xref: /netbsd-src/external/gpl3/gcc.old/dist/gcc/var-tracking.c (revision bdc22b2e01993381dcefeff2bc9b56ca75a4235c)
1 /* Variable tracking routines for the GNU compiler.
2    Copyright (C) 2002-2015 Free Software Foundation, Inc.
3 
4    This file is part of GCC.
5 
6    GCC is free software; you can redistribute it and/or modify it
7    under the terms of the GNU General Public License as published by
8    the Free Software Foundation; either version 3, or (at your option)
9    any later version.
10 
11    GCC is distributed in the hope that it will be useful, but WITHOUT
12    ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
13    or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
14    License for more details.
15 
16    You should have received a copy of the GNU General Public License
17    along with GCC; see the file COPYING3.  If not see
18    <http://www.gnu.org/licenses/>.  */
19 
20 /* This file contains the variable tracking pass.  It computes where
21    variables are located (which registers or where in memory) at each position
22    in instruction stream and emits notes describing the locations.
23    Debug information (DWARF2 location lists) is finally generated from
24    these notes.
25    With this debug information, it is possible to show variables
26    even when debugging optimized code.
27 
28    How does the variable tracking pass work?
29 
30    First, it scans RTL code for uses, stores and clobbers (register/memory
31    references in instructions), for call insns and for stack adjustments
32    separately for each basic block and saves them to an array of micro
33    operations.
34    The micro operations of one instruction are ordered so that
35    pre-modifying stack adjustment < use < use with no var < call insn <
36      < clobber < set < post-modifying stack adjustment
37 
38    Then, a forward dataflow analysis is performed to find out how locations
39    of variables change through code and to propagate the variable locations
40    along control flow graph.
41    The IN set for basic block BB is computed as a union of OUT sets of BB's
42    predecessors, the OUT set for BB is copied from the IN set for BB and
43    is changed according to micro operations in BB.
44 
45    The IN and OUT sets for basic blocks consist of a current stack adjustment
46    (used for adjusting offset of variables addressed using stack pointer),
47    the table of structures describing the locations of parts of a variable
48    and for each physical register a linked list for each physical register.
49    The linked list is a list of variable parts stored in the register,
50    i.e. it is a list of triplets (reg, decl, offset) where decl is
51    REG_EXPR (reg) and offset is REG_OFFSET (reg).  The linked list is used for
52    effective deleting appropriate variable parts when we set or clobber the
53    register.
54 
55    There may be more than one variable part in a register.  The linked lists
56    should be pretty short so it is a good data structure here.
57    For example in the following code, register allocator may assign same
58    register to variables A and B, and both of them are stored in the same
59    register in CODE:
60 
61      if (cond)
62        set A;
63      else
64        set B;
65      CODE;
66      if (cond)
67        use A;
68      else
69        use B;
70 
71    Finally, the NOTE_INSN_VAR_LOCATION notes describing the variable locations
72    are emitted to appropriate positions in RTL code.  Each such a note describes
73    the location of one variable at the point in instruction stream where the
74    note is.  There is no need to emit a note for each variable before each
75    instruction, we only emit these notes where the location of variable changes
76    (this means that we also emit notes for changes between the OUT set of the
77    previous block and the IN set of the current block).
78 
79    The notes consist of two parts:
80    1. the declaration (from REG_EXPR or MEM_EXPR)
81    2. the location of a variable - it is either a simple register/memory
82       reference (for simple variables, for example int),
83       or a parallel of register/memory references (for a large variables
84       which consist of several parts, for example long long).
85 
86 */
87 
88 #include "config.h"
89 #include "system.h"
90 #include "coretypes.h"
91 #include "tm.h"
92 #include "rtl.h"
93 #include "hash-set.h"
94 #include "machmode.h"
95 #include "vec.h"
96 #include "double-int.h"
97 #include "input.h"
98 #include "alias.h"
99 #include "symtab.h"
100 #include "wide-int.h"
101 #include "inchash.h"
102 #include "tree.h"
103 #include "varasm.h"
104 #include "stor-layout.h"
105 #include "hash-map.h"
106 #include "hash-table.h"
107 #include "predict.h"
108 #include "hard-reg-set.h"
109 #include "function.h"
110 #include "dominance.h"
111 #include "cfg.h"
112 #include "cfgrtl.h"
113 #include "cfganal.h"
114 #include "basic-block.h"
115 #include "tm_p.h"
116 #include "flags.h"
117 #include "insn-config.h"
118 #include "reload.h"
119 #include "sbitmap.h"
120 #include "alloc-pool.h"
121 #include "regs.h"
122 #include "hashtab.h"
123 #include "statistics.h"
124 #include "real.h"
125 #include "fixed-value.h"
126 #include "expmed.h"
127 #include "dojump.h"
128 #include "explow.h"
129 #include "calls.h"
130 #include "emit-rtl.h"
131 #include "stmt.h"
132 #include "expr.h"
133 #include "tree-pass.h"
134 #include "bitmap.h"
135 #include "tree-dfa.h"
136 #include "tree-ssa.h"
137 #include "cselib.h"
138 #include "target.h"
139 #include "params.h"
140 #include "diagnostic.h"
141 #include "tree-pretty-print.h"
142 #include "recog.h"
143 #include "rtl-iter.h"
144 #include "fibonacci_heap.h"
145 
146 typedef fibonacci_heap <long, basic_block_def> bb_heap_t;
147 typedef fibonacci_node <long, basic_block_def> bb_heap_node_t;
148 
149 /* var-tracking.c assumes that tree code with the same value as VALUE rtx code
150    has no chance to appear in REG_EXPR/MEM_EXPRs and isn't a decl.
151    Currently the value is the same as IDENTIFIER_NODE, which has such
152    a property.  If this compile time assertion ever fails, make sure that
153    the new tree code that equals (int) VALUE has the same property.  */
154 extern char check_value_val[(int) VALUE == (int) IDENTIFIER_NODE ? 1 : -1];
155 
156 /* Type of micro operation.  */
157 enum micro_operation_type
158 {
159   MO_USE,	/* Use location (REG or MEM).  */
160   MO_USE_NO_VAR,/* Use location which is not associated with a variable
161 		   or the variable is not trackable.  */
162   MO_VAL_USE,	/* Use location which is associated with a value.  */
163   MO_VAL_LOC,   /* Use location which appears in a debug insn.  */
164   MO_VAL_SET,	/* Set location associated with a value.  */
165   MO_SET,	/* Set location.  */
166   MO_COPY,	/* Copy the same portion of a variable from one
167 		   location to another.  */
168   MO_CLOBBER,	/* Clobber location.  */
169   MO_CALL,	/* Call insn.  */
170   MO_ADJUST	/* Adjust stack pointer.  */
171 
172 };
173 
174 static const char * const ATTRIBUTE_UNUSED
175 micro_operation_type_name[] = {
176   "MO_USE",
177   "MO_USE_NO_VAR",
178   "MO_VAL_USE",
179   "MO_VAL_LOC",
180   "MO_VAL_SET",
181   "MO_SET",
182   "MO_COPY",
183   "MO_CLOBBER",
184   "MO_CALL",
185   "MO_ADJUST"
186 };
187 
188 /* Where shall the note be emitted?  BEFORE or AFTER the instruction.
189    Notes emitted as AFTER_CALL are to take effect during the call,
190    rather than after the call.  */
191 enum emit_note_where
192 {
193   EMIT_NOTE_BEFORE_INSN,
194   EMIT_NOTE_AFTER_INSN,
195   EMIT_NOTE_AFTER_CALL_INSN
196 };
197 
198 /* Structure holding information about micro operation.  */
199 typedef struct micro_operation_def
200 {
201   /* Type of micro operation.  */
202   enum micro_operation_type type;
203 
204   /* The instruction which the micro operation is in, for MO_USE,
205      MO_USE_NO_VAR, MO_CALL and MO_ADJUST, or the subsequent
206      instruction or note in the original flow (before any var-tracking
207      notes are inserted, to simplify emission of notes), for MO_SET
208      and MO_CLOBBER.  */
209   rtx_insn *insn;
210 
211   union {
212     /* Location.  For MO_SET and MO_COPY, this is the SET that
213        performs the assignment, if known, otherwise it is the target
214        of the assignment.  For MO_VAL_USE and MO_VAL_SET, it is a
215        CONCAT of the VALUE and the LOC associated with it.  For
216        MO_VAL_LOC, it is a CONCAT of the VALUE and the VAR_LOCATION
217        associated with it.  */
218     rtx loc;
219 
220     /* Stack adjustment.  */
221     HOST_WIDE_INT adjust;
222   } u;
223 } micro_operation;
224 
225 
226 /* A declaration of a variable, or an RTL value being handled like a
227    declaration.  */
228 typedef void *decl_or_value;
229 
230 /* Return true if a decl_or_value DV is a DECL or NULL.  */
231 static inline bool
232 dv_is_decl_p (decl_or_value dv)
233 {
234   return !dv || (int) TREE_CODE ((tree) dv) != (int) VALUE;
235 }
236 
237 /* Return true if a decl_or_value is a VALUE rtl.  */
238 static inline bool
239 dv_is_value_p (decl_or_value dv)
240 {
241   return dv && !dv_is_decl_p (dv);
242 }
243 
244 /* Return the decl in the decl_or_value.  */
245 static inline tree
246 dv_as_decl (decl_or_value dv)
247 {
248   gcc_checking_assert (dv_is_decl_p (dv));
249   return (tree) dv;
250 }
251 
252 /* Return the value in the decl_or_value.  */
253 static inline rtx
254 dv_as_value (decl_or_value dv)
255 {
256   gcc_checking_assert (dv_is_value_p (dv));
257   return (rtx)dv;
258 }
259 
260 /* Return the opaque pointer in the decl_or_value.  */
261 static inline void *
262 dv_as_opaque (decl_or_value dv)
263 {
264   return dv;
265 }
266 
267 
268 /* Description of location of a part of a variable.  The content of a physical
269    register is described by a chain of these structures.
270    The chains are pretty short (usually 1 or 2 elements) and thus
271    chain is the best data structure.  */
272 typedef struct attrs_def
273 {
274   /* Pointer to next member of the list.  */
275   struct attrs_def *next;
276 
277   /* The rtx of register.  */
278   rtx loc;
279 
280   /* The declaration corresponding to LOC.  */
281   decl_or_value dv;
282 
283   /* Offset from start of DECL.  */
284   HOST_WIDE_INT offset;
285 } *attrs;
286 
287 /* Structure for chaining the locations.  */
288 typedef struct location_chain_def
289 {
290   /* Next element in the chain.  */
291   struct location_chain_def *next;
292 
293   /* The location (REG, MEM or VALUE).  */
294   rtx loc;
295 
296   /* The "value" stored in this location.  */
297   rtx set_src;
298 
299   /* Initialized? */
300   enum var_init_status init;
301 } *location_chain;
302 
303 /* A vector of loc_exp_dep holds the active dependencies of a one-part
304    DV on VALUEs, i.e., the VALUEs expanded so as to form the current
305    location of DV.  Each entry is also part of VALUE' s linked-list of
306    backlinks back to DV.  */
307 typedef struct loc_exp_dep_s
308 {
309   /* The dependent DV.  */
310   decl_or_value dv;
311   /* The dependency VALUE or DECL_DEBUG.  */
312   rtx value;
313   /* The next entry in VALUE's backlinks list.  */
314   struct loc_exp_dep_s *next;
315   /* A pointer to the pointer to this entry (head or prev's next) in
316      the doubly-linked list.  */
317   struct loc_exp_dep_s **pprev;
318 } loc_exp_dep;
319 
320 
321 /* This data structure holds information about the depth of a variable
322    expansion.  */
323 typedef struct expand_depth_struct
324 {
325   /* This measures the complexity of the expanded expression.  It
326      grows by one for each level of expansion that adds more than one
327      operand.  */
328   int complexity;
329   /* This counts the number of ENTRY_VALUE expressions in an
330      expansion.  We want to minimize their use.  */
331   int entryvals;
332 } expand_depth;
333 
334 /* This data structure is allocated for one-part variables at the time
335    of emitting notes.  */
336 struct onepart_aux
337 {
338   /* Doubly-linked list of dependent DVs.  These are DVs whose cur_loc
339      computation used the expansion of this variable, and that ought
340      to be notified should this variable change.  If the DV's cur_loc
341      expanded to NULL, all components of the loc list are regarded as
342      active, so that any changes in them give us a chance to get a
343      location.  Otherwise, only components of the loc that expanded to
344      non-NULL are regarded as active dependencies.  */
345   loc_exp_dep *backlinks;
346   /* This holds the LOC that was expanded into cur_loc.  We need only
347      mark a one-part variable as changed if the FROM loc is removed,
348      or if it has no known location and a loc is added, or if it gets
349      a change notification from any of its active dependencies.  */
350   rtx from;
351   /* The depth of the cur_loc expression.  */
352   expand_depth depth;
353   /* Dependencies actively used when expand FROM into cur_loc.  */
354   vec<loc_exp_dep, va_heap, vl_embed> deps;
355 };
356 
357 /* Structure describing one part of variable.  */
358 typedef struct variable_part_def
359 {
360   /* Chain of locations of the part.  */
361   location_chain loc_chain;
362 
363   /* Location which was last emitted to location list.  */
364   rtx cur_loc;
365 
366   union variable_aux
367   {
368     /* The offset in the variable, if !var->onepart.  */
369     HOST_WIDE_INT offset;
370 
371     /* Pointer to auxiliary data, if var->onepart and emit_notes.  */
372     struct onepart_aux *onepaux;
373   } aux;
374 } variable_part;
375 
376 /* Maximum number of location parts.  */
377 #define MAX_VAR_PARTS 16
378 
379 /* Enumeration type used to discriminate various types of one-part
380    variables.  */
381 typedef enum onepart_enum
382 {
383   /* Not a one-part variable.  */
384   NOT_ONEPART = 0,
385   /* A one-part DECL that is not a DEBUG_EXPR_DECL.  */
386   ONEPART_VDECL = 1,
387   /* A DEBUG_EXPR_DECL.  */
388   ONEPART_DEXPR = 2,
389   /* A VALUE.  */
390   ONEPART_VALUE = 3
391 } onepart_enum_t;
392 
393 /* Structure describing where the variable is located.  */
394 typedef struct variable_def
395 {
396   /* The declaration of the variable, or an RTL value being handled
397      like a declaration.  */
398   decl_or_value dv;
399 
400   /* Reference count.  */
401   int refcount;
402 
403   /* Number of variable parts.  */
404   char n_var_parts;
405 
406   /* What type of DV this is, according to enum onepart_enum.  */
407   ENUM_BITFIELD (onepart_enum) onepart : CHAR_BIT;
408 
409   /* True if this variable_def struct is currently in the
410      changed_variables hash table.  */
411   bool in_changed_variables;
412 
413   /* The variable parts.  */
414   variable_part var_part[1];
415 } *variable;
416 typedef const struct variable_def *const_variable;
417 
418 /* Pointer to the BB's information specific to variable tracking pass.  */
419 #define VTI(BB) ((variable_tracking_info) (BB)->aux)
420 
421 /* Macro to access MEM_OFFSET as an HOST_WIDE_INT.  Evaluates MEM twice.  */
422 #define INT_MEM_OFFSET(mem) (MEM_OFFSET_KNOWN_P (mem) ? MEM_OFFSET (mem) : 0)
423 
424 #if ENABLE_CHECKING && (GCC_VERSION >= 2007)
425 
426 /* Access VAR's Ith part's offset, checking that it's not a one-part
427    variable.  */
428 #define VAR_PART_OFFSET(var, i) __extension__			\
429 (*({  variable const __v = (var);				\
430       gcc_checking_assert (!__v->onepart);			\
431       &__v->var_part[(i)].aux.offset; }))
432 
433 /* Access VAR's one-part auxiliary data, checking that it is a
434    one-part variable.  */
435 #define VAR_LOC_1PAUX(var) __extension__			\
436 (*({  variable const __v = (var);				\
437       gcc_checking_assert (__v->onepart);			\
438       &__v->var_part[0].aux.onepaux; }))
439 
440 #else
441 #define VAR_PART_OFFSET(var, i) ((var)->var_part[(i)].aux.offset)
442 #define VAR_LOC_1PAUX(var) ((var)->var_part[0].aux.onepaux)
443 #endif
444 
445 /* These are accessor macros for the one-part auxiliary data.  When
446    convenient for users, they're guarded by tests that the data was
447    allocated.  */
