1 /* Copyright (C) 2007-2019 Free Software Foundation, Inc. 2 Contributed by Richard Henderson <rth@redhat.com>. 3 4 This file is part of the GNU Offloading and Multi Processing Library 5 (libgomp). 6 7 Libgomp is free software; you can redistribute it and/or modify it 8 under the terms of the GNU General Public License as published by 9 the Free Software Foundation; either version 3, or (at your option) 10 any later version. 11 12 Libgomp is distributed in the hope that it will be useful, but WITHOUT ANY 13 WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS 14 FOR A PARTICULAR PURPOSE. See the GNU General Public License for 15 more details. 16 17 Under Section 7 of GPL version 3, you are granted additional 18 permissions described in the GCC Runtime Library Exception, version 19 3.1, as published by the Free Software Foundation. 20 21 You should have received a copy of the GNU General Public License and 22 a copy of the GCC Runtime Library Exception along with this program; 23 see the files COPYING3 and COPYING.RUNTIME respectively. If not, see 24 <http://www.gnu.org/licenses/>. */ 25 26 /* This file handles the maintainence of tasks in response to task 27 creation and termination. */ 28 29 #include "libgomp.h" 30 #include <stdlib.h> 31 #include <string.h> 32 #include "gomp-constants.h" 33 34 typedef struct gomp_task_depend_entry *hash_entry_type; 35 36 static inline void * 37 htab_alloc (size_t size) 38 { 39 return gomp_malloc (size); 40 } 41 42 static inline void 43 htab_free (void *ptr) 44 { 45 free (ptr); 46 } 47 48 #include "hashtab.h" 49 50 static inline hashval_t 51 htab_hash (hash_entry_type element) 52 { 53 return hash_pointer (element->addr); 54 } 55 56 static inline bool 57 htab_eq (hash_entry_type x, hash_entry_type y) 58 { 59 return x->addr == y->addr; 60 } 61 62 /* Create a new task data structure. */ 63 64 void 65 gomp_init_task (struct gomp_task *task, struct gomp_task *parent_task, 66 struct gomp_task_icv *prev_icv) 67 { 68 /* It would seem that using memset here would be a win, but it turns 69 out that partially filling gomp_task allows us to keep the 70 overhead of task creation low. In the nqueens-1.c test, for a 71 sufficiently large N, we drop the overhead from 5-6% to 1%. 72 73 Note, the nqueens-1.c test in serial mode is a good test to 74 benchmark the overhead of creating tasks as there are millions of 75 tiny tasks created that all run undeferred. */ 76 task->parent = parent_task; 77 task->icv = *prev_icv; 78 task->kind = GOMP_TASK_IMPLICIT; 79 task->taskwait = NULL; 80 task->in_tied_task = false; 81 task->final_task = false; 82 task->copy_ctors_done = false; 83 task->parent_depends_on = false; 84 priority_queue_init (&task->children_queue); 85 task->taskgroup = NULL; 86 task->dependers = NULL; 87 task->depend_hash = NULL; 88 task->depend_count = 0; 89 } 90 91 /* Clean up a task, after completing it. */ 92 93 void 94 gomp_end_task (void) 95 { 96 struct gomp_thread *thr = gomp_thread (); 97 struct gomp_task *task = thr->task; 98 99 gomp_finish_task (task); 100 thr->task = task->parent; 101 } 102 103 /* Clear the parent field of every task in LIST. */ 104 105 static inline void 106 gomp_clear_parent_in_list (struct priority_list *list) 107 { 108 struct priority_node *p = list->tasks; 109 if (p) 110 do 111 { 112 priority_node_to_task (PQ_CHILDREN, p)->parent = NULL; 113 p = p->next; 114 } 115 while (p != list->tasks); 116 } 117 118 /* Splay tree version of gomp_clear_parent_in_list. 119 120 Clear the parent field of every task in NODE within SP, and free 121 the node when done. */ 122 123 static void 124 gomp_clear_parent_in_tree (prio_splay_tree sp, prio_splay_tree_node node) 125 { 126 if (!node) 127 return; 128 prio_splay_tree_node left = node->left, right = node->right; 129 gomp_clear_parent_in_list (&node->key.l); 130 #if _LIBGOMP_CHECKING_ 131 memset (node, 0xaf, sizeof (*node)); 132 #endif 133 /* No need to remove the node from the tree. We're nuking 134 everything, so just free the nodes and our caller can clear the 135 entire splay tree. */ 136 free (node); 137 gomp_clear_parent_in_tree (sp, left); 138 gomp_clear_parent_in_tree (sp, right); 139 } 140 141 /* Clear the parent field of every task in Q and remove every task 142 from Q. */ 143 144 static inline void 145 gomp_clear_parent (struct priority_queue *q) 146 { 147 if (priority_queue_multi_p (q)) 148 { 149 gomp_clear_parent_in_tree (&q->t, q->t.root); 150 /* All the nodes have been cleared in gomp_clear_parent_in_tree. 151 No need to remove anything. We can just nuke everything. */ 152 q->t.root = NULL; 153 } 154 else 155 gomp_clear_parent_in_list (&q->l); 156 } 157 158 /* Helper function for GOMP_task and gomp_create_target_task. 159 160 For a TASK with in/out dependencies, fill in the various dependency 161 queues. PARENT is the parent of said task. DEPEND is as in 162 GOMP_task. */ 163 164 static void 165 gomp_task_handle_depend (struct gomp_task *task, struct gomp_task *parent, 166 void **depend) 167 { 168 size_t ndepend = (uintptr_t) depend[0]; 169 size_t i; 170 hash_entry_type ent; 171 172 if (ndepend) 173 { 174 /* depend[0] is total # */ 175 size_t nout = (uintptr_t) depend[1]; /* # of out: and inout: */ 176 /* ndepend - nout is # of in: */ 177 for (i = 0; i < ndepend; i++) 178 { 179 task->depend[i].addr = depend[2 + i]; 180 task->depend[i].is_in = i >= nout; 181 } 182 } 183 else 184 { 185 ndepend = (uintptr_t) depend[1]; /* total # */ 186 size_t nout = (uintptr_t) depend[2]; /* # of out: and inout: */ 187 size_t nmutexinoutset = (uintptr_t) depend[3]; /* # of mutexinoutset: */ 188 /* For now we treat mutexinoutset like out, which is compliant, but 189 inefficient. */ 190 size_t nin = (uintptr_t) depend[4]; /* # of in: */ 191 /* ndepend - nout - nmutexinoutset - nin is # of depobjs */ 192 size_t normal = nout + nmutexinoutset + nin; 193 size_t n = 0; 194 for (i = normal; i < ndepend; i++) 195 { 196 void **d = (void **) (uintptr_t) depend[5 + i]; 197 switch ((uintptr_t) d[1]) 198 { 199 case GOMP_DEPEND_OUT: 200 case GOMP_DEPEND_INOUT: 201 case GOMP_DEPEND_MUTEXINOUTSET: 202 break; 203 case GOMP_DEPEND_IN: 204 continue; 205 default: 206 gomp_fatal ("unknown omp_depend_t dependence type %d", 207 (int) (uintptr_t) d[1]); 208 } 209 task->depend[n].addr = d[0]; 210 task->depend[n++].is_in = 0; 211 } 212 for (i = 0; i < normal; i++) 213 { 214 task->depend[n].addr = depend[5 + i]; 215 task->depend[n++].is_in = i >= nout + nmutexinoutset; 216 } 217 for (i = normal; i < ndepend; i++) 218 { 219 void **d = (void **) (uintptr_t) depend[5 + i]; 220 if ((uintptr_t) d[1] != GOMP_DEPEND_IN) 221 continue; 222 task->depend[n].addr = d[0]; 223 task->depend[n++].is_in = 1; 224 } 225 } 226 task->depend_count = ndepend; 227 task->num_dependees = 0; 228 if (parent->depend_hash == NULL) 229 parent->depend_hash = htab_create (2 * ndepend > 12 ? 2 * ndepend : 12); 230 for (i = 0; i < ndepend; i++) 231 { 232 task->depend[i].next = NULL; 233 task->depend[i].prev = NULL; 234 task->depend[i].task = task; 235 task->depend[i].redundant = false; 236 task->depend[i].redundant_out = false; 237 238 hash_entry_type *slot = htab_find_slot (&parent->depend_hash, 239 &task->depend[i], INSERT); 240 hash_entry_type out = NULL, last = NULL; 241 if (*slot) 242 { 243 /* If multiple depends on the same task are the same, all but the 244 first one are redundant. As inout/out come first, if any of them 245 is inout/out, it will win, which is the right semantics. */ 246 if ((*slot)->task == task) 247 { 248 task->depend[i].redundant = true; 249 continue; 250 } 251 for (ent = *slot; ent; ent = ent->next) 252 { 253 if (ent->redundant_out) 254 break; 255 256 last = ent; 257 258 /* depend(in:...) doesn't depend on earlier depend(in:...). */ 259 if (task->depend[i].is_in && ent->is_in) 260 continue; 261 262 if (!ent->is_in) 263 out = ent; 264 265 struct gomp_task *tsk = ent->task; 266 if (tsk->dependers == NULL) 267 { 268 tsk->dependers 269 = gomp_malloc (sizeof (struct gomp_dependers_vec) 270 + 6 * sizeof (struct gomp_task *)); 271 tsk->dependers->n_elem = 1; 272 tsk->dependers->allocated = 6; 273 tsk->dependers->elem[0] = task; 274 task->num_dependees++; 275 continue; 276 } 277 /* We already have some other dependency on tsk from earlier 278 depend clause. */ 279 else if (tsk->dependers->n_elem 280 && (tsk->dependers->elem[tsk->dependers->n_elem - 1] 281 == task)) 282 continue; 283 else if (tsk->dependers->n_elem == tsk->dependers->allocated) 284 { 285 tsk->dependers->allocated 286 = tsk->dependers->allocated * 2 + 2; 287 tsk->dependers 288 = gomp_realloc (tsk->dependers, 289 sizeof (struct gomp_dependers_vec) 290 + (tsk->dependers->allocated 291 * sizeof (struct gomp_task *))); 292 } 293 tsk->dependers->elem[tsk->dependers->n_elem++] = task; 294 task->num_dependees++; 295 } 296 task->depend[i].next = *slot; 297 (*slot)->prev = &task->depend[i]; 298 } 299 *slot = &task->depend[i]; 300 301 /* There is no need to store more than one depend({,in}out:) task per 302 address in the hash table chain for the purpose of creation of 303 deferred tasks, because each out depends on all earlier outs, thus it 304 is enough to record just the last depend({,in}out:). For depend(in:), 305 we need to keep all of the previous ones not terminated yet, because 306 a later depend({,in}out:) might need to depend on all of them. So, if 307 the new task's clause is depend({,in}out:), we know there is at most 308 one other depend({,in}out:) clause in the list (out). For 309 non-deferred tasks we want to see all outs, so they are moved to the 310 end of the chain, after first redundant_out entry all following 311 entries should be redundant_out. */ 312 if (!task->depend[i].is_in && out) 313 { 314 if (out != last) 315 { 316 out->next->prev = out->prev; 317 out->prev->next = out->next; 318 out->next = last->next; 319 out->prev = last; 320 last->next = out; 321 if (out->next) 322 out->next->prev = out; 323 } 324 out->redundant_out = true; 325 } 326 } 327 } 328 329 /* Called when encountering an explicit task directive. If IF_CLAUSE is 330 false, then we must not delay in executing the task. If UNTIED is true, 331 then the task may be executed by any member of the team. 332 333 DEPEND is an array containing: 334 if depend[0] is non-zero, then: 335 depend[0]: number of depend elements. 