1 /* Vector API for GNU compiler. 2 Copyright (C) 2004-2017 Free Software Foundation, Inc. 3 Contributed by Nathan Sidwell <nathan@codesourcery.com> 4 Re-implemented in C++ by Diego Novillo <dnovillo@google.com> 5 6 This file is part of GCC. 7 8 GCC is free software; you can redistribute it and/or modify it under 9 the terms of the GNU General Public License as published by the Free 10 Software Foundation; either version 3, or (at your option) any later 11 version. 12 13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY 14 WARRANTY; without even the implied warranty of MERCHANTABILITY or 15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 16 for more details. 17 18 You should have received a copy of the GNU General Public License 19 along with GCC; see the file COPYING3. If not see 20 <http://www.gnu.org/licenses/>. */ 21 22 #ifndef GCC_VEC_H 23 #define GCC_VEC_H 24 25 /* Some gen* file have no ggc support as the header file gtype-desc.h is 26 missing. Provide these definitions in case ggc.h has not been included. 27 This is not a problem because any code that runs before gengtype is built 28 will never need to use GC vectors.*/ 29 30 extern void ggc_free (void *); 31 extern size_t ggc_round_alloc_size (size_t requested_size); 32 extern void *ggc_realloc (void *, size_t MEM_STAT_DECL); 33 34 /* Templated vector type and associated interfaces. 35 36 The interface functions are typesafe and use inline functions, 37 sometimes backed by out-of-line generic functions. The vectors are 38 designed to interoperate with the GTY machinery. 39 40 There are both 'index' and 'iterate' accessors. The index accessor 41 is implemented by operator[]. The iterator returns a boolean 42 iteration condition and updates the iteration variable passed by 43 reference. Because the iterator will be inlined, the address-of 44 can be optimized away. 45 46 Each operation that increases the number of active elements is 47 available in 'quick' and 'safe' variants. The former presumes that 48 there is sufficient allocated space for the operation to succeed 49 (it dies if there is not). The latter will reallocate the 50 vector, if needed. Reallocation causes an exponential increase in 51 vector size. If you know you will be adding N elements, it would 52 be more efficient to use the reserve operation before adding the 53 elements with the 'quick' operation. This will ensure there are at 54 least as many elements as you ask for, it will exponentially 55 increase if there are too few spare slots. If you want reserve a 56 specific number of slots, but do not want the exponential increase 57 (for instance, you know this is the last allocation), use the 58 reserve_exact operation. You can also create a vector of a 59 specific size from the get go. 60 61 You should prefer the push and pop operations, as they append and 62 remove from the end of the vector. If you need to remove several 63 items in one go, use the truncate operation. The insert and remove 64 operations allow you to change elements in the middle of the 65 vector. There are two remove operations, one which preserves the 66 element ordering 'ordered_remove', and one which does not 67 'unordered_remove'. The latter function copies the end element 68 into the removed slot, rather than invoke a memmove operation. The 69 'lower_bound' function will determine where to place an item in the 70 array using insert that will maintain sorted order. 71 72 Vectors are template types with three arguments: the type of the 73 elements in the vector, the allocation strategy, and the physical 74 layout to use 75 76 Four allocation strategies are supported: 77 78 - Heap: allocation is done using malloc/free. This is the 79 default allocation strategy. 80 81 - GC: allocation is done using ggc_alloc/ggc_free. 82 83 - GC atomic: same as GC with the exception that the elements 84 themselves are assumed to be of an atomic type that does 85 not need to be garbage collected. This means that marking 86 routines do not need to traverse the array marking the 87 individual elements. This increases the performance of 88 GC activities. 89 90 Two physical layouts are supported: 91 92 - Embedded: The vector is structured using the trailing array 93 idiom. The last member of the structure is an array of size 94 1. When the vector is initially allocated, a single memory 95 block is created to hold the vector's control data and the 96 array of elements. These vectors cannot grow without 97 reallocation (see discussion on embeddable vectors below). 98 99 - Space efficient: The vector is structured as a pointer to an 100 embedded vector. This is the default layout. It means that 101 vectors occupy a single word of storage before initial 102 allocation. Vectors are allowed to grow (the internal 103 pointer is reallocated but the main vector instance does not 104 need to relocate). 105 106 The type, allocation and layout are specified when the vector is 107 declared. 108 109 If you need to directly manipulate a vector, then the 'address' 110 accessor will return the address of the start of the vector. Also 111 the 'space' predicate will tell you whether there is spare capacity 112 in the vector. You will not normally need to use these two functions. 113 114 Notes on the different layout strategies 115 116 * Embeddable vectors (vec<T, A, vl_embed>) 117 118 These vectors are suitable to be embedded in other data 119 structures so that they can be pre-allocated in a contiguous 120 memory block. 121 122 Embeddable vectors are implemented using the trailing array 123 idiom, thus they are not resizeable without changing the address 124 of the vector object itself. This means you cannot have 125 variables or fields of embeddable vector type -- always use a 126 pointer to a vector. The one exception is the final field of a 127 structure, which could be a vector type. 128 129 You will have to use the embedded_size & embedded_init calls to 130 create such objects, and they will not be resizeable (so the 131 'safe' allocation variants are not available). 132 133 Properties of embeddable vectors: 134 135 - The whole vector and control data are allocated in a single 136 contiguous block. It uses the trailing-vector idiom, so 137 allocation must reserve enough space for all the elements 138 in the vector plus its control data. 139 - The vector cannot be re-allocated. 140 - The vector cannot grow nor shrink. 141 - No indirections needed for access/manipulation. 142 - It requires 2 words of storage (prior to vector allocation). 143 144 145 * Space efficient vector (vec<T, A, vl_ptr>) 146 147 These vectors can grow dynamically and are allocated together 148 with their control data. They are suited to be included in data 149 structures. Prior to initial allocation, they only take a single 150 word of storage. 151 152 These vectors are implemented as a pointer to embeddable vectors. 