic_uint64_t*)p, memory_order_relaxed); 565 return Shadow(raw); 566 } 567 568 ALWAYS_INLINE 569 void StoreShadow(u64 *sp, u64 s) { 570 atomic_store((atomic_uint64_t*)sp, s, memory_order_relaxed); 571 } 572 573 ALWAYS_INLINE 574 void StoreIfNotYetStored(u64 *sp, u64 *s) { 575 StoreShadow(sp, *s); 576 *s = 0; 577 } 578 579 ALWAYS_INLINE 580 void HandleRace(ThreadState *thr, u64 *shadow_mem, 581 Shadow cur, Shadow old) { 582 thr->racy_state[0] = cur.raw(); 583 thr->racy_state[1] = old.raw(); 584 thr->racy_shadow_addr = shadow_mem; 585 #if !SANITIZER_GO 586 HACKY_CALL(__tsan_report_race); 587 #else 588 ReportRace(thr); 589 #endif 590 } 591 592 static inline bool HappensBefore(Shadow old, ThreadState *thr) { 593 return thr->clock.get(old.TidWithIgnore()) >= old.epoch(); 594 } 595 596 ALWAYS_INLINE 597 void MemoryAccessImpl1(ThreadState *thr, uptr addr, 598 int kAccessSizeLog, bool kAccessIsWrite, bool kIsAtomic, 599 u64 *shadow_mem, Shadow cur) { 600 StatInc(thr, StatMop); 601 StatInc(thr, kAccessIsWrite ? StatMopWrite : StatMopRead); 602 StatInc(thr, (StatType)(StatMop1 + kAccessSizeLog)); 603 604 // This potentially can live in an MMX/SSE scratch register. 605 // The required intrinsics are: 606 // __m128i _mm_move_epi64(__m128i*); 607 // _mm_storel_epi64(u64*, __m128i); 608 u64 store_word = cur.raw(); 609 610 // scan all the shadow values and dispatch to 4 categories: 611 // same, replace, candidate and race (see comments below). 612 // we consider only 3 cases regarding access sizes: 613 // equal, intersect and not intersect. initially I considered 614 // larger and smaller as well, it allowed to replace some 615 // 'candidates' with 'same' or 'replace', but I think 616 // it's just not worth it (performance- and complexity-wise). 617 618 Shadow old(0); 619 620 // It release mode we manually unroll the loop, 621 // because empirically gcc generates better code this way. 622 // However, we can't afford unrolling in debug mode, because the function 623 // consumes almost 4K of stack. Gtest gives only 4K of stack to death test 624 // threads, which is not enough for the unrolled loop. 625 #if SANITIZER_DEBUG 626 for (int idx = 0; idx < 4; idx++) { 627 #include "tsan_update_shadow_word_inl.h" 628 } 629 #else 630 int idx = 0; 631 #include "tsan_update_shadow_word_inl.h" 632 idx = 1; 633 #include "tsan_update_shadow_word_inl.h" 634 idx = 2; 635 #include "tsan_update_shadow_word_inl.h" 636 idx = 3; 637 #include "tsan_update_shadow_word_inl.h" 638 #endif 639 640 // we did not find any races and had already stored 641 // the current access info, so we are done 642 if (LIKELY(store_word == 0)) 643 return; 644 // choose a random candidate slot and replace it 645 StoreShadow(shadow_mem + (cur.epoch() % kShadowCnt), store_word); 646 StatInc(thr, StatShadowReplace); 647 return; 648 RACE: 649 HandleRace(thr, shadow_mem, cur, old); 650 return; 651 } 652 653 void UnalignedMemoryAccess(ThreadState *thr, uptr pc, uptr addr, 654 int size, bool kAccessIsWrite, bool kIsAtomic) { 655 while (size) { 656 int size1 = 1; 657 int kAccessSizeLog = kSizeLog1; 658 if (size >= 8 && (addr & ~7) == ((addr + 7) & ~7)) { 659 size1 = 8; 660 kAccessSizeLog = kSizeLog8; 661 } else if (size >= 4 && (addr & ~7) == ((addr + 3) & ~7)) { 662 