xref: /netbsd-src/external/gpl3/gcc.old/dist/libphobos/src/std/math.d (revision 82d56013d7b633d116a93943de88e08335357a7c)
1 // Written in the D programming language.
2 
3 /**
4  * Contains the elementary mathematical functions (powers, roots,
5  * and trigonometric functions), and low-level floating-point operations.
6  * Mathematical special functions are available in $(D std.mathspecial).
7  *
8 $(SCRIPT inhibitQuickIndex = 1;)
9 
10 $(DIVC quickindex,
11 $(BOOKTABLE ,
12 $(TR $(TH Category) $(TH Members) )
13 $(TR $(TDNW Constants) $(TD
14     $(MYREF E) $(MYREF PI) $(MYREF PI_2) $(MYREF PI_4) $(MYREF M_1_PI)
15     $(MYREF M_2_PI) $(MYREF M_2_SQRTPI) $(MYREF LN10) $(MYREF LN2)
16     $(MYREF LOG2) $(MYREF LOG2E) $(MYREF LOG2T) $(MYREF LOG10E)
17     $(MYREF SQRT2) $(MYREF SQRT1_2)
18 ))
19 $(TR $(TDNW Classics) $(TD
20     $(MYREF abs) $(MYREF fabs) $(MYREF sqrt) $(MYREF cbrt) $(MYREF hypot)
21     $(MYREF poly) $(MYREF nextPow2) $(MYREF truncPow2)
22 ))
23 $(TR $(TDNW Trigonometry) $(TD
24     $(MYREF sin) $(MYREF cos) $(MYREF tan) $(MYREF asin) $(MYREF acos)
25     $(MYREF atan) $(MYREF atan2) $(MYREF sinh) $(MYREF cosh) $(MYREF tanh)
26     $(MYREF asinh) $(MYREF acosh) $(MYREF atanh) $(MYREF expi)
27 ))
28 $(TR $(TDNW Rounding) $(TD
29     $(MYREF ceil) $(MYREF floor) $(MYREF round) $(MYREF lround)
30     $(MYREF trunc) $(MYREF rint) $(MYREF lrint) $(MYREF nearbyint)
31     $(MYREF rndtol) $(MYREF quantize)
32 ))
33 $(TR $(TDNW Exponentiation & Logarithms) $(TD
34     $(MYREF pow) $(MYREF exp) $(MYREF exp2) $(MYREF expm1) $(MYREF ldexp)
35     $(MYREF frexp) $(MYREF log) $(MYREF log2) $(MYREF log10) $(MYREF logb)
36     $(MYREF ilogb) $(MYREF log1p) $(MYREF scalbn)
37 ))
38 $(TR $(TDNW Modulus) $(TD
39     $(MYREF fmod) $(MYREF modf) $(MYREF remainder)
40 ))
41 $(TR $(TDNW Floating-point operations) $(TD
42     $(MYREF approxEqual) $(MYREF feqrel) $(MYREF fdim) $(MYREF fmax)
43     $(MYREF fmin) $(MYREF fma) $(MYREF nextDown) $(MYREF nextUp)
44     $(MYREF nextafter) $(MYREF NaN) $(MYREF getNaNPayload)
45     $(MYREF cmp)
46 ))
47 $(TR $(TDNW Introspection) $(TD
48     $(MYREF isFinite) $(MYREF isIdentical) $(MYREF isInfinity) $(MYREF isNaN)
49     $(MYREF isNormal) $(MYREF isSubnormal) $(MYREF signbit) $(MYREF sgn)
50     $(MYREF copysign) $(MYREF isPowerOf2)
51 ))
52 $(TR $(TDNW Complex Numbers) $(TD
53   $(MYREF abs) $(MYREF conj) $(MYREF sin) $(MYREF cos) $(MYREF expi)
54 ))
55 $(TR $(TDNW Hardware Control) $(TD
56     $(MYREF IeeeFlags) $(MYREF FloatingPointControl)
57 ))
58 )
59 )
60 
61  * The functionality closely follows the IEEE754-2008 standard for
62  * floating-point arithmetic, including the use of camelCase names rather
63  * than C99-style lower case names. All of these functions behave correctly
64  * when presented with an infinity or NaN.
65  *
66  * The following IEEE 'real' formats are currently supported:
67  * $(UL
68  * $(LI 64 bit Big-endian  'double' (eg PowerPC))
69  * $(LI 128 bit Big-endian 'quadruple' (eg SPARC))
70  * $(LI 64 bit Little-endian 'double' (eg x86-SSE2))
71  * $(LI 80 bit Little-endian, with implied bit 'real80' (eg x87, Itanium))
72  * $(LI 128 bit Little-endian 'quadruple' (not implemented on any known processor!))
73  * $(LI Non-IEEE 128 bit Big-endian 'doubledouble' (eg PowerPC) has partial support)
74  * )
75  * Unlike C, there is no global 'errno' variable. Consequently, almost all of
76  * these functions are pure nothrow.
77  *
78  * Status:
79  * The semantics and names of feqrel and approxEqual will be revised.
80  *
81  * Macros:
82  *      TABLE_SV = <table border="1" cellpadding="4" cellspacing="0">
83  *              <caption>Special Values</caption>
84  *              $0</table>
85  *      SVH = $(TR $(TH $1) $(TH $2))
86  *      SV  = $(TR $(TD $1) $(TD $2))
87  *      TH3 = $(TR $(TH $1) $(TH $2) $(TH $3))
88  *      TD3 = $(TR $(TD $1) $(TD $2) $(TD $3))
89  *      TABLE_DOMRG = <table border="1" cellpadding="4" cellspacing="0">
90  *              $(SVH Domain X, Range Y)
91                 $(SV $1, $2)
92  *              </table>
93  *      DOMAIN=$1
94  *      RANGE=$1
95 
96  *      NAN = $(RED NAN)
97  *      SUP = <span style="vertical-align:super;font-size:smaller">$0</span>
98  *      GAMMA = &#915;
99  *      THETA = &theta;
100  *      INTEGRAL = &#8747;
101  *      INTEGRATE = $(BIG &#8747;<sub>$(SMALL $1)</sub><sup>$2</sup>)
102  *      POWER = $1<sup>$2</sup>
103  *      SUB = $1<sub>$2</sub>
104  *      BIGSUM = $(BIG &Sigma; <sup>$2</sup><sub>$(SMALL $1)</sub>)
105  *      CHOOSE = $(BIG &#40;) <sup>$(SMALL $1)</sup><sub>$(SMALL $2)</sub> $(BIG &#41;)
106  *      PLUSMN = &plusmn;
107  *      INFIN = &infin;
108  *      PLUSMNINF = &plusmn;&infin;
109  *      PI = &pi;
110  *      LT = &lt;
111  *      GT = &gt;
112  *      SQRT = &radic;
113  *      HALF = &frac12;
114  *
115  * Copyright: Copyright Digital Mars 2000 - 2011.
116  *            D implementations of tan, atan, atan2, exp, expm1, exp2, log, log10, log1p,
117  *            log2, floor, ceil and lrint functions are based on the CEPHES math library,
118  *            which is Copyright (C) 2001 Stephen L. Moshier $(LT)steve@moshier.net$(GT)
119  *            and are incorporated herein by permission of the author.  The author
120  *            reserves the right to distribute this material elsewhere under different
121  *            copying permissions.  These modifications are distributed here under
122  *            the following terms:
123  * License:   $(HTTP www.boost.org/LICENSE_1_0.txt, Boost License 1.0).
124  * Authors:   $(HTTP digitalmars.com, Walter Bright), Don Clugston,
125  *            Conversion of CEPHES math library to D by Iain Buclaw and David Nadlinger
126  * Source: $(PHOBOSSRC std/_math.d)
127  */
128 
129 /* NOTE: This file has been patched from the original DMD distribution to
130  * work with the GDC compiler.
131  */
132 module std.math;
133 
134 version (Win64)
135 {
136     version (D_InlineAsm_X86_64)
137         version = Win64_DMD_InlineAsm;
138 }
139 
140 static import core.math;
141 static import core.stdc.math;
142 static import core.stdc.fenv;
143 import std.traits; // CommonType, isFloatingPoint, isIntegral, isSigned, isUnsigned, Largest, Unqual
144 
145 version (LDC)
146 {
147     import ldc.intrinsics;
148 }
149 
150 version (DigitalMars)
151 {
152     version = INLINE_YL2X;        // x87 has opcodes for these
153 }
154 
155 version (X86)       version = X86_Any;
156 version (X86_64)    version = X86_Any;
157 version (PPC)       version = PPC_Any;
158 version (PPC64)     version = PPC_Any;
159 version (MIPS32)    version = MIPS_Any;
160 version (MIPS64)    version = MIPS_Any;
161 version (AArch64)   version = ARM_Any;
162 version (ARM)       version = ARM_Any;
163 version (S390)      version = IBMZ_Any;
164 version (SPARC)     version = SPARC_Any;
165 version (SPARC64)   version = SPARC_Any;
166 version (SystemZ)   version = IBMZ_Any;
167 version (RISCV32)   version = RISCV_Any;
168 version (RISCV64)   version = RISCV_Any;
169 
170 version (D_InlineAsm_X86)
171 {
172     version = InlineAsm_X86_Any;
173 }
174 else version (D_InlineAsm_X86_64)
175 {
176     version = InlineAsm_X86_Any;
177 }
178 
179 version (X86_64) version = StaticallyHaveSSE;
180 version (X86) version (OSX) version = StaticallyHaveSSE;
181 
182 version (StaticallyHaveSSE)
183 {
184     private enum bool haveSSE = true;
185 }
186 else version (X86)
187 {
188     static import core.cpuid;
189     private alias haveSSE = core.cpuid.sse;
190 }
191 
192 version (unittest)
193 {
194     import core.stdc.stdio; // : sprintf;
195 
196     static if (real.sizeof > double.sizeof)
197         enum uint useDigits = 16;
198     else
199         enum uint useDigits = 15;
200 
201     /******************************************
202      * Compare floating point numbers to n decimal digits of precision.
203      * Returns:
204      *  1       match
205      *  0       nomatch
206      */
207 
208     private bool equalsDigit(real x, real y, uint ndigits)
209     {
210         if (signbit(x) != signbit(y))
211             return 0;
212 
213         if (isInfinity(x) && isInfinity(y))
214             return 1;
215         if (isInfinity(x) || isInfinity(y))
216             return 0;
217 
218         if (isNaN(x) && isNaN(y))
219             return 1;
220         if (isNaN(x) || isNaN(y))
221             return 0;
222 
223         char[30] bufx;
224         char[30] bufy;
225         assert(ndigits < bufx.length);
226 
227         int ix;
228         int iy;
229         version (CRuntime_Microsoft)
230             alias real_t = double;
231         else
232             alias real_t = real;
233         ix = sprintf(bufx.ptr, "%.*Lg", ndigits, cast(real_t) x);
234         iy = sprintf(bufy.ptr, "%.*Lg", ndigits, cast(real_t) y);
235         assert(ix < bufx.length && ix > 0);
236         assert(ix < bufy.length && ix > 0);
237 
238         return bufx[0 .. ix] == bufy[0 .. iy];
239     }
240 }
241 
242 
243 
244 package:
245 // The following IEEE 'real' formats are currently supported.
246 version (LittleEndian)
247 {
248     static assert(real.mant_dig == 53 || real.mant_dig == 64
249                || real.mant_dig == 113,
250       "Only 64-bit, 80-bit, and 128-bit reals"~
251       " are supported for LittleEndian CPUs");
252 }
253 else
254 {
255     static assert(real.mant_dig == 53 || real.mant_dig == 106
256                || real.mant_dig == 113,
257     "Only 64-bit and 128-bit reals are supported for BigEndian CPUs."~
258     " double-double reals have partial support");
259 }
260 
261 // Underlying format exposed through floatTraits
262 enum RealFormat
263 {
264     ieeeHalf,
265     ieeeSingle,
266     ieeeDouble,
267     ieeeExtended,   // x87 80-bit real
268     ieeeExtended53, // x87 real rounded to precision of double.
269     ibmExtended,    // IBM 128-bit extended
270     ieeeQuadruple,
271 }
272 
273 // Constants used for extracting the components of the representation.
274 // They supplement the built-in floating point properties.
275 template floatTraits(T)
276 {
277     // EXPMASK is a ushort mask to select the exponent portion (without sign)
278     // EXPSHIFT is the number of bits the exponent is left-shifted by in its ushort
279     // EXPBIAS is the exponent bias - 1 (exp == EXPBIAS yields ×2^-1).
280     // EXPPOS_SHORT is the index of the exponent when represented as a ushort array.
281     // SIGNPOS_BYTE is the index of the sign when represented as a ubyte array.
282     // RECIP_EPSILON is the value such that (smallest_subnormal) * RECIP_EPSILON == T.min_normal
283     enum T RECIP_EPSILON = (1/T.epsilon);
284     static if (T.mant_dig == 24)
285     {
286         // Single precision float
287         enum ushort EXPMASK = 0x7F80;
288         enum ushort EXPSHIFT = 7;
289         enum ushort EXPBIAS = 0x3F00;
290         enum uint EXPMASK_INT = 0x7F80_0000;
291         enum uint MANTISSAMASK_INT = 0x007F_FFFF;
292         enum realFormat = RealFormat.ieeeSingle;
293         version (LittleEndian)
294         {
295             enum EXPPOS_SHORT = 1;
296             enum SIGNPOS_BYTE = 3;
297         }
298         else
299         {
300             enum EXPPOS_SHORT = 0;
301             enum SIGNPOS_BYTE = 0;
302         }
303     }
304     else static if (T.mant_dig == 53)
305     {
306         static if (T.sizeof == 8)
307         {
308             // Double precision float, or real == double
309             enum ushort EXPMASK = 0x7FF0;
310             enum ushort EXPSHIFT = 4;
311             enum ushort EXPBIAS = 0x3FE0;
312             enum uint EXPMASK_INT = 0x7FF0_0000;
313             enum uint MANTISSAMASK_INT = 0x000F_FFFF; // for the MSB only
314             enum realFormat = RealFormat.ieeeDouble;
315             version (LittleEndian)
316             {
317                 enum EXPPOS_SHORT = 3;
318                 enum SIGNPOS_BYTE = 7;
319             }
320             else
321             {
322                 enum EXPPOS_SHORT = 0;
323                 enum SIGNPOS_BYTE = 0;
324             }
325         }
326         else static if (T.sizeof == 12)
327         {
328             // Intel extended real80 rounded to double
329             enum ushort EXPMASK = 0x7FFF;
330             enum ushort EXPSHIFT = 0;
331             enum ushort EXPBIAS = 0x3FFE;
332             enum realFormat = RealFormat.ieeeExtended53;
333             version (LittleEndian)
334             {
335                 enum EXPPOS_SHORT = 4;
336                 enum SIGNPOS_BYTE = 9;
337             }
338             else
339             {
340                 enum EXPPOS_SHORT = 0;
341                 enum SIGNPOS_BYTE = 0;
342             }
343         }
344         else
345             static assert(false, "No traits support for " ~ T.stringof);
346     }
347     else static if (T.mant_dig == 64)
348     {
349         // Intel extended real80
350         enum ushort EXPMASK = 0x7FFF;
351         enum ushort EXPSHIFT = 0;
352         enum ushort EXPBIAS = 0x3FFE;
353         enum realFormat = RealFormat.ieeeExtended;
354         version (LittleEndian)
355         {
356             enum EXPPOS_SHORT = 4;
357             enum SIGNPOS_BYTE = 9;
358         }
359         else
360         {
361             enum EXPPOS_SHORT = 0;
362             enum SIGNPOS_BYTE = 0;
363         }
364     }
365     else static if (T.mant_dig == 113)
366     {
367         // Quadruple precision float
368         enum ushort EXPMASK = 0x7FFF;
369         enum ushort EXPSHIFT = 0;
370         enum ushort EXPBIAS = 0x3FFE;
371         enum realFormat = RealFormat.ieeeQuadruple;
372         version (LittleEndian)
373         {
374             enum EXPPOS_SHORT = 7;
375             enum SIGNPOS_BYTE = 15;
376         }
377         else
378         {
379             enum EXPPOS_SHORT = 0;
380             enum SIGNPOS_BYTE = 0;
381         }
382     }
383     else static if (T.mant_dig == 106)
384     {
385         // IBM Extended doubledouble
386         enum ushort EXPMASK = 0x7FF0;
387         enum ushort EXPSHIFT = 4;
388         enum realFormat = RealFormat.ibmExtended;
389 
390         // For IBM doubledouble the larger magnitude double comes first.
391         // It's really a double[2] and arrays don't index differently
392         // between little and big-endian targets.
393         enum DOUBLEPAIR_MSB = 0;
394         enum DOUBLEPAIR_LSB = 1;
395 
396         // The exponent/sign byte is for most significant part.
397         version (LittleEndian)
398         {
399             enum EXPPOS_SHORT = 3;
400             enum SIGNPOS_BYTE = 7;
401         }
402         else
403         {
404             enum EXPPOS_SHORT = 0;
405             enum SIGNPOS_BYTE = 0;
406         }
407     }
408     else
409         static assert(false, "No traits support for " ~ T.stringof);
410 }
411 
412 // These apply to all floating-point types
413 version (LittleEndian)
414 {
415     enum MANTISSA_LSB = 0;
416     enum MANTISSA_MSB = 1;
417 }
418 else
419 {
420     enum MANTISSA_LSB = 1;
421     enum MANTISSA_MSB = 0;
422 }
423 
424 // Common code for math implementations.
425 
426 // Helper for floor/ceil
427 T floorImpl(T)(const T x) @trusted pure nothrow @nogc
428 {
429     alias F = floatTraits!(T);
430     // Take care not to trigger library calls from the compiler,
431     // while ensuring that we don't get defeated by some optimizers.
432     union floatBits
433     {
434         T rv;
435         ushort[T.sizeof/2] vu;
436 
437         // Other kinds of extractors for real formats.
438         static if (F.realFormat == RealFormat.ieeeSingle)
439             int vi;
440     }
441     floatBits y = void;
442     y.rv = x;
443 
444     // Find the exponent (power of 2)
445     // Do this by shifting the raw value so that the exponent lies in the low bits,
446     // then mask out the sign bit, and subtract the bias.
447     static if (F.realFormat == RealFormat.ieeeSingle)
448     {
449         int exp = ((y.vi >> (T.mant_dig - 1)) & 0xff) - 0x7f;
450     }
451     else static if (F.realFormat == RealFormat.ieeeDouble)
452     {
453         int exp = ((y.vu[F.EXPPOS_SHORT] >> 4) & 0x7ff) - 0x3ff;
454 
455         version (LittleEndian)
456             int pos = 0;
457         else
458             int pos = 3;
459     }
460     else static if (F.realFormat == RealFormat.ieeeExtended)
461     {
462         int exp = (y.vu[F.EXPPOS_SHORT] & 0x7fff) - 0x3fff;
463 
464         version (LittleEndian)
465             int pos = 0;
466         else
467             int pos = 4;
468     }
469     else static if (F.realFormat == RealFormat.ieeeQuadruple)
470     {
471         int exp = (y.vu[F.EXPPOS_SHORT] & 0x7fff) - 0x3fff;
472 
473         version (LittleEndian)
474             int pos = 0;
475         else
476             int pos = 7;
477         }
478     else
479         static assert(false, "Not implemented for this architecture");
480 
481     if (exp < 0)
482     {
483         if (x < 0.0)
484             return -1.0;
485         else
486             return 0.0;
487     }
488 
489     static if (F.realFormat == RealFormat.ieeeSingle)
490     {
491         if (exp < (T.mant_dig - 1))
492         {
493             // Clear all bits representing the fraction part.
494             const uint fraction_mask = F.MANTISSAMASK_INT >> exp;
495 
496             if ((y.vi & fraction_mask) != 0)
497             {
498                 // If 'x' is negative, then first substract 1.0 from the value.
499                 if (y.vi < 0)
500                     y.vi += 0x00800000 >> exp;
501                 y.vi &= ~fraction_mask;
502             }
503         }
504     }
505     else
506     {
507         exp = (T.mant_dig - 1) - exp;
508 
509         // Zero 16 bits at a time.
510         while (exp >= 16)
511         {
512             version (LittleEndian)
513                 y.vu[pos++] = 0;
514             else
515                 y.vu[pos--] = 0;
516             exp -= 16;
517         }
518 
519         // Clear the remaining bits.
520         if (exp > 0)
521             y.vu[pos] &= 0xffff ^ ((1 << exp) - 1);
522 
523         if ((x < 0.0) && (x != y.rv))
524             y.rv -= 1.0;
525     }
526 
527     return y.rv;
528 }
529 
530 public:
531 
532 // Values obtained from Wolfram Alpha. 116 bits ought to be enough for anybody.
533 // Wolfram Alpha LLC. 2011. Wolfram|Alpha. http://www.wolframalpha.com/input/?i=e+in+base+16 (access July 6, 2011).
534 enum real E =          0x1.5bf0a8b1457695355fb8ac404e7a8p+1L; /** e = 2.718281... */
535 enum real LOG2T =      0x1.a934f0979a3715fc9257edfe9b5fbp+1L; /** $(SUB log, 2)10 = 3.321928... */
536 enum real LOG2E =      0x1.71547652b82fe1777d0ffda0d23a8p+0L; /** $(SUB log, 2)e = 1.442695... */
537 enum real LOG2 =       0x1.34413509f79fef311f12b35816f92p-2L; /** $(SUB log, 10)2 = 0.301029... */
538 enum real LOG10E =     0x1.bcb7b1526e50e32a6ab7555f5a67cp-2L; /** $(SUB log, 10)e = 0.434294... */
539 enum real LN2 =        0x1.62e42fefa39ef35793c7673007e5fp-1L; /** ln 2  = 0.693147... */
540 enum real LN10 =       0x1.26bb1bbb5551582dd4adac5705a61p+1L; /** ln 10 = 2.302585... */
541 enum real PI =         0x1.921fb54442d18469898cc51701b84p+1L; /** $(_PI) = 3.141592... */
542 enum real PI_2 =       PI/2;                                  /** $(PI) / 2 = 1.570796... */
543 enum real PI_4 =       PI/4;                                  /** $(PI) / 4 = 0.785398... */
544 enum real M_1_PI =     0x1.45f306dc9c882a53f84eafa3ea69cp-2L; /** 1 / $(PI) = 0.318309... */
545 enum real M_2_PI =     2*M_1_PI;                              /** 2 / $(PI) = 0.636619... */
546 enum real M_2_SQRTPI = 0x1.20dd750429b6d11ae3a914fed7fd8p+0L; /** 2 / $(SQRT)$(PI) = 1.128379... */
547 enum real SQRT2 =      0x1.6a09e667f3bcc908b2fb1366ea958p+0L; /** $(SQRT)2 = 1.414213... */
548 enum real SQRT1_2 =    SQRT2/2;                               /** $(SQRT)$(HALF) = 0.707106... */
549 // Note: Make sure the magic numbers in compiler backend for x87 match these.
550 
551 
552 /***********************************
553  * Calculates the absolute value of a number
554  *
555  * Params:
556  *     Num = (template parameter) type of number
557  *       x = real number value
558  *       z = complex number value
559  *       y = imaginary number value
560  *
561  * Returns:
562  *     The absolute value of the number.  If floating-point or integral,
563  *     the return type will be the same as the input; if complex or
564  *     imaginary, the returned value will be the corresponding floating
565  *     point type.
566  *
567  * For complex numbers, abs(z) = sqrt( $(POWER z.re, 2) + $(POWER z.im, 2) )
568  * = hypot(z.re, z.im).
569  */
570 Num abs(Num)(Num x) @safe pure nothrow
571 if (is(typeof(Num.init >= 0)) && is(typeof(-Num.init)) &&
572     !(is(Num* : const(ifloat*)) || is(Num* : const(idouble*))
573     || is(Num* : const(ireal*))))
574 {
575     static if (isFloatingPoint!(Num))
576         return fabs(x);
577     else
578         return x >= 0 ? x : -x;
579 }
580 
581 /// ditto
582 auto abs(Num)(Num z) @safe pure nothrow @nogc
583 if (is(Num* : const(cfloat*)) || is(Num* : const(cdouble*))
584     || is(Num* : const(creal*)))
585 {
586     return hypot(z.re, z.im);
587 }
588 
589 /// ditto
590 auto abs(Num)(Num y) @safe pure nothrow @nogc
591 if (is(Num* : const(ifloat*)) || is(Num* : const(idouble*))
592     || is(Num* : const(ireal*)))
593 {
594     return fabs(y.im);
595 }
596 
597 /// ditto
598 @safe pure nothrow @nogc unittest
599 {
600     assert(isIdentical(abs(-0.0L), 0.0L));
601     assert(isNaN(abs(real.nan)));
602     assert(abs(-real.infinity) == real.infinity);
603     assert(abs(-3.2Li) == 3.2L);
604     assert(abs(71.6Li) == 71.6L);
605     assert(abs(-56) == 56);
606     assert(abs(2321312L)  == 2321312L);
607     assert(abs(-1L+1i) == sqrt(2.0L));
608 }
609 
610 @safe pure nothrow @nogc unittest
611 {
612     import std.meta : AliasSeq;
613     foreach (T; AliasSeq!(float, double, real))
614     {
615         T f = 3;
616         assert(abs(f) == f);
617         assert(abs(-f) == f);
618     }
619     foreach (T; AliasSeq!(cfloat, cdouble, creal))
620     {
621         T f = -12+3i;
622         assert(abs(f) == hypot(f.re, f.im));
623         assert(abs(-f) == hypot(f.re, f.im));
624     }
625 }
626 
627 /***********************************
628  * Complex conjugate
629  *
630  *  conj(x + iy) = x - iy
631  *
632  * Note that z * conj(z) = $(POWER z.re, 2) - $(POWER z.im, 2)
633  * is always a real number
634  */
635 auto conj(Num)(Num z) @safe pure nothrow @nogc
636 if (is(Num* : const(cfloat*)) || is(Num* : const(cdouble*))
637     || is(Num* : const(creal*)))
638 {
639     //FIXME
640     //Issue 14206
641     static if (is(Num* : const(cdouble*)))
642         return cast(cdouble) conj(cast(creal) z);
643     else
644         return z.re - z.im*1fi;
645 }
646 
647 /** ditto */
648 auto conj(Num)(Num y) @safe pure nothrow @nogc
649 if (is(Num* : const(ifloat*)) || is(Num* : const(idouble*))
650     || is(Num* : const(ireal*)))
651 {
652     return -y;
653 }
654 
655 ///
656 @safe pure nothrow @nogc unittest
657 {
658     creal c = 7 + 3Li;
659     assert(conj(c) == 7-3Li);
660     ireal z = -3.2Li;
661     assert(conj(z) == -z);
662 }
663 //Issue 14206
664 @safe pure nothrow @nogc unittest
665 {
666     cdouble c = 7 + 3i;
667     assert(conj(c) == 7-3i);
668     idouble z = -3.2i;
669     assert(conj(z) == -z);
670 }
671 //Issue 14206
672 @safe pure nothrow @nogc unittest
673 {
674     cfloat c = 7f + 3fi;
675     assert(conj(c) == 7f-3fi);
676     ifloat z = -3.2fi;
677     assert(conj(z) == -z);
678 }
679 
680 /***********************************
681  * Returns cosine of x. x is in radians.
682  *
683  *      $(TABLE_SV
684  *      $(TR $(TH x)                 $(TH cos(x)) $(TH invalid?))
685  *      $(TR $(TD $(NAN))            $(TD $(NAN)) $(TD yes)     )
686  *      $(TR $(TD $(PLUSMN)$(INFIN)) $(TD $(NAN)) $(TD yes)     )
687  *      )
688  * Bugs:
689  *      Results are undefined if |x| >= $(POWER 2,64).
690  */
691 
692 real cos(real x) @safe pure nothrow @nogc { pragma(inline, true); return core.math.cos(x); }
693 //FIXME
694 ///ditto
695 double cos(double x) @safe pure nothrow @nogc { return cos(cast(real) x); }
696 //FIXME
697 ///ditto
698 float cos(float x) @safe pure nothrow @nogc { return cos(cast(real) x); }
699 
700 @safe unittest
701 {
702     real function(real) pcos = &cos;
703     assert(pcos != null);
704 }
705 
706 /***********************************
707  * Returns $(HTTP en.wikipedia.org/wiki/Sine, sine) of x. x is in $(HTTP en.wikipedia.org/wiki/Radian, radians).
708  *
709  *      $(TABLE_SV
710  *      $(TH3 x           ,  sin(x)      ,  invalid?)
711  *      $(TD3 $(NAN)      ,  $(NAN)      ,  yes     )
712  *      $(TD3 $(PLUSMN)0.0,  $(PLUSMN)0.0,  no      )
713  *      $(TD3 $(PLUSMNINF),  $(NAN)      ,  yes     )
714  *      )
715  *
716  * Params:
717  *      x = angle in radians (not degrees)
718  * Returns:
719  *      sine of x
720  * See_Also:
721  *      $(MYREF cos), $(MYREF tan), $(MYREF asin)
722  * Bugs:
723  *      Results are undefined if |x| >= $(POWER 2,64).
724  */
725 
726 real sin(real x) @safe pure nothrow @nogc { pragma(inline, true); return core.math.sin(x); }
727 //FIXME
728 ///ditto
729 double sin(double x) @safe pure nothrow @nogc { return sin(cast(real) x); }
730 //FIXME
731 ///ditto
732 float sin(float x) @safe pure nothrow @nogc { return sin(cast(real) x); }
733 
734 ///
735 @safe unittest
736 {
737     import std.math : sin, PI;
738     import std.stdio : writefln;
739 
740     void someFunc()
741     {
742       real x = 30.0;
743       auto result = sin(x * (PI / 180)); // convert degrees to radians
744       writefln("The sine of %s degrees is %s", x, result);
745     }
746 }
747 
748 @safe unittest
749 {
750     real function(real) psin = &sin;
751     assert(psin != null);
752 }
753 
754 /***********************************
755  *  Returns sine for complex and imaginary arguments.
756  *
757  *  sin(z) = sin(z.re)*cosh(z.im) + cos(z.re)*sinh(z.im)i
758  *
759  * If both sin($(THETA)) and cos($(THETA)) are required,
760  * it is most efficient to use expi($(THETA)).
761  */
762 creal sin(creal z) @safe pure nothrow @nogc
763 {
764     const creal cs = expi(z.re);
765     const creal csh = coshisinh(z.im);
766     return cs.im * csh.re + cs.re * csh.im * 1i;
767 }
768 
769 /** ditto */
770 ireal sin(ireal y) @safe pure nothrow @nogc
771 {
772     return cosh(y.im)*1i;
773 }
774 
775 ///
776 @safe pure nothrow @nogc unittest
777 {
778   assert(sin(0.0+0.0i) == 0.0);
779   assert(sin(2.0+0.0i) == sin(2.0L) );
780 }
781 
782 /***********************************
783  *  cosine, complex and imaginary
784  *
785  *  cos(z) = cos(z.re)*cosh(z.im) - sin(z.re)*sinh(z.im)i
786  */
787 creal cos(creal z) @safe pure nothrow @nogc
788 {
789     const creal cs = expi(z.re);
790     const creal csh = coshisinh(z.im);
791     return cs.re * csh.re - cs.im * csh.im * 1i;
792 }
793 
794 /** ditto */
795 real cos(ireal y) @safe pure nothrow @nogc
796 {
797     return cosh(y.im);
798 }
799 
800 ///
801 @safe pure nothrow @nogc unittest
802 {
803     assert(cos(0.0+0.0i)==1.0);
804     assert(cos(1.3L+0.0i)==cos(1.3L));
805     assert(cos(5.2Li)== cosh(5.2L));
806 }
807 
808 /****************************************************************************
809  * Returns tangent of x. x is in radians.
810  *
811  *      $(TABLE_SV
812  *      $(TR $(TH x)             $(TH tan(x))       $(TH invalid?))
813  *      $(TR $(TD $(NAN))        $(TD $(NAN))       $(TD yes))
814  *      $(TR $(TD $(PLUSMN)0.0)  $(TD $(PLUSMN)0.0) $(TD no))
815  *      $(TR $(TD $(PLUSMNINF))  $(TD $(NAN))       $(TD yes))
816  *      )
817  */
818 
819 real tan(real x) @trusted pure nothrow @nogc
820 {
821     version (D_InlineAsm_X86)
822     {
823     asm pure nothrow @nogc
824     {
825         fld     x[EBP]                  ; // load theta
826         fxam                            ; // test for oddball values
827         fstsw   AX                      ;
828         sahf                            ;
829         jc      trigerr                 ; // x is NAN, infinity, or empty
830                                           // 387's can handle subnormals
831 SC18:   fptan                           ;
832         fstsw   AX                      ;
833         sahf                            ;
834         jnp     Clear1                  ; // C2 = 1 (x is out of range)
835 
836         // Do argument reduction to bring x into range
837         fldpi                           ;
838         fxch                            ;
839 SC17:   fprem1                          ;
840         fstsw   AX                      ;
841         sahf                            ;
842         jp      SC17                    ;
843         fstp    ST(1)                   ; // remove pi from stack
844         jmp     SC18                    ;
845 
846 trigerr:
847         jnp     Lret                    ; // if theta is NAN, return theta
848         fstp    ST(0)                   ; // dump theta
849     }
850     return real.nan;
851 
852 Clear1: asm pure nothrow @nogc{
853         fstp    ST(0)                   ; // dump X, which is always 1
854     }
855 
856 Lret: {}
857     }
858     else version (D_InlineAsm_X86_64)
859     {
860         version (Win64)
861         {
862             asm pure nothrow @nogc
863             {
864                 fld     real ptr [RCX]  ; // load theta
865             }
866         }
867         else
868         {
869             asm pure nothrow @nogc
870             {
871                 fld     x[RBP]          ; // load theta
872             }
873         }
874     asm pure nothrow @nogc
875     {
876         fxam                            ; // test for oddball values
877         fstsw   AX                      ;
878         test    AH,1                    ;
879         jnz     trigerr                 ; // x is NAN, infinity, or empty
880                                           // 387's can handle subnormals
881 SC18:   fptan                           ;
882         fstsw   AX                      ;
883         test    AH,4                    ;
884         jz      Clear1                  ; // C2 = 1 (x is out of range)
885 
886         // Do argument reduction to bring x into range
887         fldpi                           ;
888         fxch                            ;
889 SC17:   fprem1                          ;
890         fstsw   AX                      ;
891         test    AH,4                    ;
892         jnz     SC17                    ;
893         fstp    ST(1)                   ; // remove pi from stack
894         jmp     SC18                    ;
895 
896 trigerr:
897         test    AH,4                    ;
898         jz      Lret                    ; // if theta is NAN, return theta
899         fstp    ST(0)                   ; // dump theta
900     }
901     return real.nan;
902 
903 Clear1: asm pure nothrow @nogc{
904         fstp    ST(0)                   ; // dump X, which is always 1
905     }
906 
907 Lret: {}
908     }
909     else
910     {
911         // Coefficients for tan(x) and PI/4 split into three parts.
912         static if (floatTraits!real.realFormat == RealFormat.ieeeQuadruple)
913         {
914             static immutable real[6] P = [
915                 2.883414728874239697964612246732416606301E10L,
916                 -2.307030822693734879744223131873392503321E9L,
917                 5.160188250214037865511600561074819366815E7L,
918                 -4.249691853501233575668486667664718192660E5L,
919                 1.272297782199996882828849455156962260810E3L,
920                 -9.889929415807650724957118893791829849557E-1L
921             ];
922             static immutable real[7] Q = [
923                 8.650244186622719093893836740197250197602E10L,
924                 -4.152206921457208101480801635640958361612E10L,
925                 2.758476078803232151774723646710890525496E9L,
926                 -5.733709132766856723608447733926138506824E7L,
927                 4.529422062441341616231663543669583527923E5L,
928                 -1.317243702830553658702531997959756728291E3L,
929                 1.0
930             ];
931 
932             enum real P1 =
933                 7.853981633974483067550664827649598009884357452392578125E-1L;
934             enum real P2 =
935                 2.8605943630549158983813312792950660807511260829685741796657E-18L;
936             enum real P3 =
937                 2.1679525325309452561992610065108379921905808E-35L;
938         }
939         else
940         {
941             static immutable real[3] P = [
942                -1.7956525197648487798769E7L,
943                 1.1535166483858741613983E6L,
944                -1.3093693918138377764608E4L,
945             ];
946             static immutable real[5] Q = [
947                -5.3869575592945462988123E7L,
948                 2.5008380182335791583922E7L,
949                -1.3208923444021096744731E6L,
950                 1.3681296347069295467845E4L,
951                 1.0000000000000000000000E0L,
952             ];
953 
954             enum real P1 = 7.853981554508209228515625E-1L;
955             enum real P2 = 7.946627356147928367136046290398E-9L;
956             enum real P3 = 3.061616997868382943065164830688E-17L;
957         }
958 
959         // Special cases.
960         if (x == 0.0 || isNaN(x))
961             return x;
962         if (isInfinity(x))
963             return real.nan;
964 
965         // Make argument positive but save the sign.
966         bool sign = false;
967         if (signbit(x))
968         {
969             sign = true;
970             x = -x;
971         }
972 
973         // Compute x mod PI/4.
974         real y = floor(x / PI_4);
975         // Strip high bits of integer part.
976         real z = ldexp(y, -4);
977         // Compute y - 16 * (y / 16).
978         z = y - ldexp(floor(z), 4);
979 
980         // Integer and fraction part modulo one octant.
981         int j = cast(int)(z);
982 
983         // Map zeros and singularities to origin.
984         if (j & 1)
985         {
986             j += 1;
987             y += 1.0;
988         }
989 
990         z = ((x - y * P1) - y * P2) - y * P3;
991         const real zz = z * z;
992 
993         if (zz > 1.0e-20L)
994             y = z + z * (zz * poly(zz, P) / poly(zz, Q));
995         else
996             y = z;
997 
998         if (j & 2)
999             y = -1.0 / y;
1000 
1001         return (sign) ? -y : y;
1002     }
1003 }
1004 
1005 @safe nothrow @nogc unittest
1006 {
1007     static real[2][] vals =     // angle,tan
1008         [
1009          [   0,   0],
1010          [   .5,  .5463024898],
1011          [   1,   1.557407725],
1012          [   1.5, 14.10141995],
1013          [   2,  -2.185039863],
1014          [   2.5,-.7470222972],
1015          [   3,  -.1425465431],
1016          [   3.5, .3745856402],
1017          [   4,   1.157821282],
1018          [   4.5, 4.637332055],
1019          [   5,  -3.380515006],
1020          [   5.5,-.9955840522],
1021          [   6,  -.2910061914],
1022          [   6.5, .2202772003],
1023          [   10,  .6483608275],
1024 
1025          // special angles
1026          [   PI_4,   1],
1027          //[   PI_2,   real.infinity], // PI_2 is not _exactly_ pi/2.
1028          [   3*PI_4, -1],
1029          [   PI,     0],
1030          [   5*PI_4, 1],
1031          //[   3*PI_2, -real.infinity],
1032          [   7*PI_4, -1],
1033          [   2*PI,   0],
1034          ];
1035     int i;
1036 
1037     for (i = 0; i < vals.length; i++)
1038     {
1039         real x = vals[i][0];
1040         real r = vals[i][1];
1041         real t = tan(x);
1042 
1043         //printf("tan(%Lg) = %Lg, should be %Lg\n", x, t, r);
1044         if (!isIdentical(r, t)) assert(fabs(r-t) <= .0000001);
1045 
1046         x = -x;
1047         r = -r;
1048         t = tan(x);
1049         //printf("tan(%Lg) = %Lg, should be %Lg\n", x, t, r);
1050         if (!isIdentical(r, t) && !(r != r && t != t)) assert(fabs(r-t) <= .0000001);
1051     }
1052     // overflow
1053     assert(isNaN(tan(real.infinity)));
1054     assert(isNaN(tan(-real.infinity)));
1055     // NaN propagation
1056     assert(isIdentical( tan(NaN(0x0123L)), NaN(0x0123L) ));
1057 }
1058 
1059 @system unittest
1060 {
1061     assert(equalsDigit(tan(PI / 3), std.math.sqrt(3.0), useDigits));
1062 }
1063 
1064 /***************
1065  * Calculates the arc cosine of x,
1066  * returning a value ranging from 0 to $(PI).
1067  *
1068  *      $(TABLE_SV
1069  *      $(TR $(TH x)         $(TH acos(x)) $(TH invalid?))
