xref: /netbsd-src/external/gpl3/gcc.old/dist/gcc/vec.h (revision cef8759bd76c1b621f8eab8faa6f208faabc2e15)
1 /* Vector API for GNU compiler.
2    Copyright (C) 2004-2017 Free Software Foundation, Inc.
3    Contributed by Nathan Sidwell <nathan@codesourcery.com>
4    Re-implemented in C++ by Diego Novillo <dnovillo@google.com>
5 
6 This file is part of GCC.
7 
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12 
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16 for more details.
17 
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3.  If not see
20 <http://www.gnu.org/licenses/>.  */
21 
22 #ifndef GCC_VEC_H
23 #define GCC_VEC_H
24 
25 /* Some gen* file have no ggc support as the header file gtype-desc.h is
26    missing.  Provide these definitions in case ggc.h has not been included.
27    This is not a problem because any code that runs before gengtype is built
28    will never need to use GC vectors.*/
29 
30 extern void ggc_free (void *);
31 extern size_t ggc_round_alloc_size (size_t requested_size);
32 extern void *ggc_realloc (void *, size_t MEM_STAT_DECL);
33 
34 /* Templated vector type and associated interfaces.
35 
36    The interface functions are typesafe and use inline functions,
37    sometimes backed by out-of-line generic functions.  The vectors are
38    designed to interoperate with the GTY machinery.
39 
40    There are both 'index' and 'iterate' accessors.  The index accessor
41    is implemented by operator[].  The iterator returns a boolean
42    iteration condition and updates the iteration variable passed by
43    reference.  Because the iterator will be inlined, the address-of
44    can be optimized away.
45 
46    Each operation that increases the number of active elements is
47    available in 'quick' and 'safe' variants.  The former presumes that
48    there is sufficient allocated space for the operation to succeed
49    (it dies if there is not).  The latter will reallocate the
50    vector, if needed.  Reallocation causes an exponential increase in
51    vector size.  If you know you will be adding N elements, it would
52    be more efficient to use the reserve operation before adding the
53    elements with the 'quick' operation.  This will ensure there are at
54    least as many elements as you ask for, it will exponentially
55    increase if there are too few spare slots.  If you want reserve a
56    specific number of slots, but do not want the exponential increase
57    (for instance, you know this is the last allocation), use the
58    reserve_exact operation.  You can also create a vector of a
59    specific size from the get go.
60 
61    You should prefer the push and pop operations, as they append and
62    remove from the end of the vector. If you need to remove several
63    items in one go, use the truncate operation.  The insert and remove
64    operations allow you to change elements in the middle of the
65    vector.  There are two remove operations, one which preserves the
66    element ordering 'ordered_remove', and one which does not
67    'unordered_remove'.  The latter function copies the end element
68    into the removed slot, rather than invoke a memmove operation.  The
69    'lower_bound' function will determine where to place an item in the
70    array using insert that will maintain sorted order.
71 
72    Vectors are template types with three arguments: the type of the
73    elements in the vector, the allocation strategy, and the physical
74    layout to use
75 
76    Four allocation strategies are supported:
77 
78 	- Heap: allocation is done using malloc/free.  This is the
79 	  default allocation strategy.
80 
81   	- GC: allocation is done using ggc_alloc/ggc_free.
82 
83   	- GC atomic: same as GC with the exception that the elements
84 	  themselves are assumed to be of an atomic type that does
85 	  not need to be garbage collected.  This means that marking
86 	  routines do not need to traverse the array marking the
87 	  individual elements.  This increases the performance of
88 	  GC activities.
89 
90    Two physical layouts are supported:
91 
92 	- Embedded: The vector is structured using the trailing array
93 	  idiom.  The last member of the structure is an array of size
94 	  1.  When the vector is initially allocated, a single memory
95 	  block is created to hold the vector's control data and the
96 	  array of elements.  These vectors cannot grow without
97 	  reallocation (see discussion on embeddable vectors below).
98 
99 	- Space efficient: The vector is structured as a pointer to an
100 	  embedded vector.  This is the default layout.  It means that
101 	  vectors occupy a single word of storage before initial
102 	  allocation.  Vectors are allowed to grow (the internal
103 	  pointer is reallocated but the main vector instance does not
104 	  need to relocate).
105 
106    The type, allocation and layout are specified when the vector is
107    declared.
108 
109    If you need to directly manipulate a vector, then the 'address'
110    accessor will return the address of the start of the vector.  Also
111    the 'space' predicate will tell you whether there is spare capacity
112    in the vector.  You will not normally need to use these two functions.
113 
114    Notes on the different layout strategies
115 
116    * Embeddable vectors (vec<T, A, vl_embed>)
117 
118      These vectors are suitable to be embedded in other data
119      structures so that they can be pre-allocated in a contiguous
120      memory block.
121 
122      Embeddable vectors are implemented using the trailing array
123      idiom, thus they are not resizeable without changing the address
124      of the vector object itself.  This means you cannot have
125      variables or fields of embeddable vector type -- always use a
126      pointer to a vector.  The one exception is the final field of a
127      structure, which could be a vector type.
128 
129      You will have to use the embedded_size & embedded_init calls to
130      create such objects, and they will not be resizeable (so the
131      'safe' allocation variants are not available).
132 
133      Properties of embeddable vectors:
134 
135 	  - The whole vector and control data are allocated in a single
136 	    contiguous block.  It uses the trailing-vector idiom, so
137 	    allocation must reserve enough space for all the elements
138 	    in the vector plus its control data.
139 	  - The vector cannot be re-allocated.
140 	  - The vector cannot grow nor shrink.
141 	  - No indirections needed for access/manipulation.
142 	  - It requires 2 words of storage (prior to vector allocation).
143 
144 
145    * Space efficient vector (vec<T, A, vl_ptr>)
146 
147      These vectors can grow dynamically and are allocated together
148      with their control data.  They are suited to be included in data
149      structures.  Prior to initial allocation, they only take a single
150      word of storage.
151 
152      These vectors are implemented as a pointer to embeddable vectors.
153      The semantics allow for this pointer to be NULL to represent
154      empty vectors.  This way, empty vectors occupy minimal space in
155      the structure containing them.
156 
157      Properties:
158 
159 	- The whole vector and control data are allocated in a single
160 	  contiguous block.
161   	- The whole vector may be re-allocated.
162   	- Vector data may grow and shrink.
163   	- Access and manipulation requires a pointer test and
164 	  indirection.
165   	- It requires 1 word of storage (prior to vector allocation).
166 
167    An example of their use would be,
168 
169    struct my_struct {
170      // A space-efficient vector of tree pointers in GC memory.
171      vec<tree, va_gc, vl_ptr> v;
172    };
173 
174    struct my_struct *s;
175 
176    if (s->v.length ()) { we have some contents }
177    s->v.safe_push (decl); // append some decl onto the end
178    for (ix = 0; s->v.iterate (ix, &elt); ix++)
179      { do something with elt }
180 */
181 
182 /* Support function for statistics.  */
183 extern void dump_vec_loc_statistics (void);
184 
185 /* Hashtable mapping vec addresses to descriptors.  */
186 extern htab_t vec_mem_usage_hash;
187 
188 /* Control data for vectors.  This contains the number of allocated
189    and used slots inside a vector.  */
190 
191 struct vec_prefix
192 {
193   /* FIXME - These fields should be private, but we need to cater to
194 	     compilers that have stricter notions of PODness for types.  */
195 
196   /* Memory allocation support routines in vec.c.  */
197   void register_overhead (void *, size_t, size_t CXX_MEM_STAT_INFO);
198   void release_overhead (void *, size_t, bool CXX_MEM_STAT_INFO);
199   static unsigned calculate_allocation (vec_prefix *, unsigned, bool);
200   static unsigned calculate_allocation_1 (unsigned, unsigned);
201 
202   /* Note that vec_prefix should be a base class for vec, but we use
203      offsetof() on vector fields of tree structures (e.g.,
204      tree_binfo::base_binfos), and offsetof only supports base types.