336 depend[1]: number of depend elements of type "out/inout". 337 depend[2..N+1]: address of [1..N]th depend element. 338 otherwise, when depend[0] is zero, then: 339 depend[1]: number of depend elements. 340 depend[2]: number of depend elements of type "out/inout". 341 depend[3]: number of depend elements of type "mutexinoutset". 342 depend[4]: number of depend elements of type "in". 343 depend[5..4+depend[2]+depend[3]+depend[4]]: address of depend elements 344 depend[5+depend[2]+depend[3]+depend[4]..4+depend[1]]: address of 345 omp_depend_t objects. */ 346 347 void 348 GOMP_task (void (*fn) (void *), void *data, void (*cpyfn) (void *, void *), 349 long arg_size, long arg_align, bool if_clause, unsigned flags, 350 void **depend, int priority) 351 { 352 struct gomp_thread *thr = gomp_thread (); 353 struct gomp_team *team = thr->ts.team; 354 355 #ifdef HAVE_BROKEN_POSIX_SEMAPHORES 356 /* If pthread_mutex_* is used for omp_*lock*, then each task must be 357 tied to one thread all the time. This means UNTIED tasks must be 358 tied and if CPYFN is non-NULL IF(0) must be forced, as CPYFN 359 might be running on different thread than FN. */ 360 if (cpyfn) 361 if_clause = false; 362 flags &= ~GOMP_TASK_FLAG_UNTIED; 363 #endif 364 365 /* If parallel or taskgroup has been cancelled, don't start new tasks. */ 366 if (__builtin_expect (gomp_cancel_var, 0) && team) 367 { 368 if (gomp_team_barrier_cancelled (&team->barrier)) 369 return; 370 if (thr->task->taskgroup) 371 { 372 if (thr->task->taskgroup->cancelled) 373 return; 374 if (thr->task->taskgroup->workshare 375 && thr->task->taskgroup->prev 376 && thr->task->taskgroup->prev->cancelled) 377 return; 378 } 379 } 380 381 if ((flags & GOMP_TASK_FLAG_PRIORITY) == 0) 382 priority = 0; 383 else if (priority > gomp_max_task_priority_var) 384 priority = gomp_max_task_priority_var; 385 386 if (!if_clause || team == NULL 387 || (thr->task && thr->task->final_task) 388 || team->task_count > 64 * team->nthreads) 389 { 390 struct gomp_task task; 391 392 /* If there are depend clauses and earlier deferred sibling tasks 393 with depend clauses, check if there isn't a dependency. If there 394 is, we need to wait for them. There is no need to handle 395 depend clauses for non-deferred tasks other than this, because 396 the parent task is suspended until the child task finishes and thus 397 it can't start further child tasks. */ 398 if ((flags & GOMP_TASK_FLAG_DEPEND) 399 && thr->task && thr->task->depend_hash) 400 gomp_task_maybe_wait_for_dependencies (depend); 401 402 gomp_init_task (&task, thr->task, gomp_icv (false)); 403 task.kind = GOMP_TASK_UNDEFERRED; 404 task.final_task = (thr->task && thr->task->final_task) 405 || (flags & GOMP_TASK_FLAG_FINAL); 406 task.priority = priority; 407 if (thr->task) 408 { 409 task.in_tied_task = thr->task->in_tied_task; 410 task.taskgroup = thr->task->taskgroup; 411 } 412 thr->task = &task; 413 if (__builtin_expect (cpyfn != NULL, 0)) 414 { 415 char buf[arg_size + arg_align - 1]; 416 char *arg = (char *) (((uintptr_t) buf + arg_align - 1) 417 & ~(uintptr_t) (arg_align - 1)); 418 cpyfn (arg, data); 419 fn (arg); 420 } 421 else 422 fn (data); 423 /* Access to "children" is normally done inside a task_lock 424 mutex region, but the only way this particular task.children 425 can be set is if this thread's task work function (fn) 426 creates children. So since the setter is *this* thread, we 427 need no barriers here when testing for non-NULL. We can have 428 task.children set by the current thread then changed by a 429 child thread, but seeing a stale non-NULL value is not a 430 problem. Once past the task_lock acquisition, this thread 431 will see the real value of task.children. */ 432 if (!priority_queue_empty_p (&task.children_queue, MEMMODEL_RELAXED)) 433 { 434 gomp_mutex_lock (&team->task_lock); 435 gomp_clear_parent (&task.children_queue); 436 gomp_mutex_unlock (&team->task_lock); 437 } 438 gomp_end_task (); 439 } 440 else 441 { 442 struct gomp_task *task; 443 struct gomp_task *parent = thr->task; 444 struct gomp_taskgroup *taskgroup = parent->taskgroup; 445 char *arg; 446 bool do_wake; 447 size_t depend_size = 0; 448 449 if (flags & GOMP_TASK_FLAG_DEPEND) 450 depend_size = ((uintptr_t) (depend[0] ? depend[0] : depend[1]) 451 * sizeof (struct gomp_task_depend_entry)); 452 task = gomp_malloc (sizeof (*task) + depend_size 453 + arg_size + arg_align - 1); 454 arg = (char *) (((uintptr_t) (task + 1) + depend_size + arg_align - 1) 455 & ~(uintptr_t) (arg_align - 1)); 456 gomp_init_task (task, parent, gomp_icv (false)); 457 task->priority = priority; 458 task->kind = GOMP_TASK_UNDEFERRED; 459 task->in_tied_task = parent->in_tied_task; 460 task->taskgroup = taskgroup; 461 thr->task = task; 462 if (cpyfn) 463 { 464 cpyfn (arg, data); 465 task->copy_ctors_done = true; 466 } 467 else 468 memcpy (arg, data, arg_size); 469 thr->task = parent; 470 task->kind = GOMP_TASK_WAITING; 471 task->fn = fn; 472 task->fn_data = arg; 473 task->final_task = (flags & GOMP_TASK_FLAG_FINAL) >> 1; 474 gomp_mutex_lock (&team->task_lock); 475 /* If parallel or taskgroup has been cancelled, don't start new 476 tasks. */ 477 if (__builtin_expect (gomp_cancel_var, 0) 478 && !task->copy_ctors_done) 479 { 480 if (gomp_team_barrier_cancelled (&team->barrier)) 481 { 482 do_cancel: 483 gomp_mutex_unlock (&team->task_lock); 484 gomp_finish_task (task); 485 free (task); 486 return; 487 } 488 if (taskgroup) 489 { 490 if (taskgroup->cancelled) 491 goto do_cancel; 492 if (taskgroup->workshare 493 && taskgroup->prev 494 && taskgroup->prev->cancelled) 495 goto do_cancel; 496 } 497 } 498 if (taskgroup) 499 taskgroup->num_children++; 500 if (depend_size) 501 { 502 gomp_task_handle_depend (task, parent, depend); 503 if (task->num_dependees) 504 { 505 /* Tasks that depend on other tasks are not put into the 506 various waiting queues, so we are done for now. Said 507 tasks are instead put into the queues via 508 gomp_task_run_post_handle_dependers() after their 509 dependencies have been satisfied. After which, they 510 can be picked up by the various scheduling 511 points. */ 512 gomp_mutex_unlock (&team->task_lock); 513 return; 514 } 515 } 516 517 priority_queue_insert (PQ_CHILDREN, &parent->children_queue, 518 task, priority, 519 PRIORITY_INSERT_BEGIN, 520 /*adjust_parent_depends_on=*/false, 521 task->parent_depends_on); 522 if (taskgroup) 523 priority_queue_insert (PQ_TASKGROUP, &taskgroup->taskgroup_queue, 524 task, priority, 525 PRIORITY_INSERT_BEGIN, 526 /*adjust_parent_depends_on=*/false, 527 task->parent_depends_on); 528 529 priority_queue_insert (PQ_TEAM, &team->task_queue, 530 task, priority, 531 PRIORITY_INSERT_END, 532 /*adjust_parent_depends_on=*/false, 533 task->parent_depends_on); 534 535 ++team->task_count; 536 ++team->task_queued_count; 537 gomp_team_barrier_set_task_pending (&team->barrier); 538 do_wake = team->task_running_count + !parent->in_tied_task 539 < team->nthreads; 540 gomp_mutex_unlock (&team->task_lock); 541 if (do_wake) 542 gomp_team_barrier_wake (&team->barrier, 1); 543 } 544 } 545 546 ialias (GOMP_taskgroup_start) 547 ialias (GOMP_taskgroup_end) 548 ialias (GOMP_taskgroup_reduction_register) 549 550 #define TYPE long 551 #define UTYPE unsigned long 552 #define TYPE_is_long 1 553 #include "taskloop.c" 554 #undef TYPE 555 #undef UTYPE 556 #undef TYPE_is_long 557 558 #define TYPE unsigned long long 559 #define UTYPE TYPE 560 #define GOMP_taskloop GOMP_taskloop_ull 561 #include "taskloop.c" 562 #undef TYPE 563 #undef UTYPE 564 #undef GOMP_taskloop 565 566 static void inline 567 priority_queue_move_task_first (enum priority_queue_type type, 568 struct priority_queue *head, 569 struct gomp_task *task) 570 { 571 #if _LIBGOMP_CHECKING_ 572 if (!priority_queue_task_in_queue_p (type, head, task)) 