1070  *      $(TR $(TD $(GT)1.0)  $(TD $(NAN))  $(TD yes))
1071  *      $(TR $(TD $(LT)-1.0) $(TD $(NAN))  $(TD yes))
1072  *      $(TR $(TD $(NAN))    $(TD $(NAN))  $(TD yes))
1073  *  )
1074  */
1075 real acos(real x) @safe pure nothrow @nogc
1076 {
1077     return atan2(sqrt(1-x*x), x);
1078 }
1079 
1080 /// ditto
1081 double acos(double x) @safe pure nothrow @nogc { return acos(cast(real) x); }
1082 
1083 /// ditto
1084 float acos(float x) @safe pure nothrow @nogc  { return acos(cast(real) x); }
1085 
1086 @system unittest
1087 {
1088     assert(equalsDigit(acos(0.5), std.math.PI / 3, useDigits));
1089 }
1090 
1091 /***************
1092  * Calculates the arc sine of x,
1093  * returning a value ranging from -$(PI)/2 to $(PI)/2.
1094  *
1095  *      $(TABLE_SV
1096  *      $(TR $(TH x)            $(TH asin(x))      $(TH invalid?))
1097  *      $(TR $(TD $(PLUSMN)0.0) $(TD $(PLUSMN)0.0) $(TD no))
1098  *      $(TR $(TD $(GT)1.0)     $(TD $(NAN))       $(TD yes))
1099  *      $(TR $(TD $(LT)-1.0)    $(TD $(NAN))       $(TD yes))
1100  *  )
1101  */
1102 real asin(real x) @safe pure nothrow @nogc
1103 {
1104     return atan2(x, sqrt(1-x*x));
1105 }
1106 
1107 /// ditto
1108 double asin(double x) @safe pure nothrow @nogc { return asin(cast(real) x); }
1109 
1110 /// ditto
1111 float asin(float x) @safe pure nothrow @nogc  { return asin(cast(real) x); }
1112 
1113 @system unittest
1114 {
1115     assert(equalsDigit(asin(0.5), PI / 6, useDigits));
1116 }
1117 
1118 /***************
1119  * Calculates the arc tangent of x,
1120  * returning a value ranging from -$(PI)/2 to $(PI)/2.
1121  *
1122  *      $(TABLE_SV
1123  *      $(TR $(TH x)                 $(TH atan(x))      $(TH invalid?))
1124  *      $(TR $(TD $(PLUSMN)0.0)      $(TD $(PLUSMN)0.0) $(TD no))
1125  *      $(TR $(TD $(PLUSMN)$(INFIN)) $(TD $(NAN))       $(TD yes))
1126  *  )
1127  */
1128 real atan(real x) @safe pure nothrow @nogc
1129 {
1130     version (InlineAsm_X86_Any)
1131     {
1132         return atan2(x, 1.0L);
1133     }
1134     else
1135     {
1136         // Coefficients for atan(x)
1137         static if (floatTraits!real.realFormat == RealFormat.ieeeQuadruple)
1138         {
1139             static immutable real[9] P = [
1140                 -6.880597774405940432145577545328795037141E2L,
1141                 -2.514829758941713674909996882101723647996E3L,
1142                 -3.696264445691821235400930243493001671932E3L,
1143                 -2.792272753241044941703278827346430350236E3L,
1144                 -1.148164399808514330375280133523543970854E3L,
1145                 -2.497759878476618348858065206895055957104E2L,
1146                 -2.548067867495502632615671450650071218995E1L,
1147                 -8.768423468036849091777415076702113400070E-1L,
1148                 -6.635810778635296712545011270011752799963E-4L
1149             ];
1150             static immutable real[9] Q = [
1151                 2.064179332321782129643673263598686441900E3L,
1152                 8.782996876218210302516194604424986107121E3L,
1153                 1.547394317752562611786521896296215170819E4L,
1154                 1.458510242529987155225086911411015961174E4L,
1155                 7.928572347062145288093560392463784743935E3L,
1156                 2.494680540950601626662048893678584497900E3L,
1157                 4.308348370818927353321556740027020068897E2L,
1158                 3.566239794444800849656497338030115886153E1L,
1159                 1.0
1160             ];
1161         }
1162         else
1163         {
1164             static immutable real[5] P = [
1165                -5.0894116899623603312185E1L,
1166                -9.9988763777265819915721E1L,
1167                -6.3976888655834347413154E1L,
1168                -1.4683508633175792446076E1L,
1169                -8.6863818178092187535440E-1L,
1170             ];
1171             static immutable real[6] Q = [
1172                 1.5268235069887081006606E2L,
1173                 3.9157570175111990631099E2L,
1174                 3.6144079386152023162701E2L,
1175                 1.4399096122250781605352E2L,
1176                 2.2981886733594175366172E1L,
1177                 1.0000000000000000000000E0L,
1178             ];
1179         }
1180 
1181         // tan(PI/8)
1182         enum real TAN_PI_8 = 0.414213562373095048801688724209698078569672L;
1183         // tan(3 * PI/8)
1184         enum real TAN3_PI_8 = 2.414213562373095048801688724209698078569672L;
1185 
1186         // Special cases.
1187         if (x == 0.0)
1188             return x;
1189         if (isInfinity(x))
1190             return copysign(PI_2, x);
1191 
1192         // Make argument positive but save the sign.
1193         bool sign = false;
1194         if (signbit(x))
1195         {
1196             sign = true;
1197             x = -x;
1198         }
1199 
1200         // Range reduction.
1201         real y;
1202         if (x > TAN3_PI_8)
1203         {
1204             y = PI_2;
1205             x = -(1.0 / x);
1206         }
1207         else if (x > TAN_PI_8)
1208         {
1209             y = PI_4;
1210             x = (x - 1.0)/(x + 1.0);
1211         }
1212         else
1213             y = 0.0;
1214 
1215         // Rational form in x^^2.
1216         const real z = x * x;
1217         y = y + (poly(z, P) / poly(z, Q)) * z * x + x;
1218 
1219         return (sign) ? -y : y;
1220     }
1221 }
1222 
1223 /// ditto
1224 double atan(double x) @safe pure nothrow @nogc { return atan(cast(real) x); }
1225 
1226 /// ditto
1227 float atan(float x)  @safe pure nothrow @nogc { return atan(cast(real) x); }
1228 
1229 @system unittest
1230 {
1231     assert(equalsDigit(atan(std.math.sqrt(3.0)), PI / 3, useDigits));
1232 }
1233 
1234 /***************
1235  * Calculates the arc tangent of y / x,
1236  * returning a value ranging from -$(PI) to $(PI).
1237  *
1238  *      $(TABLE_SV
1239  *      $(TR $(TH y)                 $(TH x)            $(TH atan(y, x)))
1240  *      $(TR $(TD $(NAN))            $(TD anything)     $(TD $(NAN)) )
1241  *      $(TR $(TD anything)          $(TD $(NAN))       $(TD $(NAN)) )
1242  *      $(TR $(TD $(PLUSMN)0.0)      $(TD $(GT)0.0)     $(TD $(PLUSMN)0.0) )
1243  *      $(TR $(TD $(PLUSMN)0.0)      $(TD +0.0)         $(TD $(PLUSMN)0.0) )
1244  *      $(TR $(TD $(PLUSMN)0.0)      $(TD $(LT)0.0)     $(TD $(PLUSMN)$(PI)))
1245  *      $(TR $(TD $(PLUSMN)0.0)      $(TD -0.0)         $(TD $(PLUSMN)$(PI)))
1246  *      $(TR $(TD $(GT)0.0)          $(TD $(PLUSMN)0.0) $(TD $(PI)/2) )
1247  *      $(TR $(TD $(LT)0.0)          $(TD $(PLUSMN)0.0) $(TD -$(PI)/2) )
1248  *      $(TR $(TD $(GT)0.0)          $(TD $(INFIN))     $(TD $(PLUSMN)0.0) )
1249  *      $(TR $(TD $(PLUSMN)$(INFIN)) $(TD anything)     $(TD $(PLUSMN)$(PI)/2))
1250  *      $(TR $(TD $(GT)0.0)          $(TD -$(INFIN))    $(TD $(PLUSMN)$(PI)) )
1251  *      $(TR $(TD $(PLUSMN)$(INFIN)) $(TD $(INFIN))     $(TD $(PLUSMN)$(PI)/4))
1252  *      $(TR $(TD $(PLUSMN)$(INFIN)) $(TD -$(INFIN))    $(TD $(PLUSMN)3$(PI)/4))
1253  *      )
1254  */
1255 real atan2(real y, real x) @trusted pure nothrow @nogc
1256 {
1257     version (InlineAsm_X86_Any)
1258     {
1259         version (Win64)
1260         {
1261             asm pure nothrow @nogc {
1262                 naked;
1263                 fld real ptr [RDX]; // y
1264                 fld real ptr [RCX]; // x
1265                 fpatan;
1266                 ret;
1267             }
1268         }
1269         else
1270         {
1271             asm pure nothrow @nogc {
1272                 fld y;
1273                 fld x;
1274                 fpatan;
1275             }
1276         }
1277     }
1278     else
1279     {
1280         // Special cases.
1281         if (isNaN(x) || isNaN(y))
1282             return real.nan;
1283         if (y == 0.0)
1284         {
1285             if (x >= 0 && !signbit(x))
1286                 return copysign(0, y);
1287             else
1288                 return copysign(PI, y);
1289         }
1290         if (x == 0.0)
1291             return copysign(PI_2, y);
1292         if (isInfinity(x))
1293         {
1294             if (signbit(x))
1295             {
1296                 if (isInfinity(y))
1297                     return copysign(3*PI_4, y);
1298                 else
1299                     return copysign(PI, y);
1300             }
1301             else
1302             {
1303                 if (isInfinity(y))
1304                     return copysign(PI_4, y);
1305                 else
1306                     return copysign(0.0, y);
1307             }
1308         }
1309         if (isInfinity(y))
1310             return copysign(PI_2, y);
1311 
1312         // Call atan and determine the quadrant.
1313         real z = atan(y / x);
1314 
1315         if (signbit(x))
1316         {
1317             if (signbit(y))
1318                 z = z - PI;
1319             else
1320                 z = z + PI;
1321         }
1322 
1323         if (z == 0.0)
1324             return copysign(z, y);
1325 
1326         return z;
1327     }
1328 }
1329 
1330 /// ditto
1331 double atan2(double y, double x) @safe pure nothrow @nogc
1332 {
1333     return atan2(cast(real) y, cast(real) x);
1334 }
1335 
1336 /// ditto
1337 float atan2(float y, float x) @safe pure nothrow @nogc
1338 {
1339     return atan2(cast(real) y, cast(real) x);
1340 }
1341 
1342 @system unittest
1343 {
1344     assert(equalsDigit(atan2(1.0L, std.math.sqrt(3.0L)), PI / 6, useDigits));
1345 }
1346 
1347 /***********************************
1348  * Calculates the hyperbolic cosine of x.
1349  *
1350  *      $(TABLE_SV
1351  *      $(TR $(TH x)                 $(TH cosh(x))      $(TH invalid?))
1352  *      $(TR $(TD $(PLUSMN)$(INFIN)) $(TD $(PLUSMN)0.0) $(TD no) )
1353  *      )
1354  */
1355 real cosh(real x) @safe pure nothrow @nogc
1356 {
1357     //  cosh = (exp(x)+exp(-x))/2.
1358     // The naive implementation works correctly.
1359     const real y = exp(x);
1360     return (y + 1.0/y) * 0.5;
1361 }
1362 
1363 /// ditto
1364 double cosh(double x) @safe pure nothrow @nogc { return cosh(cast(real) x); }
1365 
1366 /// ditto
1367 float cosh(float x) @safe pure nothrow @nogc  { return cosh(cast(real) x); }
1368 
1369 @system unittest
1370 {
1371     assert(equalsDigit(cosh(1.0), (E + 1.0 / E) / 2, useDigits));
1372 }
1373 
1374 /***********************************
1375  * Calculates the hyperbolic sine of x.
1376  *
1377  *      $(TABLE_SV
1378  *      $(TR $(TH x)                 $(TH sinh(x))           $(TH invalid?))
1379  *      $(TR $(TD $(PLUSMN)0.0)      $(TD $(PLUSMN)0.0)      $(TD no))
1380  *      $(TR $(TD $(PLUSMN)$(INFIN)) $(TD $(PLUSMN)$(INFIN)) $(TD no))
1381  *      )
1382  */
1383 real sinh(real x) @safe pure nothrow @nogc
1384 {
1385     //  sinh(x) =  (exp(x)-exp(-x))/2;
1386     // Very large arguments could cause an overflow, but
1387     // the maximum value of x for which exp(x) + exp(-x)) != exp(x)
1388     // is x = 0.5 * (real.mant_dig) * LN2. // = 22.1807 for real80.
1389     if (fabs(x) > real.mant_dig * LN2)
1390     {
1391         return copysign(0.5 * exp(fabs(x)), x);
1392     }
1393 
1394     const real y = expm1(x);
1395     return 0.5 * y / (y+1) * (y+2);
1396 }
1397 
1398 /// ditto
1399 double sinh(double x) @safe pure nothrow @nogc { return sinh(cast(real) x); }
1400 
1401 /// ditto
1402 float sinh(float x) @safe pure nothrow @nogc  { return sinh(cast(real) x); }
1403 
1404 @system unittest
1405 {
1406     assert(equalsDigit(sinh(1.0), (E - 1.0 / E) / 2, useDigits));
1407 }
1408 
1409 /***********************************
1410  * Calculates the hyperbolic tangent of x.
1411  *
1412  *      $(TABLE_SV
1413  *      $(TR $(TH x)                 $(TH tanh(x))      $(TH invalid?))
1414  *      $(TR $(TD $(PLUSMN)0.0)      $(TD $(PLUSMN)0.0) $(TD no) )
1415  *      $(TR $(TD $(PLUSMN)$(INFIN)) $(TD $(PLUSMN)1.0) $(TD no))
1416  *      )
1417  */
1418 real tanh(real x) @safe pure nothrow @nogc
1419 {
1420     //  tanh(x) = (exp(x) - exp(-x))/(exp(x)+exp(-x))
1421     if (fabs(x) > real.mant_dig * LN2)
1422     {
1423         return copysign(1, x);
1424     }
1425 
1426     const real y = expm1(2*x);
1427     return y / (y + 2);
1428 }
1429 
1430 /// ditto
1431 double tanh(double x) @safe pure nothrow @nogc { return tanh(cast(real) x); }
1432 
1433 /// ditto
1434 float tanh(float x) @safe pure nothrow @nogc { return tanh(cast(real) x); }
1435 
1436 @system unittest
1437 {
1438     assert(equalsDigit(tanh(1.0), sinh(1.0) / cosh(1.0), 15));
1439 }
1440 
1441 package:
1442 
1443 /* Returns cosh(x) + I * sinh(x)
1444  * Only one call to exp() is performed.
1445  */
1446 creal coshisinh(real x) @safe pure nothrow @nogc
1447 {
1448     // See comments for cosh, sinh.
1449     if (fabs(x) > real.mant_dig * LN2)
1450     {
1451         const real y = exp(fabs(x));
1452         return y * 0.5 + 0.5i * copysign(y, x);
1453     }
1454     else
1455     {
1456         const real y = expm1(x);
1457         return (y + 1.0 + 1.0/(y + 1.0)) * 0.5 + 0.5i * y / (y+1) * (y+2);
1458     }
1459 }
1460 
1461 @safe pure nothrow @nogc unittest
1462 {
1463     creal c = coshisinh(3.0L);
1464     assert(c.re == cosh(3.0L));
1465     assert(c.im == sinh(3.0L));
1466 }
1467 
1468 public:
1469 
1470 /***********************************
1471  * Calculates the inverse hyperbolic cosine of x.
1472  *
1473  *  Mathematically, acosh(x) = log(x + sqrt( x*x - 1))
1474  *
1475  * $(TABLE_DOMRG
1476  *    $(DOMAIN 1..$(INFIN)),
1477  *    $(RANGE  0..$(INFIN))
1478  * )
1479  *
1480  *  $(TABLE_SV
1481  *    $(SVH  x,     acosh(x) )
1482  *    $(SV  $(NAN), $(NAN) )
1483  *    $(SV  $(LT)1,     $(NAN) )
1484  *    $(SV  1,      0       )
1485  *    $(SV  +$(INFIN),+$(INFIN))
1486  *  )
1487  */
1488 real acosh(real x) @safe pure nothrow @nogc
1489 {
1490     if (x > 1/real.epsilon)
1491         return LN2 + log(x);
1492     else
1493         return log(x + sqrt(x*x - 1));
1494 }
1495 
1496 /// ditto
1497 double acosh(double x) @safe pure nothrow @nogc { return acosh(cast(real) x); }
1498 
1499 /// ditto
1500 float acosh(float x) @safe pure nothrow @nogc  { return acosh(cast(real) x); }
1501 
1502 
1503 @system unittest
1504 {
1505     assert(isNaN(acosh(0.9)));
1506     assert(isNaN(acosh(real.nan)));
1507     assert(acosh(1.0)==0.0);
1508     assert(acosh(real.infinity) == real.infinity);
1509     assert(isNaN(acosh(0.5)));
1510     assert(equalsDigit(acosh(cosh(3.0)), 3, useDigits));
1511 }
1512 
1513 /***********************************
1514  * Calculates the inverse hyperbolic sine of x.
1515  *
1516  *  Mathematically,
1517  *  ---------------
1518  *  asinh(x) =  log( x + sqrt( x*x + 1 )) // if x >= +0
1519  *  asinh(x) = -log(-x + sqrt( x*x + 1 )) // if x <= -0
1520  *  -------------
1521  *
1522  *    $(TABLE_SV
1523  *    $(SVH x,                asinh(x)       )
1524  *    $(SV  $(NAN),           $(NAN)         )
1525  *    $(SV  $(PLUSMN)0,       $(PLUSMN)0      )
1526  *    $(SV  $(PLUSMN)$(INFIN),$(PLUSMN)$(INFIN))
1527  *    )
1528  */
1529 real asinh(real x) @safe pure nothrow @nogc
1530 {
1531     return (fabs(x) > 1 / real.epsilon)
1532        // beyond this point, x*x + 1 == x*x
1533        ?  copysign(LN2 + log(fabs(x)), x)
1534        // sqrt(x*x + 1) ==  1 + x * x / ( 1 + sqrt(x*x + 1) )
1535        : copysign(log1p(fabs(x) + x*x / (1 + sqrt(x*x + 1)) ), x);
1536 }
1537 
1538 /// ditto
1539 double asinh(double x) @safe pure nothrow @nogc { return asinh(cast(real) x); }
1540 
1541 /// ditto
1542 float asinh(float x) @safe pure nothrow @nogc { return asinh(cast(real) x); }
1543 
1544 @system  unittest
1545 {
1546     assert(isIdentical(asinh(0.0), 0.0));
1547     assert(isIdentical(asinh(-0.0), -0.0));
1548     assert(asinh(real.infinity) == real.infinity);
1549     assert(asinh(-real.infinity) == -real.infinity);
1550     assert(isNaN(asinh(real.nan)));
1551     assert(equalsDigit(asinh(sinh(3.0)), 3, useDigits));
1552 }
1553 
1554 /***********************************
1555  * Calculates the inverse hyperbolic tangent of x,
1556  * returning a value from ranging from -1 to 1.
1557  *
1558  * Mathematically, atanh(x) = log( (1+x)/(1-x) ) / 2
1559  *
1560  * $(TABLE_DOMRG
1561  *    $(DOMAIN -$(INFIN)..$(INFIN)),
1562  *    $(RANGE  -1 .. 1)
1563  * )
1564  * $(BR)
1565  * $(TABLE_SV
1566  *    $(SVH  x,     acosh(x) )
1567  *    $(SV  $(NAN), $(NAN) )
1568  *    $(SV  $(PLUSMN)0, $(PLUSMN)0)
1569  *    $(SV  -$(INFIN), -0)
1570  * )
1571  */
1572 real atanh(real x) @safe pure nothrow @nogc
1573 {
1574     // log( (1+x)/(1-x) ) == log ( 1 + (2*x)/(1-x) )
1575     return  0.5 * log1p( 2 * x / (1 - x) );
1576 }
1577 
1578 /// ditto
1579 double atanh(double x) @safe pure nothrow @nogc { return atanh(cast(real) x); }
1580 
1581 /// ditto
1582 float atanh(float x) @safe pure nothrow @nogc { return atanh(cast(real) x); }
1583 
1584 
1585 @system unittest
1586 {
1587     assert(isIdentical(atanh(0.0), 0.0));
1588     assert(isIdentical(atanh(-0.0),-0.0));
1589     assert(isNaN(atanh(real.nan)));
1590     assert(isNaN(atanh(-real.infinity)));
1591     assert(atanh(0.0) == 0);
1592     assert(equalsDigit(atanh(tanh(0.5L)), 0.5, useDigits));
1593 }
1594 
1595 /*****************************************
1596  * Returns x rounded to a long value using the current rounding mode.
1597  * If the integer value of x is
1598  * greater than long.max, the result is
1599  * indeterminate.
1600  */
1601 long rndtol(real x) @nogc @safe pure nothrow { pragma(inline, true); return core.math.rndtol(x); }
1602 //FIXME
1603 ///ditto
1604 long rndtol(double x) @safe pure nothrow @nogc { return rndtol(cast(real) x); }
1605 //FIXME
1606 ///ditto
1607 long rndtol(float x) @safe pure nothrow @nogc { return rndtol(cast(real) x); }
1608 
1609 @safe unittest
1610 {
1611     long function(real) prndtol = &rndtol;
1612     assert(prndtol != null);
1613 }
1614 
1615 /*****************************************
1616  * Returns x rounded to a long value using the FE_TONEAREST rounding mode.
1617  * If the integer value of x is
1618  * greater than long.max, the result is
1619  * indeterminate.
1620  */
1621 extern (C) real rndtonl(real x);
1622 
1623 /***************************************
1624  * Compute square root of x.
1625  *
1626  *      $(TABLE_SV
1627  *      $(TR $(TH x)         $(TH sqrt(x))   $(TH invalid?))
1628  *      $(TR $(TD -0.0)      $(TD -0.0)      $(TD no))
1629  *      $(TR $(TD $(LT)0.0)  $(TD $(NAN))    $(TD yes))
1630  *      $(TR $(TD +$(INFIN)) $(TD +$(INFIN)) $(TD no))
1631  *      )
1632  */
1633 float sqrt(float x) @nogc @safe pure nothrow { pragma(inline, true); return core.math.sqrt(x); }
1634 
1635 /// ditto
1636 double sqrt(double x) @nogc @safe pure nothrow { pragma(inline, true); return core.math.sqrt(x); }
1637 
1638 /// ditto
1639 real sqrt(real x) @nogc @safe pure nothrow { pragma(inline, true); return core.math.sqrt(x); }
1640 
1641 @safe pure nothrow @nogc unittest
1642 {
1643     //ctfe
1644     enum ZX80 = sqrt(7.0f);
1645     enum ZX81 = sqrt(7.0);
1646     enum ZX82 = sqrt(7.0L);
1647 
1648     assert(isNaN(sqrt(-1.0f)));
1649     assert(isNaN(sqrt(-1.0)));
1650     assert(isNaN(sqrt(-1.0L)));
1651 }
1652 
1653 @safe unittest
1654 {
1655     float function(float) psqrtf = &sqrt;
1656     assert(psqrtf != null);
1657     double function(double) psqrtd = &sqrt;
1658     assert(psqrtd != null);
1659     real function(real) psqrtr = &sqrt;
1660     assert(psqrtr != null);
1661 }
1662 
1663 creal sqrt(creal z) @nogc @safe pure nothrow
1664 {
1665     creal c;
1666     real x,y,w,r;
1667 
1668     if (z == 0)
1669     {
1670         c = 0 + 0i;
1671     }
1672     else
1673     {
1674         const real z_re = z.re;
1675         const real z_im = z.im;
1676 
1677         x = fabs(z_re);
1678         y = fabs(z_im);
1679         if (x >= y)
1680         {
1681             r = y / x;
1682             w = sqrt(x) * sqrt(0.5 * (1 + sqrt(1 + r * r)));
1683         }
1684         else
1685         {
1686             r = x / y;
1687             w = sqrt(y) * sqrt(0.5 * (r + sqrt(1 + r * r)));
1688         }
1689 
1690         if (z_re >= 0)
1691         {
1692             c = w + (z_im / (w + w)) * 1.0i;
1693         }
1694         else
1695         {
1696             if (z_im < 0)
1697                 w = -w;
1698             c = z_im / (w + w) + w * 1.0i;
1699         }
1700     }
1701     return c;
1702 }
1703 
1704 /**
1705  * Calculates e$(SUPERSCRIPT x).
1706  *
1707  *  $(TABLE_SV
1708  *    $(TR $(TH x)             $(TH e$(SUPERSCRIPT x)) )
1709  *    $(TR $(TD +$(INFIN))     $(TD +$(INFIN)) )
1710  *    $(TR $(TD -$(INFIN))     $(TD +0.0)      )
1711  *    $(TR $(TD $(NAN))        $(TD $(NAN))    )
1712  *  )
1713  */
1714 real exp(real x) @trusted pure nothrow @nogc
1715 {
1716     version (D_InlineAsm_X86)
1717     {
1718         //  e^^x = 2^^(LOG2E*x)
1719         // (This is valid because the overflow & underflow limits for exp
1720         // and exp2 are so similar).
1721         return exp2(LOG2E*x);
1722     }
1723     else version (D_InlineAsm_X86_64)
1724     {
1725         //  e^^x = 2^^(LOG2E*x)
1726         // (This is valid because the overflow & underflow limits for exp
1727         // and exp2 are so similar).
1728         return exp2(LOG2E*x);
1729     }
1730     else
1731     {
1732         alias F = floatTraits!real;
1733         static if (F.realFormat == RealFormat.ieeeDouble)
1734         {
1735             // Coefficients for exp(x)
1736             static immutable real[3] P = [
1737                 9.99999999999999999910E-1L,
1738                 3.02994407707441961300E-2L,
1739                 1.26177193074810590878E-4L,
1740             ];
1741             static immutable real[4] Q = [
1742                 2.00000000000000000009E0L,
1743                 2.27265548208155028766E-1L,
1744                 2.52448340349684104192E-3L,
1745                 3.00198505138664455042E-6L,
1746             ];
1747 
1748             // C1 + C2 = LN2.
1749             enum real C1 = 6.93145751953125E-1;
1750             enum real C2 = 1.42860682030941723212E-6;
1751 
1752             // Overflow and Underflow limits.
1753             enum real OF =  7.09782712893383996732E2;  // ln((1-2^-53) * 2^1024)
1754             enum real UF = -7.451332191019412076235E2; // ln(2^-1075)
1755         }
1756         else static if (F.realFormat == RealFormat.ieeeExtended)
1757         {
1758             // Coefficients for exp(x)
1759             static immutable real[3] P = [
1760                 9.9999999999999999991025E-1L,
1761                 3.0299440770744196129956E-2L,
1762                 1.2617719307481059087798E-4L,
1763             ];
1764             static immutable real[4] Q = [
1765                 2.0000000000000000000897E0L,
1766                 2.2726554820815502876593E-1L,
1767                 2.5244834034968410419224E-3L,
1768                 3.0019850513866445504159E-6L,
1769             ];
1770 
1771             // C1 + C2 = LN2.
1772             enum real C1 = 6.9314575195312500000000E-1L;
1773             enum real C2 = 1.4286068203094172321215E-6L;
1774 
1775             // Overflow and Underflow limits.
1776             enum real OF =  1.1356523406294143949492E4L;  // ln((1-2^-64) * 2^16384)
1777             enum real UF = -1.13994985314888605586758E4L; // ln(2^-16446)
1778         }
1779         else static if (F.realFormat == RealFormat.ieeeQuadruple)
1780         {
1781             // Coefficients for exp(x) - 1
1782             static immutable real[5] P = [
1783                 9.999999999999999999999999999999999998502E-1L,
1784                 3.508710990737834361215404761139478627390E-2L,
1785                 2.708775201978218837374512615596512792224E-4L,
1786                 6.141506007208645008909088812338454698548E-7L,
1787                 3.279723985560247033712687707263393506266E-10L
1788             ];
1789             static immutable real[6] Q = [
1790                 2.000000000000000000000000000000000000150E0,
1791                 2.368408864814233538909747618894558968880E-1L,
1792                 3.611828913847589925056132680618007270344E-3L,
1793                 1.504792651814944826817779302637284053660E-5L,
1794                 1.771372078166251484503904874657985291164E-8L,
1795                 2.980756652081995192255342779918052538681E-12L
1796             ];
1797 
1798             // C1 + C2 = LN2.
1799             enum real C1 = 6.93145751953125E-1L;
1800             enum real C2 = 1.428606820309417232121458176568075500134E-6L;
1801 
1802             // Overflow and Underflow limits.
1803             enum real OF =  1.135583025911358400418251384584930671458833e4L;
1804             enum real UF = -1.143276959615573793352782661133116431383730e4L;
1805         }
1806         else
1807             static assert(0, "Not implemented for this architecture");
1808 
1809         // Special cases. Raises an overflow or underflow flag accordingly,
1810         // except in the case for CTFE, where there are no hardware controls.
1811         if (isNaN(x))
1812             return x;
1813         if (x > OF)
1814         {
1815             if (__ctfe)
1816                 return real.infinity;
1817             else
1818                 return real.max * copysign(real.max, real.infinity);
1819         }
1820         if (x < UF)
1821         {
1822             if (__ctfe)
1823                 return 0.0;
1824             else
1825                 return real.min_normal * copysign(real.min_normal, 0.0);
1826         }
1827 
1828         // Express: e^^x = e^^g * 2^^n
1829         //   = e^^g * e^^(n * LOG2E)
1830         //   = e^^(g + n * LOG2E)
1831         int n = cast(int) floor(LOG2E * x + 0.5);
1832         x -= n * C1;
1833         x -= n * C2;
1834 
1835         // Rational approximation for exponential of the fractional part:
1836         //  e^^x = 1 + 2x P(x^^2) / (Q(x^^2) - P(x^^2))
1837         const real xx = x * x;
1838         const real px = x * poly(xx, P);
1839         x = px / (poly(xx, Q) - px);
1840         x = 1.0 + ldexp(x, 1);
1841 
1842         // Scale by power of 2.
1843         x = ldexp(x, n);
1844 
1845         return x;
1846     }
1847 }
1848 
1849 /// ditto
1850 double exp(double x) @safe pure nothrow @nogc  { return exp(cast(real) x); }
1851 
1852 /// ditto
1853 float exp(float x)  @safe pure nothrow @nogc   { return exp(cast(real) x); }
1854 
1855 @system unittest
1856 {
1857     assert(equalsDigit(exp(3.0L), E * E * E, useDigits));
1858 }
1859 
1860 /**
1861  * Calculates the value of the natural logarithm base (e)
1862  * raised to the power of x, minus 1.
1863  *
1864  * For very small x, expm1(x) is more accurate
1865  * than exp(x)-1.
1866  *
1867  *  $(TABLE_SV
1868  *    $(TR $(TH x)             $(TH e$(SUPERSCRIPT x)-1)  )
1869  *    $(TR $(TD $(PLUSMN)0.0)  $(TD $(PLUSMN)0.0) )
1870  *    $(TR $(TD +$(INFIN))     $(TD +$(INFIN))    )
1871  *    $(TR $(TD -$(INFIN))     $(TD -1.0)         )
1872  *    $(TR $(TD $(NAN))        $(TD $(NAN))       )
1873  *  )
1874  */
1875 real expm1(real x) @trusted pure nothrow @nogc
1876 {
1877     version (D_InlineAsm_X86)
1878     {
1879         enum PARAMSIZE = (real.sizeof+3)&(0xFFFF_FFFC); // always a multiple of 4
1880         asm pure nothrow @nogc
1881         {
1882             /*  expm1() for x87 80-bit reals, IEEE754-2008 conformant.
1883              * Author: Don Clugston.
1884              *
1885              *    expm1(x) = 2^^(rndint(y))* 2^^(y-rndint(y)) - 1 where y = LN2*x.
1886              *    = 2rndy * 2ym1 + 2rndy - 1, where 2rndy = 2^^(rndint(y))
1887              *     and 2ym1 = (2^^(y-rndint(y))-1).
1888              *    If 2rndy  < 0.5*real.epsilon, result is -1.
1889              *    Implementation is otherwise the same as for exp2()
1890              */
1891             naked;
1892             fld real ptr [ESP+4] ; // x
1893             mov AX, [ESP+4+8]; // AX = exponent and sign
1894             sub ESP, 12+8; // Create scratch space on the stack
1895             // [ESP,ESP+2] = scratchint
1896             // [ESP+4..+6, +8..+10, +10] = scratchreal
1897             // set scratchreal mantissa = 1.0
1898             mov dword ptr [ESP+8], 0;
1899             mov dword ptr [ESP+8+4], 0x80000000;
1900             and AX, 0x7FFF; // drop sign bit
1901             cmp AX, 0x401D; // avoid InvalidException in fist
1902             jae L_extreme;
1903             fldl2e;
1904             fmulp ST(1), ST; // y = x*log2(e)
1905             fist dword ptr [ESP]; // scratchint = rndint(y)
1906             fisub dword ptr [ESP]; // y - rndint(y)
1907             // and now set scratchreal exponent
1908             mov EAX, [ESP];
1909             add EAX, 0x3fff;
1910             jle short L_largenegative;
1911             cmp EAX,0x8000;
1912             jge short L_largepositive;
1913             mov [ESP+8+8],AX;
1914             f2xm1; // 2ym1 = 2^^(y-rndint(y)) -1
1915             fld real ptr [ESP+8] ; // 2rndy = 2^^rndint(y)
1916             fmul ST(1), ST;  // ST=2rndy, ST(1)=2rndy*2ym1
1917             fld1;
1918             fsubp ST(1), ST; // ST = 2rndy-1, ST(1) = 2rndy * 2ym1 - 1
1919             faddp ST(1), ST; // ST = 2rndy * 2ym1 + 2rndy - 1
1920             add ESP,12+8;
1921             ret PARAMSIZE;
1922 
1923 L_extreme:  // Extreme exponent. X is very large positive, very
1924             // large negative, infinity, or NaN.
1925             fxam;
1926             fstsw AX;
1927             test AX, 0x0400; // NaN_or_zero, but we already know x != 0
1928             jz L_was_nan;  // if x is NaN, returns x
1929             test AX, 0x0200;
1930             jnz L_largenegative;
1931 L_largepositive:
1932             // Set scratchreal = real.max.
1933             // squaring it will create infinity, and set overflow flag.
1934             mov word  ptr [ESP+8+8], 0x7FFE;
1935             fstp ST(0);
1936             fld real ptr [ESP+8];  // load scratchreal
1937             fmul ST(0), ST;        // square it, to create havoc!
1938 L_was_nan:
1939             add ESP,12+8;
1940             ret PARAMSIZE;
1941 L_largenegative:
1942             fstp ST(0);
1943             fld1;
1944             fchs; // return -1. Underflow flag is not set.
1945             add ESP,12+8;
1946             ret PARAMSIZE;
1947         }
1948     }
1949     else version (D_InlineAsm_X86_64)
1950     {
1951         asm pure nothrow @nogc
1952         {
1953             naked;
1954         }
1955         version (Win64)
1956         {
1957             asm pure nothrow @nogc
1958             {
1959                 fld   real ptr [RCX];  // x
1960                 mov   AX,[RCX+8];      // AX = exponent and sign
1961             }
1962         }
1963         else
1964         {
1965             asm pure nothrow @nogc
1966             {
1967                 fld   real ptr [RSP+8];  // x
1968                 mov   AX,[RSP+8+8];      // AX = exponent and sign
1969             }
1970         }
1971         asm pure nothrow @nogc
1972         {
1973             /*  expm1() for x87 80-bit reals, IEEE754-2008 conformant.
1974              * Author: Don Clugston.
1975              *
1976              *    expm1(x) = 2^(rndint(y))* 2^(y-rndint(y)) - 1 where y = LN2*x.
1977              *    = 2rndy * 2ym1 + 2rndy - 1, where 2rndy = 2^(rndint(y))
1978              *     and 2ym1 = (2^(y-rndint(y))-1).
1979              *    If 2rndy  < 0.5*real.epsilon, result is -1.
1980              *    Implementation is otherwise the same as for exp2()
1981              */
1982             sub RSP, 24;       // Create scratch space on the stack
1983             // [RSP,RSP+2] = scratchint
1984             // [RSP+4..+6, +8..+10, +10] = scratchreal
1985             // set scratchreal mantissa = 1.0
1986             mov dword ptr [RSP+8], 0;
1987             mov dword ptr [RSP+8+4], 0x80000000;
1988             and AX, 0x7FFF; // drop sign bit
1989             cmp AX, 0x401D; // avoid InvalidException in fist
1990             jae L_extreme;
1991             fldl2e;
1992             fmul ; // y = x*log2(e)
1993             fist dword ptr [RSP]; // scratchint = rndint(y)
1994             fisub dword ptr [RSP]; // y - rndint(y)
1995             // and now set scratchreal exponent
1996             mov EAX, [RSP];
1997             add EAX, 0x3fff;
1998             jle short L_largenegative;
1999             cmp EAX,0x8000;
2000             jge short L_largepositive;
2001             mov [RSP+8+8],AX;
2002             f2xm1; // 2^(y-rndint(y)) -1
2003             fld real ptr [RSP+8] ; // 2^rndint(y)
2004             fmul ST(1), ST;
2005             fld1;
2006             fsubp ST(1), ST;
2007             fadd;
2008             add RSP,24;
2009             ret;
2010 
2011 L_extreme:  // Extreme exponent. X is very large positive, very
2012             // large negative, infinity, or NaN.
2013             fxam;
2014             fstsw AX;
2015             test AX, 0x0400; // NaN_or_zero, but we already know x != 0
2016             jz L_was_nan;  // if x is NaN, returns x
2017             test AX, 0x0200;
2018             jnz L_largenegative;
2019 L_largepositive:
2020             // Set scratchreal = real.max.
2021             // squaring it will create infinity, and set overflow flag.
2022             mov word  ptr [RSP+8+8], 0x7FFE;
2023             fstp ST(0);
2024             fld real ptr [RSP+8];  // load scratchreal
2025             fmul ST(0), ST;        // square it, to create havoc!
2026 L_was_nan:
2027             add RSP,24;
2028             ret;
2029 
2030 L_largenegative:
2031             fstp ST(0);
2032             fld1;
2033             fchs; // return -1. Underflow flag is not set.
2034             add RSP,24;
2035             ret;
2036         }
2037     }
2038     else
2039     {
2040         // Coefficients for exp(x) - 1 and overflow/underflow limits.
2041         static if (floatTraits!real.realFormat == RealFormat.ieeeQuadruple)
2042         {
2043             static immutable real[8] P = [
2044                 2.943520915569954073888921213330863757240E8L,
2045                 -5.722847283900608941516165725053359168840E7L,
2046                 8.944630806357575461578107295909719817253E6L,
2047                 -7.212432713558031519943281748462837065308E5L,
2048                 4.578962475841642634225390068461943438441E4L,
2049                 -1.716772506388927649032068540558788106762E3L,
2050                 4.401308817383362136048032038528753151144E1L,
2051                 -4.888737542888633647784737721812546636240E-1L
2052             ];
2053 
2054             static immutable real[9] Q = [
2055                 1.766112549341972444333352727998584753865E9L,
2056                 -7.848989743695296475743081255027098295771E8L,
2057                 1.615869009634292424463780387327037251069E8L,
2058                 -2.019684072836541751428967854947019415698E7L,
2059                 1.682912729190313538934190635536631941751E6L,
2060                 -9.615511549171441430850103489315371768998E4L,
2061                 3.697714952261803935521187272204485251835E3L,
2062                 -8.802340681794263968892934703309274564037E1L,
2063                 1.0
2064             ];
2065 
2066             enum real OF = 1.1356523406294143949491931077970764891253E4L;
2067             enum real UF = -1.143276959615573793352782661133116431383730e4L;
2068         }
2069         else
2070         {
2071             static immutable real[5] P = [
2072                -1.586135578666346600772998894928250240826E4L,
2073                 2.642771505685952966904660652518429479531E3L,
2074                -3.423199068835684263987132888286791620673E2L,
2075                 1.800826371455042224581246202420972737840E1L,
2076                -5.238523121205561042771939008061958820811E-1L,
2077             ];
2078             static immutable real[6] Q = [
2079                -9.516813471998079611319047060563358064497E4L,
2080                 3.964866271411091674556850458227710004570E4L,
2081                -7.207678383830091850230366618190187434796E3L,
2082                 7.206038318724600171970199625081491823079E2L,
2083                -4.002027679107076077238836622982900945173E1L,
2084                 1.0
2085             ];
2086 
2087             enum real OF =  1.1356523406294143949492E4L;
2088             enum real UF = -4.5054566736396445112120088E1L;
2089         }
2090 
2091 
2092         // C1 + C2 = LN2.
