1 /* Library support for -fsplit-stack. */ 2 /* Copyright (C) 2009-2019 Free Software Foundation, Inc. 3 Contributed by Ian Lance Taylor <iant@google.com>. 4 5 This file is part of GCC. 6 7 GCC is free software; you can redistribute it and/or modify it under 8 the terms of the GNU General Public License as published by the Free 9 Software Foundation; either version 3, or (at your option) any later 10 version. 11 12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY 13 WARRANTY; without even the implied warranty of MERCHANTABILITY or 14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 15 for more details. 16 17 Under Section 7 of GPL version 3, you are granted additional 18 permissions described in the GCC Runtime Library Exception, version 19 3.1, as published by the Free Software Foundation. 20 21 You should have received a copy of the GNU General Public License and 22 a copy of the GCC Runtime Library Exception along with this program; 23 see the files COPYING3 and COPYING.RUNTIME respectively. If not, see 24 <http://www.gnu.org/licenses/>. */ 25 26 /* powerpc 32-bit not supported. */ 27 #if !defined __powerpc__ || defined __powerpc64__ 28 29 #include "tconfig.h" 30 #include "tsystem.h" 31 #include "coretypes.h" 32 #include "tm.h" 33 #include "libgcc_tm.h" 34 35 /* If inhibit_libc is defined, we cannot compile this file. The 36 effect is that people will not be able to use -fsplit-stack. That 37 is much better than failing the build particularly since people 38 will want to define inhibit_libc while building a compiler which 39 can build glibc. */ 40 41 #ifndef inhibit_libc 42 43 #include <assert.h> 44 #include <errno.h> 45 #include <signal.h> 46 #include <stdlib.h> 47 #include <string.h> 48 #include <unistd.h> 49 #include <sys/mman.h> 50 #include <sys/uio.h> 51 52 #include "generic-morestack.h" 53 54 typedef unsigned uintptr_type __attribute__ ((mode (pointer))); 55 56 /* This file contains subroutines that are used by code compiled with 57 -fsplit-stack. */ 58 59 /* Declare functions to avoid warnings--there is no header file for 60 these internal functions. We give most of these functions the 61 flatten attribute in order to minimize their stack usage--here we 62 must minimize stack usage even at the cost of code size, and in 63 general inlining everything will do that. */ 64 65 extern void 66 __generic_morestack_set_initial_sp (void *sp, size_t len) 67 __attribute__ ((no_split_stack, flatten, visibility ("hidden"))); 68 69 extern void * 70 __generic_morestack (size_t *frame_size, void *old_stack, size_t param_size) 71 __attribute__ ((no_split_stack, flatten, visibility ("hidden"))); 72 73 extern void * 74 __generic_releasestack (size_t *pavailable) 75 __attribute__ ((no_split_stack, flatten, visibility ("hidden"))); 76 77 extern void 78 __morestack_block_signals (void) 79 __attribute__ ((no_split_stack, flatten, visibility ("hidden"))); 80 81 extern void 82 __morestack_unblock_signals (void) 83 __attribute__ ((no_split_stack, flatten, visibility ("hidden"))); 84 85 extern size_t 86 __generic_findstack (void *stack) 87 __attribute__ ((no_split_stack, flatten, visibility ("hidden"))); 88 89 extern void 90 __morestack_load_mmap (void) 91 __attribute__ ((no_split_stack, visibility ("hidden"))); 92 93 extern void * 94 __morestack_allocate_stack_space (size_t size) 95 __attribute__ ((visibility ("hidden"))); 96 97 /* These are functions which -fsplit-stack code can call. These are 98 not called by the compiler, and are not hidden. FIXME: These 99 should be in some header file somewhere, somehow. */ 100 101 extern void * 102 __splitstack_find (void *, void *, size_t *, void **, void **, void **) 103 __attribute__ ((visibility ("default"))); 104 105 extern void 106 __splitstack_block_signals (int *, int *) 107 __attribute__ ((visibility ("default"))); 108 109 extern void 110 __splitstack_getcontext (void *context[10]) 111 __attribute__ ((no_split_stack, visibility ("default"))); 112 113 extern void 114 __splitstack_setcontext (void *context[10]) 115 __attribute__ ((no_split_stack, visibility ("default"))); 116 117 extern void * 118 __splitstack_makecontext (size_t, void *context[10], size_t *) 119 __attribute__ ((visibility ("default"))); 120 121 extern void * 122 __splitstack_resetcontext (void *context[10], size_t *) 123 __attribute__ ((visibility ("default"))); 124 125 extern void 126 __splitstack_releasecontext (void *context[10]) 127 __attribute__ ((visibility ("default"))); 128 129 extern void 130 __splitstack_block_signals_context (void *context[10], int *, int *) 131 __attribute__ ((visibility ("default"))); 132 133 extern void * 134 __splitstack_find_context (void *context[10], size_t *, void **, void **, 135 void **) 136 __attribute__ ((visibility ("default"))); 137 138 /* These functions