1 //===-- sanitizer_common.h --------------------------------------*- C++ -*-===// 2 // 3 // This file is distributed under the University of Illinois Open Source 4 // License. See LICENSE.TXT for details. 5 // 6 //===----------------------------------------------------------------------===// 7 // 8 // This file is shared between run-time libraries of sanitizers. 9 // 10 // It declares common functions and classes that are used in both runtimes. 11 // Implementation of some functions are provided in sanitizer_common, while 12 // others must be defined by run-time library itself. 13 //===----------------------------------------------------------------------===// 14 #ifndef SANITIZER_COMMON_H 15 #define SANITIZER_COMMON_H 16 17 #include "sanitizer_flags.h" 18 #include "sanitizer_interface_internal.h" 19 #include "sanitizer_internal_defs.h" 20 #include "sanitizer_libc.h" 21 #include "sanitizer_list.h" 22 #include "sanitizer_mutex.h" 23 24 #if defined(_MSC_VER) && !defined(__clang__) 25 extern "C" void _ReadWriteBarrier(); 26 #pragma intrinsic(_ReadWriteBarrier) 27 #endif 28 29 namespace __sanitizer { 30 31 struct AddressInfo; 32 struct BufferedStackTrace; 33 struct SignalContext; 34 struct StackTrace; 35 36 // Constants. 37 const uptr kWordSize = SANITIZER_WORDSIZE / 8; 38 const uptr kWordSizeInBits = 8 * kWordSize; 39 40 #if defined(__powerpc__) || defined(__powerpc64__) 41 const uptr kCacheLineSize = 128; 42 #else 43 const uptr kCacheLineSize = 64; 44 #endif 45 46 const uptr kMaxPathLength = 4096; 47 48 const uptr kMaxThreadStackSize = 1 << 30; // 1Gb 49 50 static const uptr kErrorMessageBufferSize = 1 << 16; 51 52 // Denotes fake PC values that come from JIT/JAVA/etc. 53 // For such PC values __tsan_symbolize_external() will be called. 54 const u64 kExternalPCBit = 1ULL << 60; 55 56 extern const char *SanitizerToolName; // Can be changed by the tool. 57 58 extern atomic_uint32_t current_verbosity; 59 INLINE void SetVerbosity(int verbosity) { 60 atomic_store(¤t_verbosity, verbosity, memory_order_relaxed); 61 } 62 INLINE int Verbosity() { 63 return atomic_load(¤t_verbosity, memory_order_relaxed); 64 } 65 66 uptr GetPageSize(); 67 extern uptr PageSizeCached; 68 INLINE uptr GetPageSizeCached() { 69 if (!PageSizeCached) 70 PageSizeCached = GetPageSize(); 71 return PageSizeCached; 72 } 73 uptr GetMmapGranularity(); 74 uptr GetMaxVirtualAddress(); 75 // Threads 76 tid_t GetTid(); 77 uptr GetThreadSelf(); 78 void GetThreadStackTopAndBottom(bool at_initialization, uptr *stack_top, 79 uptr *stack_bottom); 80 void GetThreadStackAndTls(bool main, uptr *stk_addr, uptr *stk_size, 81 uptr *tls_addr, uptr *tls_size); 82 83 // Memory management 84 void *MmapOrDie(uptr size, const char *mem_type, bool raw_report = false); 85 INLINE void *MmapOrDieQuietly(uptr size, const char *mem_type) { 86 return MmapOrDie(size, mem_type, /*raw_report*/ true); 87 } 88 void UnmapOrDie(void *addr, uptr size); 89 // Behaves just like MmapOrDie, but tolerates out of memory condition, in that 90 // case returns nullptr. 91 void *MmapOrDieOnFatalError(uptr size, const char *mem_type); 92 void *MmapFixedNoReserve(uptr fixed_addr, uptr size, 93 const char *name = nullptr); 94 void *MmapNoReserveOrDie(uptr size, const char *mem_type); 95 void *MmapFixedOrDie(uptr fixed_addr, uptr size); 96 // Behaves just like MmapFixedOrDie, but tolerates out of memory condition, in 97 // that case returns nullptr. 98 void *MmapFixedOrDieOnFatalError(uptr fixed_addr, uptr size); 99 void *MmapFixedNoAccess(uptr fixed_addr, uptr size, const char *name = nullptr); 100 void *MmapNoAccess(uptr size); 101 // Map aligned chunk of address space; size and alignment are powers of two. 102 // Dies on all but out of memory errors, in the latter case returns nullptr. 