xref: /netbsd-src/external/gpl3/gcc.old/dist/libquadmath/math/j0q.c (revision 627f7eb200a4419d89b531d55fccd2ee3ffdcde0)
1*627f7eb2Smrg /*							j0l.c
2*627f7eb2Smrg  *
3*627f7eb2Smrg  *	Bessel function of order zero
4*627f7eb2Smrg  *
5*627f7eb2Smrg  *
6*627f7eb2Smrg  *
7*627f7eb2Smrg  * SYNOPSIS:
8*627f7eb2Smrg  *
9*627f7eb2Smrg  * long double x, y, j0l();
10*627f7eb2Smrg  *
11*627f7eb2Smrg  * y = j0l( x );
12*627f7eb2Smrg  *
13*627f7eb2Smrg  *
14*627f7eb2Smrg  *
15*627f7eb2Smrg  * DESCRIPTION:
16*627f7eb2Smrg  *
17*627f7eb2Smrg  * Returns Bessel function of first kind, order zero of the argument.
18*627f7eb2Smrg  *
19*627f7eb2Smrg  * The domain is divided into two major intervals [0, 2] and
20*627f7eb2Smrg  * (2, infinity). In the first interval the rational approximation
21*627f7eb2Smrg  * is J0(x) = 1 - x^2 / 4 + x^4 R(x^2)
22*627f7eb2Smrg  * The second interval is further partitioned into eight equal segments
23*627f7eb2Smrg  * of 1/x.
24*627f7eb2Smrg  *
25*627f7eb2Smrg  * J0(x) = sqrt(2/(pi x)) (P0(x) cos(X) - Q0(x) sin(X)),
26*627f7eb2Smrg  * X = x - pi/4,
27*627f7eb2Smrg  *
28*627f7eb2Smrg  * and the auxiliary functions are given by
29*627f7eb2Smrg  *
30*627f7eb2Smrg  * J0(x)cos(X) + Y0(x)sin(X) = sqrt( 2/(pi x)) P0(x),
31*627f7eb2Smrg  * P0(x) = 1 + 1/x^2 R(1/x^2)
32*627f7eb2Smrg  *
33*627f7eb2Smrg  * Y0(x)cos(X) - J0(x)sin(X) = sqrt( 2/(pi x)) Q0(x),
34*627f7eb2Smrg  * Q0(x) = 1/x (-.125 + 1/x^2 R(1/x^2))
35*627f7eb2Smrg  *
36*627f7eb2Smrg  *
37*627f7eb2Smrg  *
38*627f7eb2Smrg  * ACCURACY:
39*627f7eb2Smrg  *
40*627f7eb2Smrg  *                      Absolute error:
41*627f7eb2Smrg  * arithmetic   domain      # trials      peak         rms
42*627f7eb2Smrg  *    IEEE      0, 30       100000      1.7e-34      2.4e-35
43*627f7eb2Smrg  *
44*627f7eb2Smrg  *
45*627f7eb2Smrg  */
46*627f7eb2Smrg 
47*627f7eb2Smrg /*							y0l.c
48*627f7eb2Smrg  *
49*627f7eb2Smrg  *	Bessel function of the second kind, order zero
50*627f7eb2Smrg  *
51*627f7eb2Smrg  *
52*627f7eb2Smrg  *
53*627f7eb2Smrg  * SYNOPSIS:
54*627f7eb2Smrg  *
55*627f7eb2Smrg  * double x, y, y0l();
56*627f7eb2Smrg  *
57*627f7eb2Smrg  * y = y0l( x );
58*627f7eb2Smrg  *
59*627f7eb2Smrg  *
60*627f7eb2Smrg  *
61*627f7eb2Smrg  * DESCRIPTION:
62*627f7eb2Smrg  *
63*627f7eb2Smrg  * Returns Bessel function of the second kind, of order
64*627f7eb2Smrg  * zero, of the argument.
65*627f7eb2Smrg  *
66*627f7eb2Smrg  * The approximation is the same as for J0(x), and
67*627f7eb2Smrg  * Y0(x) = sqrt(2/(pi x)) (P0(x) sin(X) + Q0(x) cos(X)).
68*627f7eb2Smrg  *
69*627f7eb2Smrg  * ACCURACY:
70*627f7eb2Smrg  *
71*627f7eb2Smrg  *  Absolute error, when y0(x) < 1; else relative error:
72*627f7eb2Smrg  *
73*627f7eb2Smrg  * arithmetic   domain     # trials      peak         rms
74*627f7eb2Smrg  *    IEEE      0, 30       100000      3.0e-34     2.7e-35
75*627f7eb2Smrg  *
76*627f7eb2Smrg  */
77*627f7eb2Smrg 
78*627f7eb2Smrg /* Copyright 2001 by Stephen L. Moshier (moshier@na-net.ornl.gov).
79*627f7eb2Smrg 
80*627f7eb2Smrg     This library is free software; you can redistribute it and/or
81*627f7eb2Smrg     modify it under the terms of the GNU Lesser General Public
82*627f7eb2Smrg     License as published by the Free Software Foundation; either
83*627f7eb2Smrg     version 2.1 of the License, or (at your option) any later version.
84*627f7eb2Smrg 
85*627f7eb2Smrg     This library is distributed in the hope that it will be useful,
86*627f7eb2Smrg     but WITHOUT ANY WARRANTY; without even the implied warranty of
87*627f7eb2Smrg     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
88*627f7eb2Smrg     Lesser General Public License for more details.
89*627f7eb2Smrg 
90*627f7eb2Smrg     You should have received a copy of the GNU Lesser General Public
91*627f7eb2Smrg     License along with this library; if not, see
92*627f7eb2Smrg     <http://www.gnu.org/licenses/>.  */
93*627f7eb2Smrg 
94*627f7eb2Smrg #include "quadmath-imp.h"
95*627f7eb2Smrg 
96*627f7eb2Smrg /* 1 / sqrt(pi) */
97*627f7eb2Smrg static const __float128 ONEOSQPI = 5.6418958354775628694807945156077258584405E-1Q;
98*627f7eb2Smrg /* 2 / pi */
99*627f7eb2Smrg static const __float128 TWOOPI = 6.3661977236758134307553505349005744813784E-1Q;
100*627f7eb2Smrg static const __float128 zero = 0;
101*627f7eb2Smrg 
102*627f7eb2Smrg /* J0(x) = 1 - x^2/4 + x^2 x^2 R(x^2)
103*627f7eb2Smrg    Peak relative error 3.4e-37
104*627f7eb2Smrg    0 <= x <= 2  */
105*627f7eb2Smrg #define NJ0_2N 6
106*627f7eb2Smrg static const __float128 J0_2N[NJ0_2N + 1] = {
107*627f7eb2Smrg   3.133239376997663645548490085151484674892E16Q,
108*627f7eb2Smrg  -5.479944965767990821079467311839107722107E14Q,
109*627f7eb2Smrg   6.290828903904724265980249871997551894090E12Q,
110*627f7eb2Smrg  -3.633750176832769659849028554429106299915E10Q,
111*627f7eb2Smrg   1.207743757532429576399485415069244807022E8Q,
112*627f7eb2Smrg  -2.107485999925074577174305650549367415465E5Q,
113*627f7eb2Smrg   1.562826808020631846245296572935547005859E2Q,
114*627f7eb2Smrg };
115*627f7eb2Smrg #define NJ0_2D 6
116*627f7eb2Smrg static const __float128 J0_2D[NJ0_2D + 1] = {
117*627f7eb2Smrg   2.005273201278504733151033654496928968261E18Q,
118*627f7eb2Smrg   2.063038558793221244373123294054149790864E16Q,
119*627f7eb2Smrg   1.053350447931127971406896594022010524994E14Q,
120*627f7eb2Smrg   3.496556557558702583143527876385508882310E11Q,
121*627f7eb2Smrg   8.249114511878616075860654484367133976306E8Q,
122*627f7eb2Smrg   1.402965782449571800199759247964242790589E6Q,
123*627f7eb2Smrg   1.619910762853439600957801751815074787351E3Q,
124*627f7eb2Smrg  /* 1.000000000000000000000000000000000000000E0 */
125*627f7eb2Smrg };
126*627f7eb2Smrg 
127*627f7eb2Smrg /* J0(x)cosX + Y0(x)sinX = sqrt( 2/(pi x)) P0(x), P0(x) = 1 + 1/x^2 R(1/x^2),
128*627f7eb2Smrg    0 <= 1/x <= .0625
129*627f7eb2Smrg    Peak relative error 3.3e-36  */
130*627f7eb2Smrg #define NP16_IN 9
131*627f7eb2Smrg static const __float128 P16_IN[NP16_IN + 1] = {
132*627f7eb2Smrg   -1.901689868258117463979611259731176301065E-16Q,