size1 = 4; 663 kAccessSizeLog = kSizeLog4; 664 } else if (size >= 2 && (addr & ~7) == ((addr + 1) & ~7)) { 665 size1 = 2; 666 kAccessSizeLog = kSizeLog2; 667 } 668 MemoryAccess(thr, pc, addr, kAccessSizeLog, kAccessIsWrite, kIsAtomic); 669 addr += size1; 670 size -= size1; 671 } 672 } 673 674 ALWAYS_INLINE 675 bool ContainsSameAccessSlow(u64 *s, u64 a, u64 sync_epoch, bool is_write) { 676 Shadow cur(a); 677 for (uptr i = 0; i < kShadowCnt; i++) { 678 Shadow old(LoadShadow(&s[i])); 679 if (Shadow::Addr0AndSizeAreEqual(cur, old) && 680 old.TidWithIgnore() == cur.TidWithIgnore() && 681 old.epoch() > sync_epoch && 682 old.IsAtomic() == cur.IsAtomic() && 683 old.IsRead() <= cur.IsRead()) 684 return true; 685 } 686 return false; 687 } 688 689 #if defined(__SSE3__) 690 #define SHUF(v0, v1, i0, i1, i2, i3) _mm_castps_si128(_mm_shuffle_ps( \ 691 _mm_castsi128_ps(v0), _mm_castsi128_ps(v1), \ 692 (i0)*1 + (i1)*4 + (i2)*16 + (i3)*64)) 693 ALWAYS_INLINE 694 bool ContainsSameAccessFast(u64 *s, u64 a, u64 sync_epoch, bool is_write) { 695 // This is an optimized version of ContainsSameAccessSlow. 696 // load current access into access[0:63] 697 const m128 access = _mm_cvtsi64_si128(a); 698 // duplicate high part of access in addr0: 699 // addr0[0:31] = access[32:63] 700 // addr0[32:63] = access[32:63] 701 // addr0[64:95] = access[32:63] 702 // addr0[96:127] = access[32:63] 703 const m128 addr0 = SHUF(access, access, 1, 1, 1, 1); 704 // load 4 shadow slots 705 const m128 shadow0 = _mm_load_si128((__m128i*)s); 706 const m128 shadow1 = _mm_load_si128((__m128i*)s + 1); 707 // load high parts of 4 shadow slots into addr_vect: 708 // addr_vect[0:31] = shadow0[32:63] 709 // addr_vect[32:63] = shadow0[96:127] 710 // addr_vect[64:95] = shadow1[32:63] 711 // addr_vect[96:127] = shadow1[96:127] 712 m128 addr_vect = SHUF(shadow0, shadow1, 1, 3, 1, 3); 713 if (!is_write) { 714 // set IsRead bit in addr_vect 715 const m128 rw_mask1 = _mm_cvtsi64_si128(1<<15); 716 const m128 rw_mask = SHUF(rw_mask1, rw_mask1, 0, 0, 0, 0); 717 addr_vect = _mm_or_si128(addr_vect, rw_mask); 718 } 719 // addr0 == addr_vect? 720 const m128 addr_res = _mm_cmpeq_epi32(addr0, addr_vect); 721 // epoch1[0:63] = sync_epoch 722 const m128 epoch1 = _mm_cvtsi64_si128(sync_epoch); 723 // epoch[0:31] = sync_epoch[0:31] 724 // epoch[32:63] = sync_epoch[0:31] 725 // epoch[64:95] = sync_epoch[0:31] 726 // epoch[96:127] = sync_epoch[0:31] 727 const m128 epoch = SHUF(epoch1, epoch1, 0, 0, 0, 0); 728 // load low parts of shadow cell epochs into epoch_vect: 729 // epoch_vect[0:31] = shadow0[0:31] 730 // epoch_vect[32:63] = shadow0[64:95] 731 // epoch_vect[64:95] = shadow1[0:31] 732 // epoch_vect[96:127] = shadow1[64:95] 733 const m128 epoch_vect = SHUF(shadow0, shadow1, 0, 2, 0, 2); 734 // epoch_vect >= sync_epoch? 735 const m128 epoch_res = _mm_cmpgt_epi32(epoch_vect, epoch); 736 // addr_res & epoch_res 737 const m128 res = _mm_and_si128(addr_res, epoch_res); 738 // mask[0] = res[7] 739 // mask[1] = res[15] 740 // ... 