1 /* Implementation of the MATMUL intrinsic 2 Copyright (C) 2002-2019 Free Software Foundation, Inc. 3 Contributed by Paul Brook <paul@nowt.org> 4 5 This file is part of the GNU Fortran runtime library (libgfortran). 6 7 Libgfortran is free software; you can redistribute it and/or 8 modify it under the terms of the GNU General Public 9 License as published by the Free Software Foundation; either 10 version 3 of the License, or (at your option) any later version. 11 12 Libgfortran is distributed in the hope that it will be useful, 13 but WITHOUT ANY WARRANTY; without even the implied warranty of 14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 GNU General Public License for more details. 16 17 Under Section 7 of GPL version 3, you are granted additional 18 permissions described in the GCC Runtime Library Exception, version 19 3.1, as published by the Free Software Foundation. 20 21 You should have received a copy of the GNU General Public License and 22 a copy of the GCC Runtime Library Exception along with this program; 23 see the files COPYING3 and COPYING.RUNTIME respectively. If not, see 24 <http://www.gnu.org/licenses/>. */ 25 26 #include "libgfortran.h" 27 #include <assert.h> 28 29 30 #if defined (HAVE_GFC_LOGICAL_4) 31 32 /* Dimensions: retarray(x,y) a(x, count) b(count,y). 33 Either a or b can be rank 1. In this case x or y is 1. */ 34 35 extern void matmul_l4 (gfc_array_l4 * const restrict, 36 gfc_array_l1 * const restrict, gfc_array_l1 * const restrict); 37 export_proto(matmul_l4); 38 39 void 40 matmul_l4 (gfc_array_l4 * const restrict retarray, 41 gfc_array_l1 * const restrict a, gfc_array_l1 * const restrict b) 42 { 43 const GFC_LOGICAL_1 * restrict abase; 44 const GFC_LOGICAL_1 * restrict bbase; 45 GFC_LOGICAL_4 * restrict dest; 46 index_type rxstride; 47 index_type rystride; 48 index_type xcount; 49 index_type ycount; 50 index_type xstride; 51 index_type ystride; 52 index_type x; 53 index_type y; 54 int a_kind; 55 int b_kind; 56 57 const GFC_LOGICAL_1 * restrict pa; 58 const GFC_LOGICAL_1 * restrict pb; 59 index_type astride; 60 index_type bstride; 61 index_type count; 62 index_type n; 63 64 assert (GFC_DESCRIPTOR_RANK (a) == 2 65 || GFC_DESCRIPTOR_RANK (b) == 2); 66 67 if (retarray->base_addr == NULL) 68 { 69 if (GFC_DESCRIPTOR_RANK (a) == 1) 70 { 71 GFC_DIMENSION_SET(retarray->dim[0], 0, 72 GFC_DESCRIPTOR_EXTENT(b,1) - 1, 1); 73 } 74 else if (GFC_DESCRIPTOR_RANK (b) == 1) 75 { 76 GFC_DIMENSION_SET(retarray->dim[0], 0, 77 GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1); 78 } 79 else 80 { 81 GFC_DIMENSION_SET(retarray->dim[0], 0, 82 GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1); 83 84 GFC_DIMENSION_SET(retarray->dim[1], 0, 85 GFC_DESCRIPTOR_EXTENT(b,1) - 1, 86 GFC_DESCRIPTOR_EXTENT(retarray,0)); 87 } 88 89 retarray->base_addr 90 = xmallocarray (size0 ((array_t *) retarray), sizeof (GFC_LOGICAL_4)); 91 retarray->offset = 0; 92 } 93 else if (unlikely (compile_options.bounds_check)) 94 { 95 index_type ret_extent, arg_extent; 96 97 if (GFC_DESCRIPTOR_RANK (a) == 1) 98 { 99 arg_extent = GFC_DESCRIPTOR_EXTENT(b,1); 100 ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0); 101 if (arg_extent != ret_extent) 102 runtime_error ("Incorrect extent in return array in" 103 " MATMUL intrinsic: is %ld, should be %ld", 104 (long int) ret_extent, (long int) arg_extent); 105 } 106 else if (GFC_DESCRIPTOR_RANK (b) == 1) 107 { 