133*627f7eb2Smrg   -1.798743043824071514483008340803573980931E-13Q,
134*627f7eb2Smrg   -6.481746687115262291873324132944647438959E-11Q,
135*627f7eb2Smrg   -1.150651553745409037257197798528294248012E-8Q,
136*627f7eb2Smrg   -1.088408467297401082271185599507222695995E-6Q,
137*627f7eb2Smrg   -5.551996725183495852661022587879817546508E-5Q,
138*627f7eb2Smrg   -1.477286941214245433866838787454880214736E-3Q,
139*627f7eb2Smrg   -1.882877976157714592017345347609200402472E-2Q,
140*627f7eb2Smrg   -9.620983176855405325086530374317855880515E-2Q,
141*627f7eb2Smrg   -1.271468546258855781530458854476627766233E-1Q,
142*627f7eb2Smrg };
143*627f7eb2Smrg #define NP16_ID 9
144*627f7eb2Smrg static const __float128 P16_ID[NP16_ID + 1] = {
145*627f7eb2Smrg   2.704625590411544837659891569420764475007E-15Q,
146*627f7eb2Smrg   2.562526347676857624104306349421985403573E-12Q,
147*627f7eb2Smrg   9.259137589952741054108665570122085036246E-10Q,
148*627f7eb2Smrg   1.651044705794378365237454962653430805272E-7Q,
149*627f7eb2Smrg   1.573561544138733044977714063100859136660E-5Q,
150*627f7eb2Smrg   8.134482112334882274688298469629884804056E-4Q,
151*627f7eb2Smrg   2.219259239404080863919375103673593571689E-2Q,
152*627f7eb2Smrg   2.976990606226596289580242451096393862792E-1Q,
153*627f7eb2Smrg   1.713895630454693931742734911930937246254E0Q,
154*627f7eb2Smrg   3.231552290717904041465898249160757368855E0Q,
155*627f7eb2Smrg   /* 1.000000000000000000000000000000000000000E0 */
156*627f7eb2Smrg };
157*627f7eb2Smrg 
158*627f7eb2Smrg /* J0(x)cosX + Y0(x)sinX = sqrt( 2/(pi x)) P0(x), P0(x) = 1 + 1/x^2 R(1/x^2)
159*627f7eb2Smrg     0.0625 <= 1/x <= 0.125
160*627f7eb2Smrg     Peak relative error 2.4e-35  */
161*627f7eb2Smrg #define NP8_16N 10
162*627f7eb2Smrg static const __float128 P8_16N[NP8_16N + 1] = {
163*627f7eb2Smrg   -2.335166846111159458466553806683579003632E-15Q,
164*627f7eb2Smrg   -1.382763674252402720401020004169367089975E-12Q,
165*627f7eb2Smrg   -3.192160804534716696058987967592784857907E-10Q,
166*627f7eb2Smrg   -3.744199606283752333686144670572632116899E-8Q,
167*627f7eb2Smrg   -2.439161236879511162078619292571922772224E-6Q,
168*627f7eb2Smrg   -9.068436986859420951664151060267045346549E-5Q,
169*627f7eb2Smrg   -1.905407090637058116299757292660002697359E-3Q,
170*627f7eb2Smrg   -2.164456143936718388053842376884252978872E-2Q,
171*627f7eb2Smrg   -1.212178415116411222341491717748696499966E-1Q,
172*627f7eb2Smrg   -2.782433626588541494473277445959593334494E-1Q,
173*627f7eb2Smrg   -1.670703190068873186016102289227646035035E-1Q,
174*627f7eb2Smrg };
175*627f7eb2Smrg #define NP8_16D 10
176*627f7eb2Smrg static const __float128 P8_16D[NP8_16D + 1] = {
177*627f7eb2Smrg   3.321126181135871232648331450082662856743E-14Q,
178*627f7eb2Smrg   1.971894594837650840586859228510007703641E-11Q,
179*627f7eb2Smrg   4.571144364787008285981633719513897281690E-9Q,
180*627f7eb2Smrg   5.396419143536287457142904742849052402103E-7Q,
181*627f7eb2Smrg   3.551548222385845912370226756036899901549E-5Q,
182*627f7eb2Smrg   1.342353874566932014705609788054598013516E-3Q,
183*627f7eb2Smrg   2.899133293006771317589357444614157734385E-2Q,
184*627f7eb2Smrg   3.455374978185770197704507681491574261545E-1Q,
185*627f7eb2Smrg   2.116616964297512311314454834712634820514E0Q,
186*627f7eb2Smrg   5.850768316827915470087758636881584174432E0Q,
187*627f7eb2Smrg   5.655273858938766830855753983631132928968E0Q,
188*627f7eb2Smrg   /* 1.000000000000000000000000000000000000000E0 */
189*627f7eb2Smrg };
190*627f7eb2Smrg 
191*627f7eb2Smrg /* J0(x)cosX + Y0(x)sinX = sqrt( 2/(pi x)) P0(x), P0(x) = 1 + 1/x^2 R(1/x^2)
192*627f7eb2Smrg   0.125 <= 1/x <= 0.1875
193*627f7eb2Smrg   Peak relative error 2.7e-35  */
194*627f7eb2Smrg #define NP5_8N 10
195*627f7eb2Smrg static const __float128 P5_8N[NP5_8N + 1] = {
196*627f7eb2Smrg   -1.270478335089770355749591358934012019596E-12Q,
197*627f7eb2Smrg   -4.007588712145412921057254992155810347245E-10Q,
198*627f7eb2Smrg   -4.815187822989597568124520080486652009281E-8Q,
199*627f7eb2Smrg   -2.867070063972764880024598300408284868021E-6Q,
200*627f7eb2Smrg   -9.218742195161302204046454768106063638006E-5Q,
201*627f7eb2Smrg   -1.635746821447052827526320629828043529997E-3Q,
202*627f7eb2Smrg   -1.570376886640308408247709616497261011707E-2Q,
203*627f7eb2Smrg   -7.656484795303305596941813361786219477807E-2Q,
204*627f7eb2Smrg   -1.659371030767513274944805479908858628053E-1Q,
205*627f7eb2Smrg   -1.185340550030955660015841796219919804915E-1Q,
206*627f7eb2Smrg   -8.920026499909994671248893388013790366712E-3Q,
207*627f7eb2Smrg };
208*627f7eb2Smrg #define NP5_8D 9
209*627f7eb2Smrg static const __float128 P5_8D[NP5_8D + 1] = {
210*627f7eb2Smrg   1.806902521016705225778045904631543990314E-11Q,
211*627f7eb2Smrg   5.728502760243502431663549179135868966031E-9Q,
212*627f7eb2Smrg   6.938168504826004255287618819550667978450E-7Q,
213*627f7eb2Smrg   4.183769964807453250763325026573037785902E-5Q,
214*627f7eb2Smrg   1.372660678476925468014882230851637878587E-3Q,
215*627f7eb2Smrg   2.516452105242920335873286419212708961771E-2Q,
216*627f7eb2Smrg   2.550502712902647803796267951846557316182E-1Q,
217*627f7eb2Smrg   1.365861559418983216913629123778747617072E0Q,
218*627f7eb2Smrg   3.523825618308783966723472468855042541407E0Q,
219*627f7eb2Smrg   3.656365803506136165615111349150536282434E0Q,
220*627f7eb2Smrg   /* 1.000000000000000000000000000000000000000E0 */
221*627f7eb2Smrg };
222*627f7eb2Smrg 
223*627f7eb2Smrg /* J0(x)cosX + Y0(x)sinX = sqrt( 2/(pi x)) P0(x), P0(x) = 1 + 1/x^2 R(1/x^2)
224*627f7eb2Smrg    Peak relative error 3.5e-35
225*627f7eb2Smrg    0.1875 <= 1/x <= 0.25  */
226*627f7eb2Smrg #define NP4_5N 9
227*627f7eb2Smrg static const __float128 P4_5N[NP4_5N + 1] = {
228*627f7eb2Smrg   -9.791405771694098960254468859195175708252E-10Q,
229*627f7eb2Smrg   -1.917193059944531970421626610188102836352E-7Q,
230*627f7eb2Smrg   -1.393597539508855262243816152893982002084E-5Q,
231*627f7eb2Smrg   -4.881863490846771259880606911667479860077E-4Q,
232*627f7eb2Smrg   -8.946571245022470127331892085881699269853E-3Q,
