1 /* Subroutines needed for unwinding stack frames for exception handling. */ 2 /* Copyright (C) 1997-2015 Free Software Foundation, Inc. 3 Contributed by Jason Merrill <jason@cygnus.com>. 4 5 This file is part of GCC. 6 7 GCC is free software; you can redistribute it and/or modify it under 8 the terms of the GNU General Public License as published by the Free 9 Software Foundation; either version 3, or (at your option) any later 10 version. 11 12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY 13 WARRANTY; without even the implied warranty of MERCHANTABILITY or 14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 15 for more details. 16 17 Under Section 7 of GPL version 3, you are granted additional 18 permissions described in the GCC Runtime Library Exception, version 19 3.1, as published by the Free Software Foundation. 20 21 You should have received a copy of the GNU General Public License and 22 a copy of the GCC Runtime Library Exception along with this program; 23 see the files COPYING3 and COPYING.RUNTIME respectively. If not, see 24 <http://www.gnu.org/licenses/>. */ 25 26 #ifndef _Unwind_Find_FDE 27 #include "tconfig.h" 28 #include "tsystem.h" 29 #include "coretypes.h" 30 #include "tm.h" 31 #include "libgcc_tm.h" 32 #include "dwarf2.h" 33 #include "unwind.h" 34 #define NO_BASE_OF_ENCODED_VALUE 35 #include "unwind-pe.h" 36 #include "unwind-dw2-fde.h" 37 #include "gthr.h" 38 #endif 39 40 /* The unseen_objects list contains objects that have been registered 41 but not yet categorized in any way. The seen_objects list has had 42 its pc_begin and count fields initialized at minimum, and is sorted 43 by decreasing value of pc_begin. */ 44 static struct object *unseen_objects; 45 static struct object *seen_objects; 46 47 #ifdef __GTHREAD_MUTEX_INIT 48 static __gthread_mutex_t object_mutex = __GTHREAD_MUTEX_INIT; 49 #define init_object_mutex_once() 50 #else 51 #ifdef __GTHREAD_MUTEX_INIT_FUNCTION 52 static __gthread_mutex_t object_mutex; 53 54 static void 55 init_object_mutex (void) 56 { 57 __GTHREAD_MUTEX_INIT_FUNCTION (&object_mutex); 58 } 59 60 static void 61 init_object_mutex_once (void) 62 { 63 static __gthread_once_t once = __GTHREAD_ONCE_INIT; 64 __gthread_once (&once, init_object_mutex); 65 } 66 #else 67 /* ??? Several targets include this file with stubbing parts of gthr.h 68 and expect no locking to be done. */ 69 #define init_object_mutex_once() 70 static __gthread_mutex_t object_mutex; 71 #endif 72 #endif 73 74 /* Called from crtbegin.o to register the unwind info for an object. */ 75 76 void 77 __register_frame_info_bases (const void *begin, struct object *ob, 78 void *tbase, void *dbase) 79 { 80 /* If .eh_frame is empty, don't register at all. */ 81 if ((const uword *) begin == 0 || *(const uword *) begin == 0) 82 return; 83 84 ob->pc_begin = (void *)-1; 85 ob->tbase = tbase; 86 ob->dbase = dbase; 87 ob->u.single = begin; 88 ob->s.i = 0; 89 ob->s.b.encoding = DW_EH_PE_omit; 90 #ifdef DWARF2_OBJECT_END_PTR_EXTENSION 91 ob->fde_end = NULL; 92 #endif 93 94 init_object_mutex_once (); 95 __gthread_mutex_lock (&object_mutex); 96 97 ob->next = unseen_objects; 98 unseen_objects = ob; 99 100 __gthread_mutex_unlock (&object_mutex); 101 } 102 103 void 104 __register_frame_info (const void *begin, struct object *ob) 105 { 106 __register_frame_info_bases (begin, ob, 0, 0); 107 } 108 109 void 110 __register_frame (void *begin) 111 { 112 struct object *ob; 113 114 /* If .eh_frame is empty, don't register at all. */ 115 if (*(uword *) begin == 0) 116 return; 117 118 ob = malloc (sizeof (struct object)); 119 __register_frame_info (begin, ob); 120 } 121 122 /* Similar, but BEGIN is actually a pointer to a table of unwind entries 123 for