205 
206      To compensate, we make vec_prefix a field inside vec and make
207      vec a friend class of vec_prefix so it can access its fields.  */
208   template <typename, typename, typename> friend struct vec;
209 
210   /* The allocator types also need access to our internals.  */
211   friend struct va_gc;
212   friend struct va_gc_atomic;
213   friend struct va_heap;
214 
215   unsigned m_alloc : 31;
216   unsigned m_using_auto_storage : 1;
217   unsigned m_num;
218 };
219 
220 /* Calculate the number of slots to reserve a vector, making sure that
221    RESERVE slots are free.  If EXACT grow exactly, otherwise grow
222    exponentially.  PFX is the control data for the vector.  */
223 
224 inline unsigned
225 vec_prefix::calculate_allocation (vec_prefix *pfx, unsigned reserve,
226 				  bool exact)
227 {
228   if (exact)
229     return (pfx ? pfx->m_num : 0) + reserve;
230   else if (!pfx)
231     return MAX (4, reserve);
232   return calculate_allocation_1 (pfx->m_alloc, pfx->m_num + reserve);
233 }
234 
235 template<typename, typename, typename> struct vec;
236 
237 /* Valid vector layouts
238 
239    vl_embed	- Embeddable vector that uses the trailing array idiom.
240    vl_ptr	- Space efficient vector that uses a pointer to an
241 		  embeddable vector.  */
242 struct vl_embed { };
243 struct vl_ptr { };
244 
245 
246 /* Types of supported allocations
247 
248    va_heap	- Allocation uses malloc/free.
249    va_gc	- Allocation uses ggc_alloc.
250    va_gc_atomic	- Same as GC, but individual elements of the array
251 		  do not need to be marked during collection.  */
252 
253 /* Allocator type for heap vectors.  */
254 struct va_heap
255 {
256   /* Heap vectors are frequently regular instances, so use the vl_ptr
257      layout for them.  */
258   typedef vl_ptr default_layout;
259 
260   template<typename T>
261   static void reserve (vec<T, va_heap, vl_embed> *&, unsigned, bool
262 		       CXX_MEM_STAT_INFO);
263 
264   template<typename T>
265   static void release (vec<T, va_heap, vl_embed> *&);
266 };
267 
268 
269 /* Allocator for heap memory.  Ensure there are at least RESERVE free
270    slots in V.  If EXACT is true, grow exactly, else grow
271    exponentially.  As a special case, if the vector had not been
272    allocated and RESERVE is 0, no vector will be created.  */
273 
274 template<typename T>
275 inline void
276 va_heap::reserve (vec<T, va_heap, vl_embed> *&v, unsigned reserve, bool exact
277 		  MEM_STAT_DECL)
278 {
279   unsigned alloc
280     = vec_prefix::calculate_allocation (v ? &v->m_vecpfx : 0, reserve, exact);
281   gcc_checking_assert (alloc);
282 
283   if (GATHER_STATISTICS && v)
284     v->m_vecpfx.release_overhead (v, v->allocated (), false);
285 
286   size_t size = vec<T, va_heap, vl_embed>::embedded_size (alloc);
287   unsigned nelem = v ? v->length () : 0;
288   v = static_cast <vec<T, va_heap, vl_embed> *> (xrealloc (v, size));
289   v->embedded_init (alloc, nelem);
290 
291   if (GATHER_STATISTICS)
292     v->m_vecpfx.register_overhead (v, alloc, nelem PASS_MEM_STAT);
293 }
294 
295 
296 /* Free the heap space allocated for vector V.  */
297 
298 template<typename T>
299 void
300 va_heap::release (vec<T, va_heap, vl_embed> *&v)
301 {
302   if (v == NULL)
303     return;
304 
305   if (GATHER_STATISTICS)
306     v->m_vecpfx.release_overhead (v, v->allocated (), true);
307   ::free (v);
308   v = NULL;
309 }
310 
311 
312 /* Allocator type for GC vectors.  Notice that we need the structure
313    declaration even if GC is not enabled.  */
314 
315 struct va_gc
316 {
317   /* Use vl_embed as the default layout for GC vectors.  Due to GTY
318      limitations, GC vectors must always be pointers, so it is more
319      efficient to use a pointer to the vl_embed layout, rather than
320      using a pointer to a pointer as would be the case with vl_ptr.  */
321   typedef vl_embed default_layout;
322 
323   template<typename T, typename A>
324   static void reserve (vec<T, A, vl_embed> *&, unsigned, bool
325 		       CXX_MEM_STAT_INFO);
326 
327   template<typename T, typename A>
328   static void release (vec<T, A, vl_embed> *&v);
329 };
330 
331 
332 /* Free GC memory used by V and reset V to NULL.  */
333 
334 template<typename T, typename A>
335 inline void
336 va_gc::release (vec<T, A, vl_embed> *&v)
337 {
338   if (v)
339     ::ggc_free (v);
340   v = NULL;
341 }
342 
343 
344 /* Allocator for GC memory.  Ensure there are at least RESERVE free
345    slots in V.  If EXACT is true, grow exactly, else grow
346    exponentially.  As a special case, if the vector had not been
347    allocated and RESERVE is 0, no vector will be created.  */
348 
349 template<typename T, typename A>
350 void
351 va_gc::reserve (vec<T, A, vl_embed> *&v, unsigned reserve, bool exact
352 		MEM_STAT_DECL)
353 {
354   unsigned alloc
355     = vec_prefix::calculate_allocation (v ? &v->m_vecpfx : 0, reserve, exact);
356   if (!alloc)
357     {
358       ::ggc_free (v);
359       v = NULL;
360       return;
361     }
362 
363   /* Calculate the amount of space we want.  */
364   size_t size = vec<T, A, vl_embed>::embedded_size (alloc);
365 
366   /* Ask the allocator how much space it will really give us.  */
367   size = ::ggc_round_alloc_size (size);
368 
369   /* Adjust the number of slots accordingly.  */
370   size_t vec_offset = sizeof (vec_prefix);
371   size_t elt_size = sizeof (T);
372   alloc = (size - vec_offset) / elt_size;
373 
374   /* And finally, recalculate the amount of space we ask for.  */
375   size = vec_offset + alloc * elt_size;
376 
377   unsigned nelem = v ? v->length () : 0;
378   v = static_cast <vec<T, A, vl_embed> *> (::ggc_realloc (v, size
379 							       PASS_MEM_STAT));
380   v->embedded_init (alloc, nelem);
381 }
382 
383 
384 /* Allocator type for GC vectors.  This is for vectors of types
385    atomics w.r.t. collection, so allocation and deallocation is
386    completely inherited from va_gc.  */
387 struct va_gc_atomic : va_gc
388 {
389 };
390 
391 
392 /* Generic vector template.  Default values for A and L indicate the
393    most commonly used strategies.
394 
395    FIXME - Ideally, they would all be vl_ptr to encourage using regular
396            instances for vectors, but the existing GTY machinery is limited
397 	   in that it can only deal with GC objects that are pointers
398 	   themselves.
399 
400 	   This means that vector operations that need to deal with
401 	   potentially NULL pointers, must be provided as free
402 	   functions (see the vec_safe_* functions above).  */
403 template<typename T,
404          typename A = va_heap,
405          typename L = typename A::default_layout>
406 struct GTY((user)) vec
407 {
408 };
409 
410 /* Type to provide NULL values for vec<T, A, L>.  This is used to
411    provide nil initializers for vec instances.  Since vec must be
412    a POD, we cannot have proper ctor/dtor for it.  To initialize
413    a vec instance, you can assign it the value vNULL.  This isn't
414    needed for file-scope and function-local static vectors, which
415    are zero-initialized by default.  */
416 struct vnull
417 {
418   template <typename T, typename A, typename L>
419 #if __cpp_constexpr >= 200704
420   constexpr
421 #endif
422   operator vec<T, A, L> () { return vec<T, A, L>(); }
423 };
424 extern vnull vNULL;
425 
426 
427 /* Embeddable vector.  These vectors are suitable to be embedded
428    in other data structures so that they can be pre-allocated in a
429    contiguous memory block.