448 #define VAR_LOC_DEP_LST(var) (VAR_LOC_1PAUX (var)		  \
449 			      ? VAR_LOC_1PAUX (var)->backlinks	  \
450 			      : NULL)
451 #define VAR_LOC_DEP_LSTP(var) (VAR_LOC_1PAUX (var)		  \
452 			       ? &VAR_LOC_1PAUX (var)->backlinks  \
453 			       : NULL)
454 #define VAR_LOC_FROM(var) (VAR_LOC_1PAUX (var)->from)
455 #define VAR_LOC_DEPTH(var) (VAR_LOC_1PAUX (var)->depth)
456 #define VAR_LOC_DEP_VEC(var) (VAR_LOC_1PAUX (var)		  \
457 			      ? &VAR_LOC_1PAUX (var)->deps	  \
458 			      : NULL)
459 
460 
461 
462 typedef unsigned int dvuid;
463 
464 /* Return the uid of DV.  */
465 
466 static inline dvuid
467 dv_uid (decl_or_value dv)
468 {
469   if (dv_is_value_p (dv))
470     return CSELIB_VAL_PTR (dv_as_value (dv))->uid;
471   else
472     return DECL_UID (dv_as_decl (dv));
473 }
474 
475 /* Compute the hash from the uid.  */
476 
477 static inline hashval_t
478 dv_uid2hash (dvuid uid)
479 {
480   return uid;
481 }
482 
483 /* The hash function for a mask table in a shared_htab chain.  */
484 
485 static inline hashval_t
486 dv_htab_hash (decl_or_value dv)
487 {
488   return dv_uid2hash (dv_uid (dv));
489 }
490 
491 static void variable_htab_free (void *);
492 
493 /* Variable hashtable helpers.  */
494 
495 struct variable_hasher
496 {
497   typedef variable_def value_type;
498   typedef void compare_type;
499   static inline hashval_t hash (const value_type *);
500   static inline bool equal (const value_type *, const compare_type *);
501   static inline void remove (value_type *);
502 };
503 
504 /* The hash function for variable_htab, computes the hash value
505    from the declaration of variable X.  */
506 
507 inline hashval_t
508 variable_hasher::hash (const value_type *v)
509 {
510   return dv_htab_hash (v->dv);
511 }
512 
513 /* Compare the declaration of variable X with declaration Y.  */
514 
515 inline bool
516 variable_hasher::equal (const value_type *v, const compare_type *y)
517 {
518   decl_or_value dv = CONST_CAST2 (decl_or_value, const void *, y);
519 
520   return (dv_as_opaque (v->dv) == dv_as_opaque (dv));
521 }
522 
523 /* Free the element of VARIABLE_HTAB (its type is struct variable_def).  */
524 
525 inline void
526 variable_hasher::remove (value_type *var)
527 {
528   variable_htab_free (var);
529 }
530 
531 typedef hash_table<variable_hasher> variable_table_type;
532 typedef variable_table_type::iterator variable_iterator_type;
533 
534 /* Structure for passing some other parameters to function
535    emit_note_insn_var_location.  */
536 typedef struct emit_note_data_def
537 {
538   /* The instruction which the note will be emitted before/after.  */
539   rtx_insn *insn;
540 
541   /* Where the note will be emitted (before/after insn)?  */
542   enum emit_note_where where;
543 
544   /* The variables and values active at this point.  */
545   variable_table_type *vars;
546 } emit_note_data;
547 
548 /* Structure holding a refcounted hash table.  If refcount > 1,
549    it must be first unshared before modified.  */
550 typedef struct shared_hash_def
551 {
552   /* Reference count.  */
553   int refcount;
554 
555   /* Actual hash table.  */
556   variable_table_type *htab;
557 } *shared_hash;
558 
559 /* Structure holding the IN or OUT set for a basic block.  */
560 typedef struct dataflow_set_def
561 {
562   /* Adjustment of stack offset.  */
563   HOST_WIDE_INT stack_adjust;
564 
565   /* Attributes for registers (lists of attrs).  */
566   attrs regs[FIRST_PSEUDO_REGISTER];
567 
568   /* Variable locations.  */
569   shared_hash vars;
570 
571   /* Vars that is being traversed.  */
572   shared_hash traversed_vars;
573 } dataflow_set;
574 
575 /* The structure (one for each basic block) containing the information
576    needed for variable tracking.  */
577 typedef struct variable_tracking_info_def
578 {
579   /* The vector of micro operations.  */
580   vec<micro_operation> mos;
581 
582   /* The IN and OUT set for dataflow analysis.  */
583   dataflow_set in;
584   dataflow_set out;
585 
586   /* The permanent-in dataflow set for this block.  This is used to
587      hold values for which we had to compute entry values.  ??? This
588      should probably be dynamically allocated, to avoid using more
589      memory in non-debug builds.  */
590   dataflow_set *permp;
591 
592   /* Has the block been visited in DFS?  */
593   bool visited;
594 
595   /* Has the block been flooded in VTA?  */
596   bool flooded;
597 
598 } *variable_tracking_info;
599 
600 /* Alloc pool for struct attrs_def.  */
601 static alloc_pool attrs_pool;
602 
603 /* Alloc pool for struct variable_def with MAX_VAR_PARTS entries.  */
604 static alloc_pool var_pool;
605 
606 /* Alloc pool for struct variable_def with a single var_part entry.  */
607 static alloc_pool valvar_pool;
608 
609 /* Alloc pool for struct location_chain_def.  */
610 static alloc_pool loc_chain_pool;
611 
612 /* Alloc pool for struct shared_hash_def.  */
613 static alloc_pool shared_hash_pool;
614 
615 /* Alloc pool for struct loc_exp_dep_s for NOT_ONEPART variables.  */
616 static alloc_pool loc_exp_dep_pool;
617 
618 /* Changed variables, notes will be emitted for them.  */
619 static variable_table_type *changed_variables;
620 
621 /* Shall notes be emitted?  */
622 static bool emit_notes;
623 
624 /* Values whose dynamic location lists have gone empty, but whose
625    cselib location lists are still usable.  Use this to hold the
626    current location, the backlinks, etc, during emit_notes.  */
627 static variable_table_type *dropped_values;
628 
629 /* Empty shared hashtable.  */
630 static shared_hash empty_shared_hash;
631 
632 /* Scratch register bitmap used by cselib_expand_value_rtx.  */
633 static bitmap scratch_regs = NULL;
634 
635 #ifdef HAVE_window_save
636 typedef struct GTY(()) parm_reg {
637   rtx outgoing;
638   rtx incoming;
639 } parm_reg_t;
640 
641 
642 /* Vector of windowed parameter registers, if any.  */
643 static vec<parm_reg_t, va_gc> *windowed_parm_regs = NULL;
644 #endif
645 
646 /* Variable used to tell whether cselib_process_insn called our hook.  */
647 static bool cselib_hook_called;
648 
649 /* Local function prototypes.  */
650 static void stack_adjust_offset_pre_post (rtx, HOST_WIDE_INT *,
651 					  HOST_WIDE_INT *);
652 static void insn_stack_adjust_offset_pre_post (rtx_insn *, HOST_WIDE_INT *,
653 					       HOST_WIDE_INT *);
654 static bool vt_stack_adjustments (void);
655 
656 static void init_attrs_list_set (attrs *);
657 static void attrs_list_clear (attrs *);
658 static attrs attrs_list_member (attrs, decl_or_value, HOST_WIDE_INT);
659 static void attrs_list_insert (attrs *, decl_or_value, HOST_WIDE_INT, rtx);
660 static void attrs_list_copy (attrs *, attrs);
661 static void attrs_list_union (attrs *, attrs);
662 
663 static variable_def **unshare_variable (dataflow_set *set, variable_def **slot,
664 					variable var, enum var_init_status);
665 static void vars_copy (variable_table_type *, variable_table_type *);
666 static tree var_debug_decl (tree);
667 static void var_reg_set (dataflow_set *, rtx, enum var_init_status, rtx);
668 static void var_reg_delete_and_set (dataflow_set *, rtx, bool,
669 				    enum var_init_status, rtx);
670 static void var_reg_delete (dataflow_set *, rtx, bool);
671 static void var_regno_delete (dataflow_set *, int);
672 static void var_mem_set (dataflow_set *, rtx, enum var_init_status, rtx);
673 static void var_mem_delete_and_set (dataflow_set *, rtx, bool,
674 				    enum var_init_status, rtx);
675 static void var_mem_delete (dataflow_set *, rtx, bool);
676 
677 static void dataflow_set_init (dataflow_set *);
678 static void dataflow_set_clear (dataflow_set *);
679 static void dataflow_set_copy (dataflow_set *, dataflow_set *);
680 static int variable_union_info_cmp_pos (const void *, const void *);
681 static void dataflow_set_union (dataflow_set *, dataflow_set *);
682 static location_chain find_loc_in_1pdv (rtx, variable, variable_table_type *);
683 static bool canon_value_cmp (rtx, rtx);
684 static int loc_cmp (rtx, rtx);
685 static bool variable_part_different_p (variable_part *, variable_part *);
686 static bool onepart_variable_different_p (variable, variable);
687 static bool variable_different_p (variable, variable);
688 static bool dataflow_set_different (dataflow_set *, dataflow_set *);
689 static void dataflow_set_destroy (dataflow_set *);
690 
691 static bool contains_symbol_ref (rtx);
692 static bool track_expr_p (tree, bool);
693 static bool same_variable_part_p (rtx, tree, HOST_WIDE_INT);
694 static void add_uses_1 (rtx *, void *);
695 static void add_stores (rtx, const_rtx, void *);
696 static bool compute_bb_dataflow (basic_block);
697 static bool vt_find_locations (void);
698 
699 static void dump_attrs_list (attrs);
700 static void dump_var (variable);
701 static void dump_vars (variable_table_type *);
702 static void dump_dataflow_set (dataflow_set *);
703 static void dump_dataflow_sets (void);
704 
705 static void set_dv_changed (decl_or_value, bool);
706 static void variable_was_changed (variable, dataflow_set *);
707 static variable_def **set_slot_part (dataflow_set *, rtx, variable_def **,
708 				     decl_or_value, HOST_WIDE_INT,
709 				     enum var_init_status, rtx);
710 static void set_variable_part (dataflow_set *, rtx,
711 			       decl_or_value, HOST_WIDE_INT,
712 			       enum var_init_status, rtx, enum insert_option);
713 static variable_def **clobber_slot_part (dataflow_set *, rtx,
714 					 variable_def **, HOST_WIDE_INT, rtx);
715 static void clobber_variable_part (dataflow_set *, rtx,
716 				   decl_or_value, HOST_WIDE_INT, rtx);
717 static variable_def **delete_slot_part (dataflow_set *, rtx, variable_def **,
718 					HOST_WIDE_INT);
719 static void delete_variable_part (dataflow_set *, rtx,
720 				  decl_or_value, HOST_WIDE_INT);
721 static void emit_notes_in_bb (basic_block, dataflow_set *);
722 static void vt_emit_notes (void);
723 
724 static bool vt_get_decl_and_offset (rtx, tree *, HOST_WIDE_INT *);
725 static void vt_add_function_parameters (void);
726 static bool vt_initialize (void);
727 static void vt_finalize (void);
728 
729 /* Callback for stack_adjust_offset_pre_post, called via for_each_inc_dec.  */
730 
731 static int
732 stack_adjust_offset_pre_post_cb (rtx, rtx op, rtx dest, rtx src, rtx srcoff,
733 				 void *arg)
734 {
735   if (dest != stack_pointer_rtx)
736     return 0;
737 
738   switch (GET_CODE (op))
739     {
740     case PRE_INC:
741     case PRE_DEC:
742       ((HOST_WIDE_INT *)arg)[0] -= INTVAL (srcoff);
743       return 0;
744     case POST_INC:
745     case POST_DEC:
746       ((HOST_WIDE_INT *)arg)[1] -= INTVAL (srcoff);
747       return 0;
748     case PRE_MODIFY:
749     case POST_MODIFY:
750       /* We handle only adjustments by constant amount.  */
751       gcc_assert (GET_CODE (src) == PLUS
752 		  && CONST_INT_P (XEXP (src, 1))
753 		  && XEXP (src, 0) == stack_pointer_rtx);
754       ((HOST_WIDE_INT *)arg)[GET_CODE (op) == POST_MODIFY]
755 	-= INTVAL (XEXP (src, 1));
756       return 0;
757     default:
758       gcc_unreachable ();
759     }
760 }
761 
762 /* Given a SET, calculate the amount of stack adjustment it contains
763    PRE- and POST-modifying stack pointer.
764    This function is similar to stack_adjust_offset.  */
765 
766 static void
767 stack_adjust_offset_pre_post (rtx pattern, HOST_WIDE_INT *pre,
768 			      HOST_WIDE_INT *post)
769 {
770   rtx src = SET_SRC (pattern);
771   rtx dest = SET_DEST (pattern);
772   enum rtx_code code;
773 
774   if (dest == stack_pointer_rtx)
775     {
776       /* (set (reg sp) (plus (reg sp) (const_int))) */
777       code = GET_CODE (src);
778       if (! (code == PLUS || code == MINUS)
779 	  || XEXP (src, 0) != stack_pointer_rtx
780 	  || !CONST_INT_P (XEXP (src, 1)))
781 	return;
782 
783       if (code == MINUS)
784 	*post += INTVAL (XEXP (src, 1));
785       else
786 	*post -= INTVAL (XEXP (src, 1));
787       return;
788     }
789   HOST_WIDE_INT res[2] = { 0, 0 };
790   for_each_inc_dec (pattern, stack_adjust_offset_pre_post_cb, res);
791   *pre += res[0];
792   *post += res[1];
793 }
794 
795 /* Given an INSN, calculate the amount of stack adjustment it contains
796    PRE- and POST-modifying stack pointer.  */
797 
798 static void
799 insn_stack_adjust_offset_pre_post (rtx_insn *insn, HOST_WIDE_INT *pre,
800 				   HOST_WIDE_INT *post)
801 {
802   rtx pattern;
803 
804   *pre = 0;
805   *post = 0;
806 
807   pattern = PATTERN (insn);
808   if (RTX_FRAME_RELATED_P (insn))
809     {
810       rtx expr = find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX);
811       if (expr)
812 	pattern = XEXP (expr, 0);
813     }
814 
815   if (GET_CODE (pattern) == SET)
816     stack_adjust_offset_pre_post (pattern, pre, post);
817   else if (GET_CODE (pattern) == PARALLEL
818 	   || GET_CODE (pattern) == SEQUENCE)
819     {
820       int i;
821 
822       /* There may be stack adjustments inside compound insns.  Search
823 	 for them.  */
824       for ( i = XVECLEN (pattern, 0) - 1; i >= 0; i--)
825 	if (GET_CODE (XVECEXP (pattern, 0, i)) == SET)
826 	  stack_adjust_offset_pre_post (XVECEXP (pattern, 0, i), pre, post);
827     }
828 }
829 
830 /* Compute stack adjustments for all blocks by traversing DFS tree.
831    Return true when the adjustments on all incoming edges are consistent.
832    Heavily borrowed from pre_and_rev_post_order_compute.  */
833 
834 static bool
835 vt_stack_adjustments (void)
836 {
837   edge_iterator *stack;
838   int sp;
839 
840   /* Initialize entry block.  */
841   VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->visited = true;
842   VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->in.stack_adjust
843     = INCOMING_FRAME_SP_OFFSET;
844   VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->out.stack_adjust
845     = INCOMING_FRAME_SP_OFFSET;
846 
847   /* Allocate stack for back-tracking up CFG.  */
848   stack = XNEWVEC (edge_iterator, n_basic_blocks_for_fn (cfun) + 1);
849   sp = 0;
850 
851   /* Push the first edge on to the stack.  */
852   stack[sp++] = ei_start (ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs);
853 
854   while (sp)
855     {
856       edge_iterator ei;
857       basic_block src;
858       basic_block dest;
859 
860       /* Look at the edge on the top of the stack.  */
861       ei = stack[sp - 1];
862       src = ei_edge (ei)->src;
863       dest = ei_edge (ei)->dest;
864 
865       /* Check if the edge destination has been visited yet.  */
866       if (!VTI (dest)->visited)
867 	{
868 	  rtx_insn *insn;
869 	  HOST_WIDE_INT pre, post, offset;
870 	  VTI (dest)->visited = true;
871 	  VTI (dest)->in.stack_adjust = offset = VTI (src)->out.stack_adjust;
872 
873 	  if (dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
874 	    for (insn = BB_HEAD (dest);
875 		 insn != NEXT_INSN (BB_END (dest));
876 		 insn = NEXT_INSN (insn))
877 	      if (INSN_P (insn))
878 		{
879 		  insn_stack_adjust_offset_pre_post (insn, &pre, &post);
880 		  offset += pre + post;
881 		}
882 
883 	  VTI (dest)->out.stack_adjust = offset;
884 
885 	  if (EDGE_COUNT (dest->succs) > 0)
886 	    /* Since the DEST node has been visited for the first
887 	       time, check its successors.  */
888 	    stack[sp++] = ei_start (dest->succs);
889 	}
890       else
891 	{
892 	  /* We can end up with different stack adjustments for the exit block
893 	     of a shrink-wrapped function if stack_adjust_offset_pre_post
894 	     doesn't understand the rtx pattern used to restore the stack
895 	     pointer in the epilogue.  For example, on s390(x), the stack
896 	     pointer is often restored via a load-multiple instruction
897 	     and so no stack_adjust offset is recorded for it.  This means
898 	     that the stack offset at the end of the epilogue block is the
899 	     the same as the offset before the epilogue, whereas other paths
900 	     to the exit block will have the correct stack_adjust.
901 
902 	     It is safe to ignore these differences because (a) we never
903 	     use the stack_adjust for the exit block in this pass and
904 	     (b) dwarf2cfi checks whether the CFA notes in a shrink-wrapped
905 	     function are correct.