2093         enum real C1 = 6.9314575195312500000000E-1L;
2094         enum real C2 = 1.428606820309417232121458176568075500134E-6L;
2095 
2096         // Special cases. Raises an overflow flag, except in the case
2097         // for CTFE, where there are no hardware controls.
2098         if (x > OF)
2099         {
2100             if (__ctfe)
2101                 return real.infinity;
2102             else
2103                 return real.max * copysign(real.max, real.infinity);
2104         }
2105         if (x == 0.0)
2106             return x;
2107         if (x < UF)
2108             return -1.0;
2109 
2110         // Express x = LN2 (n + remainder), remainder not exceeding 1/2.
2111         int n = cast(int) floor(0.5 + x / LN2);
2112         x -= n * C1;
2113         x -= n * C2;
2114 
2115         // Rational approximation:
2116         //  exp(x) - 1 = x + 0.5 x^^2 + x^^3 P(x) / Q(x)
2117         real px = x * poly(x, P);
2118         real qx = poly(x, Q);
2119         const real xx = x * x;
2120         qx = x + (0.5 * xx + xx * px / qx);
2121 
2122         // We have qx = exp(remainder LN2) - 1, so:
2123         //  exp(x) - 1 = 2^^n (qx + 1) - 1 = 2^^n qx + 2^^n - 1.
2124         px = ldexp(1.0, n);
2125         x = px * qx + (px - 1.0);
2126 
2127         return x;
2128     }
2129 }
2130 
2131 
2132 
2133 /**
2134  * Calculates 2$(SUPERSCRIPT x).
2135  *
2136  *  $(TABLE_SV
2137  *    $(TR $(TH x)             $(TH exp2(x))   )
2138  *    $(TR $(TD +$(INFIN))     $(TD +$(INFIN)) )
2139  *    $(TR $(TD -$(INFIN))     $(TD +0.0)      )
2140  *    $(TR $(TD $(NAN))        $(TD $(NAN))    )
2141  *  )
2142  */
2143 pragma(inline, true)
2144 real exp2(real x) @nogc @trusted pure nothrow
2145 {
2146     version (InlineAsm_X86_Any)
2147     {
2148         if (!__ctfe)
2149             return exp2Asm(x);
2150         else
2151             return exp2Impl(x);
2152     }
2153     else
2154     {
2155         return exp2Impl(x);
2156     }
2157 }
2158 
2159 version (InlineAsm_X86_Any)
2160 private real exp2Asm(real x) @nogc @trusted pure nothrow
2161 {
2162     version (D_InlineAsm_X86)
2163     {
2164         enum PARAMSIZE = (real.sizeof+3)&(0xFFFF_FFFC); // always a multiple of 4
2165 
2166         asm pure nothrow @nogc
2167         {
2168             /*  exp2() for x87 80-bit reals, IEEE754-2008 conformant.
2169              * Author: Don Clugston.
2170              *
2171              * exp2(x) = 2^^(rndint(x))* 2^^(y-rndint(x))
2172              * The trick for high performance is to avoid the fscale(28cycles on core2),
2173              * frndint(19 cycles), leaving f2xm1(19 cycles) as the only slow instruction.
2174              *
2175              * We can do frndint by using fist. BUT we can't use it for huge numbers,
2176              * because it will set the Invalid Operation flag if overflow or NaN occurs.
2177              * Fortunately, whenever this happens the result would be zero or infinity.
2178              *
2179              * We can perform fscale by directly poking into the exponent. BUT this doesn't
2180              * work for the (very rare) cases where the result is subnormal. So we fall back
2181              * to the slow method in that case.
2182              */
2183             naked;
2184             fld real ptr [ESP+4] ; // x
2185             mov AX, [ESP+4+8]; // AX = exponent and sign
2186             sub ESP, 12+8; // Create scratch space on the stack
2187             // [ESP,ESP+2] = scratchint
2188             // [ESP+4..+6, +8..+10, +10] = scratchreal
2189             // set scratchreal mantissa = 1.0
2190             mov dword ptr [ESP+8], 0;
2191             mov dword ptr [ESP+8+4], 0x80000000;
2192             and AX, 0x7FFF; // drop sign bit
2193             cmp AX, 0x401D; // avoid InvalidException in fist
2194             jae L_extreme;
2195             fist dword ptr [ESP]; // scratchint = rndint(x)
2196             fisub dword ptr [ESP]; // x - rndint(x)
2197             // and now set scratchreal exponent
2198             mov EAX, [ESP];
2199             add EAX, 0x3fff;
2200             jle short L_subnormal;
2201             cmp EAX,0x8000;
2202             jge short L_overflow;
2203             mov [ESP+8+8],AX;
2204 L_normal:
2205             f2xm1;
2206             fld1;
2207             faddp ST(1), ST; // 2^^(x-rndint(x))
2208             fld real ptr [ESP+8] ; // 2^^rndint(x)
2209             add ESP,12+8;
2210             fmulp ST(1), ST;
2211             ret PARAMSIZE;
2212 
2213 L_subnormal:
2214             // Result will be subnormal.
2215             // In this rare case, the simple poking method doesn't work.
2216             // The speed doesn't matter, so use the slow fscale method.
2217             fild dword ptr [ESP];  // scratchint
2218             fld1;
2219             fscale;
2220             fstp real ptr [ESP+8]; // scratchreal = 2^^scratchint
2221             fstp ST(0);         // drop scratchint
2222             jmp L_normal;
2223 
2224 L_extreme:  // Extreme exponent. X is very large positive, very
2225             // large negative, infinity, or NaN.
2226             fxam;
2227             fstsw AX;
2228             test AX, 0x0400; // NaN_or_zero, but we already know x != 0
2229             jz L_was_nan;  // if x is NaN, returns x
2230             // set scratchreal = real.min_normal
2231             // squaring it will return 0, setting underflow flag
2232             mov word  ptr [ESP+8+8], 1;
2233             test AX, 0x0200;
2234             jnz L_waslargenegative;
2235 L_overflow:
2236             // Set scratchreal = real.max.
2237             // squaring it will create infinity, and set overflow flag.
2238             mov word  ptr [ESP+8+8], 0x7FFE;
2239 L_waslargenegative:
2240             fstp ST(0);
2241             fld real ptr [ESP+8];  // load scratchreal
2242             fmul ST(0), ST;        // square it, to create havoc!
2243 L_was_nan:
2244             add ESP,12+8;
2245             ret PARAMSIZE;
2246         }
2247     }
2248     else version (D_InlineAsm_X86_64)
2249     {
2250         asm pure nothrow @nogc
2251         {
2252             naked;
2253         }
2254         version (Win64)
2255         {
2256             asm pure nothrow @nogc
2257             {
2258                 fld   real ptr [RCX];  // x
2259                 mov   AX,[RCX+8];      // AX = exponent and sign
2260             }
2261         }
2262         else
2263         {
2264             asm pure nothrow @nogc
2265             {
2266                 fld   real ptr [RSP+8];  // x
2267                 mov   AX,[RSP+8+8];      // AX = exponent and sign
2268             }
2269         }
2270         asm pure nothrow @nogc
2271         {
2272             /*  exp2() for x87 80-bit reals, IEEE754-2008 conformant.
2273              * Author: Don Clugston.
2274              *
2275              * exp2(x) = 2^(rndint(x))* 2^(y-rndint(x))
2276              * The trick for high performance is to avoid the fscale(28cycles on core2),
2277              * frndint(19 cycles), leaving f2xm1(19 cycles) as the only slow instruction.
2278              *
2279              * We can do frndint by using fist. BUT we can't use it for huge numbers,
2280              * because it will set the Invalid Operation flag is overflow or NaN occurs.
2281              * Fortunately, whenever this happens the result would be zero or infinity.
2282              *
2283              * We can perform fscale by directly poking into the exponent. BUT this doesn't
2284              * work for the (very rare) cases where the result is subnormal. So we fall back
2285              * to the slow method in that case.
2286              */
2287             sub RSP, 24; // Create scratch space on the stack
2288             // [RSP,RSP+2] = scratchint
2289             // [RSP+4..+6, +8..+10, +10] = scratchreal
2290             // set scratchreal mantissa = 1.0
2291             mov dword ptr [RSP+8], 0;
2292             mov dword ptr [RSP+8+4], 0x80000000;
2293             and AX, 0x7FFF; // drop sign bit
2294             cmp AX, 0x401D; // avoid InvalidException in fist
2295             jae L_extreme;
2296             fist dword ptr [RSP]; // scratchint = rndint(x)
2297             fisub dword ptr [RSP]; // x - rndint(x)
2298             // and now set scratchreal exponent
2299             mov EAX, [RSP];
2300             add EAX, 0x3fff;
2301             jle short L_subnormal;
2302             cmp EAX,0x8000;
2303             jge short L_overflow;
2304             mov [RSP+8+8],AX;
2305 L_normal:
2306             f2xm1;
2307             fld1;
2308             fadd; // 2^(x-rndint(x))
2309             fld real ptr [RSP+8] ; // 2^rndint(x)
2310             add RSP,24;
2311             fmulp ST(1), ST;
2312             ret;
2313 
2314 L_subnormal:
2315             // Result will be subnormal.
2316             // In this rare case, the simple poking method doesn't work.
2317             // The speed doesn't matter, so use the slow fscale method.
2318             fild dword ptr [RSP];  // scratchint
2319             fld1;
2320             fscale;
2321             fstp real ptr [RSP+8]; // scratchreal = 2^scratchint
2322             fstp ST(0);         // drop scratchint
2323             jmp L_normal;
2324 
2325 L_extreme:  // Extreme exponent. X is very large positive, very
2326             // large negative, infinity, or NaN.
2327             fxam;
2328             fstsw AX;
2329             test AX, 0x0400; // NaN_or_zero, but we already know x != 0
2330             jz L_was_nan;  // if x is NaN, returns x
2331             // set scratchreal = real.min
2332             // squaring it will return 0, setting underflow flag
2333             mov word  ptr [RSP+8+8], 1;
2334             test AX, 0x0200;
2335             jnz L_waslargenegative;
2336 L_overflow:
2337             // Set scratchreal = real.max.
2338             // squaring it will create infinity, and set overflow flag.
2339             mov word  ptr [RSP+8+8], 0x7FFE;
2340 L_waslargenegative:
2341             fstp ST(0);
2342             fld real ptr [RSP+8];  // load scratchreal
2343             fmul ST(0), ST;        // square it, to create havoc!
2344 L_was_nan:
2345             add RSP,24;
2346             ret;
2347         }
2348     }
2349     else
2350         static assert(0);
2351 }
2352 
2353 private real exp2Impl(real x) @nogc @trusted pure nothrow
2354 {
2355     // Coefficients for exp2(x)
2356     static if (floatTraits!real.realFormat == RealFormat.ieeeQuadruple)
2357     {
2358         static immutable real[5] P = [
2359             9.079594442980146270952372234833529694788E12L,
2360             1.530625323728429161131811299626419117557E11L,
2361             5.677513871931844661829755443994214173883E8L,
2362             6.185032670011643762127954396427045467506E5L,
2363             1.587171580015525194694938306936721666031E2L
2364         ];
2365 
2366         static immutable real[6] Q = [
2367             2.619817175234089411411070339065679229869E13L,
2368             1.490560994263653042761789432690793026977E12L,
2369             1.092141473886177435056423606755843616331E10L,
2370             2.186249607051644894762167991800811827835E7L,
2371             1.236602014442099053716561665053645270207E4L,
2372             1.0
2373         ];
2374     }
2375     else
2376     {
2377         static immutable real[3] P = [
2378             2.0803843631901852422887E6L,
2379             3.0286971917562792508623E4L,
2380             6.0614853552242266094567E1L,
2381         ];
2382         static immutable real[4] Q = [
2383             6.0027204078348487957118E6L,
2384             3.2772515434906797273099E5L,
2385             1.7492876999891839021063E3L,
2386             1.0000000000000000000000E0L,
2387         ];
2388     }
2389 
2390     // Overflow and Underflow limits.
2391     enum real OF =  16_384.0L;
2392     enum real UF = -16_382.0L;
2393 
2394     // Special cases. Raises an overflow or underflow flag accordingly,
2395     // except in the case for CTFE, where there are no hardware controls.
2396     if (isNaN(x))
2397         return x;
2398     if (x > OF)
2399     {
2400         if (__ctfe)
2401             return real.infinity;
2402         else
2403             return real.max * copysign(real.max, real.infinity);
2404     }
2405     if (x < UF)
2406     {
2407         if (__ctfe)
2408             return 0.0;
2409         else
2410             return real.min_normal * copysign(real.min_normal, 0.0);
2411     }
2412 
2413     // Separate into integer and fractional parts.
2414     int n = cast(int) floor(x + 0.5);
2415     x -= n;
2416 
2417     // Rational approximation:
2418     //  exp2(x) = 1.0 + 2x P(x^^2) / (Q(x^^2) - P(x^^2))
2419     const real xx = x * x;
2420     const real px = x * poly(xx, P);
2421     x = px / (poly(xx, Q) - px);
2422     x = 1.0 + ldexp(x, 1);
2423 
2424     // Scale by power of 2.
2425     x = ldexp(x, n);
2426 
2427     return x;
2428 }
2429 
2430 ///
2431 @safe unittest
2432 {
2433     assert(feqrel(exp2(0.5L), SQRT2) >= real.mant_dig -1);
2434     assert(exp2(8.0L) == 256.0);
2435     assert(exp2(-9.0L)== 1.0L/512.0);
2436 }
2437 
2438 @safe unittest
2439 {
2440     version (CRuntime_Microsoft) {} else // aexp2/exp2f/exp2l not implemented
2441     {
2442         assert( core.stdc.math.exp2f(0.0f) == 1 );
2443         assert( core.stdc.math.exp2 (0.0)  == 1 );
2444         assert( core.stdc.math.exp2l(0.0L) == 1 );
2445     }
2446 }
2447 
2448 @system unittest
2449 {
2450     FloatingPointControl ctrl;
2451     if (FloatingPointControl.hasExceptionTraps)
2452         ctrl.disableExceptions(FloatingPointControl.allExceptions);
2453     ctrl.rounding = FloatingPointControl.roundToNearest;
2454 
2455     static if (real.mant_dig == 113)
2456     {
2457         static immutable real[2][] exptestpoints =
2458         [ //  x               exp(x)
2459             [ 1.0L,           E                                        ],
2460             [ 0.5L,           0x1.a61298e1e069bc972dfefab6df34p+0L     ],
2461             [ 3.0L,           E*E*E                                    ],
2462             [ 0x1.6p+13L,     0x1.6e509d45728655cdb4840542acb5p+16250L ], // near overflow
2463             [ 0x1.7p+13L,     real.infinity                            ], // close overflow
2464             [ 0x1p+80L,       real.infinity                            ], // far overflow
2465             [ real.infinity,  real.infinity                            ],
2466             [-0x1.18p+13L,    0x1.5e4bf54b4807034ea97fef0059a6p-12927L ], // near underflow
2467             [-0x1.625p+13L,   0x1.a6bd68a39d11fec3a250cd97f524p-16358L ], // ditto
2468             [-0x1.62dafp+13L, 0x0.cb629e9813b80ed4d639e875be6cp-16382L ], // near underflow - subnormal
2469             [-0x1.6549p+13L,  0x0.0000000000000000000000000001p-16382L ], // ditto
2470             [-0x1.655p+13L,   0                                        ], // close underflow
2471             [-0x1p+30L,       0                                        ], // far underflow
2472         ];
2473     }
2474     else static if (real.mant_dig == 64) // 80-bit reals
2475     {
2476         static immutable real[2][] exptestpoints =
2477         [ //  x               exp(x)
2478             [ 1.0L,           E                            ],
2479             [ 0.5L,           0x1.a61298e1e069bc97p+0L     ],
2480             [ 3.0L,           E*E*E                        ],
2481             [ 0x1.1p+13L,     0x1.29aeffefc8ec645p+12557L  ], // near overflow
2482             [ 0x1.7p+13L,     real.infinity                ], // close overflow
2483             [ 0x1p+80L,       real.infinity                ], // far overflow
2484             [ real.infinity,  real.infinity                ],
2485             [-0x1.18p+13L,    0x1.5e4bf54b4806db9p-12927L  ], // near underflow
2486             [-0x1.625p+13L,   0x1.a6bd68a39d11f35cp-16358L ], // ditto
2487             [-0x1.62dafp+13L, 0x1.96c53d30277021dp-16383L  ], // near underflow - subnormal
2488             [-0x1.643p+13L,   0x1p-16444L                  ], // ditto
2489             [-0x1.645p+13L,   0                            ], // close underflow
2490             [-0x1p+30L,       0                            ], // far underflow
2491         ];
2492     }
2493     else static if (real.mant_dig == 53) // 64-bit reals
2494     {
2495         static immutable real[2][] exptestpoints =
2496         [ //  x,             exp(x)
2497             [ 1.0L,          E                        ],
2498             [ 0.5L,          0x1.a61298e1e069cp+0L    ],
2499             [ 3.0L,          E*E*E                    ],
2500             [ 0x1.6p+9L,     0x1.93bf4ec282efbp+1015L ], // near overflow
2501             [ 0x1.7p+9L,     real.infinity            ], // close overflow
2502             [ 0x1p+80L,      real.infinity            ], // far overflow
2503             [ real.infinity, real.infinity            ],
2504             [-0x1.6p+9L,     0x1.44a3824e5285fp-1016L ], // near underflow
2505             [-0x1.64p+9L,    0x0.06f84920bb2d3p-1022L ], // near underflow - subnormal
2506             [-0x1.743p+9L,   0x0.0000000000001p-1022L ], // ditto
2507             [-0x1.8p+9L,     0                        ], // close underflow
2508             [-0x1p30L,       0                        ], // far underflow
2509         ];
2510     }
2511     else
2512         static assert(0, "No exp() tests for real type!");
2513 
2514     const minEqualDecimalDigits = real.dig - 3;
2515     real x;
2516     IeeeFlags f;
2517     foreach (ref pair; exptestpoints)
2518     {
2519         resetIeeeFlags();
2520         x = exp(pair[0]);
2521         f = ieeeFlags;
2522         assert(equalsDigit(x, pair[1], minEqualDecimalDigits));
2523 
2524         version (IeeeFlagsSupport)
2525         {
2526             // Check the overflow bit
2527             if (x == real.infinity)
2528             {
2529                 // don't care about the overflow bit if input was inf
2530                 // (e.g., the LLVM intrinsic doesn't set it on Linux x86_64)
2531                 assert(pair[0] == real.infinity || f.overflow);
2532             }
2533             else
2534                 assert(!f.overflow);
2535             // Check the underflow bit
2536             assert(f.underflow == (fabs(x) < real.min_normal));
2537             // Invalid and div by zero shouldn't be affected.
2538             assert(!f.invalid);
2539             assert(!f.divByZero);
2540         }
2541     }
2542     // Ideally, exp(0) would not set the inexact flag.
2543     // Unfortunately, fldl2e sets it!
2544     // So it's not realistic to avoid setting it.
2545     assert(exp(0.0L) == 1.0);
2546 
2547     // NaN propagation. Doesn't set flags, bcos was already NaN.
2548     resetIeeeFlags();
2549     x = exp(real.nan);
2550     f = ieeeFlags;
2551     assert(isIdentical(abs(x), real.nan));
2552     assert(f.flags == 0);
2553 
2554     resetIeeeFlags();
2555     x = exp(-real.nan);
2556     f = ieeeFlags;
2557     assert(isIdentical(abs(x), real.nan));
2558     assert(f.flags == 0);
2559 
2560     x = exp(NaN(0x123));
2561     assert(isIdentical(x, NaN(0x123)));
2562 
2563     // High resolution test (verified against GNU MPFR/Mathematica).
2564     assert(exp(0.5L) == 0x1.A612_98E1_E069_BC97_2DFE_FAB6_DF34p+0L);
2565 }
2566 
2567 
2568 /**
2569  * Calculate cos(y) + i sin(y).
2570  *
2571  * On many CPUs (such as x86), this is a very efficient operation;
2572  * almost twice as fast as calculating sin(y) and cos(y) separately,
2573  * and is the preferred method when both are required.
2574  */
2575 creal expi(real y) @trusted pure nothrow @nogc
2576 {
2577     version (InlineAsm_X86_Any)
2578     {
2579         version (Win64)
2580         {
2581             asm pure nothrow @nogc
2582             {
2583                 naked;
2584                 fld     real ptr [ECX];
2585                 fsincos;
2586                 fxch    ST(1), ST(0);
2587                 ret;
2588             }
2589         }
2590         else
2591         {
2592             asm pure nothrow @nogc
2593             {
2594                 fld y;
2595                 fsincos;
2596                 fxch ST(1), ST(0);
2597             }
2598         }
2599     }
2600     else
2601     {
2602         return cos(y) + sin(y)*1i;
2603     }
2604 }
2605 
2606 ///
2607 @safe pure nothrow @nogc unittest
2608 {
2609     assert(expi(1.3e5L) == cos(1.3e5L) + sin(1.3e5L) * 1i);
2610     assert(expi(0.0L) == 1L + 0.0Li);
2611 }
2612 
2613 /*********************************************************************
2614  * Separate floating point value into significand and exponent.
2615  *
2616  * Returns:
2617  *      Calculate and return $(I x) and $(I exp) such that
2618  *      value =$(I x)*2$(SUPERSCRIPT exp) and
2619  *      .5 $(LT)= |$(I x)| $(LT) 1.0
2620  *
2621  *      $(I x) has same sign as value.
2622  *
2623  *      $(TABLE_SV
2624  *      $(TR $(TH value)           $(TH returns)         $(TH exp))
2625  *      $(TR $(TD $(PLUSMN)0.0)    $(TD $(PLUSMN)0.0)    $(TD 0))
2626  *      $(TR $(TD +$(INFIN))       $(TD +$(INFIN))       $(TD int.max))
2627  *      $(TR $(TD -$(INFIN))       $(TD -$(INFIN))       $(TD int.min))
2628  *      $(TR $(TD $(PLUSMN)$(NAN)) $(TD $(PLUSMN)$(NAN)) $(TD int.min))
2629  *      )
2630  */
2631 T frexp(T)(const T value, out int exp) @trusted pure nothrow @nogc
2632 if (isFloatingPoint!T)
2633 {
2634     Unqual!T vf = value;
2635     ushort* vu = cast(ushort*)&vf;
2636     static if (is(Unqual!T == float))
2637         int* vi = cast(int*)&vf;
2638     else
2639         long* vl = cast(long*)&vf;
2640     int ex;
2641     alias F = floatTraits!T;
2642 
2643     ex = vu[F.EXPPOS_SHORT] & F.EXPMASK;
2644     static if (F.realFormat == RealFormat.ieeeExtended)
2645     {
2646         if (ex)
2647         {   // If exponent is non-zero
2648             if (ex == F.EXPMASK) // infinity or NaN
2649             {
2650                 if (*vl &  0x7FFF_FFFF_FFFF_FFFF)  // NaN
2651                 {
2652                     *vl |= 0xC000_0000_0000_0000;  // convert NaNS to NaNQ
2653                     exp = int.min;
2654                 }
2655                 else if (vu[F.EXPPOS_SHORT] & 0x8000)   // negative infinity
2656                     exp = int.min;
2657                 else   // positive infinity
2658                     exp = int.max;
2659 
2660             }
2661             else
2662             {
2663                 exp = ex - F.EXPBIAS;
2664                 vu[F.EXPPOS_SHORT] = (0x8000 & vu[F.EXPPOS_SHORT]) | 0x3FFE;
2665             }
2666         }
2667         else if (!*vl)
2668         {
2669             // vf is +-0.0
2670             exp = 0;
2671         }
2672         else
2673         {
2674             // subnormal
2675 
2676             vf *= F.RECIP_EPSILON;
2677             ex = vu[F.EXPPOS_SHORT] & F.EXPMASK;
2678             exp = ex - F.EXPBIAS - T.mant_dig + 1;
2679             vu[F.EXPPOS_SHORT] = ((-1 - F.EXPMASK) & vu[F.EXPPOS_SHORT]) | 0x3FFE;
2680         }
2681         return vf;
2682     }
2683     else static if (F.realFormat == RealFormat.ieeeQuadruple)
2684     {
2685         if (ex)     // If exponent is non-zero
2686         {
2687             if (ex == F.EXPMASK)
2688             {
2689                 // infinity or NaN
2690                 if (vl[MANTISSA_LSB] |
2691                     (vl[MANTISSA_MSB] & 0x0000_FFFF_FFFF_FFFF))  // NaN
2692                 {
2693                     // convert NaNS to NaNQ
2694                     vl[MANTISSA_MSB] |= 0x0000_8000_0000_0000;
2695                     exp = int.min;
2696                 }
2697                 else if (vu[F.EXPPOS_SHORT] & 0x8000)   // negative infinity
2698                     exp = int.min;
2699                 else   // positive infinity
2700                     exp = int.max;
2701             }
2702             else
2703             {
2704                 exp = ex - F.EXPBIAS;
2705                 vu[F.EXPPOS_SHORT] = F.EXPBIAS | (0x8000 & vu[F.EXPPOS_SHORT]);
2706             }
2707         }
2708         else if ((vl[MANTISSA_LSB] |
2709             (vl[MANTISSA_MSB] & 0x0000_FFFF_FFFF_FFFF)) == 0)
2710         {
2711             // vf is +-0.0
2712             exp = 0;
2713         }
2714         else
2715         {
2716             // subnormal
2717             vf *= F.RECIP_EPSILON;
2718             ex = vu[F.EXPPOS_SHORT] & F.EXPMASK;
2719             exp = ex - F.EXPBIAS - T.mant_dig + 1;
2720             vu[F.EXPPOS_SHORT] = F.EXPBIAS | (0x8000 & vu[F.EXPPOS_SHORT]);
2721         }
2722         return vf;
2723     }
2724     else static if (F.realFormat == RealFormat.ieeeDouble)
2725     {
2726         if (ex) // If exponent is non-zero
2727         {
2728             if (ex == F.EXPMASK)   // infinity or NaN
2729             {
2730                 if (*vl == 0x7FF0_0000_0000_0000)  // positive infinity
2731                 {
2732                     exp = int.max;
2733                 }
2734                 else if (*vl == 0xFFF0_0000_0000_0000) // negative infinity
2735                     exp = int.min;
2736                 else
2737                 { // NaN
2738                     *vl |= 0x0008_0000_0000_0000;  // convert NaNS to NaNQ
2739                     exp = int.min;
2740                 }
2741             }
2742             else
2743             {
2744                 exp = (ex - F.EXPBIAS) >> 4;
2745                 vu[F.EXPPOS_SHORT] = cast(ushort)((0x800F & vu[F.EXPPOS_SHORT]) | 0x3FE0);
2746             }
2747         }
2748         else if (!(*vl & 0x7FFF_FFFF_FFFF_FFFF))
2749         {
2750             // vf is +-0.0
2751             exp = 0;
2752         }
2753         else
2754         {
2755             // subnormal
2756             vf *= F.RECIP_EPSILON;
2757             ex = vu[F.EXPPOS_SHORT] & F.EXPMASK;
2758             exp = ((ex - F.EXPBIAS) >> 4) - T.mant_dig + 1;
2759             vu[F.EXPPOS_SHORT] =
2760                 cast(ushort)(((-1 - F.EXPMASK) & vu[F.EXPPOS_SHORT]) | 0x3FE0);
2761         }
2762         return vf;
2763     }
2764     else static if (F.realFormat == RealFormat.ieeeSingle)
2765     {
2766         if (ex) // If exponent is non-zero
2767         {
2768             if (ex == F.EXPMASK)   // infinity or NaN
2769             {
2770                 if (*vi == 0x7F80_0000)  // positive infinity
2771                 {
2772                     exp = int.max;
2773                 }
2774                 else if (*vi == 0xFF80_0000) // negative infinity
2775                     exp = int.min;
2776                 else
2777                 { // NaN
2778                     *vi |= 0x0040_0000;  // convert NaNS to NaNQ
2779                     exp = int.min;
2780                 }
2781             }
2782             else
2783             {
2784                 exp = (ex - F.EXPBIAS) >> 7;
2785                 vu[F.EXPPOS_SHORT] = cast(ushort)((0x807F & vu[F.EXPPOS_SHORT]) | 0x3F00);
2786             }
2787         }
2788         else if (!(*vi & 0x7FFF_FFFF))
2789         {
2790             // vf is +-0.0
2791             exp = 0;
2792         }
2793         else
2794         {
2795             // subnormal
2796             vf *= F.RECIP_EPSILON;
2797             ex = vu[F.EXPPOS_SHORT] & F.EXPMASK;
2798             exp = ((ex - F.EXPBIAS) >> 7) - T.mant_dig + 1;
2799             vu[F.EXPPOS_SHORT] =
2800                 cast(ushort)(((-1 - F.EXPMASK) & vu[F.EXPPOS_SHORT]) | 0x3F00);
2801         }
2802         return vf;
2803     }
2804     else // static if (F.realFormat == RealFormat.ibmExtended)
2805     {
2806         assert(0, "frexp not implemented");
2807     }
2808 }
2809 
2810 ///
2811 @system unittest
2812 {
2813     int exp;
2814     real mantissa = frexp(123.456L, exp);
2815 
2816     // check if values are equal to 19 decimal digits of precision
2817     assert(equalsDigit(mantissa * pow(2.0L, cast(real) exp), 123.456L, 19));
2818 
2819     assert(frexp(-real.nan, exp) && exp == int.min);
2820     assert(frexp(real.nan, exp) && exp == int.min);
2821     assert(frexp(-real.infinity, exp) == -real.infinity && exp == int.min);
2822     assert(frexp(real.infinity, exp) == real.infinity && exp == int.max);
2823     assert(frexp(-0.0, exp) == -0.0 && exp == 0);
2824     assert(frexp(0.0, exp) == 0.0 && exp == 0);
2825 }
2826 
2827 @safe unittest
2828 {
2829     import std.meta : AliasSeq;
2830     import std.typecons : tuple, Tuple;
2831 
2832     foreach (T; AliasSeq!(real, double, float))
2833     {
2834         Tuple!(T, T, int)[] vals =     // x,frexp,exp
2835             [
2836              tuple(T(0.0),  T( 0.0 ), 0),
2837              tuple(T(-0.0), T( -0.0), 0),
2838              tuple(T(1.0),  T( .5  ), 1),
2839              tuple(T(-1.0), T( -.5 ), 1),
2840              tuple(T(2.0),  T( .5  ), 2),
2841              tuple(T(float.min_normal/2.0f), T(.5), -126),
2842              tuple(T.infinity, T.infinity, int.max),
2843              tuple(-T.infinity, -T.infinity, int.min),
2844              tuple(T.nan, T.nan, int.min),
2845              tuple(-T.nan, -T.nan, int.min),
2846 
2847              // Phobos issue #16026:
2848              tuple(3 * (T.min_normal * T.epsilon), T( .75), (T.min_exp - T.mant_dig) + 2)
2849              ];
2850 
2851         foreach (elem; vals)
2852         {
2853             T x = elem[0];
2854             T e = elem[1];
2855             int exp = elem[2];
2856             int eptr;
2857             T v = frexp(x, eptr);
2858             assert(isIdentical(e, v));
2859             assert(exp == eptr);
2860 
2861         }
2862 
2863         static if (floatTraits!(T).realFormat == RealFormat.ieeeExtended)
2864         {
2865             static T[3][] extendedvals = [ // x,frexp,exp
2866                 [0x1.a5f1c2eb3fe4efp+73L,    0x1.A5F1C2EB3FE4EFp-1L,     74],    // normal
2867                 [0x1.fa01712e8f0471ap-1064L, 0x1.fa01712e8f0471ap-1L, -1063],
2868                 [T.min_normal,      .5, -16381],
2869                 [T.min_normal/2.0L, .5, -16382]    // subnormal
2870             ];
2871             foreach (elem; extendedvals)
2872             {
2873                 T x = elem[0];
2874                 T e = elem[1];
2875                 int exp = cast(int) elem[2];
2876                 int eptr;
2877                 T v = frexp(x, eptr);
2878                 assert(isIdentical(e, v));
2879                 assert(exp == eptr);
2880 
2881             }
2882         }
2883     }
2884 }
2885 
2886 @safe unittest
2887 {
2888     import std.meta : AliasSeq;
2889     void foo() {
2890         foreach (T; AliasSeq!(real, double, float))
2891         {
2892             int exp;
2893             const T a = 1;
2894             immutable T b = 2;
2895             auto c = frexp(a, exp);
2896             auto d = frexp(b, exp);
2897         }
2898     }
2899 }
2900 
2901 /******************************************
2902  * Extracts the exponent of x as a signed integral value.
2903  *
2904  * If x is not a special value, the result is the same as
2905  * $(D cast(int) logb(x)).
2906  *
2907  *      $(TABLE_SV
2908  *      $(TR $(TH x)                $(TH ilogb(x))     $(TH Range error?))
