1 /* Vector API for GNU compiler. 2 Copyright (C) 2004-2019 Free Software Foundation, Inc. 3 Contributed by Nathan Sidwell <nathan@codesourcery.com> 4 Re-implemented in C++ by Diego Novillo <dnovillo@google.com> 5 6 This file is part of GCC. 7 8 GCC is free software; you can redistribute it and/or modify it under 9 the terms of the GNU General Public License as published by the Free 10 Software Foundation; either version 3, or (at your option) any later 11 version. 12 13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY 14 WARRANTY; without even the implied warranty of MERCHANTABILITY or 15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 16 for more details. 17 18 You should have received a copy of the GNU General Public License 19 along with GCC; see the file COPYING3. If not see 20 <http://www.gnu.org/licenses/>. */ 21 22 #ifndef GCC_VEC_H 23 #define GCC_VEC_H 24 25 /* Some gen* file have no ggc support as the header file gtype-desc.h is 26 missing. Provide these definitions in case ggc.h has not been included. 27 This is not a problem because any code that runs before gengtype is built 28 will never need to use GC vectors.*/ 29 30 extern void ggc_free (void *); 31 extern size_t ggc_round_alloc_size (size_t requested_size); 32 extern void *ggc_realloc (void *, size_t MEM_STAT_DECL); 33 34 /* Templated vector type and associated interfaces. 35 36 The interface functions are typesafe and use inline functions, 37 sometimes backed by out-of-line generic functions. The vectors are 38 designed to interoperate with the GTY machinery. 39 40 There are both 'index' and 'iterate' accessors. The index accessor 41 is implemented by operator[]. The iterator returns a boolean 42 iteration condition and updates the iteration variable passed by 43 reference. Because the iterator will be inlined, the address-of 44 can be optimized away. 45 46 Each operation that increases the number of active elements is 47 available in 'quick' and 'safe' variants. The former presumes that 48 there is sufficient allocated space for the operation to succeed 49 (it dies if there is not). The latter will reallocate the 50 vector, if needed. Reallocation causes an exponential increase in 51 vector size. If you know you will be adding N elements, it would 52 be more efficient to use the reserve operation before adding the 53 elements with the 'quick' operation. This will ensure there are at 54 least as many elements as you ask for, it will exponentially 55 increase if there are too few spare slots. If you want reserve a 56 specific number of slots, but do not want the exponential increase 57 (for instance, you know this is the last allocation), use the 58 reserve_exact operation. You can also create a vector of a 59 specific size from the get go. 60 61 You should prefer the push and pop operations, as they append and 62 remove from the end of the vector. If you need to remove several 63 items in one go, use the truncate operation. The insert and remove 64 operations allow you to change elements in the middle of the 65 vector. There are two remove operations, one which preserves the 66 element ordering 'ordered_remove', and one which does not 67 'unordered_remove'. The latter function copies the end element 68 into the removed slot, rather than invoke a memmove operation. The 69 'lower_bound' function will determine where to place an item in the 70 array using insert that will maintain sorted order. 71 72 Vectors are template types with three arguments: the type of the 73 elements in the vector, the allocation strategy, and the physical 74 layout to use 75 76 Four allocation strategies are supported: 77 78 - Heap: allocation is done using malloc/free. This is the 79 default allocation strategy. 80 81 - GC: allocation is done using ggc_alloc/ggc_free. 82 83 - GC atomic: same as GC with the exception that the elements 84 themselves are assumed to be of an atomic type that does 85 not need to be garbage collected. This means that marking 86 routines do not need to traverse the array marking the 87 individual elements. This increases the performance of 88 GC activities. 89 90 Two physical layouts are supported: 91 92 - Embedded: The vector is structured using the trailing array 93 idiom. The last member of the structure is an array of size 94 1. When the vector is initially allocated, a single memory 95 block is created to hold the vector's control data and the 96 array of elements. These vectors cannot grow without 97 reallocation (see discussion on embeddable vectors below). 98 99 - Space efficient: The vector is structured as a pointer to an 100 embedded vector. This is the default layout. It means that 101 vectors occupy a single word of storage before initial 102 allocation. Vectors are allowed to grow (the internal 103 pointer is reallocated but the main vector instance does not 104 need to relocate). 105 106 The type, allocation and layout are specified when the vector is 107 declared. 108 109 If you need to directly manipulate a vector, then the 'address' 110 accessor will return the address of the start of the vector. Also 111 the 'space' predicate will tell you whether there is spare capacity 112 in the vector. You will not normally need to use these two functions. 113 114 Notes on the different layout strategies 115 116 * Embeddable vectors (vec<T, A, vl_embed>) 117 118 These vectors are suitable to be embedded in other data 119 structures so that they can be pre-allocated in a contiguous 120 memory block. 121 122 Embeddable vectors are implemented using the trailing array 123 idiom, thus they are not resizeable without changing the address 124 of the vector object itself. This means you cannot have 125 variables or fields of embeddable vector type -- always use a 126 pointer to a vector. The one exception is the final field of a 127 structure, which could be a vector type. 128 129 You will have to use the embedded_size & embedded_init calls to 130 create such objects, and they will not be resizeable (so the 131 'safe' allocation variants are not available). 132 133 Properties of embeddable vectors: 134 135 - The whole vector and control data are allocated in a single 136 contiguous block. It uses the trailing-vector idiom, so 137 allocation must reserve enough space for all the elements 138 in the vector plus its control data. 139 - The vector cannot be re-allocated. 140 - The vector cannot grow nor shrink. 141 - No indirections needed for access/manipulation. 142 - It requires 2 words of storage (prior to vector allocation). 143 144 145 * Space efficient vector (vec<T, A, vl_ptr>) 146 147 These vectors can grow dynamically and are allocated together 148 with their control data. They are suited to be included in data 149 structures. Prior to initial allocation, they only take a single 150 word of storage. 151 152 These vectors are implemented as a pointer to embeddable vectors. 153 The semantics allow for this pointer to be NULL to represent 154 empty vectors. This way, empty vectors occupy minimal space in 155 the structure containing them. 156 157 Properties: 158 159 - The whole vector and control data are allocated in a single 160 contiguous block. 161 - The whole vector may be re-allocated. 162 - Vector data may grow and shrink. 163 - Access and manipulation requires a pointer test and 164 indirection. 165 - It requires 1 word of storage (prior to vector allocation). 166 167 An example of their use would be, 168 169 struct my_struct { 170 // A space-efficient vector of tree pointers in GC memory. 