153 The semantics allow for this pointer to be NULL to represent 154 empty vectors. This way, empty vectors occupy minimal space in 155 the structure containing them. 156 157 Properties: 158 159 - The whole vector and control data are allocated in a single 160 contiguous block. 161 - The whole vector may be re-allocated. 162 - Vector data may grow and shrink. 163 - Access and manipulation requires a pointer test and 164 indirection. 165 - It requires 1 word of storage (prior to vector allocation). 166 167 An example of their use would be, 168 169 struct my_struct { 170 // A space-efficient vector of tree pointers in GC memory. 171 vec<tree, va_gc, vl_ptr> v; 172 }; 173 174 struct my_struct *s; 175 176 if (s->v.length ()) { we have some contents } 177 s->v.safe_push (decl); // append some decl onto the end 178 for (ix = 0; s->v.iterate (ix, &elt); ix++) 179 { do something with elt } 180 */ 181 182 /* Support function for statistics. */ 183 extern void dump_vec_loc_statistics (void); 184 185 /* Hashtable mapping vec addresses to descriptors. */ 186 extern htab_t vec_mem_usage_hash; 187 188 /* Control data for vectors. This contains the number of allocated 189 and used slots inside a vector. */ 190 191 struct vec_prefix 192 { 193 /* FIXME - These fields should be private, but we need to cater to 194 compilers that have stricter notions of PODness for types. */ 195 196 /* Memory allocation support routines in vec.c. */ 197 void register_overhead (void *, size_t, size_t CXX_MEM_STAT_INFO); 198 void release_overhead (void *, size_t, bool CXX_MEM_STAT_INFO); 199 static unsigned calculate_allocation (vec_prefix *, unsigned, bool); 200 static unsigned calculate_allocation_1 (unsigned, unsigned); 201 202 /* Note that vec_prefix should be a base class for vec, but we use 203 offsetof() on vector fields of tree structures (e.g., 204 tree_binfo::base_binfos), and offsetof only supports base types. 205 206 To compensate, we make vec_prefix a field inside vec and make 207 vec a friend class of vec_prefix so it can access its fields. */ 208 template <typename, typename, typename> friend struct vec; 209 210 /* The allocator types also need access to our internals. */ 211 friend struct va_gc; 212 friend struct va_gc_atomic; 213 friend struct va_heap; 214 215 unsigned m_alloc : 31; 216 unsigned m_using_auto_storage : 1; 217 unsigned m_num; 218 }; 219 220 /* Calculate the number of slots to reserve a vector, making sure that 221 RESERVE slots are free. If EXACT grow exactly, otherwise grow 222 exponentially. PFX is the control data for the vector. */ 223 224 inline unsigned 225 vec_prefix::calculate_allocation (vec_prefix *pfx, unsigned reserve, 226 bool exact) 227 { 228 if (exact) 229 return (pfx ? pfx->m_num : 0) + reserve; 230 else if (!pfx) 231 return MAX (4, reserve); 232 return calculate_allocation_1 (pfx->m_alloc, pfx->m_num + reserve); 233 } 234 235 template<typename, typename, typename> struct vec; 236 237 /* Valid vector layouts 238 239 vl_embed - Embeddable vector that uses the trailing array idiom. 240 vl_ptr - Space efficient vector that uses a pointer to an 241 embeddable vector. */ 242 struct vl_embed { }; 243 struct vl_ptr { }; 244 245 246 /* Types of supported allocations 247 248 va_heap - Allocation uses malloc/free. 249 va_gc - Allocation uses ggc_alloc. 250 va_gc_atomic - Same as GC, but individual elements of the array 251 do not need to be marked during collection. */ 252 253 /* Allocator type for heap vectors. */ 254 struct va_heap 255 { 256 /* Heap vectors are frequently regular instances, so use the vl_ptr 257 layout for them. */ 258 typedef vl_ptr default_layout; 259 260 template<typename T> 261 static void reserve (vec<T, va_heap, vl_embed> *&, unsigned, bool 262 CXX_MEM_STAT_INFO); 263 264 template<typename T> 265 static void release (vec<T, va_heap, vl_embed> *&); 266 }; 267 268 269 /* Allocator for heap memory. Ensure there are at least RESERVE free 270 slots in V. If EXACT is true, grow exactly, else grow 271 exponentially. As a special case, if the vector had not been 272 allocated and RESERVE is 0, no vector will be created. */ 273 274 template<typename T> 275 inline void 276 va_heap::reserve (vec<T, va_heap, vl_embed> *&v, unsigned reserve, bool exact 277 MEM_STAT_DECL) 278 { 279 unsigned alloc 280 = vec_prefix::calculate_allocation (v ? &v->m_vecpfx : 0, reserve, exact); 281 gcc_checking_assert (alloc); 282 283 if (GATHER_STATISTICS && v) 284 v->m_vecpfx.release_overhead (v, v->allocated (), false); 285 286 size_t size = vec<T, va_heap, vl_embed>::embedded_size (alloc); 287 unsigned nelem = v ? v->length () : 0; 288 v = static_cast <vec<T, va_heap, vl_embed> *> (xrealloc (v, size)); 289 v->embedded_init (alloc, nelem); 290 291 if (GATHER_STATISTICS) 292 v->m_vecpfx.register_overhead (v, alloc, nelem PASS_MEM_STAT); 293 } 294 295 296 /* Free the heap space allocated for vector V. */ 297 298 template<typename T> 299 void 300 va_heap::release (vec<T, va_heap, vl_embed> *&v) 301 { 302 if (v == NULL) 303 return; 304 305 if (GATHER_STATISTICS) 306 v->m_vecpfx.release_overhead (v, v->allocated (), true); 307 ::free (v); 308 v = NULL; 309 } 310 311 312 /* Allocator type for GC vectors. Notice that we need the structure 313 declaration even if GC is not enabled. */ 314 315 struct va_gc 316 { 317 /* Use vl_embed as the default layout for GC vectors. Due to GTY 318 limitations, GC vectors must always be pointers, so it is more 319 efficient to use a pointer to the vl_embed layout, rather than 320 using a pointer to a pointer as would be the case with vl_ptr. */ 321 typedef vl_embed default_layout; 322 323 template<typename T, typename A> 324 static void reserve (vec<T, A, vl_embed> *&, unsigned, bool 325 CXX_MEM_STAT_INFO); 326 327 template<typename T, typename A> 328 static void release (vec<T, A, vl_embed> *&v); 329 }; 330 331 332 /* Free GC memory used by V and reset V to NULL. */ 333 334 template<typename T, typename A> 335 inline void 336 va_gc::release (vec<T, A, vl_embed> *&v) 337 { 338 if (v) 339 ::ggc_free (v); 340 v = NULL; 341 } 342 343 344 /* Allocator for GC memory. Ensure there are at least RESERVE free 345 slots in V. If EXACT is true, grow exactly, else grow 346 exponentially. As a special case, if the vector had not been 347 allocated and RESERVE is 0, no vector will be created. */ 348 349 template<typename T, typename A> 350 void 351 va_gc::reserve (vec<T, A, vl_embed> *&v, unsigned reserve, bool exact 352 MEM_STAT_DECL) 353 { 354 unsigned alloc 355 = vec_prefix::calculate_allocation (v ? &v->m_vecpfx : 0, reserve, exact); 356 if (!alloc) 357 { 358 ::ggc_free (v); 359 v = NULL; 360 return; 361 } 362 363 /* Calculate the amount of space we want. */ 364 size_t size = vec<T, A, vl_embed>::embedded_size (alloc); 365 366 /* Ask the allocator how much space it will really give us. */ 367 size = ::ggc_round_alloc_size (size); 368 369 /* Adjust the number of slots accordingly. */ 370 size_t vec_offset = sizeof (vec_prefix); 371 size_t elt_size = sizeof (T); 372 alloc = (size - vec_offset) / elt_size; 373 374 /* And finally, recalculate the amount of space we ask for. */ 375 size = vec_offset + alloc * elt_size; 376 377 unsigned nelem = v ? v->length () : 0; 378 v = static_cast <vec<T, A, vl_embed> *> (::ggc_realloc (v, size 379 PASS_MEM_STAT)); 380 v->embedded_init (alloc, nelem); 381 } 382 383 384 /* Allocator type for GC vectors. This is for vectors of types 385 atomics w.r.t. collection, so allocation and deallocation is 386 completely inherited from va_gc. */ 387 struct va_gc_atomic : va_gc 388 { 389 }; 390 391 392 /* Generic vector template. Default values for A and L indicate the 393 most commonly used strategies. 