103 void *MmapAlignedOrDieOnFatalError(uptr size, uptr alignment, 104 const char *mem_type); 105 // Disallow access to a memory range. Use MmapFixedNoAccess to allocate an 106 // unaccessible memory. 107 bool MprotectNoAccess(uptr addr, uptr size); 108 bool MprotectReadOnly(uptr addr, uptr size); 109 110 // Find an available address space. 111 uptr FindAvailableMemoryRange(uptr size, uptr alignment, uptr left_padding, 112 uptr *largest_gap_found); 113 114 // Used to check if we can map shadow memory to a fixed location. 115 bool MemoryRangeIsAvailable(uptr range_start, uptr range_end); 116 // Releases memory pages entirely within the [beg, end] address range. Noop if 117 // the provided range does not contain at least one entire page. 118 void ReleaseMemoryPagesToOS(uptr beg, uptr end); 119 void IncreaseTotalMmap(uptr size); 120 void DecreaseTotalMmap(uptr size); 121 uptr GetRSS(); 122 void NoHugePagesInRegion(uptr addr, uptr length); 123 void DontDumpShadowMemory(uptr addr, uptr length); 124 // Check if the built VMA size matches the runtime one. 125 void CheckVMASize(); 126 void RunMallocHooks(const void *ptr, uptr size); 127 void RunFreeHooks(const void *ptr); 128 129 typedef void (*fill_profile_f)(uptr start, uptr rss, bool file, 130 /*out*/uptr *stats, uptr stats_size); 131 132 // Parse the contents of /proc/self/smaps and generate a memory profile. 133 // |cb| is a tool-specific callback that fills the |stats| array containing 134 // |stats_size| elements. 135 void GetMemoryProfile(fill_profile_f cb, uptr *stats, uptr stats_size); 136 137 // InternalScopedBuffer can be used instead of large stack arrays to 138 // keep frame size low. 139 // FIXME: use InternalAlloc instead of MmapOrDie once 140 // InternalAlloc is made libc-free. 141 template <typename T> 142 class InternalScopedBuffer { 143 public: 144 explicit InternalScopedBuffer(uptr cnt) { 145 cnt_ = cnt; 146 ptr_ = (T *)MmapOrDie(cnt * sizeof(T), "InternalScopedBuffer"); 147 } 148 ~InternalScopedBuffer() { UnmapOrDie(ptr_, cnt_ * sizeof(T)); } 149 T &operator[](uptr i) { return ptr_[i]; } 150 T *data() { return ptr_; } 151 uptr size() { return cnt_ * sizeof(T); } 152 153 private: 154 T *ptr_; 155 uptr cnt_; 156 // Disallow copies and moves. 157 InternalScopedBuffer(const InternalScopedBuffer &) = delete; 158 InternalScopedBuffer &operator=(const InternalScopedBuffer &) = delete; 159 InternalScopedBuffer(InternalScopedBuffer &&) = delete; 160 InternalScopedBuffer &operator=(InternalScopedBuffer &&) = delete; 161 }; 162 163 class InternalScopedString : public InternalScopedBuffer<char> { 164 public: 165 explicit InternalScopedString(uptr max_length) 166 : InternalScopedBuffer<char>(max_length), length_(0) { 167 (*this)[0] = '\0'; 168 } 169 uptr length() { return length_; } 170 void clear() { 171 (*this)[0] = '\0'; 172 length_ = 0; 173 } 174 void append(const char *format, ...); 175 176 private: 177 uptr length_; 178 }; 179 180 // Simple low-level (mmap-based) allocator for internal use. Doesn't have 181 // constructor, so all instances of LowLevelAllocator should be 182 // linker initialized. 183 class LowLevelAllocator { 184 public: 185 // Requires an external lock. 186 void *Allocate(uptr size); 187 private: 188 char *allocated_end_; 189 char *allocated_current_; 190 }; 191 typedef void (*LowLevelAllocateCallback)(uptr ptr, uptr size); 192 // Allows to register tool-specific callbacks for LowLevelAllocator. 193 // Passing NULL removes the callback. 