1*627f7eb2Smrg /* expm1q.c
2*627f7eb2Smrg *
3*627f7eb2Smrg * Exponential function, minus 1
4*627f7eb2Smrg * 128-bit long double precision
5*627f7eb2Smrg *
6*627f7eb2Smrg *
7*627f7eb2Smrg *
8*627f7eb2Smrg * SYNOPSIS:
9*627f7eb2Smrg *
10*627f7eb2Smrg * long double x, y, expm1q();
11*627f7eb2Smrg *
12*627f7eb2Smrg * y = expm1q( x );
13*627f7eb2Smrg *
14*627f7eb2Smrg *
15*627f7eb2Smrg *
16*627f7eb2Smrg * DESCRIPTION:
17*627f7eb2Smrg *
18*627f7eb2Smrg * Returns e (2.71828...) raised to the x power, minus one.
19*627f7eb2Smrg *
20*627f7eb2Smrg * Range reduction is accomplished by separating the argument
21*627f7eb2Smrg * into an integer k and fraction f such that
22*627f7eb2Smrg *
23*627f7eb2Smrg * x k f
24*627f7eb2Smrg * e = 2 e.
25*627f7eb2Smrg *
26*627f7eb2Smrg * An expansion x + .5 x^2 + x^3 R(x) approximates exp(f) - 1
27*627f7eb2Smrg * in the basic range [-0.5 ln 2, 0.5 ln 2].
28*627f7eb2Smrg *
29*627f7eb2Smrg *
30*627f7eb2Smrg * ACCURACY:
31*627f7eb2Smrg *
32*627f7eb2Smrg * Relative error:
33*627f7eb2Smrg * arithmetic domain # trials peak rms
34*627f7eb2Smrg * IEEE -79,+MAXLOG 100,000 1.7e-34 4.5e-35
35*627f7eb2Smrg *
36*627f7eb2Smrg */
37*627f7eb2Smrg
38*627f7eb2Smrg /* Copyright 2001 by Stephen L. Moshier
39*627f7eb2Smrg
40*627f7eb2Smrg This library is free software; you can redistribute it and/or
41*627f7eb2Smrg modify it under the terms of the GNU Lesser General Public
42*627f7eb2Smrg License as published by the Free Software Foundation; either
43*627f7eb2Smrg version 2.1 of the License, or (at your option) any later version.
44*627f7eb2Smrg
45*627f7eb2Smrg This library is distributed in the hope that it will be useful,
46*627f7eb2Smrg but WITHOUT ANY WARRANTY; without even the implied warranty of
47*627f7eb2Smrg MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
48*627f7eb2Smrg Lesser General Public License for more details.
49*627f7eb2Smrg
50*627f7eb2Smrg You should have received a copy of the GNU Lesser General Public
51*627f7eb2Smrg License along with this library; if not, see
52*627f7eb2Smrg <http://www.gnu.org/licenses/>. */
53*627f7eb2Smrg
54*627f7eb2Smrg #include "quadmath-imp.h"
55*627f7eb2Smrg
56*627f7eb2Smrg /* exp(x) - 1 = x + 0.5 x^2 + x^3 P(x)/Q(x)
57*627f7eb2Smrg -.5 ln 2 < x < .5 ln 2
58*627f7eb2Smrg Theoretical peak relative error = 8.1e-36 */
59*627f7eb2Smrg
60*627f7eb2Smrg static const __float128
61*627f7eb2Smrg P0 = 2.943520915569954073888921213330863757240E8Q,
62*627f7eb2Smrg P1 = -5.722847283900608941516165725053359168840E7Q,
63*627f7eb2Smrg P2 = 8.944630806357575461578107295909719817253E6Q,
64*627f7eb2Smrg P3 = -7.212432713558031519943281748462837065308E5Q,
65*627f7eb2Smrg P4 = 4.578962475841642634225390068461943438441E4Q,
66*627f7eb2Smrg P5 = -1.716772506388927649032068540558788106762E3Q,
67*627f7eb2Smrg P6 = 4.401308817383362136048032038528753151144E1Q,
68*627f7eb2Smrg P7 = -4.888737542888633647784737721812546636240E-1Q,
69*627f7eb2Smrg Q0 = 1.766112549341972444333352727998584753865E9Q,
70*627f7eb2Smrg Q1 = -7.848989743695296475743081255027098295771E8Q,
71*627f7eb2Smrg Q2 = 1.615869009634292424463780387327037251069E8Q,
72*627f7eb2Smrg Q3 = -2.019684072836541751428967854947019415698E7Q,
73*627f7eb2Smrg Q4 = 1.682912729190313538934190635536631941751E6Q,
74*627f7eb2Smrg Q5 = -9.615511549171441430850103489315371768998E4Q,
75*627f7eb2Smrg Q6 = 3.697714952261803935521187272204485251835E3Q,