must be defined by the processor specific code. */ 139 140 extern void *__morestack_get_guard (void) 141 __attribute__ ((no_split_stack, visibility ("hidden"))); 142 143 extern void __morestack_set_guard (void *) 144 __attribute__ ((no_split_stack, visibility ("hidden"))); 145 146 extern void *__morestack_make_guard (void *, size_t) 147 __attribute__ ((no_split_stack, visibility ("hidden"))); 148 149 /* When we allocate a stack segment we put this header at the 150 start. */ 151 152 struct stack_segment 153 { 154 /* The previous stack segment--when a function running on this stack 155 segment returns, it will run on the previous one. */ 156 struct stack_segment *prev; 157 /* The next stack segment, if it has been allocated--when a function 158 is running on this stack segment, the next one is not being 159 used. */ 160 struct stack_segment *next; 161 /* The total size of this stack segment. */ 162 size_t size; 163 /* The stack address when this stack was created. This is used when 164 popping the stack. */ 165 void *old_stack; 166 /* A list of memory blocks allocated by dynamic stack 167 allocation. */ 168 struct dynamic_allocation_blocks *dynamic_allocation; 169 /* A list of dynamic memory blocks no longer needed. */ 170 struct dynamic_allocation_blocks *free_dynamic_allocation; 171 /* An extra pointer in case we need some more information some 172 day. */ 173 void *extra; 174 }; 175 176 /* This structure holds the (approximate) initial stack pointer and 177 size for the system supplied stack for a thread. This is set when 178 the thread is created. We also store a sigset_t here to hold the 179 signal mask while splitting the stack, since we don't want to store 180 that on the stack. */ 181 182 struct initial_sp 183 { 184 /* The initial stack pointer. */ 185 void *sp; 186 /* The stack length. */ 187 size_t len; 188 /* A signal mask, put here so that the thread can use it without 189 needing stack space. */ 190 sigset_t mask; 191 /* Non-zero if we should not block signals. This is a reversed flag 192 so that the default zero value is the safe value. The type is 193 uintptr_type because it replaced one of the void * pointers in 194 extra. */ 195 uintptr_type dont_block_signals; 196 /* Some extra space for later extensibility. */ 197 void *extra[4]; 198 }; 199 200 /* A list of memory blocks allocated by dynamic stack allocation. 201 This is used for code that calls alloca or uses variably sized 202 arrays. */ 203 204 struct dynamic_allocation_blocks 205 { 206 /* The next block in the list. */ 207 struct dynamic_allocation_blocks *next; 208 /* The size of the allocated memory. */ 209 size_t size; 210 /* The allocated memory. */ 211 void *block; 212 }; 213 214 /* These thread local global variables must be shared by all split 215 stack code across shared library boundaries. Therefore, they have 216 default visibility. They have extensibility fields if needed for 217 new versions. If more radical changes are needed, new code can be 218 written using new variable names, while still using the existing 219 variables in a backward compatible manner. Symbol versioning is 220 also used, although, since these variables are only referenced by 221 code in this file and generic-morestack-thread.c, it is likely that 222 simply using new names will suffice. */ 223 224 /* The first stack segment allocated for this thread. */ 225 226 __thread struct stack_segment *__morestack_segments 227 __attribute__ ((visibility ("default"))); 228 229 /* The stack segment that we think we are currently using. This will 230 be correct in normal usage, but will be incorrect if an exception 231 unwinds into a different stack segment or if longjmp jumps to a 232 different stack segment. */ 233 234 __thread struct stack_segment *__morestack_current_segment 235 __attribute__ ((visibility ("default"))); 236 237 /* The initial stack pointer and size for this thread. */ 238 239 __thread struct initial_sp __morestack_initial_sp 240 __attribute__ ((visibility ("default"))); 241 242 /* A static signal mask, to avoid taking up stack space. */ 243 244 static sigset_t __morestack_fullmask; 245 246 /* Page size, as returned from getpagesize(). Set on startup. */ 247 static unsigned int static_pagesize; 248 249 /* Set on startup to non-zero value if SPLIT_STACK_GUARD env var is set. */ 250 static int use_guard_page; 251 252 /* Convert an integer to a decimal string without using much stack 253 space. Return a pointer to the part of the buffer to use. We this 254 instead of sprintf because sprintf will require too much stack 255 space. */ 256 257 static char * 258 print_int (int val, char *buf, int buflen, size_t *print_len) 259 { 260 int is_negative; 261 int i; 262 unsigned int uval; 263 264 uval = (unsigned int) val; 265 if (val >= 0) 266 