394 395 FIXME - Ideally, they would all be vl_ptr to encourage using regular 396 instances for vectors, but the existing GTY machinery is limited 397 in that it can only deal with GC objects that are pointers 398 themselves. 399 400 This means that vector operations that need to deal with 401 potentially NULL pointers, must be provided as free 402 functions (see the vec_safe_* functions above). */ 403 template<typename T, 404 typename A = va_heap, 405 typename L = typename A::default_layout> 406 struct GTY((user)) vec 407 { 408 }; 409 410 /* Type to provide NULL values for vec<T, A, L>. This is used to 411 provide nil initializers for vec instances. Since vec must be 412 a POD, we cannot have proper ctor/dtor for it. To initialize 413 a vec instance, you can assign it the value vNULL. This isn't 414 needed for file-scope and function-local static vectors, which 415 are zero-initialized by default. */ 416 struct vnull 417 { 418 template <typename T, typename A, typename L> 419 #if __cpp_constexpr >= 200704 420 constexpr 421 #endif 422 operator vec<T, A, L> () { return vec<T, A, L>(); } 423 }; 424 extern vnull vNULL; 425 426 427 /* Embeddable vector. These vectors are suitable to be embedded 428 in other data structures so that they can be pre-allocated in a 429 contiguous memory block. 430 431 Embeddable vectors are implemented using the trailing array idiom, 432 thus they are not resizeable without changing the address of the 433 vector object itself. This means you cannot have variables or 434 fields of embeddable vector type -- always use a pointer to a 435 vector. The one exception is the final field of a structure, which 436 could be a vector type. 437 438 You will have to use the embedded_size & embedded_init calls to 439 create such objects, and they will not be resizeable (so the 'safe' 440 allocation variants are not available). 441 442 Properties: 443 444 - The whole vector and control data are allocated in a single 445 contiguous block. It uses the trailing-vector idiom, so 446 allocation must reserve enough space for all the elements 447 in the vector plus its control data. 448 - The vector cannot be re-allocated. 449 - The vector cannot grow nor shrink. 450 - No indirections needed for access/manipulation. 451 - It requires 2 words of storage (prior to vector allocation). */ 452 453 template<typename T, typename A> 454 struct GTY((user)) vec<T, A, vl_embed> 455 { 456 public: 457 unsigned allocated (void) const { return m_vecpfx.m_alloc; } 458 unsigned length (void) const { return m_vecpfx.m_num; } 459 bool is_empty (void) const { return m_vecpfx.m_num == 0; } 460 T *address (void) { return m_vecdata; } 461 const T *address (void) const { return m_vecdata; } 462 T *begin () { return address (); } 463 const T *begin () const { return address (); } 464 T *end () { return address () + length (); } 465 const T *end () const { return address () + length (); } 466 const T &operator[] (unsigned) const; 467 T &operator[] (unsigned); 468 T &last (void); 469 bool space (unsigned) const; 470 bool iterate (unsigned, T *) const; 471 bool iterate (unsigned, T **) const; 472 vec *copy (ALONE_CXX_MEM_STAT_INFO) const; 473 void splice (const vec &); 474 void splice (const vec *src); 475 T *quick_push (const T &); 476 T &pop (void); 477 void truncate (unsigned); 478 void quick_insert (unsigned, const T &); 479 void ordered_remove (unsigned); 480 void unordered_remove (unsigned); 481 void block_remove (unsigned, unsigned); 482 void qsort (int (*) (const void *, const void *)); 483 T *bsearch (const void *key, int (*compar)(const void *, const void *)); 484 unsigned lower_bound (T, bool (*)(const T &, const T &)) const; 485 bool contains (const T &search) const; 486 static size_t embedded_size (unsigned); 487 void embedded_init (unsigned, unsigned = 0, unsigned = 0); 488 void quick_grow (unsigned len); 489 void quick_grow_cleared (unsigned len); 490 491 /* vec class can access our internal data and functions. */ 492 template <typename, typename, typename> friend struct vec; 493 494 /* The allocator types also need access to our internals. */ 495 friend struct va_gc; 496 friend struct va_gc_atomic; 497 friend struct va_heap; 498 499 /* FIXME - These fields should be private, but we need to cater to 500 compilers that have stricter notions of PODness for types. */ 501 vec_prefix m_vecpfx; 502 T m_vecdata[1]; 503 }; 504 505 506 /* Convenience wrapper functions to use when dealing with pointers to 507 embedded vectors. Some functionality for these vectors must be 508 provided via free functions for these reasons: 509 510 1- The pointer may be NULL (e.g., before initial allocation). 511 512 2- When the vector needs to grow, it must be reallocated, so 513 the pointer will change its value. 514 515 Because of limitations with the current GC machinery, all vectors 516 in GC memory *must* be pointers. */ 517 518 519 /* If V contains no room for NELEMS elements, return false. Otherwise, 520 return true. */ 521 template<typename T, typename A> 522 inline bool 523 vec_safe_space (const vec<T, A, vl_embed> *v, unsigned nelems) 524 { 525 return v ? v->space (nelems) : nelems == 0; 526 } 527 528 529 /* If V is NULL, return 0. Otherwise, return V->length(). */ 530 template<typename T, typename A> 531 inline unsigned 532 vec_safe_length (const vec<T, A, vl_embed> *v) 533 { 534 return v ? v->length () : 0; 535 } 536 537 538 /* If V is NULL, return NULL. Otherwise, return V->address(). */ 539 template<typename T, typename A> 540 inline T * 541 vec_safe_address (vec<T, A, vl_embed> *v) 542 { 543 return v ? v->address () : NULL; 544 } 545 546 547 /* If V is NULL, return true. Otherwise, return V->is_empty(). */ 548 template<typename T, typename A> 549 inline bool 550 vec_safe_is_empty (vec<T, A, vl_embed> *v) 551 { 552 return v ? v->is_empty () : true; 553 } 554 555 /* If V does not have space for NELEMS elements, call 556 V->reserve(NELEMS, EXACT). */ 557 template<typename T, typename A> 558 inline bool 559 vec_safe_reserve (vec<T, A, vl_embed> *&v, unsigned