171 vec<tree, va_gc, vl_ptr> v; 172 }; 173 174 struct my_struct *s; 175 176 if (s->v.length ()) { we have some contents } 177 s->v.safe_push (decl); // append some decl onto the end 178 for (ix = 0; s->v.iterate (ix, &elt); ix++) 179 { do something with elt } 180 */ 181 182 /* Support function for statistics. */ 183 extern void dump_vec_loc_statistics (void); 184 185 /* Hashtable mapping vec addresses to descriptors. */ 186 extern htab_t vec_mem_usage_hash; 187 188 /* Control data for vectors. This contains the number of allocated 189 and used slots inside a vector. */ 190 191 struct vec_prefix 192 { 193 /* FIXME - These fields should be private, but we need to cater to 194 compilers that have stricter notions of PODness for types. */ 195 196 /* Memory allocation support routines in vec.c. */ 197 void register_overhead (void *, size_t, size_t CXX_MEM_STAT_INFO); 198 void release_overhead (void *, size_t, size_t, bool CXX_MEM_STAT_INFO); 199 static unsigned calculate_allocation (vec_prefix *, unsigned, bool); 200 static unsigned calculate_allocation_1 (unsigned, unsigned); 201 202 /* Note that vec_prefix should be a base class for vec, but we use 203 offsetof() on vector fields of tree structures (e.g., 204 tree_binfo::base_binfos), and offsetof only supports base types. 205 206 To compensate, we make vec_prefix a field inside vec and make 207 vec a friend class of vec_prefix so it can access its fields. */ 208 template <typename, typename, typename> friend struct vec; 209 210 /* The allocator types also need access to our internals. */ 211 friend struct va_gc; 212 friend struct va_gc_atomic; 213 friend struct va_heap; 214 215 unsigned m_alloc : 31; 216 unsigned m_using_auto_storage : 1; 217 unsigned m_num; 218 }; 219 220 /* Calculate the number of slots to reserve a vector, making sure that 221 RESERVE slots are free. If EXACT grow exactly, otherwise grow 222 exponentially. PFX is the control data for the vector. */ 223 224 inline unsigned 225 vec_prefix::calculate_allocation (vec_prefix *pfx, unsigned reserve, 226 bool exact) 227 { 228 if (exact) 229 return (pfx ? pfx->m_num : 0) + reserve; 230 else if (!pfx) 231 return MAX (4, reserve); 232 return calculate_allocation_1 (pfx->m_alloc, pfx->m_num + reserve); 233 } 234 235 template<typename, typename, typename> struct vec; 236 237 /* Valid vector layouts 238 239 vl_embed - Embeddable vector that uses the trailing array idiom. 240 vl_ptr - Space efficient vector that uses a pointer to an 241 embeddable vector. */ 242 struct vl_embed { }; 243 struct vl_ptr { }; 244 245 246 /* Types of supported allocations 247 248 va_heap - Allocation uses malloc/free. 249 va_gc - Allocation uses ggc_alloc. 250 va_gc_atomic - Same as GC, but individual elements of the array 251 do not need to be marked during collection. */ 252 253 /* Allocator type for heap vectors. */ 254 struct va_heap 255 { 256 /* Heap vectors are frequently regular instances, so use the vl_ptr 257 layout for them. */ 258 typedef vl_ptr default_layout; 259 260 template<typename T> 261 static void reserve (vec<T, va_heap, vl_embed> *&, unsigned, bool 262 CXX_MEM_STAT_INFO); 263 264 template<typename T> 265 static void release (vec<T, va_heap, vl_embed> *&); 266 }; 267 268 269 /* Allocator for heap memory. Ensure there are at least RESERVE free 270 slots in V. If EXACT is true, grow exactly, else grow 271 exponentially. As a special case, if the vector had not been 272 allocated and RESERVE is 0, no vector will be created. */ 273 274 template<typename T> 275 inline void 276 va_heap::reserve (vec<T, va_heap, vl_embed> *&v, unsigned reserve, bool exact 277 MEM_STAT_DECL) 278 { 279 size_t elt_size = sizeof (T); 280 unsigned alloc 281 = vec_prefix::calculate_allocation (v ? &v->m_vecpfx : 0, reserve, exact); 282 gcc_checking_assert (alloc); 283 284 if (GATHER_STATISTICS && v) 285 v->m_vecpfx.release_overhead (v, elt_size * v->allocated (), 286 v->allocated (), false); 287 288 size_t size = vec<T, va_heap, vl_embed>::embedded_size (alloc); 289 unsigned nelem = v ? v->length () : 0; 290 v = static_cast <vec<T, va_heap, vl_embed> *> (xrealloc (v, size)); 291 v->embedded_init (alloc, nelem); 292 293 if (GATHER_STATISTICS) 294 v->m_vecpfx.register_overhead (v, alloc, elt_size PASS_MEM_STAT); 295 } 296 297 298 /* Free the heap space allocated for vector V. */ 299 300 template<typename T> 301 void 302 va_heap::release (vec<T, va_heap, vl_embed> *&v) 303 { 304 size_t elt_size = sizeof (T); 305 if (v == NULL) 306 return; 307 308 if (GATHER_STATISTICS) 309 v->m_vecpfx.release_overhead (v, elt_size * v->allocated (), 310 v->allocated (), true); 311 ::free (v); 312 v = NULL; 313 } 314 315 316 /* Allocator type for GC vectors. Notice that we need the structure 317 declaration even if GC is not enabled. */ 318 319 struct va_gc 320 { 321 /* Use vl_embed as the default layout for GC vectors. Due to GTY 322 limitations, GC vectors must always be pointers, so it is more 323 efficient to use a pointer to the vl_embed layout, rather than 324 using a pointer to a pointer as would be the case with vl_ptr. */ 325 typedef vl_embed default_layout; 326 327 template<typename T, typename A> 328 static void reserve (vec<T, A, vl_embed> *&, unsigned, bool 329 CXX_MEM_STAT_INFO); 330 331 template<typename T, typename A> 332 static void release (vec<T, A, vl_embed> *&v); 333 }; 334 335 336 /* Free GC memory used by V and reset V to NULL. */ 337 338 template<typename T, typename A> 339 inline void 340 va_gc::release (vec<T, A, vl_embed> *&v) 341 { 342 if (v) 343 ::ggc_free (v); 344 v = NULL; 345 } 346 347 348 /* Allocator for GC memory. Ensure there are at least RESERVE free 349 slots in V. If EXACT is true, grow exactly, else grow 350 exponentially. As a special case, if the vector had not been 351 allocated and RESERVE is 0, no vector will be created. */ 352 353 template<typename T, typename A> 354 void 355 va_gc::reserve (vec<T, A, vl_embed> *&v, unsigned reserve, bool exact 356 MEM_STAT_DECL) 357 { 358 unsigned alloc 359 = vec_prefix::calculate_allocation (v ? &v->m_vecpfx : 0, reserve, exact); 360 if (!alloc) 361 { 362 ::ggc_free (v); 363 v = NULL; 364 return; 365 } 366 367 /* Calculate the amount of space we want. */ 368 size_t size = vec<T, A, vl_embed>::embedded_size (alloc); 369 370 /* Ask the allocator how much space it will really give us. */ 371 size = ::ggc_round_alloc_size (size); 372 373 /* Adjust the number of slots accordingly. */ 374 size_t vec_offset = sizeof (vec_prefix); 375 size_t elt_size = sizeof (T); 376 alloc = (size - vec_offset) / elt_size; 377 378 /* And finally, recalculate the amount of space we ask for. */ 379 size = vec_offset + alloc * elt_size; 380 381 unsigned nelem = v ? v->length () : 0; 382 v = static_cast <vec<T, A, vl_embed> *> (::ggc_realloc (v, size 383 PASS_MEM_STAT)); 384 v->embedded_init (alloc, nelem); 385 } 386 387 388 /* Allocator type for GC vectors. This is for vectors of types 389 atomics w.r.t. collection, so allocation and deallocation is 390 completely inherited from va_gc. */ 391 struct va_gc_atomic : va_gc 392 { 393 }; 394 395 396 /* Generic vector template. Default values for A and L indicate the 397 most commonly used strategies. 398 399 FIXME - Ideally, they would all be vl_ptr to encourage using regular 400 instances for vectors, but the existing GTY machinery is limited 401 in that it can only deal with GC objects that are pointers 402 themselves. 403 404 This means that vector operations that need to deal with 405 potentially NULL pointers, must be provided as free 406 functions (see the vec_safe_* functions above). */ 407 template<typename T, 408 typename A = va_heap, 409 typename L = typename A::default_layout> 410 struct GTY((user)) vec 411 { 412 }; 413 414 /* Generic vec<> debug helpers. 