430 
431    Embeddable vectors are implemented using the trailing array idiom,
432    thus they are not resizeable without changing the address of the
433    vector object itself.  This means you cannot have variables or
434    fields of embeddable vector type -- always use a pointer to a
435    vector.  The one exception is the final field of a structure, which
436    could be a vector type.
437 
438    You will have to use the embedded_size & embedded_init calls to
439    create such objects, and they will not be resizeable (so the 'safe'
440    allocation variants are not available).
441 
442    Properties:
443 
444 	- The whole vector and control data are allocated in a single
445 	  contiguous block.  It uses the trailing-vector idiom, so
446 	  allocation must reserve enough space for all the elements
447   	  in the vector plus its control data.
448   	- The vector cannot be re-allocated.
449   	- The vector cannot grow nor shrink.
450   	- No indirections needed for access/manipulation.
451   	- It requires 2 words of storage (prior to vector allocation).  */
452 
453 template<typename T, typename A>
454 struct GTY((user)) vec<T, A, vl_embed>
455 {
456 public:
457   unsigned allocated (void) const { return m_vecpfx.m_alloc; }
458   unsigned length (void) const { return m_vecpfx.m_num; }
459   bool is_empty (void) const { return m_vecpfx.m_num == 0; }
460   T *address (void) { return m_vecdata; }
461   const T *address (void) const { return m_vecdata; }
462   T *begin () { return address (); }
463   const T *begin () const { return address (); }
464   T *end () { return address () + length (); }
465   const T *end () const { return address () + length (); }
466   const T &operator[] (unsigned) const;
467   T &operator[] (unsigned);
468   T &last (void);
469   bool space (unsigned) const;
470   bool iterate (unsigned, T *) const;
471   bool iterate (unsigned, T **) const;
472   vec *copy (ALONE_CXX_MEM_STAT_INFO) const;
473   void splice (const vec &);
474   void splice (const vec *src);
475   T *quick_push (const T &);
476   T &pop (void);
477   void truncate (unsigned);
478   void quick_insert (unsigned, const T &);
479   void ordered_remove (unsigned);
480   void unordered_remove (unsigned);
481   void block_remove (unsigned, unsigned);
482   void qsort (int (*) (const void *, const void *));
483   T *bsearch (const void *key, int (*compar)(const void *, const void *));
484   unsigned lower_bound (T, bool (*)(const T &, const T &)) const;
485   bool contains (const T &search) const;
486   static size_t embedded_size (unsigned);
487   void embedded_init (unsigned, unsigned = 0, unsigned = 0);
488   void quick_grow (unsigned len);
489   void quick_grow_cleared (unsigned len);
490 
491   /* vec class can access our internal data and functions.  */
492   template <typename, typename, typename> friend struct vec;
493 
494   /* The allocator types also need access to our internals.  */
495   friend struct va_gc;
496   friend struct va_gc_atomic;
497   friend struct va_heap;
498 
499   /* FIXME - These fields should be private, but we need to cater to
500 	     compilers that have stricter notions of PODness for types.  */
501   vec_prefix m_vecpfx;
502   T m_vecdata[1];
503 };
504 
505 
506 /* Convenience wrapper functions to use when dealing with pointers to
507    embedded vectors.  Some functionality for these vectors must be
508    provided via free functions for these reasons:
509 
510 	1- The pointer may be NULL (e.g., before initial allocation).
511 
512   	2- When the vector needs to grow, it must be reallocated, so
513   	   the pointer will change its value.
514 
515    Because of limitations with the current GC machinery, all vectors
516    in GC memory *must* be pointers.  */
517 
518 
519 /* If V contains no room for NELEMS elements, return false. Otherwise,
520    return true.  */
521 template<typename T, typename A>
522 inline bool
523 vec_safe_space (const vec<T, A, vl_embed> *v, unsigned nelems)
524 {
525   return v ? v->space (nelems) : nelems == 0;
526 }
527 
528 
529 /* If V is NULL, return 0.  Otherwise, return V->length().  */
530 template<typename T, typename A>
531 inline unsigned
532 vec_safe_length (const vec<T, A, vl_embed> *v)
533 {
534   return v ? v->length () : 0;
535 }
536 
537 
538 /* If V is NULL, return NULL.  Otherwise, return V->address().  */
539 template<typename T, typename A>
540 inline T *
541 vec_safe_address (vec<T, A, vl_embed> *v)
542 {
543   return v ? v->address () : NULL;
544 }
545 
546 
547 /* If V is NULL, return true.  Otherwise, return V->is_empty().  */
548 template<typename T, typename A>
549 inline bool
550 vec_safe_is_empty (vec<T, A, vl_embed> *v)
551 {
552   return v ? v->is_empty () : true;
553 }
554 
555 /* If V does not have space for NELEMS elements, call
556    V->reserve(NELEMS, EXACT).  */
557 template<typename T, typename A>
558 inline bool
559 vec_safe_reserve (vec<T, A, vl_embed> *&v, unsigned nelems, bool exact = false
560 		  CXX_MEM_STAT_INFO)
561 {
562   bool extend = nelems ? !vec_safe_space (v, nelems) : false;
563   if (extend)
564     A::reserve (v, nelems, exact PASS_MEM_STAT);
565   return extend;
566 }
567 
568 template<typename T, typename A>
569 inline bool
570 vec_safe_reserve_exact (vec<T, A, vl_embed> *&v, unsigned nelems
571 			CXX_MEM_STAT_INFO)
572 {
573   return vec_safe_reserve (v, nelems, true PASS_MEM_STAT);
574 }
575 
576 
577 /* Allocate GC memory for V with space for NELEMS slots.  If NELEMS
578    is 0, V is initialized to NULL.  */
579 
580 template<typename T, typename A>
581 inline void
582 vec_alloc (vec<T, A, vl_embed> *&v, unsigned nelems CXX_MEM_STAT_INFO)
583 {
584   v = NULL;
585   vec_safe_reserve (v, nelems, false PASS_MEM_STAT);
586 }
587 
588 
589 /* Free the GC memory allocated by vector V and set it to NULL.  */
590 
591 template<typename T, typename A>
592 inline void
593 vec_free (vec<T, A, vl_embed> *&v)
594 {
595   A::release (v);
596 }
597 
598 
599 /* Grow V to length LEN.  Allocate it, if necessary.  */
600 template<typename T, typename A>
601 inline void
602 vec_safe_grow (vec<T, A, vl_embed> *&v, unsigned len CXX_MEM_STAT_INFO)
603 {
604   unsigned oldlen = vec_safe_length (v);
605   gcc_checking_assert (len >= oldlen);
606   vec_safe_reserve_exact (v, len - oldlen PASS_MEM_STAT);
607   v->quick_grow (len);
608 }
609 
610 
611 /* If V is NULL, allocate it.  Call V->safe_grow_cleared(LEN).  */
612 template<typename T, typename A>
613 inline void
614 vec_safe_grow_cleared (vec<T, A, vl_embed> *&v, unsigned len CXX_MEM_STAT_INFO)
615 {
616   unsigned oldlen = vec_safe_length (v);
617   vec_safe_grow (v, len PASS_MEM_STAT);
618   memset (&(v->address ()[oldlen]), 0, sizeof (T) * (len - oldlen));
619 }
620 
621 
622 /* If V is NULL return false, otherwise return V->iterate(IX, PTR).  */
623 template<typename T, typename A>
624 inline bool
625 vec_safe_iterate (const vec<T, A, vl_embed> *v, unsigned ix, T **ptr)
626 {
627   if (v)
628     return v->iterate (ix, ptr);
629   else
630     {
631       *ptr = 0;
632       return false;
633     }
634 }
635 
636 template<typename T, typename A>
637 inline bool
638 vec_safe_iterate (const vec<T, A, vl_embed> *v, unsigned ix, T *ptr)
639 {
640   if (v)
641     return v->iterate (ix, ptr);
642   else
643     {
644       *ptr = 0;
645       return false;
646     }
647 }
648 
649 
650 /* If V has no room for one more element, reallocate it.  Then call
651    V->quick_push(OBJ).  */
652 template<typename T, typename A>
653 inline T *
654 vec_safe_push (vec<T, A, vl_embed> *&v, const T &obj CXX_MEM_STAT_INFO)
655 {
656   vec_safe_reserve (v, 1, false PASS_MEM_STAT);
657   return v->quick_push (obj);
658 }
659 
660 
661 /* if V has no room for one more element, reallocate it.  Then call
662    V->quick_insert(IX, OBJ).  */
663 template<typename T, typename A>
664 inline void
665 vec_safe_insert (vec<T, A, vl_embed> *&v, unsigned ix, const T &obj
666 		 CXX_MEM_STAT_INFO)
667 {
668   vec_safe_reserve (v, 1, false PASS_MEM_STAT);
669   v->quick_insert (ix, obj);
670 }
671 
672 
673 /* If V is NULL, do nothing.  Otherwise, call V->truncate(SIZE).  */
674 template<typename T, typename A>
675 inline void
676 vec_safe_truncate (vec<T, A, vl_embed> *v, unsigned size)
677 {
678   if (v)
679     v->truncate (size);
680 }
681 
682 
683 /* If SRC is not NULL, return a pointer to a copy of it.  */
684 template<typename T, typename A>
685 inline vec<T, A, vl_embed> *
686 vec_safe_copy (vec<T, A, vl_embed> *src CXX_MEM_STAT_INFO)
687 {
688   return src ? src->copy (ALONE_PASS_MEM_STAT) : NULL;
689 }
690 
691 /* Copy the elements from SRC to the end of DST as if by memcpy.