194 void SetLowLevelAllocateCallback(LowLevelAllocateCallback callback); 195 196 // IO 197 void CatastrophicErrorWrite(const char *buffer, uptr length); 198 void RawWrite(const char *buffer); 199 bool ColorizeReports(); 200 void RemoveANSIEscapeSequencesFromString(char *buffer); 201 void Printf(const char *format, ...); 202 void Report(const char *format, ...); 203 void SetPrintfAndReportCallback(void (*callback)(const char *)); 204 #define VReport(level, ...) \ 205 do { \ 206 if ((uptr)Verbosity() >= (level)) Report(__VA_ARGS__); \ 207 } while (0) 208 #define VPrintf(level, ...) \ 209 do { \ 210 if ((uptr)Verbosity() >= (level)) Printf(__VA_ARGS__); \ 211 } while (0) 212 213 // Can be used to prevent mixing error reports from different sanitizers. 214 // FIXME: Replace with ScopedErrorReportLock and hide. 215 extern StaticSpinMutex CommonSanitizerReportMutex; 216 217 // Lock sanitizer error reporting and protects against nested errors. 218 class ScopedErrorReportLock { 219 public: 220 ScopedErrorReportLock(); 221 ~ScopedErrorReportLock(); 222 223 static void CheckLocked(); 224 }; 225 226 extern uptr stoptheworld_tracer_pid; 227 extern uptr stoptheworld_tracer_ppid; 228 229 // Opens the file 'file_name" and reads up to 'max_len' bytes. 230 // The resulting buffer is mmaped and stored in '*buff'. 231 // The size of the mmaped region is stored in '*buff_size'. 232 // The total number of read bytes is stored in '*read_len'. 233 // Returns true if file was successfully opened and read. 234 bool ReadFileToBuffer(const char *file_name, char **buff, uptr *buff_size, 235 uptr *read_len, uptr max_len = 1 << 26, 236 error_t *errno_p = nullptr); 237 238 bool IsAccessibleMemoryRange(uptr beg, uptr size); 239 240 // Error report formatting. 241 const char *StripPathPrefix(const char *filepath, 242 const char *strip_file_prefix); 243 // Strip the directories from the module name. 244 const char *StripModuleName(const char *module); 245 246 // OS 247 uptr ReadBinaryName(/*out*/char *buf, uptr buf_len); 248 uptr ReadBinaryNameCached(/*out*/char *buf, uptr buf_len); 249 uptr ReadLongProcessName(/*out*/ char *buf, uptr buf_len); 250 const char *GetProcessName(); 251 void UpdateProcessName(); 252 void CacheBinaryName(); 253 void DisableCoreDumperIfNecessary(); 254 void DumpProcessMap(); 255 void PrintModuleMap(); 256 const char *GetEnv(const char *name); 257 bool SetEnv(const char *name, const char *value); 258 259 u32 GetUid(); 260 void ReExec(); 261 char **GetArgv(); 262 void PrintCmdline(); 263 bool StackSizeIsUnlimited(); 264 uptr GetStackSizeLimitInBytes(); 265 void SetStackSizeLimitInBytes(uptr limit); 266 bool AddressSpaceIsUnlimited(); 267 void SetAddressSpaceUnlimited(); 268 void AdjustStackSize(void *attr); 269 void PrepareForSandboxing(__sanitizer_sandbox_arguments *args); 270 void SetSandboxingCallback(void (*f)()); 271 272 void InitializeCoverage(bool enabled, const char *coverage_dir); 273 274 void InitTlsSize(); 275 uptr GetTlsSize(); 276 277 // Other 278 void SleepForSeconds(int seconds); 279 void SleepForMillis(int millis); 280 u64 NanoTime(); 281 int Atexit(void (*function)(void)); 282 void SortArray(uptr *array, uptr size); 283 void SortArray(u32 *array, uptr size); 284 bool TemplateMatch(const char *templ, const char *str); 285 286 // Exit 287 void NORETURN Abort(); 288 void NORETURN Die(); 289 void NORETURN 290 CheckFailed(const char *file, int line, const char *cond, u64 v1, u64 v2); 291 void NORETURN ReportMmapFailureAndDie(uptr size, const char *mem_type, 292 const char *mmap_type, error_t err, 293 bool raw_report = false); 294 295 // Set the name of the current thread to 'name', return true on succees. 296 // The name may be truncated to a system-dependent limit. 297 bool SanitizerSetThreadName(const char *name); 298 // Get the name of the current thread (no more than max_len bytes), 299 // return true on succees. name should have space for at least max_len+1 bytes. 