1 /* CPP Library - charsets 2 Copyright (C) 1998-2020 Free Software Foundation, Inc. 3 4 Broken out of c-lex.c Apr 2003, adding valid C99 UCN ranges. 5 6 This program is free software; you can redistribute it and/or modify it 7 under the terms of the GNU General Public License as published by the 8 Free Software Foundation; either version 3, or (at your option) any 9 later version. 10 11 This program is distributed in the hope that it will be useful, 12 but WITHOUT ANY WARRANTY; without even the implied warranty of 13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 GNU General Public License for more details. 15 16 You should have received a copy of the GNU General Public License 17 along with this program; see the file COPYING3. If not see 18 <http://www.gnu.org/licenses/>. */ 19 20 #include "config.h" 21 #include "system.h" 22 #include "cpplib.h" 23 #include "internal.h" 24 25 /* Character set handling for C-family languages. 26 27 Terminological note: In what follows, "charset" or "character set" 28 will be taken to mean both an abstract set of characters and an 29 encoding for that set. 30 31 The C99 standard discusses two character sets: source and execution. 32 The source character set is used for internal processing in translation 33 phases 1 through 4; the execution character set is used thereafter. 34 Both are required by 5.2.1.2p1 to be multibyte encodings, not wide 35 character encodings (see 3.7.2, 3.7.3 for the standardese meanings 36 of these terms). Furthermore, the "basic character set" (listed in 37 5.2.1p3) is to be encoded in each with values one byte wide, and is 38 to appear in the initial shift state. 39 40 It is not explicitly mentioned, but there is also a "wide execution 41 character set" used to encode wide character constants and wide 42 string literals; this is supposed to be the result of applying the 43 standard library function mbstowcs() to an equivalent narrow string 44 (6.4.5p5). However, the behavior of hexadecimal and octal 45 \-escapes is at odds with this; they are supposed to be translated 46 directly to wchar_t values (6.4.4.4p5,6). 47 48 The source character set is not necessarily the character set used 49 to encode physical source files on disk; translation phase 1 converts 50 from whatever that encoding is to the source character set. 51 52 The presence of universal character names in C99 (6.4.3 et seq.) 53 forces the source character set to be isomorphic to ISO 10646, 54 that is, Unicode. There is no such constraint on the execution 55 character set; note also that the conversion from source to 56 execution character set does not occur for identifiers (5.1.1.2p1#5). 57 58 For convenience of implementation, the source character set's 59 encoding of the basic character set should be identical to the 60 execution character set OF THE HOST SYSTEM's encoding of the basic 61 character set, and it should not be a state-dependent encoding. 62 63 cpplib uses UTF-8 or UTF-EBCDIC for the source character set, 64 depending on whether the host is based on ASCII or EBCDIC (see 65 respectively Unicode section 2.3/ISO10646 Amendment 2, and Unicode 66 Technical Report #16). With limited exceptions, it relies on the 67 system library's iconv() primitive to do charset conversion 68 (specified in SUSv2). */ 69 70 #if !HAVE_ICONV 71 /* Make certain that the uses of iconv(), iconv_open(), iconv_close() 72 below, which are guarded only by if statements with compile-time 73 constant conditions, do not cause link errors. */ 74 #define iconv_open(x, y) (errno = EINVAL, (iconv_t)-1) 75 #define iconv(a,b,c,d,e) (errno = EINVAL, (size_t)-1) 76 #define iconv_close(x) (void)0 77 #define ICONV_CONST 78 #endif 79 80 #if HOST_CHARSET == HOST_CHARSET_ASCII 81 #define SOURCE_CHARSET "UTF-8" 82 #define LAST_POSSIBLY_BASIC_SOURCE_CHAR 0x7e 83 #elif HOST_CHARSET == HOST_CHARSET_EBCDIC 84 #define SOURCE_CHARSET "UTF-EBCDIC" 85 #define LAST_POSSIBLY_BASIC_SOURCE_CHAR 0xFF 86 #else 87 #error "Unrecognized basic host character set" 88 #endif 89 90 #ifndef EILSEQ 91 #define EILSEQ EINVAL 92 #endif 93 94 /* This structure is used for a resizable string buffer throughout. */ 95 /* Don't call it strbuf, as that conflicts with unistd.h on systems 96 such as DYNIX/ptx where unistd.h includes stropts.h. */ 97 struct _cpp_strbuf 98 { 99 uchar *text; 100 size_t asize; 101 size_t len; 102 }; 103 104 /* This is enough to hold any string that fits on a single 80-column 105 line, even if iconv quadruples its size (e.g. conversion from 106 ASCII to UTF-32) rounded up to a power of two. */ 107 #define OUTBUF_BLOCK_SIZE 256 108 109 /* Conversions between UTF-8 and UTF-16/32 are implemented by custom 110 logic. This is because a depressing number of systems lack iconv, 111 or have have iconv libraries that do not do these conversions, so 112 we need a fallback implementation for them. To ensure the fallback 113 doesn't break due to neglect, it is used on all systems. 114 115 UTF-32 encoding is nice and simple: a four-byte binary number, 116 constrained to the range 00000000-7FFFFFFF to avoid questions of 117 signedness. We do have to cope with big- and little-endian 118 variants. 119 120 UTF-16 encoding uses two-byte binary numbers, again in big- and 121 little-endian variants, for all values in the 00000000-0000FFFF 122 range. Values in the 00010000-0010FFFF range are encoded as pairs 123 of two-byte numbers, called "surrogate pairs": given a number S in 124 this range, it is mapped to a pair (H, L) as follows: 125 126 H = (S - 0x10000) / 0x400 + 0xD800 127 L = (S - 0x10000) % 0x400 + 0xDC00 128 129 Two-byte values in the D800...DFFF range are ill-formed except as a 130 component of a surrogate pair. Even if the encoding within a 131 two-byte value is little-endian, the H member of the surrogate pair 132 comes first. 133 134 There is no way to encode values in the 00110000-7FFFFFFF range, 135 which is not currently a problem as there are no assigned code 136 points in that range; however, the author expects that it will 137 eventually become necessary to abandon UTF-16 due to this 138 limitation. Note also that, because of these pairs, UTF-16 does 139 not meet the requirements of the C standard for a wide character 140 encoding (see 3.7.3 and 6.4.4.4p11). 141 142 UTF-8 encoding looks like this: 143 144 value range encoded as 145 00000000-0000007F 0xxxxxxx 146 00000080-000007FF 110xxxxx 10xxxxxx 147 00000800-0000FFFF 1110xxxx 10xxxxxx 10xxxxxx 148 00010000-001FFFFF 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx 149 00200000-03FFFFFF 111110xx 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx 150 04000000-7FFFFFFF 1111110x 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx 151 152 Values in the 0000D800 ... 0000DFFF range (surrogates) are invalid, 153 which means that three-byte sequences ED xx yy, with A0 <= xx <= BF, 154 never occur. Note also that any value that can be encoded by a 155 given row of the table can also be encoded by all successive rows, 156 but this is not done; only the shortest possible encoding for any 157 given value is valid. For instance, the character 07C0 could be 158 encoded as any of DF 80, E0 9F 80, F0 80 9F 80, F8 80 80 9F 80, or 159 FC 80 80 80 9F 80. Only the first is valid. 160 161 An implementation note: the transformation from UTF-16 to UTF-8, or 162 vice versa, is easiest done by using UTF-32 as an intermediary. */ 163 164 /* Internal primitives which go from an UTF-8 byte stream to native-endian 165 UTF-32 in a cppchar_t, or vice versa; this avoids an extra marshal/unmarshal 166 operation in several places below. */ 167 static inline int 168 one_utf8_to_cppchar (const uchar **inbufp, size_t *inbytesleftp, 169 cppchar_t *cp) 170 { 171 static const uchar masks[6] = { 0x7F, 0x1F, 0x0F, 0x07, 0x03, 0x01 }; 172 static const uchar patns[6] = { 0x00, 0xC0, 0xE0, 0xF0, 0xF8, 0xFC }; 173 174 cppchar_t c; 175 const uchar *inbuf = *inbufp; 176 size_t nbytes, i; 177 178 if (*inbytesleftp < 1) 179 return EINVAL; 180 181 c = *inbuf; 182 if (c < 0x80) 183 { 184 *cp = c; 185 *inbytesleftp -= 1; 186 *inbufp += 1; 187 return 0; 188 } 189 190 /* The number of leading 1-bits in the first byte indicates how many 191 bytes follow. */ 192 for (nbytes = 2; nbytes < 7; nbytes++) 193 if ((c & ~masks[nbytes-1]) == patns[nbytes-1]) 194 goto found; 195 return EILSEQ; 196 found: 197 198 if (*inbytesleftp < nbytes) 199 return EINVAL; 200 201 c = (c & masks[nbytes-1]); 202 inbuf++; 203 for (i = 1; i < nbytes; i++) 204 { 205 cppchar_t n = *inbuf++; 206 if ((n & 0xC0) != 0x80) 207 return EILSEQ; 208 c = ((c << 6) + (n & 0x3F)); 209 } 210 211 /* Make sure the shortest possible encoding was used. */ 212 if (c <= 0x7F && nbytes > 1) return EILSEQ; 213 if (c <= 0x7FF && nbytes > 2) return EILSEQ; 214 if (c <= 0xFFFF && nbytes > 3) return EILSEQ; 215 if (c <= 0x1FFFFF && nbytes > 4) return EILSEQ; 216 if (c <= 0x3FFFFFF && nbytes > 5) return EILSEQ; 217 218 /* Make sure the character is valid. */ 219 if (c > 0x7FFFFFFF || (c >= 0xD800 && c <= 0xDFFF)) return EILSEQ; 220 221 *cp = c; 222 *inbufp = inbuf; 223 *inbytesleftp -= nbytes; 224 return 0; 225 } 226 227 static inline int 228 one_cppchar_to_utf8 (cppchar_t c, uchar **outbufp, size_t *outbytesleftp) 229 { 230 static const uchar masks[6] = { 0x00, 0xC0, 0xE0, 0xF0, 0xF8, 0xFC }; 231 static const uchar limits[6] = { 0x80, 0xE0, 0xF0, 0xF8, 0xFC, 0xFE }; 232 size_t nbytes; 233 uchar buf[6], *p = &buf[6]; 234 uchar *outbuf = *outbufp; 235 236 nbytes = 1; 237 if (c < 0x80) 238 *--p = c; 239 else 240 { 241 do 242 { 243 *--p = ((c & 0x3F) | 0x80); 244 c >>= 6; 245 nbytes++; 246 } 247 while (c >= 0x3F || (c & limits[nbytes-1])); 248 *--p = (c | masks[nbytes-1]); 249 } 250 251 if (*outbytesleftp < nbytes) 252 return E2BIG; 253 254 while (p < &buf[6]) 255 *outbuf++ = *p++; 256 *outbytesleftp -= nbytes; 257 *outbufp = outbuf; 258 return 0; 259 } 260 261 /* The following four functions transform one character between the two 262 encodings named in the function name. All have the signature 263 int (*)(iconv_t bigend, const uchar **inbufp, size_t *inbytesleftp, 264 uchar **outbufp, size_t *outbytesleftp) 265 266 BIGEND must have the value 0 or 1, coerced to (iconv_t); it is 267 interpreted as a boolean indicating whether big-endian or 268 little-endian encoding is to be used for the member of the pair 269 that is not UTF-8. 