233*627f7eb2Smrg   -8.707474232568097513415336886103899434251E-2Q,
234*627f7eb2Smrg   -4.362042697474650737898551272505525973766E-1Q,
235*627f7eb2Smrg   -1.032712171267523975431451359962375617386E0Q,
236*627f7eb2Smrg   -9.630502683169895107062182070514713702346E-1Q,
237*627f7eb2Smrg   -2.251804386252969656586810309252357233320E-1Q,
238*627f7eb2Smrg };
239*627f7eb2Smrg #define NP4_5D 9
240*627f7eb2Smrg static const __float128 P4_5D[NP4_5D + 1] = {
241*627f7eb2Smrg   1.392555487577717669739688337895791213139E-8Q,
242*627f7eb2Smrg   2.748886559120659027172816051276451376854E-6Q,
243*627f7eb2Smrg   2.024717710644378047477189849678576659290E-4Q,
244*627f7eb2Smrg   7.244868609350416002930624752604670292469E-3Q,
245*627f7eb2Smrg   1.373631762292244371102989739300382152416E-1Q,
246*627f7eb2Smrg   1.412298581400224267910294815260613240668E0Q,
247*627f7eb2Smrg   7.742495637843445079276397723849017617210E0Q,
248*627f7eb2Smrg   2.138429269198406512028307045259503811861E1Q,
249*627f7eb2Smrg   2.651547684548423476506826951831712762610E1Q,
250*627f7eb2Smrg   1.167499382465291931571685222882909166935E1Q,
251*627f7eb2Smrg   /* 1.000000000000000000000000000000000000000E0 */
252*627f7eb2Smrg };
253*627f7eb2Smrg 
254*627f7eb2Smrg /* J0(x)cosX + Y0(x)sinX = sqrt( 2/(pi x)) P0(x), P0(x) = 1 + 1/x^2 R(1/x^2)
255*627f7eb2Smrg    Peak relative error 2.3e-36
256*627f7eb2Smrg    0.25 <= 1/x <= 0.3125  */
257*627f7eb2Smrg #define NP3r2_4N 9
258*627f7eb2Smrg static const __float128 P3r2_4N[NP3r2_4N + 1] = {
259*627f7eb2Smrg   -2.589155123706348361249809342508270121788E-8Q,
260*627f7eb2Smrg   -3.746254369796115441118148490849195516593E-6Q,
261*627f7eb2Smrg   -1.985595497390808544622893738135529701062E-4Q,
262*627f7eb2Smrg   -5.008253705202932091290132760394976551426E-3Q,
263*627f7eb2Smrg   -6.529469780539591572179155511840853077232E-2Q,
264*627f7eb2Smrg   -4.468736064761814602927408833818990271514E-1Q,
265*627f7eb2Smrg   -1.556391252586395038089729428444444823380E0Q,
266*627f7eb2Smrg   -2.533135309840530224072920725976994981638E0Q,
267*627f7eb2Smrg   -1.605509621731068453869408718565392869560E0Q,
268*627f7eb2Smrg   -2.518966692256192789269859830255724429375E-1Q,
269*627f7eb2Smrg };
270*627f7eb2Smrg #define NP3r2_4D 9
271*627f7eb2Smrg static const __float128 P3r2_4D[NP3r2_4D + 1] = {
272*627f7eb2Smrg   3.682353957237979993646169732962573930237E-7Q,
273*627f7eb2Smrg   5.386741661883067824698973455566332102029E-5Q,
274*627f7eb2Smrg   2.906881154171822780345134853794241037053E-3Q,
275*627f7eb2Smrg   7.545832595801289519475806339863492074126E-2Q,
276*627f7eb2Smrg   1.029405357245594877344360389469584526654E0Q,
277*627f7eb2Smrg   7.565706120589873131187989560509757626725E0Q,
278*627f7eb2Smrg   2.951172890699569545357692207898667665796E1Q,
279*627f7eb2Smrg   5.785723537170311456298467310529815457536E1Q,
280*627f7eb2Smrg   5.095621464598267889126015412522773474467E1Q,
281*627f7eb2Smrg   1.602958484169953109437547474953308401442E1Q,
282*627f7eb2Smrg   /* 1.000000000000000000000000000000000000000E0 */
283*627f7eb2Smrg };
284*627f7eb2Smrg 
285*627f7eb2Smrg /* J0(x)cosX + Y0(x)sinX = sqrt( 2/(pi x)) P0(x), P0(x) = 1 + 1/x^2 R(1/x^2)
286*627f7eb2Smrg    Peak relative error 1.0e-35
287*627f7eb2Smrg    0.3125 <= 1/x <= 0.375  */
288*627f7eb2Smrg #define NP2r7_3r2N 9
289*627f7eb2Smrg static const __float128 P2r7_3r2N[NP2r7_3r2N + 1] = {
290*627f7eb2Smrg   -1.917322340814391131073820537027234322550E-7Q,
291*627f7eb2Smrg   -1.966595744473227183846019639723259011906E-5Q,
292*627f7eb2Smrg   -7.177081163619679403212623526632690465290E-4Q,
293*627f7eb2Smrg   -1.206467373860974695661544653741899755695E-2Q,
294*627f7eb2Smrg   -1.008656452188539812154551482286328107316E-1Q,
295*627f7eb2Smrg   -4.216016116408810856620947307438823892707E-1Q,
296*627f7eb2Smrg   -8.378631013025721741744285026537009814161E-1Q,
297*627f7eb2Smrg   -6.973895635309960850033762745957946272579E-1Q,
298*627f7eb2Smrg   -1.797864718878320770670740413285763554812E-1Q,
299*627f7eb2Smrg   -4.098025357743657347681137871388402849581E-3Q,
300*627f7eb2Smrg };
301*627f7eb2Smrg #define NP2r7_3r2D 8
302*627f7eb2Smrg static const __float128 P2r7_3r2D[NP2r7_3r2D + 1] = {
303*627f7eb2Smrg   2.726858489303036441686496086962545034018E-6Q,
304*627f7eb2Smrg   2.840430827557109238386808968234848081424E-4Q,
305*627f7eb2Smrg   1.063826772041781947891481054529454088832E-2Q,
306*627f7eb2Smrg   1.864775537138364773178044431045514405468E-1Q,
307*627f7eb2Smrg   1.665660052857205170440952607701728254211E0Q,
308*627f7eb2Smrg   7.723745889544331153080842168958348568395E0Q,
309*627f7eb2Smrg   1.810726427571829798856428548102077799835E1Q,
310*627f7eb2Smrg   1.986460672157794440666187503833545388527E1Q,
311*627f7eb2Smrg   8.645503204552282306364296517220055815488E0Q,
312*627f7eb2Smrg   /* 1.000000000000000000000000000000000000000E0 */
313*627f7eb2Smrg };
314*627f7eb2Smrg 
315*627f7eb2Smrg /* J0(x)cosX + Y0(x)sinX = sqrt( 2/(pi x)) P0(x), P0(x) = 1 + 1/x^2 R(1/x^2)
316*627f7eb2Smrg    Peak relative error 1.3e-36
317*627f7eb2Smrg    0.3125 <= 1/x <= 0.4375  */
318*627f7eb2Smrg #define NP2r3_2r7N 9
319*627f7eb2Smrg static const __float128 P2r3_2r7N[NP2r3_2r7N + 1] = {
320*627f7eb2Smrg   -1.594642785584856746358609622003310312622E-6Q,
321*627f7eb2Smrg   -1.323238196302221554194031733595194539794E-4Q,
322*627f7eb2Smrg   -3.856087818696874802689922536987100372345E-3Q,
323*627f7eb2Smrg   -5.113241710697777193011470733601522047399E-2Q,
324*627f7eb2Smrg   -3.334229537209911914449990372942022350558E-1Q,
325*627f7eb2Smrg   -1.075703518198127096179198549659283422832E0Q,
326*627f7eb2Smrg   -1.634174803414062725476343124267110981807E0Q,
327*627f7eb2Smrg   -1.030133247434119595616826842367268304880E0Q,
328*627f7eb2Smrg   -1.989811539080358501229347481000707289391E-1Q,
329*627f7eb2Smrg   -3.246859189246653459359775001466924610236E-3Q,
330*627f7eb2Smrg };
331*627f7eb2Smrg #define NP2r3_2r7D 8
332*627f7eb2Smrg static const __float128 P2r3_2r7D[NP2r3_2r7D + 1] = {
333*627f7eb2Smrg   2.267936634217251403663034189684284173018E-5Q,