2909  *      $(TR $(TD 0)                 $(TD FP_ILOGB0)   $(TD yes))
2910  *      $(TR $(TD $(PLUSMN)$(INFIN)) $(TD int.max)     $(TD no))
2911  *      $(TR $(TD $(NAN))            $(TD FP_ILOGBNAN) $(TD no))
2912  *      )
2913  */
2914 int ilogb(T)(const T x) @trusted pure nothrow @nogc
2915 if (isFloatingPoint!T)
2916 {
2917     import core.bitop : bsr;
2918     alias F = floatTraits!T;
2919 
2920     union floatBits
2921     {
2922         T rv;
2923         ushort[T.sizeof/2] vu;
2924         uint[T.sizeof/4] vui;
2925         static if (T.sizeof >= 8)
2926             ulong[T.sizeof/8] vul;
2927     }
2928     floatBits y = void;
2929     y.rv = x;
2930 
2931     int ex = y.vu[F.EXPPOS_SHORT] & F.EXPMASK;
2932     static if (F.realFormat == RealFormat.ieeeExtended)
2933     {
2934         if (ex)
2935         {
2936             // If exponent is non-zero
2937             if (ex == F.EXPMASK) // infinity or NaN
2938             {
2939                 if (y.vul[0] &  0x7FFF_FFFF_FFFF_FFFF)  // NaN
2940                     return FP_ILOGBNAN;
2941                 else // +-infinity
2942                     return int.max;
2943             }
2944             else
2945             {
2946                 return ex - F.EXPBIAS - 1;
2947             }
2948         }
2949         else if (!y.vul[0])
2950         {
2951             // vf is +-0.0
2952             return FP_ILOGB0;
2953         }
2954         else
2955         {
2956             // subnormal
2957             return ex - F.EXPBIAS - T.mant_dig + 1 + bsr(y.vul[0]);
2958         }
2959     }
2960     else static if (F.realFormat == RealFormat.ieeeQuadruple)
2961     {
2962         if (ex)    // If exponent is non-zero
2963         {
2964             if (ex == F.EXPMASK)
2965             {
2966                 // infinity or NaN
2967                 if (y.vul[MANTISSA_LSB] | ( y.vul[MANTISSA_MSB] & 0x0000_FFFF_FFFF_FFFF))  // NaN
2968                     return FP_ILOGBNAN;
2969                 else // +- infinity
2970                     return int.max;
2971             }
2972             else
2973             {
2974                 return ex - F.EXPBIAS - 1;
2975             }
2976         }
2977         else if ((y.vul[MANTISSA_LSB] | (y.vul[MANTISSA_MSB] & 0x0000_FFFF_FFFF_FFFF)) == 0)
2978         {
2979             // vf is +-0.0
2980             return FP_ILOGB0;
2981         }
2982         else
2983         {
2984             // subnormal
2985             const ulong msb = y.vul[MANTISSA_MSB] & 0x0000_FFFF_FFFF_FFFF;
2986             const ulong lsb = y.vul[MANTISSA_LSB];
2987             if (msb)
2988                 return ex - F.EXPBIAS - T.mant_dig + 1 + bsr(msb) + 64;
2989             else
2990                 return ex - F.EXPBIAS - T.mant_dig + 1 + bsr(lsb);
2991         }
2992     }
2993     else static if (F.realFormat == RealFormat.ieeeDouble)
2994     {
2995         if (ex) // If exponent is non-zero
2996         {
2997             if (ex == F.EXPMASK)   // infinity or NaN
2998             {
2999                 if ((y.vul[0] & 0x7FFF_FFFF_FFFF_FFFF) == 0x7FF0_0000_0000_0000)  // +- infinity
3000                     return int.max;
3001                 else // NaN
3002                     return FP_ILOGBNAN;
3003             }
3004             else
3005             {
3006                 return ((ex - F.EXPBIAS) >> 4) - 1;
3007             }
3008         }
3009         else if (!(y.vul[0] & 0x7FFF_FFFF_FFFF_FFFF))
3010         {
3011             // vf is +-0.0
3012             return FP_ILOGB0;
3013         }
3014         else
3015         {
3016             // subnormal
3017             enum MANTISSAMASK_64 = ((cast(ulong) F.MANTISSAMASK_INT) << 32) | 0xFFFF_FFFF;
3018             return ((ex - F.EXPBIAS) >> 4) - T.mant_dig + 1 + bsr(y.vul[0] & MANTISSAMASK_64);
3019         }
3020     }
3021     else static if (F.realFormat == RealFormat.ieeeSingle)
3022     {
3023         if (ex) // If exponent is non-zero
3024         {
3025             if (ex == F.EXPMASK)   // infinity or NaN
3026             {
3027                 if ((y.vui[0] & 0x7FFF_FFFF) == 0x7F80_0000)  // +- infinity
3028                     return int.max;
3029                 else // NaN
3030                     return FP_ILOGBNAN;
3031             }
3032             else
3033             {
3034                 return ((ex - F.EXPBIAS) >> 7) - 1;
3035             }
3036         }
3037         else if (!(y.vui[0] & 0x7FFF_FFFF))
3038         {
3039             // vf is +-0.0
3040             return FP_ILOGB0;
3041         }
3042         else
3043         {
3044             // subnormal
3045             const uint mantissa = y.vui[0] & F.MANTISSAMASK_INT;
3046             return ((ex - F.EXPBIAS) >> 7) - T.mant_dig + 1 + bsr(mantissa);
3047         }
3048     }
3049     else // static if (F.realFormat == RealFormat.ibmExtended)
3050     {
3051         core.stdc.math.ilogbl(x);
3052     }
3053 }
3054 /// ditto
3055 int ilogb(T)(const T x) @safe pure nothrow @nogc
3056 if (isIntegral!T && isUnsigned!T)
3057 {
3058     import core.bitop : bsr;
3059     if (x == 0)
3060         return FP_ILOGB0;
3061     else
3062     {
3063         static assert(T.sizeof <= ulong.sizeof, "integer size too large for the current ilogb implementation");
3064         return bsr(x);
3065     }
3066 }
3067 /// ditto
3068 int ilogb(T)(const T x) @safe pure nothrow @nogc
3069 if (isIntegral!T && isSigned!T)
3070 {
3071     import std.traits : Unsigned;
3072     // Note: abs(x) can not be used because the return type is not Unsigned and
3073     //       the return value would be wrong for x == int.min
3074     Unsigned!T absx =  x >= 0 ? x : -x;
3075     return ilogb(absx);
3076 }
3077 
3078 alias FP_ILOGB0   = core.stdc.math.FP_ILOGB0;
3079 alias FP_ILOGBNAN = core.stdc.math.FP_ILOGBNAN;
3080 
3081 @system nothrow @nogc unittest
3082 {
3083     import std.meta : AliasSeq;
3084     import std.typecons : Tuple;
3085     foreach (F; AliasSeq!(float, double, real))
3086     {
3087         alias T = Tuple!(F, int);
3088         T[13] vals =   // x, ilogb(x)
3089         [
3090             T(  F.nan     , FP_ILOGBNAN ),
3091             T( -F.nan     , FP_ILOGBNAN ),
3092             T(  F.infinity, int.max     ),
3093             T( -F.infinity, int.max     ),
3094             T(  0.0       , FP_ILOGB0   ),
3095             T( -0.0       , FP_ILOGB0   ),
3096             T(  2.0       , 1           ),
3097             T(  2.0001    , 1           ),
3098             T(  1.9999    , 0           ),
3099             T(  0.5       , -1          ),
3100             T(  123.123   , 6           ),
3101             T( -123.123   , 6           ),
3102             T(  0.123     , -4          ),
3103         ];
3104 
3105         foreach (elem; vals)
3106         {
3107             assert(ilogb(elem[0]) == elem[1]);
3108         }
3109     }
3110 
3111     // min_normal and subnormals
3112     assert(ilogb(-float.min_normal) == -126);
3113     assert(ilogb(nextUp(-float.min_normal)) == -127);
3114     assert(ilogb(nextUp(-float(0.0))) == -149);
3115     assert(ilogb(-double.min_normal) == -1022);
3116     assert(ilogb(nextUp(-double.min_normal)) == -1023);
3117     assert(ilogb(nextUp(-double(0.0))) == -1074);
3118     static if (floatTraits!(real).realFormat == RealFormat.ieeeExtended)
3119     {
3120         assert(ilogb(-real.min_normal) == -16382);
3121         assert(ilogb(nextUp(-real.min_normal)) == -16383);
3122         assert(ilogb(nextUp(-real(0.0))) == -16445);
3123     }
3124     else static if (floatTraits!(real).realFormat == RealFormat.ieeeDouble)
3125     {
3126         assert(ilogb(-real.min_normal) == -1022);
3127         assert(ilogb(nextUp(-real.min_normal)) == -1023);
3128         assert(ilogb(nextUp(-real(0.0))) == -1074);
3129     }
3130 
3131     // test integer types
3132     assert(ilogb(0) == FP_ILOGB0);
3133     assert(ilogb(int.max) == 30);
3134     assert(ilogb(int.min) == 31);
3135     assert(ilogb(uint.max) == 31);
3136     assert(ilogb(long.max) == 62);
3137     assert(ilogb(long.min) == 63);
3138     assert(ilogb(ulong.max) == 63);
3139 }
3140 
3141 /*******************************************
3142  * Compute n * 2$(SUPERSCRIPT exp)
3143  * References: frexp
3144  */
3145 
3146 real ldexp(real n, int exp) @nogc @safe pure nothrow { pragma(inline, true); return core.math.ldexp(n, exp); }
3147 //FIXME
3148 ///ditto
3149 double ldexp(double n, int exp) @safe pure nothrow @nogc { return ldexp(cast(real) n, exp); }
3150 //FIXME
3151 ///ditto
3152 float ldexp(float n, int exp) @safe pure nothrow @nogc { return ldexp(cast(real) n, exp); }
3153 
3154 ///
3155 @nogc @safe pure nothrow unittest
3156 {
3157     import std.meta : AliasSeq;
3158     foreach (T; AliasSeq!(float, double, real))
3159     {
3160         T r;
3161 
3162         r = ldexp(3.0L, 3);
3163         assert(r == 24);
3164 
3165         r = ldexp(cast(T) 3.0, cast(int) 3);
3166         assert(r == 24);
3167 
3168         T n = 3.0;
3169         int exp = 3;
3170         r = ldexp(n, exp);
3171         assert(r == 24);
3172     }
3173 }
3174 
3175 @safe pure nothrow @nogc unittest
3176 {
3177     static if (floatTraits!(real).realFormat == RealFormat.ieeeExtended ||
3178                floatTraits!(real).realFormat == RealFormat.ieeeQuadruple)
3179     {
3180         assert(ldexp(1.0L, -16384) == 0x1p-16384L);
3181         assert(ldexp(1.0L, -16382) == 0x1p-16382L);
3182         int x;
3183         real n = frexp(0x1p-16384L, x);
3184         assert(n == 0.5L);
3185         assert(x==-16383);
3186         assert(ldexp(n, x)==0x1p-16384L);
3187     }
3188     else static if (floatTraits!(real).realFormat == RealFormat.ieeeDouble)
3189     {
3190         assert(ldexp(1.0L, -1024) == 0x1p-1024L);
3191         assert(ldexp(1.0L, -1022) == 0x1p-1022L);
3192         int x;
3193         real n = frexp(0x1p-1024L, x);
3194         assert(n == 0.5L);
3195         assert(x==-1023);
3196         assert(ldexp(n, x)==0x1p-1024L);
3197     }
3198     else static assert(false, "Floating point type real not supported");
3199 }
3200 
3201 /* workaround Issue 14718, float parsing depends on platform strtold
3202 @safe pure nothrow @nogc unittest
3203 {
3204     assert(ldexp(1.0, -1024) == 0x1p-1024);
3205     assert(ldexp(1.0, -1022) == 0x1p-1022);
3206     int x;
3207     double n = frexp(0x1p-1024, x);
3208     assert(n == 0.5);
3209     assert(x==-1023);
3210     assert(ldexp(n, x)==0x1p-1024);
3211 }
3212 
3213 @safe pure nothrow @nogc unittest
3214 {
3215     assert(ldexp(1.0f, -128) == 0x1p-128f);
3216     assert(ldexp(1.0f, -126) == 0x1p-126f);
3217     int x;
3218     float n = frexp(0x1p-128f, x);
3219     assert(n == 0.5f);
3220     assert(x==-127);
3221     assert(ldexp(n, x)==0x1p-128f);
3222 }
3223 */
3224 
3225 @system unittest
3226 {
3227     static real[3][] vals =    // value,exp,ldexp
3228     [
3229     [    0,    0,    0],
3230     [    1,    0,    1],
3231     [    -1,    0,    -1],
3232     [    1,    1,    2],
3233     [    123,    10,    125952],
3234     [    real.max,    int.max,    real.infinity],
3235     [    real.max,    -int.max,    0],
3236     [    real.min_normal,    -int.max,    0],
3237     ];
3238     int i;
3239 
3240     for (i = 0; i < vals.length; i++)
3241     {
3242         real x = vals[i][0];
3243         int exp = cast(int) vals[i][1];
3244         real z = vals[i][2];
3245         real l = ldexp(x, exp);
3246 
3247         assert(equalsDigit(z, l, 7));
3248     }
3249 
3250     real function(real, int) pldexp = &ldexp;
3251     assert(pldexp != null);
3252 }
3253 
3254 private
3255 {
3256     version (INLINE_YL2X) {} else
3257     {
3258         static if (floatTraits!real.realFormat == RealFormat.ieeeQuadruple)
3259         {
3260             // Coefficients for log(1 + x) = x - x**2/2 + x**3 P(x)/Q(x)
3261             static immutable real[13] logCoeffsP = [
3262                 1.313572404063446165910279910527789794488E4L,
3263                 7.771154681358524243729929227226708890930E4L,
3264                 2.014652742082537582487669938141683759923E5L,
3265                 3.007007295140399532324943111654767187848E5L,
3266                 2.854829159639697837788887080758954924001E5L,
3267                 1.797628303815655343403735250238293741397E5L,
3268                 7.594356839258970405033155585486712125861E4L,
3269                 2.128857716871515081352991964243375186031E4L,
3270                 3.824952356185897735160588078446136783779E3L,
3271                 4.114517881637811823002128927449878962058E2L,
3272                 2.321125933898420063925789532045674660756E1L,
3273                 4.998469661968096229986658302195402690910E-1L,
3274                 1.538612243596254322971797716843006400388E-6L
3275             ];
3276             static immutable real[13] logCoeffsQ = [
3277                 3.940717212190338497730839731583397586124E4L,
3278                 2.626900195321832660448791748036714883242E5L,
3279                 7.777690340007566932935753241556479363645E5L,
3280                 1.347518538384329112529391120390701166528E6L,
3281                 1.514882452993549494932585972882995548426E6L,
3282                 1.158019977462989115839826904108208787040E6L,
3283                 6.132189329546557743179177159925690841200E5L,
3284                 2.248234257620569139969141618556349415120E5L,
3285                 5.605842085972455027590989944010492125825E4L,
3286                 9.147150349299596453976674231612674085381E3L,
3287                 9.104928120962988414618126155557301584078E2L,
3288                 4.839208193348159620282142911143429644326E1L,
3289                 1.0
3290             ];
3291 
3292             // Coefficients for log(x) = z + z^3 P(z^2)/Q(z^2)
3293             // where z = 2(x-1)/(x+1)
3294             static immutable real[6] logCoeffsR = [
3295                 -8.828896441624934385266096344596648080902E-1L,
3296                 8.057002716646055371965756206836056074715E1L,
3297                 -2.024301798136027039250415126250455056397E3L,
3298                 2.048819892795278657810231591630928516206E4L,
3299                 -8.977257995689735303686582344659576526998E4L,
3300                 1.418134209872192732479751274970992665513E5L
3301             ];
3302             static immutable real[6] logCoeffsS = [
3303                 1.701761051846631278975701529965589676574E6L
3304                 -1.332535117259762928288745111081235577029E6L,
3305                 4.001557694070773974936904547424676279307E5L,
3306                 -5.748542087379434595104154610899551484314E4L,
3307                 3.998526750980007367835804959888064681098E3L,
3308                 -1.186359407982897997337150403816839480438E2L,
3309                 1.0
3310             ];
3311         }
3312         else
3313         {
3314             // Coefficients for log(1 + x) = x - x**2/2 + x**3 P(x)/Q(x)
3315             static immutable real[7] logCoeffsP = [
3316                 2.0039553499201281259648E1L,
3317                 5.7112963590585538103336E1L,
3318                 6.0949667980987787057556E1L,
3319                 2.9911919328553073277375E1L,
3320                 6.5787325942061044846969E0L,
3321                 4.9854102823193375972212E-1L,
3322                 4.5270000862445199635215E-5L,
3323             ];
3324             static immutable real[7] logCoeffsQ = [
3325                 6.0118660497603843919306E1L,
3326                 2.1642788614495947685003E2L,
3327                 3.0909872225312059774938E2L,
3328                 2.2176239823732856465394E2L,
3329                 8.3047565967967209469434E1L,
3330                 1.5062909083469192043167E1L,
3331                 1.0000000000000000000000E0L,
3332             ];
3333 
3334             // Coefficients for log(x) = z + z^3 P(z^2)/Q(z^2)
3335             // where z = 2(x-1)/(x+1)
3336             static immutable real[4] logCoeffsR = [
3337                -3.5717684488096787370998E1L,
3338                 1.0777257190312272158094E1L,
3339                -7.1990767473014147232598E-1L,
3340                 1.9757429581415468984296E-3L,
3341             ];
3342             static immutable real[4] logCoeffsS = [
3343                -4.2861221385716144629696E2L,
3344                 1.9361891836232102174846E2L,
3345                -2.6201045551331104417768E1L,
3346                 1.0000000000000000000000E0L,
3347             ];
3348         }
3349     }
3350 }
3351 
3352 /**************************************
3353  * Calculate the natural logarithm of x.
3354  *
3355  *    $(TABLE_SV
3356  *    $(TR $(TH x)            $(TH log(x))    $(TH divide by 0?) $(TH invalid?))
3357  *    $(TR $(TD $(PLUSMN)0.0) $(TD -$(INFIN)) $(TD yes)          $(TD no))
3358  *    $(TR $(TD $(LT)0.0)     $(TD $(NAN))    $(TD no)           $(TD yes))
3359  *    $(TR $(TD +$(INFIN))    $(TD +$(INFIN)) $(TD no)           $(TD no))
3360  *    )
3361  */
3362 real log(real x) @safe pure nothrow @nogc
3363 {
3364     version (INLINE_YL2X)
3365         return core.math.yl2x(x, LN2);
3366     else
3367     {
3368         // C1 + C2 = LN2.
3369         enum real C1 = 6.93145751953125E-1L;
3370         enum real C2 = 1.428606820309417232121458176568075500134E-6L;
3371 
3372         // Special cases.
3373         if (isNaN(x))
3374             return x;
3375         if (isInfinity(x) && !signbit(x))
3376             return x;
3377         if (x == 0.0)
3378             return -real.infinity;
3379         if (x < 0.0)
3380             return real.nan;
3381 
3382         // Separate mantissa from exponent.
3383         // Note, frexp is used so that denormal numbers will be handled properly.
3384         real y, z;
3385         int exp;
3386 
3387         x = frexp(x, exp);
3388 
3389         // Logarithm using log(x) = z + z^^3 R(z) / S(z),
3390         // where z = 2(x - 1)/(x + 1)
3391         if ((exp > 2) || (exp < -2))
3392         {
3393             if (x < SQRT1_2)
3394             {   // 2(2x - 1)/(2x + 1)
3395                 exp -= 1;
3396                 z = x - 0.5;
3397                 y = 0.5 * z + 0.5;
3398             }
3399             else
3400             {   // 2(x - 1)/(x + 1)
3401                 z = x - 0.5;
3402                 z -= 0.5;
3403                 y = 0.5 * x  + 0.5;
3404             }
3405             x = z / y;
3406             z = x * x;
3407             z = x * (z * poly(z, logCoeffsR) / poly(z, logCoeffsS));
3408             z += exp * C2;
3409             z += x;
3410             z += exp * C1;
3411 
3412             return z;
3413         }
3414 
3415         // Logarithm using log(1 + x) = x - .5x^^2 + x^^3 P(x) / Q(x)
3416         if (x < SQRT1_2)
3417         {   // 2x - 1
3418             exp -= 1;
3419             x = ldexp(x, 1) - 1.0;
3420         }
3421         else
3422         {
3423             x = x - 1.0;
3424         }
3425         z = x * x;
3426         y = x * (z * poly(x, logCoeffsP) / poly(x, logCoeffsQ));
3427         y += exp * C2;
3428         z = y - ldexp(z, -1);
3429 
3430         // Note, the sum of above terms does not exceed x/4,
3431         // so it contributes at most about 1/4 lsb to the error.
3432         z += x;
3433         z += exp * C1;
3434 
3435         return z;
3436     }
3437 }
3438 
3439 ///
3440 @safe pure nothrow @nogc unittest
3441 {
3442     assert(log(E) == 1);
3443 }
3444 
3445 /**************************************
3446  * Calculate the base-10 logarithm of x.
3447  *
3448  *      $(TABLE_SV
3449  *      $(TR $(TH x)            $(TH log10(x))  $(TH divide by 0?) $(TH invalid?))
3450  *      $(TR $(TD $(PLUSMN)0.0) $(TD -$(INFIN)) $(TD yes)          $(TD no))
3451  *      $(TR $(TD $(LT)0.0)     $(TD $(NAN))    $(TD no)           $(TD yes))
3452  *      $(TR $(TD +$(INFIN))    $(TD +$(INFIN)) $(TD no)           $(TD no))
3453  *      )
3454  */
3455 real log10(real x) @safe pure nothrow @nogc
3456 {
3457     version (INLINE_YL2X)
3458         return core.math.yl2x(x, LOG2);
3459     else
3460     {
3461         // log10(2) split into two parts.
3462         enum real L102A =  0.3125L;
3463         enum real L102B = -1.14700043360188047862611052755069732318101185E-2L;
3464 
3465         // log10(e) split into two parts.
3466         enum real L10EA =  0.5L;
3467         enum real L10EB = -6.570551809674817234887108108339491770560299E-2L;
3468 
3469         // Special cases are the same as for log.
3470         if (isNaN(x))
3471             return x;
3472         if (isInfinity(x) && !signbit(x))
3473             return x;
3474         if (x == 0.0)
3475             return -real.infinity;
3476         if (x < 0.0)
3477             return real.nan;
3478 
3479         // Separate mantissa from exponent.
3480         // Note, frexp is used so that denormal numbers will be handled properly.
3481         real y, z;
3482         int exp;
3483 
3484         x = frexp(x, exp);
3485 
3486         // Logarithm using log(x) = z + z^^3 R(z) / S(z),
3487         // where z = 2(x - 1)/(x + 1)
3488         if ((exp > 2) || (exp < -2))
3489         {
3490             if (x < SQRT1_2)
3491             {   // 2(2x - 1)/(2x + 1)
3492                 exp -= 1;
3493                 z = x - 0.5;
3494                 y = 0.5 * z + 0.5;
3495             }
3496             else
3497             {   // 2(x - 1)/(x + 1)
3498                 z = x - 0.5;
3499                 z -= 0.5;
3500                 y = 0.5 * x  + 0.5;
3501             }
3502             x = z / y;
3503             z = x * x;
3504             y = x * (z * poly(z, logCoeffsR) / poly(z, logCoeffsS));
3505             goto Ldone;
3506         }
3507 
3508         // Logarithm using log(1 + x) = x - .5x^^2 + x^^3 P(x) / Q(x)
3509         if (x < SQRT1_2)
3510         {   // 2x - 1
3511             exp -= 1;
3512             x = ldexp(x, 1) - 1.0;
3513         }
3514         else
3515             x = x - 1.0;
3516 
3517         z = x * x;
3518         y = x * (z * poly(x, logCoeffsP) / poly(x, logCoeffsQ));
3519         y = y - ldexp(z, -1);
3520 
3521         // Multiply log of fraction by log10(e) and base 2 exponent by log10(2).
3522         // This sequence of operations is critical and it may be horribly
3523         // defeated by some compiler optimizers.
3524     Ldone:
3525         z = y * L10EB;
3526         z += x * L10EB;
3527         z += exp * L102B;
3528         z += y * L10EA;
3529         z += x * L10EA;
3530         z += exp * L102A;
3531 
3532         return z;
3533     }
3534 }
3535 
3536 ///
3537 @safe pure nothrow @nogc unittest
3538 {
3539     assert(fabs(log10(1000) - 3) < .000001);
3540 }
3541 
3542 /******************************************
3543  *      Calculates the natural logarithm of 1 + x.
3544  *
3545  *      For very small x, log1p(x) will be more accurate than
3546  *      log(1 + x).
3547  *
3548  *  $(TABLE_SV
3549  *  $(TR $(TH x)            $(TH log1p(x))     $(TH divide by 0?) $(TH invalid?))
3550  *  $(TR $(TD $(PLUSMN)0.0) $(TD $(PLUSMN)0.0) $(TD no)           $(TD no))
3551  *  $(TR $(TD -1.0)         $(TD -$(INFIN))    $(TD yes)          $(TD no))
3552  *  $(TR $(TD $(LT)-1.0)    $(TD $(NAN))       $(TD no)           $(TD yes))
3553  *  $(TR $(TD +$(INFIN))    $(TD -$(INFIN))    $(TD no)           $(TD no))
3554  *  )
3555  */
3556 real log1p(real x) @safe pure nothrow @nogc
3557 {
3558     version (INLINE_YL2X)
3559     {
3560         // On x87, yl2xp1 is valid if and only if -0.5 <= lg(x) <= 0.5,
3561         //    ie if -0.29 <= x <= 0.414
3562         return (fabs(x) <= 0.25)  ? core.math.yl2xp1(x, LN2) : core.math.yl2x(x+1, LN2);
3563     }
3564     else
3565     {
3566         // Special cases.
3567         if (isNaN(x) || x == 0.0)
3568             return x;
3569         if (isInfinity(x) && !signbit(x))
3570             return x;
3571         if (x == -1.0)
3572             return -real.infinity;
3573         if (x < -1.0)
3574             return real.nan;
3575 
3576         return log(x + 1.0);
3577     }
3578 }
3579 
3580 /***************************************
3581  * Calculates the base-2 logarithm of x:
3582  * $(SUB log, 2)x
3583  *
3584  *  $(TABLE_SV
3585  *  $(TR $(TH x)            $(TH log2(x))   $(TH divide by 0?) $(TH invalid?))
3586  *  $(TR $(TD $(PLUSMN)0.0) $(TD -$(INFIN)) $(TD yes)          $(TD no) )
3587  *  $(TR $(TD $(LT)0.0)     $(TD $(NAN))    $(TD no)           $(TD yes) )
3588  *  $(TR $(TD +$(INFIN))    $(TD +$(INFIN)) $(TD no)           $(TD no) )
3589  *  )
3590  */
3591 real log2(real x) @safe pure nothrow @nogc
3592 {
3593     version (INLINE_YL2X)
3594         return core.math.yl2x(x, 1);
3595     else
3596     {
3597         // Special cases are the same as for log.
3598         if (isNaN(x))
3599             return x;
3600         if (isInfinity(x) && !signbit(x))
3601             return x;
3602         if (x == 0.0)
3603             return -real.infinity;
3604         if (x < 0.0)
3605             return real.nan;
3606 
3607         // Separate mantissa from exponent.
3608         // Note, frexp is used so that denormal numbers will be handled properly.
3609         real y, z;
3610         int exp;
3611 
3612         x = frexp(x, exp);
3613 
3614         // Logarithm using log(x) = z + z^^3 R(z) / S(z),
3615         // where z = 2(x - 1)/(x + 1)
3616         if ((exp > 2) || (exp < -2))
3617         {
3618             if (x < SQRT1_2)
3619             {   // 2(2x - 1)/(2x + 1)
3620                 exp -= 1;
3621                 z = x - 0.5;
3622                 y = 0.5 * z + 0.5;
3623             }
3624             else
3625             {   // 2(x - 1)/(x + 1)
3626                 z = x - 0.5;
3627                 z -= 0.5;
3628                 y = 0.5 * x  + 0.5;
3629             }
3630             x = z / y;
3631             z = x * x;
3632             y = x * (z * poly(z, logCoeffsR) / poly(z, logCoeffsS));
3633             goto Ldone;
3634         }
3635 
3636         // Logarithm using log(1 + x) = x - .5x^^2 + x^^3 P(x) / Q(x)
3637         if (x < SQRT1_2)
3638         {   // 2x - 1
3639             exp -= 1;
3640             x = ldexp(x, 1) - 1.0;
3641         }
3642         else
3643             x = x - 1.0;
3644 
3645         z = x * x;
3646         y = x * (z * poly(x, logCoeffsP) / poly(x, logCoeffsQ));
3647         y = y - ldexp(z, -1);
3648 
3649         // Multiply log of fraction by log10(e) and base 2 exponent by log10(2).
3650         // This sequence of operations is critical and it may be horribly
3651         // defeated by some compiler optimizers.
3652     Ldone:
3653         z = y * (LOG2E - 1.0);
3654         z += x * (LOG2E - 1.0);
3655         z += y;
3656         z += x;
3657         z += exp;
3658 
3659         return z;
3660     }
3661 }
3662 
3663 ///
3664 @system unittest
3665 {
3666     // check if values are equal to 19 decimal digits of precision
3667     assert(equalsDigit(log2(1024.0L), 10, 19));
3668 }
3669 
3670 /*****************************************
3671  * Extracts the exponent of x as a signed integral value.
3672  *
3673  * If x is subnormal, it is treated as if it were normalized.
3674  * For a positive, finite x:
3675  *
3676  * 1 $(LT)= $(I x) * FLT_RADIX$(SUPERSCRIPT -logb(x)) $(LT) FLT_RADIX
3677  *
3678  *      $(TABLE_SV
3679  *      $(TR $(TH x)                 $(TH logb(x))   $(TH divide by 0?) )
3680  *      $(TR $(TD $(PLUSMN)$(INFIN)) $(TD +$(INFIN)) $(TD no))
3681  *      $(TR $(TD $(PLUSMN)0.0)      $(TD -$(INFIN)) $(TD yes) )
3682  *      )
3683  */
3684 real logb(real x) @trusted nothrow @nogc
3685 {
3686     version (Win64_DMD_InlineAsm)
3687     {
3688         asm pure nothrow @nogc
3689         {
3690             naked                       ;
3691             fld     real ptr [RCX]      ;
3692             fxtract                     ;
3693             fstp    ST(0)               ;
3694             ret                         ;
3695         }
3696     }
3697     else version (CRuntime_Microsoft)
3698     {
3699         asm pure nothrow @nogc
3700         {
3701             fld     x                   ;
3702             fxtract                     ;
3703             fstp    ST(0)               ;
3704         }
3705     }
3706     else
3707         return core.stdc.math.logbl(x);
3708 }
3709 
3710 /************************************
3711  * Calculates the remainder from the calculation x/y.
3712  * Returns:
3713  * The value of x - i * y, where i is the number of times that y can
3714  * be completely subtracted from x. The result has the same sign as x.
3715  *
3716  * $(TABLE_SV
3717  *  $(TR $(TH x)              $(TH y)             $(TH fmod(x, y))   $(TH invalid?))
3718  *  $(TR $(TD $(PLUSMN)0.0)   $(TD not 0.0)       $(TD $(PLUSMN)0.0) $(TD no))
3719  *  $(TR $(TD $(PLUSMNINF))   $(TD anything)      $(TD $(NAN))       $(TD yes))
3720  *  $(TR $(TD anything)       $(TD $(PLUSMN)0.0)  $(TD $(NAN))       $(TD yes))
3721  *  $(TR $(TD !=$(PLUSMNINF)) $(TD $(PLUSMNINF))  $(TD x)            $(TD no))
3722  * )
3723  */
3724 real fmod(real x, real y) @trusted nothrow @nogc
3725 {
3726     version (CRuntime_Microsoft)
3727     {
3728         return x % y;
3729     }
3730     else
3731         return core.stdc.math.fmodl(x, y);
3732 }
3733 
3734 /************************************
3735  * Breaks x into an integral part and a fractional part, each of which has
3736  * the same sign as x. The integral part is stored in i.
3737  * Returns:
3738  * The fractional part of x.
3739  *
3740  * $(TABLE_SV
3741  *  $(TR $(TH x)              $(TH i (on input))  $(TH modf(x, i))   $(TH i (on return)))
3742  *  $(TR $(TD $(PLUSMNINF))   $(TD anything)      $(TD $(PLUSMN)0.0) $(TD $(PLUSMNINF)))
3743  * )
3744  */
3745 real modf(real x, ref real i) @trusted nothrow @nogc
3746 {
3747     version (CRuntime_Microsoft)
3748     {
3749         i = trunc(x);
3750         return copysign(isInfinity(x) ? 0.0 : x - i, x);
3751     }
3752     else
3753         return core.stdc.math.modfl(x,&i);
3754 }
3755 
3756 /*************************************
3757  * Efficiently calculates x * 2$(SUPERSCRIPT n).
3758  *
3759  * scalbn handles underflow and overflow in
3760  * the same fashion as the basic arithmetic operators.
3761  *
3762  *      $(TABLE_SV
3763  *      $(TR $(TH x)                 $(TH scalb(x)))
3764  *      $(TR $(TD $(PLUSMNINF))      $(TD $(PLUSMNINF)) )
3765  *      $(TR $(TD $(PLUSMN)0.0)      $(TD $(PLUSMN)0.0) )
3766  *      )
3767  */
3768 real scalbn(real x, int n) @trusted nothrow @nogc
3769 {
3770     version (InlineAsm_X86_Any)
3771     {
3772         // scalbnl is not supported on DMD-Windows, so use asm pure nothrow @nogc.
3773         version (Win64)
3774         {
3775             asm pure nothrow @nogc {
3776                 naked                           ;
3777                 mov     16[RSP],RCX             ;
3778                 fild    word ptr 16[RSP]        ;
3779                 fld     real ptr [RDX]          ;
3780                 fscale                          ;
3781                 fstp    ST(1)                   ;
3782                 ret                             ;
3783             }
3784         }
3785         else
3786         {
3787             asm pure nothrow @nogc {
3788                 fild n;
3789                 fld x;
3790                 fscale;
3791                 fstp ST(1);
3792             }
3793         }
3794     }
3795     else
3796     {
3797         return core.stdc.math.scalbnl(x, n);
3798     }
3799 }
3800 
3801 ///
3802 @safe nothrow @nogc unittest
3803 {
3804     assert(scalbn(-real.infinity, 5) == -real.infinity);
3805 }
3806 
3807 /***************
3808  * Calculates the cube root of x.
3809  *
3810  *      $(TABLE_SV
3811  *      $(TR $(TH $(I x))            $(TH cbrt(x))           $(TH invalid?))
3812  *      $(TR $(TD $(PLUSMN)0.0)      $(TD $(PLUSMN)0.0)      $(TD no) )
3813  *      $(TR $(TD $(NAN))            $(TD $(NAN))            $(TD yes) )
3814  *      $(TR $(TD $(PLUSMN)$(INFIN)) $(TD $(PLUSMN)$(INFIN)) $(TD no) )
3815  *      )
3816  */
3817 real cbrt(real x) @trusted nothrow @nogc
3818 {
3819     version (CRuntime_Microsoft)
3820     {
3821         version (INLINE_YL2X)
3822             return copysign(exp2(core.math.yl2x(fabs(x), 1.0L/3.0L)), x);
3823         else
3824             return core.stdc.math.cbrtl(x);
3825     }
3826     else
3827         return core.stdc.math.cbrtl(x);
3828 }
3829 
3830 
3831 /*******************************
3832  * Returns |x|
3833  *
3834  *      $(TABLE_SV
3835  *      $(TR $(TH x)                 $(TH fabs(x)))
3836  *      $(TR $(TD $(PLUSMN)0.0)      $(TD +0.0) )
3837  *      $(TR $(TD $(PLUSMN)$(INFIN)) $(TD +$(INFIN)) )
3838  *      )
3839  */
3840 real fabs(real x) @safe pure nothrow @nogc { pragma(inline, true); return core.math.fabs(x); }
3841 //FIXME
3842 ///ditto
3843 double fabs(double x) @safe pure nothrow @nogc { return fabs(cast(real) x); }
3844 //FIXME
3845 ///ditto
3846 float fabs(float x) @safe pure nothrow @nogc { return fabs(cast(real) x); }
3847 
3848 @safe unittest
3849 {
3850     real function(real) pfabs = &fabs;
3851     assert(pfabs != null);
3852 }
3853 
3854 /***********************************************************************
3855  * Calculates the length of the
3856  * hypotenuse of a right-angled triangle with sides of length x and y.
3857  * The hypotenuse is the value of the square root of
3858  * the sums of the squares of x and y:
3859  *
3860  *      sqrt($(POWER x, 2) + $(POWER y, 2))
3861  *
3862  * Note that hypot(x, y), hypot(y, x) and
3863  * hypot(x, -y) are equivalent.
3864  *
3865  *  $(TABLE_SV
3866  *  $(TR $(TH x)            $(TH y)            $(TH hypot(x, y)) $(TH invalid?))
3867  *  $(TR $(TD x)            $(TD $(PLUSMN)0.0) $(TD |x|)         $(TD no))
3868  *  $(TR $(TD $(PLUSMNINF)) $(TD y)            $(TD +$(INFIN))   $(TD no))
3869  *  $(TR $(TD $(PLUSMNINF)) $(TD $(NAN))       $(TD +$(INFIN))   $(TD no))
3870  *  )
3871  */
3872 
3873 real hypot(real x, real y) @safe pure nothrow @nogc
3874 {
3875     // Scale x and y to avoid underflow and overflow.
3876     // If one is huge and the other tiny, return the larger.
3877     // If both are huge, avoid overflow by scaling by 1/sqrt(real.max/2).
3878     // If both are tiny, avoid underflow by scaling by sqrt(real.min_normal*real.epsilon).
3879 
3880     enum real SQRTMIN = 0.5 * sqrt(real.min_normal); // This is a power of 2.
3881     enum real SQRTMAX = 1.0L / SQRTMIN; // 2^^((max_exp)/2) = nextUp(sqrt(real.max))
3882 
3883     static assert(2*(SQRTMAX/2)*(SQRTMAX/2) <= real.max);
3884 
3885     // Proves that sqrt(real.max) ~~  0.5/sqrt(real.min_normal)
3886     static assert(real.min_normal*real.max > 2 && real.min_normal*real.max <= 4);
3887 
3888     real u = fabs(x);
3889     real v = fabs(y);
3890     if (!(u >= v))  // check for NaN as well.
3891     {
3892         v = u;
3893         u = fabs(y);
3894         if (u == real.infinity) return u; // hypot(inf, nan) == inf
3895         if (v == real.infinity) return v; // hypot(nan, inf) == inf
3896     }
3897 
3898     // Now u >= v, or else one is NaN.
3899     if (v >= SQRTMAX*0.5)
3900     {
3901             // hypot(huge, huge) -- avoid overflow
3902         u *= SQRTMIN*0.5;
3903         v *= SQRTMIN*0.5;
3904         return sqrt(u*u + v*v) * SQRTMAX * 2.0;
3905     }
3906 
3907     if (u <= SQRTMIN)
3908     {
3909         // hypot (tiny, tiny) -- avoid underflow
3910         // This is only necessary to avoid setting the underflow
3911         // flag.
3912         u *= SQRTMAX / real.epsilon;
3913         v *= SQRTMAX / real.epsilon;
3914         return sqrt(u*u + v*v) * SQRTMIN * real.epsilon;
3915     }
3916 
3917     if (u * real.epsilon > v)
3918     {
3919         // hypot (huge, tiny) = huge
3920         return u;
3921     }
3922 
3923     // both are in the normal range
3924     return sqrt(u*u + v*v);
3925 }
3926 
3927 @safe unittest
3928 {
3929     static real[3][] vals =     // x,y,hypot
3930         [
3931             [ 0.0,     0.0,   0.0],
3932             [ 0.0,    -0.0,   0.0],
3933             [ -0.0,   -0.0,   0.0],
3934             [ 3.0,     4.0,   5.0],
3935             [ -300,   -400,   500],
3936             [0.0,      7.0,   7.0],
3937             [9.0,   9*real.epsilon,   9.0],
3938             [88/(64*sqrt(real.min_normal)), 105/(64*sqrt(real.min_normal)), 137/(64*sqrt(real.min_normal))],
3939             [88/(128*sqrt(real.min_normal)), 105/(128*sqrt(real.min_normal)), 137/(128*sqrt(real.min_normal))],
3940             [3*real.min_normal*real.epsilon, 4*real.min_normal*real.epsilon, 5*real.min_normal*real.epsilon],
3941             [ real.min_normal, real.min_normal, sqrt(2.0L)*real.min_normal],
3942             [ real.max/sqrt(2.0L), real.max/sqrt(2.0L), real.max],
3943             [ real.infinity, real.nan, real.infinity],
3944             [ real.nan, real.infinity, real.infinity],
3945             [ real.nan, real.nan, real.nan],
3946             [ real.nan, real.max, real.nan],
3947             [ real.max, real.nan, real.nan],
3948         ];
3949         for (int i = 0; i < vals.length; i++)
3950         {
3951             real x = vals[i][0];
3952             real y = vals[i][1];
3953             real z = vals[i][2];
3954             real h = hypot(x, y);
3955             assert(isIdentical(z,h) || feqrel(z, h) >= real.mant_dig - 1);
3956         }
3957 }
3958 
3959 /**************************************
3960  * Returns the value of x rounded upward to the next integer
3961  * (toward positive infinity).
3962  */
3963 real ceil(real x) @trusted pure nothrow @nogc
3964 {
3965     version (Win64_DMD_InlineAsm)
3966     {
3967         asm pure nothrow @nogc
3968         {
3969             naked                       ;
3970             fld     real ptr [RCX]      ;
3971             fstcw   8[RSP]              ;
3972             mov     AL,9[RSP]           ;
3973             mov     DL,AL               ;
3974             and     AL,0xC3             ;
3975             or      AL,0x08             ; // round to +infinity
3976             mov     9[RSP],AL           ;
3977             fldcw   8[RSP]              ;
3978             frndint                     ;
3979             mov     9[RSP],DL           ;
3980             fldcw   8[RSP]              ;
3981             ret                         ;
3982         }
3983     }
3984     else version (CRuntime_Microsoft)
3985     {
3986         short cw;
3987         asm pure nothrow @nogc
3988         {
3989             fld     x                   ;
3990             fstcw   cw                  ;
3991             mov     AL,byte ptr cw+1    ;
3992             mov     DL,AL               ;
3993             and     AL,0xC3             ;
3994             or      AL,0x08             ; // round to +infinity
3995             mov     byte ptr cw+1,AL    ;
3996             fldcw   cw                  ;
3997             frndint                     ;
3998             mov     byte ptr cw+1,DL    ;
3999             fldcw   cw                  ;
4000         }
4001     }
4002     else
4003     {
4004         // Special cases.
4005         if (isNaN(x) || isInfinity(x))
4006             return x;
4007 
4008         real y = floorImpl(x);
4009         if (y < x)
4010             y += 1.0;
4011 
4012         return y;
4013     }
4014 }
4015 
4016 ///
4017 @safe pure nothrow @nogc unittest
4018 {
4019     assert(ceil(+123.456L) == +124);
4020     assert(ceil(-123.456L) == -123);
4021     assert(ceil(-1.234L) == -1);
4022     assert(ceil(-0.123L) == 0);
4023     assert(ceil(0.0L) == 0);
4024     assert(ceil(+0.123L) == 1);
4025     assert(ceil(+1.234L) == 2);
4026     assert(ceil(real.infinity) == real.infinity);
4027     assert(isNaN(ceil(real.nan)));
4028     assert(isNaN(ceil(real.init)));
4029 }
4030 
4031 // ditto
4032 double ceil(double x) @trusted pure nothrow @nogc
4033 {
4034     // Special cases.
4035     if (isNaN(x) || isInfinity(x))
4036         return x;
4037 
4038     double y = floorImpl(x);
4039     if (y < x)
4040         y += 1.0;
4041 
4042     return y;
4043 }
4044 
4045 @safe pure nothrow @nogc unittest
4046 {
4047     assert(ceil(+123.456) == +124);
4048     assert(ceil(-123.456) == -123);
4049     assert(ceil(-1.234) == -1);
4050     assert(ceil(-0.123) == 0);
4051     assert(ceil(0.0) == 0);
4052     assert(ceil(+0.123) == 1);
4053     assert(ceil(+1.234) == 2);
4054     assert(ceil(double.infinity) == double.infinity);
4055     assert(isNaN(ceil(double.nan)));
4056     assert(isNaN(ceil(double.init)));
4057 }
4058 
4059 // ditto
4060 float ceil(float x) @trusted pure nothrow @nogc
4061 {
4062     // Special cases.
4063     if (isNaN(x) || isInfinity(x))
4064         return x;
4065 
4066     float y = floorImpl(x);
4067     if (y < x)
4068         y += 1.0;
4069 
4070     return y;
4071 }
4072 
4073 @safe pure nothrow @nogc unittest
4074 {
4075     assert(ceil(+123.456f) == +124);
4076     assert(ceil(-123.456f) == -123);
4077     assert(ceil(-1.234f) == -1);
4078     assert(ceil(-0.123f) == 0);
4079     assert(ceil(0.0f) == 0);
4080     assert(ceil(+0.123f) == 1);
4081     assert(ceil(+1.234f) == 2);
4082     assert(ceil(float.infinity) == float.infinity);
4083     assert(isNaN(ceil(float.nan)));
4084     assert(isNaN(ceil(float.init)));
4085 }
4086 
4087 /**************************************
4088  * Returns the value of x rounded downward to the next integer
4089  * (toward negative infinity).
4090  */
4091 real floor(real x) @trusted pure nothrow @nogc
4092 {
4093     version (Win64_DMD_InlineAsm)
4094     {
4095         asm pure nothrow @nogc
4096         {
4097             naked                       ;
4098             fld     real ptr [RCX]      ;
4099             fstcw   8[RSP]              ;
4100             mov     AL,9[RSP]           ;
4101             mov     DL,AL               ;
4102             and     AL,0xC3             ;
4103             or      AL,0x04             ; // round to -infinity
4104             mov     9[RSP],AL           ;
4105             fldcw   8[RSP]              ;
4106             frndint                     ;
4107             mov     9[RSP],DL           ;
4108             fldcw   8[RSP]              ;
4109             ret                         ;
4110         }
4111     }
4112     else version (CRuntime_Microsoft)
4113     {
4114         short cw;
4115         asm pure nothrow @nogc
4116         {
4117             fld     x                   ;
4118             fstcw   cw                  ;
4119             mov     AL,byte ptr cw+1    ;
4120             mov     DL,AL               ;
4121             and     AL,0xC3             ;
4122             or      AL,0x04             ; // round to -infinity
4123             mov     byte ptr cw+1,AL    ;
4124             fldcw   cw                  ;
4125             frndint                     ;
4126             mov     byte ptr cw+1,DL    ;
4127             fldcw   cw                  ;
4128         }
4129     }
4130     else
4131     {
4132         // Special cases.
4133         if (isNaN(x) || isInfinity(x) || x == 0.0)
4134             return x;
4135 
4136         return floorImpl(x);
4137     }
4138 }
4139 
4140 ///
4141 @safe pure nothrow @nogc unittest
4142 {
4143     assert(floor(+123.456L) == +123);
4144     assert(floor(-123.456L) == -124);
4145     assert(floor(-1.234L) == -2);
4146     assert(floor(-0.123L) == -1);
4147     assert(floor(0.0L) == 0);
4148     assert(floor(+0.123L) == 0);
4149     assert(floor(+1.234L) == 1);
4150     assert(floor(real.infinity) == real.infinity);
4151     assert(isNaN(floor(real.nan)));
4152     assert(isNaN(floor(real.init)));
4153 }
4154 
4155 // ditto
4156 double floor(double x) @trusted pure nothrow @nogc
4157 {
4158     // Special cases.