573 gomp_fatal ("Attempt to move first missing task %p", task); 574 #endif 575 struct priority_list *list; 576 if (priority_queue_multi_p (head)) 577 { 578 list = priority_queue_lookup_priority (head, task->priority); 579 #if _LIBGOMP_CHECKING_ 580 if (!list) 581 gomp_fatal ("Unable to find priority %d", task->priority); 582 #endif 583 } 584 else 585 list = &head->l; 586 priority_list_remove (list, task_to_priority_node (type, task), 0); 587 priority_list_insert (type, list, task, task->priority, 588 PRIORITY_INSERT_BEGIN, type == PQ_CHILDREN, 589 task->parent_depends_on); 590 } 591 592 /* Actual body of GOMP_PLUGIN_target_task_completion that is executed 593 with team->task_lock held, or is executed in the thread that called 594 gomp_target_task_fn if GOMP_PLUGIN_target_task_completion has been 595 run before it acquires team->task_lock. */ 596 597 static void 598 gomp_target_task_completion (struct gomp_team *team, struct gomp_task *task) 599 { 600 struct gomp_task *parent = task->parent; 601 if (parent) 602 priority_queue_move_task_first (PQ_CHILDREN, &parent->children_queue, 603 task); 604 605 struct gomp_taskgroup *taskgroup = task->taskgroup; 606 if (taskgroup) 607 priority_queue_move_task_first (PQ_TASKGROUP, &taskgroup->taskgroup_queue, 608 task); 609 610 priority_queue_insert (PQ_TEAM, &team->task_queue, task, task->priority, 611 PRIORITY_INSERT_BEGIN, false, 612 task->parent_depends_on); 613 task->kind = GOMP_TASK_WAITING; 614 if (parent && parent->taskwait) 615 { 616 if (parent->taskwait->in_taskwait) 617 { 618 /* One more task has had its dependencies met. 619 Inform any waiters. */ 620 parent->taskwait->in_taskwait = false; 621 gomp_sem_post (&parent->taskwait->taskwait_sem); 622 } 623 else if (parent->taskwait->in_depend_wait) 624 { 625 /* One more task has had its dependencies met. 626 Inform any waiters. */ 627 parent->taskwait->in_depend_wait = false; 628 gomp_sem_post (&parent->taskwait->taskwait_sem); 629 } 630 } 631 if (taskgroup && taskgroup->in_taskgroup_wait) 632 { 633 /* One more task has had its dependencies met. 634 Inform any waiters. */ 635 taskgroup->in_taskgroup_wait = false; 636 gomp_sem_post (&taskgroup->taskgroup_sem); 637 } 638 639 ++team->task_queued_count; 640 gomp_team_barrier_set_task_pending (&team->barrier); 641 /* I'm afraid this can't be done after releasing team->task_lock, 642 as gomp_target_task_completion is run from unrelated thread and 643 therefore in between gomp_mutex_unlock and gomp_team_barrier_wake 644 the team could be gone already. */ 645 if (team->nthreads > team->task_running_count) 646 gomp_team_barrier_wake (&team->barrier, 1); 647 } 648 649 /* Signal that a target task TTASK has completed the asynchronously 650 running phase and should be requeued as a task to handle the 651 variable unmapping. */ 652 653 void 654 GOMP_PLUGIN_target_task_completion (void *data) 655 { 656 struct gomp_target_task *ttask = (struct gomp_target_task *) data; 657 struct gomp_task *task = ttask->task; 658 struct gomp_team *team = ttask->team; 659 660 gomp_mutex_lock (&team->task_lock); 661 if (ttask->state == GOMP_TARGET_TASK_READY_TO_RUN) 662 { 663 ttask->state = GOMP_TARGET_TASK_FINISHED; 664 gomp_mutex_unlock (&team->task_lock); 665 return; 666 } 667 ttask->state = GOMP_TARGET_TASK_FINISHED; 668 gomp_target_task_completion (team, task); 669 gomp_mutex_unlock (&team->task_lock); 670 } 671 672 static void gomp_task_run_post_handle_depend_hash (struct gomp_task *); 673 674 /* Called for nowait target tasks. */ 675 676 bool 677 gomp_create_target_task (struct gomp_device_descr *devicep, 678 void (*fn) (void *), size_t mapnum, void **hostaddrs, 679 size_t *sizes, unsigned short *kinds, 680 unsigned int flags, void **depend, void **args, 681 enum gomp_target_task_state state) 682 { 683 struct gomp_thread *thr = gomp_thread (); 684 struct gomp_team *team = thr->ts.team; 685 686 /* If parallel or taskgroup has been cancelled, don't start new tasks. */ 687 if (__builtin_expect (gomp_cancel_var, 0) && team) 688 { 689 if (gomp_team_barrier_cancelled (&team->barrier)) 690 return true; 691 if (thr->task->taskgroup) 692 { 693 if (thr->task->taskgroup->cancelled) 694 return true; 695 if (thr->task->taskgroup->workshare 696 && thr->task->taskgroup->prev 697 && thr->task->taskgroup->prev->cancelled) 698 return true; 699 } 700 } 701 702 struct gomp_target_task *ttask; 703 struct gomp_task *task; 704 struct gomp_task *parent = thr->task; 705 struct gomp_taskgroup *taskgroup = parent->taskgroup; 706 bool do_wake; 707 size_t depend_size = 0; 708 uintptr_t depend_cnt = 0; 709 size_t tgt_align = 0, tgt_size = 0; 710 711 if (depend != NULL) 712 { 713 depend_cnt = (uintptr_t) (depend[0] ? depend[0] : depend[1]); 714 depend_size = depend_cnt * sizeof (struct gomp_task_depend_entry); 715 } 716 if (fn) 717 { 718 /* GOMP_MAP_FIRSTPRIVATE need to be copied first, as they are 719 firstprivate on the target task. */ 720 size_t i; 721 for (i = 0; i < mapnum; i++) 722 if ((kinds[i] & 0xff) == GOMP_MAP_FIRSTPRIVATE) 723 { 724 size_t align = (size_t) 1 << (kinds[i] >> 8); 725 if (tgt_align < align) 726 tgt_align = align; 727 tgt_size = (tgt_size + align - 1) & ~(align - 1); 728 tgt_size += sizes[i]; 729 } 730 if (tgt_align) 731 tgt_size += tgt_align - 1; 732 else 733 tgt_size = 0; 734 } 735 736 task = gomp_malloc (sizeof (*task) + depend_size 737 + sizeof (*ttask) 738 + mapnum * (sizeof (void *) + sizeof (size_t) 739 + sizeof (unsigned short)) 740 + tgt_size); 741 gomp_init_task (task, parent, gomp_icv (false)); 742 task->priority = 0; 743 task->kind = GOMP_TASK_WAITING; 744 task->in_tied_task = parent->in_tied_task; 745 task->taskgroup = taskgroup; 746 ttask = (struct gomp_target_task *) &task->depend[depend_cnt]; 747 ttask->devicep = devicep; 748 ttask->fn = fn; 749 ttask->mapnum = mapnum; 750 ttask->args = args; 751 memcpy (ttask->hostaddrs, hostaddrs, mapnum * sizeof (void *)); 752 ttask->sizes = (size_t *) &ttask->hostaddrs[mapnum]; 753 memcpy (ttask->sizes, sizes, mapnum * sizeof (size_t)); 754 ttask->kinds = (unsigned short *) &ttask->sizes[mapnum]; 755 memcpy (ttask->kinds, kinds, mapnum * sizeof (unsigned short)); 756 if (tgt_align) 757 { 758 char *tgt = (char *) &ttask->kinds[mapnum]; 759 size_t i; 760 uintptr_t al = (uintptr_t) tgt & (tgt_align - 1); 761 if (al) 762 tgt += tgt_align - al; 763 tgt_size = 0; 764 for (i = 0; i < mapnum; i++) 765 if ((kinds[i] & 0xff) == GOMP_MAP_FIRSTPRIVATE) 766 { 767 size_t align = (size_t) 1 << (kinds[i] >> 8); 768 tgt_size = (tgt_size + align - 1) & ~(align - 1); 769 memcpy (tgt + tgt_size, hostaddrs[i], sizes[i]); 770 ttask->hostaddrs[i] = tgt + tgt_size; 771 tgt_size = tgt_size + sizes[i]; 772 } 773 } 774 ttask->flags = flags; 775 ttask->state = state; 776 ttask->task = task; 777 ttask->team = team; 778 task->fn = NULL; 779 task->fn_data = ttask; 780 task->final_task = 0; 781 gomp_mutex_lock (&team->task_lock); 782 /* If parallel or taskgroup has been cancelled, don't start new tasks. */ 783 if (__builtin_expect (gomp_cancel_var, 0)) 784 { 785 if (gomp_team_barrier_cancelled (&team->barrier)) 786 { 787 do_cancel: 788 gomp_mutex_unlock (&team->task_lock); 789 gomp_finish_task (task); 790 free (task); 791 return true; 792 } 793 if (taskgroup) 794 { 795 if (taskgroup->cancelled) 796 goto do_cancel; 797 if (taskgroup->workshare 798 && taskgroup->prev 799 && taskgroup->prev->cancelled) 800 goto do_cancel; 801 } 802 } 803 if (depend_size) 804 { 805 gomp_task_handle_depend (task, parent, depend); 806 if (task->num_dependees) 807 { 808 if (taskgroup) 809 taskgroup->num_children++; 810 gomp_mutex_unlock (&team->task_lock); 811 return true; 812 } 813 } 814 if (state == GOMP_TARGET_TASK_DATA) 815 { 816 gomp_task_run_post_handle_depend_hash (task); 817 gomp_mutex_unlock (&team->task_lock); 818 gomp_finish_task (task); 819 free (task); 820 return false; 821 } 822 if (taskgroup) 823 taskgroup->num_children++; 824 /* For async offloading, if we don't need to wait for dependencies, 825 run the gomp_target_task_fn right away, essentially schedule the 826 mapping part of the task in the current thread. */ 827 if (devicep != NULL 828 && (devicep->capabilities & GOMP_OFFLOAD_CAP_OPENMP_400)) 829 { 830 priority_queue_insert (PQ_CHILDREN, &parent->children_queue, task, 0, 831 PRIORITY_INSERT_END, 832 /*adjust_parent_depends_on=*/false, 833 task->parent_depends_on); 834 if (taskgroup) 835 priority_queue_insert (PQ_TASKGROUP, &taskgroup->taskgroup_queue, 836 task, 0, PRIORITY_INSERT_END, 837 /*adjust_parent_depends_on=*/false, 838 task->parent_depends_on); 839 task->pnode[PQ_TEAM].next = NULL; 840 task->pnode[PQ_TEAM].prev = NULL; 841 task->kind = GOMP_TASK_TIED; 842 ++team->task_count; 843 gomp_mutex_unlock (&team->task_lock); 844 845 thr->task = task; 846 gomp_target_task_fn (task->fn_data); 847 thr->task = parent; 848 849 gomp_mutex_lock (&team->task_lock); 850 task->kind = GOMP_TASK_ASYNC_RUNNING; 851 /* If GOMP_PLUGIN_target_task_completion has run already 852 in between gomp_target_task_fn and the mutex lock, 853 perform the requeuing here. */ 854 if (ttask->state == GOMP_TARGET_TASK_FINISHED) 855 gomp_target_task_completion (team, task); 856 else 857 ttask->state = GOMP_TARGET_TASK_RUNNING; 858 gomp_mutex_unlock (&team->task_lock); 859 return true; 860 } 861 priority_queue_insert (PQ_CHILDREN, &parent->children_queue, task, 0, 862 PRIORITY_INSERT_BEGIN, 863 /*adjust_parent_depends_on=*/false, 864 task->parent_depends_on); 865 if (taskgroup) 866 priority_queue_insert (PQ_TASKGROUP, &taskgroup->taskgroup_queue, task, 0, 867 PRIORITY_INSERT_BEGIN, 868 /*adjust_parent_depends_on=*/false, 869 task->parent_depends_on); 870 priority_queue_insert (PQ_TEAM, &team->task_queue, task, 0, 871 PRIORITY_INSERT_END, 872 /*adjust_parent_depends_on=*/false, 873 task->parent_depends_on); 874 ++team->task_count; 875 ++team->task_queued_count; 876 gomp_team_barrier_set_task_pending (&team->barrier); 877 do_wake = team->task_running_count + !parent->in_tied_task 878 < team->nthreads; 879 gomp_mutex_unlock (&team->task_lock); 880 if (do_wake) 881 gomp_team_barrier_wake (&team->barrier, 1); 882 return true; 883 } 884 885 /* Given a parent_depends_on task in LIST, move it to the front of its 886 priority so it is run as soon as possible. 