741 // mask[15] = res[127] 742 const int mask = _mm_movemask_epi8(res); 743 return mask != 0; 744 } 745 #endif 746 747 ALWAYS_INLINE 748 bool ContainsSameAccess(u64 *s, u64 a, u64 sync_epoch, bool is_write) { 749 #if defined(__SSE3__) 750 bool res = ContainsSameAccessFast(s, a, sync_epoch, is_write); 751 // NOTE: this check can fail if the shadow is concurrently mutated 752 // by other threads. But it still can be useful if you modify 753 // ContainsSameAccessFast and want to ensure that it's not completely broken. 754 // DCHECK_EQ(res, ContainsSameAccessSlow(s, a, sync_epoch, is_write)); 755 return res; 756 #else 757 return ContainsSameAccessSlow(s, a, sync_epoch, is_write); 758 #endif 759 } 760 761 ALWAYS_INLINE USED 762 void MemoryAccess(ThreadState *thr, uptr pc, uptr addr, 763 int kAccessSizeLog, bool kAccessIsWrite, bool kIsAtomic) { 764 u64 *shadow_mem = (u64*)MemToShadow(addr); 765 DPrintf2("#%d: MemoryAccess: @%p %p size=%d" 766 " is_write=%d shadow_mem=%p {%zx, %zx, %zx, %zx}\n", 767 (int)thr->fast_state.tid(), (void*)pc, (void*)addr, 768 (int)(1 << kAccessSizeLog), kAccessIsWrite, shadow_mem, 769 (uptr)shadow_mem[0], (uptr)shadow_mem[1], 770 (uptr)shadow_mem[2], (uptr)shadow_mem[3]); 771 #if SANITIZER_DEBUG 772 if (!IsAppMem(addr)) { 773 Printf("Access to non app mem %zx\n", addr); 774 DCHECK(IsAppMem(addr)); 775 } 776 if (!IsShadowMem((uptr)shadow_mem)) { 777 Printf("Bad shadow addr %p (%zx)\n", shadow_mem, addr); 778 DCHECK(IsShadowMem((uptr)shadow_mem)); 779 } 780 #endif 781 782 if (!SANITIZER_GO && *shadow_mem == kShadowRodata) { 783 // Access to .rodata section, no races here. 784 // Measurements show that it can be 10-20% of all memory accesses. 785 StatInc(thr, StatMop); 786 StatInc(thr, kAccessIsWrite ? StatMopWrite : StatMopRead); 787 StatInc(thr, (StatType)(StatMop1 + kAccessSizeLog)); 788 StatInc(thr, StatMopRodata); 789 return; 790 } 791 792 FastState fast_state = thr->fast_state; 793 if (fast_state.GetIgnoreBit()) { 794 StatInc(thr, StatMop); 795 StatInc(thr, kAccessIsWrite ? StatMopWrite : StatMopRead); 796 StatInc(thr, (StatType)(StatMop1 + kAccessSizeLog)); 797 StatInc(thr, StatMopIgnored); 798 return; 799 } 800 801 Shadow cur(fast_state); 802 cur.SetAddr0AndSizeLog(addr & 7, kAccessSizeLog); 803 cur.SetWrite(kAccessIsWrite); 804 cur.SetAtomic(kIsAtomic); 805 806 if (LIKELY(ContainsSameAccess(shadow_mem, cur.raw(), 807 thr->fast_synch_epoch, kAccessIsWrite))) { 808 StatInc(thr, StatMop); 809 StatInc(thr, kAccessIsWrite ? StatMopWrite : StatMopRead); 810 StatInc(thr, (StatType)(StatMop1 + kAccessSizeLog)); 811 StatInc(thr, StatMopSame); 812 return; 813 } 814 815 if (kCollectHistory) { 816 fast_state.IncrementEpoch(); 817 thr->fast_state = fast_state; 818 TraceAddEvent(thr, fast_state, EventTypeMop, pc); 819 cur.IncrementEpoch(); 820 } 821 822 MemoryAccessImpl1(thr, addr, kAccessSizeLog, kAccessIsWrite, kIsAtomic, 823 shadow_mem, cur); 824 } 825 826 // Called by MemoryAccessRange in tsan_rtl_thread.cc 827 ALWAYS_INLINE USED 828 void MemoryAccessImpl(ThreadState *thr, uptr addr, 829 int kAccessSizeLog, bool kAccessIsWrite, bool kIsAtomic, 830 u64 *shadow_mem, Shadow cur) { 831 if (LIKELY(ContainsSameAccess(shadow_mem, cur.raw(), 832 thr->fast_synch_epoch, kAccessIsWrite))) { 833 StatInc(thr, StatMop); 834 StatInc(thr, kAccessIsWrite ? StatMopWrite : StatMopRead); 835 StatInc(thr, (StatType)(StatMop1 + kAccessSizeLog)); 836 StatInc(thr, StatMopSame); 837 return; 838 } 839 840 MemoryAccessImpl1(thr, addr, kAccessSizeLog, kAccessIsWrite, kIsAtomic, 