334*627f7eb2Smrg   1.918112982168673386858072491437971732237E-3Q,
335*627f7eb2Smrg   5.771704085468423159125856786653868219522E-2Q,
336*627f7eb2Smrg   8.056124451167969333717642810661498890507E-1Q,
337*627f7eb2Smrg   5.687897967531010276788680634413789328776E0Q,
338*627f7eb2Smrg   2.072596760717695491085444438270778394421E1Q,
339*627f7eb2Smrg   3.801722099819929988585197088613160496684E1Q,
340*627f7eb2Smrg   3.254620235902912339534998592085115836829E1Q,
341*627f7eb2Smrg   1.104847772130720331801884344645060675036E1Q,
342*627f7eb2Smrg   /* 1.000000000000000000000000000000000000000E0 */
343*627f7eb2Smrg };
344*627f7eb2Smrg 
345*627f7eb2Smrg /* J0(x)cosX + Y0(x)sinX = sqrt( 2/(pi x)) P0(x), P0(x) = 1 + 1/x^2 R(1/x^2)
346*627f7eb2Smrg    Peak relative error 1.2e-35
347*627f7eb2Smrg    0.4375 <= 1/x <= 0.5  */
348*627f7eb2Smrg #define NP2_2r3N 8
349*627f7eb2Smrg static const __float128 P2_2r3N[NP2_2r3N + 1] = {
350*627f7eb2Smrg   -1.001042324337684297465071506097365389123E-4Q,
351*627f7eb2Smrg   -6.289034524673365824853547252689991418981E-3Q,
352*627f7eb2Smrg   -1.346527918018624234373664526930736205806E-1Q,
353*627f7eb2Smrg   -1.268808313614288355444506172560463315102E0Q,
354*627f7eb2Smrg   -5.654126123607146048354132115649177406163E0Q,
355*627f7eb2Smrg   -1.186649511267312652171775803270911971693E1Q,
356*627f7eb2Smrg   -1.094032424931998612551588246779200724257E1Q,
357*627f7eb2Smrg   -3.728792136814520055025256353193674625267E0Q,
358*627f7eb2Smrg   -3.000348318524471807839934764596331810608E-1Q,
359*627f7eb2Smrg };
360*627f7eb2Smrg #define NP2_2r3D 8
361*627f7eb2Smrg static const __float128 P2_2r3D[NP2_2r3D + 1] = {
362*627f7eb2Smrg   1.423705538269770974803901422532055612980E-3Q,
363*627f7eb2Smrg   9.171476630091439978533535167485230575894E-2Q,
364*627f7eb2Smrg   2.049776318166637248868444600215942828537E0Q,
365*627f7eb2Smrg   2.068970329743769804547326701946144899583E1Q,
366*627f7eb2Smrg   1.025103500560831035592731539565060347709E2Q,
367*627f7eb2Smrg   2.528088049697570728252145557167066708284E2Q,
368*627f7eb2Smrg   2.992160327587558573740271294804830114205E2Q,
369*627f7eb2Smrg   1.540193761146551025832707739468679973036E2Q,
370*627f7eb2Smrg   2.779516701986912132637672140709452502650E1Q,
371*627f7eb2Smrg   /* 1.000000000000000000000000000000000000000E0 */
372*627f7eb2Smrg };
373*627f7eb2Smrg 
374*627f7eb2Smrg /* Y0(x)cosX - J0(x)sinX = sqrt( 2/(pi x)) Q0(x),
375*627f7eb2Smrg    Q0(x) = 1/x (-.125 + 1/x^2 R(1/x^2))
376*627f7eb2Smrg    Peak relative error 2.2e-35
377*627f7eb2Smrg    0 <= 1/x <= .0625  */
378*627f7eb2Smrg #define NQ16_IN 10
379*627f7eb2Smrg static const __float128 Q16_IN[NQ16_IN + 1] = {
380*627f7eb2Smrg   2.343640834407975740545326632205999437469E-18Q,
381*627f7eb2Smrg   2.667978112927811452221176781536278257448E-15Q,
382*627f7eb2Smrg   1.178415018484555397390098879501969116536E-12Q,
383*627f7eb2Smrg   2.622049767502719728905924701288614016597E-10Q,
384*627f7eb2Smrg   3.196908059607618864801313380896308968673E-8Q,
385*627f7eb2Smrg   2.179466154171673958770030655199434798494E-6Q,
386*627f7eb2Smrg   8.139959091628545225221976413795645177291E-5Q,
387*627f7eb2Smrg   1.563900725721039825236927137885747138654E-3Q,
388*627f7eb2Smrg   1.355172364265825167113562519307194840307E-2Q,
389*627f7eb2Smrg   3.928058355906967977269780046844768588532E-2Q,
390*627f7eb2Smrg   1.107891967702173292405380993183694932208E-2Q,
391*627f7eb2Smrg };
392*627f7eb2Smrg #define NQ16_ID 9
393*627f7eb2Smrg static const __float128 Q16_ID[NQ16_ID + 1] = {
394*627f7eb2Smrg   3.199850952578356211091219295199301766718E-17Q,
395*627f7eb2Smrg   3.652601488020654842194486058637953363918E-14Q,
396*627f7eb2Smrg   1.620179741394865258354608590461839031281E-11Q,
397*627f7eb2Smrg   3.629359209474609630056463248923684371426E-9Q,
398*627f7eb2Smrg   4.473680923894354600193264347733477363305E-7Q,
399*627f7eb2Smrg   3.106368086644715743265603656011050476736E-5Q,
400*627f7eb2Smrg   1.198239259946770604954664925153424252622E-3Q,
401*627f7eb2Smrg   2.446041004004283102372887804475767568272E-2Q,
402*627f7eb2Smrg   2.403235525011860603014707768815113698768E-1Q,
403*627f7eb2Smrg   9.491006790682158612266270665136910927149E-1Q,
404*627f7eb2Smrg  /* 1.000000000000000000000000000000000000000E0 */
405*627f7eb2Smrg  };
406*627f7eb2Smrg 
407*627f7eb2Smrg /* Y0(x)cosX - J0(x)sinX = sqrt( 2/(pi x)) Q0(x),
408*627f7eb2Smrg    Q0(x) = 1/x (-.125 + 1/x^2 R(1/x^2))
409*627f7eb2Smrg    Peak relative error 5.1e-36
410*627f7eb2Smrg    0.0625 <= 1/x <= 0.125  */
411*627f7eb2Smrg #define NQ8_16N 11
412*627f7eb2Smrg static const __float128 Q8_16N[NQ8_16N + 1] = {
413*627f7eb2Smrg   1.001954266485599464105669390693597125904E-17Q,
414*627f7eb2Smrg   7.545499865295034556206475956620160007849E-15Q,
415*627f7eb2Smrg   2.267838684785673931024792538193202559922E-12Q,
416*627f7eb2Smrg   3.561909705814420373609574999542459912419E-10Q,
417*627f7eb2Smrg   3.216201422768092505214730633842924944671E-8Q,
418*627f7eb2Smrg   1.731194793857907454569364622452058554314E-6Q,
419*627f7eb2Smrg   5.576944613034537050396518509871004586039E-5Q,
420*627f7eb2Smrg   1.051787760316848982655967052985391418146E-3Q,
421*627f7eb2Smrg   1.102852974036687441600678598019883746959E-2Q,
422*627f7eb2Smrg   5.834647019292460494254225988766702933571E-2Q,
423*627f7eb2Smrg   1.290281921604364618912425380717127576529E-1Q,
424*627f7eb2Smrg   7.598886310387075708640370806458926458301E-2Q,
425*627f7eb2Smrg };
426*627f7eb2Smrg #define NQ8_16D 11
427*627f7eb2Smrg static const __float128 Q8_16D[NQ8_16D + 1] = {
428*627f7eb2Smrg   1.368001558508338469503329967729951830843E-16Q,
429*627f7eb2Smrg   1.034454121857542147020549303317348297289E-13Q,
430*627f7eb2Smrg   3.128109209247090744354764050629381674436E-11Q,
431*627f7eb2Smrg   4.957795214328501986562102573522064468671E-9Q,
432*627f7eb2Smrg   4.537872468606711261992676606899273588899E-7Q,
433*627f7eb2Smrg   2.493639207101727713192687060517509774182E-5Q,
434*627f7eb2Smrg   8.294957278145328349785532236663051405805E-4Q,
435*627f7eb2Smrg   1.646471258966713577374948205279380115839E-2Q,