300 bool SanitizerGetThreadName(char *name, int max_len); 301 302 // Specific tools may override behavior of "Die" and "CheckFailed" functions 303 // to do tool-specific job. 304 typedef void (*DieCallbackType)(void); 305 306 // It's possible to add several callbacks that would be run when "Die" is 307 // called. The callbacks will be run in the opposite order. The tools are 308 // strongly recommended to setup all callbacks during initialization, when there 309 // is only a single thread. 310 bool AddDieCallback(DieCallbackType callback); 311 bool RemoveDieCallback(DieCallbackType callback); 312 313 void SetUserDieCallback(DieCallbackType callback); 314 315 typedef void (*CheckFailedCallbackType)(const char *, int, const char *, 316 u64, u64); 317 void SetCheckFailedCallback(CheckFailedCallbackType callback); 318 319 // Callback will be called if soft_rss_limit_mb is given and the limit is 320 // exceeded (exceeded==true) or if rss went down below the limit 321 // (exceeded==false). 322 // The callback should be registered once at the tool init time. 323 void SetSoftRssLimitExceededCallback(void (*Callback)(bool exceeded)); 324 325 // Functions related to signal handling. 326 typedef void (*SignalHandlerType)(int, void *, void *); 327 HandleSignalMode GetHandleSignalMode(int signum); 328 void InstallDeadlySignalHandlers(SignalHandlerType handler); 329 330 // Signal reporting. 331 // Each sanitizer uses slightly different implementation of stack unwinding. 332 typedef void (*UnwindSignalStackCallbackType)(const SignalContext &sig, 333 const void *callback_context, 334 BufferedStackTrace *stack); 335 // Print deadly signal report and die. 336 void HandleDeadlySignal(void *siginfo, void *context, u32 tid, 337 UnwindSignalStackCallbackType unwind, 338 const void *unwind_context); 339 340 // Part of HandleDeadlySignal, exposed for asan. 341 void StartReportDeadlySignal(); 342 // Part of HandleDeadlySignal, exposed for asan. 343 void ReportDeadlySignal(const SignalContext &sig, u32 tid, 344 UnwindSignalStackCallbackType unwind, 345 const void *unwind_context); 346 347 // Alternative signal stack (POSIX-only). 348 void SetAlternateSignalStack(); 349 void UnsetAlternateSignalStack(); 350 351 // We don't want a summary too long. 352 const int kMaxSummaryLength = 1024; 353 // Construct a one-line string: 354 // SUMMARY: SanitizerToolName: error_message 355 // and pass it to __sanitizer_report_error_summary. 356 // If alt_tool_name is provided, it's used in place of SanitizerToolName. 357 void ReportErrorSummary(const char *error_message, 358 const char *alt_tool_name = nullptr); 359 // Same as above, but construct error_message as: 360 // error_type file:line[:column][ function] 361 void ReportErrorSummary(const char *error_type, const AddressInfo &info, 362 const char *alt_tool_name = nullptr); 363 // Same as above, but obtains AddressInfo by symbolizing top stack trace frame. 364 void ReportErrorSummary(const char *error_type, const StackTrace *trace, 365 const char *alt_tool_name = nullptr); 366 367 // Math 368 #if SANITIZER_WINDOWS && !defined(__clang__) && !defined(__GNUC__) 369 extern "C" { 370 unsigned char _BitScanForward(unsigned long *index, unsigned long mask); // NOLINT 371 unsigned char _BitScanReverse(unsigned long *index, unsigned long mask); // NOLINT 372 #if defined(_WIN64) 373 unsigned char _BitScanForward64(unsigned long *index, unsigned __int64 mask); // NOLINT 374 unsigned char _BitScanReverse64(unsigned long *index, unsigned __int64 mask); // NOLINT 375 #endif 376 } 377 #endif 378 379 INLINE uptr MostSignificantSetBitIndex(uptr x) { 380 CHECK_NE(x, 0U); 381 unsigned long up; // NOLINT 382 #if !SANITIZER_WINDOWS || defined(__clang__) || defined(__GNUC__) 383 # ifdef _WIN64 384 up = SANITIZER_WORDSIZE - 1 - __builtin_clzll(x); 385 # else 386 up = SANITIZER_WORDSIZE - 1 - __builtin_clzl(x); 387 # endif 388 #elif defined(_WIN64) 389 _BitScanReverse64(&up, x); 390 #else 391 _BitScanReverse(&up, x); 