415 416 These need to be instantiated for each vec<TYPE> used throughout 417 the compiler like this: 418 419 DEFINE_DEBUG_VEC (TYPE) 420 421 The reason we have a debug_helper() is because GDB can't 422 disambiguate a plain call to debug(some_vec), and it must be called 423 like debug<TYPE>(some_vec). */ 424 425 template<typename T> 426 void 427 debug_helper (vec<T> &ref) 428 { 429 unsigned i; 430 for (i = 0; i < ref.length (); ++i) 431 { 432 fprintf (stderr, "[%d] = ", i); 433 debug_slim (ref[i]); 434 fputc ('\n', stderr); 435 } 436 } 437 438 /* We need a separate va_gc variant here because default template 439 argument for functions cannot be used in c++-98. Once this 440 restriction is removed, those variant should be folded with the 441 above debug_helper. */ 442 443 template<typename T> 444 void 445 debug_helper (vec<T, va_gc> &ref) 446 { 447 unsigned i; 448 for (i = 0; i < ref.length (); ++i) 449 { 450 fprintf (stderr, "[%d] = ", i); 451 debug_slim (ref[i]); 452 fputc ('\n', stderr); 453 } 454 } 455 456 /* Macro to define debug(vec<T>) and debug(vec<T, va_gc>) helper 457 functions for a type T. */ 458 459 #define DEFINE_DEBUG_VEC(T) \ 460 template void debug_helper (vec<T> &); \ 461 template void debug_helper (vec<T, va_gc> &); \ 462 /* Define the vec<T> debug functions. */ \ 463 DEBUG_FUNCTION void \ 464 debug (vec<T> &ref) \ 465 { \ 466 debug_helper <T> (ref); \ 467 } \ 468 DEBUG_FUNCTION void \ 469 debug (vec<T> *ptr) \ 470 { \ 471 if (ptr) \ 472 debug (*ptr); \ 473 else \ 474 fprintf (stderr, "<nil>\n"); \ 475 } \ 476 /* Define the vec<T, va_gc> debug functions. */ \ 477 DEBUG_FUNCTION void \ 478 debug (vec<T, va_gc> &ref) \ 479 { \ 480 debug_helper <T> (ref); \ 481 } \ 482 DEBUG_FUNCTION void \ 483 debug (vec<T, va_gc> *ptr) \ 484 { \ 485 if (ptr) \ 486 debug (*ptr); \ 487 else \ 488 fprintf (stderr, "<nil>\n"); \ 489 } 490 491 /* Default-construct N elements in DST. */ 492 493 template <typename T> 494 inline void 495 vec_default_construct (T *dst, unsigned n) 496 { 497 #ifdef BROKEN_VALUE_INITIALIZATION 498 /* Versions of GCC before 4.4 sometimes leave certain objects 499 uninitialized when value initialized, though if the type has 500 user defined default ctor, that ctor is invoked. As a workaround 501 perform clearing first and then the value initialization, which 502 fixes the case when value initialization doesn't initialize due to 503 the bugs and should initialize to all zeros, but still allows 504 vectors for types with user defined default ctor that initializes 505 some or all elements to non-zero. If T has no user defined 506 default ctor and some non-static data members have user defined 507 default ctors that initialize to non-zero the workaround will 508 still not work properly; in that case we just need to provide 509 user defined default ctor. */ 510 memset (dst, '\0', sizeof (T) * n); 511 #endif 512 for ( ; n; ++dst, --n) 513 ::new (static_cast<void*>(dst)) T (); 514 } 515 516 /* Copy-construct N elements in DST from *SRC. */ 517 518 template <typename T> 519 inline void 520 vec_copy_construct (T *dst, const T *src, unsigned n) 521 { 522 for ( ; n; ++dst, ++src, --n) 523 ::new (static_cast<void*>(dst)) T (*src); 524 } 525 526 /* Type to provide NULL values for vec<T, A, L>. This is used to 527 provide nil initializers for vec instances. Since vec must be 528 a POD, we cannot have proper ctor/dtor for it. To initialize 529 a vec instance, you can assign it the value vNULL. This isn't 530 needed for file-scope and function-local static vectors, which 531 are zero-initialized by default. */ 532 struct vnull 533 { 534 template <typename T, typename A, typename L> 535 CONSTEXPR operator vec<T, A, L> () { return vec<T, A, L>(); } 536 }; 537 extern vnull vNULL; 538 539 540 /* Embeddable vector. These vectors are suitable to be embedded 541 in other data structures so that they can be pre-allocated in a 542 contiguous memory block. 543 544 Embeddable vectors are implemented using the trailing array idiom, 545 thus they are not resizeable without changing the address of the 546 vector object itself. This means you cannot have variables or 547 fields of embeddable vector type -- always use a pointer to a 548 vector. The one exception is the final field of a structure, which 549 could be a vector type. 550 551 You will have to use the embedded_size & embedded_init calls to 552 create such objects, and they will not be resizeable (so the 'safe' 553 allocation variants are not available). 554 555 Properties: 556 557 - The whole vector and control data are allocated in a single 558 contiguous block. It uses the trailing-vector idiom, so 559 allocation must reserve enough space for all the elements 560 in the vector plus its control data. 561 - The vector cannot be re-allocated. 562 - The vector cannot grow nor shrink. 563 - No indirections needed for access/manipulation. 564 - It requires 2 words of storage (prior to vector allocation). */ 565 566 template<typename T, typename A> 567 struct GTY((user)) vec<T, A, vl_embed> 568 { 569 public: 570 unsigned allocated (void) const { return m_vecpfx.m_alloc; } 571 unsigned length (void) const { return m_vecpfx.m_num; } 572 bool is_empty (void) const { return m_vecpfx.m_num == 0; } 573 T *address (void) { return m_vecdata; } 574 const T *address (void) const { return m_vecdata; } 575 T *begin () { return address (); } 576 const T *begin () const { return address (); } 577 T *end () { return address () + length (); } 578 const T *end () const { return address () + length (); } 579 const T &operator[] (unsigned) const; 580 T &operator[] (unsigned); 581 T &last (void); 582 bool space (unsigned) const; 583 bool iterate (unsigned, T *) const; 584 bool iterate (unsigned, T **) const; 585 vec *copy (ALONE_CXX_MEM_STAT_INFO) const; 586 void splice (const vec &); 587 void splice (const vec *src); 588 T *quick_push (const T &); 589 T &pop (void); 590 void truncate (unsigned); 591 void quick_insert (unsigned, const T &); 592 void ordered_remove (unsigned); 593 void unordered_remove (unsigned); 594 void block_remove (unsigned, unsigned); 595 void qsort (int (*) (const void *, const void *)); 596 T *bsearch (const void *key, int (*compar)(const void *, const void *)); 597 unsigned lower_bound (T, bool (*)(const T &, const T &)) const; 598 bool contains (const T &search) const; 599 static size_t embedded_size (unsigned); 600 void embedded_init (unsigned, unsigned = 0, unsigned = 0); 601 void quick_grow (unsigned len); 602 void quick_grow_cleared (unsigned len); 603 604 /* vec class can access our internal data and functions. */ 605 template <typename, typename, typename> friend struct vec; 606 607 /* The allocator types also need access to our internals. */ 608 friend struct va_gc; 609 friend struct va_gc_atomic; 610 friend struct va_heap; 611 612 /* FIXME - These fields should be private, but we need to cater to 613 compilers that have stricter notions of PODness for types. */ 614 vec_prefix m_vecpfx; 615 T m_vecdata[1]; 616 }; 617 618 619 /* Convenience wrapper functions to use when dealing with pointers to 620 embedded vectors. Some functionality for these vectors must be 621 provided via free functions for these reasons: 622 623 1- The pointer may be NULL (e.g., before initial allocation). 624 625 2- When the vector needs to grow, it must be reallocated, so 626 the pointer will change its value. 