906 
907 	     We must check whether the adjustments on other edges are
908 	     the same though.  */
909 	  if (dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
910 	      && VTI (dest)->in.stack_adjust != VTI (src)->out.stack_adjust)
911 	    {
912 	      free (stack);
913 	      return false;
914 	    }
915 
916 	  if (! ei_one_before_end_p (ei))
917 	    /* Go to the next edge.  */
918 	    ei_next (&stack[sp - 1]);
919 	  else
920 	    /* Return to previous level if there are no more edges.  */
921 	    sp--;
922 	}
923     }
924 
925   free (stack);
926   return true;
927 }
928 
929 /* arg_pointer_rtx resp. frame_pointer_rtx if stack_pointer_rtx or
930    hard_frame_pointer_rtx is being mapped to it and offset for it.  */
931 static rtx cfa_base_rtx;
932 static HOST_WIDE_INT cfa_base_offset;
933 
934 /* Compute a CFA-based value for an ADJUSTMENT made to stack_pointer_rtx
935    or hard_frame_pointer_rtx.  */
936 
937 static inline rtx
938 compute_cfa_pointer (HOST_WIDE_INT adjustment)
939 {
940   return plus_constant (Pmode, cfa_base_rtx, adjustment + cfa_base_offset);
941 }
942 
943 /* Adjustment for hard_frame_pointer_rtx to cfa base reg,
944    or -1 if the replacement shouldn't be done.  */
945 static HOST_WIDE_INT hard_frame_pointer_adjustment = -1;
946 
947 /* Data for adjust_mems callback.  */
948 
949 struct adjust_mem_data
950 {
951   bool store;
952   machine_mode mem_mode;
953   HOST_WIDE_INT stack_adjust;
954   rtx_expr_list *side_effects;
955 };
956 
957 /* Helper for adjust_mems.  Return true if X is suitable for
958    transformation of wider mode arithmetics to narrower mode.  */
959 
960 static bool
961 use_narrower_mode_test (rtx x, const_rtx subreg)
962 {
963   subrtx_var_iterator::array_type array;
964   FOR_EACH_SUBRTX_VAR (iter, array, x, NONCONST)
965     {
966       rtx x = *iter;
967       if (CONSTANT_P (x))
968 	iter.skip_subrtxes ();
969       else
970 	switch (GET_CODE (x))
971 	  {
972 	  case REG:
973 	    if (cselib_lookup (x, GET_MODE (SUBREG_REG (subreg)), 0, VOIDmode))
974 	      return false;
975 	    if (!validate_subreg (GET_MODE (subreg), GET_MODE (x), x,
976 				  subreg_lowpart_offset (GET_MODE (subreg),
977 							 GET_MODE (x))))
978 	      return false;
979 	    break;
980 	  case PLUS:
981 	  case MINUS:
982 	  case MULT:
983 	    break;
984 	  case ASHIFT:
985 	    iter.substitute (XEXP (x, 0));
986 	    break;
987 	  default:
988 	    return false;
989 	  }
990     }
991   return true;
992 }
993 
994 /* Transform X into narrower mode MODE from wider mode WMODE.  */
995 
996 static rtx
997 use_narrower_mode (rtx x, machine_mode mode, machine_mode wmode)
998 {
999   rtx op0, op1;
1000   if (CONSTANT_P (x))
1001     return lowpart_subreg (mode, x, wmode);
1002   switch (GET_CODE (x))
1003     {
1004     case REG:
1005       return lowpart_subreg (mode, x, wmode);
1006     case PLUS:
1007     case MINUS:
1008     case MULT:
1009       op0 = use_narrower_mode (XEXP (x, 0), mode, wmode);
1010       op1 = use_narrower_mode (XEXP (x, 1), mode, wmode);
1011       return simplify_gen_binary (GET_CODE (x), mode, op0, op1);
1012     case ASHIFT:
1013       op0 = use_narrower_mode (XEXP (x, 0), mode, wmode);
1014       op1 = XEXP (x, 1);
1015       /* Ensure shift amount is not wider than mode.  */
1016       if (GET_MODE (op1) == VOIDmode)
1017 	op1 = lowpart_subreg (mode, op1, wmode);
1018       else if (GET_MODE_PRECISION (mode) < GET_MODE_PRECISION (GET_MODE (op1)))
1019 	op1 = lowpart_subreg (mode, op1, GET_MODE (op1));
1020       return simplify_gen_binary (ASHIFT, mode, op0, op1);
1021     default:
1022       gcc_unreachable ();
1023     }
1024 }
1025 
1026 /* Helper function for adjusting used MEMs.  */
1027 
1028 static rtx
1029 adjust_mems (rtx loc, const_rtx old_rtx, void *data)
1030 {
1031   struct adjust_mem_data *amd = (struct adjust_mem_data *) data;
1032   rtx mem, addr = loc, tem;
1033   machine_mode mem_mode_save;
1034   bool store_save;
1035   switch (GET_CODE (loc))
1036     {
1037     case REG:
1038       /* Don't do any sp or fp replacements outside of MEM addresses
1039          on the LHS.  */
1040       if (amd->mem_mode == VOIDmode && amd->store)
1041 	return loc;
1042       if (loc == stack_pointer_rtx
1043 	  && !frame_pointer_needed
1044 	  && cfa_base_rtx)
1045 	return compute_cfa_pointer (amd->stack_adjust);
1046       else if (loc == hard_frame_pointer_rtx
1047 	       && frame_pointer_needed
1048 	       && hard_frame_pointer_adjustment != -1
1049 	       && cfa_base_rtx)
1050 	return compute_cfa_pointer (hard_frame_pointer_adjustment);
1051       gcc_checking_assert (loc != virtual_incoming_args_rtx);
1052       return loc;
1053     case MEM:
1054       mem = loc;
1055       if (!amd->store)
1056 	{
1057 	  mem = targetm.delegitimize_address (mem);
1058 	  if (mem != loc && !MEM_P (mem))
1059 	    return simplify_replace_fn_rtx (mem, old_rtx, adjust_mems, data);
1060 	}
1061 
1062       addr = XEXP (mem, 0);
1063       mem_mode_save = amd->mem_mode;
1064       amd->mem_mode = GET_MODE (mem);
1065       store_save = amd->store;
1066       amd->store = false;
1067       addr = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
1068       amd->store = store_save;
1069       amd->mem_mode = mem_mode_save;
1070       if (mem == loc)
1071 	addr = targetm.delegitimize_address (addr);
1072       if (addr != XEXP (mem, 0))
1073 	mem = replace_equiv_address_nv (mem, addr);
1074       if (!amd->store)
1075 	mem = avoid_constant_pool_reference (mem);
1076       return mem;
1077     case PRE_INC:
1078     case PRE_DEC:
1079       addr = gen_rtx_PLUS (GET_MODE (loc), XEXP (loc, 0),
1080 			   gen_int_mode (GET_CODE (loc) == PRE_INC
1081 					 ? GET_MODE_SIZE (amd->mem_mode)
1082 					 : -GET_MODE_SIZE (amd->mem_mode),
1083 					 GET_MODE (loc)));
1084     case POST_INC:
1085     case POST_DEC:
1086       if (addr == loc)
1087 	addr = XEXP (loc, 0);
1088       gcc_assert (amd->mem_mode != VOIDmode && amd->mem_mode != BLKmode);
1089       addr = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
1090       tem = gen_rtx_PLUS (GET_MODE (loc), XEXP (loc, 0),
1091 			  gen_int_mode ((GET_CODE (loc) == PRE_INC
1092 					 || GET_CODE (loc) == POST_INC)
1093 					? GET_MODE_SIZE (amd->mem_mode)
1094 					: -GET_MODE_SIZE (amd->mem_mode),
1095 					GET_MODE (loc)));
1096       store_save = amd->store;
1097       amd->store = false;
1098       tem = simplify_replace_fn_rtx (tem, old_rtx, adjust_mems, data);
1099       amd->store = store_save;
1100       amd->side_effects = alloc_EXPR_LIST (0,
1101 					   gen_rtx_SET (VOIDmode,
1102 							XEXP (loc, 0), tem),
1103 					   amd->side_effects);
1104       return addr;
1105     case PRE_MODIFY:
1106       addr = XEXP (loc, 1);
1107     case POST_MODIFY:
1108       if (addr == loc)
1109 	addr = XEXP (loc, 0);
1110       gcc_assert (amd->mem_mode != VOIDmode);
1111       addr = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
1112       store_save = amd->store;
1113       amd->store = false;
1114       tem = simplify_replace_fn_rtx (XEXP (loc, 1), old_rtx,
1115 				     adjust_mems, data);
1116       amd->store = store_save;
1117       amd->side_effects = alloc_EXPR_LIST (0,
1118 					   gen_rtx_SET (VOIDmode,
1119 							XEXP (loc, 0), tem),
1120 					   amd->side_effects);
1121       return addr;
1122     case SUBREG:
1123       /* First try without delegitimization of whole MEMs and
1124 	 avoid_constant_pool_reference, which is more likely to succeed.  */
1125       store_save = amd->store;
1126       amd->store = true;
1127       addr = simplify_replace_fn_rtx (SUBREG_REG (loc), old_rtx, adjust_mems,
1128 				      data);
1129       amd->store = store_save;
1130       mem = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
1131       if (mem == SUBREG_REG (loc))
1132 	{
1133 	  tem = loc;
1134 	  goto finish_subreg;
1135 	}
1136       tem = simplify_gen_subreg (GET_MODE (loc), mem,
1137 				 GET_MODE (SUBREG_REG (loc)),
1138 				 SUBREG_BYTE (loc));
1139       if (tem)
1140 	goto finish_subreg;
1141       tem = simplify_gen_subreg (GET_MODE (loc), addr,
1142 				 GET_MODE (SUBREG_REG (loc)),
1143 				 SUBREG_BYTE (loc));
1144       if (tem == NULL_RTX)
1145 	tem = gen_rtx_raw_SUBREG (GET_MODE (loc), addr, SUBREG_BYTE (loc));
1146     finish_subreg:
1147       if (MAY_HAVE_DEBUG_INSNS
1148 	  && GET_CODE (tem) == SUBREG
1149 	  && (GET_CODE (SUBREG_REG (tem)) == PLUS
1150 	      || GET_CODE (SUBREG_REG (tem)) == MINUS
1151 	      || GET_CODE (SUBREG_REG (tem)) == MULT
1152 	      || GET_CODE (SUBREG_REG (tem)) == ASHIFT)
1153 	  && (GET_MODE_CLASS (GET_MODE (tem)) == MODE_INT
1154 	      || GET_MODE_CLASS (GET_MODE (tem)) == MODE_PARTIAL_INT)
1155 	  && (GET_MODE_CLASS (GET_MODE (SUBREG_REG (tem))) == MODE_INT
1156 	      || GET_MODE_CLASS (GET_MODE (SUBREG_REG (tem))) == MODE_PARTIAL_INT)
1157 	  && GET_MODE_PRECISION (GET_MODE (tem))
1158 	     < GET_MODE_PRECISION (GET_MODE (SUBREG_REG (tem)))
1159 	  && subreg_lowpart_p (tem)
1160 	  && use_narrower_mode_test (SUBREG_REG (tem), tem))
1161 	return use_narrower_mode (SUBREG_REG (tem), GET_MODE (tem),
1162 				  GET_MODE (SUBREG_REG (tem)));
1163       return tem;
1164     case ASM_OPERANDS:
1165       /* Don't do any replacements in second and following
1166 	 ASM_OPERANDS of inline-asm with multiple sets.
1167 	 ASM_OPERANDS_INPUT_VEC, ASM_OPERANDS_INPUT_CONSTRAINT_VEC
1168 	 and ASM_OPERANDS_LABEL_VEC need to be equal between
1169 	 all the ASM_OPERANDs in the insn and adjust_insn will
1170 	 fix this up.  */
1171       if (ASM_OPERANDS_OUTPUT_IDX (loc) != 0)
1172 	return loc;
1173       break;
1174     default:
1175       break;
1176     }
1177   return NULL_RTX;
1178 }
1179 
1180 /* Helper function for replacement of uses.  */
1181 
1182 static void
1183 adjust_mem_uses (rtx *x, void *data)
1184 {
1185   rtx new_x = simplify_replace_fn_rtx (*x, NULL_RTX, adjust_mems, data);
1186   if (new_x != *x)
1187     validate_change (NULL_RTX, x, new_x, true);
1188 }
1189 
1190 /* Helper function for replacement of stores.  */
1191 
1192 static void
1193 adjust_mem_stores (rtx loc, const_rtx expr, void *data)
1194 {
1195   if (MEM_P (loc))
1196     {
1197       rtx new_dest = simplify_replace_fn_rtx (SET_DEST (expr), NULL_RTX,
1198 					      adjust_mems, data);
1199       if (new_dest != SET_DEST (expr))
1200 	{
1201 	  rtx xexpr = CONST_CAST_RTX (expr);
1202 	  validate_change (NULL_RTX, &SET_DEST (xexpr), new_dest, true);
1203 	}
1204     }
1205 }
1206 
1207 /* Simplify INSN.  Remove all {PRE,POST}_{INC,DEC,MODIFY} rtxes,
1208    replace them with their value in the insn and add the side-effects
1209    as other sets to the insn.  */
1210 
1211 static void
1212 adjust_insn (basic_block bb, rtx_insn *insn)
1213 {
1214   struct adjust_mem_data amd;
1215   rtx set;
1216 
1217 #ifdef HAVE_window_save
1218   /* If the target machine has an explicit window save instruction, the
1219      transformation OUTGOING_REGNO -> INCOMING_REGNO is done there.  */
1220   if (RTX_FRAME_RELATED_P (insn)
1221       && find_reg_note (insn, REG_CFA_WINDOW_SAVE, NULL_RTX))
1222     {
1223       unsigned int i, nregs = vec_safe_length (windowed_parm_regs);
1224       rtx rtl = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (nregs * 2));
1225       parm_reg_t *p;
1226 
1227       FOR_EACH_VEC_SAFE_ELT (windowed_parm_regs, i, p)
1228 	{
1229 	  XVECEXP (rtl, 0, i * 2)
1230 	    = gen_rtx_SET (VOIDmode, p->incoming, p->outgoing);
1231 	  /* Do not clobber the attached DECL, but only the REG.  */
1232 	  XVECEXP (rtl, 0, i * 2 + 1)
1233 	    = gen_rtx_CLOBBER (GET_MODE (p->outgoing),
1234 			       gen_raw_REG (GET_MODE (p->outgoing),
1235 					    REGNO (p->outgoing)));
1236 	}
1237 
1238       validate_change (NULL_RTX, &PATTERN (insn), rtl, true);
1239       return;
1240     }
1241 #endif
1242 
1243   amd.mem_mode = VOIDmode;
1244   amd.stack_adjust = -VTI (bb)->out.stack_adjust;
1245   amd.side_effects = NULL;
1246 
1247   amd.store = true;
1248   note_stores (PATTERN (insn), adjust_mem_stores, &amd);
1249 
1250   amd.store = false;
1251   if (GET_CODE (PATTERN (insn)) == PARALLEL
1252       && asm_noperands (PATTERN (insn)) > 0
1253       && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1254     {
1255       rtx body, set0;
1256       int i;
1257 
1258       /* inline-asm with multiple sets is tiny bit more complicated,
1259 	 because the 3 vectors in ASM_OPERANDS need to be shared between
1260 	 all ASM_OPERANDS in the instruction.  adjust_mems will
1261 	 not touch ASM_OPERANDS other than the first one, asm_noperands
1262 	 test above needs to be called before that (otherwise it would fail)
1263 	 and afterwards this code fixes it up.  */
1264       note_uses (&PATTERN (insn), adjust_mem_uses, &amd);
1265       body = PATTERN (insn);
1266       set0 = XVECEXP (body, 0, 0);
1267       gcc_checking_assert (GET_CODE (set0) == SET
1268 			   && GET_CODE (SET_SRC (set0)) == ASM_OPERANDS
1269 			   && ASM_OPERANDS_OUTPUT_IDX (SET_SRC (set0)) == 0);
1270       for (i = 1; i < XVECLEN (body, 0); i++)
1271 	if (GET_CODE (XVECEXP (body, 0, i)) != SET)
1272 	  break;
1273 	else
1274 	  {
1275 	    set = XVECEXP (body, 0, i);
1276 	    gcc_checking_assert (GET_CODE (SET_SRC (set)) == ASM_OPERANDS
1277 				 && ASM_OPERANDS_OUTPUT_IDX (SET_SRC (set))
1278 				    == i);
1279 	    if (ASM_OPERANDS_INPUT_VEC (SET_SRC (set))
1280 		!= ASM_OPERANDS_INPUT_VEC (SET_SRC (set0))
1281 		|| ASM_OPERANDS_INPUT_CONSTRAINT_VEC (SET_SRC (set))
1282 		   != ASM_OPERANDS_INPUT_CONSTRAINT_VEC (SET_SRC (set0))
1283 		|| ASM_OPERANDS_LABEL_VEC (SET_SRC (set))
1284 		   != ASM_OPERANDS_LABEL_VEC (SET_SRC (set0)))
1285 	      {
1286 		rtx newsrc = shallow_copy_rtx (SET_SRC (set));
1287 		ASM_OPERANDS_INPUT_VEC (newsrc)
1288 		  = ASM_OPERANDS_INPUT_VEC (SET_SRC (set0));
1289 		ASM_OPERANDS_INPUT_CONSTRAINT_VEC (newsrc)
1290 		  = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (SET_SRC (set0));
1291 		ASM_OPERANDS_LABEL_VEC (newsrc)
1292 		  = ASM_OPERANDS_LABEL_VEC (SET_SRC (set0));
1293 		validate_change (NULL_RTX, &SET_SRC (set), newsrc, true);
1294 	      }
1295 	  }
1296     }
1297   else
1298     note_uses (&PATTERN (insn), adjust_mem_uses, &amd);
1299 
1300   /* For read-only MEMs containing some constant, prefer those
1301      constants.  */
1302   set = single_set (insn);
1303   if (set && MEM_P (SET_SRC (set)) && MEM_READONLY_P (SET_SRC (set)))
1304     {
1305       rtx note = find_reg_equal_equiv_note (insn);
1306 
1307       if (note && CONSTANT_P (XEXP (note, 0)))
1308 	validate_change (NULL_RTX, &SET_SRC (set), XEXP (note, 0), true);
1309     }
1310 
1311   if (amd.side_effects)
1312     {
1313       rtx *pat, new_pat, s;
1314       int i, oldn, newn;
1315 
1316       pat = &PATTERN (insn);
1317       if (GET_CODE (*pat) == COND_EXEC)
1318 	pat = &COND_EXEC_CODE (*pat);
1319       if (GET_CODE (*pat) == PARALLEL)
1320 	oldn = XVECLEN (*pat, 0);
1321       else
1322 	oldn = 1;
1323       for (s = amd.side_effects, newn = 0; s; newn++)
1324 	s = XEXP (s, 1);
1325       new_pat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (oldn + newn));
1326       if (GET_CODE (*pat) == PARALLEL)
1327 	for (i = 0; i < oldn; i++)
1328 	  XVECEXP (new_pat, 0, i) = XVECEXP (*pat, 0, i);
1329       else
1330 	XVECEXP (new_pat, 0, 0) = *pat;
1331       for (s = amd.side_effects, i = oldn; i < oldn + newn; i++, s = XEXP (s, 1))
1332 	XVECEXP (new_pat, 0, i) = XEXP (s, 0);
1333       free_EXPR_LIST_list (&amd.side_effects);
1334       validate_change (NULL_RTX, pat, new_pat, true);
1335     }
1336 }
1337 
1338 /* Return the DEBUG_EXPR of a DEBUG_EXPR_DECL or the VALUE in DV.  */
1339 static inline rtx
1340 dv_as_rtx (decl_or_value dv)
1341 {
1342   tree decl;
1343 
1344   if (dv_is_value_p (dv))
1345     return dv_as_value (dv);
1346 
1347   decl = dv_as_decl (dv);
1348 
1349   gcc_checking_assert (TREE_CODE (decl) == DEBUG_EXPR_DECL);
1350   return DECL_RTL_KNOWN_SET (decl);
1351 }
1352 
1353 /* Return nonzero if a decl_or_value must not have more than one
1354    variable part.  The returned value discriminates among various
1355    kinds of one-part DVs ccording to enum onepart_enum.  */
1356 static inline onepart_enum_t
1357 dv_onepart_p (decl_or_value dv)
1358 {
1359   tree decl;
1360 
1361   if (!MAY_HAVE_DEBUG_INSNS)
1362     return NOT_ONEPART;
1363 
1364   if (dv_is_value_p (dv))
1365     return ONEPART_VALUE;
1366 
1367   decl = dv_as_decl (dv);
1368 
1369   if (TREE_CODE (decl) == DEBUG_EXPR_DECL)
1370     return ONEPART_DEXPR;
1371 
1372   if (target_for_debug_bind (decl) != NULL_TREE)
1373     return ONEPART_VDECL;
1374 
1375   return NOT_ONEPART;
1376 }
1377 
1378 /* Return the variable pool to be used for a dv of type ONEPART.  */
1379 static inline alloc_pool
1380 onepart_pool (onepart_enum_t onepart)
1381 {
1382   return onepart ? valvar_pool : var_pool;
1383 }
1384 
1385 /* Build a decl_or_value out of a decl.  */
1386 static inline decl_or_value
1387 dv_from_decl (tree decl)
1388 {
1389   decl_or_value dv;
1390   dv = decl;
1391   gcc_checking_assert (dv_is_decl_p (dv));
1392   return dv;
1393 }
1394 
1395 /* Build a decl_or_value out of a value.  */
1396 static inline decl_or_value
1397 dv_from_value (rtx value)
1398 {
1399   decl_or_value dv;
1400   dv = value;
1401   gcc_checking_assert (dv_is_value_p (dv));
1402   return dv;
1403 }
1404 
1405 /* Return a value or the decl of a debug_expr as a decl_or_value.  */
1406 static inline decl_or_value
1407 dv_from_rtx (rtx x)
1408 {
1409   decl_or_value dv;
1410 
1411   switch (GET_CODE (x))
1412     {
1413     case DEBUG_EXPR:
1414       dv = dv_from_decl (DEBUG_EXPR_TREE_DECL (x));
1415       gcc_checking_assert (DECL_RTL_KNOWN_SET (DEBUG_EXPR_TREE_DECL (x)) == x);
1416       break;
1417 
1418     case VALUE:
1419       dv = dv_from_value (x);
1420       break;
1421 
1422     default:
1423       gcc_unreachable ();
1424     }
1425 
1426   return dv;
1427 }
1428 
1429 extern void debug_dv (decl_or_value dv);
1430 
1431 DEBUG_FUNCTION void
1432 debug_dv (decl_or_value dv)
1433 {
1434   if (dv_is_value_p (dv))
1435     debug_rtx (dv_as_value (dv));
1436   else
1437     debug_generic_stmt (dv_as_decl (dv));
1438 }
1439 
1440 static void loc_exp_dep_clear (variable var);
1441 
1442 /* Free the element of VARIABLE_HTAB (its type is struct variable_def).  */
1443 
1444 static void
1445 variable_htab_free (void *elem)
1446 {
1447   int i;
1448   variable var = (variable) elem;
1449   location_chain node, next;
1450 
1451   gcc_checking_assert (var->refcount > 0);
1452 
1453   var->refcount--;
1454   if (var->refcount > 0)
1455     return;
1456 
1457   for (i = 0; i < var->n_var_parts; i++)
1458     {
1459       for (node = var->var_part[i].loc_chain; node; node = next)
1460 	{
1461 	  next = node->next;
1462 	  pool_free (loc_chain_pool, node);
1463 	}
1464       var->var_part[i].loc_chain = NULL;
1465     }
1466   if (var->onepart && VAR_LOC_1PAUX (var))
1467     {
1468       loc_exp_dep_clear (var);
1469       if (VAR_LOC_DEP_LST (var))
1470 	VAR_LOC_DEP_LST (var)->pprev = NULL;
1471       XDELETE (VAR_LOC_1PAUX (var));
1472       /* These may be reused across functions, so reset
1473 	 e.g. NO_LOC_P.  */
1474       if (var->onepart == ONEPART_DEXPR)
1475 	set_dv_changed (var->dv, true);
1476     }
1477   pool_free (onepart_pool (var->onepart), var);
1478 }
1479 
1480 /* Initialize the set (array) SET of attrs to empty lists.  */
1481 
1482 static void
1483 init_attrs_list_set (attrs *set)
1484 {
1485   int i;
1486 
1487   for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1488     set[i] = NULL;
1489 }
1490 
1491 /* Make the list *LISTP empty.  */
1492 
1493 static void
1494 attrs_list_clear (attrs *listp)
1495 {
1496   attrs list, next;
1497 
1498   for (list = *listp; list; list = next)
1499     {
1500       next = list->next;
1501       pool_free (attrs_pool, list);
1502     }
1503   *listp = NULL;
1504 }
1505 
1506 /* Return true if the pair of DECL and OFFSET is the member of the LIST.  */
1507 
1508 static attrs
1509 attrs_list_member (attrs list, decl_or_value dv, HOST_WIDE_INT offset)
1510 {
1511   for (; list; list = list->next)
1512     if (dv_as_opaque (list->dv) == dv_as_opaque (dv) && list->offset == offset)
1513       return list;
1514   return NULL;
1515 }
1516 
1517 /* Insert the triplet DECL, OFFSET, LOC to the list *LISTP.  */
1518 
1519 static void
1520 attrs_list_insert (attrs *listp, decl_or_value dv,
1521 		   HOST_WIDE_INT offset, rtx loc)
1522 {
1523   attrs list;
1524 
1525   list = (attrs) pool_alloc (attrs_pool);
1526   list->loc = loc;
1527   list->dv = dv;
1528   list->offset = offset;
1529   list->next = *listp;
1530   *listp = list;
1531 }
1532 
1533 /* Copy all nodes from SRC and create a list *DSTP of the copies.  */
1534 
1535 static void
1536 attrs_list_copy (attrs *dstp, attrs src)
1537 {
1538   attrs n;
1539 
1540   attrs_list_clear (dstp);
1541   for (; src; src = src->next)
1542     {
1543       n = (attrs) pool_alloc (attrs_pool);
1544       n->loc = src->loc;
1545       n->dv = src->dv;
1546       n->offset = src->offset;
1547       n->next = *dstp;
1548       *dstp = n;
1549     }
1550 }
1551 
1552 /* Add all nodes from SRC which are not in *DSTP to *DSTP.  */
1553 
1554 static void
1555 attrs_list_union (attrs *dstp, attrs src)
1556 {
1557   for (; src; src = src->next)
1558     {
1559       if (!attrs_list_member (*dstp, src->dv, src->offset))
1560 	attrs_list_insert (dstp, src->dv, src->offset, src->loc);
1561     }
1562 }
1563 
1564 /* Combine nodes that are not onepart nodes from SRC and SRC2 into
1565    *DSTP.  */
1566 
1567 static void
1568 attrs_list_mpdv_union (attrs *dstp, attrs src, attrs src2)
1569 {
1570   gcc_assert (!*dstp);
1571   for (; src; src = src->next)
1572     {
1573       if (!dv_onepart_p (src->dv))
1574 	attrs_list_insert (dstp, src->dv, src->offset, src->loc);
1575     }
1576   for (src = src2; src; src = src->next)
1577     {
1578       if (!dv_onepart_p (src->dv)
1579 	  && !attrs_list_member (*dstp, src->dv, src->offset))
1580 	attrs_list_insert (dstp, src->dv, src->offset, src->loc);
1581     }
1582 }
1583 
1584 /* Shared hashtable support.  */
1585 
1586 /* Return true if VARS is shared.  */
1587 
1588 static inline bool
1589 shared_hash_shared (shared_hash vars)
1590 {
1591   return vars->refcount > 1;
1592 }
1593 
1594 /* Return the hash table for VARS.  */
1595 
1596 static inline variable_table_type *
1597 shared_hash_htab (shared_hash vars)
1598 {
1599   return vars->htab;
1600 }
1601 
1602 /* Return true if VAR is shared, or maybe because VARS is shared.  */
1603 
1604 static inline bool
1605 shared_var_p (variable var, shared_hash vars)
1606 {
1607   /* Don't count an entry in the changed_variables table as a duplicate.  */
1608   return ((var->refcount > 1 + (int) var->in_changed_variables)
1609 	  || shared_hash_shared (vars));
1610 }
1611 
1612 /* Copy variables into a new hash table.  */
1613 
1614 static shared_hash
1615 shared_hash_unshare (shared_hash vars)
1616 {
1617   shared_hash new_vars = (shared_hash) pool_alloc (shared_hash_pool);
1618   gcc_assert (vars->refcount > 1);
1619   new_vars->refcount = 1;
1620   new_vars->htab = new variable_table_type (vars->htab->elements () + 3);
1621   vars_copy (new_vars->htab, vars->htab);
1622   vars->refcount--;
1623   return new_vars;
1624 }
1625 
1626 /* Increment reference counter on VARS and return it.  */
1627 
1628 static inline shared_hash
1629 shared_hash_copy (shared_hash vars)
1630 {
1631   vars->refcount++;
1632   return vars;
1633 }
1634 
1635 /* Decrement reference counter and destroy hash table if not shared
1636    anymore.  */
1637 
1638 static void
1639 shared_hash_destroy (shared_hash vars)
1640 {
1641   gcc_checking_assert (vars->refcount > 0);
1642   if (--vars->refcount == 0)
1643     {
1644       delete vars->htab;
1645       pool_free (shared_hash_pool, vars);
1646     }
1647 }
1648 
1649 /* Unshare *PVARS if shared and return slot for DV.  If INS is
1650    INSERT, insert it if not already present.  */
1651 
1652 static inline variable_def **
1653 shared_hash_find_slot_unshare_1 (shared_hash *pvars, decl_or_value dv,
1654 				 hashval_t dvhash, enum insert_option ins)
1655 {
1656   if (shared_hash_shared (*pvars))
1657     *pvars = shared_hash_unshare (*pvars);
1658   return shared_hash_htab (*pvars)->find_slot_with_hash (dv, dvhash, ins);
1659 }
1660 
1661 static inline variable_def **
1662 shared_hash_find_slot_unshare (shared_hash *pvars, decl_or_value dv,
1663 			       enum insert_option ins)
1664 {
1665   return shared_hash_find_slot_unshare_1 (pvars, dv, dv_htab_hash (dv), ins);
1666 }
1667 
1668 /* Return slot for DV, if it is already present in the hash table.