392 #endif 393 return up; 394 } 395 396 INLINE uptr LeastSignificantSetBitIndex(uptr x) { 397 CHECK_NE(x, 0U); 398 unsigned long up; // NOLINT 399 #if !SANITIZER_WINDOWS || defined(__clang__) || defined(__GNUC__) 400 # ifdef _WIN64 401 up = __builtin_ctzll(x); 402 # else 403 up = __builtin_ctzl(x); 404 # endif 405 #elif defined(_WIN64) 406 _BitScanForward64(&up, x); 407 #else 408 _BitScanForward(&up, x); 409 #endif 410 return up; 411 } 412 413 INLINE bool IsPowerOfTwo(uptr x) { 414 return (x & (x - 1)) == 0; 415 } 416 417 INLINE uptr RoundUpToPowerOfTwo(uptr size) { 418 CHECK(size); 419 if (IsPowerOfTwo(size)) return size; 420 421 uptr up = MostSignificantSetBitIndex(size); 422 CHECK_LT(size, (1ULL << (up + 1))); 423 CHECK_GT(size, (1ULL << up)); 424 return 1ULL << (up + 1); 425 } 426 427 INLINE uptr RoundUpTo(uptr size, uptr boundary) { 428 RAW_CHECK(IsPowerOfTwo(boundary)); 429 return (size + boundary - 1) & ~(boundary - 1); 430 } 431 432 INLINE uptr RoundDownTo(uptr x, uptr boundary) { 433 return x & ~(boundary - 1); 434 } 435 436 INLINE bool IsAligned(uptr a, uptr alignment) { 437 return (a & (alignment - 1)) == 0; 438 } 439 440 INLINE uptr Log2(uptr x) { 441 CHECK(IsPowerOfTwo(x)); 442 return LeastSignificantSetBitIndex(x); 443 } 444 445 // Don't use std::min, std::max or std::swap, to minimize dependency 446 // on libstdc++. 447 template<class T> T Min(T a, T b) { return a < b ? a : b; } 448 template<class T> T Max(T a, T b) { return a > b ? a : b; } 449 template<class T> void Swap(T& a, T& b) { 450 T tmp = a; 451 a = b; 452 b = tmp; 453 } 454 455 // Char handling 456 INLINE bool IsSpace(int c) { 457 return (c == ' ') || (c == '\n') || (c == '\t') || 458 (c == '\f') || (c == '\r') || (c == '\v'); 459 } 460 INLINE bool IsDigit(int c) { 461 return (c >= '0') && (c <= '9'); 462 } 463 INLINE int ToLower(int c) { 464 return (c >= 'A' && c <= 'Z') ? (c + 'a' - 'A') : c; 465 } 466 467 // A low-level vector based on mmap. May incur a significant memory overhead for 468 // small vectors. 469 // WARNING: The current implementation supports only POD types. 470 template<typename T> 471 class InternalMmapVectorNoCtor { 472 public: 473 void Initialize(uptr initial_capacity) { 474 capacity_ = Max(initial_capacity, (uptr)1); 475 size_ = 0; 476 data_ = (T *)MmapOrDie(capacity_ * sizeof(T), "InternalMmapVectorNoCtor"); 477 } 478 void Destroy() { 479 UnmapOrDie(data_, capacity_ * sizeof(T)); 480 } 481 T &operator[](uptr i) { 482 CHECK_LT(i, size_); 483 return data_[i]; 484 } 485 const T &operator[](uptr i) const { 486 CHECK_LT(i, size_); 487 return data_[i]; 488 } 489 void push_back(const T &element) { 490 CHECK_LE(size_, capacity_); 491 if (size_ == capacity_) { 492 uptr new_capacity = RoundUpToPowerOfTwo(size_ + 1); 493 Resize(new_capacity); 494 } 495 internal_memcpy(&data_[size_++], &element, sizeof(T)); 496 } 497 T &back() { 498 CHECK_GT(size_, 0); 499 return data_[size_ - 1]; 500 } 501 void pop_back() { 502 CHECK_GT(size_, 0); 503 size_--; 504 } 505 uptr size() const { 506 return size_; 507 } 508 const T *data() const { 509 return data_; 510 } 511 T *data() { 512 return data_; 513 } 514 uptr capacity() const { 515 return capacity_; 516 } 517 void resize(uptr new_size) { 518 Resize(new_size); 519 if (new_size > size_) { 520 internal_memset(&data_[size_], 0, sizeof(T) * (new_size - size_)); 521 } 522 size_ = new_size; 523 } 524 525 void clear() { size_ = 0; } 526 bool empty() const { return size() == 0; } 527 528 const T *begin() const { 529 return data(); 530 } 531 T *begin() { 532 return data(); 533 } 534 const T *end() const { 535 return data() + size(); 536 } 537 T *end() { 538 return data() + size(); 539 } 540 541 private: 542 void Resize(uptr new_capacity) { 543 CHECK_GT(new_capacity, 0); 544 CHECK_LE(size_, new_capacity); 