887 888 Care is taken to update the list's LAST_PARENT_DEPENDS_ON field. 889 890 We rearrange the queue such that all parent_depends_on tasks are 891 first, and last_parent_depends_on points to the last such task we 892 rearranged. For example, given the following tasks in a queue 893 where PD[123] are the parent_depends_on tasks: 894 895 task->children 896 | 897 V 898 C1 -> C2 -> C3 -> PD1 -> PD2 -> PD3 -> C4 899 900 We rearrange such that: 901 902 task->children 903 | +--- last_parent_depends_on 904 | | 905 V V 906 PD1 -> PD2 -> PD3 -> C1 -> C2 -> C3 -> C4. */ 907 908 static void inline 909 priority_list_upgrade_task (struct priority_list *list, 910 struct priority_node *node) 911 { 912 struct priority_node *last_parent_depends_on 913 = list->last_parent_depends_on; 914 if (last_parent_depends_on) 915 { 916 node->prev->next = node->next; 917 node->next->prev = node->prev; 918 node->prev = last_parent_depends_on; 919 node->next = last_parent_depends_on->next; 920 node->prev->next = node; 921 node->next->prev = node; 922 } 923 else if (node != list->tasks) 924 { 925 node->prev->next = node->next; 926 node->next->prev = node->prev; 927 node->prev = list->tasks->prev; 928 node->next = list->tasks; 929 list->tasks = node; 930 node->prev->next = node; 931 node->next->prev = node; 932 } 933 list->last_parent_depends_on = node; 934 } 935 936 /* Given a parent_depends_on TASK in its parent's children_queue, move 937 it to the front of its priority so it is run as soon as possible. 938 939 PARENT is passed as an optimization. 940 941 (This function could be defined in priority_queue.c, but we want it 942 inlined, and putting it in priority_queue.h is not an option, given 943 that gomp_task has not been properly defined at that point). */ 944 945 static void inline 946 priority_queue_upgrade_task (struct gomp_task *task, 947 struct gomp_task *parent) 948 { 949 struct priority_queue *head = &parent->children_queue; 950 struct priority_node *node = &task->pnode[PQ_CHILDREN]; 951 #if _LIBGOMP_CHECKING_ 952 if (!task->parent_depends_on) 953 gomp_fatal ("priority_queue_upgrade_task: task must be a " 954 "parent_depends_on task"); 955 if (!priority_queue_task_in_queue_p (PQ_CHILDREN, head, task)) 956 gomp_fatal ("priority_queue_upgrade_task: cannot find task=%p", task); 957 #endif 958 if (priority_queue_multi_p (head)) 959 { 960 struct priority_list *list 961 = priority_queue_lookup_priority (head, task->priority); 962 priority_list_upgrade_task (list, node); 963 } 964 else 965 priority_list_upgrade_task (&head->l, node); 966 } 967 968 /* Given a CHILD_TASK in LIST that is about to be executed, move it out of 969 the way in LIST so that other tasks can be considered for 970 execution. LIST contains tasks of type TYPE. 971 972 Care is taken to update the queue's LAST_PARENT_DEPENDS_ON field 973 if applicable. */ 974 975 static void inline 976 priority_list_downgrade_task (enum priority_queue_type type, 977 struct priority_list *list, 978 struct gomp_task *child_task) 979 { 980 struct priority_node *node = task_to_priority_node (type, child_task); 981 if (list->tasks == node) 982 list->tasks = node->next; 983 else if (node->next != list->tasks) 984 { 985 /* The task in NODE is about to become TIED and TIED tasks 986 cannot come before WAITING tasks. If we're about to 987 leave the queue in such an indeterminate state, rewire 988 things appropriately. However, a TIED task at the end is 989 perfectly fine. */ 990 struct gomp_task *next_task = priority_node_to_task (type, node->next); 991 if (next_task->kind == GOMP_TASK_WAITING) 992 { 993 /* Remove from list. */ 994 node->prev->next = node->next; 995 node->next->prev = node->prev; 996 /* Rewire at the end. */ 997 node->next = list->tasks; 998 node->prev = list->tasks->prev; 999 list->tasks->prev->next = node; 1000 list->tasks->prev = node; 1001 } 1002 } 1003 1004 /* If the current task is the last_parent_depends_on for its 1005 priority, adjust last_parent_depends_on appropriately. */ 1006 if (__builtin_expect (child_task->parent_depends_on, 0) 1007 && list->last_parent_depends_on == node) 1008 { 1009 struct gomp_task *prev_child = priority_node_to_task (type, node->prev); 1010 if (node->prev != node 1011 && prev_child->kind == GOMP_TASK_WAITING 1012 && prev_child->parent_depends_on) 1013 list->last_parent_depends_on = node->prev; 1014 else 1015 { 1016 /* There are no more parent_depends_on entries waiting 1017 to run, clear the list. */ 1018 list->last_parent_depends_on = NULL; 1019 } 1020 } 1021 } 1022 1023 /* Given a TASK in HEAD that is about to be executed, move it out of 1024 the way so that other tasks can be considered for execution. HEAD 1025 contains tasks of type TYPE. 1026 1027 Care is taken to update the queue's LAST_PARENT_DEPENDS_ON field 1028 if applicable. 1029 1030 (This function could be defined in priority_queue.c, but we want it 1031 inlined, and putting it in priority_queue.h is not an option, given 1032 that gomp_task has not been properly defined at that point). */ 1033 1034 static void inline 1035 priority_queue_downgrade_task (enum priority_queue_type type, 1036 struct priority_queue *head, 1037 struct gomp_task *task) 1038 { 1039 #if _LIBGOMP_CHECKING_ 1040 if (!priority_queue_task_in_queue_p (type, head, task)) 1041 gomp_fatal ("Attempt to downgrade missing task %p", task); 1042 #endif 1043 if (priority_queue_multi_p (head)) 1044 { 1045 struct priority_list *list 1046 = priority_queue_lookup_priority (head, task->priority); 1047 priority_list_downgrade_task (type, list, task); 1048 } 1049 else 1050 priority_list_downgrade_task (type, &head->l, task); 1051 } 1052 1053 /* Setup CHILD_TASK to execute. This is done by setting the task to 1054 TIED, and updating all relevant queues so that CHILD_TASK is no 1055 longer chosen for scheduling. Also, remove CHILD_TASK from the 1056 overall team task queue entirely. 1057 1058 Return TRUE if task or its containing taskgroup has been 1059 cancelled. */ 1060 1061 static inline bool 1062 gomp_task_run_pre (struct gomp_task *child_task, struct gomp_task *parent, 1063 struct gomp_team *team) 1064 { 1065 #if _LIBGOMP_CHECKING_ 1066 if (child_task->parent) 1067 priority_queue_verify (PQ_CHILDREN, 1068 &child_task->parent->children_queue, true); 1069 if (child_task->taskgroup) 1070 priority_queue_verify (PQ_TASKGROUP, 1071 &child_task->taskgroup->taskgroup_queue, false); 1072 priority_queue_verify (PQ_TEAM, &team->task_queue, false); 1073 #endif 1074 1075 /* Task is about to go tied, move it out of the way. */ 1076 if (parent) 1077 priority_queue_downgrade_task (PQ_CHILDREN, &parent->children_queue, 1078 child_task); 1079 1080 /* Task is about to go tied, move it out of the way. */ 1081 struct gomp_taskgroup *taskgroup = child_task->taskgroup; 1082 if (taskgroup) 1083 priority_queue_downgrade_task (PQ_TASKGROUP, &taskgroup->taskgroup_queue, 1084 child_task); 1085 1086 priority_queue_remove (PQ_TEAM, &team->task_queue, child_task, 1087 MEMMODEL_RELAXED); 1088 child_task->pnode[PQ_TEAM].next = NULL; 1089 child_task->pnode[PQ_TEAM].prev = NULL; 1090 child_task->kind = GOMP_TASK_TIED; 1091 1092 if (--team->task_queued_count == 0) 1093 gomp_team_barrier_clear_task_pending (&team->barrier); 1094 if (__builtin_expect (gomp_cancel_var, 0) 1095 && !child_task->copy_ctors_done) 1096 { 1097 if (gomp_team_barrier_cancelled (&team->barrier)) 1098 return true; 1099 if (taskgroup) 1100 { 1101 if (taskgroup->cancelled) 1102 return true; 1103 if (taskgroup->workshare 1104 && taskgroup->prev 1105 && taskgroup->prev->cancelled) 1106 return true; 1107 } 1108 } 1109 return false; 1110 } 1111 1112 static void 1113 gomp_task_run_post_handle_depend_hash (struct gomp_task *child_task) 1114 { 1115 struct gomp_task *parent = child_task->parent; 1116 size_t i; 1117 1118 for (i = 0; i < child_task->depend_count; i++) 