436*627f7eb2Smrg   1.878910092770966718491814497982191447073E-1Q,
437*627f7eb2Smrg   1.152641605706170353727903052525652504075E0Q,
438*627f7eb2Smrg   3.383550240669773485412333679367792932235E0Q,
439*627f7eb2Smrg   3.823875252882035706910024716609908473970E0Q,
440*627f7eb2Smrg  /* 1.000000000000000000000000000000000000000E0 */
441*627f7eb2Smrg };
442*627f7eb2Smrg 
443*627f7eb2Smrg /* Y0(x)cosX - J0(x)sinX = sqrt( 2/(pi x)) Q0(x),
444*627f7eb2Smrg    Q0(x) = 1/x (-.125 + 1/x^2 R(1/x^2))
445*627f7eb2Smrg    Peak relative error 3.9e-35
446*627f7eb2Smrg    0.125 <= 1/x <= 0.1875  */
447*627f7eb2Smrg #define NQ5_8N 10
448*627f7eb2Smrg static const __float128 Q5_8N[NQ5_8N + 1] = {
449*627f7eb2Smrg   1.750399094021293722243426623211733898747E-13Q,
450*627f7eb2Smrg   6.483426211748008735242909236490115050294E-11Q,
451*627f7eb2Smrg   9.279430665656575457141747875716899958373E-9Q,
452*627f7eb2Smrg   6.696634968526907231258534757736576340266E-7Q,
453*627f7eb2Smrg   2.666560823798895649685231292142838188061E-5Q,
454*627f7eb2Smrg   6.025087697259436271271562769707550594540E-4Q,
455*627f7eb2Smrg   7.652807734168613251901945778921336353485E-3Q,
456*627f7eb2Smrg   5.226269002589406461622551452343519078905E-2Q,
457*627f7eb2Smrg   1.748390159751117658969324896330142895079E-1Q,
458*627f7eb2Smrg   2.378188719097006494782174902213083589660E-1Q,
459*627f7eb2Smrg   8.383984859679804095463699702165659216831E-2Q,
460*627f7eb2Smrg };
461*627f7eb2Smrg #define NQ5_8D 10
462*627f7eb2Smrg static const __float128 Q5_8D[NQ5_8D + 1] = {
463*627f7eb2Smrg   2.389878229704327939008104855942987615715E-12Q,
464*627f7eb2Smrg   8.926142817142546018703814194987786425099E-10Q,
465*627f7eb2Smrg   1.294065862406745901206588525833274399038E-7Q,
466*627f7eb2Smrg   9.524139899457666250828752185212769682191E-6Q,
467*627f7eb2Smrg   3.908332488377770886091936221573123353489E-4Q,
468*627f7eb2Smrg   9.250427033957236609624199884089916836748E-3Q,
469*627f7eb2Smrg   1.263420066165922645975830877751588421451E-1Q,
470*627f7eb2Smrg   9.692527053860420229711317379861733180654E-1Q,
471*627f7eb2Smrg   3.937813834630430172221329298841520707954E0Q,
472*627f7eb2Smrg   7.603126427436356534498908111445191312181E0Q,
473*627f7eb2Smrg   5.670677653334105479259958485084550934305E0Q,
474*627f7eb2Smrg  /* 1.000000000000000000000000000000000000000E0 */
475*627f7eb2Smrg };
476*627f7eb2Smrg 
477*627f7eb2Smrg /* Y0(x)cosX - J0(x)sinX = sqrt( 2/(pi x)) Q0(x),
478*627f7eb2Smrg    Q0(x) = 1/x (-.125 + 1/x^2 R(1/x^2))
479*627f7eb2Smrg    Peak relative error 3.2e-35
480*627f7eb2Smrg    0.1875 <= 1/x <= 0.25  */
481*627f7eb2Smrg #define NQ4_5N 10
482*627f7eb2Smrg static const __float128 Q4_5N[NQ4_5N + 1] = {
483*627f7eb2Smrg   2.233870042925895644234072357400122854086E-11Q,
484*627f7eb2Smrg   5.146223225761993222808463878999151699792E-9Q,
485*627f7eb2Smrg   4.459114531468296461688753521109797474523E-7Q,
486*627f7eb2Smrg   1.891397692931537975547242165291668056276E-5Q,
487*627f7eb2Smrg   4.279519145911541776938964806470674565504E-4Q,
488*627f7eb2Smrg   5.275239415656560634702073291768904783989E-3Q,
489*627f7eb2Smrg   3.468698403240744801278238473898432608887E-2Q,
490*627f7eb2Smrg   1.138773146337708415188856882915457888274E-1Q,
491*627f7eb2Smrg   1.622717518946443013587108598334636458955E-1Q,
492*627f7eb2Smrg   7.249040006390586123760992346453034628227E-2Q,
493*627f7eb2Smrg   1.941595365256460232175236758506411486667E-3Q,
494*627f7eb2Smrg };
495*627f7eb2Smrg #define NQ4_5D 9
496*627f7eb2Smrg static const __float128 Q4_5D[NQ4_5D + 1] = {
497*627f7eb2Smrg   3.049977232266999249626430127217988047453E-10Q,
498*627f7eb2Smrg   7.120883230531035857746096928889676144099E-8Q,
499*627f7eb2Smrg   6.301786064753734446784637919554359588859E-6Q,
500*627f7eb2Smrg   2.762010530095069598480766869426308077192E-4Q,
501*627f7eb2Smrg   6.572163250572867859316828886203406361251E-3Q,
502*627f7eb2Smrg   8.752566114841221958200215255461843397776E-2Q,
503*627f7eb2Smrg   6.487654992874805093499285311075289932664E-1Q,
504*627f7eb2Smrg   2.576550017826654579451615283022812801435E0Q,
505*627f7eb2Smrg   5.056392229924022835364779562707348096036E0Q,
506*627f7eb2Smrg   4.179770081068251464907531367859072157773E0Q,
507*627f7eb2Smrg  /* 1.000000000000000000000000000000000000000E0 */
508*627f7eb2Smrg };
509*627f7eb2Smrg 
510*627f7eb2Smrg /* Y0(x)cosX - J0(x)sinX = sqrt( 2/(pi x)) Q0(x),
511*627f7eb2Smrg    Q0(x) = 1/x (-.125 + 1/x^2 R(1/x^2))
512*627f7eb2Smrg    Peak relative error 1.4e-36
513*627f7eb2Smrg    0.25 <= 1/x <= 0.3125  */
514*627f7eb2Smrg #define NQ3r2_4N 10
515*627f7eb2Smrg static const __float128 Q3r2_4N[NQ3r2_4N + 1] = {
516*627f7eb2Smrg   6.126167301024815034423262653066023684411E-10Q,
517*627f7eb2Smrg   1.043969327113173261820028225053598975128E-7Q,
518*627f7eb2Smrg   6.592927270288697027757438170153763220190E-6Q,
519*627f7eb2Smrg   2.009103660938497963095652951912071336730E-4Q,
520*627f7eb2Smrg   3.220543385492643525985862356352195896964E-3Q,
521*627f7eb2Smrg   2.774405975730545157543417650436941650990E-2Q,
522*627f7eb2Smrg   1.258114008023826384487378016636555041129E-1Q,
523*627f7eb2Smrg   2.811724258266902502344701449984698323860E-1Q,
524*627f7eb2Smrg   2.691837665193548059322831687432415014067E-1Q,
525*627f7eb2Smrg   7.949087384900985370683770525312735605034E-2Q,
526*627f7eb2Smrg   1.229509543620976530030153018986910810747E-3Q,
527*627f7eb2Smrg };
528*627f7eb2Smrg #define NQ3r2_4D 9
529*627f7eb2Smrg static const __float128 Q3r2_4D[NQ3r2_4D + 1] = {
530*627f7eb2Smrg   8.364260446128475461539941389210166156568E-9Q,
531*627f7eb2Smrg   1.451301850638956578622154585560759862764E-6Q,
532*627f7eb2Smrg   9.431830010924603664244578867057141839463E-5Q,
533*627f7eb2Smrg   3.004105101667433434196388593004526182741E-3Q,
534*627f7eb2Smrg   5.148157397848271739710011717102773780221E-2Q,
535*627f7eb2Smrg   4.901089301726939576055285374953887874895E-1Q,
536*627f7eb2Smrg   2.581760991981709901216967665934142240346E0Q,
537*627f7eb2Smrg   7.257105880775059281391729708630912791847E0Q,