is_negative = 0; 267 else 268 { 269 is_negative = 1; 270 uval = - uval; 271 } 272 273 i = buflen; 274 do 275 { 276 --i; 277 buf[i] = '0' + (uval % 10); 278 uval /= 10; 279 } 280 while (uval != 0 && i > 0); 281 282 if (is_negative) 283 { 284 if (i > 0) 285 --i; 286 buf[i] = '-'; 287 } 288 289 *print_len = buflen - i; 290 return buf + i; 291 } 292 293 /* Print the string MSG/LEN, the errno number ERR, and a newline on 294 stderr. Then crash. */ 295 296 void 297 __morestack_fail (const char *, size_t, int) __attribute__ ((noreturn)); 298 299 void 300 __morestack_fail (const char *msg, size_t len, int err) 301 { 302 char buf[24]; 303 static const char nl[] = "\n"; 304 struct iovec iov[3]; 305 union { char *p; const char *cp; } const_cast; 306 307 const_cast.cp = msg; 308 iov[0].iov_base = const_cast.p; 309 iov[0].iov_len = len; 310 /* We can't call strerror, because it may try to translate the error 311 message, and that would use too much stack space. */ 312 iov[1].iov_base = print_int (err, buf, sizeof buf, &iov[1].iov_len); 313 const_cast.cp = &nl[0]; 314 iov[2].iov_base = const_cast.p; 315 iov[2].iov_len = sizeof nl - 1; 316 /* FIXME: On systems without writev we need to issue three write 317 calls, or punt on printing errno. For now this is irrelevant 318 since stack splitting only works on GNU/Linux anyhow. */ 319 writev (2, iov, 3); 320 abort (); 321 } 322 323 /* Allocate a new stack segment. FRAME_SIZE is the required frame 324 size. */ 325 326 static struct stack_segment * 327 allocate_segment (size_t frame_size) 328 { 329 unsigned int pagesize; 330 unsigned int overhead; 331 unsigned int allocate; 332 void *space; 333 struct stack_segment *pss; 334 335 pagesize = static_pagesize; 336 overhead = sizeof (struct stack_segment); 337 338 allocate = pagesize; 339 if (allocate < MINSIGSTKSZ) 340 allocate = ((MINSIGSTKSZ + overhead + pagesize - 1) 341 & ~ (pagesize - 1)); 342 if (allocate < frame_size) 343 allocate = ((frame_size + overhead + pagesize - 1) 344 & ~ (pagesize - 1)); 345 346 if (use_guard_page) 347 allocate += pagesize; 348 349 /* FIXME: If this binary requires an executable stack, then we need 350 to set PROT_EXEC. Unfortunately figuring that out is complicated 351 and target dependent. We would need to use dl_iterate_phdr to 352 see if there is any object which does not have a PT_GNU_STACK 353 phdr, though only for architectures which use that mechanism. */ 354 space = mmap (NULL, allocate, PROT_READ | PROT_WRITE, 355 MAP_ANONYMOUS | MAP_PRIVATE, -1, 0); 356 if (space == MAP_FAILED) 357 { 358 static const char msg[] = 359 "unable to allocate additional stack space: errno "; 360 __morestack_fail (msg, sizeof msg - 1, errno); 361 } 362 363 if (use_guard_page) 364 { 365 void *guard; 366 367 #ifdef __LIBGCC_STACK_GROWS_DOWNWARD__ 368 guard = space; 369 space = (char *) space + pagesize; 370 #else 371 guard = space + allocate - pagesize; 372 #endif 373 374 mprotect (guard, pagesize, PROT_NONE); 375 allocate -= pagesize; 376 } 377 378 pss = (struct stack_segment *) space; 379 380 pss->prev = NULL; 381 pss->next = NULL; 382 pss->size = allocate - overhead; 383 pss->dynamic_allocation = NULL; 384 pss->free_dynamic_allocation = NULL; 385 pss->extra = NULL; 386 387 return pss; 388 } 389 390 /* Free a list of dynamic blocks. */ 391 392 static void 393 free_dynamic_blocks (struct dynamic_allocation_blocks *p) 394 { 395 while (p != NULL) 396 { 397 struct dynamic_allocation_blocks *next; 398 399 next = p->next; 400 free (p->block); 401 free (p); 402 p = next; 403 } 404 } 405 406 /* Merge two lists of dynamic blocks. */ 407 408 static struct dynamic_allocation_blocks * 409 merge_dynamic_blocks (struct dynamic_allocation_blocks *a, 410 struct dynamic_allocation_blocks *b) 411 { 412 struct dynamic_allocation_blocks **pp; 413 414 if (a == NULL) 415 return b; 416 if (b == NULL) 417 return a; 418 for (pp = &a->next; *pp != NULL; pp = &(*pp)->next) 419 ; 420 *pp = b; 421 return a; 422 } 423 424 /* Release stack segments. If FREE_DYNAMIC is non-zero, we also free 425 any dynamic blocks. Otherwise we return them. */ 426 427 struct dynamic_allocation_blocks * 428 __morestack_release_segments (struct stack_segment **pp, int free_dynamic) 429 { 430 struct dynamic_allocation_blocks *ret; 431 struct stack_segment *pss; 432 433 ret = NULL; 434 pss = *pp; 435 while (pss != NULL) 436 { 437 struct stack_segment *next; 438 unsigned int allocate; 439 440 next = pss->next; 441 442 if (pss->dynamic_allocation != NULL 443 || pss->free_dynamic_allocation != NULL) 444 { 445 if (free_dynamic) 446 { 447 free_dynamic_blocks (pss->dynamic_allocation); 448 free_dynamic_blocks (pss->free_dynamic_allocation); 449 } 450 else 451 { 452 ret = merge_dynamic_blocks (pss->dynamic_allocation, ret); 453 ret = merge_dynamic_blocks (pss->free_dynamic_allocation, ret); 454 } 455 } 456 457 allocate = pss->size + sizeof (struct stack_segment); 458 if (munmap (pss, allocate) < 0) 459 { 460 static const char msg[] = "munmap of stack space failed: errno "; 461 __morestack_fail (msg, sizeof msg - 1, errno); 462 } 463 464 pss = next; 465 } 466 *pp = NULL; 467 468 return ret; 469 } 470 471 /* This function is called by a processor specific function to set the 472 initial stack pointer for a thread. The operating system will 473 always create a stack for a thread. Here we record a stack pointer 474 near the base of that stack. The size argument lets the processor 475 specific code estimate how much stack space is available on this 476 initial stack. */ 477 478 void 479 __generic_morestack_set_initial_sp (void *sp, size_t len) 480 { 481 /* The stack pointer most likely starts on a page boundary. Adjust 482 to the nearest 512 byte boundary. It's not essential that we be 483 precise here; getting it wrong will just leave some stack space 484 unused. */ 485 #ifdef __LIBGCC_STACK_GROWS_DOWNWARD__ 486 sp = (void *) ((((__UINTPTR_TYPE__) sp + 511U) / 512U) * 512U); 487 #else 488 sp = (void *) ((((__UINTPTR_TYPE__) sp - 511U) / 512U) * 512U); 489 #endif 490 491 __morestack_initial_sp.sp = sp; 492 __morestack_initial_sp.len = len; 493 sigemptyset (&__morestack_initial_sp.mask); 494 495 sigfillset (&__morestack_fullmask); 496 #if defined(__GLIBC__) && defined(__linux__) 497 /* In glibc, the first two real time signals are used by the NPTL 498 threading library. By taking them out of the set of signals, we 499 avoiding copying the signal mask in pthread_sigmask. More 500 importantly, pthread_sigmask uses less stack space on x86_64. */ 501 sigdelset (&__morestack_fullmask, __SIGRTMIN); 502 sigdelset (&__morestack_fullmask, __SIGRTMIN + 1); 503 #endif 504 } 505 506 /* This function is called by a processor specific function which is 507 run in the prologue when more stack is needed. The processor 508 specific function handles the details of saving registers and 509 frobbing the actual stack pointer. This function is responsible 510 for allocating a new stack segment and for copying a parameter 511 block from the old stack to the new one. On function entry 512 *PFRAME_SIZE is the size of the required stack frame--the returned 513 stack must be at least this large. On function exit *PFRAME_SIZE 514 is the amount of space remaining on the allocated stack. OLD_STACK 515 points at the parameters the old stack (really the current one 516 while this function is running). OLD_STACK is saved so that it can 517 be returned by a later call to __generic_releasestack. PARAM_SIZE 518 is the size in bytes of parameters to copy to the new stack. This 519 function returns a pointer to the new stack segment, pointing to 520 the memory after the parameters have been copied. The returned 521 value minus the returned *PFRAME_SIZE (or plus if the stack grows 522 upward) is the first address on the stack which should not be used. 523 524 This function is running on the old stack and has only a limited 525 amount of stack space available. */ 526 527 void * 528 __generic_morestack (size_t *pframe_size, void *old_stack, size_t param_size) 529 { 530 size_t frame_size = *pframe_size; 531 struct stack_segment *current; 532 struct stack_segment **pp; 533 struct dynamic_allocation_blocks *dynamic; 534 char *from; 535 char *to; 536 void *ret; 537 size_t i; 538 size_t aligned; 539 540 current = __morestack_current_segment; 541 542 pp = current != NULL ? ¤t->next : &__morestack_segments; 543 if (*pp != NULL && (*pp)->size < frame_size) 544 dynamic = __morestack_release_segments (pp, 0); 545 else 546 dynamic = NULL; 547 current = *pp; 548 549 if (current == NULL) 550 { 551 current = allocate_segment (frame_size + param_size); 552 current->prev = __morestack_current_segment; 553 *pp = current; 554 } 555 556 current->old_stack = old_stack; 557 558 __morestack_current_segment = current; 559 560 if (dynamic != NULL) 561 { 562 /* Move the free blocks onto our list. We don't want to call 563 free here, as we are short on stack space. */ 564 current->free_dynamic_allocation = 565 merge_dynamic_blocks (dynamic, current->free_dynamic_allocation); 566 } 567 568 *pframe_size = current->size - param_size; 569 570 /* Align the returned stack to a 32-byte boundary. */ 571 aligned = (param_size + 31) & ~ (size_t) 31; 572 573 #ifdef __LIBGCC_STACK_GROWS_DOWNWARD__ 574 { 575 char *bottom = (char *) (current + 1) + current->size; 576 to = bottom - aligned; 577 ret = bottom - aligned; 578 } 579 #else 580 to = current + 1; 581 to += aligned - param_size; 582 ret = (char *) (current + 1) + aligned; 583 #endif 584 585 /* We don't call memcpy to avoid worrying about the dynamic linker 586 trying to resolve it. */ 587 