xref: /netbsd-src/external/gpl3/gcc.old/dist/libquadmath/math/catanq.c (revision 627f7eb200a4419d89b531d55fccd2ee3ffdcde0)
1*627f7eb2Smrg /* Return arc tangent of complex float type.
2*627f7eb2Smrg    Copyright (C) 1997-2018 Free Software Foundation, Inc.
3*627f7eb2Smrg    This file is part of the GNU C Library.
4*627f7eb2Smrg    Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
5*627f7eb2Smrg 
6*627f7eb2Smrg    The GNU C Library is free software; you can redistribute it and/or
7*627f7eb2Smrg    modify it under the terms of the GNU Lesser General Public
8*627f7eb2Smrg    License as published by the Free Software Foundation; either
9*627f7eb2Smrg    version 2.1 of the License, or (at your option) any later version.
10*627f7eb2Smrg 
11*627f7eb2Smrg    The GNU C Library is distributed in the hope that it will be useful,
12*627f7eb2Smrg    but WITHOUT ANY WARRANTY; without even the implied warranty of
13*627f7eb2Smrg    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14*627f7eb2Smrg    Lesser General Public License for more details.
15*627f7eb2Smrg 
16*627f7eb2Smrg    You should have received a copy of the GNU Lesser General Public
17*627f7eb2Smrg    License along with the GNU C Library; if not, see
18*627f7eb2Smrg    <http://www.gnu.org/licenses/>.  */
19*627f7eb2Smrg 
20*627f7eb2Smrg #include "quadmath-imp.h"
21*627f7eb2Smrg 
22*627f7eb2Smrg __complex128
catanq(__complex128 x)23*627f7eb2Smrg catanq (__complex128 x)
24*627f7eb2Smrg {
25*627f7eb2Smrg   __complex128 res;
26*627f7eb2Smrg   int rcls = fpclassifyq (__real__ x);
27*627f7eb2Smrg   int icls = fpclassifyq (__imag__ x);
28*627f7eb2Smrg 
29*627f7eb2Smrg   if (__glibc_unlikely (rcls <= QUADFP_INFINITE || icls <= QUADFP_INFINITE))
30*627f7eb2Smrg     {
31*627f7eb2Smrg       if (rcls == QUADFP_INFINITE)
32*627f7eb2Smrg 	{
33*627f7eb2Smrg 	  __real__ res = copysignq (M_PI_2q, __real__ x);
34*627f7eb2Smrg 	  __imag__ res = copysignq (0, __imag__ x);
35*627f7eb2Smrg 	}
36*627f7eb2Smrg       else if (icls == QUADFP_INFINITE)
37*627f7eb2Smrg 	{
38*627f7eb2Smrg 	  if (rcls >= QUADFP_ZERO)
39*627f7eb2Smrg 	    __real__ res = copysignq (M_PI_2q, __real__ x);
40*627f7eb2Smrg 	  else
41*627f7eb2Smrg 	    __real__ res = nanq ("");
42*627f7eb2Smrg 	  __imag__ res = copysignq (0, __imag__ x);
43*627f7eb2Smrg 	}
44*627f7eb2Smrg       else if (icls == QUADFP_ZERO || icls == QUADFP_INFINITE)
45*627f7eb2Smrg 	{
46*627f7eb2Smrg 	  __real__ res = nanq ("");
47*627f7eb2Smrg 	  __imag__ res = copysignq (0, __imag__ x);
48*627f7eb2Smrg 	}
49*627f7eb2Smrg       else
50*627f7eb2Smrg 	{
51*627f7eb2Smrg 	  __real__ res = nanq ("");
52*627f7eb2Smrg 	  __imag__ res = nanq ("");
53*627f7eb2Smrg 	}
54*627f7eb2Smrg     }
55*627f7eb2Smrg   else if (__glibc_unlikely (rcls == QUADFP_ZERO && icls == QUADFP_ZERO))
56*627f7eb2Smrg     {
57*627f7eb2Smrg       res = x;
58*627f7eb2Smrg     }
59*627f7eb2Smrg   else
60*627f7eb2Smrg     {
61*627f7eb2Smrg       if (fabsq (__real__ x) >= 16 / FLT128_EPSILON
