xref: /netbsd-src/external/gpl3/gcc.old/dist/libquadmath/math/expm1q.c (revision 627f7eb200a4419d89b531d55fccd2ee3ffdcde0)
1*627f7eb2Smrg /*							expm1q.c
2*627f7eb2Smrg  *
3*627f7eb2Smrg  *	Exponential function, minus 1
4*627f7eb2Smrg  *      128-bit long double precision
5*627f7eb2Smrg  *
6*627f7eb2Smrg  *
7*627f7eb2Smrg  *
8*627f7eb2Smrg  * SYNOPSIS:
9*627f7eb2Smrg  *
10*627f7eb2Smrg  * long double x, y, expm1q();
11*627f7eb2Smrg  *
12*627f7eb2Smrg  * y = expm1q( x );
13*627f7eb2Smrg  *
14*627f7eb2Smrg  *
15*627f7eb2Smrg  *
16*627f7eb2Smrg  * DESCRIPTION:
17*627f7eb2Smrg  *
18*627f7eb2Smrg  * Returns e (2.71828...) raised to the x power, minus one.
19*627f7eb2Smrg  *
20*627f7eb2Smrg  * Range reduction is accomplished by separating the argument
21*627f7eb2Smrg  * into an integer k and fraction f such that
22*627f7eb2Smrg  *
23*627f7eb2Smrg  *     x    k  f
24*627f7eb2Smrg  *    e  = 2  e.
25*627f7eb2Smrg  *
26*627f7eb2Smrg  * An expansion x + .5 x^2 + x^3 R(x) approximates exp(f) - 1
27*627f7eb2Smrg  * in the basic range [-0.5 ln 2, 0.5 ln 2].
28*627f7eb2Smrg  *
29*627f7eb2Smrg  *
30*627f7eb2Smrg  * ACCURACY:
31*627f7eb2Smrg  *
32*627f7eb2Smrg  *                      Relative error:
33*627f7eb2Smrg  * arithmetic   domain     # trials      peak         rms
34*627f7eb2Smrg  *    IEEE    -79,+MAXLOG    100,000     1.7e-34     4.5e-35
35*627f7eb2Smrg  *
36*627f7eb2Smrg  */
37*627f7eb2Smrg 
38*627f7eb2Smrg /* Copyright 2001 by Stephen L. Moshier
39*627f7eb2Smrg 
40*627f7eb2Smrg     This library is free software; you can redistribute it and/or
41*627f7eb2Smrg     modify it under the terms of the GNU Lesser General Public
42*627f7eb2Smrg     License as published by the Free Software Foundation; either
43*627f7eb2Smrg     version 2.1 of the License, or (at your option) any later version.
44*627f7eb2Smrg 
45*627f7eb2Smrg     This library is distributed in the hope that it will be useful,
46*627f7eb2Smrg     but WITHOUT ANY WARRANTY; without even the implied warranty of
47*627f7eb2Smrg     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
48*627f7eb2Smrg     Lesser General Public License for more details.
49*627f7eb2Smrg 
50*627f7eb2Smrg     You should have received a copy of the GNU Lesser General Public
51*627f7eb2Smrg     License along with this library; if not, see
52*627f7eb2Smrg     <http://www.gnu.org/licenses/>.  */
53*627f7eb2Smrg 
54*627f7eb2Smrg #include "quadmath-imp.h"
55*627f7eb2Smrg 
56*627f7eb2Smrg /* exp(x) - 1 = x + 0.5 x^2 + x^3 P(x)/Q(x)
57*627f7eb2Smrg    -.5 ln 2  <  x  <  .5 ln 2
58*627f7eb2Smrg    Theoretical peak relative error = 8.1e-36  */
59*627f7eb2Smrg 
60*627f7eb2Smrg static const __float128
61*627f7eb2Smrg   P0 = 2.943520915569954073888921213330863757240E8Q,
62*627f7eb2Smrg   P1 = -5.722847283900608941516165725053359168840E7Q,
63*627f7eb2Smrg   P2 = 8.944630806357575461578107295909719817253E6Q,
64*627f7eb2Smrg   P3 = -7.212432713558031519943281748462837065308E5Q,
65*627f7eb2Smrg   P4 = 4.578962475841642634225390068461943438441E4Q,
66*627f7eb2Smrg   P5 = -1.716772506388927649032068540558788106762E3Q,
67*627f7eb2Smrg   P6 = 4.401308817383362136048032038528753151144E1Q,
68*627f7eb2Smrg   P7 = -4.888737542888633647784737721812546636240E-1Q,
69*627f7eb2Smrg   Q0 = 1.766112549341972444333352727998584753865E9Q,
70*627f7eb2Smrg   Q1 = -7.848989743695296475743081255027098295771E8Q,
71*627f7eb2Smrg   Q2 = 1.615869009634292424463780387327037251069E8Q,
72*627f7eb2Smrg   Q3 = -2.019684072836541751428967854947019415698E7Q,
73*627f7eb2Smrg   Q4 = 1.682912729190313538934190635536631941751E6Q,
74*627f7eb2Smrg   Q5 = -9.615511549171441430850103489315371768998E4Q,