627 628 Because of limitations with the current GC machinery, all vectors 629 in GC memory *must* be pointers. */ 630 631 632 /* If V contains no room for NELEMS elements, return false. Otherwise, 633 return true. */ 634 template<typename T, typename A> 635 inline bool 636 vec_safe_space (const vec<T, A, vl_embed> *v, unsigned nelems) 637 { 638 return v ? v->space (nelems) : nelems == 0; 639 } 640 641 642 /* If V is NULL, return 0. Otherwise, return V->length(). */ 643 template<typename T, typename A> 644 inline unsigned 645 vec_safe_length (const vec<T, A, vl_embed> *v) 646 { 647 return v ? v->length () : 0; 648 } 649 650 651 /* If V is NULL, return NULL. Otherwise, return V->address(). */ 652 template<typename T, typename A> 653 inline T * 654 vec_safe_address (vec<T, A, vl_embed> *v) 655 { 656 return v ? v->address () : NULL; 657 } 658 659 660 /* If V is NULL, return true. Otherwise, return V->is_empty(). */ 661 template<typename T, typename A> 662 inline bool 663 vec_safe_is_empty (vec<T, A, vl_embed> *v) 664 { 665 return v ? v->is_empty () : true; 666 } 667 668 /* If V does not have space for NELEMS elements, call 669 V->reserve(NELEMS, EXACT). */ 670 template<typename T, typename A> 671 inline bool 672 vec_safe_reserve (vec<T, A, vl_embed> *&v, unsigned nelems, bool exact = false 673 CXX_MEM_STAT_INFO) 674 { 675 bool extend = nelems ? !vec_safe_space (v, nelems) : false; 676 if (extend) 677 A::reserve (v, nelems, exact PASS_MEM_STAT); 678 return extend; 679 } 680 681 template<typename T, typename A> 682 inline bool 683 vec_safe_reserve_exact (vec<T, A, vl_embed> *&v, unsigned nelems 684 CXX_MEM_STAT_INFO) 685 { 686 return vec_safe_reserve (v, nelems, true PASS_MEM_STAT); 687 } 688 689 690 /* Allocate GC memory for V with space for NELEMS slots. If NELEMS 691 is 0, V is initialized to NULL. */ 692 693 template<typename T, typename A> 694 inline void 695 vec_alloc (vec<T, A, vl_embed> *&v, unsigned nelems CXX_MEM_STAT_INFO) 696 { 697 v = NULL; 698 vec_safe_reserve (v, nelems, false PASS_MEM_STAT); 699 } 700 701 702 /* Free the GC memory allocated by vector V and set it to NULL. */ 703 704 template<typename T, typename A> 705 inline void 706 vec_free (vec<T, A, vl_embed> *&v) 707 { 708 A::release (v); 709 } 710 711 712 /* Grow V to length LEN. Allocate it, if necessary. */ 713 template<typename T, typename A> 714 inline void 715 vec_safe_grow (vec<T, A, vl_embed> *&v, unsigned len CXX_MEM_STAT_INFO) 716 { 717 unsigned oldlen = vec_safe_length (v); 718 gcc_checking_assert (len >= oldlen); 719 vec_safe_reserve_exact (v, len - oldlen PASS_MEM_STAT); 720 v->quick_grow (len); 721 } 722 723 724 /* If V is NULL, allocate it. Call V->safe_grow_cleared(LEN). */ 725 template<typename T, typename A> 726 inline void 727 vec_safe_grow_cleared (vec<T, A, vl_embed> *&v, unsigned len CXX_MEM_STAT_INFO) 728 { 729 unsigned oldlen = vec_safe_length (v); 730 vec_safe_grow (v, len PASS_MEM_STAT); 731 vec_default_construct (v->address () + oldlen, len - oldlen); 732 } 733 734 735 /* Assume V is not NULL. */ 736 737 template<typename T> 738 inline void 739 vec_safe_grow_cleared (vec<T, va_heap, vl_ptr> *&v, 740 unsigned len CXX_MEM_STAT_INFO) 741 { 742 v->safe_grow_cleared (len PASS_MEM_STAT); 743 } 744 745 746 /* If V is NULL return false, otherwise return V->iterate(IX, PTR). */ 747 template<typename T, typename A> 748 inline bool 749 vec_safe_iterate (const vec<T, A, vl_embed> *v, unsigned ix, T **ptr) 750 { 751 if (v) 752 return v->iterate (ix, ptr); 753 else 754 { 755 *ptr = 0; 756 return false; 757 } 758 } 759 760 template<typename T, typename A> 761 inline bool 762 vec_safe_iterate (const vec<T, A, vl_embed> *v, unsigned ix, T *ptr) 763 { 764 if (v) 765 return v->iterate (ix, ptr); 766 else 767 { 768 *ptr = 0; 769 return false; 770 } 771 } 772 773 774 /* If V has no room for one more element, reallocate it. Then call 775 V->quick_push(OBJ). */ 776 template<typename T, typename A> 777 inline T * 778 vec_safe_push (vec<T, A, vl_embed> *&v, const T &obj CXX_MEM_STAT_INFO) 779 { 780 vec_safe_reserve (v, 1, false PASS_MEM_STAT); 781 return v->quick_push (obj); 782 } 783 784 785 /* if V has no room for one more element, reallocate it. Then call 786 V->quick_insert(IX, OBJ). */ 787 template<typename T, typename A> 788 inline void 789 vec_safe_insert (vec<T, A, vl_embed> *&v, unsigned ix, const T &obj 790 CXX_MEM_STAT_INFO) 791 { 792 vec_safe_reserve (v, 1, false PASS_MEM_STAT); 793 v->quick_insert (ix, obj); 794 } 795 796 797 /* If V is NULL, do nothing. Otherwise, call V->truncate(SIZE). */ 798 template<typename T, typename A> 799 inline void 800 vec_safe_truncate (vec<T, A, vl_embed> *v, unsigned size) 801 { 802 if (v) 803 v->truncate (size); 804 } 805 806 807 /* If SRC is not NULL, return a pointer to a copy of it. */ 808 template<typename T, typename A> 809 inline vec<T, A, vl_embed> * 810 vec_safe_copy (vec<T, A, vl_embed> *src CXX_MEM_STAT_INFO) 811 { 812 return src ? src->copy (ALONE_PASS_MEM_STAT) : NULL; 813 } 814 815 /* Copy the elements from SRC to the end of DST as if by memcpy. 816 Reallocate DST, if necessary. */ 817 template<typename T, typename A> 818 inline void 819 vec_safe_splice (vec<T, A, vl_embed> *&dst, const vec<T, A, vl_embed> *src 820 CXX_MEM_STAT_INFO) 821 { 822 unsigned src_len = vec_safe_length (src); 823 if (src_len) 824 { 825 vec_safe_reserve_exact (dst, vec_safe_length (dst) + src_len 826 PASS_MEM_STAT); 827 dst->splice (*src); 828 } 829 } 830 831 /* Return true if SEARCH is an element of V. Note that this is O(N) in the 832 size of the vector and so should be used with care. */ 833 834 template<typename T, typename A> 835 inline bool 836 vec_safe_contains (vec<T, A, vl_embed> *v, const T &search) 837 { 838 return v ? v->contains (search) : false; 839 } 840 841 /* Index into vector. Return the IX'th element. IX must be in the 842 domain of the vector. */ 843 844 template<typename T, typename A> 845 inline const T & 846 vec<T, A, vl_embed>::operator[] (unsigned ix) const 847 { 848 gcc_checking_assert (ix < m_vecpfx.m_num); 849 return m_vecdata[ix]; 850 } 851 852 template<typename T, typename A> 853 inline T & 854 vec<T, A, vl_embed>::operator[] (unsigned ix) 855 { 856 gcc_checking_assert (ix < m_vecpfx.m_num); 857 return m_vecdata[ix]; 858 } 859 860 861 /* Get the final element of the vector, which must not be empty. */ 862 863 template<typename T, typename A> 864 inline T & 865 vec<T, A, vl_embed>::last (void) 866 { 867 gcc_checking_assert (m_vecpfx.m_num > 0); 868 return (*this)[m_vecpfx.m_num - 1]; 869 } 870 871 872 /* If this vector has space for NELEMS additional entries, return 873 true. You usually only need to use this if you are doing your 874 own vector reallocation, for instance on an embedded vector. This 875 returns true in exactly the same circumstances that vec::reserve 876 will. */ 877 878 template<typename T, typename A> 879 inline bool 880 vec<T, A, vl_embed>::space (unsigned nelems) const 881 { 882 return m_vecpfx.m_alloc - m_vecpfx.m_num >= nelems; 883 } 884 885 886 /* Return iteration condition and update PTR to point to the IX'th 887 element of this vector. Use this to iterate over the elements of a 888 vector as follows, 889 890 for (ix = 0; vec<T, A>::iterate (v, ix, &ptr); ix++) 891 continue; */ 892 893 template<typename T, typename A> 894 inline bool 895 vec<T, A, vl_embed>::iterate (unsigned ix, T *ptr) const 896 { 897 if (ix < m_vecpfx.m_num) 898 { 899 *ptr = m_vecdata[ix]; 900 return true; 901 } 902 else 903 { 904 *ptr = 0; 905 return false; 906 } 907 } 908 909 910 /* Return iteration condition and update *PTR to point to the 911 IX'th element of this vector. Use this to iterate over the 912 elements of a vector as follows, 913 914 for (ix = 0; v->iterate (ix, &ptr); ix++) 915 continue; 916 917 This variant is for vectors of objects. */ 918 919 template<typename T, typename A> 920 inline bool 921 vec<T, A, vl_embed>::iterate (unsigned ix, T **ptr) const 922 { 923 if (ix < m_vecpfx.m_num) 924 { 925 *ptr = CONST_CAST (T *, &m_vecdata[ix]); 926 return true; 927 } 928 else 929 { 930 *ptr = 0; 931 return false; 932 } 933 } 934 935 936 /* Return a pointer to a copy of this vector. */ 937 938 template<typename T, typename A> 939 inline vec<T, A, vl_embed> * 940 vec<T, A, vl_embed>::copy (ALONE_MEM_STAT_DECL) const 941 { 942 vec<T, A, vl_embed> *new_vec = NULL; 943 unsigned len = length (); 944 if (len) 945 { 946 vec_alloc (new_vec, len PASS_MEM_STAT); 947 new_vec->embedded_init (len, len); 948 vec_copy_construct (new_vec->address (), m_vecdata, len); 949 } 950 return new_vec; 951 } 952 953 954 /* Copy the elements from SRC to the end of this vector as if by memcpy. 