1669    If it is not present, insert it only VARS is not shared, otherwise
1670    return NULL.  */
1671 
1672 static inline variable_def **
1673 shared_hash_find_slot_1 (shared_hash vars, decl_or_value dv, hashval_t dvhash)
1674 {
1675   return shared_hash_htab (vars)->find_slot_with_hash (dv, dvhash,
1676 						       shared_hash_shared (vars)
1677 						       ? NO_INSERT : INSERT);
1678 }
1679 
1680 static inline variable_def **
1681 shared_hash_find_slot (shared_hash vars, decl_or_value dv)
1682 {
1683   return shared_hash_find_slot_1 (vars, dv, dv_htab_hash (dv));
1684 }
1685 
1686 /* Return slot for DV only if it is already present in the hash table.  */
1687 
1688 static inline variable_def **
1689 shared_hash_find_slot_noinsert_1 (shared_hash vars, decl_or_value dv,
1690 				  hashval_t dvhash)
1691 {
1692   return shared_hash_htab (vars)->find_slot_with_hash (dv, dvhash, NO_INSERT);
1693 }
1694 
1695 static inline variable_def **
1696 shared_hash_find_slot_noinsert (shared_hash vars, decl_or_value dv)
1697 {
1698   return shared_hash_find_slot_noinsert_1 (vars, dv, dv_htab_hash (dv));
1699 }
1700 
1701 /* Return variable for DV or NULL if not already present in the hash
1702    table.  */
1703 
1704 static inline variable
1705 shared_hash_find_1 (shared_hash vars, decl_or_value dv, hashval_t dvhash)
1706 {
1707   return shared_hash_htab (vars)->find_with_hash (dv, dvhash);
1708 }
1709 
1710 static inline variable
1711 shared_hash_find (shared_hash vars, decl_or_value dv)
1712 {
1713   return shared_hash_find_1 (vars, dv, dv_htab_hash (dv));
1714 }
1715 
1716 /* Return true if TVAL is better than CVAL as a canonival value.  We
1717    choose lowest-numbered VALUEs, using the RTX address as a
1718    tie-breaker.  The idea is to arrange them into a star topology,
1719    such that all of them are at most one step away from the canonical
1720    value, and the canonical value has backlinks to all of them, in
1721    addition to all the actual locations.  We don't enforce this
1722    topology throughout the entire dataflow analysis, though.
1723  */
1724 
1725 static inline bool
1726 canon_value_cmp (rtx tval, rtx cval)
1727 {
1728   return !cval
1729     || CSELIB_VAL_PTR (tval)->uid < CSELIB_VAL_PTR (cval)->uid;
1730 }
1731 
1732 static bool dst_can_be_shared;
1733 
1734 /* Return a copy of a variable VAR and insert it to dataflow set SET.  */
1735 
1736 static variable_def **
1737 unshare_variable (dataflow_set *set, variable_def **slot, variable var,
1738 		  enum var_init_status initialized)
1739 {
1740   variable new_var;
1741   int i;
1742 
1743   new_var = (variable) pool_alloc (onepart_pool (var->onepart));
1744   new_var->dv = var->dv;
1745   new_var->refcount = 1;
1746   var->refcount--;
1747   new_var->n_var_parts = var->n_var_parts;
1748   new_var->onepart = var->onepart;
1749   new_var->in_changed_variables = false;
1750 
1751   if (! flag_var_tracking_uninit)
1752     initialized = VAR_INIT_STATUS_INITIALIZED;
1753 
1754   for (i = 0; i < var->n_var_parts; i++)
1755     {
1756       location_chain node;
1757       location_chain *nextp;
1758 
1759       if (i == 0 && var->onepart)
1760 	{
1761 	  /* One-part auxiliary data is only used while emitting
1762 	     notes, so propagate it to the new variable in the active
1763 	     dataflow set.  If we're not emitting notes, this will be
1764 	     a no-op.  */
1765 	  gcc_checking_assert (!VAR_LOC_1PAUX (var) || emit_notes);
1766 	  VAR_LOC_1PAUX (new_var) = VAR_LOC_1PAUX (var);
1767 	  VAR_LOC_1PAUX (var) = NULL;
1768 	}
1769       else
1770 	VAR_PART_OFFSET (new_var, i) = VAR_PART_OFFSET (var, i);
1771       nextp = &new_var->var_part[i].loc_chain;
1772       for (node = var->var_part[i].loc_chain; node; node = node->next)
1773 	{
1774 	  location_chain new_lc;
1775 
1776 	  new_lc = (location_chain) pool_alloc (loc_chain_pool);
1777 	  new_lc->next = NULL;
1778 	  if (node->init > initialized)
1779 	    new_lc->init = node->init;
1780 	  else
1781 	    new_lc->init = initialized;
1782 	  if (node->set_src && !(MEM_P (node->set_src)))
1783 	    new_lc->set_src = node->set_src;
1784 	  else
1785 	    new_lc->set_src = NULL;
1786 	  new_lc->loc = node->loc;
1787 
1788 	  *nextp = new_lc;
1789 	  nextp = &new_lc->next;
1790 	}
1791 
1792       new_var->var_part[i].cur_loc = var->var_part[i].cur_loc;
1793     }
1794 
1795   dst_can_be_shared = false;
1796   if (shared_hash_shared (set->vars))
1797     slot = shared_hash_find_slot_unshare (&set->vars, var->dv, NO_INSERT);
1798   else if (set->traversed_vars && set->vars != set->traversed_vars)
1799     slot = shared_hash_find_slot_noinsert (set->vars, var->dv);
1800   *slot = new_var;
1801   if (var->in_changed_variables)
1802     {
1803       variable_def **cslot
1804 	= changed_variables->find_slot_with_hash (var->dv,
1805 						  dv_htab_hash (var->dv),
1806 						  NO_INSERT);
1807       gcc_assert (*cslot == (void *) var);
1808       var->in_changed_variables = false;
1809       variable_htab_free (var);
1810       *cslot = new_var;
1811       new_var->in_changed_variables = true;
1812     }
1813   return slot;
1814 }
1815 
1816 /* Copy all variables from hash table SRC to hash table DST.  */
1817 
1818 static void
1819 vars_copy (variable_table_type *dst, variable_table_type *src)
1820 {
1821   variable_iterator_type hi;
1822   variable var;
1823 
1824   FOR_EACH_HASH_TABLE_ELEMENT (*src, var, variable, hi)
1825     {
1826       variable_def **dstp;
1827       var->refcount++;
1828       dstp = dst->find_slot_with_hash (var->dv, dv_htab_hash (var->dv),
1829 				       INSERT);
1830       *dstp = var;
1831     }
1832 }
1833 
1834 /* Map a decl to its main debug decl.  */
1835 
1836 static inline tree
1837 var_debug_decl (tree decl)
1838 {
1839   if (decl && TREE_CODE (decl) == VAR_DECL
1840       && DECL_HAS_DEBUG_EXPR_P (decl))
1841     {
1842       tree debugdecl = DECL_DEBUG_EXPR (decl);
1843       if (DECL_P (debugdecl))
1844 	decl = debugdecl;
1845     }
1846 
1847   return decl;
1848 }
1849 
1850 /* Set the register LOC to contain DV, OFFSET.  */
1851 
1852 static void
1853 var_reg_decl_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
1854 		  decl_or_value dv, HOST_WIDE_INT offset, rtx set_src,
1855 		  enum insert_option iopt)
1856 {
1857   attrs node;
1858   bool decl_p = dv_is_decl_p (dv);
1859 
1860   if (decl_p)
1861     dv = dv_from_decl (var_debug_decl (dv_as_decl (dv)));
1862 
1863   for (node = set->regs[REGNO (loc)]; node; node = node->next)
1864     if (dv_as_opaque (node->dv) == dv_as_opaque (dv)
1865 	&& node->offset == offset)
1866       break;
1867   if (!node)
1868     attrs_list_insert (&set->regs[REGNO (loc)], dv, offset, loc);
1869   set_variable_part (set, loc, dv, offset, initialized, set_src, iopt);
1870 }
1871 
1872 /* Set the register to contain REG_EXPR (LOC), REG_OFFSET (LOC).  */
1873 
1874 static void
1875 var_reg_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
1876 	     rtx set_src)
1877 {
1878   tree decl = REG_EXPR (loc);
1879   HOST_WIDE_INT offset = REG_OFFSET (loc);
1880 
1881   var_reg_decl_set (set, loc, initialized,
1882 		    dv_from_decl (decl), offset, set_src, INSERT);
1883 }
1884 
1885 static enum var_init_status
1886 get_init_value (dataflow_set *set, rtx loc, decl_or_value dv)
1887 {
1888   variable var;
1889   int i;
1890   enum var_init_status ret_val = VAR_INIT_STATUS_UNKNOWN;
1891 
1892   if (! flag_var_tracking_uninit)
1893     return VAR_INIT_STATUS_INITIALIZED;
1894 
1895   var = shared_hash_find (set->vars, dv);
1896   if (var)
1897     {
1898       for (i = 0; i < var->n_var_parts && ret_val == VAR_INIT_STATUS_UNKNOWN; i++)
1899 	{
1900 	  location_chain nextp;
1901 	  for (nextp = var->var_part[i].loc_chain; nextp; nextp = nextp->next)
1902 	    if (rtx_equal_p (nextp->loc, loc))
1903 	      {
1904 		ret_val = nextp->init;
1905 		break;
1906 	      }
1907 	}
1908     }
1909 
1910   return ret_val;
1911 }
1912 
1913 /* Delete current content of register LOC in dataflow set SET and set
1914    the register to contain REG_EXPR (LOC), REG_OFFSET (LOC).  If
1915    MODIFY is true, any other live copies of the same variable part are
1916    also deleted from the dataflow set, otherwise the variable part is
1917    assumed to be copied from another location holding the same
1918    part.  */
1919 
1920 static void
1921 var_reg_delete_and_set (dataflow_set *set, rtx loc, bool modify,
1922 			enum var_init_status initialized, rtx set_src)
1923 {
1924   tree decl = REG_EXPR (loc);
1925   HOST_WIDE_INT offset = REG_OFFSET (loc);
1926   attrs node, next;
1927   attrs *nextp;
1928 
1929   decl = var_debug_decl (decl);
1930 
1931   if (initialized == VAR_INIT_STATUS_UNKNOWN)
1932     initialized = get_init_value (set, loc, dv_from_decl (decl));
1933 
1934   nextp = &set->regs[REGNO (loc)];
1935   for (node = *nextp; node; node = next)
1936     {
1937       next = node->next;
1938       if (dv_as_opaque (node->dv) != decl || node->offset != offset)
1939 	{
1940 	  delete_variable_part (set, node->loc, node->dv, node->offset);
1941 	  pool_free (attrs_pool, node);
1942 	  *nextp = next;
1943 	}
1944       else
1945 	{
1946 	  node->loc = loc;
1947 	  nextp = &node->next;
1948 	}
1949     }
1950   if (modify)
1951     clobber_variable_part (set, loc, dv_from_decl (decl), offset, set_src);
1952   var_reg_set (set, loc, initialized, set_src);
1953 }
1954 
1955 /* Delete the association of register LOC in dataflow set SET with any
1956    variables that aren't onepart.  If CLOBBER is true, also delete any
1957    other live copies of the same variable part, and delete the
1958    association with onepart dvs too.  */
1959 
1960 static void
1961 var_reg_delete (dataflow_set *set, rtx loc, bool clobber)
1962 {
1963   attrs *nextp = &set->regs[REGNO (loc)];
1964   attrs node, next;
1965 
1966   if (clobber)
1967     {
1968       tree decl = REG_EXPR (loc);
1969       HOST_WIDE_INT offset = REG_OFFSET (loc);
1970 
1971       decl = var_debug_decl (decl);
1972 
1973       clobber_variable_part (set, NULL, dv_from_decl (decl), offset, NULL);
1974     }
1975 
1976   for (node = *nextp; node; node = next)
1977     {
1978       next = node->next;
1979       if (clobber || !dv_onepart_p (node->dv))
1980 	{
1981 	  delete_variable_part (set, node->loc, node->dv, node->offset);
1982 	  pool_free (attrs_pool, node);
1983 	  *nextp = next;
1984 	}
1985       else
1986 	nextp = &node->next;
1987     }
1988 }
1989 
1990 /* Delete content of register with number REGNO in dataflow set SET.  */
1991 
1992 static void
1993 var_regno_delete (dataflow_set *set, int regno)
1994 {
1995   attrs *reg = &set->regs[regno];
1996   attrs node, next;
1997 
1998   for (node = *reg; node; node = next)
1999     {
2000       next = node->next;
2001       delete_variable_part (set, node->loc, node->dv, node->offset);
2002       pool_free (attrs_pool, node);
2003     }
2004   *reg = NULL;
2005 }
2006 
2007 /* Return true if I is the negated value of a power of two.  */
2008 static bool
2009 negative_power_of_two_p (HOST_WIDE_INT i)
2010 {
2011   unsigned HOST_WIDE_INT x = -(unsigned HOST_WIDE_INT)i;
2012   return x == (x & -x);
2013 }
2014 
2015 /* Strip constant offsets and alignments off of LOC.  Return the base
2016    expression.  */
2017 
2018 static rtx
2019 vt_get_canonicalize_base (rtx loc)
2020 {
2021   while ((GET_CODE (loc) == PLUS
2022 	  || GET_CODE (loc) == AND)
2023 	 && GET_CODE (XEXP (loc, 1)) == CONST_INT
2024 	 && (GET_CODE (loc) != AND
2025 	     || negative_power_of_two_p (INTVAL (XEXP (loc, 1)))))
2026     loc = XEXP (loc, 0);
2027 
2028   return loc;
2029 }
2030 
2031 /* This caches canonicalized addresses for VALUEs, computed using
2032    information in the global cselib table.  */
2033 static hash_map<rtx, rtx> *global_get_addr_cache;
2034 
2035 /* This caches canonicalized addresses for VALUEs, computed using
2036    information from the global cache and information pertaining to a
2037    basic block being analyzed.  */
2038 static hash_map<rtx, rtx> *local_get_addr_cache;
2039 
2040 static rtx vt_canonicalize_addr (dataflow_set *, rtx);
2041 
2042 /* Return the canonical address for LOC, that must be a VALUE, using a
2043    cached global equivalence or computing it and storing it in the
2044    global cache.  */
2045 
2046 static rtx
2047 get_addr_from_global_cache (rtx const loc)
2048 {
2049   rtx x;
2050 
2051   gcc_checking_assert (GET_CODE (loc) == VALUE);
2052 
2053   bool existed;
2054   rtx *slot = &global_get_addr_cache->get_or_insert (loc, &existed);
2055   if (existed)
2056     return *slot;
2057 
2058   x = canon_rtx (get_addr (loc));
2059 
2060   /* Tentative, avoiding infinite recursion.  */
2061   *slot = x;
2062 
2063   if (x != loc)
2064     {
2065       rtx nx = vt_canonicalize_addr (NULL, x);
2066       if (nx != x)
2067 	{
2068 	  /* The table may have moved during recursion, recompute
2069 	     SLOT.  */
2070 	  *global_get_addr_cache->get (loc) = x = nx;
2071 	}
2072     }
2073 
2074   return x;
2075 }
2076 
2077 /* Return the canonical address for LOC, that must be a VALUE, using a
2078    cached local equivalence or computing it and storing it in the
2079    local cache.  */
2080 
2081 static rtx
2082 get_addr_from_local_cache (dataflow_set *set, rtx const loc)
2083 {
2084   rtx x;
2085   decl_or_value dv;
2086   variable var;
2087   location_chain l;
2088 
2089   gcc_checking_assert (GET_CODE (loc) == VALUE);
2090 
2091   bool existed;
2092   rtx *slot = &local_get_addr_cache->get_or_insert (loc, &existed);
2093   if (existed)
2094     return *slot;
2095 
2096   x = get_addr_from_global_cache (loc);
2097 
2098   /* Tentative, avoiding infinite recursion.  */
2099   *slot = x;
2100 
2101   /* Recurse to cache local expansion of X, or if we need to search
2102      for a VALUE in the expansion.  */
2103   if (x != loc)
2104     {
2105       rtx nx = vt_canonicalize_addr (set, x);
2106       if (nx != x)
2107 	{
2108 	  slot = local_get_addr_cache->get (loc);
2109 	  *slot = x = nx;
2110 	}
2111       return x;
2112     }
2113 
2114   dv = dv_from_rtx (x);
2115   var = shared_hash_find (set->vars, dv);
2116   if (!var)
2117     return x;
2118 
2119   /* Look for an improved equivalent expression.  */
2120   for (l = var->var_part[0].loc_chain; l; l = l->next)
2121     {
2122       rtx base = vt_get_canonicalize_base (l->loc);
2123       if (GET_CODE (base) == VALUE
2124 	  && canon_value_cmp (base, loc))
2125 	{
2126 	  rtx nx = vt_canonicalize_addr (set, l->loc);
2127 	  if (x != nx)
2128 	    {
2129 	      slot = local_get_addr_cache->get (loc);
2130 	      *slot = x = nx;
2131 	    }
2132 	  break;
2133 	}
2134     }
2135 
2136   return x;
2137 }
2138 
2139 /* Canonicalize LOC using equivalences from SET in addition to those
2140    in the cselib static table.  It expects a VALUE-based expression,
2141    and it will only substitute VALUEs with other VALUEs or
2142    function-global equivalences, so that, if two addresses have base
2143    VALUEs that are locally or globally related in ways that
2144    memrefs_conflict_p cares about, they will both canonicalize to
2145    expressions that have the same base VALUE.