538*627f7eb2Smrg   1.006014717326362868007913423810737369312E1Q,
539*627f7eb2Smrg   5.879416600465399514404064187445293212470E0Q,
540*627f7eb2Smrg  /* 1.000000000000000000000000000000000000000E0*/
541*627f7eb2Smrg };
542*627f7eb2Smrg 
543*627f7eb2Smrg /* Y0(x)cosX - J0(x)sinX = sqrt( 2/(pi x)) Q0(x),
544*627f7eb2Smrg    Q0(x) = 1/x (-.125 + 1/x^2 R(1/x^2))
545*627f7eb2Smrg    Peak relative error 3.8e-36
546*627f7eb2Smrg    0.3125 <= 1/x <= 0.375  */
547*627f7eb2Smrg #define NQ2r7_3r2N 9
548*627f7eb2Smrg static const __float128 Q2r7_3r2N[NQ2r7_3r2N + 1] = {
549*627f7eb2Smrg   7.584861620402450302063691901886141875454E-8Q,
550*627f7eb2Smrg   9.300939338814216296064659459966041794591E-6Q,
551*627f7eb2Smrg   4.112108906197521696032158235392604947895E-4Q,
552*627f7eb2Smrg   8.515168851578898791897038357239630654431E-3Q,
553*627f7eb2Smrg   8.971286321017307400142720556749573229058E-2Q,
554*627f7eb2Smrg   4.885856732902956303343015636331874194498E-1Q,
555*627f7eb2Smrg   1.334506268733103291656253500506406045846E0Q,
556*627f7eb2Smrg   1.681207956863028164179042145803851824654E0Q,
557*627f7eb2Smrg   8.165042692571721959157677701625853772271E-1Q,
558*627f7eb2Smrg   9.805848115375053300608712721986235900715E-2Q,
559*627f7eb2Smrg };
560*627f7eb2Smrg #define NQ2r7_3r2D 9
561*627f7eb2Smrg static const __float128 Q2r7_3r2D[NQ2r7_3r2D + 1] = {
562*627f7eb2Smrg   1.035586492113036586458163971239438078160E-6Q,
563*627f7eb2Smrg   1.301999337731768381683593636500979713689E-4Q,
564*627f7eb2Smrg   5.993695702564527062553071126719088859654E-3Q,
565*627f7eb2Smrg   1.321184892887881883489141186815457808785E-1Q,
566*627f7eb2Smrg   1.528766555485015021144963194165165083312E0Q,
567*627f7eb2Smrg   9.561463309176490874525827051566494939295E0Q,
568*627f7eb2Smrg   3.203719484883967351729513662089163356911E1Q,
569*627f7eb2Smrg   5.497294687660930446641539152123568668447E1Q,
570*627f7eb2Smrg   4.391158169390578768508675452986948391118E1Q,
571*627f7eb2Smrg   1.347836630730048077907818943625789418378E1Q,
572*627f7eb2Smrg  /* 1.000000000000000000000000000000000000000E0 */
573*627f7eb2Smrg };
574*627f7eb2Smrg 
575*627f7eb2Smrg /* Y0(x)cosX - J0(x)sinX = sqrt( 2/(pi x)) Q0(x),
576*627f7eb2Smrg    Q0(x) = 1/x (-.125 + 1/x^2 R(1/x^2))
577*627f7eb2Smrg    Peak relative error 2.2e-35
578*627f7eb2Smrg    0.375 <= 1/x <= 0.4375  */
579*627f7eb2Smrg #define NQ2r3_2r7N 9
580*627f7eb2Smrg static const __float128 Q2r3_2r7N[NQ2r3_2r7N + 1] = {
581*627f7eb2Smrg   4.455027774980750211349941766420190722088E-7Q,
582*627f7eb2Smrg   4.031998274578520170631601850866780366466E-5Q,
583*627f7eb2Smrg   1.273987274325947007856695677491340636339E-3Q,
584*627f7eb2Smrg   1.818754543377448509897226554179659122873E-2Q,
585*627f7eb2Smrg   1.266748858326568264126353051352269875352E-1Q,
586*627f7eb2Smrg   4.327578594728723821137731555139472880414E-1Q,
587*627f7eb2Smrg   6.892532471436503074928194969154192615359E-1Q,
588*627f7eb2Smrg   4.490775818438716873422163588640262036506E-1Q,
589*627f7eb2Smrg   8.649615949297322440032000346117031581572E-2Q,
590*627f7eb2Smrg   7.261345286655345047417257611469066147561E-4Q,
591*627f7eb2Smrg };
592*627f7eb2Smrg #define NQ2r3_2r7D 8
593*627f7eb2Smrg static const __float128 Q2r3_2r7D[NQ2r3_2r7D + 1] = {
594*627f7eb2Smrg   6.082600739680555266312417978064954793142E-6Q,
595*627f7eb2Smrg   5.693622538165494742945717226571441747567E-4Q,
596*627f7eb2Smrg   1.901625907009092204458328768129666975975E-2Q,
597*627f7eb2Smrg   2.958689532697857335456896889409923371570E-1Q,
598*627f7eb2Smrg   2.343124711045660081603809437993368799568E0Q,
599*627f7eb2Smrg   9.665894032187458293568704885528192804376E0Q,
600*627f7eb2Smrg   2.035273104990617136065743426322454881353E1Q,
601*627f7eb2Smrg   2.044102010478792896815088858740075165531E1Q,
602*627f7eb2Smrg   8.445937177863155827844146643468706599304E0Q,
603*627f7eb2Smrg  /* 1.000000000000000000000000000000000000000E0 */
604*627f7eb2Smrg };
605*627f7eb2Smrg 
606*627f7eb2Smrg /* Y0(x)cosX - J0(x)sinX = sqrt( 2/(pi x)) Q0(x),
607*627f7eb2Smrg    Q0(x) = 1/x (-.125 + 1/x^2 R(1/x^2))
608*627f7eb2Smrg    Peak relative error 3.1e-36
609*627f7eb2Smrg    0.4375 <= 1/x <= 0.5  */
610*627f7eb2Smrg #define NQ2_2r3N 9
611*627f7eb2Smrg static const __float128 Q2_2r3N[NQ2_2r3N + 1] = {
612*627f7eb2Smrg   2.817566786579768804844367382809101929314E-6Q,
613*627f7eb2Smrg   2.122772176396691634147024348373539744935E-4Q,
614*627f7eb2Smrg   5.501378031780457828919593905395747517585E-3Q,
615*627f7eb2Smrg   6.355374424341762686099147452020466524659E-2Q,
616*627f7eb2Smrg   3.539652320122661637429658698954748337223E-1Q,
617*627f7eb2Smrg   9.571721066119617436343740541777014319695E-1Q,
618*627f7eb2Smrg   1.196258777828426399432550698612171955305E0Q,
619*627f7eb2Smrg   6.069388659458926158392384709893753793967E-1Q,
620*627f7eb2Smrg   9.026746127269713176512359976978248763621E-2Q,
621*627f7eb2Smrg   5.317668723070450235320878117210807236375E-4Q,
622*627f7eb2Smrg };
623*627f7eb2Smrg #define NQ2_2r3D 8
624*627f7eb2Smrg static const __float128 Q2_2r3D[NQ2_2r3D + 1] = {
625*627f7eb2Smrg   3.846924354014260866793741072933159380158E-5Q,
626*627f7eb2Smrg   3.017562820057704325510067178327449946763E-3Q,
627*627f7eb2Smrg   8.356305620686867949798885808540444210935E-2Q,
628*627f7eb2Smrg   1.068314930499906838814019619594424586273E0Q,
629*627f7eb2Smrg   6.900279623894821067017966573640732685233E0Q,
630*627f7eb2Smrg   2.307667390886377924509090271780839563141E1Q,
631*627f7eb2Smrg   3.921043465412723970791036825401273528513E1Q,
632*627f7eb2Smrg   3.167569478939719383241775717095729233436E1Q,
633*627f7eb2Smrg   1.051023841699200920276198346301543665909E1Q,
634*627f7eb2Smrg  /* 1.000000000000000000000000000000000000000E0*/
635*627f7eb2Smrg };
636*627f7eb2Smrg 
637*627f7eb2Smrg 
638*627f7eb2Smrg /* Evaluate P[n] x^n  +  P[n-1] x^(n-1)  +  ...  +  P[0] */
639*627f7eb2Smrg 
640*627f7eb2Smrg static __float128
neval(__float128 x,const __float128 * p,int n)641*627f7eb2Smrg neval (__float128 x, const __float128 *p, int n)
642*627f7eb2Smrg {