4159     if (isNaN(x) || isInfinity(x) || x == 0.0)
4160         return x;
4161 
4162     return floorImpl(x);
4163 }
4164 
4165 @safe pure nothrow @nogc unittest
4166 {
4167     assert(floor(+123.456) == +123);
4168     assert(floor(-123.456) == -124);
4169     assert(floor(-1.234) == -2);
4170     assert(floor(-0.123) == -1);
4171     assert(floor(0.0) == 0);
4172     assert(floor(+0.123) == 0);
4173     assert(floor(+1.234) == 1);
4174     assert(floor(double.infinity) == double.infinity);
4175     assert(isNaN(floor(double.nan)));
4176     assert(isNaN(floor(double.init)));
4177 }
4178 
4179 // ditto
4180 float floor(float x) @trusted pure nothrow @nogc
4181 {
4182     // Special cases.
4183     if (isNaN(x) || isInfinity(x) || x == 0.0)
4184         return x;
4185 
4186     return floorImpl(x);
4187 }
4188 
4189 @safe pure nothrow @nogc unittest
4190 {
4191     assert(floor(+123.456f) == +123);
4192     assert(floor(-123.456f) == -124);
4193     assert(floor(-1.234f) == -2);
4194     assert(floor(-0.123f) == -1);
4195     assert(floor(0.0f) == 0);
4196     assert(floor(+0.123f) == 0);
4197     assert(floor(+1.234f) == 1);
4198     assert(floor(float.infinity) == float.infinity);
4199     assert(isNaN(floor(float.nan)));
4200     assert(isNaN(floor(float.init)));
4201 }
4202 
4203 /**
4204  * Round `val` to a multiple of `unit`. `rfunc` specifies the rounding
4205  * function to use; by default this is `rint`, which uses the current
4206  * rounding mode.
4207  */
4208 Unqual!F quantize(alias rfunc = rint, F)(const F val, const F unit)
4209 if (is(typeof(rfunc(F.init)) : F) && isFloatingPoint!F)
4210 {
4211     typeof(return) ret = val;
4212     if (unit != 0)
4213     {
4214         const scaled = val / unit;
4215         if (!scaled.isInfinity)
4216             ret = rfunc(scaled) * unit;
4217     }
4218     return ret;
4219 }
4220 
4221 ///
4222 @safe pure nothrow @nogc unittest
4223 {
4224     assert(12345.6789L.quantize(0.01L) == 12345.68L);
4225     assert(12345.6789L.quantize!floor(0.01L) == 12345.67L);
4226     assert(12345.6789L.quantize(22.0L) == 12342.0L);
4227 }
4228 
4229 ///
4230 @safe pure nothrow @nogc unittest
4231 {
4232     assert(12345.6789L.quantize(0) == 12345.6789L);
4233     assert(12345.6789L.quantize(real.infinity).isNaN);
4234     assert(12345.6789L.quantize(real.nan).isNaN);
4235     assert(real.infinity.quantize(0.01L) == real.infinity);
4236     assert(real.infinity.quantize(real.nan).isNaN);
4237     assert(real.nan.quantize(0.01L).isNaN);
4238     assert(real.nan.quantize(real.infinity).isNaN);
4239     assert(real.nan.quantize(real.nan).isNaN);
4240 }
4241 
4242 /**
4243  * Round `val` to a multiple of `pow(base, exp)`. `rfunc` specifies the
4244  * rounding function to use; by default this is `rint`, which uses the
4245  * current rounding mode.
4246  */
4247 Unqual!F quantize(real base, alias rfunc = rint, F, E)(const F val, const E exp)
4248 if (is(typeof(rfunc(F.init)) : F) && isFloatingPoint!F && isIntegral!E)
4249 {
4250     // TODO: Compile-time optimization for power-of-two bases?
4251     return quantize!rfunc(val, pow(cast(F) base, exp));
4252 }
4253 
4254 /// ditto
4255 Unqual!F quantize(real base, long exp = 1, alias rfunc = rint, F)(const F val)
4256 if (is(typeof(rfunc(F.init)) : F) && isFloatingPoint!F)
4257 {
4258     enum unit = cast(F) pow(base, exp);
4259     return quantize!rfunc(val, unit);
4260 }
4261 
4262 ///
4263 @safe pure nothrow @nogc unittest
4264 {
4265     assert(12345.6789L.quantize!10(-2) == 12345.68L);
4266     assert(12345.6789L.quantize!(10, -2) == 12345.68L);
4267     assert(12345.6789L.quantize!(10, floor)(-2) == 12345.67L);
4268     assert(12345.6789L.quantize!(10, -2, floor) == 12345.67L);
4269 
4270     assert(12345.6789L.quantize!22(1) == 12342.0L);
4271     assert(12345.6789L.quantize!22 == 12342.0L);
4272 }
4273 
4274 @safe pure nothrow @nogc unittest
4275 {
4276     import std.meta : AliasSeq;
4277 
4278     foreach (F; AliasSeq!(real, double, float))
4279     {
4280         const maxL10 = cast(int) F.max.log10.floor;
4281         const maxR10 = pow(cast(F) 10, maxL10);
4282         assert((cast(F) 0.9L * maxR10).quantize!10(maxL10) ==  maxR10);
4283         assert((cast(F)-0.9L * maxR10).quantize!10(maxL10) == -maxR10);
4284 
4285         assert(F.max.quantize(F.min_normal) == F.max);
4286         assert((-F.max).quantize(F.min_normal) == -F.max);
4287         assert(F.min_normal.quantize(F.max) == 0);
4288         assert((-F.min_normal).quantize(F.max) == 0);
4289         assert(F.min_normal.quantize(F.min_normal) == F.min_normal);
4290         assert((-F.min_normal).quantize(F.min_normal) == -F.min_normal);
4291     }
4292 }
4293 
4294 /******************************************
4295  * Rounds x to the nearest integer value, using the current rounding
4296  * mode.
4297  *
4298  * Unlike the rint functions, nearbyint does not raise the
4299  * FE_INEXACT exception.
4300  */
4301 real nearbyint(real x) @trusted nothrow @nogc
4302 {
4303     version (CRuntime_Microsoft)
4304     {
4305         assert(0);      // not implemented in C library
4306     }
4307     else
4308         return core.stdc.math.nearbyintl(x);
4309 }
4310 
4311 /**********************************
4312  * Rounds x to the nearest integer value, using the current rounding
4313  * mode.
4314  * If the return value is not equal to x, the FE_INEXACT
4315  * exception is raised.
4316  * $(B nearbyint) performs
4317  * the same operation, but does not set the FE_INEXACT exception.
4318  */
4319 real rint(real x) @safe pure nothrow @nogc { pragma(inline, true); return core.math.rint(x); }
4320 //FIXME
4321 ///ditto
4322 double rint(double x) @safe pure nothrow @nogc { return rint(cast(real) x); }
4323 //FIXME
4324 ///ditto
4325 float rint(float x) @safe pure nothrow @nogc { return rint(cast(real) x); }
4326 
4327 @safe unittest
4328 {
4329     real function(real) print = &rint;
4330     assert(print != null);
4331 }
4332 
4333 /***************************************
4334  * Rounds x to the nearest integer value, using the current rounding
4335  * mode.
4336  *
4337  * This is generally the fastest method to convert a floating-point number
4338  * to an integer. Note that the results from this function
4339  * depend on the rounding mode, if the fractional part of x is exactly 0.5.
4340  * If using the default rounding mode (ties round to even integers)
4341  * lrint(4.5) == 4, lrint(5.5)==6.
4342  */
4343 long lrint(real x) @trusted pure nothrow @nogc
4344 {
4345     version (InlineAsm_X86_Any)
4346     {
4347         version (Win64)
4348         {
4349             asm pure nothrow @nogc
4350             {
4351                 naked;
4352                 fld     real ptr [RCX];
4353                 fistp   qword ptr 8[RSP];
4354                 mov     RAX,8[RSP];
4355                 ret;
4356             }
4357         }
4358         else
4359         {
4360             long n;
4361             asm pure nothrow @nogc
4362             {
4363                 fld x;
4364                 fistp n;
4365             }
4366             return n;
4367         }
4368     }
4369     else
4370     {
4371         alias F = floatTraits!(real);
4372         static if (F.realFormat == RealFormat.ieeeDouble)
4373         {
4374             long result;
4375 
4376             // Rounding limit when casting from real(double) to ulong.
4377             enum real OF = 4.50359962737049600000E15L;
4378 
4379             uint* vi = cast(uint*)(&x);
4380 
4381             // Find the exponent and sign
4382             uint msb = vi[MANTISSA_MSB];
4383             uint lsb = vi[MANTISSA_LSB];
4384             int exp = ((msb >> 20) & 0x7ff) - 0x3ff;
4385             const int sign = msb >> 31;
4386             msb &= 0xfffff;
4387             msb |= 0x100000;
4388 
4389             if (exp < 63)
4390             {
4391                 if (exp >= 52)
4392                     result = (cast(long) msb << (exp - 20)) | (lsb << (exp - 52));
4393                 else
4394                 {
4395                     // Adjust x and check result.
4396                     const real j = sign ? -OF : OF;
4397                     x = (j + x) - j;
4398                     msb = vi[MANTISSA_MSB];
4399                     lsb = vi[MANTISSA_LSB];
4400                     exp = ((msb >> 20) & 0x7ff) - 0x3ff;
4401                     msb &= 0xfffff;
4402                     msb |= 0x100000;
4403 
4404                     if (exp < 0)
4405                         result = 0;
4406                     else if (exp < 20)
4407                         result = cast(long) msb >> (20 - exp);
4408                     else if (exp == 20)
4409                         result = cast(long) msb;
4410                     else
4411                         result = (cast(long) msb << (exp - 20)) | (lsb >> (52 - exp));
4412                 }
4413             }
4414             else
4415             {
4416                 // It is left implementation defined when the number is too large.
4417                 return cast(long) x;
4418             }
4419 
4420             return sign ? -result : result;
4421         }
4422         else static if (F.realFormat == RealFormat.ieeeExtended)
4423         {
4424             long result;
4425 
4426             // Rounding limit when casting from real(80-bit) to ulong.
4427             enum real OF = 9.22337203685477580800E18L;
4428 
4429             ushort* vu = cast(ushort*)(&x);
4430             uint* vi = cast(uint*)(&x);
4431 
4432             // Find the exponent and sign
4433             int exp = (vu[F.EXPPOS_SHORT] & 0x7fff) - 0x3fff;
4434             const int sign = (vu[F.EXPPOS_SHORT] >> 15) & 1;
4435 
4436             if (exp < 63)
4437             {
4438                 // Adjust x and check result.
4439                 const real j = sign ? -OF : OF;
4440                 x = (j + x) - j;
4441                 exp = (vu[F.EXPPOS_SHORT] & 0x7fff) - 0x3fff;
4442 
4443                 version (LittleEndian)
4444                 {
4445                     if (exp < 0)
4446                         result = 0;
4447                     else if (exp <= 31)
4448                         result = vi[1] >> (31 - exp);
4449                     else
4450                         result = (cast(long) vi[1] << (exp - 31)) | (vi[0] >> (63 - exp));
4451                 }
4452                 else
4453                 {
4454                     if (exp < 0)
4455                         result = 0;
4456                     else if (exp <= 31)
4457                         result = vi[1] >> (31 - exp);
4458                     else
4459                         result = (cast(long) vi[1] << (exp - 31)) | (vi[2] >> (63 - exp));
4460                 }
4461             }
4462             else
4463             {
4464                 // It is left implementation defined when the number is too large
4465                 // to fit in a 64bit long.
4466                 return cast(long) x;
4467             }
4468 
4469             return sign ? -result : result;
4470         }
4471         else static if (F.realFormat == RealFormat.ieeeQuadruple)
4472         {
4473             const vu = cast(ushort*)(&x);
4474 
4475             // Find the exponent and sign
4476             const sign = (vu[F.EXPPOS_SHORT] >> 15) & 1;
4477             if ((vu[F.EXPPOS_SHORT] & F.EXPMASK) - (F.EXPBIAS + 1) > 63)
4478             {
4479                 // The result is left implementation defined when the number is
4480                 // too large to fit in a 64 bit long.
4481                 return cast(long) x;
4482             }
4483 
4484             // Force rounding of lower bits according to current rounding
4485             // mode by adding ±2^-112 and subtracting it again.
4486             enum OF = 5.19229685853482762853049632922009600E33L;
4487             const j = sign ? -OF : OF;
4488             x = (j + x) - j;
4489 
4490             const exp = (vu[F.EXPPOS_SHORT] & F.EXPMASK) - (F.EXPBIAS + 1);
4491             const implicitOne = 1UL << 48;
4492             auto vl = cast(ulong*)(&x);
4493             vl[MANTISSA_MSB] &= implicitOne - 1;
4494             vl[MANTISSA_MSB] |= implicitOne;
4495 
4496             long result;
4497 
4498             if (exp < 0)
4499                 result = 0;
4500             else if (exp <= 48)
4501                 result = vl[MANTISSA_MSB] >> (48 - exp);
4502             else
4503                 result = (vl[MANTISSA_MSB] << (exp - 48)) | (vl[MANTISSA_LSB] >> (112 - exp));
4504 
4505             return sign ? -result : result;
4506         }
4507         else
4508         {
4509             static assert(false, "real type not supported by lrint()");
4510         }
4511     }
4512 }
4513 
4514 ///
4515 @safe pure nothrow @nogc unittest
4516 {
4517     assert(lrint(4.5) == 4);
4518     assert(lrint(5.5) == 6);
4519     assert(lrint(-4.5) == -4);
4520     assert(lrint(-5.5) == -6);
4521 
4522     assert(lrint(int.max - 0.5) == 2147483646L);
4523     assert(lrint(int.max + 0.5) == 2147483648L);
4524     assert(lrint(int.min - 0.5) == -2147483648L);
4525     assert(lrint(int.min + 0.5) == -2147483648L);
4526 }
4527 
4528 static if (real.mant_dig >= long.sizeof * 8)
4529 {
4530     @safe pure nothrow @nogc unittest
4531     {
4532         assert(lrint(long.max - 1.5L) == long.max - 1);
4533         assert(lrint(long.max - 0.5L) == long.max - 1);
4534         assert(lrint(long.min + 0.5L) == long.min);
4535         assert(lrint(long.min + 1.5L) == long.min + 2);
4536     }
4537 }
4538 
4539 /*******************************************
4540  * Return the value of x rounded to the nearest integer.
4541  * If the fractional part of x is exactly 0.5, the return value is
4542  * rounded away from zero.
4543  */
4544 real round(real x) @trusted nothrow @nogc
4545 {
4546     version (CRuntime_Microsoft)
4547     {
4548         auto old = FloatingPointControl.getControlState();
4549         FloatingPointControl.setControlState(
4550             (old & ~FloatingPointControl.roundingMask) | FloatingPointControl.roundToZero
4551         );
4552         x = rint((x >= 0) ? x + 0.5 : x - 0.5);
4553         FloatingPointControl.setControlState(old);
4554         return x;
4555     }
4556     else
4557         return core.stdc.math.roundl(x);
4558 }
4559 
4560 /**********************************************
4561  * Return the value of x rounded to the nearest integer.
4562  *
4563  * If the fractional part of x is exactly 0.5, the return value is rounded
4564  * away from zero.
4565  *
4566  * $(BLUE This function is Posix-Only.)
4567  */
4568 long lround(real x) @trusted nothrow @nogc
4569 {
4570     version (Posix)
4571         return core.stdc.math.llroundl(x);
4572     else
4573         assert(0, "lround not implemented");
4574 }
4575 
4576 version (Posix)
4577 {
4578     @safe nothrow @nogc unittest
4579     {
4580         assert(lround(0.49) == 0);
4581         assert(lround(0.5) == 1);
4582         assert(lround(1.5) == 2);
4583     }
4584 }
4585 
4586 /****************************************************
4587  * Returns the integer portion of x, dropping the fractional portion.
4588  *
4589  * This is also known as "chop" rounding.
4590  */
4591 real trunc(real x) @trusted nothrow @nogc
4592 {
4593     version (Win64_DMD_InlineAsm)
4594     {
4595         asm pure nothrow @nogc
4596         {
4597             naked                       ;
4598             fld     real ptr [RCX]      ;
4599             fstcw   8[RSP]              ;
4600             mov     AL,9[RSP]           ;
4601             mov     DL,AL               ;
4602             and     AL,0xC3             ;
4603             or      AL,0x0C             ; // round to 0
4604             mov     9[RSP],AL           ;
4605             fldcw   8[RSP]              ;
4606             frndint                     ;
4607             mov     9[RSP],DL           ;
4608             fldcw   8[RSP]              ;
4609             ret                         ;
4610         }
4611     }
4612     else version (CRuntime_Microsoft)
4613     {
4614         short cw;
4615         asm pure nothrow @nogc
4616         {
4617             fld     x                   ;
4618             fstcw   cw                  ;
4619             mov     AL,byte ptr cw+1    ;
4620             mov     DL,AL               ;
4621             and     AL,0xC3             ;
4622             or      AL,0x0C             ; // round to 0
4623             mov     byte ptr cw+1,AL    ;
4624             fldcw   cw                  ;
4625             frndint                     ;
4626             mov     byte ptr cw+1,DL    ;
4627             fldcw   cw                  ;
4628         }
4629     }
4630     else
4631         return core.stdc.math.truncl(x);
4632 }
4633 
4634 /****************************************************
4635  * Calculate the remainder x REM y, following IEC 60559.
4636  *
4637  * REM is the value of x - y * n, where n is the integer nearest the exact
4638  * value of x / y.
4639  * If |n - x / y| == 0.5, n is even.
4640  * If the result is zero, it has the same sign as x.
4641  * Otherwise, the sign of the result is the sign of x / y.
4642  * Precision mode has no effect on the remainder functions.
4643  *
4644  * remquo returns n in the parameter n.
4645  *
4646  * $(TABLE_SV
4647  *  $(TR $(TH x)               $(TH y)            $(TH remainder(x, y)) $(TH n)   $(TH invalid?))
4648  *  $(TR $(TD $(PLUSMN)0.0)    $(TD not 0.0)      $(TD $(PLUSMN)0.0)    $(TD 0.0) $(TD no))
4649  *  $(TR $(TD $(PLUSMNINF))    $(TD anything)     $(TD $(NAN))          $(TD ?)   $(TD yes))
4650  *  $(TR $(TD anything)        $(TD $(PLUSMN)0.0) $(TD $(NAN))          $(TD ?)   $(TD yes))
4651  *  $(TR $(TD != $(PLUSMNINF)) $(TD $(PLUSMNINF)) $(TD x)               $(TD ?)   $(TD no))
4652  * )
4653  *
4654  * $(BLUE `remquo` and `remainder` not supported on Windows.)
4655  */
4656 real remainder(real x, real y) @trusted nothrow @nogc
4657 {
4658     version (CRuntime_Microsoft)
4659     {
4660         int n;
4661         return remquo(x, y, n);
4662     }
4663     else
4664         return core.stdc.math.remainderl(x, y);
4665 }
4666 
4667 real remquo(real x, real y, out int n) @trusted nothrow @nogc  /// ditto
4668 {
4669     version (Posix)
4670         return core.stdc.math.remquol(x, y, &n);
4671     else
4672         assert(0, "remquo not implemented");
4673 }
4674 
4675 /** IEEE exception status flags ('sticky bits')
4676 
4677  These flags indicate that an exceptional floating-point condition has occurred.
4678  They indicate that a NaN or an infinity has been generated, that a result
4679  is inexact, or that a signalling NaN has been encountered. If floating-point
4680  exceptions are enabled (unmasked), a hardware exception will be generated
4681  instead of setting these flags.
4682  */
4683 struct IeeeFlags
4684 {
4685 private:
4686     // The x87 FPU status register is 16 bits.
4687     // The Pentium SSE2 status register is 32 bits.
4688     // The ARM and PowerPC FPSCR is a 32-bit register.
4689     // The SPARC FSR is a 32bit register (64 bits for SPARC 7 & 8, but high bits are uninteresting).
4690     // The RISC-V (32 & 64 bit) fcsr is 32-bit register.
4691     uint flags;
4692 
4693     version (CRuntime_Microsoft)
4694     {
4695         // Microsoft uses hardware-incompatible custom constants in fenv.h (core.stdc.fenv).
4696         // Applies to both x87 status word (16 bits) and SSE2 status word(32 bits).
4697         enum : int
4698         {
4699             INEXACT_MASK   = 0x20,
4700             UNDERFLOW_MASK = 0x10,
4701             OVERFLOW_MASK  = 0x08,
4702             DIVBYZERO_MASK = 0x04,
4703             INVALID_MASK   = 0x01,
4704 
4705             EXCEPTIONS_MASK = 0b11_1111
4706         }
4707         // Don't bother about subnormals, they are not supported on most CPUs.
4708         //  SUBNORMAL_MASK = 0x02;
4709     }
4710     else
4711     {
4712         enum : int
4713         {
4714             INEXACT_MASK    = core.stdc.fenv.FE_INEXACT,
4715             UNDERFLOW_MASK  = core.stdc.fenv.FE_UNDERFLOW,
4716             OVERFLOW_MASK   = core.stdc.fenv.FE_OVERFLOW,
4717             DIVBYZERO_MASK  = core.stdc.fenv.FE_DIVBYZERO,
4718             INVALID_MASK    = core.stdc.fenv.FE_INVALID,
4719             EXCEPTIONS_MASK = core.stdc.fenv.FE_ALL_EXCEPT,
4720         }
4721     }
4722 
4723 private:
4724     static uint getIeeeFlags()
4725     {
4726         version (GNU)
4727         {
4728             version (X86_Any)
4729             {
4730                 ushort sw;
4731                 asm pure nothrow @nogc
4732                 {
4733                     "fstsw %0" : "=a" (sw);
4734                 }
4735                 // OR the result with the SSE2 status register (MXCSR).
4736                 if (haveSSE)
4737                 {
4738                     uint mxcsr;
4739                     asm pure nothrow @nogc
4740                     {
4741                         "stmxcsr %0" : "=m" (mxcsr);
4742                     }
4743                     return (sw | mxcsr) & EXCEPTIONS_MASK;
4744                 }
4745                 else
4746                     return sw & EXCEPTIONS_MASK;
4747             }
4748             else version (ARM)
4749             {
4750                 version (ARM_SoftFloat)
4751                     return 0;
4752                 else
4753                 {
4754                     uint result = void;
4755                     asm pure nothrow @nogc
4756                     {
4757                         "vmrs %0, FPSCR; and %0, %0, #0x1F;" : "=r" result;
4758                     }
4759                     return result;
4760                 }
4761             }
4762             else version (RISCV_Any)
4763             {
4764                 version (D_SoftFloat)
4765                     return 0;
4766                 else
4767                 {
4768                     uint result = void;
4769                     asm pure nothrow @nogc
4770                     {
4771                         "frflags %0" : "=r" result;
4772                     }
4773                     return result;
4774                 }
4775             }
4776             else
4777                 assert(0, "Not yet supported");
4778         }
4779         else
4780         version (InlineAsm_X86_Any)
4781         {
4782             ushort sw;
4783             asm pure nothrow @nogc { fstsw sw; }
4784 
4785             // OR the result with the SSE2 status register (MXCSR).
4786             if (haveSSE)
4787             {
4788                 uint mxcsr;
4789                 asm pure nothrow @nogc { stmxcsr mxcsr; }
4790                 return (sw | mxcsr) & EXCEPTIONS_MASK;
4791             }
4792             else return sw & EXCEPTIONS_MASK;
4793         }
4794         else version (SPARC)
4795         {
4796            /*
4797                int retval;
4798                asm pure nothrow @nogc { st %fsr, retval; }
4799                return retval;
4800             */
4801            assert(0, "Not yet supported");
4802         }
4803         else version (ARM)
4804         {
4805             assert(false, "Not yet supported.");
4806         }
4807         else
4808             assert(0, "Not yet supported");
4809     }
4810     static void resetIeeeFlags() @nogc
4811     {
4812         version (GNU)
4813         {
4814             version (X86_Any)
4815             {
4816                 asm pure nothrow @nogc
4817                 {
4818                     "fnclex";
4819                 }
4820 
4821                 // Also clear exception flags in MXCSR, SSE's control register.
4822                 if (haveSSE)
4823                 {
4824                     uint mxcsr;
4825                     asm pure nothrow @nogc
4826                     {
4827                         "stmxcsr %0" : "=m" (mxcsr);
4828                     }
4829                     mxcsr &= ~EXCEPTIONS_MASK;
4830                     asm pure nothrow @nogc
4831                     {
4832                         "ldmxcsr %0" : : "m" (mxcsr);
4833                     }
4834                 }
4835             }
4836             else version (ARM)
4837             {
4838                 version (ARM_SoftFloat)
4839                     return;
4840                 else
4841                 {
4842                     uint old = FloatingPointControl.getControlState();
4843                     old &= ~0b11111; // http://infocenter.arm.com/help/topic/com.arm.doc.ddi0408i/Chdfifdc.html
4844                     asm pure nothrow @nogc
4845                     {
4846                         "vmsr FPSCR, %0" : : "r" (old);
4847                     }
4848                 }
4849             }
4850             else version (RISCV_Any)
4851             {
4852                 version (D_SoftFloat)
4853                     return;
4854                 else
4855                 {
4856                     uint newValues = 0x0;
4857                     asm pure nothrow @nogc
4858                     {
4859                         "fsflags %0" : : "r" newValues;
4860                     }
4861                 }
4862             }
4863             else
4864                 assert(0, "Not yet supported");
4865         }
4866         else
4867         version (InlineAsm_X86_Any)
4868         {
4869             asm pure nothrow @nogc
4870             {
4871                 fnclex;
4872             }
4873 
4874             // Also clear exception flags in MXCSR, SSE's control register.
4875             if (haveSSE)
4876             {
4877                 uint mxcsr;
4878                 asm nothrow @nogc { stmxcsr mxcsr; }
4879                 mxcsr &= ~EXCEPTIONS_MASK;
4880                 asm nothrow @nogc { ldmxcsr mxcsr; }
4881             }
4882         }
4883         else
4884         {
4885             /* SPARC:
4886               int tmpval;
4887               asm pure nothrow @nogc { st %fsr, tmpval; }
4888               tmpval &=0xFFFF_FC00;
4889               asm pure nothrow @nogc { ld tmpval, %fsr; }
4890             */
4891            assert(0, "Not yet supported");
4892         }
4893     }
4894 public:
4895     version (IeeeFlagsSupport)
4896     {
4897 
4898      /**
4899       * The result cannot be represented exactly, so rounding occurred.
4900       * Example: `x = sin(0.1);`
4901       */
4902      @property bool inexact() const { return (flags & INEXACT_MASK) != 0; }
4903 
4904      /**
4905       * A zero was generated by underflow
4906       * Example: `x = real.min*real.epsilon/2;`
4907       */
4908      @property bool underflow() const { return (flags & UNDERFLOW_MASK) != 0; }
4909 
4910      /**
4911       * An infinity was generated by overflow
4912       * Example: `x = real.max*2;`
4913       */
4914      @property bool overflow() const { return (flags & OVERFLOW_MASK) != 0; }
4915 
4916      /**
4917       * An infinity was generated by division by zero
4918       * Example: `x = 3/0.0;`
4919       */
4920      @property bool divByZero() const { return (flags & DIVBYZERO_MASK) != 0; }
4921 
4922      /**
4923       * A machine NaN was generated.
4924       * Example: `x = real.infinity * 0.0;`
4925       */
4926      @property bool invalid() const { return (flags & INVALID_MASK) != 0; }
4927 
4928      }
4929 }
4930 
4931 ///
4932 version (GNU)
4933 {
4934     // ieeeFlags test disabled, see LDC Issue #888.
4935 }
4936 else
4937 @system unittest
4938 {
4939     static void func() {
4940         int a = 10 * 10;
4941     }
4942 
4943     real a=3.5;
4944     // Set all the flags to zero
4945     resetIeeeFlags();
4946     assert(!ieeeFlags.divByZero);
4947     // Perform a division by zero.
4948     a/=0.0L;
4949     assert(a == real.infinity);
4950     assert(ieeeFlags.divByZero);
4951     // Create a NaN
4952     a*=0.0L;
4953     assert(ieeeFlags.invalid);
4954     assert(isNaN(a));
4955 
4956     // Check that calling func() has no effect on the
4957     // status flags.
4958     IeeeFlags f = ieeeFlags;
4959     func();
4960     assert(ieeeFlags == f);
4961 }
4962 
4963 version (GNU)
4964 {
4965     // ieeeFlags test disabled, see LDC Issue #888.
4966 }
4967 else
4968 @system unittest
4969 {
4970     import std.meta : AliasSeq;
4971 
4972     static struct Test
4973     {
4974         void delegate() action;
4975         bool function() ieeeCheck;
4976     }
4977 
4978     foreach (T; AliasSeq!(float, double, real))
4979     {
4980         T x; /* Needs to be here to trick -O. It would optimize away the
4981             calculations if x were local to the function literals. */
4982         auto tests = [
4983             Test(
4984                 () { x = 1; x += 0.1; },
4985                 () => ieeeFlags.inexact
4986             ),
4987             Test(
4988                 () { x = T.min_normal; x /= T.max; },
4989                 () => ieeeFlags.underflow
4990             ),
4991             Test(
4992                 () { x = T.max; x += T.max; },
4993                 () => ieeeFlags.overflow
4994             ),
4995             Test(
4996                 () { x = 1; x /= 0; },
4997                 () => ieeeFlags.divByZero
4998             ),
4999             Test(
5000                 () { x = 0; x /= 0; },
5001                 () => ieeeFlags.invalid
5002             )
5003         ];
5004         foreach (test; tests)
5005         {
5006             resetIeeeFlags();
5007             assert(!test.ieeeCheck());
5008             test.action();
5009             assert(test.ieeeCheck());
5010         }
5011     }
5012 }
5013 
5014 version (X86_Any)
5015 {
5016     version = IeeeFlagsSupport;
5017 }
5018 else version (PPC_Any)
5019 {
5020     version = IeeeFlagsSupport;
5021 }
5022 else version (RISCV_Any)
5023 {
5024     version = IeeeFlagsSupport;
5025 }
5026 else version (MIPS_Any)
5027 {
5028     version = IeeeFlagsSupport;
5029 }
5030 else version (ARM_Any)
5031 {
5032     version = IeeeFlagsSupport;
5033 }
5034 
5035 /// Set all of the floating-point status flags to false.
5036 void resetIeeeFlags() @nogc { IeeeFlags.resetIeeeFlags(); }
5037 
5038 /// Returns: snapshot of the current state of the floating-point status flags
5039 @property IeeeFlags ieeeFlags()
5040 {
5041    return IeeeFlags(IeeeFlags.getIeeeFlags());
5042 }
5043 
5044 /** Control the Floating point hardware
5045 
5046   Change the IEEE754 floating-point rounding mode and the floating-point
5047   hardware exceptions.
5048 
5049   By default, the rounding mode is roundToNearest and all hardware exceptions
5050   are disabled. For most applications, debugging is easier if the $(I division
5051   by zero), $(I overflow), and $(I invalid operation) exceptions are enabled.
5052   These three are combined into a $(I severeExceptions) value for convenience.
5053   Note in particular that if $(I invalidException) is enabled, a hardware trap
5054   will be generated whenever an uninitialized floating-point variable is used.
5055 
5056   All changes are temporary. The previous state is restored at the
5057   end of the scope.
5058 
5059 
5060 Example:
5061 ----
5062 {
5063     FloatingPointControl fpctrl;
5064 
5065     // Enable hardware exceptions for division by zero, overflow to infinity,
5066     // invalid operations, and uninitialized floating-point variables.
5067     fpctrl.enableExceptions(FloatingPointControl.severeExceptions);
5068 
5069     // This will generate a hardware exception, if x is a
5070     // default-initialized floating point variable:
5071     real x; // Add `= 0` or even `= real.nan` to not throw the exception.
5072     real y = x * 3.0;
5073 
5074     // The exception is only thrown for default-uninitialized NaN-s.
5075     // NaN-s with other payload are valid:
5076     real z = y * real.nan; // ok
5077 
5078     // Changing the rounding mode:
5079     fpctrl.rounding = FloatingPointControl.roundUp;
5080     assert(rint(1.1) == 2);
5081 
5082     // The set hardware exceptions will be disabled when leaving this scope.
5083     // The original rounding mode will also be restored.
5084 }
5085 
5086 // Ensure previous values are returned:
5087 assert(!FloatingPointControl.enabledExceptions);
5088 assert(FloatingPointControl.rounding == FloatingPointControl.roundToNearest);
5089 assert(rint(1.1) == 1);
5090 ----
5091 
5092  */
5093 struct FloatingPointControl
5094 {
5095     alias RoundingMode = uint; ///
5096 
5097     version (StdDdoc)
5098     {
5099         enum : RoundingMode
5100         {
5101             /** IEEE rounding modes.
5102              * The default mode is roundToNearest.
5103              *
5104              *  roundingMask = A mask of all rounding modes.
5105              */
5106             roundToNearest,
5107             roundDown, /// ditto
5108             roundUp, /// ditto
5109             roundToZero, /// ditto
5110             roundingMask, /// ditto
5111         }
5112     }
5113     else version (CRuntime_Microsoft)
5114     {
5115         // Microsoft uses hardware-incompatible custom constants in fenv.h (core.stdc.fenv).
5116         enum : RoundingMode
5117         {
5118             roundToNearest = 0x0000,
5119             roundDown      = 0x0400,
5120             roundUp        = 0x0800,
5121             roundToZero    = 0x0C00,
5122             roundingMask   = roundToNearest | roundDown
5123                              | roundUp | roundToZero,
5124         }
5125     }
5126     else
5127     {
5128         enum : RoundingMode
5129         {
5130             roundToNearest = core.stdc.fenv.FE_TONEAREST,
5131             roundDown      = core.stdc.fenv.FE_DOWNWARD,
5132             roundUp        = core.stdc.fenv.FE_UPWARD,
5133             roundToZero    = core.stdc.fenv.FE_TOWARDZERO,
5134             roundingMask   = roundToNearest | roundDown
5135                              | roundUp | roundToZero,
5136         }
5137     }
5138 
5139     //// Change the floating-point hardware rounding mode
5140     @property void rounding(RoundingMode newMode) @nogc
5141     {
5142         initialize();
5143         setControlState(cast(ushort)((getControlState() & (-1 - roundingMask)) | (newMode & roundingMask)));
5144     }
5145 
5146     /// Returns: the currently active rounding mode
5147     @property static RoundingMode rounding() @nogc
5148     {
5149         return cast(RoundingMode)(getControlState() & roundingMask);
5150     }
5151 
5152     alias ExceptionMask = uint; ///
5153 
5154     version (StdDdoc)
5155     {
5156         enum : ExceptionMask
5157         {
5158             /** IEEE hardware exceptions.
5159              *  By default, all exceptions are masked (disabled).
5160              *
5161              *  severeExceptions = The overflow, division by zero, and invalid
5162              *  exceptions.
5163              */
5164             subnormalException,
5165             inexactException, /// ditto
5166             underflowException, /// ditto
5167             overflowException, /// ditto
5168             divByZeroException, /// ditto
5169             invalidException, /// ditto
5170             severeExceptions, /// ditto
5171             allExceptions, /// ditto
5172         }
5173     }
5174     else version (ARM_Any)
5175     {
5176         enum : ExceptionMask
5177         {
5178             subnormalException    = 0x8000,
5179             inexactException      = 0x1000,
5180             underflowException    = 0x0800,
5181             overflowException     = 0x0400,
5182             divByZeroException    = 0x0200,
5183             invalidException      = 0x0100,
5184             severeExceptions   = overflowException | divByZeroException
5185                                  | invalidException,
5186             allExceptions      = severeExceptions | underflowException
5187                                  | inexactException | subnormalException,
5188         }
5189     }
5190     else version (PPC_Any)
5191     {
5192         enum : ExceptionMask
5193         {
5194             inexactException      = 0x0008,
5195             divByZeroException    = 0x0010,
5196             underflowException    = 0x0020,
5197             overflowException     = 0x0040,
5198             invalidException      = 0x0080,
5199             severeExceptions   = overflowException | divByZeroException
5200                                  | invalidException,
5201             allExceptions      = severeExceptions | underflowException
5202                                  | inexactException,
5203         }
5204     }
5205     else version (HPPA)
5206     {
5207         enum : ExceptionMask
5208         {
5209             inexactException      = 0x01,
5210             underflowException    = 0x02,
5211             overflowException     = 0x04,
5212             divByZeroException    = 0x08,
5213             invalidException      = 0x10,
5214             severeExceptions   = overflowException | divByZeroException
5215                                  | invalidException,
5216             allExceptions      = severeExceptions | underflowException
5217                                  | inexactException,
5218         }
5219     }
5220     else version (MIPS_Any)
5221     {
5222         enum : ExceptionMask
5223         {
5224             inexactException      = 0x0080,
5225             divByZeroException    = 0x0400,
5226             overflowException     = 0x0200,
5227             underflowException    = 0x0100,
5228             invalidException      = 0x0800,
5229             severeExceptions   = overflowException | divByZeroException
5230                                  | invalidException,
5231             allExceptions      = severeExceptions | underflowException
5232                                  | inexactException,
5233         }
5234     }
5235     else version (SPARC_Any)
5236     {
5237         enum : ExceptionMask
5238         {
5239             inexactException      = 0x0800000,
5240             divByZeroException    = 0x1000000,
5241             overflowException     = 0x4000000,
5242             underflowException    = 0x2000000,
5243             invalidException      = 0x8000000,
5244             severeExceptions   = overflowException | divByZeroException
5245                                  | invalidException,
5246             allExceptions      = severeExceptions | underflowException
5247                                  | inexactException,
5248         }
5249     }
5250     else version (IBMZ_Any)
5251     {
5252         enum : ExceptionMask
5253         {
5254             inexactException      = 0x08000000,
5255             divByZeroException    = 0x40000000,
5256             overflowException     = 0x20000000,
5257             underflowException    = 0x10000000,
5258             invalidException      = 0x80000000,
5259             severeExceptions   = overflowException | divByZeroException
5260                                  | invalidException,
5261             allExceptions      = severeExceptions | underflowException
5262                                  | inexactException,
5263         }
5264     }
5265     else version (RISCV_Any)
5266     {
5267         enum : ExceptionMask
5268         {
5269             inexactException      = 0x01,
5270             divByZeroException    = 0x02,
5271             underflowException    = 0x04,
5272             overflowException     = 0x08,
5273             invalidException      = 0x10,
5274             severeExceptions   = overflowException | divByZeroException
5275                                  | invalidException,
5276             allExceptions      = severeExceptions | underflowException
5277                                  | inexactException,
5278         }
5279     }
5280     else version (X86_Any)
5281     {
5282         enum : ExceptionMask
5283         {
5284             inexactException      = 0x20,
5285             underflowException    = 0x10,
5286             overflowException     = 0x08,
5287             divByZeroException    = 0x04,
5288             subnormalException    = 0x02,
5289             invalidException      = 0x01,
5290             severeExceptions   = overflowException | divByZeroException
5291                                  | invalidException,
5292             allExceptions      = severeExceptions | underflowException
5293                                  | inexactException | subnormalException,
5294         }
5295     }
5296     else
5297         static assert(false, "Not implemented for this architecture");
5298 
5299 public:
5300     /// Returns: true if the current FPU supports exception trapping
5301     @property static bool hasExceptionTraps() @safe nothrow @nogc
5302     {
5303         version (X86_Any)
5304             return true;
5305         else version (PPC_Any)
5306             return true;
5307         else version (MIPS_Any)
5308             return true;
5309         else version (ARM_Any)
5310         {
5311             auto oldState = getControlState();
5312             // If exceptions are not supported, we set the bit but read it back as zero
5313             // https://sourceware.org/ml/libc-ports/2012-06/msg00091.html
5314             setControlState(oldState | divByZeroException);
5315             immutable result = (getControlState() & allExceptions) != 0;
5316             setControlState(oldState);
5317             return result;
5318         }
5319         else
5320             assert(0, "Not yet supported");
5321     }
5322 
5323     /// Enable (unmask) specific hardware exceptions. Multiple exceptions may be ORed together.