955 The vector must have sufficient headroom available. */ 956 957 template<typename T, typename A> 958 inline void 959 vec<T, A, vl_embed>::splice (const vec<T, A, vl_embed> &src) 960 { 961 unsigned len = src.length (); 962 if (len) 963 { 964 gcc_checking_assert (space (len)); 965 vec_copy_construct (end (), src.address (), len); 966 m_vecpfx.m_num += len; 967 } 968 } 969 970 template<typename T, typename A> 971 inline void 972 vec<T, A, vl_embed>::splice (const vec<T, A, vl_embed> *src) 973 { 974 if (src) 975 splice (*src); 976 } 977 978 979 /* Push OBJ (a new element) onto the end of the vector. There must be 980 sufficient space in the vector. Return a pointer to the slot 981 where OBJ was inserted. */ 982 983 template<typename T, typename A> 984 inline T * 985 vec<T, A, vl_embed>::quick_push (const T &obj) 986 { 987 gcc_checking_assert (space (1)); 988 T *slot = &m_vecdata[m_vecpfx.m_num++]; 989 *slot = obj; 990 return slot; 991 } 992 993 994 /* Pop and return the last element off the end of the vector. */ 995 996 template<typename T, typename A> 997 inline T & 998 vec<T, A, vl_embed>::pop (void) 999 { 1000 gcc_checking_assert (length () > 0); 1001 return m_vecdata[--m_vecpfx.m_num]; 1002 } 1003 1004 1005 /* Set the length of the vector to SIZE. The new length must be less 1006 than or equal to the current length. This is an O(1) operation. */ 1007 1008 template<typename T, typename A> 1009 inline void 1010 vec<T, A, vl_embed>::truncate (unsigned size) 1011 { 1012 gcc_checking_assert (length () >= size); 1013 m_vecpfx.m_num = size; 1014 } 1015 1016 1017 /* Insert an element, OBJ, at the IXth position of this vector. There 1018 must be sufficient space. */ 1019 1020 template<typename T, typename A> 1021 inline void 1022 vec<T, A, vl_embed>::quick_insert (unsigned ix, const T &obj) 1023 { 1024 gcc_checking_assert (length () < allocated ()); 1025 gcc_checking_assert (ix <= length ()); 1026 T *slot = &m_vecdata[ix]; 1027 memmove (slot + 1, slot, (m_vecpfx.m_num++ - ix) * sizeof (T)); 1028 *slot = obj; 1029 } 1030 1031 1032 /* Remove an element from the IXth position of this vector. Ordering of 1033 remaining elements is preserved. This is an O(N) operation due to 1034 memmove. */ 1035 1036 template<typename T, typename A> 1037 inline void 1038 vec<T, A, vl_embed>::ordered_remove (unsigned ix) 1039 { 1040 gcc_checking_assert (ix < length ()); 1041 T *slot = &m_vecdata[ix]; 1042 memmove (slot, slot + 1, (--m_vecpfx.m_num - ix) * sizeof (T)); 1043 } 1044 1045 1046 /* Remove elements in [START, END) from VEC for which COND holds. Ordering of 1047 remaining elements is preserved. This is an O(N) operation. */ 1048 1049 #define VEC_ORDERED_REMOVE_IF_FROM_TO(vec, read_index, write_index, \ 1050 elem_ptr, start, end, cond) \ 1051 { \ 1052 gcc_assert ((end) <= (vec).length ()); \ 1053 for (read_index = write_index = (start); read_index < (end); \ 1054 ++read_index) \ 1055 { \ 1056 elem_ptr = &(vec)[read_index]; \ 1057 bool remove_p = (cond); \ 1058 if (remove_p) \ 1059 continue; \ 1060 \ 1061 if (read_index != write_index) \ 1062 (vec)[write_index] = (vec)[read_index]; \ 1063 \ 1064 write_index++; \ 1065 } \ 1066 \ 1067 if (read_index - write_index > 0) \ 1068 (vec).block_remove (write_index, read_index - write_index); \ 1069 } 1070 1071 1072 /* Remove elements from VEC for which COND holds. Ordering of remaining 1073 elements is preserved. This is an O(N) operation. */ 1074 1075 #define VEC_ORDERED_REMOVE_IF(vec, read_index, write_index, elem_ptr, \ 1076 cond) \ 1077 VEC_ORDERED_REMOVE_IF_FROM_TO ((vec), read_index, write_index, \ 1078 elem_ptr, 0, (vec).length (), (cond)) 1079 1080 /* Remove an element from the IXth position of this vector. Ordering of 1081 remaining elements is destroyed. This is an O(1) operation. */ 1082 1083 template<typename T, typename A> 1084 inline void 1085 vec<T, A, vl_embed>::unordered_remove (unsigned ix) 1086 { 1087 gcc_checking_assert (ix < length ()); 1088 m_vecdata[ix] = m_vecdata[--m_vecpfx.m_num]; 1089 } 1090 1091 1092 /* Remove LEN elements starting at the IXth. Ordering is retained. 1093 This is an O(N) operation due to memmove. */ 1094 1095 template<typename T, typename A> 1096 inline void 1097 vec<T, A, vl_embed>::block_remove (unsigned ix, unsigned len) 1098 { 1099 gcc_checking_assert (ix + len <= length ()); 1100 T *slot = &m_vecdata[ix]; 1101 m_vecpfx.m_num -= len; 1102 memmove (slot, slot + len, (m_vecpfx.m_num - ix) * sizeof (T)); 1103 } 1104 1105 1106 /* Sort the contents of this vector with qsort. CMP is the comparison 1107 function to pass to qsort. */ 1108 1109 template<typename T, typename A> 1110 inline void 1111 vec<T, A, vl_embed>::qsort (int (*cmp) (const void *, const void *)) 1112 { 1113 if (length () > 1) 1114 ::qsort (address (), length (), sizeof (T), cmp); 1115 } 1116 1117 1118 /* Search the contents of the sorted vector with a binary search. 1119 CMP is the comparison function to pass to bsearch. */ 1120 1121 template<typename T, typename A> 1122 inline T * 1123 vec<T, A, vl_embed>::bsearch (const void *key, 1124 int (*compar) (const void *, const void *)) 1125 { 1126 const void *base = this->address (); 1127 size_t nmemb = this->length (); 1128 size_t size = sizeof (T); 1129 /* The following is a copy of glibc stdlib-bsearch.h. */ 1130 size_t l, u, idx; 1131 const void *p; 1132 int comparison; 1133 1134 l = 0; 1135 u = nmemb; 1136 while (l < u) 1137 { 1138 idx = (l + u) / 2; 1139 p = (const void *) (((const char *) base) + (idx * size)); 1140 comparison = (*compar) (key, p); 1141 if (comparison < 0) 1142 u = idx; 1143 else if (comparison > 0) 1144 l = idx + 1; 1145 else 1146 return (T *)const_cast<void *>(p); 1147 } 1148 1149 return NULL; 1150 } 1151 1152 /* Return true if SEARCH is an element of V. Note that this is O(N) in the 1153 size of the vector and so should be used with care. */ 1154 1155 template<typename T, typename A> 1156 inline bool 1157 vec<T, A, vl_embed>::contains (const T &search) const 1158 { 1159 unsigned int len = length (); 1160 for (unsigned int i = 0; i < len; i++) 1161 if ((*this)[i] == search) 1162 return true; 1163 1164 return false; 1165 } 1166 1167 /* Find and return the first position in which OBJ could be inserted 1168 without changing the ordering of this vector. LESSTHAN is a 1169 function that returns true if the first argument is strictly less 1170 than the second. */ 1171 1172 template<typename T, typename A> 1173 unsigned 1174 vec<T, A, vl_embed>::lower_bound (T obj, bool (*lessthan)(const T &, const T &)) 1175 const 1176 { 1177 unsigned int len = length (); 1178 unsigned int half, middle; 1179 unsigned int first = 0; 1180 while (len > 0) 1181 { 1182 half = len / 2; 1183 middle = first; 1184 middle += half; 1185 T middle_elem = (*this)[middle]; 1186 if (lessthan (middle_elem, obj)) 1187 { 1188 first = middle; 1189 ++first; 1190 len = len - half - 1; 1191 } 1192 else 1193 len = half; 1194 } 1195 return first; 1196 } 1197 1198 1199 /* Return the number of bytes needed to embed an instance of an 1200 embeddable vec inside another data structure. 