2146 
2147    The use of VALUEs as canonical base addresses enables the canonical
2148    RTXs to remain unchanged globally, if they resolve to a constant,
2149    or throughout a basic block otherwise, so that they can be cached
2150    and the cache needs not be invalidated when REGs, MEMs or such
2151    change.  */
2152 
2153 static rtx
2154 vt_canonicalize_addr (dataflow_set *set, rtx oloc)
2155 {
2156   HOST_WIDE_INT ofst = 0;
2157   machine_mode mode = GET_MODE (oloc);
2158   rtx loc = oloc;
2159   rtx x;
2160   bool retry = true;
2161 
2162   while (retry)
2163     {
2164       while (GET_CODE (loc) == PLUS
2165 	     && GET_CODE (XEXP (loc, 1)) == CONST_INT)
2166 	{
2167 	  ofst += INTVAL (XEXP (loc, 1));
2168 	  loc = XEXP (loc, 0);
2169 	}
2170 
2171       /* Alignment operations can't normally be combined, so just
2172 	 canonicalize the base and we're done.  We'll normally have
2173 	 only one stack alignment anyway.  */
2174       if (GET_CODE (loc) == AND
2175 	  && GET_CODE (XEXP (loc, 1)) == CONST_INT
2176 	  && negative_power_of_two_p (INTVAL (XEXP (loc, 1))))
2177 	{
2178 	  x = vt_canonicalize_addr (set, XEXP (loc, 0));
2179 	  if (x != XEXP (loc, 0))
2180 	    loc = gen_rtx_AND (mode, x, XEXP (loc, 1));
2181 	  retry = false;
2182 	}
2183 
2184       if (GET_CODE (loc) == VALUE)
2185 	{
2186 	  if (set)
2187 	    loc = get_addr_from_local_cache (set, loc);
2188 	  else
2189 	    loc = get_addr_from_global_cache (loc);
2190 
2191 	  /* Consolidate plus_constants.  */
2192 	  while (ofst && GET_CODE (loc) == PLUS
2193 		 && GET_CODE (XEXP (loc, 1)) == CONST_INT)
2194 	    {
2195 	      ofst += INTVAL (XEXP (loc, 1));
2196 	      loc = XEXP (loc, 0);
2197 	    }
2198 
2199 	  retry = false;
2200 	}
2201       else
2202 	{
2203 	  x = canon_rtx (loc);
2204 	  if (retry)
2205 	    retry = (x != loc);
2206 	  loc = x;
2207 	}
2208     }
2209 
2210   /* Add OFST back in.  */
2211   if (ofst)
2212     {
2213       /* Don't build new RTL if we can help it.  */
2214       if (GET_CODE (oloc) == PLUS
2215 	  && XEXP (oloc, 0) == loc
2216 	  && INTVAL (XEXP (oloc, 1)) == ofst)
2217 	return oloc;
2218 
2219       loc = plus_constant (mode, loc, ofst);
2220     }
2221 
2222   return loc;
2223 }
2224 
2225 /* Return true iff there's a true dependence between MLOC and LOC.
2226    MADDR must be a canonicalized version of MLOC's address.  */
2227 
2228 static inline bool
2229 vt_canon_true_dep (dataflow_set *set, rtx mloc, rtx maddr, rtx loc)
2230 {
2231   if (GET_CODE (loc) != MEM)
2232     return false;
2233 
2234   rtx addr = vt_canonicalize_addr (set, XEXP (loc, 0));
2235   if (!canon_true_dependence (mloc, GET_MODE (mloc), maddr, loc, addr))
2236     return false;
2237 
2238   return true;
2239 }
2240 
2241 /* Hold parameters for the hashtab traversal function
2242    drop_overlapping_mem_locs, see below.  */
2243 
2244 struct overlapping_mems
2245 {
2246   dataflow_set *set;
2247   rtx loc, addr;
2248 };
2249 
2250 /* Remove all MEMs that overlap with COMS->LOC from the location list
2251    of a hash table entry for a value.  COMS->ADDR must be a
2252    canonicalized form of COMS->LOC's address, and COMS->LOC must be
2253    canonicalized itself.  */
2254 
2255 int
2256 drop_overlapping_mem_locs (variable_def **slot, overlapping_mems *coms)
2257 {
2258   dataflow_set *set = coms->set;
2259   rtx mloc = coms->loc, addr = coms->addr;
2260   variable var = *slot;
2261 
2262   if (var->onepart == ONEPART_VALUE)
2263     {
2264       location_chain loc, *locp;
2265       bool changed = false;
2266       rtx cur_loc;
2267 
2268       gcc_assert (var->n_var_parts == 1);
2269 
2270       if (shared_var_p (var, set->vars))
2271 	{
2272 	  for (loc = var->var_part[0].loc_chain; loc; loc = loc->next)
2273 	    if (vt_canon_true_dep (set, mloc, addr, loc->loc))
2274 	      break;
2275 
2276 	  if (!loc)
2277 	    return 1;
2278 
2279 	  slot = unshare_variable (set, slot, var, VAR_INIT_STATUS_UNKNOWN);
2280 	  var = *slot;
2281 	  gcc_assert (var->n_var_parts == 1);
2282 	}
2283 
2284       if (VAR_LOC_1PAUX (var))
2285 	cur_loc = VAR_LOC_FROM (var);
2286       else
2287 	cur_loc = var->var_part[0].cur_loc;
2288 
2289       for (locp = &var->var_part[0].loc_chain, loc = *locp;
2290 	   loc; loc = *locp)
2291 	{
2292 	  if (!vt_canon_true_dep (set, mloc, addr, loc->loc))
2293 	    {
2294 	      locp = &loc->next;
2295 	      continue;
2296 	    }
2297 
2298 	  *locp = loc->next;
2299 	  /* If we have deleted the location which was last emitted
2300 	     we have to emit new location so add the variable to set
2301 	     of changed variables.  */
2302 	  if (cur_loc == loc->loc)
2303 	    {
2304 	      changed = true;
2305 	      var->var_part[0].cur_loc = NULL;
2306 	      if (VAR_LOC_1PAUX (var))
2307 		VAR_LOC_FROM (var) = NULL;
2308 	    }
2309 	  pool_free (loc_chain_pool, loc);
2310 	}
2311 
2312       if (!var->var_part[0].loc_chain)
2313 	{
2314 	  var->n_var_parts--;
2315 	  changed = true;
2316 	}
2317       if (changed)
2318 	variable_was_changed (var, set);
2319     }
2320 
2321   return 1;
2322 }
2323 
2324 /* Remove from SET all VALUE bindings to MEMs that overlap with LOC.  */
2325 
2326 static void
2327 clobber_overlapping_mems (dataflow_set *set, rtx loc)
2328 {
2329   struct overlapping_mems coms;
2330 
2331   gcc_checking_assert (GET_CODE (loc) == MEM);
2332 
2333   coms.set = set;
2334   coms.loc = canon_rtx (loc);
2335   coms.addr = vt_canonicalize_addr (set, XEXP (loc, 0));
2336 
2337   set->traversed_vars = set->vars;
2338   shared_hash_htab (set->vars)
2339     ->traverse <overlapping_mems*, drop_overlapping_mem_locs> (&coms);
2340   set->traversed_vars = NULL;
2341 }
2342 
2343 /* Set the location of DV, OFFSET as the MEM LOC.  */
2344 
2345 static void
2346 var_mem_decl_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
2347 		  decl_or_value dv, HOST_WIDE_INT offset, rtx set_src,
2348 		  enum insert_option iopt)
2349 {
2350   if (dv_is_decl_p (dv))
2351     dv = dv_from_decl (var_debug_decl (dv_as_decl (dv)));
2352 
2353   set_variable_part (set, loc, dv, offset, initialized, set_src, iopt);
2354 }
2355 
2356 /* Set the location part of variable MEM_EXPR (LOC) in dataflow set
2357    SET to LOC.
2358    Adjust the address first if it is stack pointer based.  */
2359 
2360 static void
2361 var_mem_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
2362 	     rtx set_src)
2363 {
2364   tree decl = MEM_EXPR (loc);
2365   HOST_WIDE_INT offset = INT_MEM_OFFSET (loc);
2366 
2367   var_mem_decl_set (set, loc, initialized,
2368 		    dv_from_decl (decl), offset, set_src, INSERT);
2369 }
2370 
2371 /* Delete and set the location part of variable MEM_EXPR (LOC) in
2372    dataflow set SET to LOC.  If MODIFY is true, any other live copies
2373    of the same variable part are also deleted from the dataflow set,
2374    otherwise the variable part is assumed to be copied from another
2375    location holding the same part.
2376    Adjust the address first if it is stack pointer based.  */
2377 
2378 static void
2379 var_mem_delete_and_set (dataflow_set *set, rtx loc, bool modify,
2380 			enum var_init_status initialized, rtx set_src)
2381 {
2382   tree decl = MEM_EXPR (loc);
2383   HOST_WIDE_INT offset = INT_MEM_OFFSET (loc);
2384 
2385   clobber_overlapping_mems (set, loc);
2386   decl = var_debug_decl (decl);
2387 
2388   if (initialized == VAR_INIT_STATUS_UNKNOWN)
2389     initialized = get_init_value (set, loc, dv_from_decl (decl));
2390 
2391   if (modify)
2392     clobber_variable_part (set, NULL, dv_from_decl (decl), offset, set_src);
2393   var_mem_set (set, loc, initialized, set_src);
2394 }
2395 
2396 /* Delete the location part LOC from dataflow set SET.  If CLOBBER is
2397    true, also delete any other live copies of the same variable part.
2398    Adjust the address first if it is stack pointer based.  */
2399 
2400 static void
2401 var_mem_delete (dataflow_set *set, rtx loc, bool clobber)
2402 {
2403   tree decl = MEM_EXPR (loc);
2404   HOST_WIDE_INT offset = INT_MEM_OFFSET (loc);
2405 
2406   clobber_overlapping_mems (set, loc);
2407   decl = var_debug_decl (decl);
2408   if (clobber)
2409     clobber_variable_part (set, NULL, dv_from_decl (decl), offset, NULL);
2410   delete_variable_part (set, loc, dv_from_decl (decl), offset);
2411 }
2412 
2413 /* Return true if LOC should not be expanded for location expressions,
2414    or used in them.  */
2415 
2416 static inline bool
2417 unsuitable_loc (rtx loc)
2418 {
2419   switch (GET_CODE (loc))
2420     {
2421     case PC:
2422     case SCRATCH:
2423     case CC0:
2424     case ASM_INPUT:
2425     case ASM_OPERANDS:
2426       return true;
2427 
2428     default:
2429       return false;
2430     }
2431 }
2432 
2433 /* Bind VAL to LOC in SET.  If MODIFIED, detach LOC from any values
2434    bound to it.  */
2435 
2436 static inline void
2437 val_bind (dataflow_set *set, rtx val, rtx loc, bool modified)
2438 {
2439   if (REG_P (loc))
2440     {
2441       if (modified)
2442 	var_regno_delete (set, REGNO (loc));
2443       var_reg_decl_set (set, loc, VAR_INIT_STATUS_INITIALIZED,
2444 			dv_from_value (val), 0, NULL_RTX, INSERT);
2445     }
2446   else if (MEM_P (loc))
2447     {
2448       struct elt_loc_list *l = CSELIB_VAL_PTR (val)->locs;
2449 
2450       if (modified)
2451 	clobber_overlapping_mems (set, loc);
2452 
2453       if (l && GET_CODE (l->loc) == VALUE)
2454 	l = canonical_cselib_val (CSELIB_VAL_PTR (l->loc))->locs;
2455 
2456       /* If this MEM is a global constant, we don't need it in the
2457 	 dynamic tables.  ??? We should test this before emitting the
2458 	 micro-op in the first place.  */
2459       while (l)
2460 	if (GET_CODE (l->loc) == MEM && XEXP (l->loc, 0) == XEXP (loc, 0))
2461 	  break;
2462 	else
2463 	  l = l->next;
2464 
2465       if (!l)
2466 	var_mem_decl_set (set, loc, VAR_INIT_STATUS_INITIALIZED,
2467 			  dv_from_value (val), 0, NULL_RTX, INSERT);
2468     }
2469   else
2470     {
2471       /* Other kinds of equivalences are necessarily static, at least
2472 	 so long as we do not perform substitutions while merging
2473 	 expressions.  */
2474       gcc_unreachable ();
2475       set_variable_part (set, loc, dv_from_value (val), 0,
2476 			 VAR_INIT_STATUS_INITIALIZED, NULL_RTX, INSERT);
2477     }
2478 }
2479 
2480 /* Bind a value to a location it was just stored in.  If MODIFIED
2481    holds, assume the location was modified, detaching it from any
2482    values bound to it.  */
2483 
2484 static void
2485 val_store (dataflow_set *set, rtx val, rtx loc, rtx_insn *insn,
2486 	   bool modified)
2487 {
2488   cselib_val *v = CSELIB_VAL_PTR (val);
2489 
2490   gcc_assert (cselib_preserved_value_p (v));
2491 
2492   if (dump_file)
2493     {
2494       fprintf (dump_file, "%i: ", insn ? INSN_UID (insn) : 0);
2495       print_inline_rtx (dump_file, loc, 0);
2496       fprintf (dump_file, " evaluates to ");
2497       print_inline_rtx (dump_file, val, 0);
2498       if (v->locs)
2499 	{
2500 	  struct elt_loc_list *l;
2501 	  for (l = v->locs; l; l = l->next)
2502 	    {
2503 	      fprintf (dump_file, "\n%i: ", INSN_UID (l->setting_insn));
2504 	      print_inline_rtx (dump_file, l->loc, 0);
2505 	    }
2506 	}
2507       fprintf (dump_file, "\n");
2508     }
2509 
2510   gcc_checking_assert (!unsuitable_loc (loc));
2511 
2512   val_bind (set, val, loc, modified);
2513 }
2514 
2515 /* Clear (canonical address) slots that reference X.  */
2516 
2517 bool
2518 local_get_addr_clear_given_value (rtx const &, rtx *slot, rtx x)
2519 {
2520   if (vt_get_canonicalize_base (*slot) == x)
2521     *slot = NULL;
2522   return true;
2523 }
2524 
2525 /* Reset this node, detaching all its equivalences.  Return the slot
2526    in the variable hash table that holds dv, if there is one.  */
2527 
2528 static void
2529 val_reset (dataflow_set *set, decl_or_value dv)
2530 {
2531   variable var = shared_hash_find (set->vars, dv) ;
2532   location_chain node;
2533   rtx cval;
2534 
2535   if (!var || !var->n_var_parts)
2536     return;
2537 
2538   gcc_assert (var->n_var_parts == 1);
2539 
2540   if (var->onepart == ONEPART_VALUE)
2541     {
2542       rtx x = dv_as_value (dv);
2543 
2544       /* Relationships in the global cache don't change, so reset the
2545 	 local cache entry only.  */
2546       rtx *slot = local_get_addr_cache->get (x);
2547       if (slot)
2548 	{
2549 	  /* If the value resolved back to itself, odds are that other
2550 	     values may have cached it too.  These entries now refer
2551 	     to the old X, so detach them too.  Entries that used the
2552 	     old X but resolved to something else remain ok as long as
2553 	     that something else isn't also reset.  */
2554 	  if (*slot == x)
2555 	    local_get_addr_cache
2556 	      ->traverse<rtx, local_get_addr_clear_given_value> (x);
2557 	  *slot = NULL;
2558 	}
2559     }
2560 
2561   cval = NULL;
2562   for (node = var->var_part[0].loc_chain; node; node = node->next)
2563     if (GET_CODE (node->loc) == VALUE
2564 	&& canon_value_cmp (node->loc, cval))
2565       cval = node->loc;
2566 
2567   for (node = var->var_part[0].loc_chain; node; node = node->next)
2568     if (GET_CODE (node->loc) == VALUE && cval != node->loc)
2569       {
2570 	/* Redirect the equivalence link to the new canonical
2571 	   value, or simply remove it if it would point at
2572 	   itself.  */
2573 	if (cval)
2574 	  set_variable_part (set, cval, dv_from_value (node->loc),
2575 			     0, node->init, node->set_src, NO_INSERT);
2576 	delete_variable_part (set, dv_as_value (dv),
2577 			      dv_from_value (node->loc), 0);
2578       }
2579 
2580   if (cval)
2581     {
2582       decl_or_value cdv = dv_from_value (cval);
2583 
2584       /* Keep the remaining values connected, accummulating links
2585 	 in the canonical value.  */
2586       for (node = var->var_part[0].loc_chain; node; node = node->next)
2587 	{
2588 	  if (node->loc == cval)
2589 	    continue;
2590 	  else if (GET_CODE (node->loc) == REG)
2591 	    var_reg_decl_set (set, node->loc, node->init, cdv, 0,
2592 			      node->set_src, NO_INSERT);
2593 	  else if (GET_CODE (node->loc) == MEM)
2594 	    var_mem_decl_set (set, node->loc, node->init, cdv, 0,
2595 			      node->set_src, NO_INSERT);
2596 	  else
2597 	    set_variable_part (set, node->loc, cdv, 0,
2598 			       node->init, node->set_src, NO_INSERT);
2599 	}
2600     }
2601 
2602   /* We remove this last, to make sure that the canonical value is not
2603      removed to the point of requiring reinsertion.  */
2604   if (cval)
2605     delete_variable_part (set, dv_as_value (dv), dv_from_value (cval), 0);
2606 
2607   clobber_variable_part (set, NULL, dv, 0, NULL);
2608 }
2609 
2610 /* Find the values in a given location and map the val to another
2611    value, if it is unique, or add the location as one holding the
2612    value.  */
2613 
2614 static void
2615 val_resolve (dataflow_set *set, rtx val, rtx loc, rtx_insn *insn)
2616 {
2617   decl_or_value dv = dv_from_value (val);
2618 
2619   if (dump_file && (dump_flags & TDF_DETAILS))
2620     {
2621       if (insn)
2622 	fprintf (dump_file, "%i: ", INSN_UID (insn));
2623       else
2624 	fprintf (dump_file, "head: ");
2625       print_inline_rtx (dump_file, val, 0);
2626       fputs (" is at ", dump_file);
2627       print_inline_rtx (dump_file, loc, 0);
2628       fputc ('\n', dump_file);
2629     }
2630 
2631   val_reset (set, dv);
2632 
2633   gcc_checking_assert (!unsuitable_loc (loc));
2634 
2635   if (REG_P (loc))
2636     {
2637       attrs node, found = NULL;
2638 
2639       for (node = set->regs[REGNO (loc)]; node; node = node->next)
2640 	if (dv_is_value_p (node->dv)
2641 	    && GET_MODE (dv_as_value (node->dv)) == GET_MODE (loc))
2642 	  {
2643 	    found = node;
2644 
2645 	    /* Map incoming equivalences.  ??? Wouldn't it be nice if
2646 	     we just started sharing the location lists?  Maybe a
2647 	     circular list ending at the value itself or some
2648 	     such.  */
2649 	    set_variable_part (set, dv_as_value (node->dv),
2650 			       dv_from_value (val), node->offset,
2651 			       VAR_INIT_STATUS_INITIALIZED, NULL_RTX, INSERT);
2652 	    set_variable_part (set, val, node->dv, node->offset,
2653 			       VAR_INIT_STATUS_INITIALIZED, NULL_RTX, INSERT);
2654 	  }
2655 
2656       /* If we didn't find any equivalence, we need to remember that
2657 	 this value is held in the named register.  */
2658       if (found)
2659 	return;
2660     }
2661   /* ??? Attempt to find and merge equivalent MEMs or other
2662      expressions too.  */
2663 
2664   val_bind (set, val, loc, false);
2665 }
2666 
2667 /* Initialize dataflow set SET to be empty.