from = (char *) old_stack; 588 for (i = 0; i < param_size; i++) 589 *to++ = *from++; 590 591 return ret; 592 } 593 594 /* This function is called by a processor specific function when it is 595 ready to release a stack segment. We don't actually release the 596 stack segment, we just move back to the previous one. The current 597 stack segment will still be available if we need it in 598 __generic_morestack. This returns a pointer to the new stack 599 segment to use, which is the one saved by a previous call to 600 __generic_morestack. The processor specific function is then 601 responsible for actually updating the stack pointer. This sets 602 *PAVAILABLE to the amount of stack space now available. */ 603 604 void * 605 __generic_releasestack (size_t *pavailable) 606 { 607 struct stack_segment *current; 608 void *old_stack; 609 610 current = __morestack_current_segment; 611 old_stack = current->old_stack; 612 current = current->prev; 613 __morestack_current_segment = current; 614 615 if (current != NULL) 616 { 617 #ifdef __LIBGCC_STACK_GROWS_DOWNWARD__ 618 *pavailable = (char *) old_stack - (char *) (current + 1); 619 #else 620 *pavailable = (char *) (current + 1) + current->size - (char *) old_stack; 621 #endif 622 } 623 else 624 { 625 size_t used; 626 627 /* We have popped back to the original stack. */ 628 #ifdef __LIBGCC_STACK_GROWS_DOWNWARD__ 629 if ((char *) old_stack >= (char *) __morestack_initial_sp.sp) 630 used = 0; 631 else 632 used = (char *) __morestack_initial_sp.sp - (char *) old_stack; 633 #else 634 if ((char *) old_stack <= (char *) __morestack_initial_sp.sp) 635 used = 0; 636 else 637 used = (char *) old_stack - (char *) __morestack_initial_sp.sp; 638 #endif 639 640 if (used > __morestack_initial_sp.len) 641 *pavailable = 0; 642 else 643 *pavailable = __morestack_initial_sp.len - used; 644 } 645 646 return old_stack; 647 } 648 649 /* Block signals while splitting the stack. This avoids trouble if we 650 try to invoke a signal handler which itself wants to split the 651 stack. */ 652 653 extern int pthread_sigmask (int, const sigset_t *, sigset_t *) 654 __attribute__ ((weak)); 655 656 void 657 __morestack_block_signals (void) 658 { 659 if (__morestack_initial_sp.dont_block_signals) 660 ; 661 else if (pthread_sigmask) 662 pthread_sigmask (SIG_BLOCK, &__morestack_fullmask, 663 &__morestack_initial_sp.mask); 664 else 665 sigprocmask (SIG_BLOCK, &__morestack_fullmask, 666 &__morestack_initial_sp.mask); 667 } 668 669 /* Unblock signals while splitting the stack. */ 670 671 void 672 __morestack_unblock_signals (void) 673 { 674 if (__morestack_initial_sp.dont_block_signals) 675 ; 676 else if (pthread_sigmask) 677 pthread_sigmask (SIG_SETMASK, &__morestack_initial_sp.mask, NULL); 678 else 679 sigprocmask (SIG_SETMASK, &__morestack_initial_sp.mask, NULL); 680 } 681 682 /* This function is called to allocate dynamic stack space, for alloca 683 or a variably sized array. This is a regular function with 684 sufficient stack space, so we just use malloc to allocate the 685 space. We attach the allocated blocks to the current stack 686 segment, so that they will eventually be reused or freed. */ 687 688 void * 689 __morestack_allocate_stack_space (size_t size) 690 { 691 struct stack_segment *seg, *current; 692 struct dynamic_allocation_blocks *p; 693 694 /* We have to block signals to avoid getting confused if we get 695 interrupted by a signal whose handler itself uses alloca or a 696 variably sized array. */ 697 __morestack_block_signals (); 698 699 /* Since we don't want to call free while we are low on stack space, 700 we may have a list of already allocated blocks waiting to be 701 freed. Release them all, unless we find one that is large 702 enough. We don't look at every block to see if one is large 703 enough, just the first one, because we aren't trying to build a 704 memory allocator here, we're just trying to speed up common 705 cases. */ 706 707 current = __morestack_current_segment; 708 p = NULL; 709 for (seg = __morestack_segments; seg != NULL; seg = seg->next) 710 { 711 p = seg->free_dynamic_allocation; 712 if (p != NULL) 713 { 714 if (p->size >= size) 715 { 716 seg->free_dynamic_allocation = p->next; 717 break; 718 } 719 720 free_dynamic_blocks (p); 721 seg->free_dynamic_allocation = NULL; 722 p = NULL; 723 } 724 } 725 726 if (p == NULL) 727 { 728 /* We need to allocate additional memory. */ 729 p = malloc (sizeof (*p)); 730 if (p == NULL) 731 abort (); 732 p->size = size; 733 p->block = malloc (size); 734 if (p->block == NULL) 735 abort (); 736 } 737 738 /* If we are still on the initial stack, then we have a space leak. 739 FIXME. */ 740 if (current != NULL) 741 { 742 p->next = current->dynamic_allocation; 743 current->dynamic_allocation = p; 744 } 745 746 __morestack_unblock_signals (); 747 748 return p->block; 749 } 750 751 /* Find the stack segment for STACK and return the amount of space 752 available. This is used when unwinding the stack because of an 753 exception, in order to reset the stack guard correctly. */ 754 755 size_t 756 __generic_findstack (void *stack) 757 { 758 struct stack_segment *pss; 759 size_t used; 760 761 for (pss = __morestack_current_segment; pss != NULL; pss = pss->prev) 762 { 763 if ((char *) pss < (char *) stack 764 && (char *) pss + pss->size > (char *) stack) 765 { 766 __morestack_current_segment = pss; 767 #ifdef __LIBGCC_STACK_GROWS_DOWNWARD__ 768 return (char *) stack - (char *) (pss + 1); 769 #else 770 return (char *) (pss + 1) + pss->size - (char *) stack; 771 #endif 772 } 773 } 774 775 /* We have popped back to the original stack. */ 776 777 if (__morestack_initial_sp.sp == NULL) 778 return 0; 779 780 #ifdef __LIBGCC_STACK_GROWS_DOWNWARD__ 781 if ((char *) stack >= (char *) __morestack_initial_sp.sp) 782 used = 0; 783 else 784 used = (char *) __morestack_initial_sp.sp - (char *) stack; 785 #else 786 if ((char *) stack <= (char *) __morestack_initial_sp.sp) 787 used = 0; 788 else 789 used = (char *) stack - (char *) __morestack_initial_sp.sp; 790 #endif 791 792 if (used > __morestack_initial_sp.len) 793 return 0; 794 else 795 return __morestack_initial_sp.len - used; 796 } 797 798 /* This function is called at program startup time to make sure that 799 mmap, munmap, and getpagesize are resolved if linking dynamically. 800 We want to resolve them while we have enough stack for them, rather 801 than calling into the dynamic linker while low on stack space. 802 Similarly, invoke getenv here to check for split-stack related control 803 variables, since doing do as part of the __morestack path can result 804 in unwanted use of SSE/AVX registers (see GCC PR 86213). */ 805 806 void 807 __morestack_load_mmap (void) 808 { 809 /* Call with bogus values to run faster. We don't care if the call 810 fails. Pass __MORESTACK_CURRENT_SEGMENT to make sure that any 811 TLS accessor function is resolved. */ 812 mmap (__morestack_current_segment, 0, PROT_READ, MAP_ANONYMOUS, -1, 0); 813 mprotect (NULL, 0, 0); 814 munmap (0, static_pagesize); 815 816 /* Initialize these values here, so as to avoid dynamic linker 817 activity as part of a __morestack call. */ 818 static_pagesize = getpagesize(); 819 use_guard_page = getenv ("SPLIT_STACK_GUARD") != 0; 820 } 821 822 /* This function may be used to iterate over the stack segments. 823 This can be called like this. 824 void *next_segment = NULL; 825 void *next_sp = NULL; 826 void *initial_sp = NULL; 827 void *stack; 828 size_t stack_size; 829 while ((stack = __splitstack_find (next_segment, next_sp, &stack_size, 830 &next_segment, &next_sp, 831 &initial_sp)) != NULL) 832 { 833 // Stack segment starts at stack and is stack_size bytes long. 834 } 835 836 There is no way to iterate over the stack segments of a different 837 thread. However, what is permitted is for one thread to call this 838 with the first two values NULL, to pass next_segment, next_sp, and 839 initial_sp to a different thread, and then to suspend one way or 840 another. A different thread may run the subsequent 841 __morestack_find iterations. Of course, this will only work if the 842 first thread is suspended during the __morestack_find iterations. 843 If not, the second thread will be looking at the stack while it is 844 changing, and anything could happen. 845 846 FIXME: This should be declared in some header file, but where? */ 847 848 void * 849 __splitstack_find (void *segment_arg, void *sp, size_t *len, 850 void **next_segment, void **next_sp, 851 void **initial_sp) 852 { 853 struct stack_segment *segment; 854 void *ret; 855 char *nsp; 856 857 if (segment_arg == (void *) (uintptr_type) 1) 858 { 859 char *isp = (char *) *initial_sp; 860 861 if (isp == NULL) 862 return NULL; 863 864 *next_segment = (void *) (uintptr_type) 2; 865 *next_sp = NULL; 866 #ifdef __LIBGCC_STACK_GROWS_DOWNWARD__ 867 if ((char *) sp >= isp) 868 return NULL; 869 *len = (char *) isp - (char *) sp; 870 return sp; 871 #else 872 if ((char *) sp <= (char *) isp) 873 return NULL; 874 *len = (char *) sp - (char *) isp; 875 return (void *) isp; 876 #endif 877 } 878 else if (segment_arg == (void *) (uintptr_type) 2) 879 return NULL; 880 else if (segment_arg != NULL) 881 segment = (struct stack_segment *) segment_arg; 882 else 883 { 884 *initial_sp = __morestack_initial_sp.sp; 885 segment = __morestack_current_segment; 886 sp = (void *) &segment; 887 while (1) 888 { 889 if (segment == NULL) 890 return __splitstack_find ((void *) (uintptr_type) 1, sp, len, 891 next_segment, next_sp, initial_sp); 892 if ((char *) sp >= (char *) (segment + 1) 893 && (char *) sp <= (char *) (segment + 1) + segment->size) 894 break; 895 segment = segment->prev; 896 } 897 } 898 899 if (segment->prev == NULL) 900 *next_segment = (void *) (uintptr_type) 1; 901 else 902 *next_segment = segment->prev; 903 904 /* The old_stack value is the address of the function parameters of 905 the function which called __morestack. So if f1 called f2 which 906 called __morestack, the stack looks like this: 907 908 parameters <- old_stack 909 return in f1 910 return in f2 911 registers pushed by __morestack 912 913 The registers pushed by __morestack may not be visible on any 914 other stack, if we are being called by a signal handler 915 immediately after the call to __morestack_unblock_signals. We 916 want to adjust our return value to include those registers. This 917 is target dependent. */ 918 919 nsp = (char *) segment->old_stack; 920 921 if (nsp == NULL) 922 { 923 /* We've reached the top of the stack. */ 924 *next_segment = (void *) (uintptr_type) 2; 925 } 926 else 927 { 928 #if defined (__x86_64__) 929 nsp -= 12 * sizeof (void *); 930 #elif defined (__i386__) 931 nsp -= 6 * sizeof (void *); 932 #elif defined __powerpc64__ 933 #elif defined __s390x__ 934 nsp -= 2 * 160; 935 #elif defined __s390__ 936 nsp -= 2 * 96; 937 #else 938 #error "unrecognized target" 939 #endif 940 941 *next_sp = (void *) nsp; 942 } 943 944 #ifdef __LIBGCC_STACK_GROWS_DOWNWARD__ 945 *len = (char *) (segment + 1) + segment->size - (char *) sp; 946 ret = (void *) sp; 947 #else 948 *len = (char *) sp - (char *) (segment + 1); 949 ret = (void *) (segment + 1); 950 #endif 951 952 return ret; 953 } 954 955 /* Tell the split stack code whether it has to block signals while 956 manipulating the stack. This is for programs in which some threads 957 block all signals. If a thread already blocks signals, there is no 958 need for the split stack code to block them as well. If NEW is not 959 NULL, then if *NEW is non-zero signals will be blocked while 960 splitting the stack, otherwise they will not. If OLD is not NULL, 961 *OLD will be set to the old value. */ 962 963 void 964 __splitstack_block_signals (int *new, int *old) 965 { 966 if (old != NULL) 967 *old = __morestack_initial_sp.dont_block_signals ? 0 : 1; 968 if (new != NULL) 969 __morestack_initial_sp.dont_block_signals = *new ? 0 : 1; 970 } 971 972 /* The offsets into the arrays used by __splitstack_getcontext and 973 __splitstack_setcontext. */ 974 975 enum __splitstack_context_offsets 976 { 977 MORESTACK_SEGMENTS = 0, 978 CURRENT_SEGMENT = 1, 979 CURRENT_STACK = 2, 980 STACK_GUARD = 3, 981 INITIAL_SP = 4, 982 INITIAL_SP_LEN = 5, 983 BLOCK_SIGNALS = 6, 984 985 NUMBER_OFFSETS = 10 986 }; 987 988 /* Get the current split stack context. This may be used for 989 coroutine switching, similar to getcontext. The argument should 990 have at least 10 void *pointers for extensibility, although we 991 don't currently use all of them. This would normally be called 992 immediately before a call to getcontext or swapcontext or 993 setjmp. */ 994 995 void 996 __splitstack_getcontext (void *context[NUMBER_OFFSETS]) 997 { 998 memset (context, 0, NUMBER_OFFSETS * sizeof (void *)); 999 context[MORESTACK_SEGMENTS] = (void *) __morestack_segments; 1000 context[CURRENT_SEGMENT] = (void *) __morestack_current_segment; 1001 context[CURRENT_STACK] = (void *) &context; 1002 context[STACK_GUARD] = __morestack_get_guard (); 1003 context[INITIAL_SP] = (void *) __morestack_initial_sp.sp; 1004 context[INITIAL_SP_LEN] = (void *) (uintptr_type) __morestack_initial_sp.len; 1005 context[BLOCK_SIGNALS] = (void *) __morestack_initial_sp.dont_block_signals; 1006 } 1007 1008 /* Set the current split stack context. The argument should be a 1009 context previously passed to __splitstack_getcontext. This would 1010 normally be called immediately after a call to getcontext or 1011 swapcontext or setjmp if something jumped to it. */ 1012 1013 void 1014 __splitstack_setcontext (void *context[NUMBER_OFFSETS]) 1015 { 1016 __morestack_segments = (struct stack_segment *) context[MORESTACK_SEGMENTS]; 1017 __morestack_current_segment = 1018 (struct stack_segment *) context[CURRENT_SEGMENT]; 1019 __morestack_set_guard (context[STACK_GUARD]); 1020 __morestack_initial_sp.sp = context[INITIAL_SP]; 1021 __morestack_initial_sp.len = (size_t) context[INITIAL_SP_LEN]; 1022 __morestack_initial_sp.dont_block_signals = 1023 (uintptr_type) context[BLOCK_SIGNALS]; 1024 } 1025 1026 /* Create a new split stack context. This will allocate a new stack 1027 segment which may be used by a coroutine. STACK_SIZE is the 1028 minimum size of the new stack. The caller is responsible for 1029 actually setting the stack pointer. This would normally be called 1030 before a call to makecontext, and the returned stack pointer and 1031 size would be used to set