1*627f7eb2Smrg /* log10l.c
2*627f7eb2Smrg *
3*627f7eb2Smrg * Common logarithm, 128-bit long double precision
4*627f7eb2Smrg *
5*627f7eb2Smrg *
6*627f7eb2Smrg *
7*627f7eb2Smrg * SYNOPSIS:
8*627f7eb2Smrg *
9*627f7eb2Smrg * long double x, y, log10l();
10*627f7eb2Smrg *
11*627f7eb2Smrg * y = log10l( x );
12*627f7eb2Smrg *
13*627f7eb2Smrg *
14*627f7eb2Smrg *
15*627f7eb2Smrg * DESCRIPTION:
16*627f7eb2Smrg *
17*627f7eb2Smrg * Returns the base 10 logarithm of x.
18*627f7eb2Smrg *
19*627f7eb2Smrg * The argument is separated into its exponent and fractional
20*627f7eb2Smrg * parts. If the exponent is between -1 and +1, the logarithm
21*627f7eb2Smrg * of the fraction is approximated by
22*627f7eb2Smrg *
23*627f7eb2Smrg * log(1+x) = x - 0.5 x^2 + x^3 P(x)/Q(x).
24*627f7eb2Smrg *
25*627f7eb2Smrg * Otherwise, setting z = 2(x-1)/x+1),
26*627f7eb2Smrg *
27*627f7eb2Smrg * log(x) = z + z^3 P(z)/Q(z).
28*627f7eb2Smrg *
29*627f7eb2Smrg *
30*627f7eb2Smrg *
31*627f7eb2Smrg * ACCURACY:
32*627f7eb2Smrg *
33*627f7eb2Smrg * Relative error:
34*627f7eb2Smrg * arithmetic domain # trials peak rms
35*627f7eb2Smrg * IEEE 0.5, 2.0 30000 2.3e-34 4.9e-35
36*627f7eb2Smrg * IEEE exp(+-10000) 30000 1.0e-34 4.1e-35
37*627f7eb2Smrg *
38*627f7eb2Smrg * In the tests over the interval exp(+-10000), the logarithms
39*627f7eb2Smrg * of the random arguments were uniformly distributed over
40*627f7eb2Smrg * [-10000, +10000].
41*627f7eb2Smrg *
42*627f7eb2Smrg */
43*627f7eb2Smrg
44*627f7eb2Smrg /*
45*627f7eb2Smrg Cephes Math Library Release 2.2: January, 1991
46*627f7eb2Smrg Copyright 1984, 1991 by Stephen L. Moshier
47*627f7eb2Smrg Adapted for glibc November, 2001
48*627f7eb2Smrg
49*627f7eb2Smrg This library is free software; you can redistribute it and/or
50*627f7eb2Smrg modify it under the terms of the GNU Lesser General Public
51*627f7eb2Smrg License as published by the Free Software Foundation; either
52*627f7eb2Smrg version 2.1 of the License, or (at your option) any later version.
53*627f7eb2Smrg
54*627f7eb2Smrg This library is distributed in the hope that it will be useful,
55*627f7eb2Smrg but WITHOUT ANY WARRANTY; without even the implied warranty of
56*627f7eb2Smrg MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
57*627f7eb2Smrg Lesser General Public License for more details.
58*627f7eb2Smrg
59*627f7eb2Smrg You should have received a copy of the GNU Lesser General Public
60*627f7eb2Smrg License along with this library; if not, see <http://www.gnu.org/licenses/>.