1201 1202 Use these methods to determine the required size and initialization 1203 of a vector V of type T embedded within another structure (as the 1204 final member): 1205 1206 size_t vec<T, A, vl_embed>::embedded_size (unsigned alloc); 1207 void v->embedded_init (unsigned alloc, unsigned num); 1208 1209 These allow the caller to perform the memory allocation. */ 1210 1211 template<typename T, typename A> 1212 inline size_t 1213 vec<T, A, vl_embed>::embedded_size (unsigned alloc) 1214 { 1215 typedef vec<T, A, vl_embed> vec_embedded; 1216 return offsetof (vec_embedded, m_vecdata) + alloc * sizeof (T); 1217 } 1218 1219 1220 /* Initialize the vector to contain room for ALLOC elements and 1221 NUM active elements. */ 1222 1223 template<typename T, typename A> 1224 inline void 1225 vec<T, A, vl_embed>::embedded_init (unsigned alloc, unsigned num, unsigned aut) 1226 { 1227 m_vecpfx.m_alloc = alloc; 1228 m_vecpfx.m_using_auto_storage = aut; 1229 m_vecpfx.m_num = num; 1230 } 1231 1232 1233 /* Grow the vector to a specific length. LEN must be as long or longer than 1234 the current length. The new elements are uninitialized. */ 1235 1236 template<typename T, typename A> 1237 inline void 1238 vec<T, A, vl_embed>::quick_grow (unsigned len) 1239 { 1240 gcc_checking_assert (length () <= len && len <= m_vecpfx.m_alloc); 1241 m_vecpfx.m_num = len; 1242 } 1243 1244 1245 /* Grow the vector to a specific length. LEN must be as long or longer than 1246 the current length. The new elements are initialized to zero. */ 1247 1248 template<typename T, typename A> 1249 inline void 1250 vec<T, A, vl_embed>::quick_grow_cleared (unsigned len) 1251 { 1252 unsigned oldlen = length (); 1253 size_t growby = len - oldlen; 1254 quick_grow (len); 1255 if (growby != 0) 1256 vec_default_construct (address () + oldlen, growby); 1257 } 1258 1259 /* Garbage collection support for vec<T, A, vl_embed>. */ 1260 1261 template<typename T> 1262 void 1263 gt_ggc_mx (vec<T, va_gc> *v) 1264 { 1265 extern void gt_ggc_mx (T &); 1266 for (unsigned i = 0; i < v->length (); i++) 1267 gt_ggc_mx ((*v)[i]); 1268 } 1269 1270 template<typename T> 1271 void 1272 gt_ggc_mx (vec<T, va_gc_atomic, vl_embed> *v ATTRIBUTE_UNUSED) 1273 { 1274 /* Nothing to do. Vectors of atomic types wrt GC do not need to 1275 be traversed. */ 1276 } 1277 1278 1279 /* PCH support for vec<T, A, vl_embed>. */ 1280 1281 template<typename T, typename A> 1282 void 1283 gt_pch_nx (vec<T, A, vl_embed> *v) 1284 { 1285 extern void gt_pch_nx (T &); 1286 for (unsigned i = 0; i < v->length (); i++) 1287 gt_pch_nx ((*v)[i]); 1288 } 1289 1290 template<typename T, typename A> 1291 void 1292 gt_pch_nx (vec<T *, A, vl_embed> *v, gt_pointer_operator op, void *cookie) 1293 { 1294 for (unsigned i = 0; i < v->length (); i++) 1295 op (&((*v)[i]), cookie); 1296 } 1297 1298 template<typename T, typename A> 1299 void 1300 gt_pch_nx (vec<T, A, vl_embed> *v, gt_pointer_operator op, void *cookie) 1301 { 1302 extern void gt_pch_nx (T *, gt_pointer_operator, void *); 1303 for (unsigned i = 0; i < v->length (); i++) 1304 gt_pch_nx (&((*v)[i]), op, cookie); 1305 } 1306 1307 1308 /* Space efficient vector. These vectors can grow dynamically and are 1309 allocated together with their control data. They are suited to be 1310 included in data structures. Prior to initial allocation, they 1311 only take a single word of storage. 1312 1313 These vectors are implemented as a pointer to an embeddable vector. 1314 The semantics allow for this pointer to be NULL to represent empty 1315 vectors. This way, empty vectors occupy minimal space in the 1316 structure containing them. 1317 1318 Properties: 1319 1320 - The whole vector and control data are allocated in a single 1321 contiguous block. 1322 - The whole vector may be re-allocated. 1323 - Vector data may grow and shrink. 1324 - Access and manipulation requires a pointer test and 1325 indirection. 1326 - It requires 1 word of storage (prior to vector allocation). 1327 1328 1329 Limitations: 1330 1331 These vectors must be PODs because they are stored in unions. 1332 (http://en.wikipedia.org/wiki/Plain_old_data_structures). 1333 As long as we use C++03, we cannot have constructors nor 1334 destructors in classes that are stored in unions. */ 1335 1336 template<typename T> 1337 struct vec<T, va_heap, vl_ptr> 1338 { 1339 public: 1340 /* Memory allocation and deallocation for the embedded vector. 1341 Needed because we cannot have proper ctors/dtors defined. */ 1342 void create (unsigned nelems CXX_MEM_STAT_INFO); 1343 void release (void); 1344 1345 /* Vector operations. */ 1346 bool exists (void) const 1347 { return m_vec != NULL; } 1348 1349 bool is_empty (void) const 1350 { return m_vec ? m_vec->is_empty () : true; } 1351 1352 unsigned length (void) const 1353 { return m_vec ? m_vec->length () : 0; } 1354 1355 T *address (void) 1356 { return m_vec ? m_vec->m_vecdata : NULL; } 1357 1358 const T *address (void) const 1359 { return m_vec ? m_vec->m_vecdata : NULL; } 1360 1361 T *begin () { return address (); } 1362 const T *begin () const { return address (); } 1363 T *end () { return begin () + length (); } 1364 const T *end () const { return begin () + length (); } 1365 const T &operator[] (unsigned ix) const 1366 { return (*m_vec)[ix]; } 1367 1368 bool operator!=(const vec &other) const 1369 { return !(*this == other); } 1370 1371 bool operator==(const vec &other) const 1372 { return address () == other.address (); } 1373 1374 T &operator[] (unsigned ix) 1375 { return (*m_vec)[ix]; } 1376 1377 T &last (void) 1378 { return m_vec->last (); } 1379 1380 bool space (int nelems) const 1381 { return m_vec ? m_vec->space (nelems) : nelems == 0; } 1382 1383 bool iterate (unsigned ix, T *p) const; 1384 bool iterate (unsigned ix, T **p) const; 1385 vec copy (ALONE_CXX_MEM_STAT_INFO) const; 1386 bool reserve (unsigned, bool = false CXX_MEM_STAT_INFO); 1387 bool reserve_exact (unsigned CXX_MEM_STAT_INFO); 1388 void splice (const vec &); 1389 void safe_splice (const vec & CXX_MEM_STAT_INFO); 1390 T *quick_push (const T &); 1391 T *safe_push (const T &CXX_MEM_STAT_INFO); 1392 T &pop (void); 1393 void truncate (unsigned); 1394 void safe_grow (unsigned CXX_MEM_STAT_INFO); 1395 void safe_grow_cleared (unsigned CXX_MEM_STAT_INFO); 1396 void quick_grow (unsigned); 1397 void quick_grow_cleared (unsigned); 1398 void quick_insert (unsigned, const T &); 1399 void safe_insert (unsigned, const T & CXX_MEM_STAT_INFO); 1400 void ordered_remove (unsigned); 1401 void unordered_remove (unsigned); 1402 void block_remove (unsigned, unsigned); 1403 void qsort (int (*) (const void *, const void *)); 1404 T *bsearch (const void *key, int (*compar)(const void *, const void *)); 1405 unsigned lower_bound (T, bool (*)(const T &, const T &)) const; 1406 bool contains (const T &search) const; 1407 void reverse (void); 1408 1409 bool using_auto_storage () const; 1410 1411 /* FIXME - This field should be private, but we need to cater to 1412 compilers that have stricter notions of PODness for types. */ 1413 vec<T, va_heap, vl_embed> *m_vec; 1414 }; 1415 1416 1417 /* auto_vec is a subclass of vec that automatically manages creating and 1418 releasing the internal vector. If N is non zero then it has N elements of 1419 internal storage. The default is no internal storage, and you probably only 1420 want to ask for internal storage for vectors on the stack because if the 1421 size of the vector is larger than the internal storage that space is wasted. 