643*627f7eb2Smrg   __float128 y;
644*627f7eb2Smrg 
645*627f7eb2Smrg   p += n;
646*627f7eb2Smrg   y = *p--;
647*627f7eb2Smrg   do
648*627f7eb2Smrg     {
649*627f7eb2Smrg       y = y * x + *p--;
650*627f7eb2Smrg     }
651*627f7eb2Smrg   while (--n > 0);
652*627f7eb2Smrg   return y;
653*627f7eb2Smrg }
654*627f7eb2Smrg 
655*627f7eb2Smrg 
656*627f7eb2Smrg /* Evaluate x^n+1  +  P[n] x^(n)  +  P[n-1] x^(n-1)  +  ...  +  P[0] */
657*627f7eb2Smrg 
658*627f7eb2Smrg static __float128
deval(__float128 x,const __float128 * p,int n)659*627f7eb2Smrg deval (__float128 x, const __float128 *p, int n)
660*627f7eb2Smrg {
661*627f7eb2Smrg   __float128 y;
662*627f7eb2Smrg 
663*627f7eb2Smrg   p += n;
664*627f7eb2Smrg   y = x + *p--;
665*627f7eb2Smrg   do
666*627f7eb2Smrg     {
667*627f7eb2Smrg       y = y * x + *p--;
668*627f7eb2Smrg     }
669*627f7eb2Smrg   while (--n > 0);
670*627f7eb2Smrg   return y;
671*627f7eb2Smrg }
672*627f7eb2Smrg 
673*627f7eb2Smrg 
674*627f7eb2Smrg /* Bessel function of the first kind, order zero.  */
675*627f7eb2Smrg 
676*627f7eb2Smrg __float128
j0q(__float128 x)677*627f7eb2Smrg j0q (__float128 x)
678*627f7eb2Smrg {
679*627f7eb2Smrg   __float128 xx, xinv, z, p, q, c, s, cc, ss;
680*627f7eb2Smrg 
681*627f7eb2Smrg   if (! finiteq (x))
682*627f7eb2Smrg     {
683*627f7eb2Smrg       if (x != x)
684*627f7eb2Smrg 	return x + x;
685*627f7eb2Smrg       else
686*627f7eb2Smrg 	return 0;
687*627f7eb2Smrg     }
688*627f7eb2Smrg   if (x == 0)
689*627f7eb2Smrg     return 1;
690*627f7eb2Smrg 
691*627f7eb2Smrg   xx = fabsq (x);
692*627f7eb2Smrg   if (xx <= 2)
693*627f7eb2Smrg     {
694*627f7eb2Smrg       if (xx < 0x1p-57Q)
695*627f7eb2Smrg 	return 1;
696*627f7eb2Smrg       /* 0 <= x <= 2 */
697*627f7eb2Smrg       z = xx * xx;
698*627f7eb2Smrg       p = z * z * neval (z, J0_2N, NJ0_2N) / deval (z, J0_2D, NJ0_2D);
699*627f7eb2Smrg       p -= 0.25Q * z;
700*627f7eb2Smrg       p += 1;
701*627f7eb2Smrg       return p;
702*627f7eb2Smrg     }
703*627f7eb2Smrg 
704*627f7eb2Smrg   /* X = x - pi/4
705*627f7eb2Smrg      cos(X) = cos(x) cos(pi/4) + sin(x) sin(pi/4)
706*627f7eb2Smrg      = 1/sqrt(2) * (cos(x) + sin(x))
707*627f7eb2Smrg      sin(X) = sin(x) cos(pi/4) - cos(x) sin(pi/4)
708*627f7eb2Smrg      = 1/sqrt(2) * (sin(x) - cos(x))
709*627f7eb2Smrg      sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
710*627f7eb2Smrg      cf. Fdlibm.  */
711*627f7eb2Smrg   sincosq (xx, &s, &c);
712*627f7eb2Smrg   ss = s - c;
713*627f7eb2Smrg   cc = s + c;
714*627f7eb2Smrg   if (xx <= FLT128_MAX / 2)
715*627f7eb2Smrg     {
716*627f7eb2Smrg       z = -cosq (xx + xx);
717*627f7eb2Smrg       if ((s * c) < 0)
718*627f7eb2Smrg 	cc = z / ss;
719*627f7eb2Smrg       else
720*627f7eb2Smrg 	ss = z / cc;
721*627f7eb2Smrg     }
722*627f7eb2Smrg 
723*627f7eb2Smrg   if (xx > 0x1p256Q)
724*627f7eb2Smrg     return ONEOSQPI * cc / sqrtq (xx);
725*627f7eb2Smrg 
726*627f7eb2Smrg   xinv = 1 / xx;
727*627f7eb2Smrg   z = xinv * xinv;
728*627f7eb2Smrg   if (xinv <= 0.25)
729*627f7eb2Smrg     {
730*627f7eb2Smrg       if (xinv <= 0.125)
731*627f7eb2Smrg 	{
732*627f7eb2Smrg 	  if (xinv <= 0.0625)
733*627f7eb2Smrg 	    {
734*627f7eb2Smrg 	      p = neval (z, P16_IN, NP16_IN) / deval (z, P16_ID, NP16_ID);
735*627f7eb2Smrg 	      q = neval (z, Q16_IN, NQ16_IN) / deval (z, Q16_ID, NQ16_ID);
736*627f7eb2Smrg 	    }
737*627f7eb2Smrg 	  else
738*627f7eb2Smrg 	    {
739*627f7eb2Smrg 	      p = neval (z, P8_16N, NP8_16N) / deval (z, P8_16D, NP8_16D);
740*627f7eb2Smrg 	      q = neval (z, Q8_16N, NQ8_16N) / deval (z, Q8_16D, NQ8_16D);
741*627f7eb2Smrg 	    }
742*627f7eb2Smrg 	}
743*627f7eb2Smrg       else if (xinv <= 0.1875)
744*627f7eb2Smrg 	{
745*627f7eb2Smrg 	  p = neval (z, P5_8N, NP5_8N) / deval (z, P5_8D, NP5_8D);
746*627f7eb2Smrg 	  q = neval (z, Q5_8N, NQ5_8N) / deval (z, Q5_8D, NQ5_8D);
747*627f7eb2Smrg 	}
748*627f7eb2Smrg       else
749*627f7eb2Smrg 	{
750*627f7eb2Smrg 	  p = neval (z, P4_5N, NP4_5N) / deval (z, P4_5D, NP4_5D);
751*627f7eb2Smrg 	  q = neval (z, Q4_5N, NQ4_5N) / deval (z, Q4_5D, NQ4_5D);
752*627f7eb2Smrg 	}
753*627f7eb2Smrg     }				/* .25 */
754*627f7eb2Smrg   else /* if (xinv <= 0.5) */
755*627f7eb2Smrg     {
756*627f7eb2Smrg       if (xinv <= 0.375)
757*627f7eb2Smrg 	{
758*627f7eb2Smrg 	  if (xinv <= 0.3125)
759*627f7eb2Smrg 	    {
760*627f7eb2Smrg 	      p = neval (z, P3r2_4N, NP3r2_4N) / deval (z, P3r2_4D, NP3r2_4D);
761*627f7eb2Smrg 	      q = neval (z, Q3r2_4N, NQ3r2_4N) / deval (z, Q3r2_4D, NQ3r2_4D);
762*627f7eb2Smrg 	    }
763*627f7eb2Smrg 	  else
764*627f7eb2Smrg 	    {
765*627f7eb2Smrg 	      p = neval (z, P2r7_3r2N, NP2r7_3r2N)
766*627f7eb2Smrg 		  / deval (z, P2r7_3r2D, NP2r7_3r2D);
767*627f7eb2Smrg 	      q = neval (z, Q2r7_3r2N, NQ2r7_3r2N)
768*627f7eb2Smrg 		  / deval (z, Q2r7_3r2D, NQ2r7_3r2D);
769*627f7eb2Smrg 	    }
770*627f7eb2Smrg 	}
771*627f7eb2Smrg       else if (xinv <= 0.4375)
772*627f7eb2Smrg 	{
773*627f7eb2Smrg 	  p = neval (z, P2r3_2r7N, NP2r3_2r7N)
774*627f7eb2Smrg 	      / deval (z, P2r3_2r7D, NP2r3_2r7D);
775*627f7eb2Smrg 	  q = neval (z, Q2r3_2r7N, NQ2r3_2r7N)
776*627f7eb2Smrg 	      / deval (z, Q2r3_2r7D, NQ2r3_2r7D);
777*627f7eb2Smrg 	}
778*627f7eb2Smrg       else
779*627f7eb2Smrg 	{
780*627f7eb2Smrg 	  p = neval (z, P2_2r3N, NP2_2r3N) / deval (z, P2_2r3D, NP2_2r3D);
781*627f7eb2Smrg 	  q = neval (z, Q2_2r3N, NQ2_2r3N) / deval (z, Q2_2r3D, NQ2_2r3D);
782*627f7eb2Smrg 	}
783*627f7eb2Smrg     }
784*627f7eb2Smrg   p = 1 + z * p;
785*627f7eb2Smrg   q = z * xinv * q;
786*627f7eb2Smrg   q = q - 0.125Q * xinv;
787*627f7eb2Smrg   z = ONEOSQPI * (p * cc - q * ss) / sqrtq (xx);
788*627f7eb2Smrg   return z;
789*627f7eb2Smrg }
790*627f7eb2Smrg 
791*627f7eb2Smrg 
792*627f7eb2Smrg 
793*627f7eb2Smrg /* Y0(x) = 2/pi * log(x) * J0(x) + R(x^2)
794*627f7eb2Smrg    Peak absolute error 1.7e-36 (relative where Y0 > 1)
795*627f7eb2Smrg    0 <= x <= 2   */
796*627f7eb2Smrg #define NY0_2N 7
797*627f7eb2Smrg static const __float128 Y0_2N[NY0_2N + 1] = {
798*627f7eb2Smrg  -1.062023609591350692692296993537002558155E19Q,