2668    VARS_SIZE is the initial size of hash table VARS.  */
2669 
2670 static void
2671 dataflow_set_init (dataflow_set *set)
2672 {
2673   init_attrs_list_set (set->regs);
2674   set->vars = shared_hash_copy (empty_shared_hash);
2675   set->stack_adjust = 0;
2676   set->traversed_vars = NULL;
2677 }
2678 
2679 /* Delete the contents of dataflow set SET.  */
2680 
2681 static void
2682 dataflow_set_clear (dataflow_set *set)
2683 {
2684   int i;
2685 
2686   for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2687     attrs_list_clear (&set->regs[i]);
2688 
2689   shared_hash_destroy (set->vars);
2690   set->vars = shared_hash_copy (empty_shared_hash);
2691 }
2692 
2693 /* Copy the contents of dataflow set SRC to DST.  */
2694 
2695 static void
2696 dataflow_set_copy (dataflow_set *dst, dataflow_set *src)
2697 {
2698   int i;
2699 
2700   for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2701     attrs_list_copy (&dst->regs[i], src->regs[i]);
2702 
2703   shared_hash_destroy (dst->vars);
2704   dst->vars = shared_hash_copy (src->vars);
2705   dst->stack_adjust = src->stack_adjust;
2706 }
2707 
2708 /* Information for merging lists of locations for a given offset of variable.
2709  */
2710 struct variable_union_info
2711 {
2712   /* Node of the location chain.  */
2713   location_chain lc;
2714 
2715   /* The sum of positions in the input chains.  */
2716   int pos;
2717 
2718   /* The position in the chain of DST dataflow set.  */
2719   int pos_dst;
2720 };
2721 
2722 /* Buffer for location list sorting and its allocated size.  */
2723 static struct variable_union_info *vui_vec;
2724 static int vui_allocated;
2725 
2726 /* Compare function for qsort, order the structures by POS element.  */
2727 
2728 static int
2729 variable_union_info_cmp_pos (const void *n1, const void *n2)
2730 {
2731   const struct variable_union_info *const i1 =
2732     (const struct variable_union_info *) n1;
2733   const struct variable_union_info *const i2 =
2734     ( const struct variable_union_info *) n2;
2735 
2736   if (i1->pos != i2->pos)
2737     return i1->pos - i2->pos;
2738 
2739   return (i1->pos_dst - i2->pos_dst);
2740 }
2741 
2742 /* Compute union of location parts of variable *SLOT and the same variable
2743    from hash table DATA.  Compute "sorted" union of the location chains
2744    for common offsets, i.e. the locations of a variable part are sorted by
2745    a priority where the priority is the sum of the positions in the 2 chains
2746    (if a location is only in one list the position in the second list is
2747    defined to be larger than the length of the chains).
2748    When we are updating the location parts the newest location is in the
2749    beginning of the chain, so when we do the described "sorted" union
2750    we keep the newest locations in the beginning.  */
2751 
2752 static int
2753 variable_union (variable src, dataflow_set *set)
2754 {
2755   variable dst;
2756   variable_def **dstp;
2757   int i, j, k;
2758 
2759   dstp = shared_hash_find_slot (set->vars, src->dv);
2760   if (!dstp || !*dstp)
2761     {
2762       src->refcount++;
2763 
2764       dst_can_be_shared = false;
2765       if (!dstp)
2766 	dstp = shared_hash_find_slot_unshare (&set->vars, src->dv, INSERT);
2767 
2768       *dstp = src;
2769 
2770       /* Continue traversing the hash table.  */
2771       return 1;
2772     }
2773   else
2774     dst = *dstp;
2775 
2776   gcc_assert (src->n_var_parts);
2777   gcc_checking_assert (src->onepart == dst->onepart);
2778 
2779   /* We can combine one-part variables very efficiently, because their
2780      entries are in canonical order.  */
2781   if (src->onepart)
2782     {
2783       location_chain *nodep, dnode, snode;
2784 
2785       gcc_assert (src->n_var_parts == 1
2786 		  && dst->n_var_parts == 1);
2787 
2788       snode = src->var_part[0].loc_chain;
2789       gcc_assert (snode);
2790 
2791     restart_onepart_unshared:
2792       nodep = &dst->var_part[0].loc_chain;
2793       dnode = *nodep;
2794       gcc_assert (dnode);
2795 
2796       while (snode)
2797 	{
2798 	  int r = dnode ? loc_cmp (dnode->loc, snode->loc) : 1;
2799 
2800 	  if (r > 0)
2801 	    {
2802 	      location_chain nnode;
2803 
2804 	      if (shared_var_p (dst, set->vars))
2805 		{
2806 		  dstp = unshare_variable (set, dstp, dst,
2807 					   VAR_INIT_STATUS_INITIALIZED);
2808 		  dst = *dstp;
2809 		  goto restart_onepart_unshared;
2810 		}
2811 
2812 	      *nodep = nnode = (location_chain) pool_alloc (loc_chain_pool);
2813 	      nnode->loc = snode->loc;
2814 	      nnode->init = snode->init;
2815 	      if (!snode->set_src || MEM_P (snode->set_src))
2816 		nnode->set_src = NULL;
2817 	      else
2818 		nnode->set_src = snode->set_src;
2819 	      nnode->next = dnode;
2820 	      dnode = nnode;
2821 	    }
2822 	  else if (r == 0)
2823 	    gcc_checking_assert (rtx_equal_p (dnode->loc, snode->loc));
2824 
2825 	  if (r >= 0)
2826 	    snode = snode->next;
2827 
2828 	  nodep = &dnode->next;
2829 	  dnode = *nodep;
2830 	}
2831 
2832       return 1;
2833     }
2834 
2835   gcc_checking_assert (!src->onepart);
2836 
2837   /* Count the number of location parts, result is K.  */
2838   for (i = 0, j = 0, k = 0;
2839        i < src->n_var_parts && j < dst->n_var_parts; k++)
2840     {
2841       if (VAR_PART_OFFSET (src, i) == VAR_PART_OFFSET (dst, j))
2842 	{
2843 	  i++;
2844 	  j++;
2845 	}
2846       else if (VAR_PART_OFFSET (src, i) < VAR_PART_OFFSET (dst, j))
2847 	i++;
2848       else
2849 	j++;
2850     }
2851   k += src->n_var_parts - i;
2852   k += dst->n_var_parts - j;
2853 
2854   /* We track only variables whose size is <= MAX_VAR_PARTS bytes
2855      thus there are at most MAX_VAR_PARTS different offsets.  */
2856   gcc_checking_assert (dst->onepart ? k == 1 : k <= MAX_VAR_PARTS);
2857 
2858   if (dst->n_var_parts != k && shared_var_p (dst, set->vars))
2859     {
2860       dstp = unshare_variable (set, dstp, dst, VAR_INIT_STATUS_UNKNOWN);
2861       dst = *dstp;
2862     }
2863 
2864   i = src->n_var_parts - 1;
2865   j = dst->n_var_parts - 1;
2866   dst->n_var_parts = k;
2867 
2868   for (k--; k >= 0; k--)
2869     {
2870       location_chain node, node2;
2871 
2872       if (i >= 0 && j >= 0
2873 	  && VAR_PART_OFFSET (src, i) == VAR_PART_OFFSET (dst, j))
2874 	{
2875 	  /* Compute the "sorted" union of the chains, i.e. the locations which
2876 	     are in both chains go first, they are sorted by the sum of
2877 	     positions in the chains.  */
2878 	  int dst_l, src_l;
2879 	  int ii, jj, n;
2880 	  struct variable_union_info *vui;
2881 
2882 	  /* If DST is shared compare the location chains.
2883 	     If they are different we will modify the chain in DST with
2884 	     high probability so make a copy of DST.  */
2885 	  if (shared_var_p (dst, set->vars))
2886 	    {
2887 	      for (node = src->var_part[i].loc_chain,
2888 		   node2 = dst->var_part[j].loc_chain; node && node2;
2889 		   node = node->next, node2 = node2->next)
2890 		{
2891 		  if (!((REG_P (node2->loc)
2892 			 && REG_P (node->loc)
2893 			 && REGNO (node2->loc) == REGNO (node->loc))
2894 			|| rtx_equal_p (node2->loc, node->loc)))
2895 		    {
2896 		      if (node2->init < node->init)
2897 		        node2->init = node->init;
2898 		      break;
2899 		    }
2900 		}
2901 	      if (node || node2)
2902 		{
2903 		  dstp = unshare_variable (set, dstp, dst,
2904 					   VAR_INIT_STATUS_UNKNOWN);
2905 		  dst = (variable)*dstp;
2906 		}
2907 	    }
2908 
2909 	  src_l = 0;
2910 	  for (node = src->var_part[i].loc_chain; node; node = node->next)
2911 	    src_l++;
2912 	  dst_l = 0;
2913 	  for (node = dst->var_part[j].loc_chain; node; node = node->next)
2914 	    dst_l++;
2915 
2916 	  if (dst_l == 1)
2917 	    {
2918 	      /* The most common case, much simpler, no qsort is needed.  */
2919 	      location_chain dstnode = dst->var_part[j].loc_chain;
2920 	      dst->var_part[k].loc_chain = dstnode;
2921 	      VAR_PART_OFFSET (dst, k) = VAR_PART_OFFSET (dst, j);
2922 	      node2 = dstnode;
2923 	      for (node = src->var_part[i].loc_chain; node; node = node->next)
2924 		if (!((REG_P (dstnode->loc)
2925 		       && REG_P (node->loc)
2926 		       && REGNO (dstnode->loc) == REGNO (node->loc))
2927 		      || rtx_equal_p (dstnode->loc, node->loc)))
2928 		  {
2929 		    location_chain new_node;
2930 
2931 		    /* Copy the location from SRC.  */
2932 		    new_node = (location_chain) pool_alloc (loc_chain_pool);
2933 		    new_node->loc = node->loc;
2934 		    new_node->init = node->init;
2935 		    if (!node->set_src || MEM_P (node->set_src))
2936 		      new_node->set_src = NULL;
2937 		    else
2938 		      new_node->set_src = node->set_src;
2939 		    node2->next = new_node;
2940 		    node2 = new_node;
2941 		  }
2942 	      node2->next = NULL;
2943 	    }
2944 	  else
2945 	    {
2946 	      if (src_l + dst_l > vui_allocated)
2947 		{
2948 		  vui_allocated = MAX (vui_allocated * 2, src_l + dst_l);
2949 		  vui_vec = XRESIZEVEC (struct variable_union_info, vui_vec,
2950 					vui_allocated);
2951 		}
2952 	      vui = vui_vec;
2953 
2954 	      /* Fill in the locations from DST.  */
2955 	      for (node = dst->var_part[j].loc_chain, jj = 0; node;
2956 		   node = node->next, jj++)
2957 		{
2958 		  vui[jj].lc = node;
2959 		  vui[jj].pos_dst = jj;
2960 
2961 		  /* Pos plus value larger than a sum of 2 valid positions.  */
2962 		  vui[jj].pos = jj + src_l + dst_l;
2963 		}
2964 
2965 	      /* Fill in the locations from SRC.  */
2966 	      n = dst_l;
2967 	      for (node = src->var_part[i].loc_chain, ii = 0; node;
2968 		   node = node->next, ii++)
2969 		{
2970 		  /* Find location from NODE.  */
2971 		  for (jj = 0; jj < dst_l; jj++)
2972 		    {
2973 		      if ((REG_P (vui[jj].lc->loc)
2974 			   && REG_P (node->loc)
2975 			   && REGNO (vui[jj].lc->loc) == REGNO (node->loc))
2976 			  || rtx_equal_p (vui[jj].lc->loc, node->loc))
2977 			{
2978 			  vui[jj].pos = jj + ii;
2979 			  break;
2980 			}
2981 		    }
2982 		  if (jj >= dst_l)	/* The location has not been found.  */
2983 		    {
2984 		      location_chain new_node;
2985 
2986 		      /* Copy the location from SRC.  */
2987 		      new_node = (location_chain) pool_alloc (loc_chain_pool);
2988 		      new_node->loc = node->loc;
2989 		      new_node->init = node->init;
2990 		      if (!node->set_src || MEM_P (node->set_src))
2991 			new_node->set_src = NULL;
2992 		      else
2993 			new_node->set_src = node->set_src;
2994 		      vui[n].lc = new_node;
2995 		      vui[n].pos_dst = src_l + dst_l;
2996 		      vui[n].pos = ii + src_l + dst_l;
2997 		      n++;
2998 		    }
2999 		}
3000 
3001 	      if (dst_l == 2)
3002 		{
3003 		  /* Special case still very common case.  For dst_l == 2
3004 		     all entries dst_l ... n-1 are sorted, with for i >= dst_l
3005 		     vui[i].pos == i + src_l + dst_l.  */
3006 		  if (vui[0].pos > vui[1].pos)
3007 		    {
3008 		      /* Order should be 1, 0, 2... */
3009 		      dst->var_part[k].loc_chain = vui[1].lc;
3010 		      vui[1].lc->next = vui[0].lc;
3011 		      if (n >= 3)
3012 			{
3013 			  vui[0].lc->next = vui[2].lc;
3014 			  vui[n - 1].lc->next = NULL;
3015 			}
3016 		      else
3017 			vui[0].lc->next = NULL;
3018 		      ii = 3;
3019 		    }
3020 		  else
3021 		    {
3022 		      dst->var_part[k].loc_chain = vui[0].lc;
3023 		      if (n >= 3 && vui[2].pos < vui[1].pos)
3024 			{
3025 			  /* Order should be 0, 2, 1, 3... */
3026 			  vui[0].lc->next = vui[2].lc;
3027 			  vui[2].lc->next = vui[1].lc;
3028 			  if (n >= 4)
3029 			    {
3030 			      vui[1].lc->next = vui[3].lc;
3031 			      vui[n - 1].lc->next = NULL;
3032 			    }
3033 			  else
3034 			    vui[1].lc->next = NULL;
3035 			  ii = 4;
3036 			}
3037 		      else
3038 			{
3039 			  /* Order should be 0, 1, 2... */
3040 			  ii = 1;
3041 			  vui[n - 1].lc->next = NULL;
3042 			}
3043 		    }
3044 		  for (; ii < n; ii++)
3045 		    vui[ii - 1].lc->next = vui[ii].lc;
3046 		}
3047 	      else
3048 		{
3049 		  qsort (vui, n, sizeof (struct variable_union_info),
3050 			 variable_union_info_cmp_pos);
3051 
3052 		  /* Reconnect the nodes in sorted order.  */
3053 		  for (ii = 1; ii < n; ii++)
3054 		    vui[ii - 1].lc->next = vui[ii].lc;
3055 		  vui[n - 1].lc->next = NULL;
3056 		  dst->var_part[k].loc_chain = vui[0].lc;
3057 		}
3058 
3059 	      VAR_PART_OFFSET (dst, k) = VAR_PART_OFFSET (dst, j);
3060 	    }
3061 	  i--;
3062 	  j--;
3063 	}
3064       else if ((i >= 0 && j >= 0
3065 		&& VAR_PART_OFFSET (src, i) < VAR_PART_OFFSET (dst, j))
3066 	       || i < 0)
3067 	{
3068 	  dst->var_part[k] = dst->var_part[j];
3069 	  j--;
3070 	}
3071       else if ((i >= 0 && j >= 0
3072 		&& VAR_PART_OFFSET (src, i) > VAR_PART_OFFSET (dst, j))
3073 	       || j < 0)
3074 	{
3075 	  location_chain *nextp;
3076 
3077 	  /* Copy the chain from SRC.  */
3078 	  nextp = &dst->var_part[k].loc_chain;
3079 	  for (node = src->var_part[i].loc_chain; node; node = node->next)
3080 	    {
3081 	      location_chain new_lc;
3082 
3083 	      new_lc = (location_chain) pool_alloc (loc_chain_pool);
3084 	      new_lc->next = NULL;
3085 	      new_lc->init = node->init;
3086 	      if (!node->set_src || MEM_P (node->set_src))
3087 		new_lc->set_src = NULL;
3088 	      else
3089 		new_lc->set_src = node->set_src;
3090 	      new_lc->loc = node->loc;
3091 
3092 	      *nextp = new_lc;
3093 	      nextp = &new_lc->next;
3094 	    }
3095 
3096 	  VAR_PART_OFFSET (dst, k) = VAR_PART_OFFSET (src, i);
3097 	  i--;
3098 	}
3099       dst->var_part[k].cur_loc = NULL;
3100     }
3101 
3102   if (flag_var_tracking_uninit)
3103     for (i = 0; i < src->n_var_parts && i < dst->n_var_parts; i++)
3104       {
3105 	location_chain node, node2;
3106 	for (node = src->var_part[i].loc_chain; node; node = node->next)
3107 	  for (node2 = dst->var_part[i].loc_chain; node2; node2 = node2->next)
3108 	    if (rtx_equal_p (node->loc, node2->loc))
3109 	      {
3110 		if (node->init > node2->init)
3111 		  node2->init = node->init;
3112 	      }
3113       }
3114 
3115   /* Continue traversing the hash table.  */
3116   return 1;
3117 }
3118 
3119 /* Compute union of dataflow sets SRC and DST and store it to DST.  */
3120 
3121 static void
3122 dataflow_set_union (dataflow_set *dst, dataflow_set *src)
3123 {
3124   int i;
3125 
3126   for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3127     attrs_list_union (&dst->regs[i], src->regs[i]);
3128 
3129   if (dst->vars == empty_shared_hash)
3130     {
3131       shared_hash_destroy (dst->vars);
3132       dst->vars = shared_hash_copy (src->vars);
3133     }
3134   else
3135     {
3136       variable_iterator_type hi;
3137       variable var;
3138 
3139       FOR_EACH_HASH_TABLE_ELEMENT (*shared_hash_htab (src->vars),
3140 				   var, variable, hi)
3141 	variable_union (var, dst);
3142     }
3143 }
3144 
3145 /* Whether the value is currently being expanded.  */
3146 #define VALUE_RECURSED_INTO(x) \
3147   (RTL_FLAG_CHECK2 ("VALUE_RECURSED_INTO", (x), VALUE, DEBUG_EXPR)->used)
3148 
3149 /* Whether no expansion was found, saving useless lookups.