545 T *new_data = (T *)MmapOrDie(new_capacity * sizeof(T), 546 "InternalMmapVector"); 547 internal_memcpy(new_data, data_, size_ * sizeof(T)); 548 T *old_data = data_; 549 data_ = new_data; 550 UnmapOrDie(old_data, capacity_ * sizeof(T)); 551 capacity_ = new_capacity; 552 } 553 554 T *data_; 555 uptr capacity_; 556 uptr size_; 557 }; 558 559 template<typename T> 560 class InternalMmapVector : public InternalMmapVectorNoCtor<T> { 561 public: 562 explicit InternalMmapVector(uptr initial_capacity) { 563 InternalMmapVectorNoCtor<T>::Initialize(initial_capacity); 564 } 565 ~InternalMmapVector() { InternalMmapVectorNoCtor<T>::Destroy(); } 566 // Disallow evil constructors. 567 InternalMmapVector(const InternalMmapVector&); 568 void operator=(const InternalMmapVector&); 569 }; 570 571 // HeapSort for arrays and InternalMmapVector. 572 template<class Container, class Compare> 573 void InternalSort(Container *v, uptr size, Compare comp) { 574 if (size < 2) 575 return; 576 // Stage 1: insert elements to the heap. 577 for (uptr i = 1; i < size; i++) { 578 uptr j, p; 579 for (j = i; j > 0; j = p) { 580 p = (j - 1) / 2; 581 if (comp((*v)[p], (*v)[j])) 582 Swap((*v)[j], (*v)[p]); 583 else 584 break; 585 } 586 } 587 // Stage 2: swap largest element with the last one, 588 // and sink the new top. 589 for (uptr i = size - 1; i > 0; i--) { 590 Swap((*v)[0], (*v)[i]); 591 uptr j, max_ind; 592 for (j = 0; j < i; j = max_ind) { 593 uptr left = 2 * j + 1; 594 uptr right = 2 * j + 2; 595 max_ind = j; 596 if (left < i && comp((*v)[max_ind], (*v)[left])) 597 max_ind = left; 598 if (right < i && comp((*v)[max_ind], (*v)[right])) 599 max_ind = right; 600 if (max_ind != j) 601 Swap((*v)[j], (*v)[max_ind]); 602 else 603 break; 604 } 605 } 606 } 607 608 // Works like std::lower_bound: finds the first element that is not less 609 // than the val. 610 template <class Container, class Value, class Compare> 611 uptr InternalLowerBound(const Container &v, uptr first, uptr last, 612 const Value &val, Compare comp) { 613 while (last > first) { 614 uptr mid = (first + last) / 2; 615 if (comp(v[mid], val)) 616 first = mid + 1; 617 else 618 last = mid; 619 } 620 return first; 621 } 622 623 enum ModuleArch { 624 kModuleArchUnknown, 625 kModuleArchI386, 626 kModuleArchX86_64, 627 kModuleArchX86_64H, 628 kModuleArchARMV6, 629 kModuleArchARMV7, 630 kModuleArchARMV7S, 631 kModuleArchARMV7K, 632 kModuleArchARM64 633 }; 634 635 // When adding a new architecture, don't forget to also update 636 // script/asan_symbolize.py and sanitizer_symbolizer_libcdep.cc. 637 inline const char *ModuleArchToString(ModuleArch arch) { 638 switch (arch) { 639 case kModuleArchUnknown: 640 return ""; 641 case kModuleArchI386: 642 return "i386"; 643 case kModuleArchX86_64: 644 return "x86_64"; 645 case kModuleArchX86_64H: 646 return "x86_64h"; 647 case kModuleArchARMV6: 648 return "armv6"; 649 case kModuleArchARMV7: 650 return "armv7"; 651 case kModuleArchARMV7S: 652 return "armv7s"; 653 case kModuleArchARMV7K: 654 return "armv7k"; 655 case kModuleArchARM64: 656 return "arm64"; 657 } 658 CHECK(0 && "Invalid module arch"); 659 return ""; 660 } 661 662 const uptr kModuleUUIDSize = 16; 663 const uptr kMaxSegName = 16; 664 665 // Represents a binary loaded into virtual memory (e.g. this can be an 666 // executable or a shared object). 