270 271 INBUFP, INBYTESLEFTP, OUTBUFP, OUTBYTESLEFTP work exactly as they 272 do for iconv. 273 274 The return value is either 0 for success, or an errno value for 275 failure, which may be E2BIG (need more space), EILSEQ (ill-formed 276 input sequence), ir EINVAL (incomplete input sequence). */ 277 278 static inline int 279 one_utf8_to_utf32 (iconv_t bigend, const uchar **inbufp, size_t *inbytesleftp, 280 uchar **outbufp, size_t *outbytesleftp) 281 { 282 uchar *outbuf; 283 cppchar_t s = 0; 284 int rval; 285 286 /* Check for space first, since we know exactly how much we need. */ 287 if (*outbytesleftp < 4) 288 return E2BIG; 289 290 rval = one_utf8_to_cppchar (inbufp, inbytesleftp, &s); 291 if (rval) 292 return rval; 293 294 outbuf = *outbufp; 295 outbuf[bigend ? 3 : 0] = (s & 0x000000FF); 296 outbuf[bigend ? 2 : 1] = (s & 0x0000FF00) >> 8; 297 outbuf[bigend ? 1 : 2] = (s & 0x00FF0000) >> 16; 298 outbuf[bigend ? 0 : 3] = (s & 0xFF000000) >> 24; 299 300 *outbufp += 4; 301 *outbytesleftp -= 4; 302 return 0; 303 } 304 305 static inline int 306 one_utf32_to_utf8 (iconv_t bigend, const uchar **inbufp, size_t *inbytesleftp, 307 uchar **outbufp, size_t *outbytesleftp) 308 { 309 cppchar_t s; 310 int rval; 311 const uchar *inbuf; 312 313 if (*inbytesleftp < 4) 314 return EINVAL; 315 316 inbuf = *inbufp; 317 318 s = inbuf[bigend ? 0 : 3] << 24; 319 s += inbuf[bigend ? 1 : 2] << 16; 320 s += inbuf[bigend ? 2 : 1] << 8; 321 s += inbuf[bigend ? 3 : 0]; 322 323 if (s >= 0x7FFFFFFF || (s >= 0xD800 && s <= 0xDFFF)) 324 return EILSEQ; 325 326 rval = one_cppchar_to_utf8 (s, outbufp, outbytesleftp); 327 if (rval) 328 return rval; 329 330 *inbufp += 4; 331 *inbytesleftp -= 4; 332 return 0; 333 } 334 335 static inline int 336 one_utf8_to_utf16 (iconv_t bigend, const uchar **inbufp, size_t *inbytesleftp, 337 uchar **outbufp, size_t *outbytesleftp) 338 { 339 int rval; 340 cppchar_t s = 0; 341 const uchar *save_inbuf = *inbufp; 342 size_t save_inbytesleft = *inbytesleftp; 343 uchar *outbuf = *outbufp; 344 345 rval = one_utf8_to_cppchar (inbufp, inbytesleftp, &s); 346 if (rval) 347 return rval; 348 349 if (s > 0x0010FFFF) 350 { 351 *inbufp = save_inbuf; 352 *inbytesleftp = save_inbytesleft; 353 return EILSEQ; 354 } 355 356 if (s <= 0xFFFF) 357 { 358 if (*outbytesleftp < 2) 359 { 360 *inbufp = save_inbuf; 361 *inbytesleftp = save_inbytesleft; 362 return E2BIG; 363 } 364 outbuf[bigend ? 1 : 0] = (s & 0x00FF); 365 outbuf[bigend ? 0 : 1] = (s & 0xFF00) >> 8; 366 367 *outbufp += 2; 368 *outbytesleftp -= 2; 369 return 0; 370 } 371 else 372 { 373 cppchar_t hi, lo; 374 375 if (*outbytesleftp < 4) 376 { 377 *inbufp = save_inbuf; 378 *inbytesleftp = save_inbytesleft; 379 return E2BIG; 380 } 381 382 hi = (s - 0x10000) / 0x400 + 0xD800; 383 lo = (s - 0x10000) % 0x400 + 0xDC00; 384 385 /* Even if we are little-endian, put the high surrogate first. 386 ??? Matches practice? */ 387 outbuf[bigend ? 1 : 0] = (hi & 0x00FF); 388 outbuf[bigend ? 0 : 1] = (hi & 0xFF00) >> 8; 389 outbuf[bigend ? 3 : 2] = (lo & 0x00FF); 390 outbuf[bigend ? 2 : 3] = (lo & 0xFF00) >> 8; 391 392 *outbufp += 4; 393 *outbytesleftp -= 4; 394 return 0; 395 } 396 } 397 398 static inline int 399 one_utf16_to_utf8 (iconv_t bigend, const uchar **inbufp, size_t *inbytesleftp, 400 uchar **outbufp, size_t *outbytesleftp) 401 { 402 cppchar_t s; 403 const uchar *inbuf = *inbufp; 404 int rval; 405 406 if (*inbytesleftp < 2) 407 return EINVAL; 408 s = inbuf[bigend ? 0 : 1] << 8; 409 s += inbuf[bigend ? 1 : 0]; 410 411 /* Low surrogate without immediately preceding high surrogate is invalid. */ 412 if (s >= 0xDC00 && s <= 0xDFFF) 413 return EILSEQ; 414 /* High surrogate must have a following low surrogate. */ 415 else if (s >= 0xD800 && s <= 0xDBFF) 416 { 417 cppchar_t hi = s, lo; 418 if (*inbytesleftp < 4) 419 return EINVAL; 420 421 lo = inbuf[bigend ? 2 : 3] << 8; 422 lo += inbuf[bigend ? 3 : 2]; 423 424 if (lo < 0xDC00 || lo > 0xDFFF) 425 return EILSEQ; 426 427 s = (hi - 0xD800) * 0x400 + (lo - 0xDC00) + 0x10000; 428 } 429 430 rval = one_cppchar_to_utf8 (s, outbufp, outbytesleftp); 431 if (rval) 432 return rval; 433 434 /* Success - update the input pointers (one_cppchar_to_utf8 has done 435 the output pointers for us). */ 436 if (s <= 0xFFFF) 437 { 438 *inbufp += 2; 439 *inbytesleftp -= 2; 440 } 441 else 442 { 443 *inbufp += 4; 444 *inbytesleftp -= 4; 445 } 446 return 0; 447 } 448 449 /* Helper routine for the next few functions. The 'const' on 450 one_conversion means that we promise not to modify what function is 451 pointed to, which lets the inliner see through it. */ 452 453 static inline bool 454 conversion_loop (int (*const one_conversion)(iconv_t, const uchar **, size_t *, 455 uchar **, size_t *), 456 iconv_t cd, const uchar *from, size_t flen, struct _cpp_strbuf *to) 457 { 458 const uchar *inbuf; 459 uchar *outbuf; 460 size_t inbytesleft, outbytesleft; 461 int rval; 462 463 inbuf = from; 464 inbytesleft = flen; 465 outbuf = to->text + to->len; 466 outbytesleft = to->asize - to->len; 467 468 for (;;) 469 { 470 do 471 rval = one_conversion (cd, &inbuf, &inbytesleft, 472 &outbuf, &outbytesleft); 473 while (inbytesleft && !rval); 474 475 if (__builtin_expect (inbytesleft == 0, 1)) 476 { 477 to->len = to->asize - outbytesleft; 478 return true; 479 } 480 if (rval != E2BIG) 481 { 482 errno = rval; 483 return false; 484 } 485 486 outbytesleft += OUTBUF_BLOCK_SIZE; 487 to->asize += OUTBUF_BLOCK_SIZE; 488 to->text = XRESIZEVEC (uchar, to->text, to->asize); 489 outbuf = to->text + to->asize - outbytesleft; 490 } 491 } 492 493 494 /* These functions convert entire strings between character sets. 495 They all have the signature 496 497 bool (*)(iconv_t cd, const uchar *from, size_t flen, struct _cpp_strbuf *to); 498 499 The input string FROM is converted as specified by the function 500 name plus the iconv descriptor CD (which may be fake), and the 501 result appended to TO. On any error, false is returned, otherwise true. */ 502 503 /* These four use the custom conversion code above. */ 504 static bool 505 convert_utf8_utf16 (iconv_t cd, const uchar *from, size_t flen, 506 struct _cpp_strbuf *to) 507 { 508 return conversion_loop (one_utf8_to_utf16, cd, from, flen, to); 509 } 510 511 static bool 512 convert_utf8_utf32 (iconv_t cd, const uchar *from, size_t flen, 513 struct _cpp_strbuf *to) 514 { 515 return conversion_loop (one_utf8_to_utf32, cd, from, flen, to); 516 } 517 518 static bool 519 convert_utf16_utf8 (iconv_t cd, const uchar *from, size_t flen, 520 struct _cpp_strbuf *to) 521 { 522 return conversion_loop (one_utf16_to_utf8, cd, from, flen, to); 523 } 524 525 static bool 526 convert_utf32_utf8 (iconv_t cd, const uchar *from, size_t flen, 527 struct _cpp_strbuf *to) 528 { 529 return conversion_loop (one_utf32_to_utf8, cd, from, flen, to); 530 } 531 532 /* Identity conversion, used when we have no alternative. */ 533 static bool 534 convert_no_conversion (iconv_t cd ATTRIBUTE_UNUSED, 535 const uchar *from, size_t flen, struct _cpp_strbuf *to) 536 { 537 if (to->len + flen > to->asize) 538 { 539 to->asize = to->len + flen; 540 to->asize += to->asize / 4; 541 to->text = XRESIZEVEC (uchar, to->text, to->asize); 542 } 543 memcpy (to->text + to->len, from, flen); 544 to->len += flen; 545 return true; 546 } 547 548 /* And this one uses the system iconv primitive. It's a little 549 different, since iconv's interface is a little different. */ 550 #if HAVE_ICONV 551 552 #define CONVERT_ICONV_GROW_BUFFER \ 553 do { \ 554 outbytesleft += OUTBUF_BLOCK_SIZE; \ 555 to->asize += OUTBUF_BLOCK_SIZE; \ 556 to->text = XRESIZEVEC (uchar, to->text, to->asize); \ 557 outbuf = (char *)to->text + to->asize - outbytesleft; \ 558 } while (0) 559 560 static bool 561 convert_using_iconv (iconv_t cd, const uchar *from, size_t flen, 562 struct _cpp_strbuf *to) 563 { 564 ICONV_CONST char *inbuf; 565 char *outbuf; 566 size_t inbytesleft, outbytesleft; 567 568 /* Reset conversion descriptor and check that it is valid. */ 569 if (iconv (cd, 0, 0, 0, 0) == (size_t)-1) 570 return false; 571 572 inbuf = (ICONV_CONST char *)from; 573 inbytesleft = flen; 574 outbuf = (char *)to->text + to->len; 575 outbytesleft = to->asize - to->len; 576 577 for (;;) 578 { 579 iconv (cd, &inbuf, &inbytesleft, &outbuf, &outbytesleft); 580 if (__builtin_expect (inbytesleft == 0, 1)) 581 { 582 /* Close out any shift states, returning to the initial state. */ 583 if (iconv (cd, 0, 0, &outbuf, &outbytesleft) == (size_t)-1) 584 { 585 if (errno != E2BIG) 586 return false; 587 588 CONVERT_ICONV_GROW_BUFFER; 589 if (iconv (cd, 0, 0, &outbuf, &outbytesleft) == (size_t)-1) 590 return false; 591 } 592 593 to->len = to->asize - outbytesleft; 594 return true; 595 } 596 if (errno != E2BIG) 597 return false; 598 599 CONVERT_ICONV_GROW_BUFFER; 600 } 601 } 602 #else 603 #define convert_using_iconv 0 /* prevent undefined symbol error below */ 604 #endif 605 606 /* Arrange for the above custom conversion logic to be used automatically 607 when conversion between a suitable pair of character sets is requested. */ 608 609 #define APPLY_CONVERSION(CONVERTER, FROM, FLEN, TO) \ 610 CONVERTER.func (CONVERTER.cd, FROM, FLEN, TO) 611 612 struct cpp_conversion 613 { 614 const char *pair; 615 convert_f func; 616 iconv_t fake_cd; 617 }; 618 static const struct cpp_conversion conversion_tab[] = { 619 { "UTF-8/UTF-32LE", convert_utf8_utf32, (iconv_t)0 }, 620 { "UTF-8/UTF-32BE", convert_utf8_utf32, (iconv_t)1 }, 621 { "UTF-8/UTF-16LE", convert_utf8_utf16, (iconv_t)0 }, 622 { "UTF-8/UTF-16BE", convert_utf8_utf16, (iconv_t)1 }, 623 { "UTF-32LE/UTF-8", convert_utf32_utf8, (iconv_t)0 }, 624 { "UTF-32BE/UTF-8", convert_utf32_utf8, (iconv_t)1 }, 625 { "UTF-16LE/UTF-8", convert_utf16_utf8, (iconv_t)0 }, 626 { "UTF-16BE/UTF-8", convert_utf16_utf8, (iconv_t)1 }, 627 }; 628 629 /* Subroutine of cpp_init_iconv: initialize and return a 630 cset_converter structure for conversion from FROM to TO. If 631 iconv_open() fails, issue an error and return an identity 632 converter. Silently return an identity converter if FROM and TO 633 are identical. */ 634 static struct cset_converter 635 init_iconv_desc (cpp_reader *pfile, const char *to, const char *from) 636 { 637 struct cset_converter ret; 638 char *pair; 639 size_t i; 640 641 if (!strcasecmp (to, from)) 642 { 643 ret.func = convert_no_conversion; 644 ret.cd = (iconv_t) -1; 645 ret.width = -1; 646 return ret; 647 } 648 649 pair = (char *) alloca(strlen(to) + strlen(from) + 2); 650 651 strcpy(pair, from); 652 strcat(pair, "/"); 653 strcat(pair, to); 654 for (i = 0; i < ARRAY_SIZE (conversion_tab); i++) 655 if (!strcasecmp (pair, conversion_tab[i].pair)) 656 { 657 ret.func = conversion_tab[i].func; 658 ret.cd = conversion_tab[i].fake_cd; 659 ret.width = -1; 660 return ret; 661 } 662 663 /* No custom converter - try iconv. */ 664 if (HAVE_ICONV) 665 { 666 ret.func = convert_using_iconv; 667 ret.cd = iconv_open (to, from); 668 ret.width = -1; 669 670 if (ret.cd == (iconv_t) -1) 671 { 672 if (errno == EINVAL) 673 cpp_error (pfile, CPP_DL_ERROR, /* FIXME should be DL_SORRY */ 674 "conversion from %s to %s not supported by iconv", 675 from, to); 676 else 677 cpp_errno (pfile, CPP_DL_ERROR, "iconv_open"); 678 679 ret.func = convert_no_conversion; 680 } 681 } 682 else 683 { 684 cpp_error (pfile, CPP_DL_ERROR, /* FIXME: should be DL_SORRY */ 685 "no iconv implementation, cannot convert from %s to %s", 686 from, to); 687 ret.func = convert_no_conversion; 688 ret.cd = (iconv_t) -1; 689 ret.width = -1; 690 } 691 return ret; 692 } 693 694 /* If charset conversion is requested, initialize iconv(3) descriptors 695 for conversion from the source character set to the execution 696 character sets. If iconv is not present in the C library, and 697 conversion is requested, issue an error. */ 698 699 void 700 cpp_init_iconv (cpp_reader *pfile) 701 { 702 const char *ncset = CPP_OPTION (pfile, narrow_charset); 703 const char *wcset = CPP_OPTION (pfile, wide_charset); 704 const char *default_wcset; 705 706 bool be = CPP_OPTION (pfile, bytes_big_endian); 707 708 if (CPP_OPTION (pfile, wchar_precision) >= 32) 709 default_wcset = be ? "UTF-32BE" : "UTF-32LE"; 710 else if (CPP_OPTION (pfile, wchar_precision) >= 16) 711 default_wcset = be ? "UTF-16BE" : "UTF-16LE"; 712 else 713 /* This effectively means that wide strings are not supported, 714 so don't do any conversion at all. */ 715 default_wcset = SOURCE_CHARSET; 716 717 if (!ncset) 718 ncset = SOURCE_CHARSET; 719 if (!wcset) 720 wcset = default_wcset; 721 722 pfile->narrow_cset_desc = init_iconv_desc (pfile, ncset, SOURCE_CHARSET); 723 pfile->narrow_cset_desc.width = CPP_OPTION (pfile, char_precision); 724 pfile->utf8_cset_desc = init_iconv_desc (pfile, "UTF-8", SOURCE_CHARSET); 725 pfile->utf8_cset_desc.width = CPP_OPTION (pfile, char_precision); 726 pfile->char16_cset_desc = init_iconv_desc (pfile, 727 be ? "UTF-16BE" : "UTF-16LE", 728 SOURCE_CHARSET); 729 pfile->char16_cset_desc.width = 16; 730 pfile->char32_cset_desc = init_iconv_desc (pfile, 731 be ? "UTF-32BE" : "UTF-32LE", 732 SOURCE_CHARSET); 733 pfile->char32_cset_desc.width = 32; 734 pfile->wide_cset_desc = init_iconv_desc (pfile, wcset, SOURCE_CHARSET); 735 pfile->wide_cset_desc.width = CPP_OPTION (pfile, wchar_precision); 736 } 737 738 /* Destroy iconv(3) descriptors set up by cpp_init_iconv, if necessary. */ 739 void 740 _cpp_destroy_iconv (cpp_reader *pfile) 741 { 742 if (HAVE_ICONV) 743 { 744 if (pfile->narrow_cset_desc.func == convert_using_iconv) 745 iconv_close (pfile->narrow_cset_desc.cd); 746 if (pfile->utf8_cset_desc.func == convert_using_iconv) 747 iconv_close (pfile->utf8_cset_desc.cd); 748 if (pfile->char16_cset_desc.func == convert_using_iconv) 749 iconv_close (pfile->char16_cset_desc.cd); 750 if (pfile->char32_cset_desc.func == convert_using_iconv) 751 iconv_close (pfile->char32_cset_desc.cd); 752 if (pfile->wide_cset_desc.func == convert_using_iconv) 753 iconv_close (pfile->wide_cset_desc.cd); 754 } 755 } 756 757 /* Utility routine for use by a full compiler. C is a character taken 758 from the *basic* source character set, encoded in the host's 759 execution encoding. Convert it to (the target's) execution 760 encoding, and return that value. 761 762 Issues an internal error if C's representation in the narrow 763 execution character set fails to be a single-byte value (C99 764 5.2.1p3: "The representation of each member of the source and 765 execution character sets shall fit in a byte.") May also issue an 766 internal error if C fails to be a member of the basic source 767 character set (testing this exactly is too hard, especially when 768 the host character set is EBCDIC). */ 769 cppchar_t 770 cpp_host_to_exec_charset (cpp_reader *pfile, cppchar_t c) 771 { 772 uchar sbuf[1]; 773 struct _cpp_strbuf tbuf; 774 775 /* This test is merely an approximation, but it suffices to catch 776 the most important thing, which is that we don't get handed a 777 character outside the unibyte range of the host character set. */ 778 if (c > LAST_POSSIBLY_BASIC_SOURCE_CHAR) 779 { 780 cpp_error (pfile, CPP_DL_ICE, 781 "character 0x%lx is not in the basic source character set\n", 782 (unsigned long)c); 783 return 0; 784 } 785 786 /* Being a character in the unibyte range of the host character set, 787 we can safely splat it into a one-byte buffer and trust that that 788 is a well-formed string. */ 789 sbuf[0] = c; 790 791 /* This should never need to reallocate, but just in case... */ 792 tbuf.asize = 1; 793 tbuf.text = XNEWVEC (uchar, tbuf.asize); 794 tbuf.len = 0; 795 796 if (!APPLY_CONVERSION (pfile->narrow_cset_desc, sbuf, 1, &tbuf)) 797 { 798 cpp_errno (pfile, CPP_DL_ICE, "converting to execution character set"); 799 return 0; 800 } 801 if (tbuf.len != 1) 802 { 803 cpp_error (pfile, CPP_DL_ICE, 804 "character 0x%lx is not unibyte in execution character set", 805 (unsigned long)c); 806 return 0; 807 } 808 c = tbuf.text[0]; 809 free(tbuf.text); 810 return c; 811 } 812 813 814 815 /* cpp_substring_ranges's constructor. */ 816 817 cpp_substring_ranges::cpp_substring_ranges () : 818 m_ranges (NULL), 819 m_num_ranges (0), 820 m_alloc_ranges (8) 821 { 822 m_ranges = XNEWVEC (source_range, m_alloc_ranges); 823 } 824 825 /* cpp_substring_ranges's destructor. */ 826 827 cpp_substring_ranges::~cpp_substring_ranges () 828 { 829 free (m_ranges); 830 } 831 832 /* Add RANGE to the vector of source_range information. */ 833 834 void 835 cpp_substring_ranges::add_range (source_range range) 836 { 837 if (m_num_ranges >= m_alloc_ranges) 838 { 839 m_alloc_ranges *= 2; 840 m_ranges 841 = (source_range *)xrealloc (m_ranges, 842 sizeof (source_range) * m_alloc_ranges); 843 } 844 m_ranges[m_num_ranges++] = range; 845 } 846 847 /* Read NUM ranges from LOC_READER, adding them to the vector of source_range 848 information. */ 849 850 void 851 cpp_substring_ranges::add_n_ranges (int num, 852 cpp_string_location_reader &loc_reader) 853 { 854 for (int i = 0; i < num; i++) 855 add_range (loc_reader.get_next ()); 856 } 857 858 859 860 /* Utility routine that computes a mask of the form 0000...111... with 861 WIDTH 1-bits. */ 862 static inline size_t 863 width_to_mask (size_t width) 864 { 865 width = MIN (width, BITS_PER_CPPCHAR_T); 866 if (width >= CHAR_BIT * sizeof (size_t)) 867 return ~(size_t) 0; 868 else 869 return ((size_t) 1 << width) - 1; 870 } 871 872 /* A large table of unicode character information. */ 873 enum { 874 /* Valid in a C99 identifier? */ 875 C99 = 1, 876 /* Valid in a C99 identifier, but not as the first character? */ 877 N99 = 2, 878 /* Valid in a C++ identifier? */ 879 CXX = 4, 880 /* Valid in a C11/C++11 identifier? */ 881 C11 = 8, 882 /* Valid in a C11/C++11 identifier, but not as the first character? */ 883 N11 = 16, 884 /* NFC representation is not valid in an identifier? */ 885 CID = 32, 886 /* Might be valid NFC form? */ 887 NFC = 64, 888 /* Might be valid NFKC form? */ 889 NKC = 128, 890 /* Certain preceding characters might make it not valid NFC/NKFC form? */ 891 CTX = 256 892 }; 893 894 struct ucnrange { 895 /* Bitmap of flags above. */ 896 unsigned short flags; 897 /* Combining class of the character. */ 898 unsigned char combine; 899 /* Last character in the range described by this entry. */ 900 unsigned int end; 901 }; 902 #include "ucnid.h" 903 904 /* ISO 10646 defines the UCS codespace as the range 0-0x10FFFF inclusive. */ 905 #define UCS_LIMIT 0x10FFFF 906 907 /* Returns 1 if C is valid in an identifier, 2 if C is valid except at 908 the start of an identifier, and 0 if C is not valid in an 909 identifier. We assume C has already gone through the checks of 910 _cpp_valid_ucn. Also update NST for C if returning nonzero. The 911 algorithm is a simple binary search on the table defined in 912 ucnid.h. */ 913 914 static int 915 ucn_valid_in_identifier (cpp_reader *pfile, cppchar_t c, 916 struct normalize_state *nst) 917 { 918 int mn, mx, md; 919 unsigned short valid_flags, invalid_start_flags; 920 921 if (c > UCS_LIMIT) 922 return 0; 923 924 mn = 0; 925 mx = ARRAY_SIZE (ucnranges) - 1; 926 while (mx != mn) 927 { 928 md = (mn + mx) / 2; 929 if (c <= ucnranges[md].end) 930 mx = md; 931 else 932 mn = md + 1; 933 } 934 935 /* When -pedantic, we require the character to have been listed by 936 the standard for the current language. Otherwise, we accept the 937 union of the acceptable sets for all supported language versions. */ 938 valid_flags = C99 | CXX | C11; 939 if (CPP_PEDANTIC (pfile)) 940 { 941 if (CPP_OPTION (pfile, c11_identifiers)) 942 valid_flags = C11; 943 else if (CPP_OPTION (pfile, c99)) 944 valid_flags = C99; 945 else if (CPP_OPTION (pfile, cplusplus)) 946 valid_flags = CXX; 947 } 948 if (! (ucnranges[mn].flags & valid_flags)) 949 return 0; 950 if (CPP_OPTION (pfile, c11_identifiers)) 951 invalid_start_flags = N11; 952 else if (CPP_OPTION (pfile, c99)) 953 invalid_start_flags = N99; 954 else 955 invalid_start_flags = 0; 956 957 /* Update NST. */ 958 if (ucnranges[mn].combine != 0 && ucnranges[mn].combine < nst->prev_class) 959 nst->level = normalized_none; 960 else if (ucnranges[mn].flags & CTX) 961 { 962 bool safe; 963 cppchar_t p = nst->previous; 964 965 /* For Hangul, characters in the range AC00-D7A3 are NFC/NFKC, 966 and are combined algorithmically from a sequence of the form 967 1100-1112 1161-1175 11A8-11C2 968 (if the third is not present, it is treated as 11A7, which is not 969 really a valid character). 