3150    It must only be set when VALUE_CHANGED is clear.  */
3151 #define NO_LOC_P(x) \
3152   (RTL_FLAG_CHECK2 ("NO_LOC_P", (x), VALUE, DEBUG_EXPR)->return_val)
3153 
3154 /* Whether cur_loc in the value needs to be (re)computed.  */
3155 #define VALUE_CHANGED(x) \
3156   (RTL_FLAG_CHECK1 ("VALUE_CHANGED", (x), VALUE)->frame_related)
3157 /* Whether cur_loc in the decl needs to be (re)computed.  */
3158 #define DECL_CHANGED(x) TREE_VISITED (x)
3159 
3160 /* Record (if NEWV) that DV needs to have its cur_loc recomputed.  For
3161    user DECLs, this means they're in changed_variables.  Values and
3162    debug exprs may be left with this flag set if no user variable
3163    requires them to be evaluated.  */
3164 
3165 static inline void
3166 set_dv_changed (decl_or_value dv, bool newv)
3167 {
3168   switch (dv_onepart_p (dv))
3169     {
3170     case ONEPART_VALUE:
3171       if (newv)
3172 	NO_LOC_P (dv_as_value (dv)) = false;
3173       VALUE_CHANGED (dv_as_value (dv)) = newv;
3174       break;
3175 
3176     case ONEPART_DEXPR:
3177       if (newv)
3178 	NO_LOC_P (DECL_RTL_KNOWN_SET (dv_as_decl (dv))) = false;
3179       /* Fall through...  */
3180 
3181     default:
3182       DECL_CHANGED (dv_as_decl (dv)) = newv;
3183       break;
3184     }
3185 }
3186 
3187 /* Return true if DV needs to have its cur_loc recomputed.  */
3188 
3189 static inline bool
3190 dv_changed_p (decl_or_value dv)
3191 {
3192   return (dv_is_value_p (dv)
3193 	  ? VALUE_CHANGED (dv_as_value (dv))
3194 	  : DECL_CHANGED (dv_as_decl (dv)));
3195 }
3196 
3197 /* Return a location list node whose loc is rtx_equal to LOC, in the
3198    location list of a one-part variable or value VAR, or in that of
3199    any values recursively mentioned in the location lists.  VARS must
3200    be in star-canonical form.  */
3201 
3202 static location_chain
3203 find_loc_in_1pdv (rtx loc, variable var, variable_table_type *vars)
3204 {
3205   location_chain node;
3206   enum rtx_code loc_code;
3207 
3208   if (!var)
3209     return NULL;
3210 
3211   gcc_checking_assert (var->onepart);
3212 
3213   if (!var->n_var_parts)
3214     return NULL;
3215 
3216   gcc_checking_assert (loc != dv_as_opaque (var->dv));
3217 
3218   loc_code = GET_CODE (loc);
3219   for (node = var->var_part[0].loc_chain; node; node = node->next)
3220     {
3221       decl_or_value dv;
3222       variable rvar;
3223 
3224       if (GET_CODE (node->loc) != loc_code)
3225 	{
3226 	  if (GET_CODE (node->loc) != VALUE)
3227 	    continue;
3228 	}
3229       else if (loc == node->loc)
3230 	return node;
3231       else if (loc_code != VALUE)
3232 	{
3233 	  if (rtx_equal_p (loc, node->loc))
3234 	    return node;
3235 	  continue;
3236 	}
3237 
3238       /* Since we're in star-canonical form, we don't need to visit
3239 	 non-canonical nodes: one-part variables and non-canonical
3240 	 values would only point back to the canonical node.  */
3241       if (dv_is_value_p (var->dv)
3242 	  && !canon_value_cmp (node->loc, dv_as_value (var->dv)))
3243 	{
3244 	  /* Skip all subsequent VALUEs.  */
3245 	  while (node->next && GET_CODE (node->next->loc) == VALUE)
3246 	    {
3247 	      node = node->next;
3248 	      gcc_checking_assert (!canon_value_cmp (node->loc,
3249 						     dv_as_value (var->dv)));
3250 	      if (loc == node->loc)
3251 		return node;
3252 	    }
3253 	  continue;
3254 	}
3255 
3256       gcc_checking_assert (node == var->var_part[0].loc_chain);
3257       gcc_checking_assert (!node->next);
3258 
3259       dv = dv_from_value (node->loc);
3260       rvar = vars->find_with_hash (dv, dv_htab_hash (dv));
3261       return find_loc_in_1pdv (loc, rvar, vars);
3262     }
3263 
3264   /* ??? Gotta look in cselib_val locations too.  */
3265 
3266   return NULL;
3267 }
3268 
3269 /* Hash table iteration argument passed to variable_merge.  */
3270 struct dfset_merge
3271 {
3272   /* The set in which the merge is to be inserted.  */
3273   dataflow_set *dst;
3274   /* The set that we're iterating in.  */
3275   dataflow_set *cur;
3276   /* The set that may contain the other dv we are to merge with.  */
3277   dataflow_set *src;
3278   /* Number of onepart dvs in src.  */
3279   int src_onepart_cnt;
3280 };
3281 
3282 /* Insert LOC in *DNODE, if it's not there yet.  The list must be in
3283    loc_cmp order, and it is maintained as such.  */
3284 
3285 static void
3286 insert_into_intersection (location_chain *nodep, rtx loc,
3287 			  enum var_init_status status)
3288 {
3289   location_chain node;
3290   int r;
3291 
3292   for (node = *nodep; node; nodep = &node->next, node = *nodep)
3293     if ((r = loc_cmp (node->loc, loc)) == 0)
3294       {
3295 	node->init = MIN (node->init, status);
3296 	return;
3297       }
3298     else if (r > 0)
3299       break;
3300 
3301   node = (location_chain) pool_alloc (loc_chain_pool);
3302 
3303   node->loc = loc;
3304   node->set_src = NULL;
3305   node->init = status;
3306   node->next = *nodep;
3307   *nodep = node;
3308 }
3309 
3310 /* Insert in DEST the intersection of the locations present in both
3311    S1NODE and S2VAR, directly or indirectly.  S1NODE is from a
3312    variable in DSM->cur, whereas S2VAR is from DSM->src.  dvar is in
3313    DSM->dst.  */
3314 
3315 static void
3316 intersect_loc_chains (rtx val, location_chain *dest, struct dfset_merge *dsm,
3317 		      location_chain s1node, variable s2var)
3318 {
3319   dataflow_set *s1set = dsm->cur;
3320   dataflow_set *s2set = dsm->src;
3321   location_chain found;
3322 
3323   if (s2var)
3324     {
3325       location_chain s2node;
3326 
3327       gcc_checking_assert (s2var->onepart);
3328 
3329       if (s2var->n_var_parts)
3330 	{
3331 	  s2node = s2var->var_part[0].loc_chain;
3332 
3333 	  for (; s1node && s2node;
3334 	       s1node = s1node->next, s2node = s2node->next)
3335 	    if (s1node->loc != s2node->loc)
3336 	      break;
3337 	    else if (s1node->loc == val)
3338 	      continue;
3339 	    else
3340 	      insert_into_intersection (dest, s1node->loc,
3341 					MIN (s1node->init, s2node->init));
3342 	}
3343     }
3344 
3345   for (; s1node; s1node = s1node->next)
3346     {
3347       if (s1node->loc == val)
3348 	continue;
3349 
3350       if ((found = find_loc_in_1pdv (s1node->loc, s2var,
3351 				     shared_hash_htab (s2set->vars))))
3352 	{
3353 	  insert_into_intersection (dest, s1node->loc,
3354 				    MIN (s1node->init, found->init));
3355 	  continue;
3356 	}
3357 
3358       if (GET_CODE (s1node->loc) == VALUE
3359 	  && !VALUE_RECURSED_INTO (s1node->loc))
3360 	{
3361 	  decl_or_value dv = dv_from_value (s1node->loc);
3362 	  variable svar = shared_hash_find (s1set->vars, dv);
3363 	  if (svar)
3364 	    {
3365 	      if (svar->n_var_parts == 1)
3366 		{
3367 		  VALUE_RECURSED_INTO (s1node->loc) = true;
3368 		  intersect_loc_chains (val, dest, dsm,
3369 					svar->var_part[0].loc_chain,
3370 					s2var);
3371 		  VALUE_RECURSED_INTO (s1node->loc) = false;
3372 		}
3373 	    }
3374 	}
3375 
3376       /* ??? gotta look in cselib_val locations too.  */
3377 
3378       /* ??? if the location is equivalent to any location in src,
3379 	 searched recursively
3380 
3381 	   add to dst the values needed to represent the equivalence
3382 
3383      telling whether locations S is equivalent to another dv's
3384      location list:
3385 
3386        for each location D in the list
3387 
3388          if S and D satisfy rtx_equal_p, then it is present
3389 
3390 	 else if D is a value, recurse without cycles
3391 
3392 	 else if S and D have the same CODE and MODE
3393 
3394 	   for each operand oS and the corresponding oD
3395 
3396 	     if oS and oD are not equivalent, then S an D are not equivalent
3397 
3398 	     else if they are RTX vectors
3399 
3400 	       if any vector oS element is not equivalent to its respective oD,
3401 	       then S and D are not equivalent
3402 
3403    */
3404 
3405 
3406     }
3407 }
3408 
3409 /* Return -1 if X should be before Y in a location list for a 1-part
3410    variable, 1 if Y should be before X, and 0 if they're equivalent
3411    and should not appear in the list.  */
3412 
3413 static int
3414 loc_cmp (rtx x, rtx y)
3415 {
3416   int i, j, r;
3417   RTX_CODE code = GET_CODE (x);
3418   const char *fmt;
3419 
3420   if (x == y)
3421     return 0;
3422 
3423   if (REG_P (x))
3424     {
3425       if (!REG_P (y))
3426 	return -1;
3427       gcc_assert (GET_MODE (x) == GET_MODE (y));
3428       if (REGNO (x) == REGNO (y))
3429 	return 0;
3430       else if (REGNO (x) < REGNO (y))
3431 	return -1;
3432       else
3433 	return 1;
3434     }
3435 
3436   if (REG_P (y))
3437     return 1;
3438 
3439   if (MEM_P (x))
3440     {
3441       if (!MEM_P (y))
3442 	return -1;
3443       gcc_assert (GET_MODE (x) == GET_MODE (y));
3444       return loc_cmp (XEXP (x, 0), XEXP (y, 0));
3445     }
3446 
3447   if (MEM_P (y))
3448     return 1;
3449 
3450   if (GET_CODE (x) == VALUE)
3451     {
3452       if (GET_CODE (y) != VALUE)
3453 	return -1;
3454       /* Don't assert the modes are the same, that is true only
3455 	 when not recursing.  (subreg:QI (value:SI 1:1) 0)
3456 	 and (subreg:QI (value:DI 2:2) 0) can be compared,
3457 	 even when the modes are different.  */
3458       if (canon_value_cmp (x, y))
3459 	return -1;
3460       else
3461 	return 1;
3462     }
3463 
3464   if (GET_CODE (y) == VALUE)
3465     return 1;
3466 
3467   /* Entry value is the least preferable kind of expression.  */
3468   if (GET_CODE (x) == ENTRY_VALUE)
3469     {
3470       if (GET_CODE (y) != ENTRY_VALUE)
3471 	return 1;
3472       gcc_assert (GET_MODE (x) == GET_MODE (y));
3473       return loc_cmp (ENTRY_VALUE_EXP (x), ENTRY_VALUE_EXP (y));
3474     }
3475 
3476   if (GET_CODE (y) == ENTRY_VALUE)
3477     return -1;
3478 
3479   if (GET_CODE (x) == GET_CODE (y))
3480     /* Compare operands below.  */;
3481   else if (GET_CODE (x) < GET_CODE (y))
3482     return -1;
3483   else
3484     return 1;
3485 
3486   gcc_assert (GET_MODE (x) == GET_MODE (y));
3487 
3488   if (GET_CODE (x) == DEBUG_EXPR)
3489     {
3490       if (DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (x))
3491 	  < DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (y)))
3492 	return -1;
3493       gcc_checking_assert (DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (x))
3494 			   > DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (y)));
3495       return 1;
3496     }
3497 
3498   fmt = GET_RTX_FORMAT (code);
3499   for (i = 0; i < GET_RTX_LENGTH (code); i++)
3500     switch (fmt[i])
3501       {
3502       case 'w':
3503 	if (XWINT (x, i) == XWINT (y, i))
3504 	  break;
3505 	else if (XWINT (x, i) < XWINT (y, i))
3506 	  return -1;
3507 	else
3508 	  return 1;
3509 
3510       case 'n':
3511       case 'i':
3512 	if (XINT (x, i) == XINT (y, i))
3513 	  break;
3514 	else if (XINT (x, i) < XINT (y, i))
3515 	  return -1;
3516 	else
3517 	  return 1;
3518 
3519       case 'V':
3520       case 'E':
3521 	/* Compare the vector length first.  */
3522 	if (XVECLEN (x, i) == XVECLEN (y, i))
3523 	  /* Compare the vectors elements.  */;
3524 	else if (XVECLEN (x, i) < XVECLEN (y, i))
3525 	  return -1;
3526 	else
3527 	  return 1;
3528 
3529 	for (j = 0; j < XVECLEN (x, i); j++)
3530 	  if ((r = loc_cmp (XVECEXP (x, i, j),
3531 			    XVECEXP (y, i, j))))
3532 	    return r;
3533 	break;
3534 
3535       case 'e':
3536 	if ((r = loc_cmp (XEXP (x, i), XEXP (y, i))))
3537 	  return r;
3538 	break;
3539 
3540       case 'S':
3541       case 's':
3542 	if (XSTR (x, i) == XSTR (y, i))
3543 	  break;
3544 	if (!XSTR (x, i))
3545 	  return -1;
3546 	if (!XSTR (y, i))
3547 	  return 1;
3548 	if ((r = strcmp (XSTR (x, i), XSTR (y, i))) == 0)
3549 	  break;
3550 	else if (r < 0)
3551 	  return -1;
3552 	else
3553 	  return 1;
3554 
3555       case 'u':
3556 	/* These are just backpointers, so they don't matter.  */
3557 	break;
3558 
3559       case '0':
3560       case 't':
3561 	break;
3562 
3563 	/* It is believed that rtx's at this level will never
3564 	   contain anything but integers and other rtx's,
3565 	   except for within LABEL_REFs and SYMBOL_REFs.  */
3566       default:
3567 	gcc_unreachable ();
3568       }
3569   if (CONST_WIDE_INT_P (x))
3570     {
3571       /* Compare the vector length first.  */
3572       if (CONST_WIDE_INT_NUNITS (x) >= CONST_WIDE_INT_NUNITS (y))
3573 	return 1;
3574       else if (CONST_WIDE_INT_NUNITS (x) < CONST_WIDE_INT_NUNITS (y))
3575 	return -1;
3576 
3577       /* Compare the vectors elements.  */;
3578       for (j = CONST_WIDE_INT_NUNITS (x) - 1; j >= 0 ; j--)
3579 	{
3580 	  if (CONST_WIDE_INT_ELT (x, j) < CONST_WIDE_INT_ELT (y, j))
3581 	    return -1;
3582 	  if (CONST_WIDE_INT_ELT (x, j) > CONST_WIDE_INT_ELT (y, j))
3583 	    return 1;
3584 	}
3585     }
3586 
3587   return 0;
3588 }
3589 
3590 #if ENABLE_CHECKING
3591 /* Check the order of entries in one-part variables.   */
3592 
3593 int
3594 canonicalize_loc_order_check (variable_def **slot,
3595 			      dataflow_set *data ATTRIBUTE_UNUSED)
3596 {
3597   variable var = *slot;
3598   location_chain node, next;
3599 
3600 #ifdef ENABLE_RTL_CHECKING
3601   int i;
3602   for (i = 0; i < var->n_var_parts; i++)
3603     gcc_assert (var->var_part[0].cur_loc == NULL);
3604   gcc_assert (!var->in_changed_variables);
3605 #endif
3606 
3607   if (!var->onepart)
3608     return 1;
3609 
3610   gcc_assert (var->n_var_parts == 1);
3611   node = var->var_part[0].loc_chain;
3612   gcc_assert (node);
3613 
3614   while ((next = node->next))
3615     {
3616       gcc_assert (loc_cmp (node->loc, next->loc) < 0);
3617       node = next;
3618     }
3619 
3620   return 1;
3621 }
3622 #endif
3623 
3624 /* Mark with VALUE_RECURSED_INTO values that have neighbors that are
3625    more likely to be chosen as canonical for an equivalence set.