667 class LoadedModule { 668 public: 669 LoadedModule() 670 : full_name_(nullptr), 671 base_address_(0), 672 max_executable_address_(0), 673 arch_(kModuleArchUnknown), 674 instrumented_(false) { 675 internal_memset(uuid_, 0, kModuleUUIDSize); 676 ranges_.clear(); 677 } 678 void set(const char *module_name, uptr base_address); 679 void set(const char *module_name, uptr base_address, ModuleArch arch, 680 u8 uuid[kModuleUUIDSize], bool instrumented); 681 void clear(); 682 void addAddressRange(uptr beg, uptr end, bool executable, bool writable, 683 const char *name = nullptr); 684 bool containsAddress(uptr address) const; 685 686 const char *full_name() const { return full_name_; } 687 uptr base_address() const { return base_address_; } 688 uptr max_executable_address() const { return max_executable_address_; } 689 ModuleArch arch() const { return arch_; } 690 const u8 *uuid() const { return uuid_; } 691 bool instrumented() const { return instrumented_; } 692 693 struct AddressRange { 694 AddressRange *next; 695 uptr beg; 696 uptr end; 697 bool executable; 698 bool writable; 699 char name[kMaxSegName]; 700 701 AddressRange(uptr beg, uptr end, bool executable, bool writable, 702 const char *name) 703 : next(nullptr), 704 beg(beg), 705 end(end), 706 executable(executable), 707 writable(writable) { 708 internal_strncpy(this->name, (name ? name : ""), ARRAY_SIZE(this->name)); 709 } 710 }; 711 712 const IntrusiveList<AddressRange> &ranges() const { return ranges_; } 713 714 private: 715 char *full_name_; // Owned. 716 uptr base_address_; 717 uptr max_executable_address_; 718 ModuleArch arch_; 719 u8 uuid_[kModuleUUIDSize]; 720 bool instrumented_; 721 IntrusiveList<AddressRange> ranges_; 722 }; 723 724 // List of LoadedModules. OS-dependent implementation is responsible for 725 // filling this information. 726 class ListOfModules { 727 public: 728 ListOfModules() : initialized(false) {} 729 ~ListOfModules() { clear(); } 730 void init(); 731 void fallbackInit(); // Uses fallback init if available, otherwise clears 732 const LoadedModule *begin() const { return modules_.begin(); } 733 LoadedModule *begin() { return modules_.begin(); } 734 const LoadedModule *end() const { return modules_.end(); } 735 LoadedModule *end() { return modules_.end(); } 736 uptr size() const { return modules_.size(); } 737 const LoadedModule &operator[](uptr i) const { 738 CHECK_LT(i, modules_.size()); 739 return modules_[i]; 740 } 741 742 private: 743 void clear() { 744 for (auto &module : modules_) module.clear(); 745 modules_.clear(); 746 } 747 void clearOrInit() { 748 initialized ? clear() : modules_.Initialize(kInitialCapacity); 749 initialized = true; 750 } 751 752 InternalMmapVectorNoCtor<LoadedModule> modules_; 753 // We rarely have more than 16K loaded modules. 754 static const uptr kInitialCapacity = 1 << 14; 755 bool initialized; 756 }; 757 758 // Callback type for iterating over a set of memory ranges. 759 typedef void (*RangeIteratorCallback)(uptr begin, uptr end, void *arg); 760 761 enum AndroidApiLevel { 762 ANDROID_NOT_ANDROID = 0, 763 ANDROID_KITKAT = 19, 764 ANDROID_LOLLIPOP_MR1 = 22, 765 ANDROID_POST_LOLLIPOP = 23 766 }; 767 768 void WriteToSyslog(const char *buffer); 769 770 #if SANITIZER_MAC 771 void LogFullErrorReport(const char *buffer); 772 #else 773 INLINE void LogFullErrorReport(const char *buffer) {} 774 #endif 775 776 #if SANITIZER_LINUX || SANITIZER_MAC 777 void WriteOneLineToSyslog(const char *s); 778 void LogMessageOnPrintf(const char *str); 779 #else 780 INLINE void WriteOneLineToSyslog(const char *s) {} 781 INLINE void LogMessageOnPrintf(const char *str) {} 782 #endif 783 784 #if SANITIZER_LINUX 785 // Initialize Android logging. Any writes before this are silently lost. 786 void AndroidLogInit(); 787 void SetAbortMessage(const char *); 788 #else 789 INLINE void AndroidLogInit() {} 790 // FIXME: MacOS implementation could use CRSetCrashLogMessage. 791 INLINE void SetAbortMessage(const char *) {} 792 #endif 793 794 #if SANITIZER_ANDROID 795 void SanitizerInitializeUnwinder(); 796 AndroidApiLevel AndroidGetApiLevel(); 797 #else 798 INLINE void AndroidLogWrite(const char *buffer_unused) {} 799 INLINE void SanitizerInitializeUnwinder() {} 800 INLINE AndroidApiLevel AndroidGetApiLevel() { return ANDROID_NOT_ANDROID; } 801 #endif 802 803 INLINE uptr GetPthreadDestructorIterations() { 804 #if SANITIZER_ANDROID 805 return (AndroidGetApiLevel() == ANDROID_LOLLIPOP_MR1) ? 