841 shadow_mem, cur); 842 } 843 844 static void MemoryRangeSet(ThreadState *thr, uptr pc, uptr addr, uptr size, 845 u64 val) { 846 (void)thr; 847 (void)pc; 848 if (size == 0) 849 return; 850 // FIXME: fix me. 851 uptr offset = addr % kShadowCell; 852 if (offset) { 853 offset = kShadowCell - offset; 854 if (size <= offset) 855 return; 856 addr += offset; 857 size -= offset; 858 } 859 DCHECK_EQ(addr % 8, 0); 860 // If a user passes some insane arguments (memset(0)), 861 // let it just crash as usual. 862 if (!IsAppMem(addr) || !IsAppMem(addr + size - 1)) 863 return; 864 // Don't want to touch lots of shadow memory. 865 // If a program maps 10MB stack, there is no need reset the whole range. 866 size = (size + (kShadowCell - 1)) & ~(kShadowCell - 1); 867 // UnmapOrDie/MmapFixedNoReserve does not work on Windows, 868 // so we do it only for C/C++. 869 if (SANITIZER_GO || size < common_flags()->clear_shadow_mmap_threshold) { 870 u64 *p = (u64*)MemToShadow(addr); 871 CHECK(IsShadowMem((uptr)p)); 872 CHECK(IsShadowMem((uptr)(p + size * kShadowCnt / kShadowCell - 1))); 873 // FIXME: may overwrite a part outside the region 874 for (uptr i = 0; i < size / kShadowCell * kShadowCnt;) { 875 p[i++] = val; 876 for (uptr j = 1; j < kShadowCnt; j++) 877 p[i++] = 0; 878 } 879 } else { 880 // The region is big, reset only beginning and end. 881 const uptr kPageSize = GetPageSizeCached(); 882 u64 *begin = (u64*)MemToShadow(addr); 883 u64 *end = begin + size / kShadowCell * kShadowCnt; 884 u64 *p = begin; 885 // Set at least first kPageSize/2 to page boundary. 886 while ((p < begin + kPageSize / kShadowSize / 2) || ((uptr)p % kPageSize)) { 887 *p++ = val; 888 for (uptr j = 1; j < kShadowCnt; j++) 889 *p++ = 0; 890 } 891 // Reset middle part. 892 u64 *p1 = p; 893 p = RoundDown(end, kPageSize); 894 UnmapOrDie((void*)p1, (uptr)p - (uptr)p1); 895 MmapFixedNoReserve((uptr)p1, (uptr)p - (uptr)p1); 896 // Set the ending. 897 while (p < end) { 898 *p++ = val; 899 for (uptr j = 1; j < kShadowCnt; j++) 900 *p++ = 0; 901 } 902 } 903 } 904 905 void MemoryResetRange(ThreadState *thr, uptr pc, uptr addr, uptr size) { 906 MemoryRangeSet(thr, pc, addr, size, 0); 907 } 908 909 void MemoryRangeFreed(ThreadState *thr, uptr pc, uptr addr, uptr size) { 910 // Processing more than 1k (4k of shadow) is expensive, 911 // can cause excessive memory consumption (user does not necessary touch 912 // the whole range) and most likely unnecessary. 913 if (size > 1024) 914 size = 1024; 915 CHECK_EQ(thr->is_freeing, false); 916 thr->is_freeing = true; 917 MemoryAccessRange(thr, pc, addr, size, true); 918 thr->is_freeing = false; 919 if (kCollectHistory) { 920 thr->fast_state.IncrementEpoch(); 921 TraceAddEvent(thr, thr->fast_state, EventTypeMop, pc); 922 } 923 Shadow s(thr->fast_state); 924 s.ClearIgnoreBit(); 925 s.MarkAsFreed(); 926 s.SetWrite(true); 927 s.SetAddr0AndSizeLog(0, 3); 928 MemoryRangeSet(thr, pc, addr, size, s.raw()); 929 } 930 931 void MemoryRangeImitateWrite(ThreadState *thr, uptr pc, uptr addr, uptr size) { 932 if (kCollectHistory) { 933 thr->fast_state.IncrementEpoch(); 934 TraceAddEvent(thr, thr->fast_state, EventTypeMop, pc); 935 } 936 Shadow s(thr->fast_state); 937 s.ClearIgnoreBit(); 938 s.SetWrite(true); 