nelems, bool exact = false 560 CXX_MEM_STAT_INFO) 561 { 562 bool extend = nelems ? !vec_safe_space (v, nelems) : false; 563 if (extend) 564 A::reserve (v, nelems, exact PASS_MEM_STAT); 565 return extend; 566 } 567 568 template<typename T, typename A> 569 inline bool 570 vec_safe_reserve_exact (vec<T, A, vl_embed> *&v, unsigned nelems 571 CXX_MEM_STAT_INFO) 572 { 573 return vec_safe_reserve (v, nelems, true PASS_MEM_STAT); 574 } 575 576 577 /* Allocate GC memory for V with space for NELEMS slots. If NELEMS 578 is 0, V is initialized to NULL. */ 579 580 template<typename T, typename A> 581 inline void 582 vec_alloc (vec<T, A, vl_embed> *&v, unsigned nelems CXX_MEM_STAT_INFO) 583 { 584 v = NULL; 585 vec_safe_reserve (v, nelems, false PASS_MEM_STAT); 586 } 587 588 589 /* Free the GC memory allocated by vector V and set it to NULL. */ 590 591 template<typename T, typename A> 592 inline void 593 vec_free (vec<T, A, vl_embed> *&v) 594 { 595 A::release (v); 596 } 597 598 599 /* Grow V to length LEN. Allocate it, if necessary. */ 600 template<typename T, typename A> 601 inline void 602 vec_safe_grow (vec<T, A, vl_embed> *&v, unsigned len CXX_MEM_STAT_INFO) 603 { 604 unsigned oldlen = vec_safe_length (v); 605 gcc_checking_assert (len >= oldlen); 606 vec_safe_reserve_exact (v, len - oldlen PASS_MEM_STAT); 607 v->quick_grow (len); 608 } 609 610 611 /* If V is NULL, allocate it. Call V->safe_grow_cleared(LEN). */ 612 template<typename T, typename A> 613 inline void 614 vec_safe_grow_cleared (vec<T, A, vl_embed> *&v, unsigned len CXX_MEM_STAT_INFO) 615 { 616 unsigned oldlen = vec_safe_length (v); 617 vec_safe_grow (v, len PASS_MEM_STAT); 618 memset (&(v->address ()[oldlen]), 0, sizeof (T) * (len - oldlen)); 619 } 620 621 622 /* If V is NULL return false, otherwise return V->iterate(IX, PTR). */ 623 template<typename T, typename A> 624 inline bool 625 vec_safe_iterate (const vec<T, A, vl_embed> *v, unsigned ix, T **ptr) 626 { 627 if (v) 628 return v->iterate (ix, ptr); 629 else 630 { 631 *ptr = 0; 632 return false; 633 } 634 } 635 636 template<typename T, typename A> 637 inline bool 638 vec_safe_iterate (const vec<T, A, vl_embed> *v, unsigned ix, T *ptr) 639 { 640 if (v) 641 return v->iterate (ix, ptr); 642 else 643 { 644 *ptr = 0; 645 return false; 646 } 647 } 648 649 650 /* If V has no room for one more element, reallocate it. Then call 651 V->quick_push(OBJ). */ 652 template<typename T, typename A> 653 inline T * 654 vec_safe_push (vec<T, A, vl_embed> *&v, const T &obj CXX_MEM_STAT_INFO) 655 { 656 vec_safe_reserve (v, 1, false PASS_MEM_STAT); 657 return v->quick_push (obj); 658 } 659 660 661 /* if V has no room for one more element, reallocate it. Then call 662 V->quick_insert(IX, OBJ). */ 663 template<typename T, typename A> 664 inline void 665 vec_safe_insert (vec<T, A, vl_embed> *&v, unsigned ix, const T &obj 666 CXX_MEM_STAT_INFO) 667 { 668 vec_safe_reserve (v, 1, false PASS_MEM_STAT); 669 v->quick_insert (ix, obj); 670 } 671 672 673 /* If V is NULL, do nothing. Otherwise, call V->truncate(SIZE). */ 674 template<typename T, typename A> 675 inline void 676 vec_safe_truncate (vec<T, A, vl_embed> *v, unsigned size) 677 { 678 if (v) 679 v->truncate (size); 680 } 681 682 683 /* If SRC is not NULL, return a pointer to a copy of it. */ 684 template<typename T, typename A> 685 inline vec<T, A, vl_embed> * 686 vec_safe_copy (vec<T, A, vl_embed> *src CXX_MEM_STAT_INFO) 687 { 688 return src ? src->copy (ALONE_PASS_MEM_STAT) : NULL; 689 } 690 691 /* Copy the elements from SRC to the end of DST as if by memcpy. 692 Reallocate DST, if necessary. */ 693 template<typename T, typename A> 694 inline void 695 vec_safe_splice (vec<T, A, vl_embed> *&dst, const vec<T, A, vl_embed> *src 696 CXX_MEM_STAT_INFO) 697 { 698 unsigned src_len = vec_safe_length (src); 699 if (src_len) 700 { 701 vec_safe_reserve_exact (dst, vec_safe_length (dst) + src_len 702 PASS_MEM_STAT); 703 dst->splice (*src); 704 } 705 } 706 707 /* Return true if SEARCH is an element of V. Note that this is O(N) in the 708 size of the vector and so should be used with care. */ 709 710 template<typename T, typename A> 711 inline bool 712 vec_safe_contains (vec<T, A, vl_embed> *v, const T &search) 713 { 714 return v ? v->contains (search) : false; 715 } 716 717 /* Index into vector. Return the IX'th element. IX must be in the 718 domain of the vector. */ 719 720 template<typename T, typename A> 721 inline const T & 722 vec<T, A, vl_embed>::operator[] (unsigned ix) const 723 { 724 gcc_checking_assert (ix < m_vecpfx.m_num); 725 return m_vecdata[ix]; 726 } 727 728 template<typename T, typename A> 729 inline T & 730 vec<T, A, vl_embed>::operator[] (unsigned ix) 731 { 732 gcc_checking_assert (ix < m_vecpfx.m_num); 733 return m_vecdata[ix]; 734 } 735 736 737 /* Get the final element of the vector, which must not be empty. */ 738 739 template<typename T, typename A> 740 inline T & 741 vec<T, A, vl_embed>::last (void) 742 { 743 gcc_checking_assert (m_vecpfx.m_num > 0); 744 return (*this)[m_vecpfx.m_num - 1]; 745 } 746 747 748 /* If this vector has space for NELEMS additional entries, return 749 true. You usually only need to use this if you are doing your 750 own vector reallocation, for instance on an embedded vector. This 751 returns true in exactly the same circumstances that vec::reserve 752 will. */ 753 754 template<typename T, typename A> 755 inline bool 756 vec<T, A, vl_embed>::space (unsigned nelems) const 757 { 758 return m_vecpfx.m_alloc - m_vecpfx.m_num >= nelems; 759 } 760 761 762 /* Return iteration condition and update PTR to point to the IX'th 763 element of this vector. Use this to iterate over the elements of a 764 vector as follows, 765 766 for (ix = 0; vec<T, A>::iterate (v, ix, &ptr); ix++) 767 continue; */ 768 769 template<typename T, typename A> 770 inline bool 771 vec<T, A, vl_embed>::iterate (unsigned ix, T *ptr) const 772 { 773 if (ix < m_vecpfx.m_num) 774 { 775 *ptr = m_vecdata[ix]; 776 return true; 777 } 778 else 779 { 780 *ptr = 0; 781 return false; 782 } 783 } 784 785 786 /* Return iteration condition and update *PTR to point to the 787 IX'th element of this vector. Use this to iterate over the 788 elements of a vector as follows, 789 790 for (ix = 0; v->iterate (ix, &ptr); ix++) 791 continue; 792 793 This variant is for vectors of objects. */ 794 795 template<typename T, typename A> 796 inline bool 797 vec<T, A, vl_embed>::iterate (unsigned ix, T **ptr) const 798 { 799 if (ix < m_vecpfx.m_num) 800 { 801 *ptr = CONST_CAST (T *, &m_vecdata[ix]); 802 return true; 803 } 804 else 805 { 806 *ptr = 0; 807 return false; 808 } 809 } 810 811 812 /* Return a pointer to a copy of this vector. */ 813 814 template<typename T, typename A> 815 inline vec<T, A, vl_embed> * 816 vec<T, A, vl_embed>::copy (ALONE_MEM_STAT_DECL) const 817 { 818 vec<T, A, vl_embed> *new_vec = NULL; 819 unsigned len = length (); 820 if (len) 821 { 822 vec_alloc (new_vec, len PASS_MEM_STAT); 823 new_vec->embedded_init (len, len); 824 memcpy (new_vec->address (), m_vecdata, sizeof (T) * len); 825 } 826 return new_vec; 827 } 828 829 830 /* Copy the elements from SRC to the end of this vector as if by memcpy. 