xref: /netbsd-src/external/gpl3/gcc.old/dist/libsanitizer/tsan/tsan_fd.cc (revision a6f3f22f245acb8ee3bbf6871d7dce989204fa97)
1 //===-- tsan_fd.cc --------------------------------------------------------===//
2 //
3 // This file is distributed under the University of Illinois Open Source
4 // License. See LICENSE.TXT for details.
5 //
6 //===----------------------------------------------------------------------===//
7 //
8 // This file is a part of ThreadSanitizer (TSan), a race detector.
9 //
10 //===----------------------------------------------------------------------===//
11 
12 #include "tsan_fd.h"
13 #include "tsan_rtl.h"
14 #include <sanitizer_common/sanitizer_atomic.h>
15 
16 namespace __tsan {
17 
18 const int kTableSizeL1 = 1024;
19 const int kTableSizeL2 = 1024;
20 const int kTableSize = kTableSizeL1 * kTableSizeL2;
21 
22 struct FdSync {
23   atomic_uint64_t rc;
24 };
25 
26 struct FdDesc {
27   FdSync *sync;
28   int creation_tid;
29   u32 creation_stack;
30 };
31 
32 struct FdContext {
33   atomic_uintptr_t tab[kTableSizeL1];
34   // Addresses used for synchronization.
35   FdSync globsync;
36   FdSync filesync;
37   FdSync socksync;
38   u64 connectsync;
39 };
40 
41 static FdContext fdctx;
42 
43 static FdSync *allocsync() {
44   FdSync *s = (FdSync*)internal_alloc(MBlockFD, sizeof(FdSync));
45   atomic_store(&s->rc, 1, memory_order_relaxed);
46   return s;
47 }
48 
49 static FdSync *ref(FdSync *s) {
50   if (s && atomic_load(&s->rc, memory_order_relaxed) != (u64)-1)
51     atomic_fetch_add(&s->rc, 1, memory_order_relaxed);
52   return s;
53 }
54 
55 static void unref(ThreadState *thr, uptr pc, FdSync *s) {
56   if (s && atomic_load(&s->rc, memory_order_relaxed) != (u64)-1) {
57     if (atomic_fetch_sub(&s->rc, 1, memory_order_acq_rel) == 1) {
58       CHECK_NE(s, &fdctx.globsync);
59       CHECK_NE(s, &fdctx.filesync);
60       CHECK_NE(s, &fdctx.socksync);
61       SyncVar *v = CTX()->synctab.GetAndRemove(thr, pc, (uptr)s);
62       if (v)
63         DestroyAndFree(v);
64       internal_free(s);
65     }
66   }
67 }
68 
69 static FdDesc *fddesc(ThreadState *thr, uptr pc, int fd) {
70   CHECK_LT(fd, kTableSize);
71   atomic_uintptr_t *pl1 = &fdctx.tab[fd / kTableSizeL2];
72   uptr l1 = atomic_load(pl1, memory_order_consume);
73   if (l1 == 0) {
74     uptr size = kTableSizeL2 * sizeof(FdDesc);
75     void *p = internal_alloc(MBlockFD, size);
76     internal_memset(p, 0, size);
77     MemoryResetRange(thr, (uptr)&fddesc, (uptr)p, size);
78     if (atomic_compare_exchange_strong(pl1, &l1, (uptr)p, memory_order_acq_rel))
79       l1 = (uptr)p;
80     else
81       internal_free(p);
82   }
83   return &((FdDesc*)l1)[fd % kTableSizeL2];  // NOLINT
84 }
85 
86 // pd must be already ref'ed.
87 static void init(ThreadState *thr, uptr pc, int fd, FdSync *s) {
88   FdDesc *d = fddesc(thr, pc, fd);
89   // As a matter of fact, we don't intercept all close calls.
90   // See e.g. libc __res_iclose().