692    Reallocate DST, if necessary.  */
693 template<typename T, typename A>
694 inline void
695 vec_safe_splice (vec<T, A, vl_embed> *&dst, const vec<T, A, vl_embed> *src
696 		 CXX_MEM_STAT_INFO)
697 {
698   unsigned src_len = vec_safe_length (src);
699   if (src_len)
700     {
701       vec_safe_reserve_exact (dst, vec_safe_length (dst) + src_len
702 			      PASS_MEM_STAT);
703       dst->splice (*src);
704     }
705 }
706 
707 /* Return true if SEARCH is an element of V.  Note that this is O(N) in the
708    size of the vector and so should be used with care.  */
709 
710 template<typename T, typename A>
711 inline bool
712 vec_safe_contains (vec<T, A, vl_embed> *v, const T &search)
713 {
714   return v ? v->contains (search) : false;
715 }
716 
717 /* Index into vector.  Return the IX'th element.  IX must be in the
718    domain of the vector.  */
719 
720 template<typename T, typename A>
721 inline const T &
722 vec<T, A, vl_embed>::operator[] (unsigned ix) const
723 {
724   gcc_checking_assert (ix < m_vecpfx.m_num);
725   return m_vecdata[ix];
726 }
727 
728 template<typename T, typename A>
729 inline T &
730 vec<T, A, vl_embed>::operator[] (unsigned ix)
731 {
732   gcc_checking_assert (ix < m_vecpfx.m_num);
733   return m_vecdata[ix];
734 }
735 
736 
737 /* Get the final element of the vector, which must not be empty.  */
738 
739 template<typename T, typename A>
740 inline T &
741 vec<T, A, vl_embed>::last (void)
742 {
743   gcc_checking_assert (m_vecpfx.m_num > 0);
744   return (*this)[m_vecpfx.m_num - 1];
745 }
746 
747 
748 /* If this vector has space for NELEMS additional entries, return
749    true.  You usually only need to use this if you are doing your
750    own vector reallocation, for instance on an embedded vector.  This
751    returns true in exactly the same circumstances that vec::reserve
752    will.  */
753 
754 template<typename T, typename A>
755 inline bool
756 vec<T, A, vl_embed>::space (unsigned nelems) const
757 {
758   return m_vecpfx.m_alloc - m_vecpfx.m_num >= nelems;
759 }
760 
761 
762 /* Return iteration condition and update PTR to point to the IX'th
763    element of this vector.  Use this to iterate over the elements of a
764    vector as follows,
765 
766      for (ix = 0; vec<T, A>::iterate (v, ix, &ptr); ix++)
767        continue;  */
768 
769 template<typename T, typename A>
770 inline bool
771 vec<T, A, vl_embed>::iterate (unsigned ix, T *ptr) const
772 {
773   if (ix < m_vecpfx.m_num)
774     {
775       *ptr = m_vecdata[ix];
776       return true;
777     }
778   else
779     {
780       *ptr = 0;
781       return false;
782     }
783 }
784 
785 
786 /* Return iteration condition and update *PTR to point to the
787    IX'th element of this vector.  Use this to iterate over the
788    elements of a vector as follows,
789 
790      for (ix = 0; v->iterate (ix, &ptr); ix++)
791        continue;
792 
793    This variant is for vectors of objects.  */
794 
795 template<typename T, typename A>
796 inline bool
797 vec<T, A, vl_embed>::iterate (unsigned ix, T **ptr) const
798 {
799   if (ix < m_vecpfx.m_num)
800     {
801       *ptr = CONST_CAST (T *, &m_vecdata[ix]);
802       return true;
803     }
804   else
805     {
806       *ptr = 0;
807       return false;
808     }
809 }
810 
811 
812 /* Return a pointer to a copy of this vector.  */
813 
814 template<typename T, typename A>
815 inline vec<T, A, vl_embed> *
816 vec<T, A, vl_embed>::copy (ALONE_MEM_STAT_DECL) const
817 {
818   vec<T, A, vl_embed> *new_vec = NULL;
819   unsigned len = length ();
820   if (len)
821     {
822       vec_alloc (new_vec, len PASS_MEM_STAT);
823       new_vec->embedded_init (len, len);
824       memcpy (new_vec->address (), m_vecdata, sizeof (T) * len);
825     }
826   return new_vec;
827 }
828 
829 
830 /* Copy the elements from SRC to the end of this vector as if by memcpy.
