1*627f7eb2Smrg /* Quad-precision floating point sine on <-pi/4,pi/4>.
2*627f7eb2Smrg Copyright (C) 1999-2018 Free Software Foundation, Inc.
3*627f7eb2Smrg This file is part of the GNU C Library.
4*627f7eb2Smrg Contributed by Jakub Jelinek <jj@ultra.linux.cz>
5*627f7eb2Smrg
6*627f7eb2Smrg The GNU C Library is free software; you can redistribute it and/or
7*627f7eb2Smrg modify it under the terms of the GNU Lesser General Public
8*627f7eb2Smrg License as published by the Free Software Foundation; either
9*627f7eb2Smrg version 2.1 of the License, or (at your option) any later version.
10*627f7eb2Smrg
11*627f7eb2Smrg The GNU C Library is distributed in the hope that it will be useful,
12*627f7eb2Smrg but WITHOUT ANY WARRANTY; without even the implied warranty of
13*627f7eb2Smrg MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14*627f7eb2Smrg Lesser General Public License for more details.
15*627f7eb2Smrg
16*627f7eb2Smrg You should have received a copy of the GNU Lesser General Public
17*627f7eb2Smrg License along with the GNU C Library; if not, see
18*627f7eb2Smrg <http://www.gnu.org/licenses/>. */
19*627f7eb2Smrg
20*627f7eb2Smrg #include "quadmath-imp.h"
21*627f7eb2Smrg
22*627f7eb2Smrg static const __float128 c[] = {
23*627f7eb2Smrg #define ONE c[0]
24*627f7eb2Smrg 1.00000000000000000000000000000000000E+00Q, /* 3fff0000000000000000000000000000 */
25*627f7eb2Smrg
26*627f7eb2Smrg /* cos x ~ ONE + x^2 ( SCOS1 + SCOS2 * x^2 + ... + SCOS4 * x^6 + SCOS5 * x^8 )
27*627f7eb2Smrg x in <0,1/256> */
28*627f7eb2Smrg #define SCOS1 c[1]
29*627f7eb2Smrg #define SCOS2 c[2]
30*627f7eb2Smrg #define SCOS3 c[3]
31*627f7eb2Smrg #define SCOS4 c[4]
32*627f7eb2Smrg #define SCOS5 c[5]
33*627f7eb2Smrg -5.00000000000000000000000000000000000E-01Q, /* bffe0000000000000000000000000000 */
34*627f7eb2Smrg 4.16666666666666666666666666556146073E-02Q, /* 3ffa5555555555555555555555395023 */
35*627f7eb2Smrg -1.38888888888888888888309442601939728E-03Q, /* bff56c16c16c16c16c16a566e42c0375 */
36*627f7eb2Smrg 2.48015873015862382987049502531095061E-05Q, /* 3fefa01a01a019ee02dcf7da2d6d5444 */
37*627f7eb2Smrg -2.75573112601362126593516899592158083E-07Q, /* bfe927e4f5dce637cb0b54908754bde0 */
38*627f7eb2Smrg
39*627f7eb2Smrg /* sin x ~ ONE * x + x^3 ( SIN1 + SIN2 * x^2 + ... + SIN7 * x^12 + SIN8 * x^14 )
40*627f7eb2Smrg x in <0,0.1484375> */
41*627f7eb2Smrg #define SIN1 c[6]
42*627f7eb2Smrg #define SIN2 c[7]
43*627f7eb2Smrg #define SIN3 c[8]
44*627f7eb2Smrg #define SIN4 c[9]
45*627f7eb2Smrg #define SIN5 c[10]
46*627f7eb2Smrg #define SIN6 c[11]
47*627f7eb2Smrg #define SIN7 c[12]
48*627f7eb2Smrg #define SIN8 c[13]
49*627f7eb2Smrg -1.66666666666666666666666666666666538e-01Q, /* bffc5555555555555555555555555550 */
50*627f7eb2Smrg 8.33333333333333333333333333307532934e-03Q, /* 3ff811111111111111111111110e7340 */
51*627f7eb2Smrg -1.98412698412698412698412534478712057e-04Q, /* bff2a01a01a01a01a01a019e7a626296 */
52*627f7eb2Smrg 2.75573192239858906520896496653095890e-06Q, /* 3fec71de3a556c7338fa38527474b8f5 */
53*627f7eb2Smrg -2.50521083854417116999224301266655662e-08Q, /* bfe5ae64567f544e16c7de65c2ea551f */
54*627f7eb2Smrg 1.60590438367608957516841576404938118e-10Q, /* 3fde6124613a811480538a9a41957115 */
55*627f7eb2Smrg -7.64716343504264506714019494041582610e-13Q, /* bfd6ae7f3d5aef30c7bc660b060ef365 */
56*627f7eb2Smrg 2.81068754939739570236322404393398135e-15Q, /* 3fce9510115aabf87aceb2022a9a9180 */
57*627f7eb2Smrg
58*627f7eb2Smrg /* sin x ~ ONE * x + x^3 ( SSIN1 + SSIN2 * x^2 + ... + SSIN4 * x^6 + SSIN5 * x^8 )
59*627f7eb2Smrg x in <0,1/256> */
60*627f7eb2Smrg #define SSIN1 c[14]
61*627f7eb2Smrg #define SSIN2 c[15]