5324     void enableExceptions(ExceptionMask exceptions) @nogc
5325     {
5326         assert(hasExceptionTraps);
5327         initialize();
5328         version (X86_Any)
5329             setControlState(getControlState() & ~(exceptions & allExceptions));
5330         else
5331             setControlState(getControlState() | (exceptions & allExceptions));
5332     }
5333 
5334     /// Disable (mask) specific hardware exceptions. Multiple exceptions may be ORed together.
5335     void disableExceptions(ExceptionMask exceptions) @nogc
5336     {
5337         assert(hasExceptionTraps);
5338         initialize();
5339         version (X86_Any)
5340             setControlState(getControlState() | (exceptions & allExceptions));
5341         else
5342             setControlState(getControlState() & ~(exceptions & allExceptions));
5343     }
5344 
5345     /// Returns: the exceptions which are currently enabled (unmasked)
5346     @property static ExceptionMask enabledExceptions() @nogc
5347     {
5348         assert(hasExceptionTraps);
5349         version (X86_Any)
5350             return (getControlState() & allExceptions) ^ allExceptions;
5351         else
5352             return (getControlState() & allExceptions);
5353     }
5354 
5355     ///  Clear all pending exceptions, then restore the original exception state and rounding mode.
5356     ~this() @nogc
5357     {
5358         clearExceptions();
5359         if (initialized)
5360             setControlState(savedState);
5361     }
5362 
5363 private:
5364     ControlState savedState;
5365 
5366     bool initialized = false;
5367 
5368     version (ARM_Any)
5369     {
5370         alias ControlState = uint;
5371     }
5372     else version (HPPA)
5373     {
5374         alias ControlState = uint;
5375     }
5376     else version (PPC_Any)
5377     {
5378         alias ControlState = uint;
5379     }
5380     else version (MIPS_Any)
5381     {
5382         alias ControlState = uint;
5383     }
5384     else version (SPARC_Any)
5385     {
5386         alias ControlState = ulong;
5387     }
5388     else version (IBMZ_Any)
5389     {
5390         alias ControlState = uint;
5391     }
5392     else version (RISCV_Any)
5393     {
5394         alias ControlState = uint;
5395     }
5396     else version (X86_Any)
5397     {
5398         alias ControlState = ushort;
5399     }
5400     else
5401         static assert(false, "Not implemented for this architecture");
5402 
5403     void initialize() @nogc
5404     {
5405         // BUG: This works around the absence of this() constructors.
5406         if (initialized) return;
5407         clearExceptions();
5408         savedState = getControlState();
5409         initialized = true;
5410     }
5411 
5412     // Clear all pending exceptions
5413     static void clearExceptions() @nogc
5414     {
5415         resetIeeeFlags();
5416     }
5417 
5418     // Read from the control register
5419     static ControlState getControlState() @trusted nothrow @nogc
5420     {
5421         version (GNU)
5422         {
5423             version (X86_Any)
5424             {
5425                 ControlState cont;
5426                 asm pure nothrow @nogc
5427                 {
5428                     "fstcw %0" : "=m" cont;
5429                 }
5430                 return cont;
5431             }
5432             else version (AArch64)
5433             {
5434                 ControlState cont;
5435                 asm pure nothrow @nogc
5436                 {
5437                     "mrs %0, FPCR;" : "=r" cont;
5438                 }
5439                 return cont;
5440             }
5441             else version (ARM)
5442             {
5443                 ControlState cont;
5444                 version (ARM_SoftFloat)
5445                    cont = 0;
5446                 else
5447                 {
5448                     asm pure nothrow @nogc
5449                     {
5450                         "vmrs %0, FPSCR" : "=r" cont;
5451                     }
5452                 }
5453                 return cont;
5454             }
5455             else version (RISCV_Any)
5456             {
5457                 version (D_SoftFloat)
5458                     return 0;
5459                 else
5460                 {
5461                     ControlState cont;
5462                     asm pure nothrow @nogc
5463                     {
5464                         "frcsr %0" : "=r" cont;
5465                     }
5466                     return cont;
5467                 }
5468             }
5469             else
5470                 assert(0, "Not yet supported");
5471         }
5472         else
5473         version (D_InlineAsm_X86)
5474         {
5475             short cont;
5476             asm nothrow @nogc
5477             {
5478                 xor EAX, EAX;
5479                 fstcw cont;
5480             }
5481             return cont;
5482         }
5483         else
5484         version (D_InlineAsm_X86_64)
5485         {
5486             short cont;
5487             asm nothrow @nogc
5488             {
5489                 xor RAX, RAX;
5490                 fstcw cont;
5491             }
5492             return cont;
5493         }
5494         else
5495             assert(0, "Not yet supported");
5496     }
5497 
5498     // Set the control register
5499     static void setControlState(ControlState newState) @trusted nothrow @nogc
5500     {
5501         version (GNU)
5502         {
5503             version (X86_Any)
5504             {
5505                 asm pure nothrow @nogc
5506                 {
5507                     "fclex; fldcw %0" : : "m" newState;
5508                 }
5509 
5510                 // Also update MXCSR, SSE's control register.
5511                 if (haveSSE)
5512                 {
5513                     uint mxcsr;
5514                     asm pure nothrow @nogc
5515                     {
5516                         "stmxcsr %0" : "=m" mxcsr;
5517                     }
5518 
5519                     /* In the FPU control register, rounding mode is in bits 10 and
5520                        11. In MXCSR it's in bits 13 and 14. */
5521                     mxcsr &= ~(roundingMask << 3);             // delete old rounding mode
5522                     mxcsr |= (newState & roundingMask) << 3;   // write new rounding mode
5523 
5524                     /* In the FPU control register, masks are bits 0 through 5.
5525                        In MXCSR they're 7 through 12. */
5526                     mxcsr &= ~(allExceptions << 7);            // delete old masks
5527                     mxcsr |= (newState & allExceptions) << 7;  // write new exception masks
5528 
5529                     asm pure nothrow @nogc
5530                     {
5531                         "ldmxcsr %0" : : "m" mxcsr;
5532                     }
5533                 }
5534             }
5535             else version (AArch64)
5536             {
5537                 asm pure nothrow @nogc
5538                 {
5539                     "msr FPCR, %0;" : : "r" (newState);
5540                 }
5541             }
5542             else version (ARM)
5543             {
5544                 version (ARM_SoftFloat)
5545                    return;
5546                 else
5547                 {
5548                     asm pure nothrow @nogc
5549                     {
5550                         "vmsr FPSCR, %0" : : "r" (newState);
5551                     }
5552                 }
5553             }
5554             else version (RISCV_Any)
5555             {
5556                 version (D_SoftFloat)
5557                     return;
5558                 else
5559                 {
5560                     asm pure nothrow @nogc
5561                     {
5562                         "fscsr %0" : : "r" (newState);
5563                     }
5564                 }
5565             }
5566             else
5567                 assert(0, "Not yet supported");
5568         }
5569         else
5570         version (InlineAsm_X86_Any)
5571         {
5572             asm nothrow @nogc
5573             {
5574                 fclex;
5575                 fldcw newState;
5576             }
5577 
5578             // Also update MXCSR, SSE's control register.
5579             if (haveSSE)
5580             {
5581                 uint mxcsr;
5582                 asm nothrow @nogc { stmxcsr mxcsr; }
5583 
5584                 /* In the FPU control register, rounding mode is in bits 10 and
5585                 11. In MXCSR it's in bits 13 and 14. */
5586                 mxcsr &= ~(roundingMask << 3);             // delete old rounding mode
5587                 mxcsr |= (newState & roundingMask) << 3;   // write new rounding mode
5588 
5589                 /* In the FPU control register, masks are bits 0 through 5.
5590                 In MXCSR they're 7 through 12. */
5591                 mxcsr &= ~(allExceptions << 7);            // delete old masks
5592                 mxcsr |= (newState & allExceptions) << 7;  // write new exception masks
5593 
5594                 asm nothrow @nogc { ldmxcsr mxcsr; }
5595             }
5596         }
5597         else
5598             assert(0, "Not yet supported");
5599     }
5600 }
5601 
5602 version (D_HardFloat) @system unittest
5603 {
5604     void ensureDefaults()
5605     {
5606         assert(FloatingPointControl.rounding
5607                == FloatingPointControl.roundToNearest);
5608         if (FloatingPointControl.hasExceptionTraps)
5609             assert(FloatingPointControl.enabledExceptions == 0);
5610     }
5611 
5612     {
5613         FloatingPointControl ctrl;
5614     }
5615     ensureDefaults();
5616 
5617     {
5618         FloatingPointControl ctrl;
5619         ctrl.rounding = FloatingPointControl.roundDown;
5620         assert(FloatingPointControl.rounding == FloatingPointControl.roundDown);
5621     }
5622     ensureDefaults();
5623 
5624     if (FloatingPointControl.hasExceptionTraps)
5625     {
5626         FloatingPointControl ctrl;
5627         ctrl.enableExceptions(FloatingPointControl.divByZeroException
5628                               | FloatingPointControl.overflowException);
5629         assert(ctrl.enabledExceptions ==
5630                (FloatingPointControl.divByZeroException
5631                 | FloatingPointControl.overflowException));
5632 
5633         ctrl.rounding = FloatingPointControl.roundUp;
5634         assert(FloatingPointControl.rounding == FloatingPointControl.roundUp);
5635     }
5636     ensureDefaults();
5637 }
5638 
5639 version (D_HardFloat) @system unittest // rounding
5640 {
5641     import std.meta : AliasSeq;
5642 
5643     foreach (T; AliasSeq!(float, double, real))
5644     {
5645         FloatingPointControl fpctrl;
5646 
5647         fpctrl.rounding = FloatingPointControl.roundUp;
5648         T u = 1;
5649         u += 0.1;
5650 
5651         fpctrl.rounding = FloatingPointControl.roundDown;
5652         T d = 1;
5653         d += 0.1;
5654 
5655         fpctrl.rounding = FloatingPointControl.roundToZero;
5656         T z = 1;
5657         z += 0.1;
5658 
5659         assert(u > d);
5660         assert(z == d);
5661 
5662         fpctrl.rounding = FloatingPointControl.roundUp;
5663         u = -1;
5664         u -= 0.1;
5665 
5666         fpctrl.rounding = FloatingPointControl.roundDown;
5667         d = -1;
5668         d -= 0.1;
5669 
5670         fpctrl.rounding = FloatingPointControl.roundToZero;
5671         z = -1;
5672         z -= 0.1;
5673 
5674         assert(u > d);
5675         assert(z == u);
5676     }
5677 }
5678 
5679 
5680 /*********************************
5681  * Determines if $(D_PARAM x) is NaN.
5682  * Params:
5683  *  x = a floating point number.
5684  * Returns:
5685  *  $(D true) if $(D_PARAM x) is Nan.
5686  */
5687 bool isNaN(X)(X x) @nogc @trusted pure nothrow
5688 if (isFloatingPoint!(X))
5689 {
5690     alias F = floatTraits!(X);
5691     static if (F.realFormat == RealFormat.ieeeSingle)
5692     {
5693         const uint p = *cast(uint *)&x;
5694         return ((p & 0x7F80_0000) == 0x7F80_0000)
5695             && p & 0x007F_FFFF; // not infinity
5696     }
5697     else static if (F.realFormat == RealFormat.ieeeDouble)
5698     {
5699         const ulong  p = *cast(ulong *)&x;
5700         return ((p & 0x7FF0_0000_0000_0000) == 0x7FF0_0000_0000_0000)
5701             && p & 0x000F_FFFF_FFFF_FFFF; // not infinity
5702     }
5703     else static if (F.realFormat == RealFormat.ieeeExtended)
5704     {
5705         const ushort e = F.EXPMASK & (cast(ushort *)&x)[F.EXPPOS_SHORT];
5706         const ulong ps = *cast(ulong *)&x;
5707         return e == F.EXPMASK &&
5708             ps & 0x7FFF_FFFF_FFFF_FFFF; // not infinity
5709     }
5710     else static if (F.realFormat == RealFormat.ieeeQuadruple)
5711     {
5712         const ushort e = F.EXPMASK & (cast(ushort *)&x)[F.EXPPOS_SHORT];
5713         const ulong psLsb = (cast(ulong *)&x)[MANTISSA_LSB];
5714         const ulong psMsb = (cast(ulong *)&x)[MANTISSA_MSB];
5715         return e == F.EXPMASK &&
5716             (psLsb | (psMsb& 0x0000_FFFF_FFFF_FFFF)) != 0;
5717     }
5718     else
5719     {
5720         return x != x;
5721     }
5722 }
5723 
5724 ///
5725 @safe pure nothrow @nogc unittest
5726 {
5727     assert( isNaN(float.init));
5728     assert( isNaN(-double.init));
5729     assert( isNaN(real.nan));
5730     assert( isNaN(-real.nan));
5731     assert(!isNaN(cast(float) 53.6));
5732     assert(!isNaN(cast(real)-53.6));
5733 }
5734 
5735 @safe pure nothrow @nogc unittest
5736 {
5737     import std.meta : AliasSeq;
5738 
5739     foreach (T; AliasSeq!(float, double, real))
5740     {
5741         // CTFE-able tests
5742         assert(isNaN(T.init));
5743         assert(isNaN(-T.init));
5744         assert(isNaN(T.nan));
5745         assert(isNaN(-T.nan));
5746         assert(!isNaN(T.infinity));
5747         assert(!isNaN(-T.infinity));
5748         assert(!isNaN(cast(T) 53.6));
5749         assert(!isNaN(cast(T)-53.6));
5750 
5751         // Runtime tests
5752         shared T f;
5753         f = T.init;
5754         assert(isNaN(f));
5755         assert(isNaN(-f));
5756         f = T.nan;
5757         assert(isNaN(f));
5758         assert(isNaN(-f));
5759         f = T.infinity;
5760         assert(!isNaN(f));
5761         assert(!isNaN(-f));
5762         f = cast(T) 53.6;
5763         assert(!isNaN(f));
5764         assert(!isNaN(-f));
5765     }
5766 }
5767 
5768 /*********************************
5769  * Determines if $(D_PARAM x) is finite.
5770  * Params:
5771  *  x = a floating point number.
5772  * Returns:
5773  *  $(D true) if $(D_PARAM x) is finite.
5774  */
5775 bool isFinite(X)(X x) @trusted pure nothrow @nogc
5776 {
5777     alias F = floatTraits!(X);
5778     ushort* pe = cast(ushort *)&x;
5779     return (pe[F.EXPPOS_SHORT] & F.EXPMASK) != F.EXPMASK;
5780 }
5781 
5782 ///
5783 @safe pure nothrow @nogc unittest
5784 {
5785     assert( isFinite(1.23f));
5786     assert( isFinite(float.max));
5787     assert( isFinite(float.min_normal));
5788     assert(!isFinite(float.nan));
5789     assert(!isFinite(float.infinity));
5790 }
5791 
5792 @safe pure nothrow @nogc unittest
5793 {
5794     assert(isFinite(1.23));
5795     assert(isFinite(double.max));
5796     assert(isFinite(double.min_normal));
5797     assert(!isFinite(double.nan));
5798     assert(!isFinite(double.infinity));
5799 
5800     assert(isFinite(1.23L));
5801     assert(isFinite(real.max));
5802     assert(isFinite(real.min_normal));
5803     assert(!isFinite(real.nan));
5804     assert(!isFinite(real.infinity));
5805 }
5806 
5807 
5808 /*********************************
5809  * Determines if $(D_PARAM x) is normalized.
5810  *
5811  * A normalized number must not be zero, subnormal, infinite nor $(NAN).
5812  *
5813  * Params:
5814  *  x = a floating point number.
5815  * Returns:
5816  *  $(D true) if $(D_PARAM x) is normalized.
5817  */
5818 
5819 /* Need one for each format because subnormal floats might
5820  * be converted to normal reals.
5821  */
5822 bool isNormal(X)(X x) @trusted pure nothrow @nogc
5823 {
5824     alias F = floatTraits!(X);
5825     static if (F.realFormat == RealFormat.ibmExtended)
5826     {
5827         // doubledouble is normal if the least significant part is normal.
5828         return isNormal((cast(double*)&x)[MANTISSA_LSB]);
5829     }
5830     else
5831     {
5832         ushort e = F.EXPMASK & (cast(ushort *)&x)[F.EXPPOS_SHORT];
5833         return (e != F.EXPMASK && e != 0);
5834     }
5835 }
5836 
5837 ///
5838 @safe pure nothrow @nogc unittest
5839 {
5840     float f = 3;
5841     double d = 500;
5842     real e = 10e+48;
5843 
5844     assert(isNormal(f));
5845     assert(isNormal(d));
5846     assert(isNormal(e));
5847     f = d = e = 0;
5848     assert(!isNormal(f));
5849     assert(!isNormal(d));
5850     assert(!isNormal(e));
5851     assert(!isNormal(real.infinity));
5852     assert(isNormal(-real.max));
5853     assert(!isNormal(real.min_normal/4));
5854 
5855 }
5856 
5857 /*********************************
5858  * Determines if $(D_PARAM x) is subnormal.
5859  *
5860  * Subnormals (also known as "denormal number"), have a 0 exponent
5861  * and a 0 most significant mantissa bit.
5862  *
5863  * Params:
5864  *  x = a floating point number.
5865  * Returns:
5866  *  $(D true) if $(D_PARAM x) is a denormal number.
5867  */
5868 bool isSubnormal(X)(X x) @trusted pure nothrow @nogc
5869 {
5870     /*
5871         Need one for each format because subnormal floats might
5872         be converted to normal reals.
5873     */
5874     alias F = floatTraits!(X);
5875     static if (F.realFormat == RealFormat.ieeeSingle)
5876     {
5877         uint *p = cast(uint *)&x;
5878         return (*p & F.EXPMASK_INT) == 0 && *p & F.MANTISSAMASK_INT;
5879     }
5880     else static if (F.realFormat == RealFormat.ieeeDouble)
5881     {
5882         uint *p = cast(uint *)&x;
5883         return (p[MANTISSA_MSB] & F.EXPMASK_INT) == 0
5884             && (p[MANTISSA_LSB] || p[MANTISSA_MSB] & F.MANTISSAMASK_INT);
5885     }
5886     else static if (F.realFormat == RealFormat.ieeeQuadruple)
5887     {
5888         ushort e = F.EXPMASK & (cast(ushort *)&x)[F.EXPPOS_SHORT];
5889         long*   ps = cast(long *)&x;
5890         return (e == 0 &&
5891           ((ps[MANTISSA_LSB]|(ps[MANTISSA_MSB]& 0x0000_FFFF_FFFF_FFFF)) != 0));
5892     }
5893     else static if (F.realFormat == RealFormat.ieeeExtended)
5894     {
5895         ushort* pe = cast(ushort *)&x;
5896         long*   ps = cast(long *)&x;
5897 
5898         return (pe[F.EXPPOS_SHORT] & F.EXPMASK) == 0 && *ps > 0;
5899     }
5900     else static if (F.realFormat == RealFormat.ibmExtended)
5901     {
5902         return isSubnormal((cast(double*)&x)[MANTISSA_MSB]);
5903     }
5904     else
5905     {
5906         static assert(false, "Not implemented for this architecture");
5907     }
5908 }
5909 
5910 ///
5911 @safe pure nothrow @nogc unittest
5912 {
5913     import std.meta : AliasSeq;
5914 
5915     foreach (T; AliasSeq!(float, double, real))
5916     {
5917         T f;
5918         for (f = 1.0; !isSubnormal(f); f /= 2)
5919             assert(f != 0);
5920     }
5921 }
5922 
5923 /*********************************
5924  * Determines if $(D_PARAM x) is $(PLUSMN)$(INFIN).
5925  * Params:
5926  *  x = a floating point number.
5927  * Returns:
5928  *  $(D true) if $(D_PARAM x) is $(PLUSMN)$(INFIN).
5929  */
5930 bool isInfinity(X)(X x) @nogc @trusted pure nothrow
5931 if (isFloatingPoint!(X))
5932 {
5933     alias F = floatTraits!(X);
5934     static if (F.realFormat == RealFormat.ieeeSingle)
5935     {
5936         return ((*cast(uint *)&x) & 0x7FFF_FFFF) == 0x7F80_0000;
5937     }
5938     else static if (F.realFormat == RealFormat.ieeeDouble)
5939     {
5940         return ((*cast(ulong *)&x) & 0x7FFF_FFFF_FFFF_FFFF)
5941             == 0x7FF0_0000_0000_0000;
5942     }
5943     else static if (F.realFormat == RealFormat.ieeeExtended)
5944     {
5945         const ushort e = cast(ushort)(F.EXPMASK & (cast(ushort *)&x)[F.EXPPOS_SHORT]);
5946         const ulong ps = *cast(ulong *)&x;
5947 
5948         // On Motorola 68K, infinity can have hidden bit = 1 or 0. On x86, it is always 1.
5949         return e == F.EXPMASK && (ps & 0x7FFF_FFFF_FFFF_FFFF) == 0;
5950     }
5951     else static if (F.realFormat == RealFormat.ibmExtended)
5952     {
5953         return (((cast(ulong *)&x)[MANTISSA_MSB]) & 0x7FFF_FFFF_FFFF_FFFF)
5954             == 0x7FF8_0000_0000_0000;
5955     }
5956     else static if (F.realFormat == RealFormat.ieeeQuadruple)
5957     {
5958         const long psLsb = (cast(long *)&x)[MANTISSA_LSB];
5959         const long psMsb = (cast(long *)&x)[MANTISSA_MSB];
5960         return (psLsb == 0)
5961             && (psMsb & 0x7FFF_FFFF_FFFF_FFFF) == 0x7FFF_0000_0000_0000;
5962     }
5963     else
5964     {
5965         return (x < -X.max) || (X.max < x);
5966     }
5967 }
5968 
5969 ///
5970 @nogc @safe pure nothrow unittest
5971 {
5972     assert(!isInfinity(float.init));
5973     assert(!isInfinity(-float.init));
5974     assert(!isInfinity(float.nan));
5975     assert(!isInfinity(-float.nan));
5976     assert(isInfinity(float.infinity));
5977     assert(isInfinity(-float.infinity));
5978     assert(isInfinity(-1.0f / 0.0f));
5979 }
5980 
5981 @safe pure nothrow @nogc unittest
5982 {
5983     // CTFE-able tests
5984     assert(!isInfinity(double.init));
5985     assert(!isInfinity(-double.init));
5986     assert(!isInfinity(double.nan));
5987     assert(!isInfinity(-double.nan));
5988     assert(isInfinity(double.infinity));
5989     assert(isInfinity(-double.infinity));
5990     assert(isInfinity(-1.0 / 0.0));
5991 
5992     assert(!isInfinity(real.init));
5993     assert(!isInfinity(-real.init));
5994     assert(!isInfinity(real.nan));
5995     assert(!isInfinity(-real.nan));
5996     assert(isInfinity(real.infinity));
5997     assert(isInfinity(-real.infinity));
5998     assert(isInfinity(-1.0L / 0.0L));
5999 
6000     // Runtime tests
6001     shared float f;
6002     f = float.init;
6003     assert(!isInfinity(f));
6004     assert(!isInfinity(-f));
6005     f = float.nan;
6006     assert(!isInfinity(f));
6007     assert(!isInfinity(-f));
6008     f = float.infinity;
6009     assert(isInfinity(f));
6010     assert(isInfinity(-f));
6011     f = (-1.0f / 0.0f);
6012     assert(isInfinity(f));
6013 
6014     shared double d;
6015     d = double.init;
6016     assert(!isInfinity(d));
6017     assert(!isInfinity(-d));
6018     d = double.nan;
6019     assert(!isInfinity(d));
6020     assert(!isInfinity(-d));
6021     d = double.infinity;
6022     assert(isInfinity(d));
6023     assert(isInfinity(-d));
6024     d = (-1.0 / 0.0);
6025     assert(isInfinity(d));
6026 
6027     shared real e;
6028     e = real.init;
6029     assert(!isInfinity(e));
6030     assert(!isInfinity(-e));
6031     e = real.nan;
6032     assert(!isInfinity(e));
6033     assert(!isInfinity(-e));
6034     e = real.infinity;
6035     assert(isInfinity(e));
6036     assert(isInfinity(-e));
6037     e = (-1.0L / 0.0L);
6038     assert(isInfinity(e));
6039 }
6040 
6041 /*********************************
6042  * Is the binary representation of x identical to y?
6043  *
6044  * Same as ==, except that positive and negative zero are not identical,
6045  * and two $(NAN)s are identical if they have the same 'payload'.
6046  */
6047 bool isIdentical(real x, real y) @trusted pure nothrow @nogc
6048 {
6049     // We're doing a bitwise comparison so the endianness is irrelevant.
6050     long*   pxs = cast(long *)&x;
6051     long*   pys = cast(long *)&y;
6052     alias F = floatTraits!(real);
6053     static if (F.realFormat == RealFormat.ieeeDouble)
6054     {
6055         return pxs[0] == pys[0];
6056     }
6057     else static if (F.realFormat == RealFormat.ieeeQuadruple
6058                  || F.realFormat == RealFormat.ibmExtended)
6059     {
6060         return pxs[0] == pys[0] && pxs[1] == pys[1];
6061     }
6062     else
6063     {
6064         ushort* pxe = cast(ushort *)&x;
6065         ushort* pye = cast(ushort *)&y;
6066         return pxe[4] == pye[4] && pxs[0] == pys[0];
6067     }
6068 }
6069 
6070 /*********************************
6071  * Return 1 if sign bit of e is set, 0 if not.
6072  */
6073 int signbit(X)(X x) @nogc @trusted pure nothrow
6074 {
6075     alias F = floatTraits!(X);
6076     return ((cast(ubyte *)&x)[F.SIGNPOS_BYTE] & 0x80) != 0;
6077 }
6078 
6079 ///
6080 @nogc @safe pure nothrow unittest
6081 {
6082     assert(!signbit(float.nan));
6083     assert(signbit(-float.nan));
6084     assert(!signbit(168.1234f));
6085     assert(signbit(-168.1234f));
6086     assert(!signbit(0.0f));
6087     assert(signbit(-0.0f));
6088     assert(signbit(-float.max));
6089     assert(!signbit(float.max));
6090 
6091     assert(!signbit(double.nan));
6092     assert(signbit(-double.nan));
6093     assert(!signbit(168.1234));
6094     assert(signbit(-168.1234));
6095     assert(!signbit(0.0));
6096     assert(signbit(-0.0));
6097     assert(signbit(-double.max));
6098     assert(!signbit(double.max));
6099 
6100     assert(!signbit(real.nan));
6101     assert(signbit(-real.nan));
6102     assert(!signbit(168.1234L));
6103     assert(signbit(-168.1234L));
6104     assert(!signbit(0.0L));
6105     assert(signbit(-0.0L));
6106     assert(signbit(-real.max));
6107     assert(!signbit(real.max));
6108 }
6109 
6110 
6111 /*********************************
6112  * Return a value composed of to with from's sign bit.
6113  */
6114 R copysign(R, X)(R to, X from) @trusted pure nothrow @nogc
6115 if (isFloatingPoint!(R) && isFloatingPoint!(X))
6116 {
6117     ubyte* pto   = cast(ubyte *)&to;
6118     const ubyte* pfrom = cast(ubyte *)&from;
6119 
6120     alias T = floatTraits!(R);
6121     alias F = floatTraits!(X);
6122     pto[T.SIGNPOS_BYTE] &= 0x7F;
6123     pto[T.SIGNPOS_BYTE] |= pfrom[F.SIGNPOS_BYTE] & 0x80;
6124     return to;
6125 }
6126 
6127 // ditto
6128 R copysign(R, X)(X to, R from) @trusted pure nothrow @nogc
6129 if (isIntegral!(X) && isFloatingPoint!(R))
6130 {
6131     return copysign(cast(R) to, from);
6132 }
6133 
6134 @safe pure nothrow @nogc unittest
6135 {
6136     import std.meta : AliasSeq;
6137 
6138     foreach (X; AliasSeq!(float, double, real, int, long))
6139     {
6140         foreach (Y; AliasSeq!(float, double, real))
6141         (){ // avoid slow optimizations for large functions @@@BUG@@@ 2396
6142             X x = 21;
6143             Y y = 23.8;
6144             Y e = void;
6145 
6146             e = copysign(x, y);
6147             assert(e == 21.0);
6148 
6149             e = copysign(-x, y);
6150             assert(e == 21.0);
6151 
6152             e = copysign(x, -y);
6153             assert(e == -21.0);
6154 
6155             e = copysign(-x, -y);
6156             assert(e == -21.0);
6157 
6158             static if (isFloatingPoint!X)
6159             {
6160                 e = copysign(X.nan, y);
6161                 assert(isNaN(e) && !signbit(e));
6162 
6163                 e = copysign(X.nan, -y);
6164                 assert(isNaN(e) && signbit(e));
6165             }
6166         }();
6167     }
6168 }
6169 
6170 /*********************************
6171 Returns $(D -1) if $(D x < 0), $(D x) if $(D x == 0), $(D 1) if
6172 $(D x > 0), and $(NAN) if x==$(NAN).
6173  */
6174 F sgn(F)(F x) @safe pure nothrow @nogc
6175 {
6176     // @@@TODO@@@: make this faster
6177     return x > 0 ? 1 : x < 0 ? -1 : x;
6178 }
6179 
6180 ///
6181 @safe pure nothrow @nogc unittest
6182 {
6183     assert(sgn(168.1234) == 1);
6184     assert(sgn(-168.1234) == -1);
6185     assert(sgn(0.0) == 0);
6186     assert(sgn(-0.0) == 0);
6187 }
6188 
6189 // Functions for NaN payloads
6190 /*
6191  * A 'payload' can be stored in the significand of a $(NAN). One bit is required
6192  * to distinguish between a quiet and a signalling $(NAN). This leaves 22 bits
6193  * of payload for a float; 51 bits for a double; 62 bits for an 80-bit real;
6194  * and 111 bits for a 128-bit quad.
6195 */
6196 /**
6197  * Create a quiet $(NAN), storing an integer inside the payload.
6198  *
6199  * For floats, the largest possible payload is 0x3F_FFFF.
6200  * For doubles, it is 0x3_FFFF_FFFF_FFFF.
6201  * For 80-bit or 128-bit reals, it is 0x3FFF_FFFF_FFFF_FFFF.
6202  */
6203 real NaN(ulong payload) @trusted pure nothrow @nogc
6204 {
6205     alias F = floatTraits!(real);
6206     static if (F.realFormat == RealFormat.ieeeExtended)
6207     {
6208         // real80 (in x86 real format, the implied bit is actually
6209         // not implied but a real bit which is stored in the real)
6210         ulong v = 3; // implied bit = 1, quiet bit = 1
6211     }
6212     else
6213     {
6214         ulong v = 1; // no implied bit. quiet bit = 1
6215     }
6216 
6217     ulong a = payload;
6218 
6219     // 22 Float bits
6220     ulong w = a & 0x3F_FFFF;
6221     a -= w;
6222 
6223     v <<=22;
6224     v |= w;
6225     a >>=22;
6226 
6227     // 29 Double bits
6228     v <<=29;
6229     w = a & 0xFFF_FFFF;
6230     v |= w;
6231     a -= w;
6232     a >>=29;
6233 
6234     static if (F.realFormat == RealFormat.ieeeDouble)
6235     {
6236         v |= 0x7FF0_0000_0000_0000;
6237         real x;
6238         * cast(ulong *)(&x) = v;
6239         return x;
6240     }
6241     else
6242     {
6243         v <<=11;
6244         a &= 0x7FF;
6245         v |= a;
6246         real x = real.nan;
6247 
6248         // Extended real bits
6249         static if (F.realFormat == RealFormat.ieeeQuadruple)
6250         {
6251             v <<= 1; // there's no implicit bit
6252 
6253             version (LittleEndian)
6254             {
6255                 *cast(ulong*)(6+cast(ubyte*)(&x)) = v;
6256             }
6257             else
6258             {
6259                 *cast(ulong*)(2+cast(ubyte*)(&x)) = v;
6260             }
6261         }
6262         else
6263         {
6264             *cast(ulong *)(&x) = v;
6265         }
6266         return x;
6267     }
6268 }
6269 
6270 @system pure nothrow @nogc unittest // not @safe because taking address of local.
6271 {
6272     static if (floatTraits!(real).realFormat == RealFormat.ieeeDouble)
6273     {
6274         auto x = NaN(1);
6275         auto xl = *cast(ulong*)&x;
6276         assert(xl & 0x8_0000_0000_0000UL); //non-signaling bit, bit 52
6277         assert((xl & 0x7FF0_0000_0000_0000UL) == 0x7FF0_0000_0000_0000UL); //all exp bits set
6278     }
6279 }
6280 
6281 /**
6282  * Extract an integral payload from a $(NAN).
6283  *
6284  * Returns:
6285  * the integer payload as a ulong.
6286  *
6287  * For floats, the largest possible payload is 0x3F_FFFF.
6288  * For doubles, it is 0x3_FFFF_FFFF_FFFF.
6289  * For 80-bit or 128-bit reals, it is 0x3FFF_FFFF_FFFF_FFFF.
6290  */
6291 ulong getNaNPayload(real x) @trusted pure nothrow @nogc
6292 {
6293     //  assert(isNaN(x));
6294     alias F = floatTraits!(real);
6295     static if (F.realFormat == RealFormat.ieeeDouble)
6296     {
6297         ulong m = *cast(ulong *)(&x);
6298         // Make it look like an 80-bit significand.
6299         // Skip exponent, and quiet bit
6300         m &= 0x0007_FFFF_FFFF_FFFF;
6301         m <<= 11;
6302     }
6303     else static if (F.realFormat == RealFormat.ieeeQuadruple)
6304     {
6305         version (LittleEndian)
6306         {
6307             ulong m = *cast(ulong*)(6+cast(ubyte*)(&x));
6308         }
6309         else
6310         {
6311             ulong m = *cast(ulong*)(2+cast(ubyte*)(&x));
6312         }
6313 
6314         m >>= 1; // there's no implicit bit
6315     }
6316     else
6317     {
6318         ulong m = *cast(ulong *)(&x);
6319     }
6320 
6321     // ignore implicit bit and quiet bit
6322 
6323     const ulong f = m & 0x3FFF_FF00_0000_0000L;
6324 
6325     ulong w = f >>> 40;
6326             w |= (m & 0x00FF_FFFF_F800L) << (22 - 11);
6327             w |= (m & 0x7FF) << 51;
6328             return w;
6329 }
6330 
6331 debug(UnitTest)
6332 {
6333     @safe pure nothrow @nogc unittest
6334     {
6335         real nan4 = NaN(0x789_ABCD_EF12_3456);
6336         static if (floatTraits!(real).realFormat == RealFormat.ieeeExtended
6337                 || floatTraits!(real).realFormat == RealFormat.ieeeQuadruple)
6338         {
6339             assert(getNaNPayload(nan4) == 0x789_ABCD_EF12_3456);
6340         }
6341         else
6342         {
6343             assert(getNaNPayload(nan4) == 0x1_ABCD_EF12_3456);
6344         }
6345         double nan5 = nan4;
6346         assert(getNaNPayload(nan5) == 0x1_ABCD_EF12_3456);
6347         float nan6 = nan4;
6348         assert(getNaNPayload(nan6) == 0x12_3456);
6349         nan4 = NaN(0xFABCD);
6350         assert(getNaNPayload(nan4) == 0xFABCD);
6351         nan6 = nan4;
6352         assert(getNaNPayload(nan6) == 0xFABCD);
6353         nan5 = NaN(0x100_0000_0000_3456);
6354         assert(getNaNPayload(nan5) == 0x0000_0000_3456);
6355     }
6356 }
6357 
6358 /**
6359  * Calculate the next largest floating point value after x.
6360  *
6361  * Return the least number greater than x that is representable as a real;
6362  * thus, it gives the next point on the IEEE number line.
6363  *
6364  *  $(TABLE_SV
6365  *    $(SVH x,            nextUp(x)   )
6366  *    $(SV  -$(INFIN),    -real.max   )
6367  *    $(SV  $(PLUSMN)0.0, real.min_normal*real.epsilon )
6368  *    $(SV  real.max,     $(INFIN) )
6369  *    $(SV  $(INFIN),     $(INFIN) )
6370  *    $(SV  $(NAN),       $(NAN)   )
6371  * )
6372  */
6373 real nextUp(real x) @trusted pure nothrow @nogc
6374 {
6375     alias F = floatTraits!(real);
6376     static if (F.realFormat == RealFormat.ieeeDouble)
6377     {
6378         return nextUp(cast(double) x);
6379     }
6380     else static if (F.realFormat == RealFormat.ieeeQuadruple)
6381     {
6382         ushort e = F.EXPMASK & (cast(ushort *)&x)[F.EXPPOS_SHORT];
6383         if (e == F.EXPMASK)
6384         {
6385             // NaN or Infinity
6386             if (x == -real.infinity) return -real.max;
6387             return x; // +Inf and NaN are unchanged.
6388         }
6389 
6390         auto ps = cast(ulong *)&x;
6391         if (ps[MANTISSA_MSB] & 0x8000_0000_0000_0000)
6392         {
6393             // Negative number
6394             if (ps[MANTISSA_LSB] == 0 && ps[MANTISSA_MSB] == 0x8000_0000_0000_0000)
6395             {
6396                 // it was negative zero, change to smallest subnormal
6397                 ps[MANTISSA_LSB] = 1;
6398                 ps[MANTISSA_MSB] = 0;
6399                 return x;
6400             }
6401             if (ps[MANTISSA_LSB] == 0) --ps[MANTISSA_MSB];
6402             --ps[MANTISSA_LSB];
6403         }
6404         else
6405         {
6406             // Positive number
6407             ++ps[MANTISSA_LSB];
6408             if (ps[MANTISSA_LSB] == 0) ++ps[MANTISSA_MSB];
6409         }
6410         return x;
6411     }
6412     else static if (F.realFormat == RealFormat.ieeeExtended)
6413     {
6414         // For 80-bit reals, the "implied bit" is a nuisance...
6415         ushort *pe = cast(ushort *)&x;
6416         ulong  *ps = cast(ulong  *)&x;
6417 
6418         if ((pe[F.EXPPOS_SHORT] & F.EXPMASK) == F.EXPMASK)
6419         {
6420             // First, deal with NANs and infinity
6421             if (x == -real.infinity) return -real.max;
6422             return x; // +Inf and NaN are unchanged.
6423         }
6424         if (pe[F.EXPPOS_SHORT] & 0x8000)
6425         {
6426             // Negative number -- need to decrease the significand
6427             --*ps;
6428             // Need to mask with 0x7FFF... so subnormals are treated correctly.
6429             if ((*ps & 0x7FFF_FFFF_FFFF_FFFF) == 0x7FFF_FFFF_FFFF_FFFF)
6430             {
6431                 if (pe[F.EXPPOS_SHORT] == 0x8000)   // it was negative zero
6432                 {
6433                     *ps = 1;
6434                     pe[F.EXPPOS_SHORT] = 0; // smallest subnormal.
6435                     return x;
6436                 }
6437 
6438                 --pe[F.EXPPOS_SHORT];
6439 
6440                 if (pe[F.EXPPOS_SHORT] == 0x8000)
6441                     return x; // it's become a subnormal, implied bit stays low.
6442 
6443                 *ps = 0xFFFF_FFFF_FFFF_FFFF; // set the implied bit
6444                 return x;
6445             }
6446             return x;
6447         }
6448         else
6449         {
6450             // Positive number -- need to increase the significand.
6451             // Works automatically for positive zero.
6452             ++*ps;
6453             if ((*ps & 0x7FFF_FFFF_FFFF_FFFF) == 0)
6454             {
6455                 // change in exponent
6456                 ++pe[F.EXPPOS_SHORT];
6457                 *ps = 0x8000_0000_0000_0000; // set the high bit
6458             }
6459         }
6460         return x;
6461     }
6462     else // static if (F.realFormat == RealFormat.ibmExtended)
6463     {
6464         assert(0, "nextUp not implemented");
6465     }
6466 }
6467 
6468 /** ditto */
6469 double nextUp(double x) @trusted pure nothrow @nogc
6470 {
6471     ulong *ps = cast(ulong *)&x;
6472 
6473     if ((*ps & 0x7FF0_0000_0000_0000) == 0x7FF0_0000_0000_0000)
6474     {
6475         // First, deal with NANs and infinity
6476         if (x == -x.infinity) return -x.max;
6477         return x; // +INF and NAN are unchanged.