1119 if (!child_task->depend[i].redundant) 1120 { 1121 if (child_task->depend[i].next) 1122 child_task->depend[i].next->prev = child_task->depend[i].prev; 1123 if (child_task->depend[i].prev) 1124 child_task->depend[i].prev->next = child_task->depend[i].next; 1125 else 1126 { 1127 hash_entry_type *slot 1128 = htab_find_slot (&parent->depend_hash, &child_task->depend[i], 1129 NO_INSERT); 1130 if (*slot != &child_task->depend[i]) 1131 abort (); 1132 if (child_task->depend[i].next) 1133 *slot = child_task->depend[i].next; 1134 else 1135 htab_clear_slot (parent->depend_hash, slot); 1136 } 1137 } 1138 } 1139 1140 /* After a CHILD_TASK has been run, adjust the dependency queue for 1141 each task that depends on CHILD_TASK, to record the fact that there 1142 is one less dependency to worry about. If a task that depended on 1143 CHILD_TASK now has no dependencies, place it in the various queues 1144 so it gets scheduled to run. 1145 1146 TEAM is the team to which CHILD_TASK belongs to. */ 1147 1148 static size_t 1149 gomp_task_run_post_handle_dependers (struct gomp_task *child_task, 1150 struct gomp_team *team) 1151 { 1152 struct gomp_task *parent = child_task->parent; 1153 size_t i, count = child_task->dependers->n_elem, ret = 0; 1154 for (i = 0; i < count; i++) 1155 { 1156 struct gomp_task *task = child_task->dependers->elem[i]; 1157 1158 /* CHILD_TASK satisfies a dependency for TASK. Keep track of 1159 TASK's remaining dependencies. Once TASK has no other 1160 depenencies, put it into the various queues so it will get 1161 scheduled for execution. */ 1162 if (--task->num_dependees != 0) 1163 continue; 1164 1165 struct gomp_taskgroup *taskgroup = task->taskgroup; 1166 if (parent) 1167 { 1168 priority_queue_insert (PQ_CHILDREN, &parent->children_queue, 1169 task, task->priority, 1170 PRIORITY_INSERT_BEGIN, 1171 /*adjust_parent_depends_on=*/true, 1172 task->parent_depends_on); 1173 if (parent->taskwait) 1174 { 1175 if (parent->taskwait->in_taskwait) 1176 { 1177 /* One more task has had its dependencies met. 1178 Inform any waiters. */ 1179 parent->taskwait->in_taskwait = false; 1180 gomp_sem_post (&parent->taskwait->taskwait_sem); 1181 } 1182 else if (parent->taskwait->in_depend_wait) 1183 { 1184 /* One more task has had its dependencies met. 1185 Inform any waiters. */ 1186 parent->taskwait->in_depend_wait = false; 1187 gomp_sem_post (&parent->taskwait->taskwait_sem); 1188 } 1189 } 1190 } 1191 if (taskgroup) 1192 { 1193 priority_queue_insert (PQ_TASKGROUP, &taskgroup->taskgroup_queue, 1194 task, task->priority, 1195 PRIORITY_INSERT_BEGIN, 1196 /*adjust_parent_depends_on=*/false, 1197 task->parent_depends_on); 1198 if (taskgroup->in_taskgroup_wait) 1199 { 1200 /* One more task has had its dependencies met. 1201 Inform any waiters. */ 1202 taskgroup->in_taskgroup_wait = false; 1203 gomp_sem_post (&taskgroup->taskgroup_sem); 1204 } 1205 } 1206 priority_queue_insert (PQ_TEAM, &team->task_queue, 1207 task, task->priority, 1208 PRIORITY_INSERT_END, 1209 /*adjust_parent_depends_on=*/false, 1210 task->parent_depends_on); 1211 ++team->task_count; 1212 ++team->task_queued_count; 1213 ++ret; 1214 } 1215 free (child_task->dependers); 1216 child_task->dependers = NULL; 1217 if (ret > 1) 1218 gomp_team_barrier_set_task_pending (&team->barrier); 1219 return ret; 1220 } 1221 1222 static inline size_t 1223 gomp_task_run_post_handle_depend (struct gomp_task *child_task, 1224 struct gomp_team *team) 1225 { 1226 if (child_task->depend_count == 0) 1227 return 0; 1228 1229 /* If parent is gone already, the hash table is freed and nothing 1230 will use the hash table anymore, no need to remove anything from it. */ 1231 if (child_task->parent != NULL) 1232 gomp_task_run_post_handle_depend_hash (child_task); 1233 1234 if (child_task->dependers == NULL) 1235 return 0; 1236 1237 return gomp_task_run_post_handle_dependers (child_task, team); 1238 } 1239 1240 /* Remove CHILD_TASK from its parent. */ 1241 1242 static inline void 1243 gomp_task_run_post_remove_parent (struct gomp_task *child_task) 1244 { 1245 struct gomp_task *parent = child_task->parent; 1246 if (parent == NULL) 1247 return; 1248 1249 /* If this was the last task the parent was depending on, 1250 synchronize with gomp_task_maybe_wait_for_dependencies so it can 1251 clean up and return. */ 1252 if (__builtin_expect (child_task->parent_depends_on, 0) 1253 && --parent->taskwait->n_depend == 0 1254 && parent->taskwait->in_depend_wait) 1255 { 1256 parent->taskwait->in_depend_wait = false; 1257 gomp_sem_post (&parent->taskwait->taskwait_sem); 1258 } 1259 1260 if (priority_queue_remove (PQ_CHILDREN, &parent->children_queue, 1261 child_task, MEMMODEL_RELEASE) 1262 && parent->taskwait && parent->taskwait->in_taskwait) 1263 { 1264 parent->taskwait->in_taskwait = false; 1265 gomp_sem_post (&parent->taskwait->taskwait_sem); 1266 } 1267 child_task->pnode[PQ_CHILDREN].next = NULL; 1268 child_task->pnode[PQ_CHILDREN].prev = NULL; 1269 } 1270 1271 /* Remove CHILD_TASK from its taskgroup. */ 1272 1273 static inline void 1274 gomp_task_run_post_remove_taskgroup (struct gomp_task *child_task) 1275 { 1276 struct gomp_taskgroup *taskgroup = child_task->taskgroup; 1277 if (taskgroup == NULL) 1278 return; 1279 bool empty = priority_queue_remove (PQ_TASKGROUP, 1280 &taskgroup->taskgroup_queue, 1281 child_task, MEMMODEL_RELAXED); 1282 child_task->pnode[PQ_TASKGROUP].next = NULL; 1283 child_task->pnode[PQ_TASKGROUP].prev = NULL; 1284 if (taskgroup->num_children > 1) 1285 --taskgroup->num_children; 1286 else 1287 { 1288 /* We access taskgroup->num_children in GOMP_taskgroup_end 1289 outside of the task lock mutex region, so 1290 need a release barrier here to ensure memory 1291 written by child_task->fn above is flushed 1292 before the NULL is written. */ 1293 __atomic_store_n (&taskgroup->num_children, 0, MEMMODEL_RELEASE); 1294 } 1295 if (empty && taskgroup->in_taskgroup_wait) 1296 { 1297 taskgroup->in_taskgroup_wait = false; 1298 gomp_sem_post (&taskgroup->taskgroup_sem); 1299 } 1300 } 1301 1302 void 1303 gomp_barrier_handle_tasks (gomp_barrier_state_t state) 1304 { 1305 struct gomp_thread *thr = gomp_thread (); 1306 struct gomp_team *team = thr->ts.team; 1307 struct gomp_task *task = thr->task; 1308 struct gomp_task *child_task = NULL; 1309 struct gomp_task *to_free = NULL; 1310 int do_wake = 0; 1311 1312 gomp_mutex_lock (&team->task_lock); 1313 if (gomp_barrier_last_thread (state)) 1314 { 1315 if (team->task_count == 0) 1316 { 1317 gomp_team_barrier_done (&team->barrier, state); 1318 gomp_mutex_unlock (&team->task_lock); 1319 gomp_team_barrier_wake (&team->barrier, 0); 1320 return; 1321 } 1322 gomp_team_barrier_set_waiting_for_tasks (&team->barrier); 1323 } 1324 1325 while (1) 1326 { 1327 bool cancelled = false; 1328 if (!priority_queue_empty_p (&team->task_queue, MEMMODEL_RELAXED)) 1329 { 1330 bool ignored; 1331 child_task 1332 = priority_queue_next_task (PQ_TEAM, &team->task_queue, 1333 PQ_IGNORED, NULL, 1334 &ignored); 1335 cancelled = gomp_task_run_pre (child_task, child_task->parent, 1336 team); 1337 if (__builtin_expect (cancelled, 0)) 1338 { 1339 if (to_free) 1340 { 1341 gomp_finish_task (to_free); 1342 free (to_free); 1343 to_free = NULL; 1344 } 1345 goto finish_cancelled; 1346 } 1347 team->task_running_count++; 1348 child_task->in_tied_task = true; 1349 } 1350 gomp_mutex_unlock (&team->task_lock); 1351 if (do_wake) 1352 { 1353 gomp_team_barrier_wake (&team->barrier, do_wake); 1354 do_wake = 0; 1355 } 1356 if (to_free) 1357 { 1358 gomp_finish_task (to_free); 1359 free (to_free); 1360 to_free = NULL; 1361 } 1362 if (child_task) 1363 { 1364 thr->task = child_task; 1365 if (__builtin_expect (child_task->fn == NULL, 0)) 1366 { 1367 if (gomp_target_task_fn (child_task->fn_data)) 1368 { 1369 thr->task = task; 1370 gomp_mutex_lock (&team->task_lock); 1371 child_task->kind = GOMP_TASK_ASYNC_RUNNING; 1372 team->task_running_count--; 1373 struct gomp_target_task *ttask 1374 = (struct gomp_target_task *) child_task->fn_data; 1375 /* If GOMP_PLUGIN_target_task_completion has run already 1376 in between gomp_target_task_fn and the mutex lock, 1377 perform the requeuing here. */ 1378 if (ttask->state == GOMP_TARGET_TASK_FINISHED) 1379 gomp_target_task_completion (team, child_task); 1380 else 1381 ttask->state = GOMP_TARGET_TASK_RUNNING; 1382 child_task = NULL; 1383 continue; 1384 } 1385 } 1386 else 1387 child_task->fn (child_task->fn_data); 1388 thr->task = task; 1389 } 1390 else 1391 return; 1392 gomp_mutex_lock (&team->task_lock); 1393 if (child_task) 1394 { 1395 finish_cancelled:; 1396 size_t new_tasks 1397 = gomp_task_run_post_handle_depend (child_task, team); 1398 gomp_task_run_post_remove_parent (child_task); 1399 gomp_clear_parent (&child_task->children_queue); 1400 gomp_task_run_post_remove_taskgroup (child_task); 1401 to_free = child_task; 1402 child_task = NULL; 1403 if (!cancelled) 1404 team->task_running_count--; 1405 if (new_tasks > 1) 1406 { 1407 do_wake = team->nthreads - team->task_running_count; 1408 if (do_wake > new_tasks) 1409 do_wake = new_tasks; 1410 } 1411 if (--team->task_count == 0 1412 && gomp_team_barrier_waiting_for_tasks (&team->barrier)) 1413 { 1414 gomp_team_barrier_done (&team->barrier, state); 1415 gomp_mutex_unlock (&team->task_lock); 1416 gomp_team_barrier_wake (&team->barrier, 0); 1417 gomp_mutex_lock (&team->task_lock); 1418 } 1419 } 1420 } 1421 } 1422 1423 /* Called when encountering a taskwait directive. 