970 Unfortunately, C99 allows (only) the NFC form, but C++ allows 971 only the combining characters. */ 972 if (c >= 0x1161 && c <= 0x1175) 973 safe = p < 0x1100 || p > 0x1112; 974 else if (c >= 0x11A8 && c <= 0x11C2) 975 safe = (p < 0xAC00 || p > 0xD7A3 || (p - 0xAC00) % 28 != 0); 976 else 977 safe = check_nfc (pfile, c, p); 978 if (!safe) 979 { 980 if ((c >= 0x1161 && c <= 0x1175) || (c >= 0x11A8 && c <= 0x11C2)) 981 nst->level = MAX (nst->level, normalized_identifier_C); 982 else 983 nst->level = normalized_none; 984 } 985 } 986 else if (ucnranges[mn].flags & NKC) 987 ; 988 else if (ucnranges[mn].flags & NFC) 989 nst->level = MAX (nst->level, normalized_C); 990 else if (ucnranges[mn].flags & CID) 991 nst->level = MAX (nst->level, normalized_identifier_C); 992 else 993 nst->level = normalized_none; 994 if (ucnranges[mn].combine == 0) 995 nst->previous = c; 996 nst->prev_class = ucnranges[mn].combine; 997 998 /* In C99, UCN digits may not begin identifiers. In C11 and C++11, 999 UCN combining characters may not begin identifiers. */ 1000 if (ucnranges[mn].flags & invalid_start_flags) 1001 return 2; 1002 1003 return 1; 1004 } 1005 1006 /* [lex.charset]: The character designated by the universal character 1007 name \UNNNNNNNN is that character whose character short name in 1008 ISO/IEC 10646 is NNNNNNNN; the character designated by the 1009 universal character name \uNNNN is that character whose character 1010 short name in ISO/IEC 10646 is 0000NNNN. If the hexadecimal value 1011 for a universal character name corresponds to a surrogate code point 1012 (in the range 0xD800-0xDFFF, inclusive), the program is ill-formed. 1013 Additionally, if the hexadecimal value for a universal-character-name 1014 outside a character or string literal corresponds to a control character 1015 (in either of the ranges 0x00-0x1F or 0x7F-0x9F, both inclusive) or to a 1016 character in the basic source character set, the program is ill-formed. 1017 1018 C99 6.4.3: A universal character name shall not specify a character 1019 whose short identifier is less than 00A0 other than 0024 ($), 0040 (@), 1020 or 0060 (`), nor one in the range D800 through DFFF inclusive. 1021 1022 If the hexadecimal value is larger than the upper bound of the UCS 1023 codespace specified in ISO/IEC 10646, a pedantic warning is issued 1024 in all versions of C and in the C++2a or later versions of C++. 1025 1026 *PSTR must be preceded by "\u" or "\U"; it is assumed that the 1027 buffer end is delimited by a non-hex digit. Returns false if the 1028 UCN has not been consumed, true otherwise. 1029 1030 The value of the UCN, whether valid or invalid, is returned in *CP. 1031 Diagnostics are emitted for invalid values. PSTR is updated to point 1032 one beyond the UCN, or to the syntactically invalid character. 1033 1034 IDENTIFIER_POS is 0 when not in an identifier, 1 for the start of 1035 an identifier, or 2 otherwise. 1036 1037 If LOC_READER is non-NULL, then position information is 1038 read from *LOC_READER and CHAR_RANGE->m_finish is updated accordingly. */ 1039 1040 bool 1041 _cpp_valid_ucn (cpp_reader *pfile, const uchar **pstr, 1042 const uchar *limit, int identifier_pos, 1043 struct normalize_state *nst, cppchar_t *cp, 1044 source_range *char_range, 1045 cpp_string_location_reader *loc_reader) 1046 { 1047 cppchar_t result, c; 1048 unsigned int length; 1049 const uchar *str = *pstr; 1050 const uchar *base = str - 2; 1051 1052 if (!CPP_OPTION (pfile, cplusplus) && !CPP_OPTION (pfile, c99)) 1053 cpp_error (pfile, CPP_DL_WARNING, 1054 "universal character names are only valid in C++ and C99"); 1055 else if (CPP_OPTION (pfile, cpp_warn_c90_c99_compat) > 0 1056 && !CPP_OPTION (pfile, cplusplus)) 1057 cpp_error (pfile, CPP_DL_WARNING, 1058 "C99's universal character names are incompatible with C90"); 1059 else if (CPP_WTRADITIONAL (pfile) && identifier_pos == 0) 1060 cpp_warning (pfile, CPP_W_TRADITIONAL, 1061 "the meaning of '\\%c' is different in traditional C", 1062 (int) str[-1]); 1063 1064 if (str[-1] == 'u') 1065 length = 4; 1066 else if (str[-1] == 'U') 1067 length = 8; 1068 else 1069 { 1070 cpp_error (pfile, CPP_DL_ICE, "In _cpp_valid_ucn but not a UCN"); 1071 length = 4; 1072 } 1073 1074 result = 0; 1075 do 1076 { 1077 c = *str; 1078 if (!ISXDIGIT (c)) 1079 break; 1080 str++; 1081 if (loc_reader) 1082 { 1083 gcc_assert (char_range); 1084 char_range->m_finish = loc_reader->get_next ().m_finish; 1085 } 1086 result = (result << 4) + hex_value (c); 1087 } 1088 while (--length && str < limit); 1089 1090 /* Partial UCNs are not valid in strings, but decompose into 1091 multiple tokens in identifiers, so we can't give a helpful 1092 error message in that case. */ 1093 if (length && identifier_pos) 1094 { 1095 *cp = 0; 1096 return false; 1097 } 1098 1099 *pstr = str; 1100 if (length) 1101 { 1102 cpp_error (pfile, CPP_DL_ERROR, 1103 "incomplete universal character name %.*s", 1104 (int) (str - base), base); 1105 result = 1; 1106 } 1107 /* The C99 standard permits $, @ and ` to be specified as UCNs. We use 1108 hex escapes so that this also works with EBCDIC hosts. 1109 C++0x permits everything below 0xa0 within literals; 1110 ucn_valid_in_identifier will complain about identifiers. */ 1111 else if ((result < 0xa0 1112 && !CPP_OPTION (pfile, cplusplus) 1113 && (result != 0x24 && result != 0x40 && result != 0x60)) 1114 || (result & 0x80000000) 1115 || (result >= 0xD800 && result <= 0xDFFF)) 1116 { 1117 cpp_error (pfile, CPP_DL_ERROR, 1118 "%.*s is not a valid universal character", 1119 (int) (str - base), base); 1120 result = 1; 1121 } 1122 else if (identifier_pos && result == 0x24 1123 && CPP_OPTION (pfile, dollars_in_ident)) 1124 { 1125 if (CPP_OPTION (pfile, warn_dollars) && !pfile->state.skipping) 1126 { 1127 CPP_OPTION (pfile, warn_dollars) = 0; 1128 cpp_error (pfile, CPP_DL_PEDWARN, "'$' in identifier or number"); 1129 } 1130 NORMALIZE_STATE_UPDATE_IDNUM (nst, result); 1131 } 1132 else if (identifier_pos) 1133 { 1134 int validity = ucn_valid_in_identifier (pfile, result, nst); 1135 1136 if (validity == 0) 1137 cpp_error (pfile, CPP_DL_ERROR, 1138 "universal character %.*s is not valid in an identifier", 1139 (int) (str - base), base); 1140 else if (validity == 2 && identifier_pos == 1) 1141 cpp_error (pfile, CPP_DL_ERROR, 1142 "universal character %.*s is not valid at the start of an identifier", 1143 (int) (str - base), base); 1144 } 1145 else if (result > UCS_LIMIT 1146 && (!CPP_OPTION (pfile, cplusplus) 1147 || CPP_OPTION (pfile, lang) > CLK_CXX17)) 1148 cpp_error (pfile, CPP_DL_PEDWARN, 1149 "%.*s is outside the UCS codespace", 1150 (int) (str - base), base); 1151 1152 *cp = result; 1153 return true; 1154 } 1155 1156 /* Convert an UCN, pointed to by FROM, to UTF-8 encoding, then translate 1157 it to the execution character set and write the result into TBUF, 1158 if TBUF is non-NULL. 1159 An advanced pointer is returned. Issues all relevant diagnostics. 1160 If LOC_READER is non-NULL, then RANGES must be non-NULL and CHAR_RANGE 1161 contains the location of the character so far: location information 1162 is read from *LOC_READER, and *RANGES is updated accordingly. */ 1163 static const uchar * 1164 convert_ucn (cpp_reader *pfile, const uchar *from, const uchar *limit, 1165 struct _cpp_strbuf *tbuf, struct cset_converter cvt, 1166 source_range char_range, 1167 cpp_string_location_reader *loc_reader, 1168 cpp_substring_ranges *ranges) 1169 { 1170 cppchar_t ucn; 1171 uchar buf[6]; 1172 uchar *bufp = buf; 1173 size_t bytesleft = 6; 1174 int rval; 1175 struct normalize_state nst = INITIAL_NORMALIZE_STATE; 1176 1177 /* loc_reader and ranges must either be both NULL, or both be non-NULL. */ 1178 gcc_assert ((loc_reader != NULL) == (ranges != NULL)); 1179 1180 from++; /* Skip u/U. */ 1181 1182 if (loc_reader) 1183 /* The u/U is part of the spelling of this character. */ 1184 char_range.m_finish = loc_reader->get_next ().m_finish; 1185 1186 _cpp_valid_ucn (pfile, &from, limit, 0, &nst, 1187 &ucn, &char_range, loc_reader); 1188 1189 rval = one_cppchar_to_utf8 (ucn, &bufp, &bytesleft); 1190 if (rval) 1191 { 1192 errno = rval; 1193 cpp_errno (pfile, CPP_DL_ERROR, 1194 "converting UCN to source character set"); 1195 } 1196 else 1197 { 1198 if (tbuf) 1199 if (!APPLY_CONVERSION (cvt, buf, 6 - bytesleft, tbuf)) 1200 cpp_errno (pfile, CPP_DL_ERROR, 1201 "converting UCN to execution character set"); 1202 1203 if (loc_reader) 1204 { 1205 int num_encoded_bytes = 6 - bytesleft; 1206 for (int i = 0; i < num_encoded_bytes; i++) 1207 ranges->add_range (char_range); 1208 } 1209 } 1210 1211 return from; 1212 } 1213 1214 /* Performs a similar task as _cpp_valid_ucn, but parses UTF-8-encoded 1215 extended characters rather than UCNs. If the return value is TRUE, then a 1216 character was successfully decoded and stored in *CP; *PSTR has been 1217 updated to point one past the valid UTF-8 sequence. Diagnostics may have 1218 been emitted if the character parsed is not allowed in the current context. 