6478     }
6479     if (*ps & 0x8000_0000_0000_0000)    // Negative number
6480     {
6481         if (*ps == 0x8000_0000_0000_0000) // it was negative zero
6482         {
6483             *ps = 0x0000_0000_0000_0001; // change to smallest subnormal
6484             return x;
6485         }
6486         --*ps;
6487     }
6488     else
6489     {   // Positive number
6490         ++*ps;
6491     }
6492     return x;
6493 }
6494 
6495 /** ditto */
6496 float nextUp(float x) @trusted pure nothrow @nogc
6497 {
6498     uint *ps = cast(uint *)&x;
6499 
6500     if ((*ps & 0x7F80_0000) == 0x7F80_0000)
6501     {
6502         // First, deal with NANs and infinity
6503         if (x == -x.infinity) return -x.max;
6504 
6505         return x; // +INF and NAN are unchanged.
6506     }
6507     if (*ps & 0x8000_0000)   // Negative number
6508     {
6509         if (*ps == 0x8000_0000) // it was negative zero
6510         {
6511             *ps = 0x0000_0001; // change to smallest subnormal
6512             return x;
6513         }
6514 
6515         --*ps;
6516     }
6517     else
6518     {
6519         // Positive number
6520         ++*ps;
6521     }
6522     return x;
6523 }
6524 
6525 /**
6526  * Calculate the next smallest floating point value before x.
6527  *
6528  * Return the greatest number less than x that is representable as a real;
6529  * thus, it gives the previous point on the IEEE number line.
6530  *
6531  *  $(TABLE_SV
6532  *    $(SVH x,            nextDown(x)   )
6533  *    $(SV  $(INFIN),     real.max  )
6534  *    $(SV  $(PLUSMN)0.0, -real.min_normal*real.epsilon )
6535  *    $(SV  -real.max,    -$(INFIN) )
6536  *    $(SV  -$(INFIN),    -$(INFIN) )
6537  *    $(SV  $(NAN),       $(NAN)    )
6538  * )
6539  */
6540 real nextDown(real x) @safe pure nothrow @nogc
6541 {
6542     return -nextUp(-x);
6543 }
6544 
6545 /** ditto */
6546 double nextDown(double x) @safe pure nothrow @nogc
6547 {
6548     return -nextUp(-x);
6549 }
6550 
6551 /** ditto */
6552 float nextDown(float x) @safe pure nothrow @nogc
6553 {
6554     return -nextUp(-x);
6555 }
6556 
6557 ///
6558 @safe pure nothrow @nogc unittest
6559 {
6560     assert( nextDown(1.0 + real.epsilon) == 1.0);
6561 }
6562 
6563 @safe pure nothrow @nogc unittest
6564 {
6565     static if (floatTraits!(real).realFormat == RealFormat.ieeeExtended)
6566     {
6567 
6568         // Tests for 80-bit reals
6569         assert(isIdentical(nextUp(NaN(0xABC)), NaN(0xABC)));
6570         // negative numbers
6571         assert( nextUp(-real.infinity) == -real.max );
6572         assert( nextUp(-1.0L-real.epsilon) == -1.0 );
6573         assert( nextUp(-2.0L) == -2.0 + real.epsilon);
6574         // subnormals and zero
6575         assert( nextUp(-real.min_normal) == -real.min_normal*(1-real.epsilon) );
6576         assert( nextUp(-real.min_normal*(1-real.epsilon)) == -real.min_normal*(1-2*real.epsilon) );
6577         assert( isIdentical(-0.0L, nextUp(-real.min_normal*real.epsilon)) );
6578         assert( nextUp(-0.0L) == real.min_normal*real.epsilon );
6579         assert( nextUp(0.0L) == real.min_normal*real.epsilon );
6580         assert( nextUp(real.min_normal*(1-real.epsilon)) == real.min_normal );
6581         assert( nextUp(real.min_normal) == real.min_normal*(1+real.epsilon) );
6582         // positive numbers
6583         assert( nextUp(1.0L) == 1.0 + real.epsilon );
6584         assert( nextUp(2.0L-real.epsilon) == 2.0 );
6585         assert( nextUp(real.max) == real.infinity );
6586         assert( nextUp(real.infinity)==real.infinity );
6587     }
6588 
6589     double n = NaN(0xABC);
6590     assert(isIdentical(nextUp(n), n));
6591     // negative numbers
6592     assert( nextUp(-double.infinity) == -double.max );
6593     assert( nextUp(-1-double.epsilon) == -1.0 );
6594     assert( nextUp(-2.0) == -2.0 + double.epsilon);
6595     // subnormals and zero
6596 
6597     assert( nextUp(-double.min_normal) == -double.min_normal*(1-double.epsilon) );
6598     assert( nextUp(-double.min_normal*(1-double.epsilon)) == -double.min_normal*(1-2*double.epsilon) );
6599     assert( isIdentical(-0.0, nextUp(-double.min_normal*double.epsilon)) );
6600     assert( nextUp(0.0) == double.min_normal*double.epsilon );
6601     assert( nextUp(-0.0) == double.min_normal*double.epsilon );
6602     assert( nextUp(double.min_normal*(1-double.epsilon)) == double.min_normal );
6603     assert( nextUp(double.min_normal) == double.min_normal*(1+double.epsilon) );
6604     // positive numbers
6605     assert( nextUp(1.0) == 1.0 + double.epsilon );
6606     assert( nextUp(2.0-double.epsilon) == 2.0 );
6607     assert( nextUp(double.max) == double.infinity );
6608 
6609     float fn = NaN(0xABC);
6610     assert(isIdentical(nextUp(fn), fn));
6611     float f = -float.min_normal*(1-float.epsilon);
6612     float f1 = -float.min_normal;
6613     assert( nextUp(f1) ==  f);
6614     f = 1.0f+float.epsilon;
6615     f1 = 1.0f;
6616     assert( nextUp(f1) == f );
6617     f1 = -0.0f;
6618     assert( nextUp(f1) == float.min_normal*float.epsilon);
6619     assert( nextUp(float.infinity)==float.infinity );
6620 
6621     assert(nextDown(1.0L+real.epsilon)==1.0);
6622     assert(nextDown(1.0+double.epsilon)==1.0);
6623     f = 1.0f+float.epsilon;
6624     assert(nextDown(f)==1.0);
6625     assert(nextafter(1.0+real.epsilon, -real.infinity)==1.0);
6626 }
6627 
6628 
6629 
6630 /******************************************
6631  * Calculates the next representable value after x in the direction of y.
6632  *
6633  * If y > x, the result will be the next largest floating-point value;
6634  * if y < x, the result will be the next smallest value.
6635  * If x == y, the result is y.
6636  *
6637  * Remarks:
6638  * This function is not generally very useful; it's almost always better to use
6639  * the faster functions nextUp() or nextDown() instead.
6640  *
6641  * The FE_INEXACT and FE_OVERFLOW exceptions will be raised if x is finite and
6642  * the function result is infinite. The FE_INEXACT and FE_UNDERFLOW
6643  * exceptions will be raised if the function value is subnormal, and x is
6644  * not equal to y.
6645  */
6646 T nextafter(T)(const T x, const T y) @safe pure nothrow @nogc
6647 {
6648     if (x == y) return y;
6649     return ((y>x) ? nextUp(x) :  nextDown(x));
6650 }
6651 
6652 ///
6653 @safe pure nothrow @nogc unittest
6654 {
6655     float a = 1;
6656     assert(is(typeof(nextafter(a, a)) == float));
6657     assert(nextafter(a, a.infinity) > a);
6658 
6659     double b = 2;
6660     assert(is(typeof(nextafter(b, b)) == double));
6661     assert(nextafter(b, b.infinity) > b);
6662 
6663     real c = 3;
6664     assert(is(typeof(nextafter(c, c)) == real));
6665     assert(nextafter(c, c.infinity) > c);
6666 }
6667 
6668 //real nexttoward(real x, real y) { return core.stdc.math.nexttowardl(x, y); }
6669 
6670 /*******************************************
6671  * Returns the positive difference between x and y.
6672  * Returns:
6673  *      $(TABLE_SV
6674  *      $(TR $(TH x, y)       $(TH fdim(x, y)))
6675  *      $(TR $(TD x $(GT) y)  $(TD x - y))
6676  *      $(TR $(TD x $(LT)= y) $(TD +0.0))
6677  *      )
6678  */
6679 real fdim(real x, real y) @safe pure nothrow @nogc { return (x > y) ? x - y : +0.0; }
6680 
6681 /****************************************
6682  * Returns the larger of x and y.
6683  */
6684 real fmax(real x, real y) @safe pure nothrow @nogc { return x > y ? x : y; }
6685 
6686 /****************************************
6687  * Returns the smaller of x and y.
6688  */
6689 real fmin(real x, real y) @safe pure nothrow @nogc { return x < y ? x : y; }
6690 
6691 /**************************************
6692  * Returns (x * y) + z, rounding only once according to the
6693  * current rounding mode.
6694  *
6695  * BUGS: Not currently implemented - rounds twice.
6696  */
6697 real fma(real x, real y, real z) @safe pure nothrow @nogc { return (x * y) + z; }
6698 
6699 /*******************************************************************
6700  * Compute the value of x $(SUPERSCRIPT n), where n is an integer
6701  */
6702 Unqual!F pow(F, G)(F x, G n) @nogc @trusted pure nothrow
6703 if (isFloatingPoint!(F) && isIntegral!(G))
6704 {
6705     import std.traits : Unsigned;
6706     real p = 1.0, v = void;
6707     Unsigned!(Unqual!G) m = n;
6708     if (n < 0)
6709     {
6710         switch (n)
6711         {
6712         case -1:
6713             return 1 / x;
6714         case -2:
6715             return 1 / (x * x);
6716         default:
6717         }
6718 
6719         m = cast(typeof(m))(0 - n);
6720         v = p / x;
6721     }
6722     else
6723     {
6724         switch (n)
6725         {
6726         case 0:
6727             return 1.0;
6728         case 1:
6729             return x;
6730         case 2:
6731             return x * x;
6732         default:
6733         }
6734 
6735         v = x;
6736     }
6737 
6738     while (1)
6739     {
6740         if (m & 1)
6741             p *= v;
6742         m >>= 1;
6743         if (!m)
6744             break;
6745         v *= v;
6746     }
6747     return p;
6748 }
6749 
6750 @safe pure nothrow @nogc unittest
6751 {
6752     // Make sure it instantiates and works properly on immutable values and
6753     // with various integer and float types.
6754     immutable real x = 46;
6755     immutable float xf = x;
6756     immutable double xd = x;
6757     immutable uint one = 1;
6758     immutable ushort two = 2;
6759     immutable ubyte three = 3;
6760     immutable ulong eight = 8;
6761 
6762     immutable int neg1 = -1;
6763     immutable short neg2 = -2;
6764     immutable byte neg3 = -3;
6765     immutable long neg8 = -8;
6766 
6767 
6768     assert(pow(x,0) == 1.0);
6769     assert(pow(xd,one) == x);
6770     assert(pow(xf,two) == x * x);
6771     assert(pow(x,three) == x * x * x);
6772     assert(pow(x,eight) == (x * x) * (x * x) * (x * x) * (x * x));
6773 
6774     assert(pow(x, neg1) == 1 / x);
6775 
6776     // Test disabled on most targets.
6777     // See https://issues.dlang.org/show_bug.cgi?id=5628
6778     version (X86_64)   enum BUG5628 = false;
6779     else version (ARM) enum BUG5628 = false;
6780     else version (GNU) enum BUG5628 = false;
6781     else               enum BUG5628 = true;
6782 
6783     static if (BUG5628)
6784     {
6785         assert(pow(xd, neg2) == 1 / (x * x));
6786         assert(pow(xf, neg8) == 1 / ((x * x) * (x * x) * (x * x) * (x * x)));
6787     }
6788 
6789     assert(feqrel(pow(x, neg3),  1 / (x * x * x)) >= real.mant_dig - 1);
6790 }
6791 
6792 @system unittest
6793 {
6794     assert(equalsDigit(pow(2.0L, 10.0L), 1024, 19));
6795 }
6796 
6797 /** Compute the value of an integer x, raised to the power of a positive
6798  * integer n.
6799  *
6800  *  If both x and n are 0, the result is 1.
6801  *  If n is negative, an integer divide error will occur at runtime,
6802  * regardless of the value of x.
6803  */
6804 typeof(Unqual!(F).init * Unqual!(G).init) pow(F, G)(F x, G n) @nogc @trusted pure nothrow
6805 if (isIntegral!(F) && isIntegral!(G))
6806 {
6807     if (n<0) return x/0; // Only support positive powers
6808     typeof(return) p, v = void;
6809     Unqual!G m = n;
6810 
6811     switch (m)
6812     {
6813     case 0:
6814         p = 1;
6815         break;
6816 
6817     case 1:
6818         p = x;
6819         break;
6820 
6821     case 2:
6822         p = x * x;
6823         break;
6824 
6825     default:
6826         v = x;
6827         p = 1;
6828         while (1)
6829         {
6830             if (m & 1)
6831                 p *= v;
6832             m >>= 1;
6833             if (!m)
6834                 break;
6835             v *= v;
6836         }
6837         break;
6838     }
6839     return p;
6840 }
6841 
6842 ///
6843 @safe pure nothrow @nogc unittest
6844 {
6845     immutable int one = 1;
6846     immutable byte two = 2;
6847     immutable ubyte three = 3;
6848     immutable short four = 4;
6849     immutable long ten = 10;
6850 
6851     assert(pow(two, three) == 8);
6852     assert(pow(two, ten) == 1024);
6853     assert(pow(one, ten) == 1);
6854     assert(pow(ten, four) == 10_000);
6855     assert(pow(four, 10) == 1_048_576);
6856     assert(pow(three, four) == 81);
6857 
6858 }
6859 
6860 /**Computes integer to floating point powers.*/
6861 real pow(I, F)(I x, F y) @nogc @trusted pure nothrow
6862 if (isIntegral!I && isFloatingPoint!F)
6863 {
6864     return pow(cast(real) x, cast(Unqual!F) y);
6865 }
6866 
6867 /*********************************************
6868  * Calculates x$(SUPERSCRIPT y).
6869  *
6870  * $(TABLE_SV
6871  * $(TR $(TH x) $(TH y) $(TH pow(x, y))
6872  *      $(TH div 0) $(TH invalid?))
6873  * $(TR $(TD anything)      $(TD $(PLUSMN)0.0)                $(TD 1.0)
6874  *      $(TD no)        $(TD no) )
6875  * $(TR $(TD |x| $(GT) 1)    $(TD +$(INFIN))                  $(TD +$(INFIN))
6876  *      $(TD no)        $(TD no) )
6877  * $(TR $(TD |x| $(LT) 1)    $(TD +$(INFIN))                  $(TD +0.0)
6878  *      $(TD no)        $(TD no) )
6879  * $(TR $(TD |x| $(GT) 1)    $(TD -$(INFIN))                  $(TD +0.0)
6880  *      $(TD no)        $(TD no) )
6881  * $(TR $(TD |x| $(LT) 1)    $(TD -$(INFIN))                  $(TD +$(INFIN))
6882  *      $(TD no)        $(TD no) )
6883  * $(TR $(TD +$(INFIN))      $(TD $(GT) 0.0)                  $(TD +$(INFIN))
6884  *      $(TD no)        $(TD no) )
6885  * $(TR $(TD +$(INFIN))      $(TD $(LT) 0.0)                  $(TD +0.0)
6886  *      $(TD no)        $(TD no) )
6887  * $(TR $(TD -$(INFIN))      $(TD odd integer $(GT) 0.0)      $(TD -$(INFIN))
6888  *      $(TD no)        $(TD no) )
6889  * $(TR $(TD -$(INFIN))      $(TD $(GT) 0.0, not odd integer) $(TD +$(INFIN))
6890  *      $(TD no)        $(TD no))
6891  * $(TR $(TD -$(INFIN))      $(TD odd integer $(LT) 0.0)      $(TD -0.0)
6892  *      $(TD no)        $(TD no) )
6893  * $(TR $(TD -$(INFIN))      $(TD $(LT) 0.0, not odd integer) $(TD +0.0)
6894  *      $(TD no)        $(TD no) )
6895  * $(TR $(TD $(PLUSMN)1.0)   $(TD $(PLUSMN)$(INFIN))          $(TD $(NAN))
6896  *      $(TD no)        $(TD yes) )
6897  * $(TR $(TD $(LT) 0.0)      $(TD finite, nonintegral)        $(TD $(NAN))
6898  *      $(TD no)        $(TD yes))
6899  * $(TR $(TD $(PLUSMN)0.0)   $(TD odd integer $(LT) 0.0)      $(TD $(PLUSMNINF))
6900  *      $(TD yes)       $(TD no) )
6901  * $(TR $(TD $(PLUSMN)0.0)   $(TD $(LT) 0.0, not odd integer) $(TD +$(INFIN))
6902  *      $(TD yes)       $(TD no))
6903  * $(TR $(TD $(PLUSMN)0.0)   $(TD odd integer $(GT) 0.0)      $(TD $(PLUSMN)0.0)
6904  *      $(TD no)        $(TD no) )
6905  * $(TR $(TD $(PLUSMN)0.0)   $(TD $(GT) 0.0, not odd integer) $(TD +0.0)
6906  *      $(TD no)        $(TD no) )
6907  * )
6908  */
6909 Unqual!(Largest!(F, G)) pow(F, G)(F x, G y) @nogc @trusted pure nothrow
6910 if (isFloatingPoint!(F) && isFloatingPoint!(G))
6911 {
6912     alias Float = typeof(return);
6913 
6914     static real impl(real x, real y) @nogc pure nothrow
6915     {
6916         // Special cases.
6917         if (isNaN(y))
6918             return y;
6919         if (isNaN(x) && y != 0.0)
6920             return x;
6921 
6922         // Even if x is NaN.
6923         if (y == 0.0)
6924             return 1.0;
6925         if (y == 1.0)
6926             return x;
6927 
6928         if (isInfinity(y))
6929         {
6930             if (fabs(x) > 1)
6931             {
6932                 if (signbit(y))
6933                     return +0.0;
6934                 else
6935                     return F.infinity;
6936             }
6937             else if (fabs(x) == 1)
6938             {
6939                 return y * 0; // generate NaN.
6940             }
6941             else // < 1
6942             {
6943                 if (signbit(y))
6944                     return F.infinity;
6945                 else
6946                     return +0.0;
6947             }
6948         }
6949         if (isInfinity(x))
6950         {
6951             if (signbit(x))
6952             {
6953                 long i = cast(long) y;
6954                 if (y > 0.0)
6955                 {
6956                     if (i == y && i & 1)
6957                         return -F.infinity;
6958                     else
6959                         return F.infinity;
6960                 }
6961                 else if (y < 0.0)
6962                 {
6963                     if (i == y && i & 1)
6964                         return -0.0;
6965                     else
6966                         return +0.0;
6967                 }
6968             }
6969             else
6970             {
6971                 if (y > 0.0)
6972                     return F.infinity;
6973                 else if (y < 0.0)
6974                     return +0.0;
6975             }
6976         }
6977 
6978         if (x == 0.0)
6979         {
6980             if (signbit(x))
6981             {
6982                 long i = cast(long) y;
6983                 if (y > 0.0)
6984                 {
6985                     if (i == y && i & 1)
6986                         return -0.0;
6987                     else
6988                         return +0.0;
6989                 }
6990                 else if (y < 0.0)
6991                 {
6992                     if (i == y && i & 1)
6993                         return -F.infinity;
6994                     else
6995                         return F.infinity;
6996                 }
6997             }
6998             else
6999             {
7000                 if (y > 0.0)
7001                     return +0.0;
7002                 else if (y < 0.0)
7003                     return F.infinity;
7004             }
7005         }
7006         if (x == 1.0)
7007             return 1.0;
7008 
7009         if (y >= F.max)
7010         {
7011             if ((x > 0.0 && x < 1.0) || (x > -1.0 && x < 0.0))
7012                 return 0.0;
7013             if (x > 1.0 || x < -1.0)
7014                 return F.infinity;
7015         }
7016         if (y <= -F.max)
7017         {
7018             if ((x > 0.0 && x < 1.0) || (x > -1.0 && x < 0.0))
7019                 return F.infinity;
7020             if (x > 1.0 || x < -1.0)
7021                 return 0.0;
7022         }
7023 
7024         if (x >= F.max)
7025         {
7026             if (y > 0.0)
7027                 return F.infinity;
7028             else
7029                 return 0.0;
7030         }
7031         if (x <= -F.max)
7032         {
7033             long i = cast(long) y;
7034             if (y > 0.0)
7035             {
7036                 if (i == y && i & 1)
7037                     return -F.infinity;
7038                 else
7039                     return F.infinity;
7040             }
7041             else if (y < 0.0)
7042             {
7043                 if (i == y && i & 1)
7044                     return -0.0;
7045                 else
7046                     return +0.0;
7047             }
7048         }
7049 
7050         // Integer power of x.
7051         long iy = cast(long) y;
7052         if (iy == y && fabs(y) < 32_768.0)
7053             return pow(x, iy);
7054 
7055         real sign = 1.0;
7056         if (x < 0)
7057         {
7058             // Result is real only if y is an integer
7059             // Check for a non-zero fractional part
7060             enum maxOdd = pow(2.0L, real.mant_dig) - 1.0L;
7061             static if (maxOdd > ulong.max)
7062             {
7063                 // Generic method, for any FP type
7064                 if (floor(y) != y)
7065                     return sqrt(x); // Complex result -- create a NaN
7066 
7067                 const hy = ldexp(y, -1);
7068                 if (floor(hy) != hy)
7069                     sign = -1.0;
7070             }
7071             else
7072             {
7073                 // Much faster, if ulong has enough precision
7074                 const absY = fabs(y);
7075                 if (absY <= maxOdd)
7076                 {
7077                     const uy = cast(ulong) absY;
7078                     if (uy != absY)
7079                         return sqrt(x); // Complex result -- create a NaN
7080 
7081                     if (uy & 1)
7082                         sign = -1.0;
7083                 }
7084             }
7085             x = -x;
7086         }
7087         version (INLINE_YL2X)
7088         {
7089             // If x > 0, x ^^ y == 2 ^^ ( y * log2(x) )
7090             // TODO: This is not accurate in practice. A fast and accurate
7091             // (though complicated) method is described in:
7092             // "An efficient rounding boundary test for pow(x, y)
7093             // in double precision", C.Q. Lauter and V. Lefèvre, INRIA (2007).
7094             return sign * exp2( core.math.yl2x(x, y) );
7095         }
7096         else
7097         {
7098             // If x > 0, x ^^ y == 2 ^^ ( y * log2(x) )
7099             // TODO: This is not accurate in practice. A fast and accurate
7100             // (though complicated) method is described in:
7101             // "An efficient rounding boundary test for pow(x, y)
7102             // in double precision", C.Q. Lauter and V. Lefèvre, INRIA (2007).
7103             Float w = exp2(y * log2(x));
7104             return sign * w;
7105         }
7106     }
7107     return impl(x, y);
7108 }
7109 
7110 @safe pure nothrow @nogc unittest
7111 {
7112     // Test all the special values.  These unittests can be run on Windows
7113     // by temporarily changing the version (linux) to version (all).
7114     immutable float zero = 0;
7115     immutable real one = 1;
7116     immutable double two = 2;
7117     immutable float three = 3;
7118     immutable float fnan = float.nan;
7119     immutable double dnan = double.nan;
7120     immutable real rnan = real.nan;
7121     immutable dinf = double.infinity;
7122     immutable rninf = -real.infinity;
7123 
7124     assert(pow(fnan, zero) == 1);
7125     assert(pow(dnan, zero) == 1);
7126     assert(pow(rnan, zero) == 1);
7127 
7128     assert(pow(two, dinf) == double.infinity);
7129     assert(isIdentical(pow(0.2f, dinf), +0.0));
7130     assert(pow(0.99999999L, rninf) == real.infinity);
7131     assert(isIdentical(pow(1.000000001, rninf), +0.0));
7132     assert(pow(dinf, 0.001) == dinf);
7133     assert(isIdentical(pow(dinf, -0.001), +0.0));
7134     assert(pow(rninf, 3.0L) == rninf);
7135     assert(pow(rninf, 2.0L) == real.infinity);
7136     assert(isIdentical(pow(rninf, -3.0), -0.0));
7137     assert(isIdentical(pow(rninf, -2.0), +0.0));
7138 
7139     // @@@BUG@@@ somewhere
7140     version (OSX) {} else assert(isNaN(pow(one, dinf)));
7141     version (OSX) {} else assert(isNaN(pow(-one, dinf)));
7142     assert(isNaN(pow(-0.2, PI)));
7143     // boundary cases. Note that epsilon == 2^^-n for some n,
7144     // so 1/epsilon == 2^^n is always even.
7145     assert(pow(-1.0L, 1/real.epsilon - 1.0L) == -1.0L);
7146     assert(pow(-1.0L, 1/real.epsilon) == 1.0L);
7147     assert(isNaN(pow(-1.0L, 1/real.epsilon-0.5L)));
7148     assert(isNaN(pow(-1.0L, -1/real.epsilon+0.5L)));
7149 
7150     assert(pow(0.0, -3.0) == double.infinity);
7151     assert(pow(-0.0, -3.0) == -double.infinity);
7152     assert(pow(0.0, -PI) == double.infinity);
7153     assert(pow(-0.0, -PI) == double.infinity);
7154     assert(isIdentical(pow(0.0, 5.0), 0.0));
7155     assert(isIdentical(pow(-0.0, 5.0), -0.0));
7156     assert(isIdentical(pow(0.0, 6.0), 0.0));
7157     assert(isIdentical(pow(-0.0, 6.0), 0.0));
7158 
7159     // Issue #14786 fixed
7160     immutable real maxOdd = pow(2.0L, real.mant_dig) - 1.0L;
7161     assert(pow(-1.0L,  maxOdd) == -1.0L);
7162     assert(pow(-1.0L, -maxOdd) == -1.0L);
7163     assert(pow(-1.0L, maxOdd + 1.0L) == 1.0L);
7164     assert(pow(-1.0L, -maxOdd + 1.0L) == 1.0L);
7165     assert(pow(-1.0L, maxOdd - 1.0L) == 1.0L);
7166     assert(pow(-1.0L, -maxOdd - 1.0L) == 1.0L);
7167 
7168     // Now, actual numbers.
7169     assert(approxEqual(pow(two, three), 8.0));
7170     assert(approxEqual(pow(two, -2.5), 0.1767767));
7171 
7172     // Test integer to float power.
7173     immutable uint twoI = 2;
7174     assert(approxEqual(pow(twoI, three), 8.0));
7175 }
7176 
7177 /**************************************
7178  * To what precision is x equal to y?
7179  *
7180  * Returns: the number of mantissa bits which are equal in x and y.
7181  * eg, 0x1.F8p+60 and 0x1.F1p+60 are equal to 5 bits of precision.
7182  *
7183  *      $(TABLE_SV
7184  *      $(TR $(TH x)      $(TH y)          $(TH feqrel(x, y)))
7185  *      $(TR $(TD x)      $(TD x)          $(TD real.mant_dig))
7186  *      $(TR $(TD x)      $(TD $(GT)= 2*x) $(TD 0))
7187  *      $(TR $(TD x)      $(TD $(LT)= x/2) $(TD 0))
7188  *      $(TR $(TD $(NAN)) $(TD any)        $(TD 0))
7189  *      $(TR $(TD any)    $(TD $(NAN))     $(TD 0))
7190  *      )
7191  */
7192 int feqrel(X)(const X x, const X y) @trusted pure nothrow @nogc
7193 if (isFloatingPoint!(X))
7194 {
7195     /* Public Domain. Author: Don Clugston, 18 Aug 2005.
7196      */
7197     alias F = floatTraits!(X);
7198     static if (F.realFormat == RealFormat.ibmExtended)
7199     {
7200         if (cast(double*)(&x)[MANTISSA_MSB] == cast(double*)(&y)[MANTISSA_MSB])
7201         {
7202             return double.mant_dig
7203             + feqrel(cast(double*)(&x)[MANTISSA_LSB],
7204                     cast(double*)(&y)[MANTISSA_LSB]);
7205         }
7206         else
7207         {
7208             return feqrel(cast(double*)(&x)[MANTISSA_MSB],
7209                     cast(double*)(&y)[MANTISSA_MSB]);
7210         }
7211     }
7212     else
7213     {
7214         static assert(F.realFormat == RealFormat.ieeeSingle
7215                     || F.realFormat == RealFormat.ieeeDouble
7216                     || F.realFormat == RealFormat.ieeeExtended
7217                     || F.realFormat == RealFormat.ieeeQuadruple);
7218 
7219         if (x == y)
7220             return X.mant_dig; // ensure diff != 0, cope with INF.
7221 
7222         Unqual!X diff = fabs(x - y);
7223 
7224         ushort *pa = cast(ushort *)(&x);
7225         ushort *pb = cast(ushort *)(&y);
7226         ushort *pd = cast(ushort *)(&diff);
7227 
7228 
7229         // The difference in abs(exponent) between x or y and abs(x-y)
7230         // is equal to the number of significand bits of x which are
7231         // equal to y. If negative, x and y have different exponents.
7232         // If positive, x and y are equal to 'bitsdiff' bits.
7233         // AND with 0x7FFF to form the absolute value.
7234         // To avoid out-by-1 errors, we subtract 1 so it rounds down
7235         // if the exponents were different. This means 'bitsdiff' is
7236         // always 1 lower than we want, except that if bitsdiff == 0,
7237         // they could have 0 or 1 bits in common.
7238 
7239         int bitsdiff = (((  (pa[F.EXPPOS_SHORT] & F.EXPMASK)
7240                           + (pb[F.EXPPOS_SHORT] & F.EXPMASK)
7241                           - (1 << F.EXPSHIFT)) >> 1)
7242                         - (pd[F.EXPPOS_SHORT] & F.EXPMASK)) >> F.EXPSHIFT;
7243         if ( (pd[F.EXPPOS_SHORT] & F.EXPMASK) == 0)
7244         {   // Difference is subnormal
7245             // For subnormals, we need to add the number of zeros that
7246             // lie at the start of diff's significand.
7247             // We do this by multiplying by 2^^real.mant_dig
7248             diff *= F.RECIP_EPSILON;
7249             return bitsdiff + X.mant_dig - ((pd[F.EXPPOS_SHORT] & F.EXPMASK) >> F.EXPSHIFT);
7250         }
7251 
7252         if (bitsdiff > 0)
7253             return bitsdiff + 1; // add the 1 we subtracted before
7254 
7255         // Avoid out-by-1 errors when factor is almost 2.
7256         if (bitsdiff == 0
7257             && ((pa[F.EXPPOS_SHORT] ^ pb[F.EXPPOS_SHORT]) & F.EXPMASK) == 0)
7258         {
7259             return 1;
7260         } else return 0;
7261     }
7262 }
7263 
7264 @safe pure nothrow @nogc unittest
7265 {
7266     void testFeqrel(F)()
7267     {
7268        // Exact equality
7269        assert(feqrel(F.max, F.max) == F.mant_dig);
7270        assert(feqrel!(F)(0.0, 0.0) == F.mant_dig);
7271        assert(feqrel(F.infinity, F.infinity) == F.mant_dig);
7272 
7273        // a few bits away from exact equality
7274        F w=1;
7275        for (int i = 1; i < F.mant_dig - 1; ++i)
7276        {
7277           assert(feqrel!(F)(1.0 + w * F.epsilon, 1.0) == F.mant_dig-i);
7278           assert(feqrel!(F)(1.0 - w * F.epsilon, 1.0) == F.mant_dig-i);
7279           assert(feqrel!(F)(1.0, 1 + (w-1) * F.epsilon) == F.mant_dig - i + 1);
7280           w*=2;
7281        }
7282 
7283        assert(feqrel!(F)(1.5+F.epsilon, 1.5) == F.mant_dig-1);
7284        assert(feqrel!(F)(1.5-F.epsilon, 1.5) == F.mant_dig-1);
7285        assert(feqrel!(F)(1.5-F.epsilon, 1.5+F.epsilon) == F.mant_dig-2);
7286 
7287 
7288        // Numbers that are close
7289        assert(feqrel!(F)(0x1.Bp+84, 0x1.B8p+84) == 5);
7290        assert(feqrel!(F)(0x1.8p+10, 0x1.Cp+10) == 2);
7291        assert(feqrel!(F)(1.5 * (1 - F.epsilon), 1.0L) == 2);
7292        assert(feqrel!(F)(1.5, 1.0) == 1);
7293        assert(feqrel!(F)(2 * (1 - F.epsilon), 1.0L) == 1);
7294 
7295        // Factors of 2
7296        assert(feqrel(F.max, F.infinity) == 0);
7297        assert(feqrel!(F)(2 * (1 - F.epsilon), 1.0L) == 1);
7298        assert(feqrel!(F)(1.0, 2.0) == 0);
7299        assert(feqrel!(F)(4.0, 1.0) == 0);
7300 
7301        // Extreme inequality
7302        assert(feqrel(F.nan, F.nan) == 0);
7303        assert(feqrel!(F)(0.0L, -F.nan) == 0);
7304        assert(feqrel(F.nan, F.infinity) == 0);
7305        assert(feqrel(F.infinity, -F.infinity) == 0);
7306        assert(feqrel(F.max, -F.max) == 0);
7307 
7308        assert(feqrel(F.min_normal / 8, F.min_normal / 17) == 3);
7309 
7310        const F Const = 2;
7311        immutable F Immutable = 2;
7312        auto Compiles = feqrel(Const, Immutable);
7313     }
7314 
7315     assert(feqrel(7.1824L, 7.1824L) == real.mant_dig);
7316 
7317     testFeqrel!(real)();
7318     testFeqrel!(double)();
7319     testFeqrel!(float)();
7320 }
7321 
7322 package: // Not public yet
7323 /* Return the value that lies halfway between x and y on the IEEE number line.
7324  *
7325  * Formally, the result is the arithmetic mean of the binary significands of x
7326  * and y, multiplied by the geometric mean of the binary exponents of x and y.
7327  * x and y must have the same sign, and must not be NaN.
7328  * Note: this function is useful for ensuring O(log n) behaviour in algorithms
7329  * involving a 'binary chop'.
7330  *
7331  * Special cases:
7332  * If x and y are within a factor of 2, (ie, feqrel(x, y) > 0), the return value
7333  * is the arithmetic mean (x + y) / 2.
7334  * If x and y are even powers of 2, the return value is the geometric mean,
7335  *   ieeeMean(x, y) = sqrt(x * y).
7336  *
7337  */
7338 T ieeeMean(T)(const T x, const T y)  @trusted pure nothrow @nogc
7339 in
7340 {
7341     // both x and y must have the same sign, and must not be NaN.
7342     assert(signbit(x) == signbit(y));
7343     assert(x == x && y == y);
7344 }
7345 body
7346 {
7347     // Runtime behaviour for contract violation:
7348     // If signs are opposite, or one is a NaN, return 0.
7349     if (!((x >= 0 && y >= 0) || (x <= 0 && y <= 0))) return 0.0;
7350 
7351     // The implementation is simple: cast x and y to integers,
7352     // average them (avoiding overflow), and cast the result back to a floating-point number.
7353 
7354     alias F = floatTraits!(T);
7355     T u;
7356     static if (F.realFormat == RealFormat.ieeeExtended)
7357     {
7358         // There's slight additional complexity because they are actually
7359         // 79-bit reals...
7360         ushort *ue = cast(ushort *)&u;
7361         ulong *ul = cast(ulong *)&u;
7362         ushort *xe = cast(ushort *)&x;
7363         ulong *xl = cast(ulong *)&x;
7364         ushort *ye = cast(ushort *)&y;
7365         ulong *yl = cast(ulong *)&y;
7366 
7367         // Ignore the useless implicit bit. (Bonus: this prevents overflows)
7368         ulong m = ((*xl) & 0x7FFF_FFFF_FFFF_FFFFL) + ((*yl) & 0x7FFF_FFFF_FFFF_FFFFL);
7369 
7370         // @@@ BUG? @@@
7371         // Cast shouldn't be here
7372         ushort e = cast(ushort) ((xe[F.EXPPOS_SHORT] & F.EXPMASK)
7373                                  + (ye[F.EXPPOS_SHORT] & F.EXPMASK));
7374         if (m & 0x8000_0000_0000_0000L)
7375         {
7376             ++e;
7377             m &= 0x7FFF_FFFF_FFFF_FFFFL;
7378         }
7379         // Now do a multi-byte right shift
7380         const uint c = e & 1; // carry
7381         e >>= 1;
7382         m >>>= 1;
7383         if (c)
7384             m |= 0x4000_0000_0000_0000L; // shift carry into significand
7385         if (e)
7386             *ul = m | 0x8000_0000_0000_0000L; // set implicit bit...
7387         else
7388             *ul = m; // ... unless exponent is 0 (subnormal or zero).
7389 
7390         ue[4]= e | (xe[F.EXPPOS_SHORT]& 0x8000); // restore sign bit
7391     }
7392     else static if (F.realFormat == RealFormat.ieeeQuadruple)
7393     {
7394         // This would be trivial if 'ucent' were implemented...
7395         ulong *ul = cast(ulong *)&u;
7396         ulong *xl = cast(ulong *)&x;
7397         ulong *yl = cast(ulong *)&y;
7398 
7399         // Multi-byte add, then multi-byte right shift.
7400         import core.checkedint : addu;
7401         bool carry;
7402         ulong ml = addu(xl[MANTISSA_LSB], yl[MANTISSA_LSB], carry);
7403 
7404         ulong mh = carry + (xl[MANTISSA_MSB] & 0x7FFF_FFFF_FFFF_FFFFL) +
7405             (yl[MANTISSA_MSB] & 0x7FFF_FFFF_FFFF_FFFFL);
7406 
7407         ul[MANTISSA_MSB] = (mh >>> 1) | (xl[MANTISSA_MSB] & 0x8000_0000_0000_0000);
7408         ul[MANTISSA_LSB] = (ml >>> 1) | (mh & 1) << 63;
7409     }
7410     else static if (F.realFormat == RealFormat.ieeeDouble)
7411     {
7412         ulong *ul = cast(ulong *)&u;
7413         ulong *xl = cast(ulong *)&x;
7414         ulong *yl = cast(ulong *)&y;
7415         ulong m = (((*xl) & 0x7FFF_FFFF_FFFF_FFFFL)
7416                    + ((*yl) & 0x7FFF_FFFF_FFFF_FFFFL)) >>> 1;
7417         m |= ((*xl) & 0x8000_0000_0000_0000L);
7418         *ul = m;
7419     }
7420     else static if (F.realFormat == RealFormat.ieeeSingle)
7421     {
7422         uint *ul = cast(uint *)&u;
7423         uint *xl = cast(uint *)&x;
7424         uint *yl = cast(uint *)&y;
7425         uint m = (((*xl) & 0x7FFF_FFFF) + ((*yl) & 0x7FFF_FFFF)) >>> 1;
7426         m |= ((*xl) & 0x8000_0000);
7427         *ul = m;
7428     }
7429     else
7430     {
7431         assert(0, "Not implemented");
7432     }
7433     return u;
7434 }
7435 
7436 @safe pure nothrow @nogc unittest
7437 {
7438     assert(ieeeMean(-0.0,-1e-20)<0);
7439     assert(ieeeMean(0.0,1e-20)>0);
7440 
7441     assert(ieeeMean(1.0L,4.0L)==2L);
7442     assert(ieeeMean(2.0*1.013,8.0*1.013)==4*1.013);
7443     assert(ieeeMean(-1.0L,-4.0L)==-2L);
7444     assert(ieeeMean(-1.0,-4.0)==-2);
7445     assert(ieeeMean(-1.0f,-4.0f)==-2f);
7446     assert(ieeeMean(-1.0,-2.0)==-1.5);
7447     assert(ieeeMean(-1*(1+8*real.epsilon),-2*(1+8*real.epsilon))
7448                  ==-1.5*(1+5*real.epsilon));
7449     assert(ieeeMean(0x1p60,0x1p-10)==0x1p25);
7450 
7451     static if (floatTraits!(real).realFormat == RealFormat.ieeeExtended)
7452     {
7453       assert(ieeeMean(1.0L,real.infinity)==0x1p8192L);
7454       assert(ieeeMean(0.0L,real.infinity)==1.5);
7455     }
7456     assert(ieeeMean(0.5*real.min_normal*(1-4*real.epsilon),0.5*real.min_normal)
7457            == 0.5*real.min_normal*(1-2*real.epsilon));
7458 }
7459 
7460 public:
7461 
7462 
7463 /***********************************
7464  * Evaluate polynomial A(x) = $(SUB a, 0) + $(SUB a, 1)x + $(SUB a, 2)$(POWER x,2)
7465  *                          + $(SUB a,3)$(POWER x,3); ...