different translation units. Called from the file generated by 124 collect2. */ 125 126 void 127 __register_frame_info_table_bases (void *begin, struct object *ob, 128 void *tbase, void *dbase) 129 { 130 ob->pc_begin = (void *)-1; 131 ob->tbase = tbase; 132 ob->dbase = dbase; 133 ob->u.array = begin; 134 ob->s.i = 0; 135 ob->s.b.from_array = 1; 136 ob->s.b.encoding = DW_EH_PE_omit; 137 138 init_object_mutex_once (); 139 __gthread_mutex_lock (&object_mutex); 140 141 ob->next = unseen_objects; 142 unseen_objects = ob; 143 144 __gthread_mutex_unlock (&object_mutex); 145 } 146 147 void 148 __register_frame_info_table (void *begin, struct object *ob) 149 { 150 __register_frame_info_table_bases (begin, ob, 0, 0); 151 } 152 153 void 154 __register_frame_table (void *begin) 155 { 156 struct object *ob = malloc (sizeof (struct object)); 157 __register_frame_info_table (begin, ob); 158 } 159 160 /* Called from crtbegin.o to deregister the unwind info for an object. */ 161 /* ??? Glibc has for a while now exported __register_frame_info and 162 __deregister_frame_info. If we call __register_frame_info_bases 163 from crtbegin (wherein it is declared weak), and this object does 164 not get pulled from libgcc.a for other reasons, then the 165 invocation of __deregister_frame_info will be resolved from glibc. 166 Since the registration did not happen there, we'll die. 167 168 Therefore, declare a new deregistration entry point that does the 169 exact same thing, but will resolve to the same library as 170 implements __register_frame_info_bases. */ 171 172 void * 173 __deregister_frame_info_bases (const void *begin) 174 { 175 struct object **p; 176 struct object *ob = 0; 177 178 /* If .eh_frame is empty, we haven't registered. */ 179 if ((const uword *) begin == 0 || *(const uword *) begin == 0) 180 return ob; 181 182 init_object_mutex_once (); 183 __gthread_mutex_lock (&object_mutex); 184 185 for (p = &unseen_objects; *p ; p = &(*p)->next) 186 if ((*p)->u.single == begin) 187 { 188 ob = *p; 189 *p = ob->next; 190 goto out; 191 } 192 193 for (p = &seen_objects; *p ; p = &(*p)->next) 194 if ((*p)->s.b.sorted) 195 { 196 if ((*p)->u.sort->orig_data == begin) 197 { 198 ob = *p; 199 *p = ob->next; 200 free (ob->u.sort); 201 goto out; 202 } 203 } 204 else 205 { 206 if ((*p)->u.single == begin) 207 { 208 ob = *p; 209 *p = ob->next; 210 goto out; 211 } 212 } 213 214 out: 215 __gthread_mutex_unlock (&object_mutex); 216 #if 0 217 gcc_assert (ob); 218 #endif 219 return (void *) ob; 220 } 221 222 void * 223 __deregister_frame_info (const void *begin) 224 { 225 return __deregister_frame_info_bases (begin); 226 } 227 228 void 229 __deregister_frame (void *begin) 230 { 231 /* If .eh_frame is empty, we haven't registered. */ 232 if (*(uword *) begin != 0) 233 free (__deregister_frame_info (begin)); 234 } 235 236 237 /* Like base_of_encoded_value, but take the base from a struct object 238 instead of an _Unwind_Context. */ 239 240 static _Unwind_Ptr 241 base_from_object (unsigned char encoding, struct object *ob) 242 { 243 if (encoding == DW_EH_PE_omit) 244 return 0; 245 246 switch (encoding & 0x70) 247 { 248 case DW_EH_PE_absptr: 249 case DW_EH_PE_pcrel: 250 case DW_EH_PE_aligned: 251 return 0; 252 253 case DW_EH_PE_textrel: 254 return (_Unwind_Ptr) ob->tbase; 255 case DW_EH_PE_datarel: 256 return (_Unwind_Ptr) ob->dbase; 257 default: 258 gcc_unreachable (); 259 } 260 } 261 262 /* Return the FDE pointer encoding from the CIE. */ 263 /* ??? This is a subset of extract_cie_info from unwind-dw2.c. */ 264 265 static int 266 get_cie_encoding (const struct dwarf_cie *cie) 267 { 268 const unsigned char *aug, *p; 269 _Unwind_Ptr dummy; 270 _uleb128_t utmp; 271 _sleb128_t stmp; 272 273 aug = cie->augmentation; 274 p = aug + strlen ((const char *)aug) + 1; /* Skip the augmentation string. */ 275 if (__builtin_expect (cie->version >= 4, 0)) 276 { 277 if (p[0] != sizeof (void *) || p[1] != 0) 278 return DW_EH_PE_omit; /* We are not prepared to handle unexpected 279 address sizes or segment selectors. */ 280 p += 2; /* Skip address size and segment size. */ 281 } 282 283 if (aug[0] != 'z') 284 return DW_EH_PE_absptr; 285 286 p = read_uleb128 (p, &utmp); /* Skip code alignment. */ 287 p = read_sleb128 (p, &stmp); /* Skip data alignment. */ 288 if (cie->version == 1) /* Skip return address column. */ 289 p++; 290 else 291 p = read_uleb128 (p, &utmp); 292 293 aug++; /* Skip 'z' */ 294 p = read_uleb128 (p, &utmp); /* Skip augmentation length. */ 295 while (1) 296 { 297 /* This is what we're looking for. */ 298 if (*aug == 'R') 299 return *p; 300 /* Personality encoding and pointer. */ 301 else if (*aug == 'P') 302 { 303 /* ??? Avoid dereferencing indirect pointers, since we're 304 faking the base address. Gotta keep DW_EH_PE_aligned 305 intact, however. */ 306 p = read_encoded_value_with_base (*p & 0x7F, 0, p + 1, &dummy); 307 } 308 /* LSDA encoding. */ 309 else if (*aug == 'L') 310 p++; 311 /* Otherwise end of string, or unknown augmentation. */ 312 else 313 return DW_EH_PE_absptr; 314 aug++; 315 } 316 } 317 318 static inline int 319 get_fde_encoding (const struct dwarf_fde *f) 320 { 321 return get_cie_encoding (get_cie (f)); 322 } 323 324 325 /* Sorting an array of FDEs by address. 326 (Ideally we would have the linker sort the FDEs so we don't have to do 327 it at run time. But the linkers are not yet prepared for this.) */ 328 329 /* Comparison routines. Three variants of increasing complexity. */ 330 331 static int 332 fde_unencoded_compare (struct object *ob __attribute__((unused)), 333 const fde *x, const fde *y) 334 { 335 _Unwind_Ptr x_ptr, y_ptr; 336 memcpy (&x_ptr, x->pc_begin, sizeof (_Unwind_Ptr)); 337 memcpy (&y_ptr, y->pc_begin, sizeof (_Unwind_Ptr)); 338 339 if (x_ptr > y_ptr) 340 return 1; 341 if (x_ptr < y_ptr) 342 return -1; 343 return 0; 344 } 345 346 static int 347 fde_single_encoding_compare (struct object *ob, const fde *x, const fde *y) 348 { 349 _Unwind_Ptr base, x_ptr, y_ptr; 350 351 base = base_from_object (ob->s.b.encoding, ob); 352 read_encoded_value_with_base (ob->s.b.encoding, base, x->pc_begin, &x_ptr); 353 read_encoded_value_with_base (ob->s.b.encoding, base, y->pc_begin, &y_ptr); 354 355 if (x_ptr > y_ptr) 356 return 1; 357 if (x_ptr < y_ptr) 358 return -1; 359 return 0; 360 } 361 362 static int 363 fde_mixed_encoding_compare (struct object *ob, const fde *x, const fde *y) 364 { 365 int x_encoding, y_encoding; 366 _Unwind_Ptr x_ptr, y_ptr; 367 368 x_encoding = get_fde_encoding (x); 369 read_encoded_value_with_base (x_encoding, base_from_object (x_encoding, ob), 370 x->pc_begin, &x_ptr); 371 372 y_encoding = get_fde_encoding (y); 373 read_encoded_value_with_base (y_encoding, base_from_object (y_encoding, ob), 374 y->pc_begin, &y_ptr); 375 376 if (x_ptr > y_ptr) 377 return 1; 378 if (x_ptr < y_ptr) 379 return -1; 380 return 0; 381 } 382 383 typedef int (*fde_compare_t) (struct object *, const fde *, const fde *); 384 385 386 /* This is a special mix of insertion sort and heap sort, optimized for 387 the data sets that actually occur. They look like 388 101 102 103 127 128 105 108 110 190 111 115 119 125 160 126 129 130. 389 I.e. a linearly increasing sequence (coming from functions in the text 390 section), with additionally a few unordered elements (coming from functions 391 in gnu_linkonce sections) whose values are higher than the values in the 392 surrounding linear sequence (but not necessarily higher than the values 393 at the end of the linear sequence!). 