75*627f7eb2Smrg   Q6 = 3.697714952261803935521187272204485251835E3Q,
76*627f7eb2Smrg   Q7 = -8.802340681794263968892934703309274564037E1Q,
77*627f7eb2Smrg   /* Q8 = 1.000000000000000000000000000000000000000E0 */
78*627f7eb2Smrg /* C1 + C2 = ln 2 */
79*627f7eb2Smrg 
80*627f7eb2Smrg   C1 = 6.93145751953125E-1Q,
81*627f7eb2Smrg   C2 = 1.428606820309417232121458176568075500134E-6Q,
82*627f7eb2Smrg /* ln 2^-114 */
83*627f7eb2Smrg   minarg = -7.9018778583833765273564461846232128760607E1Q, big = 1e4932Q;
84*627f7eb2Smrg 
85*627f7eb2Smrg 
86*627f7eb2Smrg __float128
expm1q(__float128 x)87*627f7eb2Smrg expm1q (__float128 x)
88*627f7eb2Smrg {
89*627f7eb2Smrg   __float128 px, qx, xx;
90*627f7eb2Smrg   int32_t ix, sign;
91*627f7eb2Smrg   ieee854_float128 u;
92*627f7eb2Smrg   int k;
93*627f7eb2Smrg 
94*627f7eb2Smrg   /* Detect infinity and NaN.  */
95*627f7eb2Smrg   u.value = x;
96*627f7eb2Smrg   ix = u.words32.w0;
97*627f7eb2Smrg   sign = ix & 0x80000000;
98*627f7eb2Smrg   ix &= 0x7fffffff;
99*627f7eb2Smrg   if (!sign && ix >= 0x40060000)
100*627f7eb2Smrg     {
101*627f7eb2Smrg       /* If num is positive and exp >= 6 use plain exp.  */
102*627f7eb2Smrg       return expq (x);
103*627f7eb2Smrg     }
104*627f7eb2Smrg   if (ix >= 0x7fff0000)
105*627f7eb2Smrg     {
106*627f7eb2Smrg       /* Infinity (which must be negative infinity). */
107*627f7eb2Smrg       if (((ix & 0xffff) | u.words32.w1 | u.words32.w2 | u.words32.w3) == 0)
108*627f7eb2Smrg 	return -1;
109*627f7eb2Smrg       /* NaN.  Invalid exception if signaling.  */
110*627f7eb2Smrg       return x + x;
111*627f7eb2Smrg     }
112*627f7eb2Smrg 
113*627f7eb2Smrg   /* expm1(+- 0) = +- 0.  */
114*627f7eb2Smrg   if ((ix == 0) && (u.words32.w1 | u.words32.w2 | u.words32.w3) == 0)
115*627f7eb2Smrg     return x;
116*627f7eb2Smrg 
117*627f7eb2Smrg   /* Minimum value.  */
118*627f7eb2Smrg   if (x < minarg)
119*627f7eb2Smrg     return (4.0/big - 1);
120*627f7eb2Smrg 
121*627f7eb2Smrg   /* Avoid internal underflow when result does not underflow, while
122*627f7eb2Smrg      ensuring underflow (without returning a zero of the wrong sign)
123*627f7eb2Smrg      when the result does underflow.  */
124*627f7eb2Smrg   if (fabsq (x) < 0x1p-113Q)
125*627f7eb2Smrg     {
126*627f7eb2Smrg       math_check_force_underflow (x);
127*627f7eb2Smrg       return x;
128*627f7eb2Smrg     }
129*627f7eb2Smrg 
130*627f7eb2Smrg   /* Express x = ln 2 (k + remainder), remainder not exceeding 1/2. */
131*627f7eb2Smrg   xx = C1 + C2;			/* ln 2. */
132*627f7eb2Smrg   px = floorq (0.5 + x / xx);
133*627f7eb2Smrg   k = px;
134*627f7eb2Smrg   /* remainder times ln 2 */
135*627f7eb2Smrg   x -= px * C1;
136*627f7eb2Smrg   x -= px * C2;
137*627f7eb2Smrg 
138*627f7eb2Smrg   /* Approximate exp(remainder ln 2).  */
139*627f7eb2Smrg   px = (((((((P7 * x
140*627f7eb2Smrg 	      + P6) * x
141*627f7eb2Smrg 	     + P5) * x + P4) * x + P3) * x + P2) * x + P1) * x + P0) * x;
142*627f7eb2Smrg 
143*627f7eb2Smrg   qx = (((((((x
144*627f7eb2Smrg 	      + Q7) * x
145*627f7eb2Smrg 	     + Q6) * x + Q5) * x + Q4) * x + Q3) * x + Q2) * x + Q1) * x + Q0;
146*627f7eb2Smrg 
147*627f7eb2Smrg   xx = x * x;
148*627f7eb2Smrg   qx = x + (0.5 * xx + xx * px / qx);
149*627f7eb2Smrg 
150*627f7eb2Smrg   /* exp(x) = exp(k ln 2) exp(remainder ln 2) = 2^k exp(remainder ln 2).
151*627f7eb2Smrg 
152*627f7eb2Smrg   We have qx = exp(remainder ln 2) - 1, so
153*627f7eb2Smrg   exp(x) - 1 = 2^k (qx + 1) - 1
154*627f7eb2Smrg              = 2^k qx + 2^k - 1.  */
155*627f7eb2Smrg 
156*627f7eb2Smrg   px = ldexpq (1, k);
157*627f7eb2Smrg   x = px * qx + (px - 1.0);
158*627f7eb2Smrg   return x;
159*627f7eb2Smrg }
160