7466  *
7467  * Uses Horner's rule A(x) = $(SUB a, 0) + x($(SUB a, 1) + x($(SUB a, 2)
7468  *                         + x($(SUB a, 3) + ...)))
7469  * Params:
7470  *      x =     the value to evaluate.
7471  *      A =     array of coefficients $(SUB a, 0), $(SUB a, 1), etc.
7472  */
7473 Unqual!(CommonType!(T1, T2)) poly(T1, T2)(T1 x, in T2[] A) @trusted pure nothrow @nogc
7474 if (isFloatingPoint!T1 && isFloatingPoint!T2)
7475 in
7476 {
7477     assert(A.length > 0);
7478 }
7479 body
7480 {
7481     static if (is(Unqual!T2 == real))
7482     {
7483         return polyImpl(x, A);
7484     }
7485     else
7486     {
7487         return polyImplBase(x, A);
7488     }
7489 }
7490 
7491 ///
7492 @safe nothrow @nogc unittest
7493 {
7494     real x = 3.1;
7495     static real[] pp = [56.1, 32.7, 6];
7496 
7497     assert(poly(x, pp) == (56.1L + (32.7L + 6.0L * x) * x));
7498 }
7499 
7500 @safe nothrow @nogc unittest
7501 {
7502     double x = 3.1;
7503     static double[] pp = [56.1, 32.7, 6];
7504     double y = x;
7505     y *= 6.0;
7506     y += 32.7;
7507     y *= x;
7508     y += 56.1;
7509     assert(poly(x, pp) == y);
7510 }
7511 
7512 @safe unittest
7513 {
7514     static assert(poly(3.0, [1.0, 2.0, 3.0]) == 34);
7515 }
7516 
7517 private Unqual!(CommonType!(T1, T2)) polyImplBase(T1, T2)(T1 x, in T2[] A) @trusted pure nothrow @nogc
7518 if (isFloatingPoint!T1 && isFloatingPoint!T2)
7519 {
7520     ptrdiff_t i = A.length - 1;
7521     typeof(return) r = A[i];
7522     while (--i >= 0)
7523     {
7524         r *= x;
7525         r += A[i];
7526     }
7527     return r;
7528 }
7529 
7530 private real polyImpl(real x, in real[] A) @trusted pure nothrow @nogc
7531 {
7532     version (D_InlineAsm_X86)
7533     {
7534         if (__ctfe)
7535         {
7536             return polyImplBase(x, A);
7537         }
7538         version (Windows)
7539         {
7540         // BUG: This code assumes a frame pointer in EBP.
7541             asm pure nothrow @nogc // assembler by W. Bright
7542             {
7543                 // EDX = (A.length - 1) * real.sizeof
7544                 mov     ECX,A[EBP]              ; // ECX = A.length
7545                 dec     ECX                     ;
7546                 lea     EDX,[ECX][ECX*8]        ;
7547                 add     EDX,ECX                 ;
7548                 add     EDX,A+4[EBP]            ;
7549                 fld     real ptr [EDX]          ; // ST0 = coeff[ECX]
7550                 jecxz   return_ST               ;
7551                 fld     x[EBP]                  ; // ST0 = x
7552                 fxch    ST(1)                   ; // ST1 = x, ST0 = r
7553                 align   4                       ;
7554         L2:     fmul    ST,ST(1)                ; // r *= x
7555                 fld     real ptr -10[EDX]       ;
7556                 sub     EDX,10                  ; // deg--
7557                 faddp   ST(1),ST                ;
7558                 dec     ECX                     ;
7559                 jne     L2                      ;
7560                 fxch    ST(1)                   ; // ST1 = r, ST0 = x
7561                 fstp    ST(0)                   ; // dump x
7562                 align   4                       ;
7563         return_ST:                              ;
7564                 ;
7565             }
7566         }
7567         else version (linux)
7568         {
7569             asm pure nothrow @nogc // assembler by W. Bright
7570             {
7571                 // EDX = (A.length - 1) * real.sizeof
7572                 mov     ECX,A[EBP]              ; // ECX = A.length
7573                 dec     ECX                     ;
7574                 lea     EDX,[ECX*8]             ;
7575                 lea     EDX,[EDX][ECX*4]        ;
7576                 add     EDX,A+4[EBP]            ;
7577                 fld     real ptr [EDX]          ; // ST0 = coeff[ECX]
7578                 jecxz   return_ST               ;
7579                 fld     x[EBP]                  ; // ST0 = x
7580                 fxch    ST(1)                   ; // ST1 = x, ST0 = r
7581                 align   4                       ;
7582         L2:     fmul    ST,ST(1)                ; // r *= x
7583                 fld     real ptr -12[EDX]       ;
7584                 sub     EDX,12                  ; // deg--
7585                 faddp   ST(1),ST                ;
7586                 dec     ECX                     ;
7587                 jne     L2                      ;
7588                 fxch    ST(1)                   ; // ST1 = r, ST0 = x
7589                 fstp    ST(0)                   ; // dump x
7590                 align   4                       ;
7591         return_ST:                              ;
7592                 ;
7593             }
7594         }
7595         else version (OSX)
7596         {
7597             asm pure nothrow @nogc // assembler by W. Bright
7598             {
7599                 // EDX = (A.length - 1) * real.sizeof
7600                 mov     ECX,A[EBP]              ; // ECX = A.length
7601                 dec     ECX                     ;
7602                 lea     EDX,[ECX*8]             ;
7603                 add     EDX,EDX                 ;
7604                 add     EDX,A+4[EBP]            ;
7605                 fld     real ptr [EDX]          ; // ST0 = coeff[ECX]
7606                 jecxz   return_ST               ;
7607                 fld     x[EBP]                  ; // ST0 = x
7608                 fxch    ST(1)                   ; // ST1 = x, ST0 = r
7609                 align   4                       ;
7610         L2:     fmul    ST,ST(1)                ; // r *= x
7611                 fld     real ptr -16[EDX]       ;
7612                 sub     EDX,16                  ; // deg--
7613                 faddp   ST(1),ST                ;
7614                 dec     ECX                     ;
7615                 jne     L2                      ;
7616                 fxch    ST(1)                   ; // ST1 = r, ST0 = x
7617                 fstp    ST(0)                   ; // dump x
7618                 align   4                       ;
7619         return_ST:                              ;
7620                 ;
7621             }
7622         }
7623         else version (FreeBSD)
7624         {
7625             asm pure nothrow @nogc // assembler by W. Bright
7626             {
7627                 // EDX = (A.length - 1) * real.sizeof
7628                 mov     ECX,A[EBP]              ; // ECX = A.length
7629                 dec     ECX                     ;
7630                 lea     EDX,[ECX*8]             ;
7631                 lea     EDX,[EDX][ECX*4]        ;
7632                 add     EDX,A+4[EBP]            ;
7633                 fld     real ptr [EDX]          ; // ST0 = coeff[ECX]
7634                 jecxz   return_ST               ;
7635                 fld     x[EBP]                  ; // ST0 = x
7636                 fxch    ST(1)                   ; // ST1 = x, ST0 = r
7637                 align   4                       ;
7638         L2:     fmul    ST,ST(1)                ; // r *= x
7639                 fld     real ptr -12[EDX]       ;
7640                 sub     EDX,12                  ; // deg--
7641                 faddp   ST(1),ST                ;
7642                 dec     ECX                     ;
7643                 jne     L2                      ;
7644                 fxch    ST(1)                   ; // ST1 = r, ST0 = x
7645                 fstp    ST(0)                   ; // dump x
7646                 align   4                       ;
7647         return_ST:                              ;
7648                 ;
7649             }
7650         }
7651         else version (Solaris)
7652         {
7653             asm pure nothrow @nogc // assembler by W. Bright
7654             {
7655                 // EDX = (A.length - 1) * real.sizeof
7656                 mov     ECX,A[EBP]              ; // ECX = A.length
7657                 dec     ECX                     ;
7658                 lea     EDX,[ECX*8]             ;
7659                 lea     EDX,[EDX][ECX*4]        ;
7660                 add     EDX,A+4[EBP]            ;
7661                 fld     real ptr [EDX]          ; // ST0 = coeff[ECX]
7662                 jecxz   return_ST               ;
7663                 fld     x[EBP]                  ; // ST0 = x
7664                 fxch    ST(1)                   ; // ST1 = x, ST0 = r
7665                 align   4                       ;
7666         L2:     fmul    ST,ST(1)                ; // r *= x
7667                 fld     real ptr -12[EDX]       ;
7668                 sub     EDX,12                  ; // deg--
7669                 faddp   ST(1),ST                ;
7670                 dec     ECX                     ;
7671                 jne     L2                      ;
7672                 fxch    ST(1)                   ; // ST1 = r, ST0 = x
7673                 fstp    ST(0)                   ; // dump x
7674                 align   4                       ;
7675         return_ST:                              ;
7676                 ;
7677             }
7678         }
7679         else version (DragonFlyBSD)
7680         {
7681             asm pure nothrow @nogc // assembler by W. Bright
7682             {
7683                 // EDX = (A.length - 1) * real.sizeof
7684                 mov     ECX,A[EBP]              ; // ECX = A.length
7685                 dec     ECX                     ;
7686                 lea     EDX,[ECX*8]             ;
7687                 lea     EDX,[EDX][ECX*4]        ;
7688                 add     EDX,A+4[EBP]            ;
7689                 fld     real ptr [EDX]          ; // ST0 = coeff[ECX]
7690                 jecxz   return_ST               ;
7691                 fld     x[EBP]                  ; // ST0 = x
7692                 fxch    ST(1)                   ; // ST1 = x, ST0 = r
7693                 align   4                       ;
7694         L2:     fmul    ST,ST(1)                ; // r *= x
7695                 fld     real ptr -12[EDX]       ;
7696                 sub     EDX,12                  ; // deg--
7697                 faddp   ST(1),ST                ;
7698                 dec     ECX                     ;
7699                 jne     L2                      ;
7700                 fxch    ST(1)                   ; // ST1 = r, ST0 = x
7701                 fstp    ST(0)                   ; // dump x
7702                 align   4                       ;
7703         return_ST:                              ;
7704                 ;
7705             }
7706         }
7707         else
7708         {
7709             static assert(0);
7710         }
7711     }
7712     else
7713     {
7714         return polyImplBase(x, A);
7715     }
7716 }
7717 
7718 
7719 /**
7720    Computes whether two values are approximately equal, admitting a maximum
7721    relative difference, and a maximum absolute difference.
7722 
7723    Params:
7724         lhs = First item to compare.
7725         rhs = Second item to compare.
7726         maxRelDiff = Maximum allowable difference relative to `rhs`.
7727         maxAbsDiff = Maximum absolute difference.
7728 
7729    Returns:
7730        `true` if the two items are approximately equal under either criterium.
7731        If one item is a range, and the other is a single value, then the result
7732        is the logical and-ing of calling `approxEqual` on each element of the
7733        ranged item against the single item. If both items are ranges, then
7734        `approxEqual` returns `true` if and only if the ranges have the same
7735        number of elements and if `approxEqual` evaluates to `true` for each
7736        pair of elements.
7737  */
7738 bool approxEqual(T, U, V)(T lhs, U rhs, V maxRelDiff, V maxAbsDiff = 1e-5)
7739 {
7740     import std.range.primitives : empty, front, isInputRange, popFront;
7741     static if (isInputRange!T)
7742     {
7743         static if (isInputRange!U)
7744         {
7745             // Two ranges
7746             for (;; lhs.popFront(), rhs.popFront())
7747             {
7748                 if (lhs.empty) return rhs.empty;
7749                 if (rhs.empty) return lhs.empty;
7750                 if (!approxEqual(lhs.front, rhs.front, maxRelDiff, maxAbsDiff))
7751                     return false;
7752             }
7753         }
7754         else static if (isIntegral!U)
7755         {
7756             // convert rhs to real
7757             return approxEqual(lhs, real(rhs), maxRelDiff, maxAbsDiff);
7758         }
7759         else
7760         {
7761             // lhs is range, rhs is number
7762             for (; !lhs.empty; lhs.popFront())
7763             {
7764                 if (!approxEqual(lhs.front, rhs, maxRelDiff, maxAbsDiff))
7765                     return false;
7766             }
7767             return true;
7768         }
7769     }
7770     else
7771     {
7772         static if (isInputRange!U)
7773         {
7774             // lhs is number, rhs is range
7775             for (; !rhs.empty; rhs.popFront())
7776             {
7777                 if (!approxEqual(lhs, rhs.front, maxRelDiff, maxAbsDiff))
7778                     return false;
7779             }
7780             return true;
7781         }
7782         else static if (isIntegral!T || isIntegral!U)
7783         {
7784             // convert both lhs and rhs to real
7785             return approxEqual(real(lhs), real(rhs), maxRelDiff, maxAbsDiff);
7786         }
7787         else
7788         {
7789             // two numbers
7790             //static assert(is(T : real) && is(U : real));
7791             if (rhs == 0)
7792             {
7793                 return fabs(lhs) <= maxAbsDiff;
7794             }
7795             static if (is(typeof(lhs.infinity)) && is(typeof(rhs.infinity)))
7796             {
7797                 if (lhs == lhs.infinity && rhs == rhs.infinity ||
7798                     lhs == -lhs.infinity && rhs == -rhs.infinity) return true;
7799             }
7800             return fabs((lhs - rhs) / rhs) <= maxRelDiff
7801                 || maxAbsDiff != 0 && fabs(lhs - rhs) <= maxAbsDiff;
7802         }
7803     }
7804 }
7805 
7806 /**
7807    Returns $(D approxEqual(lhs, rhs, 1e-2, 1e-5)).
7808  */
7809 bool approxEqual(T, U)(T lhs, U rhs)
7810 {
7811     return approxEqual(lhs, rhs, 1e-2, 1e-5);
7812 }
7813 
7814 ///
7815 @safe pure nothrow unittest
7816 {
7817     assert(approxEqual(1.0, 1.0099));
7818     assert(!approxEqual(1.0, 1.011));
7819     float[] arr1 = [ 1.0, 2.0, 3.0 ];
7820     double[] arr2 = [ 1.001, 1.999, 3 ];
7821     assert(approxEqual(arr1, arr2));
7822 
7823     real num = real.infinity;
7824     assert(num == real.infinity);  // Passes.
7825     assert(approxEqual(num, real.infinity));  // Fails.
7826     num = -real.infinity;
7827     assert(num == -real.infinity);  // Passes.
7828     assert(approxEqual(num, -real.infinity));  // Fails.
7829 
7830     assert(!approxEqual(3, 0));
7831     assert(approxEqual(3, 3));
7832     assert(approxEqual(3.0, 3));
7833     assert(approxEqual([3, 3, 3], 3.0));
7834     assert(approxEqual([3.0, 3.0, 3.0], 3));
7835     int a = 10;
7836     assert(approxEqual(10, a));
7837 }
7838 
7839 @safe pure nothrow @nogc unittest
7840 {
7841     real num = real.infinity;
7842     assert(num == real.infinity);  // Passes.
7843     assert(approxEqual(num, real.infinity));  // Fails.
7844 }
7845 
7846 
7847 @safe pure nothrow @nogc unittest
7848 {
7849     float f = sqrt(2.0f);
7850     assert(fabs(f * f - 2.0f) < .00001);
7851 
7852     double d = sqrt(2.0);
7853     assert(fabs(d * d - 2.0) < .00001);
7854 
7855     real r = sqrt(2.0L);
7856     assert(fabs(r * r - 2.0) < .00001);
7857 }
7858 
7859 @safe pure nothrow @nogc unittest
7860 {
7861     float f = fabs(-2.0f);
7862     assert(f == 2);
7863 
7864     double d = fabs(-2.0);
7865     assert(d == 2);
7866 
7867     real r = fabs(-2.0L);
7868     assert(r == 2);
7869 }
7870 
7871 @safe pure nothrow @nogc unittest
7872 {
7873     float f = sin(-2.0f);
7874     assert(fabs(f - -0.909297f) < .00001);
7875 
7876     double d = sin(-2.0);
7877     assert(fabs(d - -0.909297f) < .00001);
7878 
7879     real r = sin(-2.0L);
7880     assert(fabs(r - -0.909297f) < .00001);
7881 }
7882 
7883 @safe pure nothrow @nogc unittest
7884 {
7885     float f = cos(-2.0f);
7886     assert(fabs(f - -0.416147f) < .00001);
7887 
7888     double d = cos(-2.0);
7889     assert(fabs(d - -0.416147f) < .00001);
7890 
7891     real r = cos(-2.0L);
7892     assert(fabs(r - -0.416147f) < .00001);
7893 }
7894 
7895 @safe pure nothrow @nogc unittest
7896 {
7897     float f = tan(-2.0f);
7898     assert(fabs(f - 2.18504f) < .00001);
7899 
7900     double d = tan(-2.0);
7901     assert(fabs(d - 2.18504f) < .00001);
7902 
7903     real r = tan(-2.0L);
7904     assert(fabs(r - 2.18504f) < .00001);
7905 
7906     // Verify correct behavior for large inputs
7907     assert(!isNaN(tan(0x1p63)));
7908     assert(!isNaN(tan(0x1p300L)));
7909     assert(!isNaN(tan(-0x1p63)));
7910     assert(!isNaN(tan(-0x1p300L)));
7911 }
7912 
7913 @safe pure nothrow unittest
7914 {
7915     // issue 6381: floor/ceil should be usable in pure function.
7916     auto x = floor(1.2);
7917     auto y = ceil(1.2);
7918 }
7919 
7920 @safe pure nothrow unittest
7921 {
7922     // relative comparison depends on rhs, make sure proper side is used when
7923     // comparing range to single value. Based on bugzilla issue 15763
7924     auto a = [2e-3 - 1e-5];
7925     auto b = 2e-3 + 1e-5;
7926     assert(a[0].approxEqual(b));
7927     assert(!b.approxEqual(a[0]));
7928     assert(a.approxEqual(b));
7929     assert(!b.approxEqual(a));
7930 }
7931 
7932 /***********************************
7933  * Defines a total order on all floating-point numbers.
7934  *
7935  * The order is defined as follows:
7936  * $(UL
7937  *      $(LI All numbers in [-$(INFIN), +$(INFIN)] are ordered
7938  *          the same way as by built-in comparison, with the exception of
7939  *          -0.0, which is less than +0.0;)
7940  *      $(LI If the sign bit is set (that is, it's 'negative'), $(NAN) is less
7941  *          than any number; if the sign bit is not set (it is 'positive'),
7942  *          $(NAN) is greater than any number;)
7943  *      $(LI $(NAN)s of the same sign are ordered by the payload ('negative'
7944  *          ones - in reverse order).)
7945  * )
7946  *
7947  * Returns:
7948  *      negative value if $(D x) precedes $(D y) in the order specified above;
7949  *      0 if $(D x) and $(D y) are identical, and positive value otherwise.
7950  *
7951  * See_Also:
7952  *      $(MYREF isIdentical)
7953  * Standards: Conforms to IEEE 754-2008
7954  */
7955 int cmp(T)(const(T) x, const(T) y) @nogc @trusted pure nothrow
7956 if (isFloatingPoint!T)
7957 {
7958     alias F = floatTraits!T;
7959 
7960     static if (F.realFormat == RealFormat.ieeeSingle
7961                || F.realFormat == RealFormat.ieeeDouble)
7962     {
7963         static if (T.sizeof == 4)
7964             alias UInt = uint;
7965         else
7966             alias UInt = ulong;
7967 
7968         union Repainter
7969         {
7970             T number;
7971             UInt bits;
7972         }
7973 
7974         enum msb = ~(UInt.max >>> 1);
7975 
7976         import std.typecons : Tuple;
7977         Tuple!(Repainter, Repainter) vars = void;
7978         vars[0].number = x;
7979         vars[1].number = y;
7980 
7981         foreach (ref var; vars)
7982             if (var.bits & msb)
7983                 var.bits = ~var.bits;
7984             else
7985                 var.bits |= msb;
7986 
7987         if (vars[0].bits < vars[1].bits)
7988             return -1;
7989         else if (vars[0].bits > vars[1].bits)
7990             return 1;
7991         else
7992             return 0;
7993     }
7994     else static if (F.realFormat == RealFormat.ieeeExtended53
7995                     || F.realFormat == RealFormat.ieeeExtended
7996                     || F.realFormat == RealFormat.ieeeQuadruple)
7997     {
7998         static if (F.realFormat == RealFormat.ieeeQuadruple)
7999             alias RemT = ulong;
8000         else
8001             alias RemT = ushort;
8002 
8003         struct Bits
8004         {
8005             ulong bulk;
8006             RemT rem;
8007         }
8008 
8009         union Repainter
8010         {
8011             T number;
8012             Bits bits;
8013             ubyte[T.sizeof] bytes;
8014         }
8015 
8016         import std.typecons : Tuple;
8017         Tuple!(Repainter, Repainter) vars = void;
8018         vars[0].number = x;
8019         vars[1].number = y;
8020 
8021         foreach (ref var; vars)
8022             if (var.bytes[F.SIGNPOS_BYTE] & 0x80)
8023             {
8024                 var.bits.bulk = ~var.bits.bulk;
8025                 var.bits.rem = cast(typeof(var.bits.rem))(-1 - var.bits.rem); // ~var.bits.rem
8026             }
8027             else
8028             {
8029                 var.bytes[F.SIGNPOS_BYTE] |= 0x80;
8030             }
8031 
8032         version (LittleEndian)
8033         {
8034             if (vars[0].bits.rem < vars[1].bits.rem)
8035                 return -1;
8036             else if (vars[0].bits.rem > vars[1].bits.rem)
8037                 return 1;
8038             else if (vars[0].bits.bulk < vars[1].bits.bulk)
8039                 return -1;
8040             else if (vars[0].bits.bulk > vars[1].bits.bulk)
8041                 return 1;
8042             else
8043                 return 0;
8044         }
8045         else
8046         {
8047             if (vars[0].bits.bulk < vars[1].bits.bulk)
8048                 return -1;
8049             else if (vars[0].bits.bulk > vars[1].bits.bulk)
8050                 return 1;
8051             else if (vars[0].bits.rem < vars[1].bits.rem)
8052                 return -1;
8053             else if (vars[0].bits.rem > vars[1].bits.rem)
8054                 return 1;
8055             else
8056                 return 0;
8057         }
8058     }
8059     else
8060     {
8061         // IBM Extended doubledouble does not follow the general
8062         // sign-exponent-significand layout, so has to be handled generically
8063 
8064         const int xSign = signbit(x),
8065             ySign = signbit(y);
8066 
8067         if (xSign == 1 && ySign == 1)
8068             return cmp(-y, -x);
8069         else if (xSign == 1)
8070             return -1;
8071         else if (ySign == 1)
8072             return 1;
8073         else if (x < y)
8074             return -1;
8075         else if (x == y)
8076             return 0;
8077         else if (x > y)
8078             return 1;
8079         else if (isNaN(x) && !isNaN(y))
8080             return 1;
8081         else if (isNaN(y) && !isNaN(x))
8082             return -1;
8083         else if (getNaNPayload(x) < getNaNPayload(y))
8084             return -1;
8085         else if (getNaNPayload(x) > getNaNPayload(y))
8086             return 1;
8087         else
8088             return 0;
8089     }
8090 }
8091 
8092 /// Most numbers are ordered naturally.
8093 @safe unittest
8094 {
8095     assert(cmp(-double.infinity, -double.max) < 0);
8096     assert(cmp(-double.max, -100.0) < 0);
8097     assert(cmp(-100.0, -0.5) < 0);
8098     assert(cmp(-0.5, 0.0) < 0);
8099     assert(cmp(0.0, 0.5) < 0);
8100     assert(cmp(0.5, 100.0) < 0);
8101     assert(cmp(100.0, double.max) < 0);
8102     assert(cmp(double.max, double.infinity) < 0);
8103 
8104     assert(cmp(1.0, 1.0) == 0);
8105 }
8106 
8107 /// Positive and negative zeroes are distinct.
8108 @safe unittest
8109 {
8110     assert(cmp(-0.0, +0.0) < 0);
8111     assert(cmp(+0.0, -0.0) > 0);
8112 }
8113 
8114 /// Depending on the sign, $(NAN)s go to either end of the spectrum.
8115 @safe unittest
8116 {
8117     assert(cmp(-double.nan, -double.infinity) < 0);
8118     assert(cmp(double.infinity, double.nan) < 0);
8119     assert(cmp(-double.nan, double.nan) < 0);
8120 }
8121 
8122 /// $(NAN)s of the same sign are ordered by the payload.
8123 @safe unittest
8124 {
8125     assert(cmp(NaN(10), NaN(20)) < 0);
8126     assert(cmp(-NaN(20), -NaN(10)) < 0);
8127 }
8128 
8129 @safe unittest
8130 {
8131     import std.meta : AliasSeq;
8132     foreach (T; AliasSeq!(float, double, real))
8133     {
8134         T[] values = [-cast(T) NaN(20), -cast(T) NaN(10), -T.nan, -T.infinity,
8135                       -T.max, -T.max / 2, T(-16.0), T(-1.0).nextDown,
8136                       T(-1.0), T(-1.0).nextUp,
8137                       T(-0.5), -T.min_normal, (-T.min_normal).nextUp,
8138                       -2 * T.min_normal * T.epsilon,
8139                       -T.min_normal * T.epsilon,
8140                       T(-0.0), T(0.0),
8141                       T.min_normal * T.epsilon,
8142                       2 * T.min_normal * T.epsilon,
8143                       T.min_normal.nextDown, T.min_normal, T(0.5),
8144                       T(1.0).nextDown, T(1.0),
8145                       T(1.0).nextUp, T(16.0), T.max / 2, T.max,
8146                       T.infinity, T.nan, cast(T) NaN(10), cast(T) NaN(20)];
8147 
8148         foreach (i, x; values)
8149         {
8150             foreach (y; values[i + 1 .. $])
8151             {
8152                 assert(cmp(x, y) < 0);
8153                 assert(cmp(y, x) > 0);
8154             }
8155             assert(cmp(x, x) == 0);
8156         }
8157     }
8158 }
8159 
8160 private enum PowType
8161 {
8162     floor,
8163     ceil
8164 }
8165 
8166 pragma(inline, true)
8167 private T powIntegralImpl(PowType type, T)(T val)
8168 {
8169     import core.bitop : bsr;
8170 
8171     if (val == 0 || (type == PowType.ceil && (val > T.max / 2 || val == T.min)))
8172         return 0;
8173     else
8174     {
8175         static if (isSigned!T)
8176             return cast(Unqual!T) (val < 0 ? -(T(1) << bsr(0 - val) + type) : T(1) << bsr(val) + type);
8177         else
8178             return cast(Unqual!T) (T(1) << bsr(val) + type);
8179     }
8180 }
8181 
8182 private T powFloatingPointImpl(PowType type, T)(T x)
8183 {
8184     if (!x.isFinite)
8185         return x;
8186 
8187     if (!x)
8188         return x;
8189 
8190     int exp;
8191     auto y = frexp(x, exp);
8192 
8193     static if (type == PowType.ceil)
8194         y = ldexp(cast(T) 0.5, exp + 1);
8195     else
8196         y = ldexp(cast(T) 0.5, exp);
8197 
8198     if (!y.isFinite)
8199         return cast(T) 0.0;
8200 
8201     y = copysign(y, x);
8202 
8203     return y;
8204 }
8205 
8206 /**
8207  * Gives the next power of two after $(D val). `T` can be any built-in
8208  * numerical type.
8209  *
8210  * If the operation would lead to an over/underflow, this function will
8211  * return `0`.
8212  *
8213  * Params:
8214  *     val = any number
8215  *
8216  * Returns:
8217  *     the next power of two after $(D val)
8218  */
8219 T nextPow2(T)(const T val)
8220 if (isIntegral!T)
8221 {
8222     return powIntegralImpl!(PowType.ceil)(val);
8223 }
8224 
8225 /// ditto
8226 T nextPow2(T)(const T val)
8227 if (isFloatingPoint!T)
8228 {
8229     return powFloatingPointImpl!(PowType.ceil)(val);
8230 }
8231 
8232 ///
8233 @safe @nogc pure nothrow unittest
8234 {
8235     assert(nextPow2(2) == 4);
8236     assert(nextPow2(10) == 16);
8237     assert(nextPow2(4000) == 4096);
8238 
8239     assert(nextPow2(-2) == -4);
8240     assert(nextPow2(-10) == -16);
8241 
8242     assert(nextPow2(uint.max) == 0);
8243     assert(nextPow2(uint.min) == 0);
8244     assert(nextPow2(size_t.max) == 0);
8245     assert(nextPow2(size_t.min) == 0);
8246 
8247     assert(nextPow2(int.max) == 0);
8248     assert(nextPow2(int.min) == 0);
8249     assert(nextPow2(long.max) == 0);
8250     assert(nextPow2(long.min) == 0);
8251 }
8252 
8253 ///
8254 @safe @nogc pure nothrow unittest
8255 {
8256     assert(nextPow2(2.1) == 4.0);
8257     assert(nextPow2(-2.0) == -4.0);
8258     assert(nextPow2(0.25) == 0.5);
8259     assert(nextPow2(-4.0) == -8.0);
8260 
8261     assert(nextPow2(double.max) == 0.0);
8262     assert(nextPow2(double.infinity) == double.infinity);
8263 }
8264 
8265 @safe @nogc pure nothrow unittest
8266 {
8267     assert(nextPow2(ubyte(2)) == 4);
8268     assert(nextPow2(ubyte(10)) == 16);
8269 
8270     assert(nextPow2(byte(2)) == 4);
8271     assert(nextPow2(byte(10)) == 16);
8272 
8273     assert(nextPow2(short(2)) == 4);
8274     assert(nextPow2(short(10)) == 16);
8275     assert(nextPow2(short(4000)) == 4096);
8276 
8277     assert(nextPow2(ushort(2)) == 4);
8278     assert(nextPow2(ushort(10)) == 16);
8279     assert(nextPow2(ushort(4000)) == 4096);
8280 }
8281 
8282 @safe @nogc pure nothrow unittest
8283 {
8284     foreach (ulong i; 1 .. 62)
8285     {
8286         assert(nextPow2(1UL << i) == 2UL << i);
8287         assert(nextPow2((1UL << i) - 1) == 1UL << i);
8288         assert(nextPow2((1UL << i) + 1) == 2UL << i);
8289         assert(nextPow2((1UL << i) + (1UL<<(i-1))) == 2UL << i);
8290     }
8291 }
8292 
8293 @safe @nogc pure nothrow unittest
8294 {
8295     import std.meta : AliasSeq;
8296 
8297     foreach (T; AliasSeq!(float, double, real))
8298     {
8299         enum T subNormal = T.min_normal / 2;
8300 
8301         static if (subNormal) assert(nextPow2(subNormal) == T.min_normal);
8302 
8303         assert(nextPow2(T(0.0)) == 0.0);
8304 
8305         assert(nextPow2(T(2.0)) == 4.0);
8306         assert(nextPow2(T(2.1)) == 4.0);
8307         assert(nextPow2(T(3.1)) == 4.0);
8308         assert(nextPow2(T(4.0)) == 8.0);
8309         assert(nextPow2(T(0.25)) == 0.5);
8310 
8311         assert(nextPow2(T(-2.0)) == -4.0);
8312         assert(nextPow2(T(-2.1)) == -4.0);
8313         assert(nextPow2(T(-3.1)) == -4.0);
8314         assert(nextPow2(T(-4.0)) == -8.0);
8315         assert(nextPow2(T(-0.25)) == -0.5);
8316 
8317         assert(nextPow2(T.max) == 0);
8318         assert(nextPow2(-T.max) == 0);
8319 
8320         assert(nextPow2(T.infinity) == T.infinity);
8321         assert(nextPow2(T.init).isNaN);
8322     }
8323 }
8324 
8325 @safe @nogc pure nothrow unittest // Issue 15973
8326 {
8327     assert(nextPow2(uint.max / 2) == uint.max / 2 + 1);
8328     assert(nextPow2(uint.max / 2 + 2) == 0);
8329     assert(nextPow2(int.max / 2) == int.max / 2 + 1);
8330     assert(nextPow2(int.max / 2 + 2) == 0);
8331     assert(nextPow2(int.min + 1) == int.min);
8332 }
8333 
8334 /**
8335  * Gives the last power of two before $(D val). $(T) can be any built-in
8336  * numerical type.
8337  *
8338  * Params:
8339  *     val = any number
8340  *
8341  * Returns:
8342  *     the last power of two before $(D val)
8343  */
8344 T truncPow2(T)(const T val)
8345 if (isIntegral!T)
8346 {
8347     return powIntegralImpl!(PowType.floor)(val);
8348 }
8349 
8350 /// ditto
8351 T truncPow2(T)(const T val)
8352 if (isFloatingPoint!T)
8353 {
8354     return powFloatingPointImpl!(PowType.floor)(val);
8355 }
8356 
8357 ///
8358 @safe @nogc pure nothrow unittest
8359 {
8360     assert(truncPow2(3) == 2);
8361     assert(truncPow2(4) == 4);
8362     assert(truncPow2(10) == 8);
8363     assert(truncPow2(4000) == 2048);
8364 
8365     assert(truncPow2(-5) == -4);
8366     assert(truncPow2(-20) == -16);
8367 
8368     assert(truncPow2(uint.max) == int.max + 1);
8369     assert(truncPow2(uint.min) == 0);
8370     assert(truncPow2(ulong.max) == long.max + 1);
8371     assert(truncPow2(ulong.min) == 0);
8372 
8373     assert(truncPow2(int.max) == (int.max / 2) + 1);
8374     assert(truncPow2(int.min) == int.min);
8375     assert(truncPow2(long.max) == (long.max / 2) + 1);
8376     assert(truncPow2(long.min) == long.min);
8377 }
8378 
8379 ///
8380 @safe @nogc pure nothrow unittest
8381 {
8382     assert(truncPow2(2.1) == 2.0);
8383     assert(truncPow2(7.0) == 4.0);
8384     assert(truncPow2(-1.9) == -1.0);
8385     assert(truncPow2(0.24) == 0.125);
8386     assert(truncPow2(-7.0) == -4.0);
8387 
8388     assert(truncPow2(double.infinity) == double.infinity);
8389 }
8390 
8391 @safe @nogc pure nothrow unittest
8392 {
8393     assert(truncPow2(ubyte(3)) == 2);
8394     assert(truncPow2(ubyte(4)) == 4);
8395     assert(truncPow2(ubyte(10)) == 8);
8396 
8397     assert(truncPow2(byte(3)) == 2);
8398     assert(truncPow2(byte(4)) == 4);
8399     assert(truncPow2(byte(10)) == 8);
8400 
8401     assert(truncPow2(ushort(3)) == 2);
8402     assert(truncPow2(ushort(4)) == 4);
8403     assert(truncPow2(ushort(10)) == 8);
8404     assert(truncPow2(ushort(4000)) == 2048);
8405 
8406     assert(truncPow2(short(3)) == 2);
8407     assert(truncPow2(short(4)) == 4);
8408     assert(truncPow2(short(10)) == 8);
8409     assert(truncPow2(short(4000)) == 2048);
8410 }
8411 
8412 @safe @nogc pure nothrow unittest
8413 {
8414     foreach (ulong i; 1 .. 62)
8415     {
8416         assert(truncPow2(2UL << i) == 2UL << i);
8417         assert(truncPow2((2UL << i) + 1) == 2UL << i);
8418         assert(truncPow2((2UL << i) - 1) == 1UL << i);
8419         assert(truncPow2((2UL << i) - (2UL<<(i-1))) == 1UL << i);
8420     }
8421 }
8422 
8423 @safe @nogc pure nothrow unittest
8424 {
8425     import std.meta : AliasSeq;
8426 
8427     foreach (T; AliasSeq!(float, double, real))
8428     {
8429         assert(truncPow2(T(0.0)) == 0.0);
8430 
8431         assert(truncPow2(T(4.0)) == 4.0);
8432         assert(truncPow2(T(2.1)) == 2.0);
8433         assert(truncPow2(T(3.5)) == 2.0);
8434         assert(truncPow2(T(7.0)) == 4.0);
8435         assert(truncPow2(T(0.24)) == 0.125);
8436 
8437         assert(truncPow2(T(-2.0)) == -2.0);
8438         assert(truncPow2(T(-2.1)) == -2.0);
8439         assert(truncPow2(T(-3.1)) == -2.0);
8440         assert(truncPow2(T(-7.0)) == -4.0);
8441         assert(truncPow2(T(-0.24)) == -0.125);
8442 
8443         assert(truncPow2(T.infinity) == T.infinity);
8444         assert(truncPow2(T.init).isNaN);
8445     }
8446 }
8447 
8448 /**
8449 Check whether a number is an integer power of two.
8450 
8451 Note that only positive numbers can be integer powers of two. This
8452 function always return `false` if `x` is negative or zero.
8453 
8454 Params:
8455     x = the number to test
8456 
8457 Returns:
8458     `true` if `x` is an integer power of two.
8459 */
8460 bool isPowerOf2(X)(const X x) pure @safe nothrow @nogc
8461 if (isNumeric!X)
8462 {
8463     static if (isFloatingPoint!X)
8464     {
8465         int exp;
8466         const X sig = frexp(x, exp);
8467 
8468         return (exp != int.min) && (sig is cast(X) 0.5L);
8469     }
8470     else
8471     {
8472         static if (isSigned!X)
8473         {
8474             auto y = cast(typeof(x + 0))x;
8475             return y > 0 && !(y & (y - 1));
8476         }
8477         else
8478         {
8479             auto y = cast(typeof(x + 0u))x;
8480             return (y & -y) > (y - 1);
8481         }
8482     }
8483 }
8484 ///
8485 @safe unittest
8486 {
8487     assert( isPowerOf2(1.0L));
8488     assert( isPowerOf2(2.0L));
8489     assert( isPowerOf2(0.5L));
8490     assert( isPowerOf2(pow(2.0L, 96)));
8491     assert( isPowerOf2(pow(2.0L, -77)));
8492 
8493     assert(!isPowerOf2(-2.0L));
8494     assert(!isPowerOf2(-0.5L));
8495     assert(!isPowerOf2(0.0L));
8496     assert(!isPowerOf2(4.315));
8497     assert(!isPowerOf2(1.0L / 3.0L));
8498 
8499     assert(!isPowerOf2(real.nan));
8500     assert(!isPowerOf2(real.infinity));
8501 }
8502 ///
8503 @safe unittest
8504 {
8505     assert( isPowerOf2(1));
8506     assert( isPowerOf2(2));
8507     assert( isPowerOf2(1uL << 63));
8508 
8509     assert(!isPowerOf2(-4));
8510     assert(!isPowerOf2(0));
8511     assert(!isPowerOf2(1337u));
8512 }
8513 
8514 @safe unittest
8515 {
8516     import std.meta : AliasSeq;
8517 
8518     immutable smallP2 = pow(2.0L, -62);
8519     immutable bigP2 = pow(2.0L, 50);
8520     immutable smallP7 = pow(7.0L, -35);
8521     immutable bigP7 = pow(7.0L, 30);
8522 
8523     foreach (X; AliasSeq!(float, double, real))
8524     {
8525         immutable min_sub = X.min_normal * X.epsilon;
8526 
8527         foreach (x; AliasSeq!(smallP2, min_sub, X.min_normal, .25L, 0.5L, 1.0L,
8528                               2.0L, 8.0L, pow(2.0L, X.max_exp - 1), bigP2))
8529         {
8530             assert( isPowerOf2(cast(X) x));
8531             assert(!isPowerOf2(cast(X)-x));
8532         }
8533 
8534         foreach (x; AliasSeq!(0.0L, 3 * min_sub, smallP7, 0.1L, 1337.0L, bigP7, X.max, real.nan, real.infinity))
8535         {
8536             assert(!isPowerOf2(cast(X) x));
8537             assert(!isPowerOf2(cast(X)-x));
8538         }
8539     }
8540 
8541     foreach (X; AliasSeq!(byte, ubyte, short, ushort, int, uint, long, ulong))
8542     {
8543         foreach (x; [1, 2, 4, 8, (X.max >>> 1) + 1])
8544         {
8545             assert( isPowerOf2(cast(X) x));
8546             static if (isSigned!X)
8547                 assert(!isPowerOf2(cast(X)-x));
8548         }
8549 
8550         foreach (x; [0, 3, 5, 13, 77, X.min, X.max])
8551             assert(!isPowerOf2(cast(X) x));
8552     }
8553 }
8554