831 The vector must have sufficient headroom available. */ 832 833 template<typename T, typename A> 834 inline void 835 vec<T, A, vl_embed>::splice (const vec<T, A, vl_embed> &src) 836 { 837 unsigned len = src.length (); 838 if (len) 839 { 840 gcc_checking_assert (space (len)); 841 memcpy (address () + length (), src.address (), len * sizeof (T)); 842 m_vecpfx.m_num += len; 843 } 844 } 845 846 template<typename T, typename A> 847 inline void 848 vec<T, A, vl_embed>::splice (const vec<T, A, vl_embed> *src) 849 { 850 if (src) 851 splice (*src); 852 } 853 854 855 /* Push OBJ (a new element) onto the end of the vector. There must be 856 sufficient space in the vector. Return a pointer to the slot 857 where OBJ was inserted. */ 858 859 template<typename T, typename A> 860 inline T * 861 vec<T, A, vl_embed>::quick_push (const T &obj) 862 { 863 gcc_checking_assert (space (1)); 864 T *slot = &m_vecdata[m_vecpfx.m_num++]; 865 *slot = obj; 866 return slot; 867 } 868 869 870 /* Pop and return the last element off the end of the vector. */ 871 872 template<typename T, typename A> 873 inline T & 874 vec<T, A, vl_embed>::pop (void) 875 { 876 gcc_checking_assert (length () > 0); 877 return m_vecdata[--m_vecpfx.m_num]; 878 } 879 880 881 /* Set the length of the vector to SIZE. The new length must be less 882 than or equal to the current length. This is an O(1) operation. */ 883 884 template<typename T, typename A> 885 inline void 886 vec<T, A, vl_embed>::truncate (unsigned size) 887 { 888 gcc_checking_assert (length () >= size); 889 m_vecpfx.m_num = size; 890 } 891 892 893 /* Insert an element, OBJ, at the IXth position of this vector. There 894 must be sufficient space. */ 895 896 template<typename T, typename A> 897 inline void 898 vec<T, A, vl_embed>::quick_insert (unsigned ix, const T &obj) 899 { 900 gcc_checking_assert (length () < allocated ()); 901 gcc_checking_assert (ix <= length ()); 902 T *slot = &m_vecdata[ix]; 903 memmove (slot + 1, slot, (m_vecpfx.m_num++ - ix) * sizeof (T)); 904 *slot = obj; 905 } 906 907 908 /* Remove an element from the IXth position of this vector. Ordering of 909 remaining elements is preserved. This is an O(N) operation due to 910 memmove. */ 911 912 template<typename T, typename A> 913 inline void 914 vec<T, A, vl_embed>::ordered_remove (unsigned ix) 915 { 916 gcc_checking_assert (ix < length ()); 917 T *slot = &m_vecdata[ix]; 918 memmove (slot, slot + 1, (--m_vecpfx.m_num - ix) * sizeof (T)); 919 } 920 921 922 /* Remove an element from the IXth position of this vector. Ordering of 923 remaining elements is destroyed. This is an O(1) operation. */ 924 925 template<typename T, typename A> 926 inline void 927 vec<T, A, vl_embed>::unordered_remove (unsigned ix) 928 { 929 gcc_checking_assert (ix < length ()); 930 m_vecdata[ix] = m_vecdata[--m_vecpfx.m_num]; 931 } 932 933 934 /* Remove LEN elements starting at the IXth. Ordering is retained. 935 This is an O(N) operation due to memmove. */ 936 937 template<typename T, typename A> 938 inline void 939 vec<T, A, vl_embed>::block_remove (unsigned ix, unsigned len) 940 { 941 gcc_checking_assert (ix + len <= length ()); 942 T *slot = &m_vecdata[ix]; 943 m_vecpfx.m_num -= len; 944 memmove (slot, slot + len, (m_vecpfx.m_num - ix) * sizeof (T)); 945 } 946 947 948 /* Sort the contents of this vector with qsort. CMP is the comparison 949 function to pass to qsort. */ 950 951 template<typename T, typename A> 952 inline void 953 vec<T, A, vl_embed>::qsort (int (*cmp) (const void *, const void *)) 954 { 955 if (length () > 1) 956 ::qsort (address (), length (), sizeof (T), cmp); 957 } 958 959 960 /* Search the contents of the sorted vector with a binary search. 961 CMP is the comparison function to pass to bsearch. */ 962 963 template<typename T, typename A> 964 inline T * 965 vec<T, A, vl_embed>::bsearch (const void *key, 966 int (*compar) (const void *, const void *)) 967 { 968 const void *base = this->address (); 969 size_t nmemb = this->length (); 970 size_t size = sizeof (T); 971 /* The following is a copy of glibc stdlib-bsearch.h. */ 972 size_t l, u, idx; 973 const void *p; 974 int comparison; 975 976 l = 0; 977 u = nmemb; 978 while (l < u) 979 { 980 idx = (l + u) / 2; 981 p = (const void *) (((const char *) base) + (idx * size)); 982 comparison = (*compar) (key, p); 983 if (comparison < 0) 984 u = idx; 985 else if (comparison > 0) 986 l = idx + 1; 987 else 988 return (T *)const_cast<void *>(p); 989 } 990 991 return NULL; 992 } 993 994 /* Return true if SEARCH is an element of V. Note that this is O(N) in the 995 size of the vector and so should be used with care. */ 996 997 template<typename T, typename A> 998 inline bool 999 vec<T, A, vl_embed>::contains (const T &search) const 1000 { 1001 unsigned int len = length (); 1002 for (unsigned int i = 0; i < len; i++) 1003 if ((*this)[i] == search) 1004 return true; 1005 1006 return false; 1007 } 1008 1009 /* Find and return the first position in which OBJ could be inserted 1010 without changing the ordering of this vector. LESSTHAN is a 1011 function that returns true if the first argument is strictly less 1012 than the second. */ 1013 1014 template<typename T, typename A> 1015 unsigned 1016 vec<T, A, vl_embed>::lower_bound (T obj, bool (*lessthan)(const T &, const T &)) 1017 const 1018 { 1019 unsigned int len = length (); 1020 unsigned int half, middle; 1021 unsigned int first = 0; 1022 while (len > 0) 1023 { 1024 half = len / 2; 1025 middle = first; 1026 middle += half; 1027 T middle_elem = (*this)[middle]; 1028 if (lessthan (middle_elem, obj)) 1029 { 1030 first = middle; 1031 ++first; 1032 len = len - half - 1; 1033 } 1034 else 1035 len = half; 1036 } 1037 return first; 1038 } 1039 1040 1041 /* Return the number of bytes needed to embed an instance of an 1042 embeddable vec inside another data structure. 