61*627f7eb2Smrg */
62*627f7eb2Smrg
63*627f7eb2Smrg #include "quadmath-imp.h"
64*627f7eb2Smrg
65*627f7eb2Smrg /* Coefficients for ln(1+x) = x - x**2/2 + x**3 P(x)/Q(x)
66*627f7eb2Smrg * 1/sqrt(2) <= x < sqrt(2)
67*627f7eb2Smrg * Theoretical peak relative error = 5.3e-37,
68*627f7eb2Smrg * relative peak error spread = 2.3e-14
69*627f7eb2Smrg */
70*627f7eb2Smrg static const __float128 P[13] =
71*627f7eb2Smrg {
72*627f7eb2Smrg 1.313572404063446165910279910527789794488E4Q,
73*627f7eb2Smrg 7.771154681358524243729929227226708890930E4Q,
74*627f7eb2Smrg 2.014652742082537582487669938141683759923E5Q,
75*627f7eb2Smrg 3.007007295140399532324943111654767187848E5Q,
76*627f7eb2Smrg 2.854829159639697837788887080758954924001E5Q,
77*627f7eb2Smrg 1.797628303815655343403735250238293741397E5Q,
78*627f7eb2Smrg 7.594356839258970405033155585486712125861E4Q,
79*627f7eb2Smrg 2.128857716871515081352991964243375186031E4Q,
80*627f7eb2Smrg 3.824952356185897735160588078446136783779E3Q,
81*627f7eb2Smrg 4.114517881637811823002128927449878962058E2Q,
82*627f7eb2Smrg 2.321125933898420063925789532045674660756E1Q,
83*627f7eb2Smrg 4.998469661968096229986658302195402690910E-1Q,
84*627f7eb2Smrg 1.538612243596254322971797716843006400388E-6Q
85*627f7eb2Smrg };
86*627f7eb2Smrg static const __float128 Q[12] =
87*627f7eb2Smrg {
88*627f7eb2Smrg 3.940717212190338497730839731583397586124E4Q,
89*627f7eb2Smrg 2.626900195321832660448791748036714883242E5Q,
90*627f7eb2Smrg 7.777690340007566932935753241556479363645E5Q,
91*627f7eb2Smrg 1.347518538384329112529391120390701166528E6Q,
92*627f7eb2Smrg 1.514882452993549494932585972882995548426E6Q,
93*627f7eb2Smrg 1.158019977462989115839826904108208787040E6Q,
94*627f7eb2Smrg 6.132189329546557743179177159925690841200E5Q,
95*627f7eb2Smrg 2.248234257620569139969141618556349415120E5Q,
96*627f7eb2Smrg 5.605842085972455027590989944010492125825E4Q,
97*627f7eb2Smrg 9.147150349299596453976674231612674085381E3Q,
98*627f7eb2Smrg 9.104928120962988414618126155557301584078E2Q,
99*627f7eb2Smrg 4.839208193348159620282142911143429644326E1Q
100*627f7eb2Smrg /* 1.000000000000000000000000000000000000000E0L, */
101*627f7eb2Smrg };
102*627f7eb2Smrg
103*627f7eb2Smrg /* Coefficients for log(x) = z + z^3 P(z^2)/Q(z^2),
104*627f7eb2Smrg * where z = 2(x-1)/(x+1)
105*627f7eb2Smrg * 1/sqrt(2) <= x < sqrt(2)
106*627f7eb2Smrg * Theoretical peak relative error = 1.1e-35,
107*627f7eb2Smrg * relative peak error spread 1.1e-9
108*627f7eb2Smrg */
109*627f7eb2Smrg static const __float128 R[6] =
110*627f7eb2Smrg {
111*627f7eb2Smrg 1.418134209872192732479751274970992665513E5Q,
112*627f7eb2Smrg -8.977257995689735303686582344659576526998E4Q,
113*627f7eb2Smrg 2.048819892795278657810231591630928516206E4Q,
114*627f7eb2Smrg -2.024301798136027039250415126250455056397E3Q,
115*627f7eb2Smrg 8.057002716646055371965756206836056074715E1Q,
116*627f7eb2Smrg -8.828896441624934385266096344596648080902E-1Q
117*627f7eb2Smrg };
118*627f7eb2Smrg static const __float128 S[6] =
119*627f7eb2Smrg {