76*627f7eb2Smrg Q7 = -8.802340681794263968892934703309274564037E1Q,
77*627f7eb2Smrg /* Q8 = 1.000000000000000000000000000000000000000E0 */
78*627f7eb2Smrg /* C1 + C2 = ln 2 */
79*627f7eb2Smrg
80*627f7eb2Smrg C1 = 6.93145751953125E-1Q,
81*627f7eb2Smrg C2 = 1.428606820309417232121458176568075500134E-6Q,
82*627f7eb2Smrg /* ln 2^-114 */
83*627f7eb2Smrg minarg = -7.9018778583833765273564461846232128760607E1Q, big = 1e4932Q;
84*627f7eb2Smrg
85*627f7eb2Smrg
86*627f7eb2Smrg __float128
expm1q(__float128 x)87*627f7eb2Smrg expm1q (__float128 x)
88*627f7eb2Smrg {
89*627f7eb2Smrg __float128 px, qx, xx;
90*627f7eb2Smrg int32_t ix, sign;
91*627f7eb2Smrg ieee854_float128 u;
92*627f7eb2Smrg int k;
93*627f7eb2Smrg
94*627f7eb2Smrg /* Detect infinity and NaN. */
95*627f7eb2Smrg u.value = x;
96*627f7eb2Smrg ix = u.words32.w0;
97*627f7eb2Smrg sign = ix & 0x80000000;
98*627f7eb2Smrg ix &= 0x7fffffff;
99*627f7eb2Smrg if (!sign && ix >= 0x40060000)
100*627f7eb2Smrg {
101*627f7eb2Smrg /* If num is positive and exp >= 6 use plain exp. */
102*627f7eb2Smrg return expq (x);
103*627f7eb2Smrg }
104*627f7eb2Smrg if (ix >= 0x7fff0000)
105*627f7eb2Smrg {
106*627f7eb2Smrg /* Infinity (which must be negative infinity). */
107*627f7eb2Smrg if (((ix & 0xffff) | u.words32.w1 | u.words32.w2 | u.words32.w3) == 0)
108*627f7eb2Smrg return -1;
109*627f7eb2Smrg /* NaN. Invalid exception if signaling. */
110*627f7eb2Smrg return x + x;
111*627f7eb2Smrg }
112*627f7eb2Smrg
113*627f7eb2Smrg /* expm1(+- 0) = +- 0. */
114*627f7eb2Smrg if ((ix == 0) && (u.words32.w1 | u.words32.w2 | u.words32.w3) == 0)
115*627f7eb2Smrg return x;
116*627f7eb2Smrg
117*627f7eb2Smrg /* Minimum value. */
118*627f7eb2Smrg if (x < minarg)
119*627f7eb2Smrg return (4.0/big - 1);
120*627f7eb2Smrg
121*627f7eb2Smrg /* Avoid internal underflow when result does not underflow, while
122*627f7eb2Smrg ensuring underflow (without returning a zero of the wrong sign)
123*627f7eb2Smrg when the result does underflow. */
124*627f7eb2Smrg if (fabsq (x) < 0x1p-113Q)
125*627f7eb2Smrg {
126*627f7eb2Smrg math_check_force_underflow (x);
127*627f7eb2Smrg return x;
128*627f7eb2Smrg }
129*627f7eb2Smrg
130*627f7eb2Smrg /* Express x = ln 2 (k + remainder), remainder not exceeding 1/2. */
131*627f7eb2Smrg xx = C1 + C2; /* ln 2. */
132*627f7eb2Smrg px = floorq (0.5 + x / xx);
133*627f7eb2Smrg k = px;
134*627f7eb2Smrg /* remainder times ln 2 */
135*627f7eb2Smrg x -= px * C1;
136*627f7eb2Smrg x -= px * C2;
137*627f7eb2Smrg
138*627f7eb2Smrg /* Approximate exp(remainder ln 2). */
139*627f7eb2Smrg px = (((((((P7 * x
140*627f7eb2Smrg + P6) * x
141*627f7eb2Smrg + P5) * x + P4) * x + P3) * x + P2) * x + P1) * x + P0) * x;
142*627f7eb2Smrg
143*627f7eb2Smrg qx = (((((((x
144*627f7eb2Smrg + Q7) * x
145*627f7eb2Smrg + Q6) * x + Q5) * x + Q4) * x + Q3) * x + Q2) * x + Q1) * x + Q0;
146*627f7eb2Smrg
147*627f7eb2Smrg xx = x * x;
148*627f7eb2Smrg qx = x + (0.5 * xx + xx * px / qx);
149*627f7eb2Smrg
150*627f7eb2Smrg /* exp(x) = exp(k ln 2) exp(remainder ln 2) = 2^k exp(remainder ln 2).
151*627f7eb2Smrg
152*627f7eb2Smrg We have qx = exp(remainder ln 2) - 1, so
153*627f7eb2Smrg exp(x) - 1 = 2^k (qx + 1) - 1
154*627f7eb2Smrg = 2^k qx + 2^k - 1. */
155*627f7eb2Smrg
156*627f7eb2Smrg px = ldexpq (1, k);
157*627f7eb2Smrg x = px * qx + (px - 1.0);
158*627f7eb2Smrg return x;
159*627f7eb2Smrg }
160