91   if (d->sync) {
92     unref(thr, pc, d->sync);
93     d->sync = 0;
94   }
95   if (flags()->io_sync == 0) {
96     unref(thr, pc, s);
97   } else if (flags()->io_sync == 1) {
98     d->sync = s;
99   } else if (flags()->io_sync == 2) {
100     unref(thr, pc, s);
101     d->sync = &fdctx.globsync;
102   }
103   d->creation_tid = thr->tid;
104   d->creation_stack = CurrentStackId(thr, pc);
105   // To catch races between fd usage and open.
106   MemoryRangeImitateWrite(thr, pc, (uptr)d, 8);
107 }
108 
109 void FdInit() {
110   atomic_store(&fdctx.globsync.rc, (u64)-1, memory_order_relaxed);
111   atomic_store(&fdctx.filesync.rc, (u64)-1, memory_order_relaxed);
112   atomic_store(&fdctx.socksync.rc, (u64)-1, memory_order_relaxed);
113 }
114 
115 void FdOnFork(ThreadState *thr, uptr pc) {
116   // On fork() we need to reset all fd's, because the child is going
117   // close all them, and that will cause races between previous read/write
118   // and the close.
119   for (int l1 = 0; l1 < kTableSizeL1; l1++) {
120     FdDesc *tab = (FdDesc*)atomic_load(&fdctx.tab[l1], memory_order_relaxed);
121     if (tab == 0)
122       break;
123     for (int l2 = 0; l2 < kTableSizeL2; l2++) {
124       FdDesc *d = &tab[l2];
125       MemoryResetRange(thr, pc, (uptr)d, 8);
126     }
127   }
128 }
129 
130 bool FdLocation(uptr addr, int *fd, int *tid, u32 *stack) {
131   for (int l1 = 0; l1 < kTableSizeL1; l1++) {
132     FdDesc *tab = (FdDesc*)atomic_load(&fdctx.tab[l1], memory_order_relaxed);
133     if (tab == 0)
134       break;
135     if (addr >= (uptr)tab && addr < (uptr)(tab + kTableSizeL2)) {
136       int l2 = (addr - (uptr)tab) / sizeof(FdDesc);
137       FdDesc *d = &tab[l2];
138       *fd = l1 * kTableSizeL1 + l2;
139       *tid = d->creation_tid;
140       *stack = d->creation_stack;
141       return true;
142     }
143   }
144   return false;
145 }
146 
147 void FdAcquire(ThreadState *thr, uptr pc, int fd) {
148   FdDesc *d = fddesc(thr, pc, fd);
149   FdSync *s = d->sync;
150   DPrintf("#%d: FdAcquire(%d) -> %p\n", thr->tid, fd, s);
151   MemoryRead(thr, pc, (uptr)d, kSizeLog8);
152   if (s)
153     Acquire(thr, pc, (uptr)s);
154 }
155 
156 void FdRelease(ThreadState *thr, uptr pc, int fd) {
157   FdDesc *d = fddesc(thr, pc, fd);
158   FdSync *s = d->sync;
159   DPrintf("#%d: FdRelease(%d) -> %p\n", thr->tid, fd, s);
160   if (s)
161     Release(thr, pc, (uptr)s);
162   MemoryRead(thr, pc, (uptr)d, kSizeLog8);
163 }
164 
165 void FdAccess(ThreadState *thr, uptr pc, int fd) {
166   DPrintf("#%d: FdAccess(%d)\n", thr->tid, fd);
167   FdDesc *d = fddesc(thr, pc, fd);
168   MemoryRead(thr, pc, (uptr)d, kSizeLog8);
169 }
170 
171 void FdClose(ThreadState *thr, uptr pc, int fd) {
172   DPrintf("#%d: FdClose(%d)\n", thr->tid, fd);
173   FdDesc *d = fddesc(thr, pc, fd);
174   // To catch races between fd usage and close.
175   MemoryWrite(thr, pc, (uptr)d, kSizeLog8);
176   // We need to clear it, because if we do not intercept any call out there
177   // that creates fd, we will hit false postives.