62*627f7eb2Smrg 	  || fabsq (__imag__ x) >= 16 / FLT128_EPSILON)
63*627f7eb2Smrg 	{
64*627f7eb2Smrg 	  __real__ res = copysignq (M_PI_2q, __real__ x);
65*627f7eb2Smrg 	  if (fabsq (__real__ x) <= 1)
66*627f7eb2Smrg 	    __imag__ res = 1 / __imag__ x;
67*627f7eb2Smrg 	  else if (fabsq (__imag__ x) <= 1)
68*627f7eb2Smrg 	    __imag__ res = __imag__ x / __real__ x / __real__ x;
69*627f7eb2Smrg 	  else
70*627f7eb2Smrg 	    {
71*627f7eb2Smrg 	      __float128 h = hypotq (__real__ x / 2, __imag__ x / 2);
72*627f7eb2Smrg 	      __imag__ res = __imag__ x / h / h / 4;
73*627f7eb2Smrg 	    }
74*627f7eb2Smrg 	}
75*627f7eb2Smrg       else
76*627f7eb2Smrg 	{
77*627f7eb2Smrg 	  __float128 den, absx, absy;
78*627f7eb2Smrg 
79*627f7eb2Smrg 	  absx = fabsq (__real__ x);
80*627f7eb2Smrg 	  absy = fabsq (__imag__ x);
81*627f7eb2Smrg 	  if (absx < absy)
82*627f7eb2Smrg 	    {
83*627f7eb2Smrg 	      __float128 t = absx;
84*627f7eb2Smrg 	      absx = absy;
85*627f7eb2Smrg 	      absy = t;
86*627f7eb2Smrg 	    }
87*627f7eb2Smrg 
88*627f7eb2Smrg 	  if (absy < FLT128_EPSILON / 2)
89*627f7eb2Smrg 	    {
90*627f7eb2Smrg 	      den = (1 - absx) * (1 + absx);
91*627f7eb2Smrg 	      if (den == 0)
92*627f7eb2Smrg 		den = 0;
93*627f7eb2Smrg 	    }
94*627f7eb2Smrg 	  else if (absx >= 1)
95*627f7eb2Smrg 	    den = (1 - absx) * (1 + absx) - absy * absy;
96*627f7eb2Smrg 	  else if (absx >= 0.75Q || absy >= 0.5Q)
97*627f7eb2Smrg 	    den = -__quadmath_x2y2m1q (absx, absy);
98*627f7eb2Smrg 	  else
99*627f7eb2Smrg 	    den = (1 - absx) * (1 + absx) - absy * absy;
100*627f7eb2Smrg 
101*627f7eb2Smrg 	  __real__ res = 0.5Q * atan2q (2 * __real__ x, den);
102*627f7eb2Smrg 
103*627f7eb2Smrg 	  if (fabsq (__imag__ x) == 1
104*627f7eb2Smrg 	      && fabsq (__real__ x) < FLT128_EPSILON * FLT128_EPSILON)
105*627f7eb2Smrg 	    __imag__ res = (copysignq (0.5Q, __imag__ x)
106*627f7eb2Smrg 			    * ((__float128) M_LN2q
107*627f7eb2Smrg 			       - logq (fabsq (__real__ x))));
108*627f7eb2Smrg 	  else
109*627f7eb2Smrg 	    {
110*627f7eb2Smrg 	      __float128 r2 = 0, num, f;
111*627f7eb2Smrg 
112*627f7eb2Smrg 	      if (fabsq (__real__ x) >= FLT128_EPSILON * FLT128_EPSILON)
113*627f7eb2Smrg 		r2 = __real__ x * __real__ x;
114*627f7eb2Smrg 
115*627f7eb2Smrg 	      num = __imag__ x + 1;
116*627f7eb2Smrg 	      num = r2 + num * num;
117*627f7eb2Smrg 
118*627f7eb2Smrg 	      den = __imag__ x - 1;
119*627f7eb2Smrg 	      den = r2 + den * den;
120*627f7eb2Smrg 
121*627f7eb2Smrg 	      f = num / den;
122*627f7eb2Smrg 	      if (f < 0.5Q)
123*627f7eb2Smrg 		__imag__ res = 0.25Q * logq (f);
124*627f7eb2Smrg 	      else
125*627f7eb2Smrg 		{
126*627f7eb2Smrg 		  num = 4 * __imag__ x;
127*627f7eb2Smrg 		  __imag__ res = 0.25Q * log1pq (num / den);
128*627f7eb2Smrg 		}
129*627f7eb2Smrg 	    }
130*627f7eb2Smrg 	}
131*627f7eb2Smrg 
132*627f7eb2Smrg       math_check_force_underflow_complex (res);
133*627f7eb2Smrg     }
134*627f7eb2Smrg 
135*627f7eb2Smrg   return res;
136*627f7eb2Smrg }
137