1219 If the return value is FALSE, then *PSTR has not been modified and *CP may 1220 equal 0, to indicate that *PSTR does not form a valid UTF-8 sequence, or it 1221 may, when processing an identifier in C mode, equal a codepoint that was 1222 validly encoded but is not allowed to appear in an identifier. In either 1223 case, no diagnostic is emitted, and the return value of FALSE should cause 1224 a new token to be formed. 1225 1226 Unlike _cpp_valid_ucn, this will never be called when lexing a string; only 1227 a potential identifier, or a CPP_OTHER token. NST is unused in the latter 1228 case. 1229 1230 As in _cpp_valid_ucn, IDENTIFIER_POS is 0 when not in an identifier, 1 for 1231 the start of an identifier, or 2 otherwise. */ 1232 1233 extern bool 1234 _cpp_valid_utf8 (cpp_reader *pfile, 1235 const uchar **pstr, 1236 const uchar *limit, 1237 int identifier_pos, 1238 struct normalize_state *nst, 1239 cppchar_t *cp) 1240 { 1241 const uchar *base = *pstr; 1242 size_t inbytesleft = limit - base; 1243 if (one_utf8_to_cppchar (pstr, &inbytesleft, cp)) 1244 { 1245 /* No diagnostic here as this byte will rather become a 1246 new token. */ 1247 *cp = 0; 1248 return false; 1249 } 1250 1251 if (identifier_pos) 1252 { 1253 switch (ucn_valid_in_identifier (pfile, *cp, nst)) 1254 { 1255 1256 case 0: 1257 /* In C++, this is an error for invalid character in an identifier 1258 because logically, the UTF-8 was converted to a UCN during 1259 translation phase 1 (even though we don't physically do it that 1260 way). In C, this byte rather becomes grammatically a separate 1261 token. */ 1262 1263 if (CPP_OPTION (pfile, cplusplus)) 1264 cpp_error (pfile, CPP_DL_ERROR, 1265 "extended character %.*s is not valid in an identifier", 1266 (int) (*pstr - base), base); 1267 else 1268 { 1269 *pstr = base; 1270 return false; 1271 } 1272 1273 break; 1274 1275 case 2: 1276 if (identifier_pos == 1) 1277 { 1278 /* This is treated the same way in C++ or C99 -- lexed as an 1279 identifier which is then invalid because an identifier is 1280 not allowed to start with this character. */ 1281 cpp_error (pfile, CPP_DL_ERROR, 1282 "extended character %.*s is not valid at the start of an identifier", 1283 (int) (*pstr - base), base); 1284 } 1285 break; 1286 } 1287 } 1288 1289 return true; 1290 } 1291 1292 /* Subroutine of convert_hex and convert_oct. N is the representation 1293 in the execution character set of a numeric escape; write it into the 1294 string buffer TBUF and update the end-of-string pointer therein. WIDE 1295 is true if it's a wide string that's being assembled in TBUF. This 1296 function issues no diagnostics and never fails. */ 1297 static void 1298 emit_numeric_escape (cpp_reader *pfile, cppchar_t n, 1299 struct _cpp_strbuf *tbuf, struct cset_converter cvt) 1300 { 1301 size_t width = cvt.width; 1302 1303 if (width != CPP_OPTION (pfile, char_precision)) 1304 { 1305 /* We have to render this into the target byte order, which may not 1306 be our byte order. */ 1307 bool bigend = CPP_OPTION (pfile, bytes_big_endian); 1308 size_t cwidth = CPP_OPTION (pfile, char_precision); 1309 size_t cmask = width_to_mask (cwidth); 1310 size_t nbwc = width / cwidth; 1311 size_t i; 1312 size_t off = tbuf->len; 1313 cppchar_t c; 1314 1315 if (tbuf->len + nbwc > tbuf->asize) 1316 { 1317 tbuf->asize += OUTBUF_BLOCK_SIZE; 1318 tbuf->text = XRESIZEVEC (uchar, tbuf->text, tbuf->asize); 1319 } 1320 1321 for (i = 0; i < nbwc; i++) 1322 { 1323 c = n & cmask; 1324 n >>= cwidth; 1325 tbuf->text[off + (bigend ? nbwc - i - 1 : i)] = c; 1326 } 1327 tbuf->len += nbwc; 1328 } 1329 else 1330 { 1331 /* Note: this code does not handle the case where the target 1332 and host have a different number of bits in a byte. */ 1333 if (tbuf->len + 1 > tbuf->asize) 1334 { 1335 tbuf->asize += OUTBUF_BLOCK_SIZE; 1336 tbuf->text = XRESIZEVEC (uchar, tbuf->text, tbuf->asize); 1337 } 1338 tbuf->text[tbuf->len++] = n; 1339 } 1340 } 1341 1342 /* Convert a hexadecimal escape, pointed to by FROM, to the execution 1343 character set and write it into the string buffer TBUF (if non-NULL). 1344 Returns an advanced pointer, and issues diagnostics as necessary. 1345 No character set translation occurs; this routine always produces the 1346 execution-set character with numeric value equal to the given hex 1347 number. You can, e.g. generate surrogate pairs this way. 1348 If LOC_READER is non-NULL, then RANGES must be non-NULL and CHAR_RANGE 1349 contains the location of the character so far: location information 1350 is read from *LOC_READER, and *RANGES is updated accordingly. */ 1351 static const uchar * 1352 convert_hex (cpp_reader *pfile, const uchar *from, const uchar *limit, 1353 struct _cpp_strbuf *tbuf, struct cset_converter cvt, 1354 source_range char_range, 1355 cpp_string_location_reader *loc_reader, 1356 cpp_substring_ranges *ranges) 1357 { 1358 cppchar_t c, n = 0, overflow = 0; 1359 int digits_found = 0; 1360 size_t width = cvt.width; 1361 size_t mask = width_to_mask (width); 1362 1363 /* loc_reader and ranges must either be both NULL, or both be non-NULL. */ 1364 gcc_assert ((loc_reader != NULL) == (ranges != NULL)); 1365 1366 if (CPP_WTRADITIONAL (pfile)) 1367 cpp_warning (pfile, CPP_W_TRADITIONAL, 1368 "the meaning of '\\x' is different in traditional C"); 1369 1370 /* Skip 'x'. */ 1371 from++; 1372 1373 /* The 'x' is part of the spelling of this character. */ 1374 if (loc_reader) 1375 char_range.m_finish = loc_reader->get_next ().m_finish; 1376 1377 while (from < limit) 1378 { 1379 c = *from; 1380 if (! hex_p (c)) 1381 break; 1382 from++; 1383 if (loc_reader) 1384 char_range.m_finish = loc_reader->get_next ().m_finish; 1385 overflow |= n ^ (n << 4 >> 4); 1386 n = (n << 4) + hex_value (c); 1387 digits_found = 1; 1388 } 1389 1390 if (!digits_found) 1391 { 1392 cpp_error (pfile, CPP_DL_ERROR, 1393 "\\x used with no following hex digits"); 1394 return from; 1395 } 1396 1397 if (overflow | (n != (n & mask))) 1398 { 1399 cpp_error (pfile, CPP_DL_PEDWARN, 1400 "hex escape sequence out of range"); 1401 n &= mask; 1402 } 1403 1404 if (tbuf) 1405 emit_numeric_escape (pfile, n, tbuf, cvt); 1406 if (ranges) 1407 ranges->add_range (char_range); 1408 1409 return from; 1410 } 1411 1412 /* Convert an octal escape, pointed to by FROM, to the execution 1413 character set and write it into the string buffer TBUF. Returns an 1414 advanced pointer, and issues diagnostics as necessary. 1415 No character set translation occurs; this routine always produces the 1416 execution-set character with numeric value equal to the given octal 1417 number. 1418 If LOC_READER is non-NULL, then RANGES must be non-NULL and CHAR_RANGE 1419 contains the location of the character so far: location information 1420 is read from *LOC_READER, and *RANGES is updated accordingly. */ 1421 static const uchar * 1422 convert_oct (cpp_reader *pfile, const uchar *from, const uchar *limit, 1423 struct _cpp_strbuf *tbuf, struct cset_converter cvt, 1424 source_range char_range, 1425 cpp_string_location_reader *loc_reader, 1426 cpp_substring_ranges *ranges) 1427 { 1428 size_t count = 0; 1429 cppchar_t c, n = 0; 1430 size_t width = cvt.width; 1431 size_t mask = width_to_mask (width); 1432 bool overflow = false; 1433 1434 /* loc_reader and ranges must either be both NULL, or both be non-NULL. */ 1435 gcc_assert ((loc_reader != NULL) == (ranges != NULL)); 1436 1437 while (from < limit && count++ < 3) 1438 { 1439 c = *from; 1440 if (c < '0' || c > '7') 1441 break; 1442 from++; 1443 if (loc_reader) 1444 char_range.m_finish = loc_reader->get_next ().m_finish; 1445 overflow |= n ^ (n << 3 >> 3); 1446 n = (n << 3) + c - '0'; 1447 } 1448 1449 if (n != (n & mask)) 1450 { 1451 cpp_error (pfile, CPP_DL_PEDWARN, 1452 "octal escape sequence out of range"); 1453 n &= mask; 1454 } 1455 1456 if (tbuf) 1457 emit_numeric_escape (pfile, n, tbuf, cvt); 1458 if (ranges) 1459 ranges->add_range (char_range); 1460 1461 return from; 1462 } 1463 1464 /* Convert an escape sequence (pointed to by FROM) to its value on 1465 the target, and to the execution character set. Do not scan past 1466 LIMIT. Write the converted value into TBUF, if TBUF is non-NULL. 1467 Returns an advanced pointer. Handles all relevant diagnostics. 1468 If LOC_READER is non-NULL, then RANGES must be non-NULL: location 1469 information is read from *LOC_READER, and *RANGES is updated 1470 accordingly. */ 1471 static const uchar * 1472 convert_escape (cpp_reader *pfile, const uchar *from, const uchar *limit, 1473 struct _cpp_strbuf *tbuf, struct cset_converter cvt, 1474 cpp_string_location_reader *loc_reader, 1475 cpp_substring_ranges *ranges) 1476 { 1477 /* Values of \a \b \e \f \n \r \t \v respectively. */ 1478 #if HOST_CHARSET == HOST_CHARSET_ASCII 1479 static const uchar charconsts[] = { 7, 8, 27, 12, 10, 13, 9, 11 }; 1480 #elif HOST_CHARSET == HOST_CHARSET_EBCDIC 1481 static const uchar charconsts[] = { 47, 22, 39, 12, 21, 13, 5, 11 }; 1482 #else 1483 #error "unknown host character set" 1484 #endif 1485 1486 uchar c; 1487 1488 /* Record the location of the backslash. */ 1489 source_range char_range; 1490 if (loc_reader) 1491 char_range = loc_reader->get_next (); 1492 1493 c = *from; 1494 switch (c) 1495 { 1496 /* UCNs, hex escapes, and octal escapes are processed separately. */ 1497 case 'u': case 'U': 1498 return convert_ucn (pfile, from, limit, tbuf, cvt, 1499 char_range, loc_reader, ranges); 1500 1501 case 'x': 1502 return convert_hex (pfile, from, limit, tbuf, cvt, 1503 char_range, loc_reader, ranges); 1504 break; 1505 1506 case '0': case '1': case '2': case '3': 1507 case '4': case '5': case '6': case '7': 1508 return convert_oct (pfile, from, limit, tbuf, cvt, 1509 char_range, loc_reader, ranges); 1510 1511 /* Various letter escapes. Get the appropriate host-charset 1512 value into C. */ 1513 case '\\': case '\'': case '"': case '?': break; 1514 1515 case '(': case '{': case '[': case '%': 1516 /* '\(', etc, can be used at the beginning of a line in a long 1517 string split onto multiple lines with \-newline, to