831    The vector must have sufficient headroom available.  */
832 
833 template<typename T, typename A>
834 inline void
835 vec<T, A, vl_embed>::splice (const vec<T, A, vl_embed> &src)
836 {
837   unsigned len = src.length ();
838   if (len)
839     {
840       gcc_checking_assert (space (len));
841       memcpy (address () + length (), src.address (), len * sizeof (T));
842       m_vecpfx.m_num += len;
843     }
844 }
845 
846 template<typename T, typename A>
847 inline void
848 vec<T, A, vl_embed>::splice (const vec<T, A, vl_embed> *src)
849 {
850   if (src)
851     splice (*src);
852 }
853 
854 
855 /* Push OBJ (a new element) onto the end of the vector.  There must be
856    sufficient space in the vector.  Return a pointer to the slot
857    where OBJ was inserted.  */
858 
859 template<typename T, typename A>
860 inline T *
861 vec<T, A, vl_embed>::quick_push (const T &obj)
862 {
863   gcc_checking_assert (space (1));
864   T *slot = &m_vecdata[m_vecpfx.m_num++];
865   *slot = obj;
866   return slot;
867 }
868 
869 
870 /* Pop and return the last element off the end of the vector.  */
871 
872 template<typename T, typename A>
873 inline T &
874 vec<T, A, vl_embed>::pop (void)
875 {
876   gcc_checking_assert (length () > 0);
877   return m_vecdata[--m_vecpfx.m_num];
878 }
879 
880 
881 /* Set the length of the vector to SIZE.  The new length must be less
882    than or equal to the current length.  This is an O(1) operation.  */
883 
884 template<typename T, typename A>
885 inline void
886 vec<T, A, vl_embed>::truncate (unsigned size)
887 {
888   gcc_checking_assert (length () >= size);
889   m_vecpfx.m_num = size;
890 }
891 
892 
893 /* Insert an element, OBJ, at the IXth position of this vector.  There
894    must be sufficient space.  */
895 
896 template<typename T, typename A>
897 inline void
898 vec<T, A, vl_embed>::quick_insert (unsigned ix, const T &obj)
899 {
900   gcc_checking_assert (length () < allocated ());
901   gcc_checking_assert (ix <= length ());
902   T *slot = &m_vecdata[ix];
903   memmove (slot + 1, slot, (m_vecpfx.m_num++ - ix) * sizeof (T));
904   *slot = obj;
905 }
906 
907 
908 /* Remove an element from the IXth position of this vector.  Ordering of
909    remaining elements is preserved.  This is an O(N) operation due to
910    memmove.  */
911 
912 template<typename T, typename A>
913 inline void
914 vec<T, A, vl_embed>::ordered_remove (unsigned ix)
915 {
916   gcc_checking_assert (ix < length ());
917   T *slot = &m_vecdata[ix];
918   memmove (slot, slot + 1, (--m_vecpfx.m_num - ix) * sizeof (T));
919 }
920 
921 
922 /* Remove an element from the IXth position of this vector.  Ordering of
923    remaining elements is destroyed.  This is an O(1) operation.  */
924 
925 template<typename T, typename A>
926 inline void
927 vec<T, A, vl_embed>::unordered_remove (unsigned ix)
928 {
929   gcc_checking_assert (ix < length ());
930   m_vecdata[ix] = m_vecdata[--m_vecpfx.m_num];
931 }
932 
933 
934 /* Remove LEN elements starting at the IXth.  Ordering is retained.
935    This is an O(N) operation due to memmove.  */
936 
937 template<typename T, typename A>
938 inline void
939 vec<T, A, vl_embed>::block_remove (unsigned ix, unsigned len)
940 {
941   gcc_checking_assert (ix + len <= length ());
942   T *slot = &m_vecdata[ix];
943   m_vecpfx.m_num -= len;
944   memmove (slot, slot + len, (m_vecpfx.m_num - ix) * sizeof (T));
945 }
946 
947 
948 /* Sort the contents of this vector with qsort.  CMP is the comparison
949    function to pass to qsort.  */
950 
951 template<typename T, typename A>
952 inline void
953 vec<T, A, vl_embed>::qsort (int (*cmp) (const void *, const void *))
954 {
955   if (length () > 1)
956     ::qsort (address (), length (), sizeof (T), cmp);
957 }
958 
959 
960 /* Search the contents of the sorted vector with a binary search.
961    CMP is the comparison function to pass to bsearch.  */
962 
963 template<typename T, typename A>
964 inline T *
965 vec<T, A, vl_embed>::bsearch (const void *key,
966 			      int (*compar) (const void *, const void *))
967 {
968   const void *base = this->address ();
969   size_t nmemb = this->length ();
970   size_t size = sizeof (T);
971   /* The following is a copy of glibc stdlib-bsearch.h.  */
972   size_t l, u, idx;
973   const void *p;
974   int comparison;
975 
976   l = 0;
977   u = nmemb;
978   while (l < u)
979     {
980       idx = (l + u) / 2;
981       p = (const void *) (((const char *) base) + (idx * size));
982       comparison = (*compar) (key, p);
983       if (comparison < 0)
984 	u = idx;
985       else if (comparison > 0)
986 	l = idx + 1;
987       else
988 	return (T *)const_cast<void *>(p);
989     }
990 
991   return NULL;
992 }
993 
994 /* Return true if SEARCH is an element of V.  Note that this is O(N) in the
995    size of the vector and so should be used with care.  */
996 
997 template<typename T, typename A>
998 inline bool
999 vec<T, A, vl_embed>::contains (const T &search) const
1000 {
1001   unsigned int len = length ();
1002   for (unsigned int i = 0; i < len; i++)
1003     if ((*this)[i] == search)
1004       return true;
1005 
1006   return false;
1007 }
1008 
1009 /* Find and return the first position in which OBJ could be inserted
1010    without changing the ordering of this vector.  LESSTHAN is a
1011    function that returns true if the first argument is strictly less
1012    than the second.  */
1013 
1014 template<typename T, typename A>
1015 unsigned
1016 vec<T, A, vl_embed>::lower_bound (T obj, bool (*lessthan)(const T &, const T &))
1017   const
1018 {
1019   unsigned int len = length ();
1020   unsigned int half, middle;
1021   unsigned int first = 0;
1022   while (len > 0)
1023     {
1024       half = len / 2;
1025       middle = first;
1026       middle += half;
1027       T middle_elem = (*this)[middle];
1028       if (lessthan (middle_elem, obj))
1029 	{
1030 	  first = middle;
1031 	  ++first;
1032 	  len = len - half - 1;
1033 	}
1034       else
1035 	len = half;
1036     }
1037   return first;
1038 }
1039 
1040 
1041 /* Return the number of bytes needed to embed an instance of an
1042    embeddable vec inside another data structure.
1043 
1044    Use these methods to determine the required size and initialization
1045    of a vector V of type T embedded within another structure (as the
1046    final member):
1047 
1048    size_t vec<T, A, vl_embed>::embedded_size (unsigned alloc);
1049    void v->embedded_init (unsigned alloc, unsigned num);
1050 
1051    These allow the caller to perform the memory allocation.  */
1052 
1053 template<typename T, typename A>
1054 inline size_t
1055 vec<T, A, vl_embed>::embedded_size (unsigned alloc)
1056 {
1057   typedef vec<T, A, vl_embed> vec_embedded;
1058   return offsetof (vec_embedded, m_vecdata) + alloc * sizeof (T);
1059 }
1060 
1061 
1062 /* Initialize the vector to contain room for ALLOC elements and
1063    NUM active elements.  */
1064 
1065 template<typename T, typename A>
1066 inline void
1067 vec<T, A, vl_embed>::embedded_init (unsigned alloc, unsigned num, unsigned aut)
1068 {
1069   m_vecpfx.m_alloc = alloc;
1070   m_vecpfx.m_using_auto_storage = aut;
1071   m_vecpfx.m_num = num;
1072 }
1073 
1074 
1075 /* Grow the vector to a specific length.  LEN must be as long or longer than
1076    the current length.  The new elements are uninitialized.  */
1077 
1078 template<typename T, typename A>
1079 inline void
1080 vec<T, A, vl_embed>::quick_grow (unsigned len)
1081 {
1082   gcc_checking_assert (length () <= len && len <= m_vecpfx.m_alloc);
1083   m_vecpfx.m_num = len;
1084 }
1085 
1086 
1087 /* Grow the vector to a specific length.  LEN must be as long or longer than
1088    the current length.  The new elements are initialized to zero.  */
1089 
1090 template<typename T, typename A>
1091 inline void
1092 vec<T, A, vl_embed>::quick_grow_cleared (unsigned len)
1093 {
1094   unsigned oldlen = length ();
1095   size_t sz = sizeof (T) * (len - oldlen);
1096   quick_grow (len);
1097   if (sz != 0)
1098     memset (&(address ()[oldlen]), 0, sz);
1099 }
1100 
1101 
1102 /* Garbage collection support for vec<T, A, vl_embed>.  */
1103 
1104 template<typename T>
1105 void
1106 gt_ggc_mx (vec<T, va_gc> *v)
1107 {
1108   extern void gt_ggc_mx (T &);
1109   for (unsigned i = 0; i < v->length (); i++)
1110     gt_ggc_mx ((*v)[i]);
1111 }
1112 
1113 template<typename T>
1114 void
1115 gt_ggc_mx (vec<T, va_gc_atomic, vl_embed> *v ATTRIBUTE_UNUSED)
1116 {
1117   /* Nothing to do.  Vectors of atomic types wrt GC do not need to
1118      be traversed.  */
1119 }
1120 
1121 
1122 /* PCH support for vec<T, A, vl_embed>.  */
1123 
1124 template<typename T, typename A>
1125 void
1126 gt_pch_nx (vec<T, A, vl_embed> *v)
1127 {
1128   extern void gt_pch_nx (T &);
1129   for (unsigned i = 0; i < v->length (); i++)
1130     gt_pch_nx ((*v)[i]);
1131 }
1132 
1133 template<typename T, typename A>
1134 void
1135 gt_pch_nx (vec<T *, A, vl_embed> *v, gt_pointer_operator op, void *cookie)
1136 {
1137   for (unsigned i = 0; i < v->length (); i++)
1138     op (&((*v)[i]), cookie);
1139 }
1140 
1141 template<typename T, typename A>
1142 void
1143 gt_pch_nx (vec<T, A, vl_embed> *v, gt_pointer_operator op, void *cookie)
1144 {
1145   extern void gt_pch_nx (T *, gt_pointer_operator, void *);
1146   for (unsigned i = 0; i < v->length (); i++)
1147     gt_pch_nx (&((*v)[i]), op, cookie);
1148 }
1149 
1150 
1151 /* Space efficient vector.  These vectors can grow dynamically and are
1152    allocated together with their control data.  They are suited to be
1153    included in data structures.  Prior to initial allocation, they
1154    only take a single word of storage.