108 arg_extent = GFC_DESCRIPTOR_EXTENT(a,0); 109 ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0); 110 if (arg_extent != ret_extent) 111 runtime_error ("Incorrect extent in return array in" 112 " MATMUL intrinsic: is %ld, should be %ld", 113 (long int) ret_extent, (long int) arg_extent); 114 } 115 else 116 { 117 arg_extent = GFC_DESCRIPTOR_EXTENT(a,0); 118 ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0); 119 if (arg_extent != ret_extent) 120 runtime_error ("Incorrect extent in return array in" 121 " MATMUL intrinsic for dimension 1:" 122 " is %ld, should be %ld", 123 (long int) ret_extent, (long int) arg_extent); 124 125 arg_extent = GFC_DESCRIPTOR_EXTENT(b,1); 126 ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1); 127 if (arg_extent != ret_extent) 128 runtime_error ("Incorrect extent in return array in" 129 " MATMUL intrinsic for dimension 2:" 130 " is %ld, should be %ld", 131 (long int) ret_extent, (long int) arg_extent); 132 } 133 } 134 135 abase = a->base_addr; 136 a_kind = GFC_DESCRIPTOR_SIZE (a); 137 138 if (a_kind == 1 || a_kind == 2 || a_kind == 4 || a_kind == 8 139 #ifdef HAVE_GFC_LOGICAL_16 140 || a_kind == 16 141 #endif 142 ) 143 abase = GFOR_POINTER_TO_L1 (abase, a_kind); 144 else 145 internal_error (NULL, "Funny sized logical array"); 146 147 bbase = b->base_addr; 148 b_kind = GFC_DESCRIPTOR_SIZE (b); 149 150 if (b_kind == 1 || b_kind == 2 || b_kind == 4 || b_kind == 8 151 #ifdef HAVE_GFC_LOGICAL_16 152 || b_kind == 16 153 #endif 154 ) 155 bbase = GFOR_POINTER_TO_L1 (bbase, b_kind); 156 else 157 internal_error (NULL, "Funny sized logical array"); 158 159 dest = retarray->base_addr; 160 161 162 if (GFC_DESCRIPTOR_RANK (retarray) == 1) 163 { 164 rxstride = GFC_DESCRIPTOR_STRIDE(retarray,0); 165 rystride = rxstride; 166 } 167 else 168 { 169 rxstride = GFC_DESCRIPTOR_STRIDE(retarray,0); 170 rystride = GFC_DESCRIPTOR_STRIDE(retarray,1); 171 } 172 173 /* If we have rank 1 parameters, zero the absent stride, and set the size to 174 one. */ 175 if (GFC_DESCRIPTOR_RANK (a) == 1) 176 { 177 astride = GFC_DESCRIPTOR_STRIDE_BYTES(a,0); 178 count = GFC_DESCRIPTOR_EXTENT(a,0); 179 xstride = 0; 180 rxstride = 0; 181 xcount = 1; 182 } 183 else 184 { 185 astride = GFC_DESCRIPTOR_STRIDE_BYTES(a,1); 186 count = GFC_DESCRIPTOR_EXTENT(a,1); 187 xstride = GFC_DESCRIPTOR_STRIDE_BYTES(a,0); 188 xcount = GFC_DESCRIPTOR_EXTENT(a,0); 189 } 190 if (GFC_DESCRIPTOR_RANK (b) == 1) 191 { 192 bstride = GFC_DESCRIPTOR_STRIDE_BYTES(b,0); 193 assert(count == GFC_DESCRIPTOR_EXTENT(b,0)); 194 ystride = 0; 195 rystride = 0; 196 ycount = 1; 197 } 198 else 199 { 200 bstride = GFC_DESCRIPTOR_STRIDE_BYTES(b,0); 201 assert(count == GFC_DESCRIPTOR_EXTENT(b,0)); 202 ystride = GFC_DESCRIPTOR_STRIDE_BYTES(b,1); 203 ycount = GFC_DESCRIPTOR_EXTENT(b,1); 204 } 205 206 for (y = 0; y < ycount; y++) 207 { 208 for (x = 0; x < xcount; x++) 209 { 210 /* Do the summation for this element. For real and integer types 211 this is the same as DOT_PRODUCT. For complex types we use do 212 a*b, not conjg(a)*b. */ 213 pa = abase; 214 pb = bbase; 215 *dest = 0; 216 217 for (n = 0; n < count; n++) 218 { 219 if (*pa && *pb) 220 { 221 *dest = 1; 222 break; 223 } 224 pa += astride; 225 pb += bstride; 226 } 227 228 dest += rxstride; 229 abase += xstride; 230 } 231 abase -= xstride * xcount; 232 bbase += ystride; 233 dest += rystride - (rxstride * xcount); 234 } 235 } 236 237 #endif 238 239