prevent 1518 Emacs or other text editors from getting confused. '\%' can 1519 be used to prevent SCCS from mangling printf format strings. */ 1520 if (CPP_PEDANTIC (pfile)) 1521 goto unknown; 1522 break; 1523 1524 case 'b': c = charconsts[1]; break; 1525 case 'f': c = charconsts[3]; break; 1526 case 'n': c = charconsts[4]; break; 1527 case 'r': c = charconsts[5]; break; 1528 case 't': c = charconsts[6]; break; 1529 case 'v': c = charconsts[7]; break; 1530 1531 case 'a': 1532 if (CPP_WTRADITIONAL (pfile)) 1533 cpp_warning (pfile, CPP_W_TRADITIONAL, 1534 "the meaning of '\\a' is different in traditional C"); 1535 c = charconsts[0]; 1536 break; 1537 1538 case 'e': case 'E': 1539 if (CPP_PEDANTIC (pfile)) 1540 cpp_error (pfile, CPP_DL_PEDWARN, 1541 "non-ISO-standard escape sequence, '\\%c'", (int) c); 1542 c = charconsts[2]; 1543 break; 1544 1545 default: 1546 unknown: 1547 if (ISGRAPH (c)) 1548 cpp_error (pfile, CPP_DL_PEDWARN, 1549 "unknown escape sequence: '\\%c'", (int) c); 1550 else 1551 { 1552 /* diagnostic.c does not support "%03o". When it does, this 1553 code can use %03o directly in the diagnostic again. */ 1554 char buf[32]; 1555 sprintf(buf, "%03o", (int) c); 1556 cpp_error (pfile, CPP_DL_PEDWARN, 1557 "unknown escape sequence: '\\%s'", buf); 1558 } 1559 } 1560 1561 if (tbuf) 1562 /* Now convert what we have to the execution character set. */ 1563 if (!APPLY_CONVERSION (cvt, &c, 1, tbuf)) 1564 cpp_errno (pfile, CPP_DL_ERROR, 1565 "converting escape sequence to execution character set"); 1566 1567 if (loc_reader) 1568 { 1569 char_range.m_finish = loc_reader->get_next ().m_finish; 1570 ranges->add_range (char_range); 1571 } 1572 1573 return from + 1; 1574 } 1575 1576 /* TYPE is a token type. The return value is the conversion needed to 1577 convert from source to execution character set for the given type. */ 1578 static struct cset_converter 1579 converter_for_type (cpp_reader *pfile, enum cpp_ttype type) 1580 { 1581 switch (type) 1582 { 1583 default: 1584 return pfile->narrow_cset_desc; 1585 case CPP_UTF8CHAR: 1586 case CPP_UTF8STRING: 1587 return pfile->utf8_cset_desc; 1588 case CPP_CHAR16: 1589 case CPP_STRING16: 1590 return pfile->char16_cset_desc; 1591 case CPP_CHAR32: 1592 case CPP_STRING32: 1593 return pfile->char32_cset_desc; 1594 case CPP_WCHAR: 1595 case CPP_WSTRING: 1596 return pfile->wide_cset_desc; 1597 } 1598 } 1599 1600 /* FROM is an array of cpp_string structures of length COUNT. These 1601 are to be converted from the source to the execution character set, 1602 escape sequences translated, and finally all are to be 1603 concatenated. WIDE indicates whether or not to produce a wide 1604 string. If TO is non-NULL, the result is written into TO. 1605 If LOC_READERS and OUT are non-NULL, then location information 1606 is read from LOC_READERS (which must be an array of length COUNT), 1607 and location information is written to *RANGES. 1608 1609 Returns true for success, false for failure. */ 1610 1611 static bool 1612 cpp_interpret_string_1 (cpp_reader *pfile, const cpp_string *from, size_t count, 1613 cpp_string *to, enum cpp_ttype type, 1614 cpp_string_location_reader *loc_readers, 1615 cpp_substring_ranges *out) 1616 { 1617 struct _cpp_strbuf tbuf; 1618 const uchar *p, *base, *limit; 1619 size_t i; 1620 struct cset_converter cvt = converter_for_type (pfile, type); 1621 1622 /* loc_readers and out must either be both NULL, or both be non-NULL. */ 1623 gcc_assert ((loc_readers != NULL) == (out != NULL)); 1624 1625 if (to) 1626 { 1627 tbuf.asize = MAX (OUTBUF_BLOCK_SIZE, from->len); 1628 tbuf.text = XNEWVEC (uchar, tbuf.asize); 1629 tbuf.len = 0; 1630 } 1631 1632 cpp_string_location_reader *loc_reader = NULL; 1633 for (i = 0; i < count; i++) 1634 { 1635 if (loc_readers) 1636 loc_reader = &loc_readers[i]; 1637 1638 p = from[i].text; 1639 if (*p == 'u') 1640 { 1641 p++; 1642 if (loc_reader) 1643 loc_reader->get_next (); 1644 if (*p == '8') 1645 { 1646 p++; 1647 if (loc_reader) 1648 loc_reader->get_next (); 1649 } 1650 } 1651 else if (*p == 'L' || *p == 'U') p++; 1652 if (*p == 'R') 1653 { 1654 const uchar *prefix; 1655 1656 /* Skip over 'R"'. */ 1657 p += 2; 1658 if (loc_reader) 1659 { 1660 loc_reader->get_next (); 1661 loc_reader->get_next (); 1662 } 1663 prefix = p; 1664 while (*p != '(') 1665 { 1666 p++; 1667 if (loc_reader) 1668 loc_reader->get_next (); 1669 } 1670 p++; 1671 if (loc_reader) 1672 loc_reader->get_next (); 1673 limit = from[i].text + from[i].len; 1674 if (limit >= p + (p - prefix) + 1) 1675 limit -= (p - prefix) + 1; 1676 1677 /* Raw strings are all normal characters; these can be fed 1678 directly to convert_cset. */ 1679 if (to) 1680 if (!APPLY_CONVERSION (cvt, p, limit - p, &tbuf)) 1681 goto fail; 1682 1683 if (loc_reader) 1684 { 1685 /* If generating source ranges, assume we have a 1:1 1686 correspondence between bytes in the source encoding and bytes 1687 in the execution encoding (e.g. if we have a UTF-8 to UTF-8 1688 conversion), so that this run of bytes in the source file 1689 corresponds to a run of bytes in the execution string. 1690 This requirement is guaranteed by an early-reject in 1691 cpp_interpret_string_ranges. */ 1692 gcc_assert (cvt.func == convert_no_conversion); 1693 out->add_n_ranges (limit - p, *loc_reader); 1694 } 1695 1696 continue; 1697 } 1698 1699 /* If we don't now have a leading quote, something has gone wrong. 1700 This can occur if cpp_interpret_string_ranges is handling a 1701 stringified macro argument, but should not be possible otherwise. */ 1702 if (*p != '"' && *p != '\'') 1703 { 1704 gcc_assert (out != NULL); 1705 cpp_error (pfile, CPP_DL_ERROR, "missing open quote"); 1706 if (to) 1707 free (tbuf.text); 1708 return false; 1709 } 1710 1711 /* Skip leading quote. */ 1712 p++; 1713 if (loc_reader) 1714 loc_reader->get_next (); 1715 1716 limit = from[i].text + from[i].len - 1; /* Skip trailing quote. */ 1717 1718 for (;;) 1719 { 1720 base = p; 1721 while (p < limit && *p != '\\') 1722 p++; 1723 if (p > base) 1724 { 1725 /* We have a run of normal characters; these can be fed 1726 directly to convert_cset. */ 1727 if (to) 1728 if (!APPLY_CONVERSION (cvt, base, p - base, &tbuf)) 1729 goto fail; 1730 /* Similar to above: assumes we have a 1:1 correspondence 1731 between bytes in the source encoding and bytes in the 1732 execution encoding. */ 1733 if (loc_reader) 1734 { 1735 gcc_assert (cvt.func == convert_no_conversion); 1736 out->add_n_ranges (p - base, *loc_reader); 1737 } 1738 } 1739 if (p >= limit) 1740 break; 1741 1742 struct _cpp_strbuf *tbuf_ptr = to ? &tbuf : NULL; 1743 p = convert_escape (pfile, p + 1, limit, tbuf_ptr, cvt, 1744 loc_reader, out); 1745 } 1746 } 1747 1748 if (to) 1749 { 1750 /* NUL-terminate the 'to' buffer and translate it to a cpp_string 1751 structure. */ 1752 emit_numeric_escape (pfile, 0, &tbuf, cvt); 1753 tbuf.text = XRESIZEVEC (uchar, tbuf.text, tbuf.len); 1754 to->text = tbuf.text; 1755 to->len = tbuf.len; 1756 } 1757 /* Use the location of the trailing quote as the location of the 1758 NUL-terminator. */ 1759 if (loc_reader) 1760 { 1761 source_range range = loc_reader->get_next (); 1762 out->add_range (range); 1763 } 1764 1765 return true; 1766 1767 fail: 1768 cpp_errno (pfile, CPP_DL_ERROR, "converting to execution character set"); 1769 if (to) 1770 free (tbuf.text); 1771 return false; 1772 } 1773 1774 /* FROM is an array of cpp_string structures of length COUNT. These 1775 are to be converted from the source to the execution character set, 1776 escape sequences translated, and finally all are to be 1777 concatenated. WIDE indicates whether or not to produce a wide 1778 string. The result is written into TO. Returns true for success, 1779 false for failure. */ 1780 bool 1781 cpp_interpret_string (cpp_reader *pfile, const cpp_string *from, size_t count, 1782 cpp_string *to, enum cpp_ttype type) 1783 { 1784 return cpp_interpret_string_1 (pfile, from, count, to, type, NULL, NULL); 1785 } 1786 1787 /* A "do nothing" diagnostic-handling callback for use by 1788 cpp_interpret_string_ranges, so that it can temporarily suppress 1789 diagnostic-handling. */ 1790 1791 static bool 1792 noop_diagnostic_cb (cpp_reader *, enum cpp_diagnostic_level, 1793 enum cpp_warning_reason, rich_location *, 1794 const char *, va_list *) 1795 { 1796 /* no-op. */ 1797 return true; 1798 } 1799 1800 /* This function mimics the behavior of cpp_interpret_string, but 1801 rather than generating a string in the execution character set, 1802 *OUT is written to with the source code ranges of the characters 1803 in such a string. 1804 FROM and LOC_READERS should both be arrays of length COUNT. 1805 Returns NULL for success, or an error message for failure. */ 1806 1807 const char * 1808 cpp_interpret_string_ranges (cpp_reader *pfile, const cpp_string *from, 1809 cpp_string_location_reader *loc_readers, 1810 size_t count, 1811 cpp_substring_ranges *out, 1812 enum cpp_ttype type) 1813 { 1814 /* There are a couple of cases in the range-handling in 1815 cpp_interpret_string_1 that rely on there being a 1:1 correspondence 1816 between bytes in the source encoding and bytes in the execution 1817 encoding, so that each byte in the execution string can correspond 1818 to the location of a byte in the source string. 1819 1820 This holds for the typical case of a UTF-8 to UTF-8 conversion. 1821 Enforce this requirement by only attempting to track substring 1822 locations if we have source encoding == execution encoding. 1823 1824 This is a stronger condition than we need, since we could e.g. 1825 have ASCII to EBCDIC (with 1 byte per character before and after), 1826 but it seems to be a reasonable restriction. */ 1827 struct cset_converter cvt = converter_for_type (pfile, type); 1828 if (cvt.func != convert_no_conversion) 1829 return "execution character set != source character set"; 1830 1831 /* For on-demand strings we have already lexed the strings, so there 1832 should be no diagnostics. However, if we have bogus source location 1833 data (or stringified macro arguments), the attempt to lex the 1834 strings could fail with an diagnostic. Temporarily install an 1835 diagnostic-handler to catch the diagnostic, so that it can lead to this call 1836 failing, rather than being emitted as a user-visible diagnostic. 