394 The worst-case total run time is O(N) + O(n log (n)), where N is the 395 total number of FDEs and n is the number of erratic ones. */ 396 397 struct fde_accumulator 398 { 399 struct fde_vector *linear; 400 struct fde_vector *erratic; 401 }; 402 403 static inline int 404 start_fde_sort (struct fde_accumulator *accu, size_t count) 405 { 406 size_t size; 407 if (! count) 408 return 0; 409 410 size = sizeof (struct fde_vector) + sizeof (const fde *) * count; 411 if ((accu->linear = malloc (size))) 412 { 413 accu->linear->count = 0; 414 if ((accu->erratic = malloc (size))) 415 accu->erratic->count = 0; 416 return 1; 417 } 418 else 419 return 0; 420 } 421 422 static inline void 423 fde_insert (struct fde_accumulator *accu, const fde *this_fde) 424 { 425 if (accu->linear) 426 accu->linear->array[accu->linear->count++] = this_fde; 427 } 428 429 /* Split LINEAR into a linear sequence with low values and an erratic 430 sequence with high values, put the linear one (of longest possible 431 length) into LINEAR and the erratic one into ERRATIC. This is O(N). 432 433 Because the longest linear sequence we are trying to locate within the 434 incoming LINEAR array can be interspersed with (high valued) erratic 435 entries. We construct a chain indicating the sequenced entries. 436 To avoid having to allocate this chain, we overlay it onto the space of 437 the ERRATIC array during construction. A final pass iterates over the 438 chain to determine what should be placed in the ERRATIC array, and 439 what is the linear sequence. This overlay is safe from aliasing. */ 440 441 static inline void 442 fde_split (struct object *ob, fde_compare_t fde_compare, 443 struct fde_vector *linear, struct fde_vector *erratic) 444 { 445 static const fde *marker; 446 size_t count = linear->count; 447 const fde *const *chain_end = ▮ 448 size_t i, j, k; 449 450 /* This should optimize out, but it is wise to make sure this assumption 451 is correct. Should these have different sizes, we cannot cast between 452 them and the overlaying onto ERRATIC will not work. */ 453 gcc_assert (sizeof (const fde *) == sizeof (const fde **)); 454 455 for (i = 0; i < count; i++) 456 { 457 const fde *const *probe; 458 459 for (probe = chain_end; 460 probe != &marker && fde_compare (ob, linear->array[i], *probe) < 0; 461 probe = chain_end) 462 { 463 chain_end = (const fde *const*) erratic->array[probe - linear->array]; 464 erratic->array[probe - linear->array] = NULL; 465 } 466 erratic->array[i] = (const fde *) chain_end; 467 chain_end = &linear->array[i]; 468 } 469 470 /* Each entry in LINEAR which is part of the linear sequence we have 471 discovered will correspond to a non-NULL entry in the chain we built in 472 the ERRATIC array. */ 473 for (i = j = k = 0; i < count; i++) 474 if (erratic->array[i]) 475 linear->array[j++] = linear->array[i]; 476 else 477 erratic->array[k++] = linear->array[i]; 478 linear->count = j; 479 erratic->count = k; 480 } 481 482 #define SWAP(x,y) do { const fde * tmp = x; x = y; y = tmp; } while (0) 483 484 /* Convert a semi-heap to a heap. A semi-heap is a heap except possibly 485 for the first (root) node; push it down to its rightful place. */ 486 487 static void 488 frame_downheap (struct object *ob, fde_compare_t fde_compare, const fde **a, 489 int lo, int hi) 490 { 491 int i, j; 492 493 for (i = lo, j = 2*i+1; 494 j < hi; 495 j = 2*i+1) 496 { 497 if (j+1 < hi && fde_compare (ob, a[j], a[j+1]) < 0) 498 ++j; 499 500 if (fde_compare (ob, a[i], a[j]) < 0) 501 { 502 SWAP (a[i], a[j]); 503 i = j; 504 } 505 else 506 break; 507 } 508 } 509 510 /* This is O(n log(n)). BSD/OS defines heapsort in stdlib.h, so we must 511 use a name that does not conflict. */ 512 513 static void 514 frame_heapsort (struct object *ob, fde_compare_t fde_compare, 515 struct fde_vector *erratic) 516 { 517 /* For a description of this algorithm, see: 518 Samuel P. Harbison, Guy L. Steele Jr.: C, a reference manual, 2nd ed., 519 p. 60-61. */ 520 const fde ** a = erratic->array; 521 /* A portion of the array is called a "heap" if for all i>=0: 522 If i and 2i+1 are valid indices, then a[i] >= a[2i+1]. 