8 : 4; 806 #elif SANITIZER_POSIX 807 return 4; 808 #else 809 // Unused on Windows. 810 return 0; 811 #endif 812 } 813 814 void *internal_start_thread(void(*func)(void*), void *arg); 815 void internal_join_thread(void *th); 816 void MaybeStartBackgroudThread(); 817 818 // Make the compiler think that something is going on there. 819 // Use this inside a loop that looks like memset/memcpy/etc to prevent the 820 // compiler from recognising it and turning it into an actual call to 821 // memset/memcpy/etc. 822 static inline void SanitizerBreakOptimization(void *arg) { 823 #if defined(_MSC_VER) && !defined(__clang__) 824 _ReadWriteBarrier(); 825 #else 826 __asm__ __volatile__("" : : "r" (arg) : "memory"); 827 #endif 828 } 829 830 struct SignalContext { 831 void *siginfo; 832 void *context; 833 uptr addr; 834 uptr pc; 835 uptr sp; 836 uptr bp; 837 bool is_memory_access; 838 enum WriteFlag { UNKNOWN, READ, WRITE } write_flag; 839 840 // VS2013 doesn't implement unrestricted unions, so we need a trivial default 841 // constructor 842 SignalContext() = default; 843 844 // Creates signal context in a platform-specific manner. 845 // SignalContext is going to keep pointers to siginfo and context without 846 // owning them. 847 SignalContext(void *siginfo, void *context) 848 : siginfo(siginfo), 849 context(context), 850 addr(GetAddress()), 851 is_memory_access(IsMemoryAccess()), 852 write_flag(GetWriteFlag()) { 853 InitPcSpBp(); 854 } 855 856 static void DumpAllRegisters(void *context); 857 858 // Type of signal e.g. SIGSEGV or EXCEPTION_ACCESS_VIOLATION. 859 int GetType() const; 860 861 // String description of the signal. 862 const char *Describe() const; 863 864 // Returns true if signal is stack overflow. 865 bool IsStackOverflow() const; 866 867 private: 868 // Platform specific initialization. 869 void InitPcSpBp(); 870 uptr GetAddress() const; 871 WriteFlag GetWriteFlag() const; 872 bool IsMemoryAccess() const; 873 }; 874 875 void MaybeReexec(); 876 877 template <typename Fn> 878 class RunOnDestruction { 879 public: 880 explicit RunOnDestruction(Fn fn) : fn_(fn) {} 881 ~RunOnDestruction() { fn_(); } 882 883 private: 884 Fn fn_; 885 }; 886 887 // A simple scope guard. Usage: 888 // auto cleanup = at_scope_exit([]{ do_cleanup; }); 889 template <typename Fn> 890 RunOnDestruction<Fn> at_scope_exit(Fn fn) { 891 return RunOnDestruction<Fn>(fn); 892 } 893 894 // Linux on 64-bit s390 had a nasty bug that crashes the whole machine 895 // if a process uses virtual memory over 4TB (as many sanitizers like 896 // to do). This function will abort the process if running on a kernel 897 // that looks vulnerable. 898 #if SANITIZER_LINUX && SANITIZER_S390_64 899 void AvoidCVE_2016_2143(); 900 #else 901 INLINE void AvoidCVE_2016_2143() {} 902 #endif 903 904 struct StackDepotStats { 905 uptr n_uniq_ids; 906 uptr allocated; 907 }; 908 909 // The default value for allocator_release_to_os_interval_ms common flag to 910 // indicate that sanitizer allocator should not attempt to release memory to OS. 911 const s32 kReleaseToOSIntervalNever = -1; 912 913 void CheckNoDeepBind(const char *filename, int flag); 914 915 // Returns the requested amount of random data (up to 256 bytes) that can then 916 // be used to seed a PRNG. Defaults to blocking like the underlying syscall. 917 bool GetRandom(void *buffer, uptr length, bool blocking = true); 918 919 } // namespace __sanitizer 920 921 inline void *operator new(__sanitizer::operator_new_size_type size, 922 __sanitizer::LowLevelAllocator &alloc) { 923 return alloc.Allocate(size); 924 } 925 926 #endif // SANITIZER_COMMON_H 927