1837 If an diagnostic does occur, we should see it via the return value of 1838 cpp_interpret_string_1. */ 1839 bool (*saved_diagnostic_handler) (cpp_reader *, enum cpp_diagnostic_level, 1840 enum cpp_warning_reason, rich_location *, 1841 const char *, va_list *) 1842 ATTRIBUTE_FPTR_PRINTF(5,0); 1843 1844 saved_diagnostic_handler = pfile->cb.diagnostic; 1845 pfile->cb.diagnostic = noop_diagnostic_cb; 1846 1847 bool result = cpp_interpret_string_1 (pfile, from, count, NULL, type, 1848 loc_readers, out); 1849 1850 /* Restore the saved diagnostic-handler. */ 1851 pfile->cb.diagnostic = saved_diagnostic_handler; 1852 1853 if (!result) 1854 return "cpp_interpret_string_1 failed"; 1855 1856 /* Success. */ 1857 return NULL; 1858 } 1859 1860 /* Subroutine of do_line and do_linemarker. Convert escape sequences 1861 in a string, but do not perform character set conversion. */ 1862 bool 1863 cpp_interpret_string_notranslate (cpp_reader *pfile, const cpp_string *from, 1864 size_t count, cpp_string *to, 1865 enum cpp_ttype type ATTRIBUTE_UNUSED) 1866 { 1867 struct cset_converter save_narrow_cset_desc = pfile->narrow_cset_desc; 1868 bool retval; 1869 1870 pfile->narrow_cset_desc.func = convert_no_conversion; 1871 pfile->narrow_cset_desc.cd = (iconv_t) -1; 1872 pfile->narrow_cset_desc.width = CPP_OPTION (pfile, char_precision); 1873 1874 retval = cpp_interpret_string (pfile, from, count, to, CPP_STRING); 1875 1876 pfile->narrow_cset_desc = save_narrow_cset_desc; 1877 return retval; 1878 } 1879 1880 1881 /* Subroutine of cpp_interpret_charconst which performs the conversion 1882 to a number, for narrow strings. STR is the string structure returned 1883 by cpp_interpret_string. PCHARS_SEEN and UNSIGNEDP are as for 1884 cpp_interpret_charconst. TYPE is the token type. */ 1885 static cppchar_t 1886 narrow_str_to_charconst (cpp_reader *pfile, cpp_string str, 1887 unsigned int *pchars_seen, int *unsignedp, 1888 enum cpp_ttype type) 1889 { 1890 size_t width = CPP_OPTION (pfile, char_precision); 1891 size_t max_chars = CPP_OPTION (pfile, int_precision) / width; 1892 size_t mask = width_to_mask (width); 1893 size_t i; 1894 cppchar_t result, c; 1895 bool unsigned_p; 1896 1897 /* The value of a multi-character character constant, or a 1898 single-character character constant whose representation in the 1899 execution character set is more than one byte long, is 1900 implementation defined. This implementation defines it to be the 1901 number formed by interpreting the byte sequence in memory as a 1902 big-endian binary number. If overflow occurs, the high bytes are 1903 lost, and a warning is issued. 1904 1905 We don't want to process the NUL terminator handed back by 1906 cpp_interpret_string. */ 1907 result = 0; 1908 for (i = 0; i < str.len - 1; i++) 1909 { 1910 c = str.text[i] & mask; 1911 if (width < BITS_PER_CPPCHAR_T) 1912 result = (result << width) | c; 1913 else 1914 result = c; 1915 } 1916 1917 if (type == CPP_UTF8CHAR) 1918 max_chars = 1; 1919 if (i > max_chars) 1920 { 1921 i = max_chars; 1922 cpp_error (pfile, type == CPP_UTF8CHAR ? CPP_DL_ERROR : CPP_DL_WARNING, 1923 "character constant too long for its type"); 1924 } 1925 else if (i > 1 && CPP_OPTION (pfile, warn_multichar)) 1926 cpp_warning (pfile, CPP_W_MULTICHAR, "multi-character character constant"); 1927 1928 /* Multichar constants are of type int and therefore signed. */ 1929 if (i > 1) 1930 unsigned_p = 0; 1931 else if (type == CPP_UTF8CHAR && !CPP_OPTION (pfile, cplusplus)) 1932 unsigned_p = 1; 1933 else 1934 unsigned_p = CPP_OPTION (pfile, unsigned_char); 1935 1936 /* Truncate the constant to its natural width, and simultaneously 1937 sign- or zero-extend to the full width of cppchar_t. 1938 For single-character constants, the value is WIDTH bits wide. 1939 For multi-character constants, the value is INT_PRECISION bits wide. */ 1940 if (i > 1) 1941 width = CPP_OPTION (pfile, int_precision); 1942 if (width < BITS_PER_CPPCHAR_T) 1943 { 1944 mask = ((cppchar_t) 1 << width) - 1; 1945 if (unsigned_p || !(result & (1 << (width - 1)))) 1946 result &= mask; 1947 else 1948 result |= ~mask; 1949 } 1950 *pchars_seen = i; 1951 *unsignedp = unsigned_p; 1952 return result; 1953 } 1954 1955 /* Subroutine of cpp_interpret_charconst which performs the conversion 1956 to a number, for wide strings. STR is the string structure returned 1957 by cpp_interpret_string. PCHARS_SEEN and UNSIGNEDP are as for 1958 cpp_interpret_charconst. TYPE is the token type. */ 1959 static cppchar_t 1960 wide_str_to_charconst (cpp_reader *pfile, cpp_string str, 1961 unsigned int *pchars_seen, int *unsignedp, 1962 enum cpp_ttype type) 1963 { 1964 bool bigend = CPP_OPTION (pfile, bytes_big_endian); 1965 size_t width = converter_for_type (pfile, type).width; 1966 size_t cwidth = CPP_OPTION (pfile, char_precision); 1967 size_t mask = width_to_mask (width); 1968 size_t cmask = width_to_mask (cwidth); 1969 size_t nbwc = width / cwidth; 1970 size_t off, i; 1971 cppchar_t result = 0, c; 1972 1973 if (str.len <= nbwc) 1974 { 1975 /* Error recovery, if no errors have been diagnosed previously, 1976 there should be at least two wide characters. Empty literals 1977 are diagnosed earlier and we can get just the zero terminator 1978 only if there were errors diagnosed during conversion. */ 1979 *pchars_seen = 0; 1980 *unsignedp = 0; 1981 return 0; 1982 } 1983 1984 /* This is finicky because the string is in the target's byte order, 1985 which may not be our byte order. Only the last character, ignoring 1986 the NUL terminator, is relevant. */ 1987 off = str.len - (nbwc * 2); 1988 result = 0; 1989 for (i = 0; i < nbwc; i++) 1990 { 1991 c = bigend ? str.text[off + i] : str.text[off + nbwc - i - 1]; 1992 result = (result << cwidth) | (c & cmask); 1993 } 1994 1995 /* Wide character constants have type wchar_t, and a single 1996 character exactly fills a wchar_t, so a multi-character wide 1997 character constant is guaranteed to overflow. */ 1998 if (str.len > nbwc * 2) 1999 cpp_error (pfile, (CPP_OPTION (pfile, cplusplus) 2000 && (type == CPP_CHAR16 || type == CPP_CHAR32)) 2001 ? CPP_DL_ERROR : CPP_DL_WARNING, 2002 "character constant too long for its type"); 2003 2004 /* Truncate the constant to its natural width, and simultaneously 2005 sign- or zero-extend to the full width of cppchar_t. */ 2006 if (width < BITS_PER_CPPCHAR_T) 2007 { 2008 if (type == CPP_CHAR16 || type == CPP_CHAR32 2009 || CPP_OPTION (pfile, unsigned_wchar) 2010 || !(result & (1 << (width - 1)))) 2011 result &= mask; 2012 else 2013 result |= ~mask; 2014 } 2015 2016 if (type == CPP_CHAR16 || type == CPP_CHAR32 2017 || CPP_OPTION (pfile, unsigned_wchar)) 2018 *unsignedp = 1; 2019 else 2020 *unsignedp = 0; 2021 2022 *pchars_seen = 1; 2023 return result; 2024 } 2025 2026 /* Interpret a (possibly wide) character constant in TOKEN. 2027 PCHARS_SEEN points to a variable that is filled in with the number 2028 of characters seen, and UNSIGNEDP to a variable that indicates 2029 whether the result has signed type. */ 2030 cppchar_t 2031 cpp_interpret_charconst (cpp_reader *pfile, const cpp_token *token, 2032 unsigned int *pchars_seen, int *unsignedp) 2033 { 2034 cpp_string str = { 0, 0 }; 2035 bool wide = (token->type != CPP_CHAR && token->type != CPP_UTF8CHAR); 2036 int u8 = 2 * int(token->type == CPP_UTF8CHAR); 2037 cppchar_t result; 2038 2039 /* An empty constant will appear as L'', u'', U'', u8'', or '' */ 2040 if (token->val.str.len == (size_t) (2 + wide + u8)) 2041 { 2042 cpp_error (pfile, CPP_DL_ERROR, "empty character constant"); 2043 *pchars_seen = 0; 2044 *unsignedp = 0; 2045 return 0; 2046 } 2047 else if (!cpp_interpret_string (pfile, &token->val.str, 1, &str, 2048 token->type)) 2049 { 2050 *pchars_seen = 0; 2051 *unsignedp = 0; 2052 return 0; 2053 } 2054 2055 if (wide) 2056 result = wide_str_to_charconst (pfile, str, pchars_seen, unsignedp, 2057 token->type); 2058 else 2059 result = narrow_str_to_charconst (pfile, str, pchars_seen, unsignedp, 2060 token->type); 2061 2062 if (str.text != token->val.str.text) 2063 free ((void *)str.text); 2064 2065 return result; 2066 } 2067 2068 /* Convert an identifier denoted by ID and LEN, which might contain 2069 UCN escapes or UTF-8 multibyte chars, to the source character set, 2070 either UTF-8 or UTF-EBCDIC. Assumes that the identifier is actually 2071 a valid identifier. */ 2072 cpp_hashnode * 2073 _cpp_interpret_identifier (cpp_reader *pfile, const uchar *id, size_t len) 2074 { 2075 /* It turns out that a UCN escape always turns into fewer characters 2076 than the escape itself, so we can allocate a temporary in advance. */ 2077 uchar * buf = (uchar *) alloca (len + 1); 2078 uchar * bufp = buf; 2079 size_t idp; 2080 2081 for (idp = 0; idp < len; idp++) 2082 if (id[idp] != '\\') 2083 *bufp++ = id[idp]; 2084 else 2085 { 2086 unsigned length = id[idp+1] == 'u' ? 4 : 8; 2087 cppchar_t value = 0; 2088 size_t bufleft = len - (bufp - buf); 2089 int rval; 2090 2091 idp += 2; 2092 while (length && idp < len && ISXDIGIT (id[idp])) 2093 { 2094 value = (value << 4) + hex_value (id[idp]); 2095 idp++; 2096 length--; 2097 } 2098 idp--; 2099 2100 /* Special case for EBCDIC: if the identifier contains 2101 a '$' specified using a UCN, translate it to EBCDIC. */ 2102 if (value == 0x24) 2103 { 2104 *bufp++ = '$'; 2105 continue; 2106 } 2107 2108 rval = one_cppchar_to_utf8 (value, &bufp, &bufleft); 2109 if (rval) 2110 { 2111 errno = rval; 2112 cpp_errno (pfile, CPP_DL_ERROR, 2113 "converting UCN to source character set"); 2114 break; 2115 } 2116 } 2117 2118 return CPP_HASHNODE (ht_lookup (pfile->hash_table, 2119 buf, bufp - buf, HT_ALLOC)); 2120 } 2121 2122 /* Convert an input buffer (containing the complete contents of one 2123 source file) from INPUT_CHARSET to the source character set. INPUT 2124 points to the input buffer, SIZE is its allocated size, and LEN is 2125 the length of the meaningful data within the buffer. The 2126 translated buffer is returned, *ST_SIZE is set to the length of 2127 the meaningful data within the translated buffer, and *BUFFER_START 2128 is set to the start of the returned buffer. *BUFFER_START may 2129 differ from the return value in the case of a BOM or other ignored 2130 marker information. 