523 If i and 2i+2 are valid indices, then a[i] >= a[2i+2]. */ 524 size_t n = erratic->count; 525 int m; 526 527 /* Expand our heap incrementally from the end of the array, heapifying 528 each resulting semi-heap as we go. After each step, a[m] is the top 529 of a heap. */ 530 for (m = n/2-1; m >= 0; --m) 531 frame_downheap (ob, fde_compare, a, m, n); 532 533 /* Shrink our heap incrementally from the end of the array, first 534 swapping out the largest element a[0] and then re-heapifying the 535 resulting semi-heap. After each step, a[0..m) is a heap. */ 536 for (m = n-1; m >= 1; --m) 537 { 538 SWAP (a[0], a[m]); 539 frame_downheap (ob, fde_compare, a, 0, m); 540 } 541 #undef SWAP 542 } 543 544 /* Merge V1 and V2, both sorted, and put the result into V1. */ 545 static inline void 546 fde_merge (struct object *ob, fde_compare_t fde_compare, 547 struct fde_vector *v1, struct fde_vector *v2) 548 { 549 size_t i1, i2; 550 const fde * fde2; 551 552 i2 = v2->count; 553 if (i2 > 0) 554 { 555 i1 = v1->count; 556 do 557 { 558 i2--; 559 fde2 = v2->array[i2]; 560 while (i1 > 0 && fde_compare (ob, v1->array[i1-1], fde2) > 0) 561 { 562 v1->array[i1+i2] = v1->array[i1-1]; 563 i1--; 564 } 565 v1->array[i1+i2] = fde2; 566 } 567 while (i2 > 0); 568 v1->count += v2->count; 569 } 570 } 571 572 static inline void 573 end_fde_sort (struct object *ob, struct fde_accumulator *accu, size_t count) 574 { 575 fde_compare_t fde_compare; 576 577 gcc_assert (!accu->linear || accu->linear->count == count); 578 579 if (ob->s.b.mixed_encoding) 580 fde_compare = fde_mixed_encoding_compare; 581 else if (ob->s.b.encoding == DW_EH_PE_absptr) 582 fde_compare = fde_unencoded_compare; 583 else 584 fde_compare = fde_single_encoding_compare; 585 586 if (accu->erratic) 587 { 588 fde_split (ob, fde_compare, accu->linear, accu->erratic); 589 gcc_assert (accu->linear->count + accu->erratic->count == count); 590 frame_heapsort (ob, fde_compare, accu->erratic); 591 fde_merge (ob, fde_compare, accu->linear, accu->erratic); 592 free (accu->erratic); 593 } 594 else 595 { 596 /* We've not managed to malloc an erratic array, 597 so heap sort in the linear one. */ 598 frame_heapsort (ob, fde_compare, accu->linear); 599 } 600 } 601 602 603 /* Update encoding, mixed_encoding, and pc_begin for OB for the 604 fde array beginning at THIS_FDE. Return the number of fdes 605 encountered along the way. */ 606 607 static size_t 608 classify_object_over_fdes (struct object *ob, const fde *this_fde) 609 { 610 const struct dwarf_cie *last_cie = 0; 611 size_t count = 0; 612 int encoding = DW_EH_PE_absptr; 613 _Unwind_Ptr base = 0; 614 615 for (; ! last_fde (ob, this_fde); this_fde = next_fde (this_fde)) 616 { 617 const struct dwarf_cie *this_cie; 618 _Unwind_Ptr mask, pc_begin; 619 620 /* Skip CIEs. */ 621 if (this_fde->CIE_delta == 0) 622 continue; 623 624 /* Determine the encoding for this FDE. Note mixed encoded 625 objects for later. */ 626 this_cie = get_cie (this_fde); 627 if (this_cie != last_cie) 628 { 629 last_cie = this_cie; 630 encoding = get_cie_encoding (this_cie); 631 if (encoding == DW_EH_PE_omit) 632 return -1; 633 base = base_from_object (encoding, ob); 634 if (ob->s.b.encoding == DW_EH_PE_omit) 635 ob->s.b.encoding = encoding; 636 else if (ob->s.b.encoding != encoding) 637 ob->s.b.mixed_encoding = 1; 638 } 639 640 read_encoded_value_with_base (encoding, base, this_fde->pc_begin, 641 &pc_begin); 642 643 /* Take care to ignore link-once functions that were removed. 