120*627f7eb2Smrg 1.701761051846631278975701529965589676574E6Q,
121*627f7eb2Smrg -1.332535117259762928288745111081235577029E6Q,
122*627f7eb2Smrg 4.001557694070773974936904547424676279307E5Q,
123*627f7eb2Smrg -5.748542087379434595104154610899551484314E4Q,
124*627f7eb2Smrg 3.998526750980007367835804959888064681098E3Q,
125*627f7eb2Smrg -1.186359407982897997337150403816839480438E2Q
126*627f7eb2Smrg /* 1.000000000000000000000000000000000000000E0L, */
127*627f7eb2Smrg };
128*627f7eb2Smrg
129*627f7eb2Smrg static const __float128
130*627f7eb2Smrg /* log10(2) */
131*627f7eb2Smrg L102A = 0.3125Q,
132*627f7eb2Smrg L102B = -1.14700043360188047862611052755069732318101185E-2Q,
133*627f7eb2Smrg /* log10(e) */
134*627f7eb2Smrg L10EA = 0.5Q,
135*627f7eb2Smrg L10EB = -6.570551809674817234887108108339491770560299E-2Q,
136*627f7eb2Smrg /* sqrt(2)/2 */
137*627f7eb2Smrg SQRTH = 7.071067811865475244008443621048490392848359E-1Q;
138*627f7eb2Smrg
139*627f7eb2Smrg
140*627f7eb2Smrg
141*627f7eb2Smrg /* Evaluate P[n] x^n + P[n-1] x^(n-1) + ... + P[0] */
142*627f7eb2Smrg
143*627f7eb2Smrg static __float128
neval(__float128 x,const __float128 * p,int n)144*627f7eb2Smrg neval (__float128 x, const __float128 *p, int n)
145*627f7eb2Smrg {
146*627f7eb2Smrg __float128 y;
147*627f7eb2Smrg
148*627f7eb2Smrg p += n;
149*627f7eb2Smrg y = *p--;
150*627f7eb2Smrg do
151*627f7eb2Smrg {
152*627f7eb2Smrg y = y * x + *p--;
153*627f7eb2Smrg }
154*627f7eb2Smrg while (--n > 0);
155*627f7eb2Smrg return y;
156*627f7eb2Smrg }
157*627f7eb2Smrg
158*627f7eb2Smrg
159*627f7eb2Smrg /* Evaluate x^n+1 + P[n] x^(n) + P[n-1] x^(n-1) + ... + P[0] */
160*627f7eb2Smrg
161*627f7eb2Smrg static __float128
deval(__float128 x,const __float128 * p,int n)162*627f7eb2Smrg deval (__float128 x, const __float128 *p, int n)
163*627f7eb2Smrg {
164*627f7eb2Smrg __float128 y;
165*627f7eb2Smrg
166*627f7eb2Smrg p += n;
167*627f7eb2Smrg y = x + *p--;
168*627f7eb2Smrg do
169*627f7eb2Smrg {
170*627f7eb2Smrg y = y * x + *p--;
171*627f7eb2Smrg }
172*627f7eb2Smrg while (--n > 0);
173*627f7eb2Smrg return y;
174*627f7eb2Smrg }
175*627f7eb2Smrg
176*627f7eb2Smrg
177*627f7eb2Smrg
178*627f7eb2Smrg __float128
log10q(__float128 x)179*627f7eb2Smrg log10q (__float128 x)
180*627f7eb2Smrg {
181*627f7eb2Smrg __float128 z;
182*627f7eb2Smrg __float128 y;
183*627f7eb2Smrg int e;
184*627f7eb2Smrg int64_t hx, lx;
185*627f7eb2Smrg
186*627f7eb2Smrg /* Test for domain */
187*627f7eb2Smrg GET_FLT128_WORDS64 (hx, lx, x);
188*627f7eb2Smrg if (((hx & 0x7fffffffffffffffLL) | lx) == 0)
189*627f7eb2Smrg return (-1 / fabsq (x)); /* log10l(+-0)=-inf */
190*627f7eb2Smrg if (hx < 0)
191*627f7eb2Smrg return (x - x) / (x - x);
192*627f7eb2Smrg if (hx >= 0x7fff000000000000LL)
193*627f7eb2Smrg return (x + x);
194*627f7eb2Smrg
195*627f7eb2Smrg if (x == 1)
196*627f7eb2Smrg return 0;
197*627f7eb2Smrg
198*627f7eb2Smrg /* separate mantissa from exponent */
199*627f7eb2Smrg
200*627f7eb2Smrg /* Note, frexp is used so that denormal numbers
201*627f7eb2Smrg * will be handled properly.