1422 */ 1423 template<typename T, size_t N = 0> 1424 class auto_vec : public vec<T, va_heap> 1425 { 1426 public: 1427 auto_vec () 1428 { 1429 m_auto.embedded_init (MAX (N, 2), 0, 1); 1430 this->m_vec = &m_auto; 1431 } 1432 1433 auto_vec (size_t s) 1434 { 1435 if (s > N) 1436 { 1437 this->create (s); 1438 return; 1439 } 1440 1441 m_auto.embedded_init (MAX (N, 2), 0, 1); 1442 this->m_vec = &m_auto; 1443 } 1444 1445 ~auto_vec () 1446 { 1447 this->release (); 1448 } 1449 1450 private: 1451 vec<T, va_heap, vl_embed> m_auto; 1452 T m_data[MAX (N - 1, 1)]; 1453 }; 1454 1455 /* auto_vec is a sub class of vec whose storage is released when it is 1456 destroyed. */ 1457 template<typename T> 1458 class auto_vec<T, 0> : public vec<T, va_heap> 1459 { 1460 public: 1461 auto_vec () { this->m_vec = NULL; } 1462 auto_vec (size_t n) { this->create (n); } 1463 ~auto_vec () { this->release (); } 1464 }; 1465 1466 1467 /* Allocate heap memory for pointer V and create the internal vector 1468 with space for NELEMS elements. If NELEMS is 0, the internal 1469 vector is initialized to empty. */ 1470 1471 template<typename T> 1472 inline void 1473 vec_alloc (vec<T> *&v, unsigned nelems CXX_MEM_STAT_INFO) 1474 { 1475 v = new vec<T>; 1476 v->create (nelems PASS_MEM_STAT); 1477 } 1478 1479 1480 /* A subclass of auto_vec <char *> that frees all of its elements on 1481 deletion. */ 1482 1483 class auto_string_vec : public auto_vec <char *> 1484 { 1485 public: 1486 ~auto_string_vec (); 1487 }; 1488 1489 /* Conditionally allocate heap memory for VEC and its internal vector. */ 1490 1491 template<typename T> 1492 inline void 1493 vec_check_alloc (vec<T, va_heap> *&vec, unsigned nelems CXX_MEM_STAT_INFO) 1494 { 1495 if (!vec) 1496 vec_alloc (vec, nelems PASS_MEM_STAT); 1497 } 1498 1499 1500 /* Free the heap memory allocated by vector V and set it to NULL. */ 1501 1502 template<typename T> 1503 inline void 1504 vec_free (vec<T> *&v) 1505 { 1506 if (v == NULL) 1507 return; 1508 1509 v->release (); 1510 delete v; 1511 v = NULL; 1512 } 1513 1514 1515 /* Return iteration condition and update PTR to point to the IX'th 1516 element of this vector. Use this to iterate over the elements of a 1517 vector as follows, 1518 1519 for (ix = 0; v.iterate (ix, &ptr); ix++) 1520 continue; */ 1521 1522 template<typename T> 1523 inline bool 1524 vec<T, va_heap, vl_ptr>::iterate (unsigned ix, T *ptr) const 1525 { 1526 if (m_vec) 1527 return m_vec->iterate (ix, ptr); 1528 else 1529 { 1530 *ptr = 0; 1531 return false; 1532 } 1533 } 1534 1535 1536 /* Return iteration condition and update *PTR to point to the 1537 IX'th element of this vector. Use this to iterate over the 1538 elements of a vector as follows, 1539 1540 for (ix = 0; v->iterate (ix, &ptr); ix++) 1541 continue; 1542 1543 This variant is for vectors of objects. */ 1544 1545 template<typename T> 1546 inline bool 1547 vec<T, va_heap, vl_ptr>::iterate (unsigned ix, T **ptr) const 1548 { 1549 if (m_vec) 1550 return m_vec->iterate (ix, ptr); 1551 else 1552 { 1553 *ptr = 0; 1554 return false; 1555 } 1556 } 1557 1558 1559 /* Convenience macro for forward iteration. */ 1560 #define FOR_EACH_VEC_ELT(V, I, P) \ 1561 for (I = 0; (V).iterate ((I), &(P)); ++(I)) 1562 1563 #define FOR_EACH_VEC_SAFE_ELT(V, I, P) \ 1564 for (I = 0; vec_safe_iterate ((V), (I), &(P)); ++(I)) 1565 1566 /* Likewise, but start from FROM rather than 0. */ 1567 #define FOR_EACH_VEC_ELT_FROM(V, I, P, FROM) \ 1568 for (I = (FROM); (V).iterate ((I), &(P)); ++(I)) 1569 1570 /* Convenience macro for reverse iteration. */ 1571 #define FOR_EACH_VEC_ELT_REVERSE(V, I, P) \ 1572 for (I = (V).length () - 1; \ 1573 (V).iterate ((I), &(P)); \ 1574 (I)--) 1575 1576 #define FOR_EACH_VEC_SAFE_ELT_REVERSE(V, I, P) \ 1577 for (I = vec_safe_length (V) - 1; \ 1578 vec_safe_iterate ((V), (I), &(P)); \ 1579 (I)--) 1580 1581 /* auto_string_vec's dtor, freeing all contained strings, automatically 1582 chaining up to ~auto_vec <char *>, which frees the internal buffer. */ 1583 1584 inline 1585 auto_string_vec::~auto_string_vec () 1586 { 1587 int i; 1588 char *str; 1589 FOR_EACH_VEC_ELT (*this, i, str) 1590 free (str); 1591 } 1592 1593 1594 /* Return a copy of this vector. */ 1595 1596 template<typename T> 1597 inline vec<T, va_heap, vl_ptr> 1598 vec<T, va_heap, vl_ptr>::copy (ALONE_MEM_STAT_DECL) const 1599 { 1600 vec<T, va_heap, vl_ptr> new_vec = vNULL; 1601 if (length ()) 1602 new_vec.m_vec = m_vec->copy (); 1603 return new_vec; 1604 } 1605 1606 1607 /* Ensure that the vector has at least RESERVE slots available (if 1608 EXACT is false), or exactly RESERVE slots available (if EXACT is 1609 true). 1610 1611 This may create additional headroom if EXACT is false. 1612 1613 Note that this can cause the embedded vector to be reallocated. 1614 Returns true iff reallocation actually occurred. */ 1615 1616 template<typename T> 1617 inline bool 1618 vec<T, va_heap, vl_ptr>::reserve (unsigned nelems, bool exact MEM_STAT_DECL) 1619 { 1620 if (space (nelems)) 1621 return false; 1622 1623 /* For now play a game with va_heap::reserve to hide our auto storage if any, 1624 this is necessary because it doesn't have enough information to know the 1625 embedded vector is in auto storage, and so should not be freed. */ 1626 vec<T, va_heap, vl_embed> *oldvec = m_vec; 1627 unsigned int oldsize = 0; 1628 bool handle_auto_vec = m_vec && using_auto_storage (); 1629 if (handle_auto_vec) 1630 { 1631 m_vec = NULL; 1632 oldsize = oldvec->length (); 1633 nelems += oldsize; 1634 } 1635 1636 va_heap::reserve (m_vec, nelems, exact PASS_MEM_STAT); 1637 if (handle_auto_vec) 1638 { 1639 vec_copy_construct (m_vec->address (), oldvec->address (), oldsize); 1640 m_vec->m_vecpfx.m_num = oldsize; 1641 } 1642 1643 return true; 1644 } 1645 1646 1647 /* Ensure that this vector has exactly NELEMS slots available. This 1648 will not create additional headroom. Note this can cause the 1649 embedded vector to be reallocated. Returns true iff reallocation 1650 actually occurred. */ 1651 1652 template<typename T> 1653 inline bool 1654 vec<T, va_heap, vl_ptr>::reserve_exact (unsigned nelems MEM_STAT_DECL) 1655 { 1656 return reserve (nelems, true PASS_MEM_STAT); 1657 } 1658 1659 1660 /* Create the internal vector and reserve NELEMS for it. This is 1661 exactly like vec::reserve, but the internal vector is 1662 unconditionally allocated from scratch. The old one, if it 1663 existed, is lost. */ 1664 1665 template<typename T> 1666 inline void 1667 vec<T, va_heap, vl_ptr>::create (unsigned nelems MEM_STAT_DECL) 1668 { 1669 m_vec = NULL; 1670 if (nelems > 0) 1671 reserve_exact (nelems PASS_MEM_STAT); 1672 } 1673 1674 1675 /* Free the memory occupied by the embedded vector. */ 1676 1677 template<typename T> 1678 inline void 1679 vec<T, va_heap, vl_ptr>::release (void) 1680 { 1681 if (!m_vec) 1682 return; 1683 1684 if (using_auto_storage ()) 1685 { 1686 m_vec->m_vecpfx.m_num = 0; 1687 return; 1688 } 1689 1690 va_heap::release (m_vec); 1691 } 1692 1693 /* Copy the elements from SRC to the end of this vector as if by memcpy. 1694 SRC and this vector must be allocated with the same memory 1695 allocation mechanism. This vector is assumed to have sufficient 1696 headroom available. */ 1697 1698 template<typename T> 1699 inline void 1700 vec<T, va_heap, vl_ptr>::splice (const vec<T, va_heap, vl_ptr> &src) 1701 { 1702 if (src.length ()) 1703 m_vec->splice (*(src.m_vec)); 1704 } 1705 1706 1707 /* Copy the elements in SRC to the end of this vector as if by memcpy. 