644 In these cases, the function address will be NULL, but if 645 the encoding is smaller than a pointer a true NULL may not 646 be representable. Assume 0 in the representable bits is NULL. */ 647 mask = size_of_encoded_value (encoding); 648 if (mask < sizeof (void *)) 649 mask = (((_Unwind_Ptr) 1) << (mask << 3)) - 1; 650 else 651 mask = -1; 652 653 if ((pc_begin & mask) == 0) 654 continue; 655 656 count += 1; 657 if ((void *) pc_begin < ob->pc_begin) 658 ob->pc_begin = (void *) pc_begin; 659 } 660 661 return count; 662 } 663 664 static void 665 add_fdes (struct object *ob, struct fde_accumulator *accu, const fde *this_fde) 666 { 667 const struct dwarf_cie *last_cie = 0; 668 int encoding = ob->s.b.encoding; 669 _Unwind_Ptr base = base_from_object (ob->s.b.encoding, ob); 670 671 for (; ! last_fde (ob, this_fde); this_fde = next_fde (this_fde)) 672 { 673 const struct dwarf_cie *this_cie; 674 675 /* Skip CIEs. */ 676 if (this_fde->CIE_delta == 0) 677 continue; 678 679 if (ob->s.b.mixed_encoding) 680 { 681 /* Determine the encoding for this FDE. Note mixed encoded 682 objects for later. */ 683 this_cie = get_cie (this_fde); 684 if (this_cie != last_cie) 685 { 686 last_cie = this_cie; 687 encoding = get_cie_encoding (this_cie); 688 base = base_from_object (encoding, ob); 689 } 690 } 691 692 if (encoding == DW_EH_PE_absptr) 693 { 694 _Unwind_Ptr ptr; 695 memcpy (&ptr, this_fde->pc_begin, sizeof (_Unwind_Ptr)); 696 if (ptr == 0) 697 continue; 698 } 699 else 700 { 701 _Unwind_Ptr pc_begin, mask; 702 703 read_encoded_value_with_base (encoding, base, this_fde->pc_begin, 704 &pc_begin); 705 706 /* Take care to ignore link-once functions that were removed. 707 In these cases, the function address will be NULL, but if 708 the encoding is smaller than a pointer a true NULL may not 709 be representable. Assume 0 in the representable bits is NULL. */ 710 mask = size_of_encoded_value (encoding); 711 if (mask < sizeof (void *)) 712 mask = (((_Unwind_Ptr) 1) << (mask << 3)) - 1; 713 else 714 mask = -1; 715 716 if ((pc_begin & mask) == 0) 717 continue; 718 } 719 720 fde_insert (accu, this_fde); 721 } 722 } 723 724 /* Set up a sorted array of pointers to FDEs for a loaded object. We 725 count up the entries before allocating the array because it's likely to 726 be faster. We can be called multiple times, should we have failed to 727 allocate a sorted fde array on a previous occasion. */ 728 729 static inline void 730 init_object (struct object* ob) 731 { 732 struct fde_accumulator accu; 733 size_t count; 734 735 count = ob->s.b.count; 736 if (count == 0) 737 { 738 if (ob->s.b.from_array) 739 { 740 fde **p = ob->u.array; 741 for (count = 0; *p; ++p) 742 { 743 size_t cur_count = classify_object_over_fdes (ob, *p); 744 if (cur_count == (size_t) -1) 745 goto unhandled_fdes; 746 count += cur_count; 747 } 748 } 749 else 750 { 751 count = classify_object_over_fdes (ob, ob->u.single); 752 if (count == (size_t) -1) 753 { 754 static const fde terminator; 755 unhandled_fdes: 756 ob->s.i = 0; 757 ob->s.b.encoding = DW_EH_PE_omit; 758 ob->u.single = &terminator; 759 return; 760 } 761 } 762 763 /* The count field we have in the main struct object is somewhat 764 limited, but should suffice for virtually all cases. If the 765 counted value doesn't fit, re-write a zero. The worst that 766 happens is that we re-count next time -- admittedly non-trivial 767 in that this implies some 2M fdes, but at least we function. */ 768 ob->s.b.count = count; 769 if (ob->s.b.count != count) 