202*627f7eb2Smrg */
203*627f7eb2Smrg x = frexpq (x, &e);
204*627f7eb2Smrg
205*627f7eb2Smrg
206*627f7eb2Smrg /* logarithm using log(x) = z + z**3 P(z)/Q(z),
207*627f7eb2Smrg * where z = 2(x-1)/x+1)
208*627f7eb2Smrg */
209*627f7eb2Smrg if ((e > 2) || (e < -2))
210*627f7eb2Smrg {
211*627f7eb2Smrg if (x < SQRTH)
212*627f7eb2Smrg { /* 2( 2x-1 )/( 2x+1 ) */
213*627f7eb2Smrg e -= 1;
214*627f7eb2Smrg z = x - 0.5Q;
215*627f7eb2Smrg y = 0.5Q * z + 0.5Q;
216*627f7eb2Smrg }
217*627f7eb2Smrg else
218*627f7eb2Smrg { /* 2 (x-1)/(x+1) */
219*627f7eb2Smrg z = x - 0.5Q;
220*627f7eb2Smrg z -= 0.5Q;
221*627f7eb2Smrg y = 0.5Q * x + 0.5Q;
222*627f7eb2Smrg }
223*627f7eb2Smrg x = z / y;
224*627f7eb2Smrg z = x * x;
225*627f7eb2Smrg y = x * (z * neval (z, R, 5) / deval (z, S, 5));
226*627f7eb2Smrg goto done;
227*627f7eb2Smrg }
228*627f7eb2Smrg
229*627f7eb2Smrg
230*627f7eb2Smrg /* logarithm using log(1+x) = x - .5x**2 + x**3 P(x)/Q(x) */
231*627f7eb2Smrg
232*627f7eb2Smrg if (x < SQRTH)
233*627f7eb2Smrg {
234*627f7eb2Smrg e -= 1;
235*627f7eb2Smrg x = 2.0 * x - 1; /* 2x - 1 */
236*627f7eb2Smrg }
237*627f7eb2Smrg else
238*627f7eb2Smrg {
239*627f7eb2Smrg x = x - 1;
240*627f7eb2Smrg }
241*627f7eb2Smrg z = x * x;
242*627f7eb2Smrg y = x * (z * neval (x, P, 12) / deval (x, Q, 11));
243*627f7eb2Smrg y = y - 0.5 * z;
244*627f7eb2Smrg
245*627f7eb2Smrg done:
246*627f7eb2Smrg
247*627f7eb2Smrg /* Multiply log of fraction by log10(e)
248*627f7eb2Smrg * and base 2 exponent by log10(2).
249*627f7eb2Smrg */
250*627f7eb2Smrg z = y * L10EB;
251*627f7eb2Smrg z += x * L10EB;
252*627f7eb2Smrg z += e * L102B;
253*627f7eb2Smrg z += y * L10EA;
254*627f7eb2Smrg z += x * L10EA;
255*627f7eb2Smrg z += e * L102A;
256*627f7eb2Smrg return (z);
257*627f7eb2Smrg }
258