1155 
1156    These vectors are implemented as a pointer to an embeddable vector.
1157    The semantics allow for this pointer to be NULL to represent empty
1158    vectors.  This way, empty vectors occupy minimal space in the
1159    structure containing them.
1160 
1161    Properties:
1162 
1163 	- The whole vector and control data are allocated in a single
1164 	  contiguous block.
1165   	- The whole vector may be re-allocated.
1166   	- Vector data may grow and shrink.
1167   	- Access and manipulation requires a pointer test and
1168 	  indirection.
1169 	- It requires 1 word of storage (prior to vector allocation).
1170 
1171 
1172    Limitations:
1173 
1174    These vectors must be PODs because they are stored in unions.
1175    (http://en.wikipedia.org/wiki/Plain_old_data_structures).
1176    As long as we use C++03, we cannot have constructors nor
1177    destructors in classes that are stored in unions.  */
1178 
1179 template<typename T>
1180 struct vec<T, va_heap, vl_ptr>
1181 {
1182 public:
1183   /* Memory allocation and deallocation for the embedded vector.
1184      Needed because we cannot have proper ctors/dtors defined.  */
1185   void create (unsigned nelems CXX_MEM_STAT_INFO);
1186   void release (void);
1187 
1188   /* Vector operations.  */
1189   bool exists (void) const
1190   { return m_vec != NULL; }
1191 
1192   bool is_empty (void) const
1193   { return m_vec ? m_vec->is_empty () : true; }
1194 
1195   unsigned length (void) const
1196   { return m_vec ? m_vec->length () : 0; }
1197 
1198   T *address (void)
1199   { return m_vec ? m_vec->m_vecdata : NULL; }
1200 
1201   const T *address (void) const
1202   { return m_vec ? m_vec->m_vecdata : NULL; }
1203 
1204   T *begin () { return address (); }
1205   const T *begin () const { return address (); }
1206   T *end () { return begin () + length (); }
1207   const T *end () const { return begin () + length (); }
1208   const T &operator[] (unsigned ix) const
1209   { return (*m_vec)[ix]; }
1210 
1211   bool operator!=(const vec &other) const
1212   { return !(*this == other); }
1213 
1214   bool operator==(const vec &other) const
1215   { return address () == other.address (); }
1216 
1217   T &operator[] (unsigned ix)
1218   { return (*m_vec)[ix]; }
1219 
1220   T &last (void)
1221   { return m_vec->last (); }
1222 
1223   bool space (int nelems) const
1224   { return m_vec ? m_vec->space (nelems) : nelems == 0; }
1225 
1226   bool iterate (unsigned ix, T *p) const;
1227   bool iterate (unsigned ix, T **p) const;
1228   vec copy (ALONE_CXX_MEM_STAT_INFO) const;
1229   bool reserve (unsigned, bool = false CXX_MEM_STAT_INFO);
1230   bool reserve_exact (unsigned CXX_MEM_STAT_INFO);
1231   void splice (const vec &);
1232   void safe_splice (const vec & CXX_MEM_STAT_INFO);
1233   T *quick_push (const T &);
1234   T *safe_push (const T &CXX_MEM_STAT_INFO);
1235   T &pop (void);
1236   void truncate (unsigned);
1237   void safe_grow (unsigned CXX_MEM_STAT_INFO);
1238   void safe_grow_cleared (unsigned CXX_MEM_STAT_INFO);
1239   void quick_grow (unsigned);
1240   void quick_grow_cleared (unsigned);
1241   void quick_insert (unsigned, const T &);
1242   void safe_insert (unsigned, const T & CXX_MEM_STAT_INFO);
1243   void ordered_remove (unsigned);
1244   void unordered_remove (unsigned);
1245   void block_remove (unsigned, unsigned);
1246   void qsort (int (*) (const void *, const void *));
1247   T *bsearch (const void *key, int (*compar)(const void *, const void *));
1248   unsigned lower_bound (T, bool (*)(const T &, const T &)) const;
1249   bool contains (const T &search) const;
1250 
1251   bool using_auto_storage () const;
1252 
1253   /* FIXME - This field should be private, but we need to cater to
1254 	     compilers that have stricter notions of PODness for types.  */
1255   vec<T, va_heap, vl_embed> *m_vec;
1256 };
1257 
1258 
1259 /* auto_vec is a subclass of vec that automatically manages creating and
1260    releasing the internal vector. If N is non zero then it has N elements of
1261    internal storage.  The default is no internal storage, and you probably only
1262    want to ask for internal storage for vectors on the stack because if the
1263    size of the vector is larger than the internal storage that space is wasted.