939 s.SetAddr0AndSizeLog(0, 3); 940 MemoryRangeSet(thr, pc, addr, size, s.raw()); 941 } 942 943 ALWAYS_INLINE USED 944 void FuncEntry(ThreadState *thr, uptr pc) { 945 StatInc(thr, StatFuncEnter); 946 DPrintf2("#%d: FuncEntry %p\n", (int)thr->fast_state.tid(), (void*)pc); 947 if (kCollectHistory) { 948 thr->fast_state.IncrementEpoch(); 949 TraceAddEvent(thr, thr->fast_state, EventTypeFuncEnter, pc); 950 } 951 952 // Shadow stack maintenance can be replaced with 953 // stack unwinding during trace switch (which presumably must be faster). 954 DCHECK_GE(thr->shadow_stack_pos, thr->shadow_stack); 955 #if !SANITIZER_GO 956 DCHECK_LT(thr->shadow_stack_pos, thr->shadow_stack_end); 957 #else 958 if (thr->shadow_stack_pos == thr->shadow_stack_end) 959 GrowShadowStack(thr); 960 #endif 961 thr->shadow_stack_pos[0] = pc; 962 thr->shadow_stack_pos++; 963 } 964 965 ALWAYS_INLINE USED 966 void FuncExit(ThreadState *thr) { 967 StatInc(thr, StatFuncExit); 968 DPrintf2("#%d: FuncExit\n", (int)thr->fast_state.tid()); 969 if (kCollectHistory) { 970 thr->fast_state.IncrementEpoch(); 971 TraceAddEvent(thr, thr->fast_state, EventTypeFuncExit, 0); 972 } 973 974 DCHECK_GT(thr->shadow_stack_pos, thr->shadow_stack); 975 #if !SANITIZER_GO 976 DCHECK_LT(thr->shadow_stack_pos, thr->shadow_stack_end); 977 #endif 978 thr->shadow_stack_pos--; 979 } 980 981 void ThreadIgnoreBegin(ThreadState *thr, uptr pc) { 982 DPrintf("#%d: ThreadIgnoreBegin\n", thr->tid); 983 thr->ignore_reads_and_writes++; 984 CHECK_GT(thr->ignore_reads_and_writes, 0); 985 thr->fast_state.SetIgnoreBit(); 986 #if !SANITIZER_GO 987 if (!ctx->after_multithreaded_fork) 988 thr->mop_ignore_set.Add(CurrentStackId(thr, pc)); 989 #endif 990 } 991 992 void ThreadIgnoreEnd(ThreadState *thr, uptr pc) { 993 DPrintf("#%d: ThreadIgnoreEnd\n", thr->tid); 994 thr->ignore_reads_and_writes--; 995 CHECK_GE(thr->ignore_reads_and_writes, 0); 996 if (thr->ignore_reads_and_writes == 0) { 997 thr->fast_state.ClearIgnoreBit(); 998 #if !SANITIZER_GO 999 thr->mop_ignore_set.Reset(); 1000 #endif 1001 } 1002 } 1003 1004 void ThreadIgnoreSyncBegin(ThreadState *thr, uptr pc) { 1005 DPrintf("#%d: ThreadIgnoreSyncBegin\n", thr->tid); 1006 thr->ignore_sync++; 1007 CHECK_GT(thr->ignore_sync, 0); 1008 #if !SANITIZER_GO 1009 if (!ctx->after_multithreaded_fork) 1010 thr->sync_ignore_set.Add(CurrentStackId(thr, pc)); 1011 #endif 1012 } 1013 1014 void ThreadIgnoreSyncEnd(ThreadState *thr, uptr pc) { 1015 DPrintf("#%d: ThreadIgnoreSyncEnd\n", thr->tid); 1016 thr->ignore_sync--; 1017 CHECK_GE(thr->ignore_sync, 0); 1018 #if !SANITIZER_GO 1019 if (thr->ignore_sync == 0) 1020 thr->sync_ignore_set.Reset(); 1021 #endif 1022 } 1023 1024 bool MD5Hash::operator==(const MD5Hash &other) const { 1025 return hash[0] == other.hash[0] && hash[1] == other.hash[1]; 1026 } 1027 1028 #if SANITIZER_DEBUG 1029 void build_consistency_debug() {} 1030 #else 1031 void build_consistency_release() {} 1032 #endif 1033 1034 #if TSAN_COLLECT_STATS 1035 void build_consistency_stats() {} 1036 #else 1037 void build_consistency_nostats() {} 1038 #endif 1039 1040 } // namespace __tsan 1041 1042 #if !SANITIZER_GO 1043 // Must be included in this file to make sure everything is inlined. 1044 #include "tsan_interface_inl.h" 1045 #endif 1046