770 ob->s.b.count = 0; 771 } 772 773 if (!start_fde_sort (&accu, count)) 774 return; 775 776 if (ob->s.b.from_array) 777 { 778 fde **p; 779 for (p = ob->u.array; *p; ++p) 780 add_fdes (ob, &accu, *p); 781 } 782 else 783 add_fdes (ob, &accu, ob->u.single); 784 785 end_fde_sort (ob, &accu, count); 786 787 /* Save the original fde pointer, since this is the key by which the 788 DSO will deregister the object. */ 789 accu.linear->orig_data = ob->u.single; 790 ob->u.sort = accu.linear; 791 792 ob->s.b.sorted = 1; 793 } 794 795 /* A linear search through a set of FDEs for the given PC. This is 796 used when there was insufficient memory to allocate and sort an 797 array. */ 798 799 static const fde * 800 linear_search_fdes (struct object *ob, const fde *this_fde, void *pc) 801 { 802 const struct dwarf_cie *last_cie = 0; 803 int encoding = ob->s.b.encoding; 804 _Unwind_Ptr base = base_from_object (ob->s.b.encoding, ob); 805 806 for (; ! last_fde (ob, this_fde); this_fde = next_fde (this_fde)) 807 { 808 const struct dwarf_cie *this_cie; 809 _Unwind_Ptr pc_begin, pc_range; 810 811 /* Skip CIEs. */ 812 if (this_fde->CIE_delta == 0) 813 continue; 814 815 if (ob->s.b.mixed_encoding) 816 { 817 /* Determine the encoding for this FDE. Note mixed encoded 818 objects for later. */ 819 this_cie = get_cie (this_fde); 820 if (this_cie != last_cie) 821 { 822 last_cie = this_cie; 823 encoding = get_cie_encoding (this_cie); 824 base = base_from_object (encoding, ob); 825 } 826 } 827 828 if (encoding == DW_EH_PE_absptr) 829 { 830 const _Unwind_Ptr *pc_array = (const _Unwind_Ptr *) this_fde->pc_begin; 831 pc_begin = pc_array[0]; 832 pc_range = pc_array[1]; 833 if (pc_begin == 0) 834 continue; 835 } 836 else 837 { 838 _Unwind_Ptr mask; 839 const unsigned char *p; 840 841 p = read_encoded_value_with_base (encoding, base, 842 this_fde->pc_begin, &pc_begin); 843 read_encoded_value_with_base (encoding & 0x0F, 0, p, &pc_range); 844 845 /* Take care to ignore link-once functions that were removed. 846 In these cases, the function address will be NULL, but if 847 the encoding is smaller than a pointer a true NULL may not 848 be representable. Assume 0 in the representable bits is NULL. */ 849 mask = size_of_encoded_value (encoding); 850 if (mask < sizeof (void *)) 851 mask = (((_Unwind_Ptr) 1) << (mask << 3)) - 1; 852 else 853 mask = -1; 854 855 if ((pc_begin & mask) == 0) 856 continue; 857 } 858 859 if ((_Unwind_Ptr) pc - pc_begin < pc_range) 860 return this_fde; 861 } 862 863 return NULL; 864 } 865 866 /* Binary search for an FDE containing the given PC. Here are three 867 implementations of increasing complexity. */ 868 869 static inline const fde * 870 binary_search_unencoded_fdes (struct object *ob, void *pc) 871 { 872 struct fde_vector *vec = ob->u.sort; 873 size_t lo, hi; 874 875 for (lo = 0, hi = vec->count; lo < hi; ) 876 { 877 size_t i = (lo + hi) / 2; 878 const fde *const f = vec->array[i]; 879 void *pc_begin; 880 uaddr pc_range; 881 memcpy (&pc_begin, (const void * const *) f->pc_begin, sizeof (void *)); 882 memcpy (&pc_range, (const uaddr *) f->pc_begin + 1, sizeof (uaddr)); 883 884 if (pc < pc_begin) 885 hi = i; 886 else if (pc >= pc_begin + pc_range) 887 lo = i + 1; 888 else 889 return f; 890 } 891 892 return NULL; 893 } 894 895 static inline const fde * 896 binary_search_single_encoding_fdes (struct object *ob, void *pc) 897 { 898 struct fde_vector *vec = ob->u.sort; 899 int encoding = ob->s.b.encoding; 900 _Unwind_Ptr base = base_from_object (encoding, ob); 901 size_t lo, hi; 902 903 for (lo = 0, hi = vec->count; lo < hi; ) 904 { 905 size_t i = (lo + hi) / 2; 906 const fde *f = vec->array[i]; 907 _Unwind_Ptr pc_begin, pc_range; 908 const unsigned char *p; 909 910 