1708 SRC and this vector must be allocated with the same mechanism. 1709 If there is not enough headroom in this vector, it will be reallocated 1710 as needed. */ 1711 1712 template<typename T> 1713 inline void 1714 vec<T, va_heap, vl_ptr>::safe_splice (const vec<T, va_heap, vl_ptr> &src 1715 MEM_STAT_DECL) 1716 { 1717 if (src.length ()) 1718 { 1719 reserve_exact (src.length ()); 1720 splice (src); 1721 } 1722 } 1723 1724 1725 /* Push OBJ (a new element) onto the end of the vector. There must be 1726 sufficient space in the vector. Return a pointer to the slot 1727 where OBJ was inserted. */ 1728 1729 template<typename T> 1730 inline T * 1731 vec<T, va_heap, vl_ptr>::quick_push (const T &obj) 1732 { 1733 return m_vec->quick_push (obj); 1734 } 1735 1736 1737 /* Push a new element OBJ onto the end of this vector. Reallocates 1738 the embedded vector, if needed. Return a pointer to the slot where 1739 OBJ was inserted. */ 1740 1741 template<typename T> 1742 inline T * 1743 vec<T, va_heap, vl_ptr>::safe_push (const T &obj MEM_STAT_DECL) 1744 { 1745 reserve (1, false PASS_MEM_STAT); 1746 return quick_push (obj); 1747 } 1748 1749 1750 /* Pop and return the last element off the end of the vector. */ 1751 1752 template<typename T> 1753 inline T & 1754 vec<T, va_heap, vl_ptr>::pop (void) 1755 { 1756 return m_vec->pop (); 1757 } 1758 1759 1760 /* Set the length of the vector to LEN. The new length must be less 1761 than or equal to the current length. This is an O(1) operation. */ 1762 1763 template<typename T> 1764 inline void 1765 vec<T, va_heap, vl_ptr>::truncate (unsigned size) 1766 { 1767 if (m_vec) 1768 m_vec->truncate (size); 1769 else 1770 gcc_checking_assert (size == 0); 1771 } 1772 1773 1774 /* Grow the vector to a specific length. LEN must be as long or 1775 longer than the current length. The new elements are 1776 uninitialized. Reallocate the internal vector, if needed. */ 1777 1778 template<typename T> 1779 inline void 1780 vec<T, va_heap, vl_ptr>::safe_grow (unsigned len MEM_STAT_DECL) 1781 { 1782 unsigned oldlen = length (); 1783 gcc_checking_assert (oldlen <= len); 1784 reserve_exact (len - oldlen PASS_MEM_STAT); 1785 if (m_vec) 1786 m_vec->quick_grow (len); 1787 else 1788 gcc_checking_assert (len == 0); 1789 } 1790 1791 1792 /* Grow the embedded vector to a specific length. LEN must be as 1793 long or longer than the current length. The new elements are 1794 initialized to zero. Reallocate the internal vector, if needed. */ 1795 1796 template<typename T> 1797 inline void 1798 vec<T, va_heap, vl_ptr>::safe_grow_cleared (unsigned len MEM_STAT_DECL) 1799 { 1800 unsigned oldlen = length (); 1801 size_t growby = len - oldlen; 1802 safe_grow (len PASS_MEM_STAT); 1803 if (growby != 0) 1804 vec_default_construct (address () + oldlen, growby); 1805 } 1806 1807 1808 /* Same as vec::safe_grow but without reallocation of the internal vector. 1809 If the vector cannot be extended, a runtime assertion will be triggered. */ 1810 1811 template<typename T> 1812 inline void 1813 vec<T, va_heap, vl_ptr>::quick_grow (unsigned len) 1814 { 1815 gcc_checking_assert (m_vec); 1816 m_vec->quick_grow (len); 1817 } 1818 1819 1820 /* Same as vec::quick_grow_cleared but without reallocation of the 1821 internal vector. If the vector cannot be extended, a runtime 1822 assertion will be triggered. */ 1823 1824 template<typename T> 1825 inline void 1826 vec<T, va_heap, vl_ptr>::quick_grow_cleared (unsigned len) 1827 { 1828 gcc_checking_assert (m_vec); 1829 m_vec->quick_grow_cleared (len); 1830 } 1831 1832 1833 /* Insert an element, OBJ, at the IXth position of this vector. There 1834 must be sufficient space. */ 1835 1836 template<typename T> 1837 inline void 1838 vec<T, va_heap, vl_ptr>::quick_insert (unsigned ix, const T &obj) 1839 { 1840 m_vec->quick_insert (ix, obj); 1841 } 1842 1843 1844 /* Insert an element, OBJ, at the IXth position of the vector. 1845 Reallocate the embedded vector, if necessary. */ 1846 1847 template<typename T> 1848 inline void 1849 vec<T, va_heap, vl_ptr>::safe_insert (unsigned ix, const T &obj MEM_STAT_DECL) 1850 { 1851 reserve (1, false PASS_MEM_STAT); 1852 quick_insert (ix, obj); 1853 } 1854 1855 1856 /* Remove an element from the IXth position of this vector. Ordering of 1857 remaining elements is preserved. This is an O(N) operation due to 1858 a memmove. */ 1859 1860 template<typename T> 1861 inline void 1862 vec<T, va_heap, vl_ptr>::ordered_remove (unsigned ix) 1863 { 1864 m_vec->ordered_remove (ix); 1865 } 1866 1867 1868 /* Remove an element from the IXth position of this vector. Ordering 1869 of remaining elements is destroyed. This is an O(1) operation. */ 1870 1871 template<typename T> 1872 inline void 1873 vec<T, va_heap, vl_ptr>::unordered_remove (unsigned ix) 1874 { 1875 m_vec->unordered_remove (ix); 1876 } 1877 1878 1879 /* Remove LEN elements starting at the IXth. Ordering is retained. 1880 This is an O(N) operation due to memmove. */ 1881 1882 template<typename T> 1883 inline void 1884 vec<T, va_heap, vl_ptr>::block_remove (unsigned ix, unsigned len) 1885 { 1886 m_vec->block_remove (ix, len); 1887 } 1888 1889 1890 /* Sort the contents of this vector with qsort. CMP is the comparison 1891 function to pass to qsort. */ 1892 1893 template<typename T> 1894 inline void 1895 vec<T, va_heap, vl_ptr>::qsort (int (*cmp) (const void *, const void *)) 1896 { 1897 if (m_vec) 1898 m_vec->qsort (cmp); 1899 } 1900 1901 1902 /* Search the contents of the sorted vector with a binary search. 1903 CMP is the comparison function to pass to bsearch. */ 1904 1905 template<typename T> 1906 inline T * 1907 vec<T, va_heap, vl_ptr>::bsearch (const void *key, 1908 int (*cmp) (const void *, const void *)) 1909 { 1910 if (m_vec) 1911 return m_vec->bsearch (key, cmp); 1912 return NULL; 1913 } 1914 1915 1916 /* Find and return the first position in which OBJ could be inserted 1917 without changing the ordering of this vector. LESSTHAN is a 1918 function that returns true if the first argument is strictly less 1919 than the second. */ 1920 1921 template<typename T> 1922 inline unsigned 1923 vec<T, va_heap, vl_ptr>::lower_bound (T obj, 1924 bool (*lessthan)(const T &, const T &)) 1925 const 1926 { 1927 return m_vec ? m_vec->lower_bound (obj, lessthan) : 0; 1928 } 1929 1930 /* Return true if SEARCH is an element of V. Note that this is O(N) in the 1931 size of the vector and so should be used with care. */ 1932 1933 template<typename T> 1934 inline bool 1935 vec<T, va_heap, vl_ptr>::contains (const T &search) const 1936 { 1937 return m_vec ? m_vec->contains (search) : false; 1938 } 1939 1940 /* Reverse content of the vector. */ 1941 1942 template<typename T> 1943 inline void 1944 vec<T, va_heap, vl_ptr>::reverse (void) 1945 { 1946 unsigned l = length (); 1947 T *ptr = address (); 1948 1949 for (unsigned i = 0; i < l / 2; i++) 1950 std::swap (ptr[i], ptr[l - i - 1]); 1951 } 1952 1953 template<typename T> 1954 inline bool 1955 vec<T, va_heap, vl_ptr>::using_auto_storage () const 1956 { 1957 return m_vec->m_vecpfx.m_using_auto_storage; 1958 } 1959 1960 /* Release VEC and call release of all element vectors. */ 1961 1962 template<typename T> 1963 inline void 1964 release_vec_vec (vec<vec<T> > &vec) 1965 { 1966 for (unsigned i = 0; i < vec.length (); i++) 1967 vec[i].release (); 1968 1969 vec.release (); 1970 } 1971 1972 #if (GCC_VERSION >= 3000) 1973 # pragma GCC poison m_vec m_vecpfx m_vecdata 1974 #endif 1975 1976 #endif // GCC_VEC_H 1977