1043 1044 Use these methods to determine the required size and initialization 1045 of a vector V of type T embedded within another structure (as the 1046 final member): 1047 1048 size_t vec<T, A, vl_embed>::embedded_size (unsigned alloc); 1049 void v->embedded_init (unsigned alloc, unsigned num); 1050 1051 These allow the caller to perform the memory allocation. */ 1052 1053 template<typename T, typename A> 1054 inline size_t 1055 vec<T, A, vl_embed>::embedded_size (unsigned alloc) 1056 { 1057 typedef vec<T, A, vl_embed> vec_embedded; 1058 return offsetof (vec_embedded, m_vecdata) + alloc * sizeof (T); 1059 } 1060 1061 1062 /* Initialize the vector to contain room for ALLOC elements and 1063 NUM active elements. */ 1064 1065 template<typename T, typename A> 1066 inline void 1067 vec<T, A, vl_embed>::embedded_init (unsigned alloc, unsigned num, unsigned aut) 1068 { 1069 m_vecpfx.m_alloc = alloc; 1070 m_vecpfx.m_using_auto_storage = aut; 1071 m_vecpfx.m_num = num; 1072 } 1073 1074 1075 /* Grow the vector to a specific length. LEN must be as long or longer than 1076 the current length. The new elements are uninitialized. */ 1077 1078 template<typename T, typename A> 1079 inline void 1080 vec<T, A, vl_embed>::quick_grow (unsigned len) 1081 { 1082 gcc_checking_assert (length () <= len && len <= m_vecpfx.m_alloc); 1083 m_vecpfx.m_num = len; 1084 } 1085 1086 1087 /* Grow the vector to a specific length. LEN must be as long or longer than 1088 the current length. The new elements are initialized to zero. */ 1089 1090 template<typename T, typename A> 1091 inline void 1092 vec<T, A, vl_embed>::quick_grow_cleared (unsigned len) 1093 { 1094 unsigned oldlen = length (); 1095 size_t sz = sizeof (T) * (len - oldlen); 1096 quick_grow (len); 1097 if (sz != 0) 1098 memset (&(address ()[oldlen]), 0, sz); 1099 } 1100 1101 1102 /* Garbage collection support for vec<T, A, vl_embed>. */ 1103 1104 template<typename T> 1105 void 1106 gt_ggc_mx (vec<T, va_gc> *v) 1107 { 1108 extern void gt_ggc_mx (T &); 1109 for (unsigned i = 0; i < v->length (); i++) 1110 gt_ggc_mx ((*v)[i]); 1111 } 1112 1113 template<typename T> 1114 void 1115 gt_ggc_mx (vec<T, va_gc_atomic, vl_embed> *v ATTRIBUTE_UNUSED) 1116 { 1117 /* Nothing to do. Vectors of atomic types wrt GC do not need to 1118 be traversed. */ 1119 } 1120 1121 1122 /* PCH support for vec<T, A, vl_embed>. */ 1123 1124 template<typename T, typename A> 1125 void 1126 gt_pch_nx (vec<T, A, vl_embed> *v) 1127 { 1128 extern void gt_pch_nx (T &); 1129 for (unsigned i = 0; i < v->length (); i++) 1130 gt_pch_nx ((*v)[i]); 1131 } 1132 1133 template<typename T, typename A> 1134 void 1135 gt_pch_nx (vec<T *, A, vl_embed> *v, gt_pointer_operator op, void *cookie) 1136 { 1137 for (unsigned i = 0; i < v->length (); i++) 1138 op (&((*v)[i]), cookie); 1139 } 1140 1141 template<typename T, typename A> 1142 void 1143 gt_pch_nx (vec<T, A, vl_embed> *v, gt_pointer_operator op, void *cookie) 1144 { 1145 extern void gt_pch_nx (T *, gt_pointer_operator, void *); 1146 for (unsigned i = 0; i < v->length (); i++) 1147 gt_pch_nx (&((*v)[i]), op, cookie); 1148 } 1149 1150 1151 /* Space efficient vector. These vectors can grow dynamically and are 1152 allocated together with their control data. They are suited to be 1153 included in data structures. Prior to initial allocation, they 1154 only take a single word of storage. 1155 1156 These vectors are implemented as a pointer to an embeddable vector. 1157 The semantics allow for this pointer to be NULL to represent empty 1158 vectors. This way, empty vectors occupy minimal space in the 1159 structure containing them. 1160 1161 Properties: 1162 1163 - The whole vector and control data are allocated in a single 1164 contiguous block. 1165 - The whole vector may be re-allocated. 1166 - Vector data may grow and shrink. 1167 - Access and manipulation requires a pointer test and 1168 indirection. 1169 - It requires 1 word of storage (prior to vector allocation). 1170 1171 1172 Limitations: 1173 1174 These vectors must be PODs because they are stored in unions. 1175 (http://en.wikipedia.org/wiki/Plain_old_data_structures). 1176 As long as we use C++03, we cannot have constructors nor 1177 destructors in classes that are stored in unions. */ 1178 1179 template<typename T> 1180 struct vec<T, va_heap, vl_ptr> 1181 { 1182 public: 1183 /* Memory allocation and deallocation for the embedded vector. 1184 Needed because we cannot have proper ctors/dtors defined. */ 1185 void create (unsigned nelems CXX_MEM_STAT_INFO); 1186 void release (void); 1187 1188 /* Vector operations. */ 1189 bool exists (void) const 1190 { return m_vec != NULL; } 1191 1192 bool is_empty (void) const 1193 { return m_vec ? m_vec->is_empty () : true; } 1194 1195 unsigned length (void) const 1196 { return m_vec ? m_vec->length () : 0; } 1197 1198 T *address (void) 1199 { return m_vec ? m_vec->m_vecdata : NULL; } 1200 1201 const T *address (void) const 1202 { return m_vec ? m_vec->m_vecdata : NULL; } 1203 1204 T *begin () { return address (); } 1205 const T *begin () const { return address (); } 1206 T *end () { return begin () + length (); } 1207 const T *end () const { return begin () + length (); } 1208 const T &operator[] (unsigned ix) const 1209 { return (*m_vec)[ix]; } 1210 1211 bool operator!=(const vec &other) const 1212 { return !(*this == other); } 1213 1214 bool operator==(const vec &other) const 1215 { return address () == other.address (); } 1216 1217 T &operator[] (unsigned ix) 1218 { return (*m_vec)[ix]; } 1219 1220 T &last (void) 1221 { return m_vec->last (); } 1222 1223 bool space (int nelems) const 1224 { return m_vec ? m_vec->space (nelems) : nelems == 0; } 1225 1226 bool iterate (unsigned ix, T *p) const; 1227 bool iterate (unsigned ix, T **p) const; 1228 vec copy (ALONE_CXX_MEM_STAT_INFO) const; 1229 bool reserve (unsigned, bool = false CXX_MEM_STAT_INFO); 1230 bool reserve_exact (unsigned CXX_MEM_STAT_INFO); 1231 void splice (const vec &); 1232 void safe_splice (const vec & CXX_MEM_STAT_INFO); 1233 T *quick_push (const T &); 1234 T *safe_push (const T &CXX_MEM_STAT_INFO); 1235 T &pop (void); 1236 void truncate (unsigned); 1237 void safe_grow (unsigned CXX_MEM_STAT_INFO); 1238 void safe_grow_cleared (unsigned CXX_MEM_STAT_INFO); 1239 void quick_grow (unsigned); 1240 void quick_grow_cleared (unsigned); 1241 void quick_insert (unsigned, const T &); 1242 void safe_insert (unsigned, const T & CXX_MEM_STAT_INFO); 1243 void ordered_remove (unsigned); 1244 void unordered_remove (unsigned); 1245 void block_remove (unsigned, unsigned); 1246 void qsort (int (*) (const void *, const void *)); 1247 T *bsearch (const void *key, int (*compar)(const void *, const void *)); 1248 unsigned lower_bound (T, bool (*)(const T &, const T &)) const; 1249 bool contains (const T &search) const; 1250 1251 bool using_auto_storage () const; 1252 1253 /* FIXME - This field should be private, but we need to cater to 1254 compilers that have stricter notions of PODness for types. */ 1255 vec<T, va_heap, vl_embed> *m_vec; 1256 }; 1257 1258 1259 /* auto_vec is a subclass of vec that automatically manages creating and 1260 releasing the internal vector. If N is non zero then it has N elements of 1261 internal storage. The default is no internal storage, and you probably only 1262 want to ask for internal storage for vectors on the stack because if the 1263 size of the vector is larger than the internal storage that space is wasted. 