p = read_encoded_value_with_base (encoding, base, f->pc_begin, 911 &pc_begin); 912 read_encoded_value_with_base (encoding & 0x0F, 0, p, &pc_range); 913 914 if ((_Unwind_Ptr) pc < pc_begin) 915 hi = i; 916 else if ((_Unwind_Ptr) pc >= pc_begin + pc_range) 917 lo = i + 1; 918 else 919 return f; 920 } 921 922 return NULL; 923 } 924 925 static inline const fde * 926 binary_search_mixed_encoding_fdes (struct object *ob, void *pc) 927 { 928 struct fde_vector *vec = ob->u.sort; 929 size_t lo, hi; 930 931 for (lo = 0, hi = vec->count; lo < hi; ) 932 { 933 size_t i = (lo + hi) / 2; 934 const fde *f = vec->array[i]; 935 _Unwind_Ptr pc_begin, pc_range; 936 const unsigned char *p; 937 int encoding; 938 939 encoding = get_fde_encoding (f); 940 p = read_encoded_value_with_base (encoding, 941 base_from_object (encoding, ob), 942 f->pc_begin, &pc_begin); 943 read_encoded_value_with_base (encoding & 0x0F, 0, p, &pc_range); 944 945 if ((_Unwind_Ptr) pc < pc_begin) 946 hi = i; 947 else if ((_Unwind_Ptr) pc >= pc_begin + pc_range) 948 lo = i + 1; 949 else 950 return f; 951 } 952 953 return NULL; 954 } 955 956 static const fde * 957 search_object (struct object* ob, void *pc) 958 { 959 /* If the data hasn't been sorted, try to do this now. We may have 960 more memory available than last time we tried. */ 961 if (! ob->s.b.sorted) 962 { 963 init_object (ob); 964 965 /* Despite the above comment, the normal reason to get here is 966 that we've not processed this object before. A quick range 967 check is in order. */ 968 if (pc < ob->pc_begin) 969 return NULL; 970 } 971 972 if (ob->s.b.sorted) 973 { 974 if (ob->s.b.mixed_encoding) 975 return binary_search_mixed_encoding_fdes (ob, pc); 976 else if (ob->s.b.encoding == DW_EH_PE_absptr) 977 return binary_search_unencoded_fdes (ob, pc); 978 else 979 return binary_search_single_encoding_fdes (ob, pc); 980 } 981 else 982 { 983 /* Long slow laborious linear search, cos we've no memory. */ 984 if (ob->s.b.from_array) 985 { 986 fde **p; 987 for (p = ob->u.array; *p ; p++) 988 { 989 const fde *f = linear_search_fdes (ob, *p, pc); 990 if (f) 991 return f; 992 } 993 return NULL; 994 } 995 else 996 return linear_search_fdes (ob, ob->u.single, pc); 997 } 998 } 999 1000 const fde * 1001 _Unwind_Find_FDE (void *pc, struct dwarf_eh_bases *bases) 1002 { 1003 struct object *ob; 1004 const fde *f = NULL; 1005 1006 init_object_mutex_once (); 1007 __gthread_mutex_lock (&object_mutex); 1008 1009 /* Linear search through the classified objects, to find the one 1010 containing the pc. Note that pc_begin is sorted descending, and 1011 we expect objects to be non-overlapping. */ 1012 for (ob = seen_objects; ob; ob = ob->next) 1013 if (pc >= ob->pc_begin) 1014 { 1015 f = search_object (ob, pc); 1016 if (f) 1017 goto fini; 1018 break; 1019 } 1020 1021 /* Classify and search the objects we've not yet processed. */ 1022 while ((ob = unseen_objects)) 1023 { 1024 struct object **p; 1025 1026 unseen_objects = ob->next; 1027 f = search_object (ob, pc); 1028 1029 /* Insert the object into the classified list. */ 1030 for (p = &seen_objects; *p ; p = &(*p)->next) 1031 if ((*p)->pc_begin < ob->pc_begin) 1032 break; 1033 ob->next = *p; 1034 *p = ob; 1035 1036 if (f) 1037 goto fini; 1038 } 1039 1040 fini: 1041 __gthread_mutex_unlock (&object_mutex); 1042 1043 if (f) 1044 { 1045 int encoding; 1046 _Unwind_Ptr func; 1047 1048 bases->tbase = ob->tbase; 1049 bases->dbase = ob->dbase; 1050 1051 encoding = ob->s.b.encoding; 1052 if (ob->s.b.mixed_encoding) 1053 encoding = get_fde_encoding (f); 1054 read_encoded_value_with_base (encoding, base_from_object (encoding, ob), 1055 f->pc_begin, &func); 1056 bases->func = (void *) func; 1057 } 1058 1059 return f; 1060 } 1061