1264    */
1265 template<typename T, size_t N = 0>
1266 class auto_vec : public vec<T, va_heap>
1267 {
1268 public:
1269   auto_vec ()
1270   {
1271     m_auto.embedded_init (MAX (N, 2), 0, 1);
1272     this->m_vec = &m_auto;
1273   }
1274 
1275   ~auto_vec ()
1276   {
1277     this->release ();
1278   }
1279 
1280 private:
1281   vec<T, va_heap, vl_embed> m_auto;
1282   T m_data[MAX (N - 1, 1)];
1283 };
1284 
1285 /* auto_vec is a sub class of vec whose storage is released when it is
1286   destroyed. */
1287 template<typename T>
1288 class auto_vec<T, 0> : public vec<T, va_heap>
1289 {
1290 public:
1291   auto_vec () { this->m_vec = NULL; }
1292   auto_vec (size_t n) { this->create (n); }
1293   ~auto_vec () { this->release (); }
1294 };
1295 
1296 
1297 /* Allocate heap memory for pointer V and create the internal vector
1298    with space for NELEMS elements.  If NELEMS is 0, the internal
1299    vector is initialized to empty.  */
1300 
1301 template<typename T>
1302 inline void
1303 vec_alloc (vec<T> *&v, unsigned nelems CXX_MEM_STAT_INFO)
1304 {
1305   v = new vec<T>;
1306   v->create (nelems PASS_MEM_STAT);
1307 }
1308 
1309 
1310 /* Conditionally allocate heap memory for VEC and its internal vector.  */
1311 
1312 template<typename T>
1313 inline void
1314 vec_check_alloc (vec<T, va_heap> *&vec, unsigned nelems CXX_MEM_STAT_INFO)
1315 {
1316   if (!vec)
1317     vec_alloc (vec, nelems PASS_MEM_STAT);
1318 }
1319 
1320 
1321 /* Free the heap memory allocated by vector V and set it to NULL.  */
1322 
1323 template<typename T>
1324 inline void
1325 vec_free (vec<T> *&v)
1326 {
1327   if (v == NULL)
1328     return;
1329 
1330   v->release ();
1331   delete v;
1332   v = NULL;
1333 }
1334 
1335 
1336 /* Return iteration condition and update PTR to point to the IX'th
1337    element of this vector.  Use this to iterate over the elements of a
1338    vector as follows,
1339 
1340      for (ix = 0; v.iterate (ix, &ptr); ix++)
1341        continue;  */
1342 
1343 template<typename T>
1344 inline bool
1345 vec<T, va_heap, vl_ptr>::iterate (unsigned ix, T *ptr) const
1346 {
1347   if (m_vec)
1348     return m_vec->iterate (ix, ptr);
1349   else
1350     {
1351       *ptr = 0;
1352       return false;
1353     }
1354 }
1355 
1356 
1357 /* Return iteration condition and update *PTR to point to the
1358    IX'th element of this vector.  Use this to iterate over the
1359    elements of a vector as follows,
1360 
1361      for (ix = 0; v->iterate (ix, &ptr); ix++)
1362        continue;
1363 
1364    This variant is for vectors of objects.  */
1365 
1366 template<typename T>
1367 inline bool
1368 vec<T, va_heap, vl_ptr>::iterate (unsigned ix, T **ptr) const
1369 {
1370   if (m_vec)
1371     return m_vec->iterate (ix, ptr);
1372   else
1373     {
1374       *ptr = 0;
1375       return false;
1376     }
1377 }
1378 
1379 
1380 /* Convenience macro for forward iteration.  */
1381 #define FOR_EACH_VEC_ELT(V, I, P)			\
1382   for (I = 0; (V).iterate ((I), &(P)); ++(I))
1383 
1384 #define FOR_EACH_VEC_SAFE_ELT(V, I, P)			\
1385   for (I = 0; vec_safe_iterate ((V), (I), &(P)); ++(I))
1386 
1387 /* Likewise, but start from FROM rather than 0.  */
1388 #define FOR_EACH_VEC_ELT_FROM(V, I, P, FROM)		\
1389   for (I = (FROM); (V).iterate ((I), &(P)); ++(I))
1390 
1391 /* Convenience macro for reverse iteration.  */
1392 #define FOR_EACH_VEC_ELT_REVERSE(V, I, P)		\
1393   for (I = (V).length () - 1;				\
1394        (V).iterate ((I), &(P));				\
1395        (I)--)
1396 
1397 #define FOR_EACH_VEC_SAFE_ELT_REVERSE(V, I, P)		\
1398   for (I = vec_safe_length (V) - 1;			\
1399        vec_safe_iterate ((V), (I), &(P));	\
1400        (I)--)
1401 
1402 
1403 /* Return a copy of this vector.  */
1404 
1405 template<typename T>
1406 inline vec<T, va_heap, vl_ptr>
1407 vec<T, va_heap, vl_ptr>::copy (ALONE_MEM_STAT_DECL) const
1408 {
1409   vec<T, va_heap, vl_ptr> new_vec = vNULL;
1410   if (length ())
1411     new_vec.m_vec = m_vec->copy ();
1412   return new_vec;
1413 }
1414 
1415 
1416 /* Ensure that the vector has at least RESERVE slots available (if
1417    EXACT is false), or exactly RESERVE slots available (if EXACT is
1418    true).
1419 
1420    This may create additional headroom if EXACT is false.
1421 
1422    Note that this can cause the embedded vector to be reallocated.
1423    Returns true iff reallocation actually occurred.  */
1424 
1425 template<typename T>
1426 inline bool
1427 vec<T, va_heap, vl_ptr>::reserve (unsigned nelems, bool exact MEM_STAT_DECL)
1428 {
1429   if (space (nelems))
1430     return false;
1431 
1432   /* For now play a game with va_heap::reserve to hide our auto storage if any,
1433      this is necessary because it doesn't have enough information to know the
1434      embedded vector is in auto storage, and so should not be freed.  */
1435   vec<T, va_heap, vl_embed> *oldvec = m_vec;
1436   unsigned int oldsize = 0;
1437   bool handle_auto_vec = m_vec && using_auto_storage ();
1438   if (handle_auto_vec)
1439     {
1440       m_vec = NULL;
1441       oldsize = oldvec->length ();
1442       nelems += oldsize;
1443     }
1444 
1445   va_heap::reserve (m_vec, nelems, exact PASS_MEM_STAT);
1446   if (handle_auto_vec)
1447     {
1448       memcpy (m_vec->address (), oldvec->address (), sizeof (T) * oldsize);
1449       m_vec->m_vecpfx.m_num = oldsize;
1450     }
1451 
1452   return true;
1453 }
1454 
1455 
1456 /* Ensure that this vector has exactly NELEMS slots available.  This
1457    will not create additional headroom.  Note this can cause the
1458    embedded vector to be reallocated.  Returns true iff reallocation
1459    actually occurred.  */
1460 
1461 template<typename T>
1462 inline bool
1463 vec<T, va_heap, vl_ptr>::reserve_exact (unsigned nelems MEM_STAT_DECL)
1464 {
1465   return reserve (nelems, true PASS_MEM_STAT);
1466 }
1467 
1468 
1469 /* Create the internal vector and reserve NELEMS for it.  This is
1470    exactly like vec::reserve, but the internal vector is
1471    unconditionally allocated from scratch.  The old one, if it
1472    existed, is lost.  */
1473 
1474 template<typename T>
1475 inline void
1476 vec<T, va_heap, vl_ptr>::create (unsigned nelems MEM_STAT_DECL)
1477 {
1478   m_vec = NULL;
1479   if (nelems > 0)
1480     reserve_exact (nelems PASS_MEM_STAT);
1481 }
1482 
1483 
1484 /* Free the memory occupied by the embedded vector.  */
1485 
1486 template<typename T>
1487 inline void
1488 vec<T, va_heap, vl_ptr>::release (void)
1489 {
1490   if (!m_vec)
1491     return;
1492 
1493   if (using_auto_storage ())
1494     {
1495       m_vec->m_vecpfx.m_num = 0;
1496       return;
1497     }
1498 
1499   va_heap::release (m_vec);
1500 }
1501 
1502 /* Copy the elements from SRC to the end of this vector as if by memcpy.
1503    SRC and this vector must be allocated with the same memory
1504    allocation mechanism. This vector is assumed to have sufficient
1505    headroom available.  */
1506 
1507 template<typename T>
1508 inline void
1509 vec<T, va_heap, vl_ptr>::splice (const vec<T, va_heap, vl_ptr> &src)
1510 {
1511   if (src.m_vec)
1512     m_vec->splice (*(src.m_vec));
1513 }
1514 
1515 
1516 /* Copy the elements in SRC to the end of this vector as if by memcpy.