1264 */ 1265 template<typename T, size_t N = 0> 1266 class auto_vec : public vec<T, va_heap> 1267 { 1268 public: 1269 auto_vec () 1270 { 1271 m_auto.embedded_init (MAX (N, 2), 0, 1); 1272 this->m_vec = &m_auto; 1273 } 1274 1275 ~auto_vec () 1276 { 1277 this->release (); 1278 } 1279 1280 private: 1281 vec<T, va_heap, vl_embed> m_auto; 1282 T m_data[MAX (N - 1, 1)]; 1283 }; 1284 1285 /* auto_vec is a sub class of vec whose storage is released when it is 1286 destroyed. */ 1287 template<typename T> 1288 class auto_vec<T, 0> : public vec<T, va_heap> 1289 { 1290 public: 1291 auto_vec () { this->m_vec = NULL; } 1292 auto_vec (size_t n) { this->create (n); } 1293 ~auto_vec () { this->release (); } 1294 }; 1295 1296 1297 /* Allocate heap memory for pointer V and create the internal vector 1298 with space for NELEMS elements. If NELEMS is 0, the internal 1299 vector is initialized to empty. */ 1300 1301 template<typename T> 1302 inline void 1303 vec_alloc (vec<T> *&v, unsigned nelems CXX_MEM_STAT_INFO) 1304 { 1305 v = new vec<T>; 1306 v->create (nelems PASS_MEM_STAT); 1307 } 1308 1309 1310 /* Conditionally allocate heap memory for VEC and its internal vector. */ 1311 1312 template<typename T> 1313 inline void 1314 vec_check_alloc (vec<T, va_heap> *&vec, unsigned nelems CXX_MEM_STAT_INFO) 1315 { 1316 if (!vec) 1317 vec_alloc (vec, nelems PASS_MEM_STAT); 1318 } 1319 1320 1321 /* Free the heap memory allocated by vector V and set it to NULL. */ 1322 1323 template<typename T> 1324 inline void 1325 vec_free (vec<T> *&v) 1326 { 1327 if (v == NULL) 1328 return; 1329 1330 v->release (); 1331 delete v; 1332 v = NULL; 1333 } 1334 1335 1336 /* Return iteration condition and update PTR to point to the IX'th 1337 element of this vector. Use this to iterate over the elements of a 1338 vector as follows, 1339 1340 for (ix = 0; v.iterate (ix, &ptr); ix++) 1341 continue; */ 1342 1343 template<typename T> 1344 inline bool 1345 vec<T, va_heap, vl_ptr>::iterate (unsigned ix, T *ptr) const 1346 { 1347 if (m_vec) 1348 return m_vec->iterate (ix, ptr); 1349 else 1350 { 1351 *ptr = 0; 1352 return false; 1353 } 1354 } 1355 1356 1357 /* Return iteration condition and update *PTR to point to the 1358 IX'th element of this vector. Use this to iterate over the 1359 elements of a vector as follows, 1360 1361 for (ix = 0; v->iterate (ix, &ptr); ix++) 1362 continue; 1363 1364 This variant is for vectors of objects. */ 1365 1366 template<typename T> 1367 inline bool 1368 vec<T, va_heap, vl_ptr>::iterate (unsigned ix, T **ptr) const 1369 { 1370 if (m_vec) 1371 return m_vec->iterate (ix, ptr); 1372 else 1373 { 1374 *ptr = 0; 1375 return false; 1376 } 1377 } 1378 1379 1380 /* Convenience macro for forward iteration. */ 1381 #define FOR_EACH_VEC_ELT(V, I, P) \ 1382 for (I = 0; (V).iterate ((I), &(P)); ++(I)) 1383 1384 #define FOR_EACH_VEC_SAFE_ELT(V, I, P) \ 1385 for (I = 0; vec_safe_iterate ((V), (I), &(P)); ++(I)) 1386 1387 /* Likewise, but start from FROM rather than 0. */ 1388 #define FOR_EACH_VEC_ELT_FROM(V, I, P, FROM) \ 1389 for (I = (FROM); (V).iterate ((I), &(P)); ++(I)) 1390 1391 /* Convenience macro for reverse iteration. */ 1392 #define FOR_EACH_VEC_ELT_REVERSE(V, I, P) \ 1393 for (I = (V).length () - 1; \ 1394 (V).iterate ((I), &(P)); \ 1395 (I)--) 1396 1397 #define FOR_EACH_VEC_SAFE_ELT_REVERSE(V, I, P) \ 1398 for (I = vec_safe_length (V) - 1; \ 1399 vec_safe_iterate ((V), (I), &(P)); \ 1400 (I)--) 1401 1402 1403 /* Return a copy of this vector. */ 1404 1405 template<typename T> 1406 inline vec<T, va_heap, vl_ptr> 1407 vec<T, va_heap, vl_ptr>::copy (ALONE_MEM_STAT_DECL) const 1408 { 1409 vec<T, va_heap, vl_ptr> new_vec = vNULL; 1410 if (length ()) 1411 new_vec.m_vec = m_vec->copy (); 1412 return new_vec; 1413 } 1414 1415 1416 /* Ensure that the vector has at least RESERVE slots available (if 1417 EXACT is false), or exactly RESERVE slots available (if EXACT is 1418 true). 1419 1420 This may create additional headroom if EXACT is false. 1421 1422 Note that this can cause the embedded vector to be reallocated. 1423 Returns true iff reallocation actually occurred. */ 1424 1425 template<typename T> 1426 inline bool 1427 vec<T, va_heap, vl_ptr>::reserve (unsigned nelems, bool exact MEM_STAT_DECL) 1428 { 1429 if (space (nelems)) 1430 return false; 1431 1432 /* For now play a game with va_heap::reserve to hide our auto storage if any, 1433 this is necessary because it doesn't have enough information to know the 1434 embedded vector is in auto storage, and so should not be freed. */ 1435 vec<T, va_heap, vl_embed> *oldvec = m_vec; 1436 unsigned int oldsize = 0; 1437 bool handle_auto_vec = m_vec && using_auto_storage (); 1438 if (handle_auto_vec) 1439 { 1440 m_vec = NULL; 1441 oldsize = oldvec->length (); 1442 nelems += oldsize; 1443 } 1444 1445 va_heap::reserve (m_vec, nelems, exact PASS_MEM_STAT); 1446 if (handle_auto_vec) 1447 { 1448 memcpy (m_vec->address (), oldvec->address (), sizeof (T) * oldsize); 1449 m_vec->m_vecpfx.m_num = oldsize; 1450 } 1451 1452 return true; 1453 } 1454 1455 1456 /* Ensure that this vector has exactly NELEMS slots available. This 1457 will not create additional headroom. Note this can cause the 1458 embedded vector to be reallocated. Returns true iff reallocation 1459 actually occurred. */ 1460 1461 template<typename T> 1462 inline bool 1463 vec<T, va_heap, vl_ptr>::reserve_exact (unsigned nelems MEM_STAT_DECL) 1464 { 1465 return reserve (nelems, true PASS_MEM_STAT); 1466 } 1467 1468 1469 /* Create the internal vector and reserve NELEMS for it. This is 1470 exactly like vec::reserve, but the internal vector is 1471 unconditionally allocated from scratch. The old one, if it 1472 existed, is lost. */ 1473 1474 template<typename T> 1475 inline void 1476 vec<T, va_heap, vl_ptr>::create (unsigned nelems MEM_STAT_DECL) 1477 { 1478 m_vec = NULL; 1479 if (nelems > 0) 1480 reserve_exact (nelems PASS_MEM_STAT); 1481 } 1482 1483 1484 /* Free the memory occupied by the embedded vector. */ 1485 1486 template<typename T> 1487 inline void 1488 vec<T, va_heap, vl_ptr>::release (void) 1489 { 1490 if (!m_vec) 1491 return; 1492 1493 if (using_auto_storage ()) 1494 { 1495 m_vec->m_vecpfx.m_num = 0; 1496 return; 1497 } 1498 1499 va_heap::release (m_vec); 1500 } 1501 1502 /* Copy the elements from SRC to the end of this vector as if by memcpy. 1503 SRC and this vector must be allocated with the same memory 1504 allocation mechanism. This vector is assumed to have sufficient 1505 headroom available. */ 1506 1507 template<typename T> 1508 inline void 1509 vec<T, va_heap, vl_ptr>::splice (const vec<T, va_heap, vl_ptr> &src) 1510 { 1511 if (src.m_vec) 1512 m_vec->splice (*(src.m_vec)); 1513 } 1514 1515 1516 /* Copy the elements in SRC to the end of this vector as if by memcpy. 1517 SRC and this vector must be allocated with the same mechanism. 