2131 2132 INPUT is expected to have been allocated with xmalloc. This 2133 function will either set *BUFFER_START to INPUT, or free it and set 2134 *BUFFER_START to a pointer to another xmalloc-allocated block of 2135 memory. */ 2136 uchar * 2137 _cpp_convert_input (cpp_reader *pfile, const char *input_charset, 2138 uchar *input, size_t size, size_t len, 2139 const unsigned char **buffer_start, off_t *st_size) 2140 { 2141 struct cset_converter input_cset; 2142 struct _cpp_strbuf to; 2143 unsigned char *buffer; 2144 2145 input_cset = init_iconv_desc (pfile, SOURCE_CHARSET, input_charset); 2146 if (input_cset.func == convert_no_conversion) 2147 { 2148 to.text = input; 2149 to.asize = size; 2150 to.len = len; 2151 } 2152 else 2153 { 2154 to.asize = MAX (65536, len); 2155 to.text = XNEWVEC (uchar, to.asize); 2156 to.len = 0; 2157 2158 if (!APPLY_CONVERSION (input_cset, input, len, &to)) 2159 cpp_error (pfile, CPP_DL_ERROR, 2160 "failure to convert %s to %s", 2161 CPP_OPTION (pfile, input_charset), SOURCE_CHARSET); 2162 2163 free (input); 2164 } 2165 2166 /* Clean up the mess. */ 2167 if (input_cset.func == convert_using_iconv) 2168 iconv_close (input_cset.cd); 2169 2170 /* Resize buffer if we allocated substantially too much, or if we 2171 haven't enough space for the \n-terminator or following 2172 15 bytes of padding (used to quiet warnings from valgrind or 2173 Address Sanitizer, when the optimized lexer accesses aligned 2174 16-byte memory chunks, including the bytes after the malloced, 2175 area, and stops lexing on '\n'). */ 2176 if (to.len + 4096 < to.asize || to.len + 16 > to.asize) 2177 to.text = XRESIZEVEC (uchar, to.text, to.len + 16); 2178 2179 memset (to.text + to.len, '\0', 16); 2180 2181 /* If the file is using old-school Mac line endings (\r only), 2182 terminate with another \r, not an \n, so that we do not mistake 2183 the \r\n sequence for a single DOS line ending and erroneously 2184 issue the "No newline at end of file" diagnostic. */ 2185 if (to.len && to.text[to.len - 1] == '\r') 2186 to.text[to.len] = '\r'; 2187 else 2188 to.text[to.len] = '\n'; 2189 2190 buffer = to.text; 2191 *st_size = to.len; 2192 #if HOST_CHARSET == HOST_CHARSET_ASCII 2193 /* The HOST_CHARSET test just above ensures that the source charset 2194 is UTF-8. So, ignore a UTF-8 BOM if we see one. Note that 2195 glib'c UTF-8 iconv() provider (as of glibc 2.7) does not ignore a 2196 BOM -- however, even if it did, we would still need this code due 2197 to the 'convert_no_conversion' case. */ 2198 if (to.len >= 3 && to.text[0] == 0xef && to.text[1] == 0xbb 2199 && to.text[2] == 0xbf) 2200 { 2201 *st_size -= 3; 2202 buffer += 3; 2203 } 2204 #endif 2205 2206 *buffer_start = to.text; 2207 return buffer; 2208 } 2209 2210 /* Decide on the default encoding to assume for input files. */ 2211 const char * 2212 _cpp_default_encoding (void) 2213 { 2214 const char *current_encoding = NULL; 2215 2216 /* We disable this because the default codeset is 7-bit ASCII on 2217 most platforms, and this causes conversion failures on every 2218 file in GCC that happens to have one of the upper 128 characters 2219 in it -- most likely, as part of the name of a contributor. 2220 We should definitely recognize in-band markers of file encoding, 2221 like: 2222 - the appropriate Unicode byte-order mark (FE FF) to recognize 2223 UTF16 and UCS4 (in both big-endian and little-endian flavors) 2224 and UTF8 2225 - a "#i", "#d", "/ *", "//", " #p" or "#p" (for #pragma) to 2226 distinguish ASCII and EBCDIC. 2227 - now we can parse something like "#pragma GCC encoding <xyz> 2228 on the first line, or even Emacs/VIM's mode line tags (there's 2229 a problem here in that VIM uses the last line, and Emacs has 2230 its more elaborate "local variables" convention). 2231 - investigate whether Java has another common convention, which 2232 would be friendly to support. 2233 (Zack Weinberg and Paolo Bonzini, May 20th 2004) */ 2234 #if defined (HAVE_LOCALE_H) && defined (HAVE_LANGINFO_CODESET) && 0 2235 setlocale (LC_CTYPE, ""); 2236 current_encoding = nl_langinfo (CODESET); 2237 #endif 2238 if (current_encoding == NULL || *current_encoding == '\0') 2239 current_encoding = SOURCE_CHARSET; 2240 2241 return current_encoding; 2242 } 2243 2244 /* Implementation of class cpp_string_location_reader. */ 2245 2246 /* Constructor for cpp_string_location_reader. */ 2247 2248 cpp_string_location_reader:: 2249 cpp_string_location_reader (location_t src_loc, 2250 line_maps *line_table) 2251 { 2252 src_loc = get_range_from_loc (line_table, src_loc).m_start; 2253 2254 /* SRC_LOC might be a macro location. It only makes sense to do 2255 column-by-column calculations on ordinary maps, so get the 2256 corresponding location in an ordinary map. */ 2257 m_loc 2258 = linemap_resolve_location (line_table, src_loc, 2259 LRK_SPELLING_LOCATION, NULL); 2260 2261 const line_map_ordinary *map 2262 = linemap_check_ordinary (linemap_lookup (line_table, m_loc)); 2263 m_offset_per_column = (1 << map->m_range_bits); 2264 } 2265 2266 /* Get the range of the next source byte. */ 2267 2268 source_range 2269 cpp_string_location_reader::get_next () 2270 { 2271 source_range result; 2272 result.m_start = m_loc; 2273 result.m_finish = m_loc; 2274 if (m_loc <= LINE_MAP_MAX_LOCATION_WITH_COLS) 2275 m_loc += m_offset_per_column; 2276 return result; 2277 } 2278 2279 /* Helper for cpp_byte_column_to_display_column and its inverse. Given a 2280 pointer to a UTF-8-encoded character, compute its display width. *INBUFP 2281 points on entry to the start of the UTF-8 encoding of the character, and 2282 is updated to point just after the last byte of the encoding. *INBYTESLEFTP 2283 contains on entry the remaining size of the buffer into which *INBUFP 2284 points, and this is also updated accordingly. If *INBUFP does not 2285 point to a valid UTF-8-encoded sequence, then it will be treated as a single 2286 byte with display width 1. */ 2287 2288 static inline int 2289 compute_next_display_width (const uchar **inbufp, size_t *inbytesleftp) 2290 { 2291 cppchar_t c; 2292 if (one_utf8_to_cppchar (inbufp, inbytesleftp, &c) != 0) 2293 { 2294 /* Input is not convertible to UTF-8. This could be fine, e.g. in a 2295 string literal, so don't complain. Just treat it as if it has a width 2296 of one. */ 2297 ++*inbufp; 2298 --*inbytesleftp; 2299 return 1; 2300 } 2301 2302 /* one_utf8_to_cppchar() has updated inbufp and inbytesleftp for us. */ 2303 return cpp_wcwidth (c); 2304 } 2305 2306 /* For the string of length DATA_LENGTH bytes that begins at DATA, compute 2307 how many display columns are occupied by the first COLUMN bytes. COLUMN 2308 may exceed DATA_LENGTH, in which case the phantom bytes at the end are 2309 treated as if they have display width 1. */ 2310 2311 int 2312 cpp_byte_column_to_display_column (const char *data, int data_length, 2313 int column) 2314 { 2315 int display_col = 0; 2316 const uchar *udata = (const uchar *) data; 2317 const int offset = MAX (0, column - data_length); 2318 size_t inbytesleft = column - offset; 2319 while (inbytesleft) 2320 display_col += compute_next_display_width (&udata, &inbytesleft); 2321 return display_col + offset; 2322 } 2323 2324 /* For the string of length DATA_LENGTH bytes that begins at DATA, compute 2325 the least number of bytes that will result in at least DISPLAY_COL display 2326 columns. The return value may exceed DATA_LENGTH if the entire string does 2327 not occupy enough display columns. */ 2328 2329 int 2330 cpp_display_column_to_byte_column (const char *data, int data_length, 2331 int display_col) 2332 { 2333 int column = 0; 2334 const uchar *udata = (const uchar *) data; 2335 size_t inbytesleft = data_length; 2336 while (column < display_col && inbytesleft) 2337 column += compute_next_display_width (&udata, &inbytesleft); 2338 return data_length - inbytesleft + MAX (0, display_col - column); 2339 } 2340 2341 /* Our own version of wcwidth(). We don't use the actual wcwidth() in glibc, 2342 because that will inspect the user's locale, and in particular in an ASCII 2343 locale, it will not return anything useful for extended characters. But GCC 2344 in other respects (see e.g. _cpp_default_encoding()) behaves as if 2345 everything is UTF-8. We also make some tweaks that are useful for the way 2346 GCC needs to use this data, e.g. tabs and other control characters should be 2347 treated as having width 1. The lookup tables are generated from 2348 contrib/unicode/gen_wcwidth.py and were made by simply calling glibc 2349 wcwidth() on all codepoints, then applying the small tweaks. These tables 2350 are not highly optimized, but for the present purpose of outputting 2351 diagnostics, they are sufficient. */ 2352 2353 #include "generated_cpp_wcwidth.h" 2354 int cpp_wcwidth (cppchar_t c) 2355 { 2356 if (__builtin_expect (c <= wcwidth_range_ends[0], true)) 2357 return wcwidth_widths[0]; 2358 2359 /* Binary search the tables. */ 2360 int begin = 1; 2361 static const int end 2362 = sizeof wcwidth_range_ends / sizeof (*wcwidth_range_ends); 2363 int len = end - begin; 2364 do 2365 { 2366 int half = len/2; 2367 int middle = begin + half; 2368 if (c > wcwidth_range_ends[middle]) 2369 { 2370 begin = middle + 1; 2371 len -= half + 1; 2372 } 2373 else 2374 len = half; 2375 } while (len); 2376 2377 if (__builtin_expect (begin != end, true)) 2378 return wcwidth_widths[begin]; 2379 return 1; 2380 } 2381