1424 1425 Wait for all children of the current task. */ 1426 1427 void 1428 GOMP_taskwait (void) 1429 { 1430 struct gomp_thread *thr = gomp_thread (); 1431 struct gomp_team *team = thr->ts.team; 1432 struct gomp_task *task = thr->task; 1433 struct gomp_task *child_task = NULL; 1434 struct gomp_task *to_free = NULL; 1435 struct gomp_taskwait taskwait; 1436 int do_wake = 0; 1437 1438 /* The acquire barrier on load of task->children here synchronizes 1439 with the write of a NULL in gomp_task_run_post_remove_parent. It is 1440 not necessary that we synchronize with other non-NULL writes at 1441 this point, but we must ensure that all writes to memory by a 1442 child thread task work function are seen before we exit from 1443 GOMP_taskwait. */ 1444 if (task == NULL 1445 || priority_queue_empty_p (&task->children_queue, MEMMODEL_ACQUIRE)) 1446 return; 1447 1448 memset (&taskwait, 0, sizeof (taskwait)); 1449 bool child_q = false; 1450 gomp_mutex_lock (&team->task_lock); 1451 while (1) 1452 { 1453 bool cancelled = false; 1454 if (priority_queue_empty_p (&task->children_queue, MEMMODEL_RELAXED)) 1455 { 1456 bool destroy_taskwait = task->taskwait != NULL; 1457 task->taskwait = NULL; 1458 gomp_mutex_unlock (&team->task_lock); 1459 if (to_free) 1460 { 1461 gomp_finish_task (to_free); 1462 free (to_free); 1463 } 1464 if (destroy_taskwait) 1465 gomp_sem_destroy (&taskwait.taskwait_sem); 1466 return; 1467 } 1468 struct gomp_task *next_task 1469 = priority_queue_next_task (PQ_CHILDREN, &task->children_queue, 1470 PQ_TEAM, &team->task_queue, &child_q); 1471 if (next_task->kind == GOMP_TASK_WAITING) 1472 { 1473 child_task = next_task; 1474 cancelled 1475 = gomp_task_run_pre (child_task, task, team); 1476 if (__builtin_expect (cancelled, 0)) 1477 { 1478 if (to_free) 1479 { 1480 gomp_finish_task (to_free); 1481 free (to_free); 1482 to_free = NULL; 1483 } 1484 goto finish_cancelled; 1485 } 1486 } 1487 else 1488 { 1489 /* All tasks we are waiting for are either running in other 1490 threads, or they are tasks that have not had their 1491 dependencies met (so they're not even in the queue). Wait 1492 for them. */ 1493 if (task->taskwait == NULL) 1494 { 1495 taskwait.in_depend_wait = false; 1496 gomp_sem_init (&taskwait.taskwait_sem, 0); 1497 task->taskwait = &taskwait; 1498 } 1499 taskwait.in_taskwait = true; 1500 } 1501 gomp_mutex_unlock (&team->task_lock); 1502 if (do_wake) 1503 { 1504 gomp_team_barrier_wake (&team->barrier, do_wake); 1505 do_wake = 0; 1506 } 1507 if (to_free) 1508 { 1509 gomp_finish_task (to_free); 1510 free (to_free); 1511 to_free = NULL; 1512 } 1513 if (child_task) 1514 { 1515 thr->task = child_task; 1516 if (__builtin_expect (child_task->fn == NULL, 0)) 1517 { 1518 if (gomp_target_task_fn (child_task->fn_data)) 1519 { 1520 thr->task = task; 1521 gomp_mutex_lock (&team->task_lock); 1522 child_task->kind = GOMP_TASK_ASYNC_RUNNING; 1523 struct gomp_target_task *ttask 1524 = (struct gomp_target_task *) child_task->fn_data; 1525 /* If GOMP_PLUGIN_target_task_completion has run already 1526 in between gomp_target_task_fn and the mutex lock, 1527 perform the requeuing here. */ 1528 if (ttask->state == GOMP_TARGET_TASK_FINISHED) 1529 gomp_target_task_completion (team, child_task); 1530 else 1531 ttask->state = GOMP_TARGET_TASK_RUNNING; 1532 child_task = NULL; 1533 continue; 1534 } 1535 } 1536 else 1537 child_task->fn (child_task->fn_data); 1538 thr->task = task; 1539 } 1540 else 1541 gomp_sem_wait (&taskwait.taskwait_sem); 1542 gomp_mutex_lock (&team->task_lock); 1543 if (child_task) 1544 { 1545 finish_cancelled:; 1546 size_t new_tasks 1547 = gomp_task_run_post_handle_depend (child_task, team); 1548 1549 if (child_q) 1550 { 1551 priority_queue_remove (PQ_CHILDREN, &task->children_queue, 1552 child_task, MEMMODEL_RELAXED); 1553 child_task->pnode[PQ_CHILDREN].next = NULL; 1554 child_task->pnode[PQ_CHILDREN].prev = NULL; 1555 } 1556 1557 gomp_clear_parent (&child_task->children_queue); 1558 1559 gomp_task_run_post_remove_taskgroup (child_task); 1560 1561 to_free = child_task; 1562 child_task = NULL; 1563 team->task_count--; 1564 if (new_tasks > 1) 1565 { 1566 do_wake = team->nthreads - team->task_running_count 1567 - !task->in_tied_task; 1568 if (do_wake > new_tasks) 1569 do_wake = new_tasks; 1570 } 1571 } 1572 } 1573 } 1574 1575 /* Called when encountering a taskwait directive with depend clause(s). 1576 Wait as if it was an mergeable included task construct with empty body. */ 1577 1578 void 1579 GOMP_taskwait_depend (void **depend) 1580 { 1581 struct gomp_thread *thr = gomp_thread (); 1582 struct gomp_team *team = thr->ts.team; 1583 1584 /* If parallel or taskgroup has been cancelled, return early. */ 1585 if (__builtin_expect (gomp_cancel_var, 0) && team) 1586 { 1587 if (gomp_team_barrier_cancelled (&team->barrier)) 1588 return; 1589 if (thr->task->taskgroup) 1590 { 1591 if (thr->task->taskgroup->cancelled) 1592 return; 1593 if (thr->task->taskgroup->workshare 1594 && thr->task->taskgroup->prev 1595 && thr->task->taskgroup->prev->cancelled) 1596 return; 1597 } 1598 } 1599 1600 if (thr->task && thr->task->depend_hash) 1601 gomp_task_maybe_wait_for_dependencies (depend); 1602 } 1603 1604 /* An undeferred task is about to run. Wait for all tasks that this 1605 undeferred task depends on. 1606 1607 This is done by first putting all known ready dependencies 1608 (dependencies that have their own dependencies met) at the top of 1609 the scheduling queues. Then we iterate through these imminently 1610 ready tasks (and possibly other high priority tasks), and run them. 1611 If we run out of ready dependencies to execute, we either wait for 1612 the remaining dependencies to finish, or wait for them to get 1613 scheduled so we can run them. 1614 1615 DEPEND is as in GOMP_task. */ 1616 1617 void 1618 gomp_task_maybe_wait_for_dependencies (void **depend) 1619 { 1620 struct gomp_thread *thr = gomp_thread (); 1621 struct gomp_task *task = thr->task; 1622 struct gomp_team *team = thr->ts.team; 1623 struct gomp_task_depend_entry elem, *ent = NULL; 1624 struct gomp_taskwait taskwait; 1625 size_t orig_ndepend = (uintptr_t) depend[0]; 1626 size_t nout = (uintptr_t) depend[1]; 1627 size_t ndepend = orig_ndepend; 1628 size_t normal = ndepend; 1629 size_t n = 2; 1630 size_t i; 1631 size_t num_awaited = 0; 1632 struct gomp_task *child_task = NULL; 1633 struct gomp_task *to_free = NULL; 1634 int do_wake = 0; 1635 1636 if (ndepend == 0) 1637 { 1638 ndepend = nout; 1639 nout = (uintptr_t) depend[2] + (uintptr_t) depend[3]; 1640 normal = nout + (uintptr_t) depend[4]; 1641 n = 5; 1642 } 1643 gomp_mutex_lock (&team->task_lock); 1644 for (i = 0; i < ndepend; i++) 1645 { 1646 elem.addr = depend[i + n]; 1647 elem.is_in = i >= nout; 1648 if (__builtin_expect (i >= normal, 0)) 1649 { 1650 void **d = (void **) elem.addr; 1651 switch ((uintptr_t) d[1]) 1652 { 1653 case GOMP_DEPEND_IN: 1654 break; 1655 case GOMP_DEPEND_OUT: 1656 case GOMP_DEPEND_INOUT: 1657 case GOMP_DEPEND_MUTEXINOUTSET: 1658 elem.is_in = 0; 1659 break; 1660 default: 1661 gomp_fatal ("unknown omp_depend_t dependence type %d", 1662 (int) (uintptr_t) d[1]); 1663 } 1664 elem.addr = d[0]; 1665 } 1666 ent = htab_find (task->depend_hash, &elem); 1667 for (; ent; ent = ent->next) 1668 if (elem.is_in && ent->is_in) 1669 continue; 1670 else 1671 { 1672 struct gomp_task *tsk = ent->task; 1673 if (!tsk->parent_depends_on) 1674 { 1675 tsk->parent_depends_on = true; 1676 ++num_awaited; 1677 /* If depenency TSK itself has no dependencies and is 1678 ready to run, move it up front so that we run it as 1679 soon as possible. */ 1680 if (tsk->num_dependees == 0 && tsk->kind == GOMP_TASK_WAITING) 1681 priority_queue_upgrade_task (tsk, task); 1682 } 1683 } 1684 } 1685 if (num_awaited == 0) 1686 { 1687 gomp_mutex_unlock (&team->task_lock); 1688 return; 1689 } 1690 1691 memset (&taskwait, 0, sizeof (taskwait)); 1692 taskwait.n_depend = num_awaited; 1693 gomp_sem_init (&taskwait.taskwait_sem, 0); 1694 task->taskwait = &taskwait; 1695 1696 while (1) 1697 { 1698 bool cancelled = false; 1699 if (taskwait.n_depend == 0) 1700 { 1701 task->taskwait = NULL; 1702 gomp_mutex_unlock (&team->task_lock); 1703 if (to_free) 1704 { 1705 gomp_finish_task (to_free); 1706 free (to_free); 1707 } 1708 gomp_sem_destroy (&taskwait.taskwait_sem); 1709 return; 1710 } 1711 1712 /* Theoretically when we have multiple priorities, we should 1713 chose between the highest priority item in 1714 task->children_queue and team->task_queue here, so we should 1715 use priority_queue_next_task(). However, since we are 1716 running an undeferred task, perhaps that makes all tasks it 1717 depends on undeferred, thus a priority of INF? This would 1718 make it unnecessary to take anything into account here, 1719 but the dependencies. 