1518 If there is not enough headroom in this vector, it will be reallocated 1519 as needed. */ 1520 1521 template<typename T> 1522 inline void 1523 vec<T, va_heap, vl_ptr>::safe_splice (const vec<T, va_heap, vl_ptr> &src 1524 MEM_STAT_DECL) 1525 { 1526 if (src.length ()) 1527 { 1528 reserve_exact (src.length ()); 1529 splice (src); 1530 } 1531 } 1532 1533 1534 /* Push OBJ (a new element) onto the end of the vector. There must be 1535 sufficient space in the vector. Return a pointer to the slot 1536 where OBJ was inserted. */ 1537 1538 template<typename T> 1539 inline T * 1540 vec<T, va_heap, vl_ptr>::quick_push (const T &obj) 1541 { 1542 return m_vec->quick_push (obj); 1543 } 1544 1545 1546 /* Push a new element OBJ onto the end of this vector. Reallocates 1547 the embedded vector, if needed. Return a pointer to the slot where 1548 OBJ was inserted. */ 1549 1550 template<typename T> 1551 inline T * 1552 vec<T, va_heap, vl_ptr>::safe_push (const T &obj MEM_STAT_DECL) 1553 { 1554 reserve (1, false PASS_MEM_STAT); 1555 return quick_push (obj); 1556 } 1557 1558 1559 /* Pop and return the last element off the end of the vector. */ 1560 1561 template<typename T> 1562 inline T & 1563 vec<T, va_heap, vl_ptr>::pop (void) 1564 { 1565 return m_vec->pop (); 1566 } 1567 1568 1569 /* Set the length of the vector to LEN. The new length must be less 1570 than or equal to the current length. This is an O(1) operation. */ 1571 1572 template<typename T> 1573 inline void 1574 vec<T, va_heap, vl_ptr>::truncate (unsigned size) 1575 { 1576 if (m_vec) 1577 m_vec->truncate (size); 1578 else 1579 gcc_checking_assert (size == 0); 1580 } 1581 1582 1583 /* Grow the vector to a specific length. LEN must be as long or 1584 longer than the current length. The new elements are 1585 uninitialized. Reallocate the internal vector, if needed. */ 1586 1587 template<typename T> 1588 inline void 1589 vec<T, va_heap, vl_ptr>::safe_grow (unsigned len MEM_STAT_DECL) 1590 { 1591 unsigned oldlen = length (); 1592 gcc_checking_assert (oldlen <= len); 1593 reserve_exact (len - oldlen PASS_MEM_STAT); 1594 if (m_vec) 1595 m_vec->quick_grow (len); 1596 else 1597 gcc_checking_assert (len == 0); 1598 } 1599 1600 1601 /* Grow the embedded vector to a specific length. LEN must be as 1602 long or longer than the current length. The new elements are 1603 initialized to zero. Reallocate the internal vector, if needed. */ 1604 1605 template<typename T> 1606 inline void 1607 vec<T, va_heap, vl_ptr>::safe_grow_cleared (unsigned len MEM_STAT_DECL) 1608 { 1609 unsigned oldlen = length (); 1610 size_t sz = sizeof (T) * (len - oldlen); 1611 safe_grow (len PASS_MEM_STAT); 1612 if (sz != 0) 1613 memset (&(address ()[oldlen]), 0, sz); 1614 } 1615 1616 1617 /* Same as vec::safe_grow but without reallocation of the internal vector. 1618 If the vector cannot be extended, a runtime assertion will be triggered. */ 1619 1620 template<typename T> 1621 inline void 1622 vec<T, va_heap, vl_ptr>::quick_grow (unsigned len) 1623 { 1624 gcc_checking_assert (m_vec); 1625 m_vec->quick_grow (len); 1626 } 1627 1628 1629 /* Same as vec::quick_grow_cleared but without reallocation of the 1630 internal vector. If the vector cannot be extended, a runtime 1631 assertion will be triggered. */ 1632 1633 template<typename T> 1634 inline void 1635 vec<T, va_heap, vl_ptr>::quick_grow_cleared (unsigned len) 1636 { 1637 gcc_checking_assert (m_vec); 1638 m_vec->quick_grow_cleared (len); 1639 } 1640 1641 1642 /* Insert an element, OBJ, at the IXth position of this vector. There 1643 must be sufficient space. */ 1644 1645 template<typename T> 1646 inline void 1647 vec<T, va_heap, vl_ptr>::quick_insert (unsigned ix, const T &obj) 1648 { 1649 m_vec->quick_insert (ix, obj); 1650 } 1651 1652 1653 /* Insert an element, OBJ, at the IXth position of the vector. 1654 Reallocate the embedded vector, if necessary. */ 1655 1656 template<typename T> 1657 inline void 1658 vec<T, va_heap, vl_ptr>::safe_insert (unsigned ix, const T &obj MEM_STAT_DECL) 1659 { 1660 reserve (1, false PASS_MEM_STAT); 1661 quick_insert (ix, obj); 1662 } 1663 1664 1665 /* Remove an element from the IXth position of this vector. Ordering of 1666 remaining elements is preserved. This is an O(N) operation due to 1667 a memmove. */ 1668 1669 template<typename T> 1670 inline void 1671 vec<T, va_heap, vl_ptr>::ordered_remove (unsigned ix) 1672 { 1673 m_vec->ordered_remove (ix); 1674 } 1675 1676 1677 /* Remove an element from the IXth position of this vector. Ordering 1678 of remaining elements is destroyed. This is an O(1) operation. */ 1679 1680 template<typename T> 1681 inline void 1682 vec<T, va_heap, vl_ptr>::unordered_remove (unsigned ix) 1683 { 1684 m_vec->unordered_remove (ix); 1685 } 1686 1687 1688 /* Remove LEN elements starting at the IXth. Ordering is retained. 1689 This is an O(N) operation due to memmove. */ 1690 1691 template<typename T> 1692 inline void 1693 vec<T, va_heap, vl_ptr>::block_remove (unsigned ix, unsigned len) 1694 { 1695 m_vec->block_remove (ix, len); 1696 } 1697 1698 1699 /* Sort the contents of this vector with qsort. CMP is the comparison 1700 function to pass to qsort. */ 1701 1702 template<typename T> 1703 inline void 1704 vec<T, va_heap, vl_ptr>::qsort (int (*cmp) (const void *, const void *)) 1705 { 1706 if (m_vec) 1707 m_vec->qsort (cmp); 1708 } 1709 1710 1711 /* Search the contents of the sorted vector with a binary search. 1712 CMP is the comparison function to pass to bsearch. */ 1713 1714 template<typename T> 1715 inline T * 1716 vec<T, va_heap, vl_ptr>::bsearch (const void *key, 1717 int (*cmp) (const void *, const void *)) 1718 { 1719 if (m_vec) 1720 return m_vec->bsearch (key, cmp); 1721 return NULL; 1722 } 1723 1724 1725 /* Find and return the first position in which OBJ could be inserted 1726 without changing the ordering of this vector. LESSTHAN is a 1727 function that returns true if the first argument is strictly less 1728 than the second. */ 1729 1730 template<typename T> 1731 inline unsigned 1732 vec<T, va_heap, vl_ptr>::lower_bound (T obj, 1733 bool (*lessthan)(const T &, const T &)) 1734 const 1735 { 1736 return m_vec ? m_vec->lower_bound (obj, lessthan) : 0; 1737 } 1738 1739 /* Return true if SEARCH is an element of V. Note that this is O(N) in the 1740 size of the vector and so should be used with care. */ 1741 1742 template<typename T> 1743 inline bool 1744 vec<T, va_heap, vl_ptr>::contains (const T &search) const 1745 { 1746 return m_vec ? m_vec->contains (search) : false; 1747 } 1748 1749 template<typename T> 1750 inline bool 1751 vec<T, va_heap, vl_ptr>::using_auto_storage () const 1752 { 1753 return m_vec->m_vecpfx.m_using_auto_storage; 1754 } 1755 1756 /* Release VEC and call release of all element vectors. */ 1757 1758 template<typename T> 1759 inline void 1760 release_vec_vec (vec<vec<T> > &vec) 1761 { 1762 for (unsigned i = 0; i < vec.length (); i++) 1763 vec[i].release (); 1764 1765 vec.release (); 1766 } 1767 1768 #if (GCC_VERSION >= 3000) 1769 # pragma GCC poison m_vec m_vecpfx m_vecdata 1770 #endif 1771 1772 #endif // GCC_VEC_H 1773