the uc_stack field. A function called 1032 via makecontext on a stack created by __splitstack_makecontext may 1033 not return. Note that the returned pointer points to the lowest 1034 address in the stack space, and thus may not be the value to which 1035 to set the stack pointer. */ 1036 1037 void * 1038 __splitstack_makecontext (size_t stack_size, void *context[NUMBER_OFFSETS], 1039 size_t *size) 1040 { 1041 struct stack_segment *segment; 1042 void *initial_sp; 1043 1044 memset (context, 0, NUMBER_OFFSETS * sizeof (void *)); 1045 segment = allocate_segment (stack_size); 1046 context[MORESTACK_SEGMENTS] = segment; 1047 context[CURRENT_SEGMENT] = segment; 1048 #ifdef __LIBGCC_STACK_GROWS_DOWNWARD__ 1049 initial_sp = (void *) ((char *) (segment + 1) + segment->size); 1050 #else 1051 initial_sp = (void *) (segment + 1); 1052 #endif 1053 context[STACK_GUARD] = __morestack_make_guard (initial_sp, segment->size); 1054 context[INITIAL_SP] = NULL; 1055 context[INITIAL_SP_LEN] = 0; 1056 *size = segment->size; 1057 return (void *) (segment + 1); 1058 } 1059 1060 /* Given an existing split stack context, reset it back to the start 1061 of the stack. Return the stack pointer and size, appropriate for 1062 use with makecontext. This may be used if a coroutine exits, in 1063 order to reuse the stack segments for a new coroutine. */ 1064 1065 void * 1066 __splitstack_resetcontext (void *context[10], size_t *size) 1067 { 1068 struct stack_segment *segment; 1069 void *initial_sp; 1070 size_t initial_size; 1071 void *ret; 1072 1073 /* Reset the context assuming that MORESTACK_SEGMENTS, INITIAL_SP 1074 and INITIAL_SP_LEN are correct. */ 1075 1076 segment = context[MORESTACK_SEGMENTS]; 1077 context[CURRENT_SEGMENT] = segment; 1078 context[CURRENT_STACK] = NULL; 1079 if (segment == NULL) 1080 { 1081 initial_sp = context[INITIAL_SP]; 1082 initial_size = (uintptr_type) context[INITIAL_SP_LEN]; 1083 ret = initial_sp; 1084 #ifdef __LIBGCC_STACK_GROWS_DOWNWARD__ 1085 ret = (void *) ((char *) ret - initial_size); 1086 #endif 1087 } 1088 else 1089 { 1090 #ifdef __LIBGCC_STACK_GROWS_DOWNWARD__ 1091 initial_sp = (void *) ((char *) (segment + 1) + segment->size); 1092 #else 1093 initial_sp = (void *) (segment + 1); 1094 #endif 1095 initial_size = segment->size; 1096 ret = (void *) (segment + 1); 1097 } 1098 context[STACK_GUARD] = __morestack_make_guard (initial_sp, initial_size); 1099 context[BLOCK_SIGNALS] = NULL; 1100 *size = initial_size; 1101 return ret; 1102 } 1103 1104 /* Release all the memory associated with a splitstack context. This 1105 may be used if a coroutine exits and the associated stack should be 1106 freed. */ 1107 1108 void 1109 __splitstack_releasecontext (void *context[10]) 1110 { 1111 __morestack_release_segments (((struct stack_segment **) 1112 &context[MORESTACK_SEGMENTS]), 1113 1); 1114 } 1115 1116 /* Like __splitstack_block_signals, but operating on CONTEXT, rather 1117 than on the current state. */ 1118 1119 void 1120 __splitstack_block_signals_context (void *context[NUMBER_OFFSETS], int *new, 1121 int *old) 1122 { 1123 if (old != NULL) 1124 *old = ((uintptr_type) context[BLOCK_SIGNALS]) != 0 ? 0 : 1; 1125 if (new != NULL) 1126 context[BLOCK_SIGNALS] = (void *) (uintptr_type) (*new ? 0 : 1); 1127 } 1128 1129 /* Find the stack segments associated with a split stack context. 1130 This will return the address of the first stack segment and set 1131 *STACK_SIZE to its size. It will set next_segment, next_sp, and 1132 initial_sp which may be passed to __splitstack_find to find the 1133 remaining segments. */ 1134 1135 void * 1136 __splitstack_find_context (void *context[NUMBER_OFFSETS], size_t *stack_size, 1137 void **next_segment, void **next_sp, 1138 void **initial_sp) 1139 { 1140 void *sp; 1141 struct stack_segment *segment; 1142 1143 *initial_sp = context[INITIAL_SP]; 1144 1145 sp = context[CURRENT_STACK]; 1146 if (sp == NULL) 1147 { 1148 /* Most likely this context was created but was never used. The 1149 value 2 is a code used by __splitstack_find to mean that we 1150 have reached the end of the list of stacks. */ 1151 *next_segment = (void *) (uintptr_type) 2; 1152 *next_sp = NULL; 1153 *initial_sp = NULL; 1154 return NULL; 1155 } 1156 1157 segment = context[CURRENT_SEGMENT]; 1158 if (segment == NULL) 1159 { 1160 /* Most likely this context was saved by a thread which was not 1161 created using __splistack_makecontext and which has never 1162 split the stack. The value 1 is a code used by 1163 __splitstack_find to look at the initial stack. */ 1164 segment = (struct stack_segment *) (uintptr_type) 1; 1165 } 1166 1167 return __splitstack_find (segment, sp, stack_size, next_segment, next_sp, 1168 initial_sp); 1169 } 1170 1171 #endif /* !defined (inhibit_libc) */ 1172 #endif /* not powerpc 32-bit */ 1173