1720 1721 On the other hand, if we want to use priority_queue_next_task(), 1722 care should be taken to only use priority_queue_remove() 1723 below if the task was actually removed from the children 1724 queue. */ 1725 bool ignored; 1726 struct gomp_task *next_task 1727 = priority_queue_next_task (PQ_CHILDREN, &task->children_queue, 1728 PQ_IGNORED, NULL, &ignored); 1729 1730 if (next_task->kind == GOMP_TASK_WAITING) 1731 { 1732 child_task = next_task; 1733 cancelled 1734 = gomp_task_run_pre (child_task, task, team); 1735 if (__builtin_expect (cancelled, 0)) 1736 { 1737 if (to_free) 1738 { 1739 gomp_finish_task (to_free); 1740 free (to_free); 1741 to_free = NULL; 1742 } 1743 goto finish_cancelled; 1744 } 1745 } 1746 else 1747 /* All tasks we are waiting for are either running in other 1748 threads, or they are tasks that have not had their 1749 dependencies met (so they're not even in the queue). Wait 1750 for them. */ 1751 taskwait.in_depend_wait = true; 1752 gomp_mutex_unlock (&team->task_lock); 1753 if (do_wake) 1754 { 1755 gomp_team_barrier_wake (&team->barrier, do_wake); 1756 do_wake = 0; 1757 } 1758 if (to_free) 1759 { 1760 gomp_finish_task (to_free); 1761 free (to_free); 1762 to_free = NULL; 1763 } 1764 if (child_task) 1765 { 1766 thr->task = child_task; 1767 if (__builtin_expect (child_task->fn == NULL, 0)) 1768 { 1769 if (gomp_target_task_fn (child_task->fn_data)) 1770 { 1771 thr->task = task; 1772 gomp_mutex_lock (&team->task_lock); 1773 child_task->kind = GOMP_TASK_ASYNC_RUNNING; 1774 struct gomp_target_task *ttask 1775 = (struct gomp_target_task *) child_task->fn_data; 1776 /* If GOMP_PLUGIN_target_task_completion has run already 1777 in between gomp_target_task_fn and the mutex lock, 1778 perform the requeuing here. */ 1779 if (ttask->state == GOMP_TARGET_TASK_FINISHED) 1780 gomp_target_task_completion (team, child_task); 1781 else 1782 ttask->state = GOMP_TARGET_TASK_RUNNING; 1783 child_task = NULL; 1784 continue; 1785 } 1786 } 1787 else 1788 child_task->fn (child_task->fn_data); 1789 thr->task = task; 1790 } 1791 else 1792 gomp_sem_wait (&taskwait.taskwait_sem); 1793 gomp_mutex_lock (&team->task_lock); 1794 if (child_task) 1795 { 1796 finish_cancelled:; 1797 size_t new_tasks 1798 = gomp_task_run_post_handle_depend (child_task, team); 1799 if (child_task->parent_depends_on) 1800 --taskwait.n_depend; 1801 1802 priority_queue_remove (PQ_CHILDREN, &task->children_queue, 1803 child_task, MEMMODEL_RELAXED); 1804 child_task->pnode[PQ_CHILDREN].next = NULL; 1805 child_task->pnode[PQ_CHILDREN].prev = NULL; 1806 1807 gomp_clear_parent (&child_task->children_queue); 1808 gomp_task_run_post_remove_taskgroup (child_task); 1809 to_free = child_task; 1810 child_task = NULL; 1811 team->task_count--; 1812 if (new_tasks > 1) 1813 { 1814 do_wake = team->nthreads - team->task_running_count 1815 - !task->in_tied_task; 1816 if (do_wake > new_tasks) 1817 do_wake = new_tasks; 1818 } 1819 } 1820 } 1821 } 1822 1823 /* Called when encountering a taskyield directive. */ 1824 1825 void 1826 GOMP_taskyield (void) 1827 { 1828 /* Nothing at the moment. */ 1829 } 1830 1831 static inline struct gomp_taskgroup * 1832 gomp_taskgroup_init (struct gomp_taskgroup *prev) 1833 { 1834 struct gomp_taskgroup *taskgroup 1835 = gomp_malloc (sizeof (struct gomp_taskgroup)); 1836 taskgroup->prev = prev; 1837 priority_queue_init (&taskgroup->taskgroup_queue); 1838 taskgroup->reductions = prev ? prev->reductions : NULL; 1839 taskgroup->in_taskgroup_wait = false; 1840 taskgroup->cancelled = false; 1841 taskgroup->workshare = false; 1842 taskgroup->num_children = 0; 1843 gomp_sem_init (&taskgroup->taskgroup_sem, 0); 1844 return taskgroup; 1845 } 1846 1847 void 1848 GOMP_taskgroup_start (void) 1849 { 1850 struct gomp_thread *thr = gomp_thread (); 1851 struct gomp_team *team = thr->ts.team; 1852 struct gomp_task *task = thr->task; 1853 1854 /* If team is NULL, all tasks are executed as 1855 GOMP_TASK_UNDEFERRED tasks and thus all children tasks of 1856 taskgroup and their descendant tasks will be finished 1857 by the time GOMP_taskgroup_end is called. */ 1858 if (team == NULL) 1859 return; 1860 task->taskgroup = gomp_taskgroup_init (task->taskgroup); 1861 } 1862 1863 void 1864 GOMP_taskgroup_end (void) 1865 { 1866 struct gomp_thread *thr = gomp_thread (); 1867 struct gomp_team *team = thr->ts.team; 1868 struct gomp_task *task = thr->task; 1869 struct gomp_taskgroup *taskgroup; 1870 struct gomp_task *child_task = NULL; 1871 struct gomp_task *to_free = NULL; 1872 int do_wake = 0; 1873 1874 if (team == NULL) 1875 return; 1876 taskgroup = task->taskgroup; 1877 if (__builtin_expect (taskgroup == NULL, 0) 1878 && thr->ts.level == 0) 1879 { 1880 /* This can happen if GOMP_taskgroup_start is called when 1881 thr->ts.team == NULL, but inside of the taskgroup there 1882 is #pragma omp target nowait that creates an implicit 1883 team with a single thread. In this case, we want to wait 1884 for all outstanding tasks in this team. */ 1885 gomp_team_barrier_wait (&team->barrier); 1886 return; 1887 } 1888 1889 /* The acquire barrier on load of taskgroup->num_children here 1890 synchronizes with the write of 0 in gomp_task_run_post_remove_taskgroup. 1891 It is not necessary that we synchronize with other non-0 writes at 1892 this point, but we must ensure that all writes to memory by a 1893 child thread task work function are seen before we exit from 1894 GOMP_taskgroup_end. */ 1895 if (__atomic_load_n (&taskgroup->num_children, MEMMODEL_ACQUIRE) == 0) 1896 goto finish; 1897 1898 bool unused; 1899 gomp_mutex_lock (&team->task_lock); 1900 while (1) 1901 { 1902 bool cancelled = false; 1903 if (priority_queue_empty_p (&taskgroup->taskgroup_queue, 1904 MEMMODEL_RELAXED)) 1905 { 1906 if (taskgroup->num_children) 1907 { 1908 if (priority_queue_empty_p (&task->children_queue, 1909 MEMMODEL_RELAXED)) 1910 goto do_wait; 1911 child_task 1912 = priority_queue_next_task (PQ_CHILDREN, &task->children_queue, 1913 PQ_TEAM, &team->task_queue, 1914 &unused); 1915 } 1916 else 1917 { 1918 gomp_mutex_unlock (&team->task_lock); 1919 if (to_free) 1920 { 1921 gomp_finish_task (to_free); 1922 free (to_free); 1923 } 1924 goto finish; 1925 } 1926 } 1927 else 1928 child_task 1929 = priority_queue_next_task (PQ_TASKGROUP, &taskgroup->taskgroup_queue, 1930 PQ_TEAM, &team->task_queue, &unused); 1931 if (child_task->kind == GOMP_TASK_WAITING) 1932 { 1933 cancelled 1934 = gomp_task_run_pre (child_task, child_task->parent, team); 1935 if (__builtin_expect (cancelled, 0)) 1936 { 1937 if (to_free) 1938 { 1939 gomp_finish_task (to_free); 1940 free (to_free); 1941 to_free = NULL; 1942 } 1943 goto finish_cancelled; 1944 } 1945 } 1946 else 1947 { 1948 child_task = NULL; 1949 do_wait: 1950 /* All tasks we are waiting for are either running in other 1951 threads, or they are tasks that have not had their 1952 dependencies met (so they're not even in the queue). Wait 1953 for them. */ 1954 taskgroup->in_taskgroup_wait = true; 1955 } 1956 gomp_mutex_unlock (&team->task_lock); 1957 if (do_wake) 1958 { 1959 gomp_team_barrier_wake (&team->barrier, do_wake); 1960 do_wake = 0; 1961 } 1962 if (to_free) 1963 { 1964 gomp_finish_task (to_free); 1965 free (to_free); 1966 to_free = NULL; 1967 } 1968 if (child_task) 1969 { 1970 thr->task = child_task; 1971 if (__builtin_expect (child_task->fn == NULL, 0)) 1972 { 1973 if (gomp_target_task_fn (child_task->fn_data)) 1974 { 1975 thr->task = task; 1976 gomp_mutex_lock (&team->task_lock); 1977 child_task->kind = GOMP_TASK_ASYNC_RUNNING; 1978 struct gomp_target_task *ttask 1979 = (struct gomp_target_task *) child_task->fn_data; 1980 /* If GOMP_PLUGIN_target_task_completion has run already 1981 in between gomp_target_task_fn and the mutex lock, 1982 perform the requeuing here. */ 1983 if (ttask->state == GOMP_TARGET_TASK_FINISHED) 1984 gomp_target_task_completion (team, child_task); 1985 else 1986 ttask->state = GOMP_TARGET_TASK_RUNNING; 1987 child_task = NULL; 1988 continue; 1989 } 1990 } 1991 else 1992 child_task->fn (child_task->fn_data); 1993 thr->task = task; 1994 } 1995 else 1996 gomp_sem_wait (&taskgroup->taskgroup_sem); 1997 gomp_mutex_lock (&team->task_lock); 1998 if (child_task) 1999 { 2000 finish_cancelled:; 2001 size_t new_tasks 2002 = gomp_task_run_post_handle_depend (child_task, team); 2003 gomp_task_run_post_remove_parent (child_task); 2004 gomp_clear_parent (&child_task->children_queue); 2005 gomp_task_run_post_remove_taskgroup (child_task); 2006 to_free = child_task; 2007 child_task = NULL; 2008 team->task_count--; 2009 if (new_tasks > 1) 2010 { 2011 do_wake = team->nthreads - team->task_running_count 2012 - !task->in_tied_task; 2013 if (do_wake > new_tasks) 2014 do_wake = new_tasks; 2015 } 2016 } 2017 } 2018 2019 finish: 2020 task->taskgroup = taskgroup->prev; 2021 gomp_sem_destroy (&taskgroup->taskgroup_sem); 2022 free (taskgroup); 2023 } 2024 2025 static inline __attribute__((always_inline)) void 2026 gomp_reduction_register (uintptr_t *data, uintptr_t *old, uintptr_t *orig, 2027 unsigned nthreads) 2028 { 2029 size_t total_cnt = 0; 2030 uintptr_t *d = data; 2031 struct htab *old_htab = NULL, *new_htab; 2032 do 2033 { 2034 if (__builtin_expect (orig != NULL, 0)) 2035 { 2036 /* For worksharing task reductions, memory has been allocated 2037 already by some other thread that encountered the construct 2038 earlier. */ 2039 d[2] = orig[2]; 2040 d[6] = orig[6]; 2041 orig = (uintptr_t *) orig[4]; 2042 } 2043 else 2044 { 2045 size_t sz = d[1] * nthreads; 2046 /* Should use omp_alloc if d[3] is not -1. */ 2047 void *ptr = gomp_aligned_alloc (d[2], sz); 2048 memset (ptr, '\0', sz); 2049 d[2] = (uintptr_t) ptr; 2050 d[6] = d[2] + sz; 2051 } 2052 d[5] = 0; 2053 total_cnt += d[0]; 2054 if (d[4] == 0) 2055 { 2056 d[4] = (uintptr_t) old; 2057 break; 2058 } 2059 else 2060 d = (uintptr_t *) d[4]; 2061 } 2062 while (1); 2063 if (old && old[5]) 2064 { 2065 old_htab = (struct htab *) old[5]; 2066 total_cnt += htab_elements (old_htab); 2067 } 2068 new_htab = htab_create (total_cnt); 2069 if (old_htab) 2070 { 2071 /* Copy old hash table, like in htab_expand. */ 2072 hash_entry_type *p, *olimit; 2073 new_htab->n_elements = htab_elements (old_htab); 2074 olimit = old_htab->entries + old_htab->size; 2075 p = old_htab->entries; 2076 do 2077 { 2078 hash_entry_type x = *p; 2079 if (x != HTAB_EMPTY_ENTRY && x != HTAB_DELETED_ENTRY) 2080 *find_empty_slot_for_expand (new_htab, htab_hash (x)) = x; 2081 p++; 2082 } 2083 while (p < olimit); 2084 } 2085 d = data; 2086 do 2087 { 2088 size_t j; 2089 for (j = 0; j < d[0]; ++j) 2090 { 2091 uintptr_t *p = d + 7 + j * 3; 2092 p[2] = (uintptr_t) d; 2093 /* Ugly hack, hash_entry_type is defined for the task dependencies, 2094 which hash on the first element which is a pointer. We need 2095 to hash also on the first sizeof (uintptr_t) bytes which contain 2096 a pointer. Hide the cast from the compiler. */ 2097 hash_entry_type n; 2098 __asm ("" : "=g" (n) : "0" (p)); 2099 *htab_find_slot (&new_htab, n, INSERT) = n; 2100 } 2101 if (d[4] == (uintptr_t) old) 2102 break; 2103 else 2104 d = (uintptr_t *) d[4]; 2105 } 2106 while (1); 2107 d[5] = (uintptr_t) new_htab; 2108 } 2109 2110 static void 2111 gomp_create_artificial_team (void) 2112 { 2113 struct gomp_thread *thr = gomp_thread (); 2114 struct gomp_task_icv *icv; 2115 struct gomp_team *team = gomp_new_team (1); 2116 struct gomp_task *task = thr->task; 2117 icv = task ? &task->icv : &gomp_global_icv; 2118 team->prev_ts = thr->ts; 2119 thr->ts.team = team; 2120 thr->ts.team_id = 0; 2121 thr->ts.work_share = &team->work_shares[0]; 2122 thr->ts.last_work_share = NULL; 2123 #ifdef HAVE_SYNC_BUILTINS 2124 thr->ts.single_count = 0; 2125 #endif 2126 thr->ts.static_trip = 0; 2127 thr->task = &team->implicit_task[0]; 2128 gomp_init_task (thr->task, NULL, icv); 2129 if (task) 2130 { 2131 thr->task = task; 2132 gomp_end_task (); 2133 free (task); 2134 thr->task = &team->implicit_task[0]; 2135 } 2136 #ifdef LIBGOMP_USE_PTHREADS 2137 else 2138 pthread_setspecific (gomp_thread_destructor, thr); 2139 #endif 2140 } 2141 2142 /* The format of data is: 2143 data[0] cnt 2144 data[1] size 2145 data[2] alignment (on output array pointer) 2146 data[3] allocator (-1 if malloc allocator) 2147 data[4] next pointer 2148 data[5] used internally (htab pointer) 2149 data[6] used internally (end of array) 2150 cnt times 2151 ent[0] address 2152 ent[1] offset 2153 ent[2] used internally (pointer to data[0]) 2154 The entries are sorted by increasing offset, so that a binary 2155 search can be performed. Normally, data[8] is 0, exception is 2156 for worksharing construct task reductions in cancellable parallel, 2157 where at offset 0 there should be space for a pointer and an integer 2158 which are used internally. */ 2159 2160 void 2161 GOMP_taskgroup_reduction_register (uintptr_t *data) 2162 { 2163 struct gomp_thread *thr = gomp_thread (); 2164 struct gomp_team *team = thr->ts.team; 2165 struct gomp_task *task; 2166 unsigned nthreads; 2167 if (__builtin_expect (team == NULL, 0)) 2168 { 2169 /* The task reduction code needs a team and task, so for 2170 orphaned taskgroups just create the implicit team. */ 2171 gomp_create_artificial_team (); 2172 ialias_call (GOMP_taskgroup_start) (); 2173 team = thr->ts.team; 2174 } 2175 nthreads = team->nthreads; 2176 task = thr->task; 2177 gomp_reduction_register (data, task->taskgroup->reductions, NULL, nthreads); 2178 task->taskgroup->reductions = data; 2179 } 2180 2181 void 2182 GOMP_taskgroup_reduction_unregister (uintptr_t *data) 2183 { 2184 uintptr_t *d = data; 2185 htab_free ((struct htab *) data[5]); 2186 do 2187 { 2188 gomp_aligned_free ((void *) d[2]); 2189 d = (uintptr_t *) d[4]; 2190 } 2191 while (d && !d[5]); 2192 } 2193 ialias (GOMP_taskgroup_reduction_unregister) 2194 2195 /* For i = 0 to cnt-1, remap ptrs[i] which is either address of the 2196 original list item or address of previously remapped original list 2197 item to address of the private copy, store that to ptrs[i]. 2198 For i < cntorig, additionally set ptrs[cnt+i] to the address of 2199 the original list item. */ 2200 2201 void 2202 GOMP_task_reduction_remap (size_t cnt, size_t cntorig, void **ptrs) 2203 { 2204 struct gomp_thread *thr = gomp_thread (); 2205 struct gomp_task *task = thr->task; 2206 unsigned id = thr->ts.team_id; 2207 uintptr_t *data = task->taskgroup->reductions; 2208 uintptr_t *d; 2209 struct htab *reduction_htab = (struct htab *) data[5]; 2210 size_t i; 2211 for (i = 0; i < cnt; ++i) 2212 { 2213 hash_entry_type ent, n; 2214 __asm ("" : "=g" (ent) : "0" (ptrs + i)); 2215 n = htab_find (reduction_htab, ent); 2216 if (n) 2217 { 2218 uintptr_t *p; 2219 __asm ("" : "=g" (p) : "0" (n)); 2220 /* At this point, p[0] should be equal to (uintptr_t) ptrs[i], 2221 p[1] is the offset within the allocated chunk for each 2222 thread, p[2] is the array registered with 2223 GOMP_taskgroup_reduction_register, d[2] is the base of the 2224 allocated memory and d[1] is the size of the allocated chunk 2225 for one thread. */ 2226 d = (uintptr_t *) p[2]; 2227 ptrs[i] = (void *) (d[2] + id * d[1] + p[1]); 2228 if (__builtin_expect (i < cntorig, 0)) 2229 ptrs[cnt + i] = (void *) p[0]; 2230 continue; 2231 } 2232 d = data; 2233 while (d != NULL) 2234 { 2235 if ((uintptr_t) ptrs[i] >= d[2] && (uintptr_t) ptrs[i] < d[6]) 2236 break; 2237 d = (uintptr_t *) d[4]; 2238 } 2239 if (d == NULL) 2240 gomp_fatal ("couldn't find matching task_reduction or reduction with " 2241 "task modifier for %p", ptrs[i]); 2242 uintptr_t off = ((uintptr_t) ptrs[i] - d[2]) % d[1]; 2243 ptrs[i] = (void *) (d[2] + id * d[1] + off); 2244 if (__builtin_expect (i < cntorig, 0)) 2245 { 2246 size_t lo = 0, hi = d[0] - 1; 2247 while (lo <= hi) 2248 { 2249 size_t m = (lo + hi) / 2; 2250 if (d[7 + 3 * m + 1] < off) 2251 lo = m + 1; 2252 else if (d[7 + 3 * m + 1] == off) 2253 { 2254 ptrs[cnt + i] = (void *) d[7 + 3 * m]; 2255 break; 2256 } 2257 else 2258 hi = m - 1; 2259 } 2260 if (lo > hi) 2261 gomp_fatal ("couldn't find matching task_reduction or reduction " 2262 "with task modifier for %p", ptrs[i]); 2263 } 2264 } 2265 } 2266 2267 struct gomp_taskgroup * 2268 gomp_parallel_reduction_register (uintptr_t *data, unsigned nthreads) 2269 { 2270 struct gomp_taskgroup *taskgroup = gomp_taskgroup_init (NULL); 2271 gomp_reduction_register (data, NULL, NULL, nthreads); 2272 taskgroup->reductions = data; 2273 return taskgroup; 2274 } 2275 2276 void 2277 gomp_workshare_task_reduction_register (uintptr_t *data, uintptr_t *orig) 2278 { 2279 struct gomp_thread *thr = gomp_thread (); 2280 struct gomp_team *team = thr->ts.team; 2281 struct gomp_task *task = thr->task; 2282 unsigned nthreads = team->nthreads; 2283 gomp_reduction_register (data, task->taskgroup->reductions, orig, nthreads); 2284 task->taskgroup->reductions = data; 2285 } 2286 2287 void 2288 gomp_workshare_taskgroup_start (void) 2289 { 2290 struct gomp_thread *thr = gomp_thread (); 2291 struct gomp_team *team = thr->ts.team; 2292 struct gomp_task *task; 2293 2294 if (team == NULL) 2295 { 2296 gomp_create_artificial_team (); 2297 team = thr->ts.team; 2298 } 2299 task = thr->task; 2300 task->taskgroup = gomp_taskgroup_init (task->taskgroup); 2301 task->taskgroup->workshare = true; 2302 } 2303 2304 void 2305 GOMP_workshare_task_reduction_unregister (bool cancelled) 2306 { 2307 struct gomp_thread *thr = gomp_thread (); 2308 struct gomp_task *task = thr->task; 2309 struct gomp_team *team = thr->ts.team; 2310 uintptr_t *data = task->taskgroup->reductions; 2311 ialias_call (GOMP_taskgroup_end) (); 2312 if (thr->ts.team_id == 0) 2313 ialias_call (GOMP_taskgroup_reduction_unregister) (data); 2314 else 2315 htab_free ((struct htab *) data[5]); 2316 2317 if (!cancelled) 2318 gomp_team_barrier_wait (&team->barrier); 2319 } 2320 2321 int 2322 omp_in_final (void) 2323 { 2324 struct gomp_thread *thr = gomp_thread (); 2325 return thr->task && thr->task->final_task; 2326 } 2327 2328 ialias (omp_in_final) 2329