62*627f7eb2Smrg #define SSIN3 c[16]
63*627f7eb2Smrg #define SSIN4 c[17]
64*627f7eb2Smrg #define SSIN5 c[18]
65*627f7eb2Smrg -1.66666666666666666666666666666666659E-01Q, /* bffc5555555555555555555555555555 */
66*627f7eb2Smrg 8.33333333333333333333333333146298442E-03Q, /* 3ff81111111111111111111110fe195d */
67*627f7eb2Smrg -1.98412698412698412697726277416810661E-04Q, /* bff2a01a01a01a01a019e7121e080d88 */
68*627f7eb2Smrg 2.75573192239848624174178393552189149E-06Q, /* 3fec71de3a556c640c6aaa51aa02ab41 */
69*627f7eb2Smrg -2.50521016467996193495359189395805639E-08Q, /* bfe5ae644ee90c47dc71839de75b2787 */
70*627f7eb2Smrg };
71*627f7eb2Smrg
72*627f7eb2Smrg #define SINCOSL_COS_HI 0
73*627f7eb2Smrg #define SINCOSL_COS_LO 1
74*627f7eb2Smrg #define SINCOSL_SIN_HI 2
75*627f7eb2Smrg #define SINCOSL_SIN_LO 3
76*627f7eb2Smrg extern const __float128 __sincosq_table[];
77*627f7eb2Smrg
78*627f7eb2Smrg __float128
__quadmath_kernel_sinq(__float128 x,__float128 y,int iy)79*627f7eb2Smrg __quadmath_kernel_sinq(__float128 x, __float128 y, int iy)
80*627f7eb2Smrg {
81*627f7eb2Smrg __float128 h, l, z, sin_l, cos_l_m1;
82*627f7eb2Smrg int64_t ix;
83*627f7eb2Smrg uint32_t tix, hix, index;
84*627f7eb2Smrg GET_FLT128_MSW64 (ix, x);
85*627f7eb2Smrg tix = ((uint64_t)ix) >> 32;
86*627f7eb2Smrg tix &= ~0x80000000; /* tix = |x|'s high 32 bits */
87*627f7eb2Smrg if (tix < 0x3ffc3000) /* |x| < 0.1484375 */
88*627f7eb2Smrg {
89*627f7eb2Smrg /* Argument is small enough to approximate it by a Chebyshev
90*627f7eb2Smrg polynomial of degree 17. */
91*627f7eb2Smrg if (tix < 0x3fc60000) /* |x| < 2^-57 */
92*627f7eb2Smrg {
93*627f7eb2Smrg math_check_force_underflow (x);
94*627f7eb2Smrg if (!((int)x)) return x; /* generate inexact */
95*627f7eb2Smrg }
96*627f7eb2Smrg z = x * x;
97*627f7eb2Smrg return x + (x * (z*(SIN1+z*(SIN2+z*(SIN3+z*(SIN4+
98*627f7eb2Smrg z*(SIN5+z*(SIN6+z*(SIN7+z*SIN8)))))))));
99*627f7eb2Smrg }
100*627f7eb2Smrg else
101*627f7eb2Smrg {
102*627f7eb2Smrg /* So that we don't have to use too large polynomial, we find
103*627f7eb2Smrg l and h such that x = l + h, where fabsq(l) <= 1.0/256 with 83
104*627f7eb2Smrg possible values for h. We look up cosq(h) and sinq(h) in
105*627f7eb2Smrg pre-computed tables, compute cosq(l) and sinq(l) using a
106*627f7eb2Smrg Chebyshev polynomial of degree 10(11) and compute
107*627f7eb2Smrg sinq(h+l) = sinq(h)cosq(l) + cosq(h)sinq(l). */
108*627f7eb2Smrg index = 0x3ffe - (tix >> 16);
109*627f7eb2Smrg hix = (tix + (0x200 << index)) & (0xfffffc00 << index);
110*627f7eb2Smrg x = fabsq (x);
111*627f7eb2Smrg switch (index)
112*627f7eb2Smrg {
113*627f7eb2Smrg case 0: index = ((45 << 10) + hix - 0x3ffe0000) >> 8; break;
114*627f7eb2Smrg case 1: index = ((13 << 11) + hix - 0x3ffd0000) >> 9; break;
115*627f7eb2Smrg default:
116*627f7eb2Smrg case 2: index = (hix - 0x3ffc3000) >> 10; break;
117*627f7eb2Smrg }
118*627f7eb2Smrg
119*627f7eb2Smrg SET_FLT128_WORDS64(h, ((uint64_t)hix) << 32, 0);
120*627f7eb2Smrg if (iy)
121*627f7eb2Smrg l = (ix < 0 ? -y : y) - (h - x);
122*627f7eb2Smrg else
123*627f7eb2Smrg l = x - h;
124*627f7eb2Smrg z = l * l;
125*627f7eb2Smrg sin_l = l*(ONE+z*(SSIN1+z*(SSIN2+z*(SSIN3+z*(SSIN4+z*SSIN5)))));
126*627f7eb2Smrg cos_l_m1 = z*(SCOS1+z*(SCOS2+z*(SCOS3+z*(SCOS4+z*SCOS5))));
127*627f7eb2Smrg z = __sincosq_table [index + SINCOSL_SIN_HI]
128*627f7eb2Smrg + (__sincosq_table [index + SINCOSL_SIN_LO]
129*627f7eb2Smrg + (__sincosq_table [index + SINCOSL_SIN_HI] * cos_l_m1)
130*627f7eb2Smrg + (__sincosq_table [index + SINCOSL_COS_HI] * sin_l));
131*627f7eb2Smrg return (ix < 0) ? -z : z;
132*627f7eb2Smrg }
133*627f7eb2Smrg }
134