1517    SRC and this vector must be allocated with the same mechanism.
1518    If there is not enough headroom in this vector, it will be reallocated
1519    as needed.  */
1520 
1521 template<typename T>
1522 inline void
1523 vec<T, va_heap, vl_ptr>::safe_splice (const vec<T, va_heap, vl_ptr> &src
1524 				      MEM_STAT_DECL)
1525 {
1526   if (src.length ())
1527     {
1528       reserve_exact (src.length ());
1529       splice (src);
1530     }
1531 }
1532 
1533 
1534 /* Push OBJ (a new element) onto the end of the vector.  There must be
1535    sufficient space in the vector.  Return a pointer to the slot
1536    where OBJ was inserted.  */
1537 
1538 template<typename T>
1539 inline T *
1540 vec<T, va_heap, vl_ptr>::quick_push (const T &obj)
1541 {
1542   return m_vec->quick_push (obj);
1543 }
1544 
1545 
1546 /* Push a new element OBJ onto the end of this vector.  Reallocates
1547    the embedded vector, if needed.  Return a pointer to the slot where
1548    OBJ was inserted.  */
1549 
1550 template<typename T>
1551 inline T *
1552 vec<T, va_heap, vl_ptr>::safe_push (const T &obj MEM_STAT_DECL)
1553 {
1554   reserve (1, false PASS_MEM_STAT);
1555   return quick_push (obj);
1556 }
1557 
1558 
1559 /* Pop and return the last element off the end of the vector.  */
1560 
1561 template<typename T>
1562 inline T &
1563 vec<T, va_heap, vl_ptr>::pop (void)
1564 {
1565   return m_vec->pop ();
1566 }
1567 
1568 
1569 /* Set the length of the vector to LEN.  The new length must be less
1570    than or equal to the current length.  This is an O(1) operation.  */
1571 
1572 template<typename T>
1573 inline void
1574 vec<T, va_heap, vl_ptr>::truncate (unsigned size)
1575 {
1576   if (m_vec)
1577     m_vec->truncate (size);
1578   else
1579     gcc_checking_assert (size == 0);
1580 }
1581 
1582 
1583 /* Grow the vector to a specific length.  LEN must be as long or
1584    longer than the current length.  The new elements are
1585    uninitialized.  Reallocate the internal vector, if needed.  */
1586 
1587 template<typename T>
1588 inline void
1589 vec<T, va_heap, vl_ptr>::safe_grow (unsigned len MEM_STAT_DECL)
1590 {
1591   unsigned oldlen = length ();
1592   gcc_checking_assert (oldlen <= len);
1593   reserve_exact (len - oldlen PASS_MEM_STAT);
1594   if (m_vec)
1595     m_vec->quick_grow (len);
1596   else
1597     gcc_checking_assert (len == 0);
1598 }
1599 
1600 
1601 /* Grow the embedded vector to a specific length.  LEN must be as
1602    long or longer than the current length.  The new elements are
1603    initialized to zero.  Reallocate the internal vector, if needed.  */
1604 
1605 template<typename T>
1606 inline void
1607 vec<T, va_heap, vl_ptr>::safe_grow_cleared (unsigned len MEM_STAT_DECL)
1608 {
1609   unsigned oldlen = length ();
1610   size_t sz = sizeof (T) * (len - oldlen);
1611   safe_grow (len PASS_MEM_STAT);
1612   if (sz != 0)
1613     memset (&(address ()[oldlen]), 0, sz);
1614 }
1615 
1616 
1617 /* Same as vec::safe_grow but without reallocation of the internal vector.
1618    If the vector cannot be extended, a runtime assertion will be triggered.  */
1619 
1620 template<typename T>
1621 inline void
1622 vec<T, va_heap, vl_ptr>::quick_grow (unsigned len)
1623 {
1624   gcc_checking_assert (m_vec);
1625   m_vec->quick_grow (len);
1626 }
1627 
1628 
1629 /* Same as vec::quick_grow_cleared but without reallocation of the
1630    internal vector. If the vector cannot be extended, a runtime
1631    assertion will be triggered.  */
1632 
1633 template<typename T>
1634 inline void
1635 vec<T, va_heap, vl_ptr>::quick_grow_cleared (unsigned len)
1636 {
1637   gcc_checking_assert (m_vec);
1638   m_vec->quick_grow_cleared (len);
1639 }
1640 
1641 
1642 /* Insert an element, OBJ, at the IXth position of this vector.  There
1643    must be sufficient space.  */
1644 
1645 template<typename T>
1646 inline void
1647 vec<T, va_heap, vl_ptr>::quick_insert (unsigned ix, const T &obj)
1648 {
1649   m_vec->quick_insert (ix, obj);
1650 }
1651 
1652 
1653 /* Insert an element, OBJ, at the IXth position of the vector.
1654    Reallocate the embedded vector, if necessary.  */
1655 
1656 template<typename T>
1657 inline void
1658 vec<T, va_heap, vl_ptr>::safe_insert (unsigned ix, const T &obj MEM_STAT_DECL)
1659 {
1660   reserve (1, false PASS_MEM_STAT);
1661   quick_insert (ix, obj);
1662 }
1663 
1664 
1665 /* Remove an element from the IXth position of this vector.  Ordering of
1666    remaining elements is preserved.  This is an O(N) operation due to
1667    a memmove.  */
1668 
1669 template<typename T>
1670 inline void
1671 vec<T, va_heap, vl_ptr>::ordered_remove (unsigned ix)
1672 {
1673   m_vec->ordered_remove (ix);
1674 }
1675 
1676 
1677 /* Remove an element from the IXth position of this vector.  Ordering
1678    of remaining elements is destroyed.  This is an O(1) operation.  */
1679 
1680 template<typename T>
1681 inline void
1682 vec<T, va_heap, vl_ptr>::unordered_remove (unsigned ix)
1683 {
1684   m_vec->unordered_remove (ix);
1685 }
1686 
1687 
1688 /* Remove LEN elements starting at the IXth.  Ordering is retained.
1689    This is an O(N) operation due to memmove.  */
1690 
1691 template<typename T>
1692 inline void
1693 vec<T, va_heap, vl_ptr>::block_remove (unsigned ix, unsigned len)
1694 {
1695   m_vec->block_remove (ix, len);
1696 }
1697 
1698 
1699 /* Sort the contents of this vector with qsort.  CMP is the comparison
1700    function to pass to qsort.  */
1701 
1702 template<typename T>
1703 inline void
1704 vec<T, va_heap, vl_ptr>::qsort (int (*cmp) (const void *, const void *))
1705 {
1706   if (m_vec)
1707     m_vec->qsort (cmp);
1708 }
1709 
1710 
1711 /* Search the contents of the sorted vector with a binary search.
1712    CMP is the comparison function to pass to bsearch.  */
1713 
1714 template<typename T>
1715 inline T *
1716 vec<T, va_heap, vl_ptr>::bsearch (const void *key,
1717 				  int (*cmp) (const void *, const void *))
1718 {
1719   if (m_vec)
1720     return m_vec->bsearch (key, cmp);
1721   return NULL;
1722 }
1723 
1724 
1725 /* Find and return the first position in which OBJ could be inserted
1726    without changing the ordering of this vector.  LESSTHAN is a
1727    function that returns true if the first argument is strictly less
1728    than the second.  */
1729 
1730 template<typename T>
1731 inline unsigned
1732 vec<T, va_heap, vl_ptr>::lower_bound (T obj,
1733 				      bool (*lessthan)(const T &, const T &))
1734     const
1735 {
1736   return m_vec ? m_vec->lower_bound (obj, lessthan) : 0;
1737 }
1738 
1739 /* Return true if SEARCH is an element of V.  Note that this is O(N) in the
1740    size of the vector and so should be used with care.  */
1741 
1742 template<typename T>
1743 inline bool
1744 vec<T, va_heap, vl_ptr>::contains (const T &search) const
1745 {
1746   return m_vec ? m_vec->contains (search) : false;
1747 }
1748 
1749 template<typename T>
1750 inline bool
1751 vec<T, va_heap, vl_ptr>::using_auto_storage () const
1752 {
1753   return m_vec->m_vecpfx.m_using_auto_storage;
1754 }
1755 
1756 /* Release VEC and call release of all element vectors.  */
1757 
1758 template<typename T>
1759 inline void
1760 release_vec_vec (vec<vec<T> > &vec)
1761 {
1762   for (unsigned i = 0; i < vec.length (); i++)
1763     vec[i].release ();
1764 
1765   vec.release ();
1766 }
1767 
1768 #if (GCC_VERSION >= 3000)
1769 # pragma GCC poison m_vec m_vecpfx m_vecdata
1770 #endif
1771 
1772 #endif // GCC_VEC_H
1773