178   MemoryResetRange(thr, pc, (uptr)d, 8);
179   unref(thr, pc, d->sync);
180   d->sync = 0;
181   d->creation_tid = 0;
182   d->creation_stack = 0;
183 }
184 
185 void FdFileCreate(ThreadState *thr, uptr pc, int fd) {
186   DPrintf("#%d: FdFileCreate(%d)\n", thr->tid, fd);
187   init(thr, pc, fd, &fdctx.filesync);
188 }
189 
190 void FdDup(ThreadState *thr, uptr pc, int oldfd, int newfd) {
191   DPrintf("#%d: FdDup(%d, %d)\n", thr->tid, oldfd, newfd);
192   // Ignore the case when user dups not yet connected socket.
193   FdDesc *od = fddesc(thr, pc, oldfd);
194   MemoryRead(thr, pc, (uptr)od, kSizeLog8);
195   FdClose(thr, pc, newfd);
196   init(thr, pc, newfd, ref(od->sync));
197 }
198 
199 void FdPipeCreate(ThreadState *thr, uptr pc, int rfd, int wfd) {
200   DPrintf("#%d: FdCreatePipe(%d, %d)\n", thr->tid, rfd, wfd);
201   FdSync *s = allocsync();
202   init(thr, pc, rfd, ref(s));
203   init(thr, pc, wfd, ref(s));
204   unref(thr, pc, s);
205 }
206 
207 void FdEventCreate(ThreadState *thr, uptr pc, int fd) {
208   DPrintf("#%d: FdEventCreate(%d)\n", thr->tid, fd);
209   init(thr, pc, fd, allocsync());
210 }
211 
212 void FdSignalCreate(ThreadState *thr, uptr pc, int fd) {
213   DPrintf("#%d: FdSignalCreate(%d)\n", thr->tid, fd);
214   init(thr, pc, fd, 0);
215 }
216 
217 void FdInotifyCreate(ThreadState *thr, uptr pc, int fd) {
218   DPrintf("#%d: FdInotifyCreate(%d)\n", thr->tid, fd);
219   init(thr, pc, fd, 0);
220 }
221 
222 void FdPollCreate(ThreadState *thr, uptr pc, int fd) {
223   DPrintf("#%d: FdPollCreate(%d)\n", thr->tid, fd);
224   init(thr, pc, fd, allocsync());
225 }
226 
227 void FdSocketCreate(ThreadState *thr, uptr pc, int fd) {
228   DPrintf("#%d: FdSocketCreate(%d)\n", thr->tid, fd);
229   // It can be a UDP socket.
230   init(thr, pc, fd, &fdctx.socksync);
231 }
232 
233 void FdSocketAccept(ThreadState *thr, uptr pc, int fd, int newfd) {
234   DPrintf("#%d: FdSocketAccept(%d, %d)\n", thr->tid, fd, newfd);
235   // Synchronize connect->accept.
236   Acquire(thr, pc, (uptr)&fdctx.connectsync);
237   init(thr, pc, newfd, &fdctx.socksync);
238 }
239 
240 void FdSocketConnecting(ThreadState *thr, uptr pc, int fd) {
241   DPrintf("#%d: FdSocketConnecting(%d)\n", thr->tid, fd);
242   // Synchronize connect->accept.
243   Release(thr, pc, (uptr)&fdctx.connectsync);
244 }
245 
246 void FdSocketConnect(ThreadState *thr, uptr pc, int fd) {
247   DPrintf("#%d: FdSocketConnect(%d)\n", thr->tid, fd);
248   init(thr, pc, fd, &fdctx.socksync);
249 }
250 
251 uptr File2addr(char *path) {
252   (void)path;
253   static u64 addr;
254   return (uptr)&addr;
255 }
256 
257 uptr Dir2addr(char *path) {
258   (void)path;
259   static u64 addr;
260   return (uptr)&addr;
261 }
262 
263 }  //  namespace __tsan
264