799*627f7eb2Smrg   2.542000883190248639104127452714966858866E19Q,
800*627f7eb2Smrg  -1.984190771278515324281415820316054696545E18Q,
801*627f7eb2Smrg   4.982586044371592942465373274440222033891E16Q,
802*627f7eb2Smrg  -5.529326354780295177243773419090123407550E14Q,
803*627f7eb2Smrg   3.013431465522152289279088265336861140391E12Q,
804*627f7eb2Smrg  -7.959436160727126750732203098982718347785E9Q,
805*627f7eb2Smrg   8.230845651379566339707130644134372793322E6Q,
806*627f7eb2Smrg };
807*627f7eb2Smrg #define NY0_2D 7
808*627f7eb2Smrg static const __float128 Y0_2D[NY0_2D + 1] = {
809*627f7eb2Smrg   1.438972634353286978700329883122253752192E20Q,
810*627f7eb2Smrg   1.856409101981569254247700169486907405500E18Q,
811*627f7eb2Smrg   1.219693352678218589553725579802986255614E16Q,
812*627f7eb2Smrg   5.389428943282838648918475915779958097958E13Q,
813*627f7eb2Smrg   1.774125762108874864433872173544743051653E11Q,
814*627f7eb2Smrg   4.522104832545149534808218252434693007036E8Q,
815*627f7eb2Smrg   8.872187401232943927082914504125234454930E5Q,
816*627f7eb2Smrg   1.251945613186787532055610876304669413955E3Q,
817*627f7eb2Smrg  /* 1.000000000000000000000000000000000000000E0 */
818*627f7eb2Smrg };
819*627f7eb2Smrg 
820*627f7eb2Smrg static const __float128 U0 = -7.3804295108687225274343927948483016310862e-02Q;
821*627f7eb2Smrg 
822*627f7eb2Smrg /* Bessel function of the second kind, order zero.  */
823*627f7eb2Smrg 
824*627f7eb2Smrg __float128
y0q(__float128 x)825*627f7eb2Smrg  y0q(__float128 x)
826*627f7eb2Smrg {
827*627f7eb2Smrg   __float128 xx, xinv, z, p, q, c, s, cc, ss;
828*627f7eb2Smrg 
829*627f7eb2Smrg   if (! finiteq (x))
830*627f7eb2Smrg     return 1 / (x + x * x);
831*627f7eb2Smrg   if (x <= 0)
832*627f7eb2Smrg     {
833*627f7eb2Smrg       if (x < 0)
834*627f7eb2Smrg 	return (zero / (zero * x));
835*627f7eb2Smrg       return -1 / zero; /* -inf and divide by zero exception.  */
836*627f7eb2Smrg     }
837*627f7eb2Smrg   xx = fabsq (x);
838*627f7eb2Smrg   if (xx <= 0x1p-57)
839*627f7eb2Smrg     return U0 + TWOOPI * logq (x);
840*627f7eb2Smrg   if (xx <= 2)
841*627f7eb2Smrg     {
842*627f7eb2Smrg       /* 0 <= x <= 2 */
843*627f7eb2Smrg       z = xx * xx;
844*627f7eb2Smrg       p = neval (z, Y0_2N, NY0_2N) / deval (z, Y0_2D, NY0_2D);
845*627f7eb2Smrg       p = TWOOPI * logq (x) * j0q (x) + p;
846*627f7eb2Smrg       return p;
847*627f7eb2Smrg     }
848*627f7eb2Smrg 
849*627f7eb2Smrg   /* X = x - pi/4
850*627f7eb2Smrg      cos(X) = cos(x) cos(pi/4) + sin(x) sin(pi/4)
851*627f7eb2Smrg      = 1/sqrt(2) * (cos(x) + sin(x))
852*627f7eb2Smrg      sin(X) = sin(x) cos(pi/4) - cos(x) sin(pi/4)
853*627f7eb2Smrg      = 1/sqrt(2) * (sin(x) - cos(x))
854*627f7eb2Smrg      sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
855*627f7eb2Smrg      cf. Fdlibm.  */
856*627f7eb2Smrg   sincosq (x, &s, &c);
857*627f7eb2Smrg   ss = s - c;
858*627f7eb2Smrg   cc = s + c;
859*627f7eb2Smrg   if (xx <= FLT128_MAX / 2)
860*627f7eb2Smrg     {
861*627f7eb2Smrg       z = -cosq (x + x);
862*627f7eb2Smrg       if ((s * c) < 0)
863*627f7eb2Smrg 	cc = z / ss;
864*627f7eb2Smrg       else
865*627f7eb2Smrg 	ss = z / cc;
866*627f7eb2Smrg     }
867*627f7eb2Smrg 
868*627f7eb2Smrg   if (xx > 0x1p256Q)
869*627f7eb2Smrg     return ONEOSQPI * ss / sqrtq (x);
870*627f7eb2Smrg 
871*627f7eb2Smrg   xinv = 1 / xx;
872*627f7eb2Smrg   z = xinv * xinv;
873*627f7eb2Smrg   if (xinv <= 0.25)
874*627f7eb2Smrg     {
875*627f7eb2Smrg       if (xinv <= 0.125)
876*627f7eb2Smrg 	{
877*627f7eb2Smrg 	  if (xinv <= 0.0625)
878*627f7eb2Smrg 	    {
879*627f7eb2Smrg 	      p = neval (z, P16_IN, NP16_IN) / deval (z, P16_ID, NP16_ID);
880*627f7eb2Smrg 	      q = neval (z, Q16_IN, NQ16_IN) / deval (z, Q16_ID, NQ16_ID);
881*627f7eb2Smrg 	    }
882*627f7eb2Smrg 	  else
883*627f7eb2Smrg 	    {
884*627f7eb2Smrg 	      p = neval (z, P8_16N, NP8_16N) / deval (z, P8_16D, NP8_16D);
885*627f7eb2Smrg 	      q = neval (z, Q8_16N, NQ8_16N) / deval (z, Q8_16D, NQ8_16D);
886*627f7eb2Smrg 	    }
887*627f7eb2Smrg 	}
888*627f7eb2Smrg       else if (xinv <= 0.1875)
889*627f7eb2Smrg 	{
890*627f7eb2Smrg 	  p = neval (z, P5_8N, NP5_8N) / deval (z, P5_8D, NP5_8D);
891*627f7eb2Smrg 	  q = neval (z, Q5_8N, NQ5_8N) / deval (z, Q5_8D, NQ5_8D);
892*627f7eb2Smrg 	}
893*627f7eb2Smrg       else
894*627f7eb2Smrg 	{
895*627f7eb2Smrg 	  p = neval (z, P4_5N, NP4_5N) / deval (z, P4_5D, NP4_5D);
896*627f7eb2Smrg 	  q = neval (z, Q4_5N, NQ4_5N) / deval (z, Q4_5D, NQ4_5D);
897*627f7eb2Smrg 	}
898*627f7eb2Smrg     }				/* .25 */
899*627f7eb2Smrg   else /* if (xinv <= 0.5) */
900*627f7eb2Smrg     {
901*627f7eb2Smrg       if (xinv <= 0.375)
902*627f7eb2Smrg 	{
903*627f7eb2Smrg 	  if (xinv <= 0.3125)
904*627f7eb2Smrg 	    {
905*627f7eb2Smrg 	      p = neval (z, P3r2_4N, NP3r2_4N) / deval (z, P3r2_4D, NP3r2_4D);
906*627f7eb2Smrg 	      q = neval (z, Q3r2_4N, NQ3r2_4N) / deval (z, Q3r2_4D, NQ3r2_4D);
907*627f7eb2Smrg 	    }
908*627f7eb2Smrg 	  else
909*627f7eb2Smrg 	    {
910*627f7eb2Smrg 	      p = neval (z, P2r7_3r2N, NP2r7_3r2N)
911*627f7eb2Smrg 		  / deval (z, P2r7_3r2D, NP2r7_3r2D);
912*627f7eb2Smrg 	      q = neval (z, Q2r7_3r2N, NQ2r7_3r2N)
913*627f7eb2Smrg 		  / deval (z, Q2r7_3r2D, NQ2r7_3r2D);
914*627f7eb2Smrg 	    }
915*627f7eb2Smrg 	}
916*627f7eb2Smrg       else if (xinv <= 0.4375)
917*627f7eb2Smrg 	{
918*627f7eb2Smrg 	  p = neval (z, P2r3_2r7N, NP2r3_2r7N)
919*627f7eb2Smrg 	      / deval (z, P2r3_2r7D, NP2r3_2r7D);
920*627f7eb2Smrg 	  q = neval (z, Q2r3_2r7N, NQ2r3_2r7N)
921*627f7eb2Smrg 	      / deval (z, Q2r3_2r7D, NQ2r3_2r7D);
922*627f7eb2Smrg 	}
923*627f7eb2Smrg       else
924*627f7eb2Smrg 	{
925*627f7eb2Smrg 	  p = neval (z, P2_2r3N, NP2_2r3N) / deval (z, P2_2r3D, NP2_2r3D);
926*627f7eb2Smrg 	  q = neval (z, Q2_2r3N, NQ2_2r3N) / deval (z, Q2_2r3D, NQ2_2r3D);
927*627f7eb2Smrg 	}
928*627f7eb2Smrg     }
929*627f7eb2Smrg   p = 1 + z * p;
930*627f7eb2Smrg   q = z * xinv * q;
931*627f7eb2Smrg   q = q - 0.125Q * xinv;
932*627f7eb2Smrg   z = ONEOSQPI * (p * ss + q * cc) / sqrtq (x);
933*627f7eb2Smrg   return z;
934*627f7eb2Smrg }
935