3626    Ensure less likely values can reach more likely neighbors, making
3627    the connections bidirectional.  */
3628 
3629 int
3630 canonicalize_values_mark (variable_def **slot, dataflow_set *set)
3631 {
3632   variable var = *slot;
3633   decl_or_value dv = var->dv;
3634   rtx val;
3635   location_chain node;
3636 
3637   if (!dv_is_value_p (dv))
3638     return 1;
3639 
3640   gcc_checking_assert (var->n_var_parts == 1);
3641 
3642   val = dv_as_value (dv);
3643 
3644   for (node = var->var_part[0].loc_chain; node; node = node->next)
3645     if (GET_CODE (node->loc) == VALUE)
3646       {
3647 	if (canon_value_cmp (node->loc, val))
3648 	  VALUE_RECURSED_INTO (val) = true;
3649 	else
3650 	  {
3651 	    decl_or_value odv = dv_from_value (node->loc);
3652 	    variable_def **oslot;
3653 	    oslot = shared_hash_find_slot_noinsert (set->vars, odv);
3654 
3655 	    set_slot_part (set, val, oslot, odv, 0,
3656 			   node->init, NULL_RTX);
3657 
3658 	    VALUE_RECURSED_INTO (node->loc) = true;
3659 	  }
3660       }
3661 
3662   return 1;
3663 }
3664 
3665 /* Remove redundant entries from equivalence lists in onepart
3666    variables, canonicalizing equivalence sets into star shapes.  */
3667 
3668 int
3669 canonicalize_values_star (variable_def **slot, dataflow_set *set)
3670 {
3671   variable var = *slot;
3672   decl_or_value dv = var->dv;
3673   location_chain node;
3674   decl_or_value cdv;
3675   rtx val, cval;
3676   variable_def **cslot;
3677   bool has_value;
3678   bool has_marks;
3679 
3680   if (!var->onepart)
3681     return 1;
3682 
3683   gcc_checking_assert (var->n_var_parts == 1);
3684 
3685   if (dv_is_value_p (dv))
3686     {
3687       cval = dv_as_value (dv);
3688       if (!VALUE_RECURSED_INTO (cval))
3689 	return 1;
3690       VALUE_RECURSED_INTO (cval) = false;
3691     }
3692   else
3693     cval = NULL_RTX;
3694 
3695  restart:
3696   val = cval;
3697   has_value = false;
3698   has_marks = false;
3699 
3700   gcc_assert (var->n_var_parts == 1);
3701 
3702   for (node = var->var_part[0].loc_chain; node; node = node->next)
3703     if (GET_CODE (node->loc) == VALUE)
3704       {
3705 	has_value = true;
3706 	if (VALUE_RECURSED_INTO (node->loc))
3707 	  has_marks = true;
3708 	if (canon_value_cmp (node->loc, cval))
3709 	  cval = node->loc;
3710       }
3711 
3712   if (!has_value)
3713     return 1;
3714 
3715   if (cval == val)
3716     {
3717       if (!has_marks || dv_is_decl_p (dv))
3718 	return 1;
3719 
3720       /* Keep it marked so that we revisit it, either after visiting a
3721 	 child node, or after visiting a new parent that might be
3722 	 found out.  */
3723       VALUE_RECURSED_INTO (val) = true;
3724 
3725       for (node = var->var_part[0].loc_chain; node; node = node->next)
3726 	if (GET_CODE (node->loc) == VALUE
3727 	    && VALUE_RECURSED_INTO (node->loc))
3728 	  {
3729 	    cval = node->loc;
3730 	  restart_with_cval:
3731 	    VALUE_RECURSED_INTO (cval) = false;
3732 	    dv = dv_from_value (cval);
3733 	    slot = shared_hash_find_slot_noinsert (set->vars, dv);
3734 	    if (!slot)
3735 	      {
3736 		gcc_assert (dv_is_decl_p (var->dv));
3737 		/* The canonical value was reset and dropped.
3738 		   Remove it.  */
3739 		clobber_variable_part (set, NULL, var->dv, 0, NULL);
3740 		return 1;
3741 	      }
3742 	    var = *slot;
3743 	    gcc_assert (dv_is_value_p (var->dv));
3744 	    if (var->n_var_parts == 0)
3745 	      return 1;
3746 	    gcc_assert (var->n_var_parts == 1);
3747 	    goto restart;
3748 	  }
3749 
3750       VALUE_RECURSED_INTO (val) = false;
3751 
3752       return 1;
3753     }
3754 
3755   /* Push values to the canonical one.  */
3756   cdv = dv_from_value (cval);
3757   cslot = shared_hash_find_slot_noinsert (set->vars, cdv);
3758 
3759   for (node = var->var_part[0].loc_chain; node; node = node->next)
3760     if (node->loc != cval)
3761       {
3762 	cslot = set_slot_part (set, node->loc, cslot, cdv, 0,
3763 			       node->init, NULL_RTX);
3764 	if (GET_CODE (node->loc) == VALUE)
3765 	  {
3766 	    decl_or_value ndv = dv_from_value (node->loc);
3767 
3768 	    set_variable_part (set, cval, ndv, 0, node->init, NULL_RTX,
3769 			       NO_INSERT);
3770 
3771 	    if (canon_value_cmp (node->loc, val))
3772 	      {
3773 		/* If it could have been a local minimum, it's not any more,
3774 		   since it's now neighbor to cval, so it may have to push
3775 		   to it.  Conversely, if it wouldn't have prevailed over
3776 		   val, then whatever mark it has is fine: if it was to
3777 		   push, it will now push to a more canonical node, but if
3778 		   it wasn't, then it has already pushed any values it might
3779 		   have to.  */
3780 		VALUE_RECURSED_INTO (node->loc) = true;
3781 		/* Make sure we visit node->loc by ensuring we cval is
3782 		   visited too.  */
3783 		VALUE_RECURSED_INTO (cval) = true;
3784 	      }
3785 	    else if (!VALUE_RECURSED_INTO (node->loc))
3786 	      /* If we have no need to "recurse" into this node, it's
3787 		 already "canonicalized", so drop the link to the old
3788 		 parent.  */
3789 	      clobber_variable_part (set, cval, ndv, 0, NULL);
3790 	  }
3791 	else if (GET_CODE (node->loc) == REG)
3792 	  {
3793 	    attrs list = set->regs[REGNO (node->loc)], *listp;
3794 
3795 	    /* Change an existing attribute referring to dv so that it
3796 	       refers to cdv, removing any duplicate this might
3797 	       introduce, and checking that no previous duplicates
3798 	       existed, all in a single pass.  */
3799 
3800 	    while (list)
3801 	      {
3802 		if (list->offset == 0
3803 		    && (dv_as_opaque (list->dv) == dv_as_opaque (dv)
3804 			|| dv_as_opaque (list->dv) == dv_as_opaque (cdv)))
3805 		  break;
3806 
3807 		list = list->next;
3808 	      }
3809 
3810 	    gcc_assert (list);
3811 	    if (dv_as_opaque (list->dv) == dv_as_opaque (dv))
3812 	      {
3813 		list->dv = cdv;
3814 		for (listp = &list->next; (list = *listp); listp = &list->next)
3815 		  {
3816 		    if (list->offset)
3817 		      continue;
3818 
3819 		    if (dv_as_opaque (list->dv) == dv_as_opaque (cdv))
3820 		      {
3821 			*listp = list->next;
3822 			pool_free (attrs_pool, list);
3823 			list = *listp;
3824 			break;
3825 		      }
3826 
3827 		    gcc_assert (dv_as_opaque (list->dv) != dv_as_opaque (dv));
3828 		  }
3829 	      }
3830 	    else if (dv_as_opaque (list->dv) == dv_as_opaque (cdv))
3831 	      {
3832 		for (listp = &list->next; (list = *listp); listp = &list->next)
3833 		  {
3834 		    if (list->offset)
3835 		      continue;
3836 
3837 		    if (dv_as_opaque (list->dv) == dv_as_opaque (dv))
3838 		      {
3839 			*listp = list->next;
3840 			pool_free (attrs_pool, list);
3841 			list = *listp;
3842 			break;
3843 		      }
3844 
3845 		    gcc_assert (dv_as_opaque (list->dv) != dv_as_opaque (cdv));
3846 		  }
3847 	      }
3848 	    else
3849 	      gcc_unreachable ();
3850 
3851 #if ENABLE_CHECKING
3852 	    while (list)
3853 	      {
3854 		if (list->offset == 0
3855 		    && (dv_as_opaque (list->dv) == dv_as_opaque (dv)
3856 			|| dv_as_opaque (list->dv) == dv_as_opaque (cdv)))
3857 		  gcc_unreachable ();
3858 
3859 		list = list->next;
3860 	      }
3861 #endif
3862 	  }
3863       }
3864 
3865   if (val)
3866     set_slot_part (set, val, cslot, cdv, 0,
3867 		   VAR_INIT_STATUS_INITIALIZED, NULL_RTX);
3868 
3869   slot = clobber_slot_part (set, cval, slot, 0, NULL);
3870 
3871   /* Variable may have been unshared.  */
3872   var = *slot;
3873   gcc_checking_assert (var->n_var_parts && var->var_part[0].loc_chain->loc == cval
3874 		       && var->var_part[0].loc_chain->next == NULL);
3875 
3876   if (VALUE_RECURSED_INTO (cval))
3877     goto restart_with_cval;
3878 
3879   return 1;
3880 }
3881 
3882 /* Bind one-part variables to the canonical value in an equivalence
3883    set.  Not doing this causes dataflow convergence failure in rare
3884    circumstances, see PR42873.  Unfortunately we can't do this
3885    efficiently as part of canonicalize_values_star, since we may not
3886    have determined or even seen the canonical value of a set when we
3887    get to a variable that references another member of the set.  */
3888 
3889 int
3890 canonicalize_vars_star (variable_def **slot, dataflow_set *set)
3891 {
3892   variable var = *slot;
3893   decl_or_value dv = var->dv;
3894   location_chain node;
3895   rtx cval;
3896   decl_or_value cdv;
3897   variable_def **cslot;
3898   variable cvar;
3899   location_chain cnode;
3900 
3901   if (!var->onepart || var->onepart == ONEPART_VALUE)
3902     return 1;
3903 
3904   gcc_assert (var->n_var_parts == 1);
3905 
3906   node = var->var_part[0].loc_chain;
3907 
3908   if (GET_CODE (node->loc) != VALUE)
3909     return 1;
3910 
3911   gcc_assert (!node->next);
3912   cval = node->loc;
3913 
3914   /* Push values to the canonical one.  */
3915   cdv = dv_from_value (cval);
3916   cslot = shared_hash_find_slot_noinsert (set->vars, cdv);
3917   if (!cslot)
3918     return 1;
3919   cvar = *cslot;
3920   gcc_assert (cvar->n_var_parts == 1);
3921 
3922   cnode = cvar->var_part[0].loc_chain;
3923 
3924   /* CVAL is canonical if its value list contains non-VALUEs or VALUEs
3925      that are not “more canonical” than it.  */
3926   if (GET_CODE (cnode->loc) != VALUE
3927       || !canon_value_cmp (cnode->loc, cval))
3928     return 1;
3929 
3930   /* CVAL was found to be non-canonical.  Change the variable to point
3931      to the canonical VALUE.  */
3932   gcc_assert (!cnode->next);
3933   cval = cnode->loc;
3934 
3935   slot = set_slot_part (set, cval, slot, dv, 0,
3936 			node->init, node->set_src);
3937   clobber_slot_part (set, cval, slot, 0, node->set_src);
3938 
3939   return 1;
3940 }
3941 
3942 /* Combine variable or value in *S1SLOT (in DSM->cur) with the
3943    corresponding entry in DSM->src.  Multi-part variables are combined
3944    with variable_union, whereas onepart dvs are combined with
3945    intersection.  */
3946 
3947 static int
3948 variable_merge_over_cur (variable s1var, struct dfset_merge *dsm)
3949 {
3950   dataflow_set *dst = dsm->dst;
3951   variable_def **dstslot;
3952   variable s2var, dvar = NULL;
3953   decl_or_value dv = s1var->dv;
3954   onepart_enum_t onepart = s1var->onepart;
3955   rtx val;
3956   hashval_t dvhash;
3957   location_chain node, *nodep;
3958 
3959   /* If the incoming onepart variable has an empty location list, then
3960      the intersection will be just as empty.  For other variables,
3961      it's always union.  */
3962   gcc_checking_assert (s1var->n_var_parts
3963 		       && s1var->var_part[0].loc_chain);
3964 
3965   if (!onepart)
3966     return variable_union (s1var, dst);
3967 
3968   gcc_checking_assert (s1var->n_var_parts == 1);
3969 
3970   dvhash = dv_htab_hash (dv);
3971   if (dv_is_value_p (dv))
3972     val = dv_as_value (dv);
3973   else
3974     val = NULL;
3975 
3976   s2var = shared_hash_find_1 (dsm->src->vars, dv, dvhash);
3977   if (!s2var)
3978     {
3979       dst_can_be_shared = false;
3980       return 1;
3981     }
3982 
3983   dsm->src_onepart_cnt--;
3984   gcc_assert (s2var->var_part[0].loc_chain
3985 	      && s2var->onepart == onepart
3986 	      && s2var->n_var_parts == 1);
3987 
3988   dstslot = shared_hash_find_slot_noinsert_1 (dst->vars, dv, dvhash);
3989   if (dstslot)
3990     {
3991       dvar = *dstslot;
3992       gcc_assert (dvar->refcount == 1
3993 		  && dvar->onepart == onepart
3994 		  && dvar->n_var_parts == 1);
3995       nodep = &dvar->var_part[0].loc_chain;
3996     }
3997   else
3998     {
3999       nodep = &node;
4000       node = NULL;
4001     }
4002 
4003   if (!dstslot && !onepart_variable_different_p (s1var, s2var))
4004     {
4005       dstslot = shared_hash_find_slot_unshare_1 (&dst->vars, dv,
4006 						 dvhash, INSERT);
4007       *dstslot = dvar = s2var;
4008       dvar->refcount++;
4009     }
4010   else
4011     {
4012       dst_can_be_shared = false;
4013 
4014       intersect_loc_chains (val, nodep, dsm,
4015 			    s1var->var_part[0].loc_chain, s2var);
4016 
4017       if (!dstslot)
4018 	{
4019 	  if (node)
4020 	    {
4021 	      dvar = (variable) pool_alloc (onepart_pool (onepart));
4022 	      dvar->dv = dv;
4023 	      dvar->refcount = 1;
4024 	      dvar->n_var_parts = 1;
4025 	      dvar->onepart = onepart;
4026 	      dvar->in_changed_variables = false;
4027 	      dvar->var_part[0].loc_chain = node;
4028 	      dvar->var_part[0].cur_loc = NULL;
4029 	      if (onepart)
4030 		VAR_LOC_1PAUX (dvar) = NULL;
4031 	      else
4032 		VAR_PART_OFFSET (dvar, 0) = 0;
4033 
4034 	      dstslot
4035 		= shared_hash_find_slot_unshare_1 (&dst->vars, dv, dvhash,
4036 						   INSERT);
4037 	      gcc_assert (!*dstslot);
4038 	      *dstslot = dvar;
4039 	    }
4040 	  else
4041 	    return 1;
4042 	}
4043     }
4044 
4045   nodep = &dvar->var_part[0].loc_chain;
4046   while ((node = *nodep))
4047     {
4048       location_chain *nextp = &node->next;
4049 
4050       if (GET_CODE (node->loc) == REG)
4051 	{
4052 	  attrs list;
4053 
4054 	  for (list = dst->regs[REGNO (node->loc)]; list; list = list->next)
4055 	    if (GET_MODE (node->loc) == GET_MODE (list->loc)
4056 		&& dv_is_value_p (list->dv))
4057 	      break;
4058 
4059 	  if (!list)
4060 	    attrs_list_insert (&dst->regs[REGNO (node->loc)],
4061 			       dv, 0, node->loc);
4062 	  /* If this value became canonical for another value that had
4063 	     this register, we want to leave it alone.  */
4064 	  else if (dv_as_value (list->dv) != val)
4065 	    {
4066 	      dstslot = set_slot_part (dst, dv_as_value (list->dv),
4067 				       dstslot, dv, 0,
4068 				       node->init, NULL_RTX);
4069 	      dstslot = delete_slot_part (dst, node->loc, dstslot, 0);
4070 
4071 	      /* Since nextp points into the removed node, we can't
4072 		 use it.  The pointer to the next node moved to nodep.
4073 		 However, if the variable we're walking is unshared
4074 		 during our walk, we'll keep walking the location list
4075 		 of the previously-shared variable, in which case the
4076 		 node won't have been removed, and we'll want to skip
4077 		 it.  That's why we test *nodep here.  */
4078 	      if (*nodep != node)
4079 		nextp = nodep;
4080 	    }
4081 	}
4082       else
4083 	/* Canonicalization puts registers first, so we don't have to
4084 	   walk it all.  */
4085 	break;
4086       nodep = nextp;
4087     }
4088 
4089   if (dvar != *dstslot)
4090     dvar = *dstslot;
4091   nodep = &dvar->var_part[0].loc_chain;
4092 
4093   if (val)
4094     {
4095       /* Mark all referenced nodes for canonicalization, and make sure
4096 	 we have mutual equivalence links.  */
4097       VALUE_RECURSED_INTO (val) = true;
4098       for (node = *nodep; node; node = node->next)
4099 	if (GET_CODE (node->loc) == VALUE)
4100 	  {
4101 	    VALUE_RECURSED_INTO (node->loc) = true;
4102 	    set_variable_part (dst, val, dv_from_value (node->loc), 0,
4103 			       node->init, NULL, INSERT);
4104 	  }
4105 
4106       dstslot = shared_hash_find_slot_noinsert_1 (dst->vars, dv, dvhash);
4107       gcc_assert (*dstslot == dvar);
4108       canonicalize_values_star (dstslot, dst);
4109       gcc_checking_assert (dstslot
4110 			   == shared_hash_find_slot_noinsert_1 (dst->vars,
4111 								dv, dvhash));
4112       dvar = *dstslot;
4113     }
4114   else
4115     {
4116       bool has_value = false, has_other = false;
4117 
4118       /* If we have one value and anything else, we're going to
4119 	 canonicalize this, so make sure all values have an entry in
4120 	 the table and are marked for canonicalization.  */
4121       for (node = *nodep; node; node = node->next)
4122 	{
4123 	  if (GET_CODE (node->loc) == VALUE)
4124 	    {
4125 	      /* If this was marked during register canonicalization,
4126 		 we know we have to canonicalize values.  */
4127 	      if (has_value)
4128 		has_other = true;
4129 	      has_value = true;
4130 	      if (has_other)
4131 		break;
4132 	    }
4133 	  else
4134 	    {
4135 	      has_other = true;
4136 	      if (has_value)
4137 		break;
4138 	    }
4139 	}
4140 
4141       if (has_value && has_other)
4142 	{
4143 	  for (node = *nodep; node; node = node->next)
4144 	    {
4145 	      if (GET_CODE (node->loc) == VALUE)
4146 		{
4147 		  decl_or_value dv = dv_from_value (node->loc);
4148 		  variable_def **slot = NULL;
4149 
4150 		  if (shared_hash_shared (dst->vars))
4151 		    slot = shared_hash_find_slot_noinsert (dst->vars, dv);
4152 		  if (!slot)
4153 		    slot = shared_hash_find_slot_unshare (&dst->vars, dv,
4154 							  INSERT);
4155 		  if (!*slot)
4156 		    {
4157 		      variable var = (variable) pool_alloc (onepart_pool
4158 							    (ONEPART_VALUE));
4159 		      var->dv = dv;
4160 		      var->refcount = 1;
4161 		      var->n_var_parts = 1;
4162 		      var->onepart = ONEPART_VALUE;
4163 		      var->in_changed_variables = false;
4164 		      var->var_part[0].loc_chain = NULL;
4165 		      var->var_part[0].cur_loc = NULL;
4166 		      VAR_LOC_1PAUX (var) = NULL;
4167 		      *slot = var;
4168 		    }
4169 
4170 		  VALUE_RECURSED_INTO (node->loc) = true;
4171 		}
4172 	    }
4173 
4174 	  dstslot = shared_hash_find_slot_noinsert_1 (dst->vars, dv, dvhash);
4175 	  gcc_assert (*dstslot == dvar);
4176 	  canonicalize_values_star (dstslot, dst);
4177 	  gcc_checking_assert (dstslot
4178 			       == shared_hash_find_slot_noinsert_1 (dst->vars,
4179 								    dv, dvhash));
4180 	  dvar = *dstslot;
4181 	}
4182     }
4183 
4184   if (!onepart_variable_different_p (dvar, s2var))
4185     {
4186       variable_htab_free (dvar);
4187       *dstslot = dvar = s2var;
4188       dvar->refcount++;
4189     }
4190   else if (s2var != s1var && !onepart_variable_different_p (dvar, s1var))
4191     {
4192       variable_htab_free (dvar);
4193       *dstslot = dvar = s1var;
4194       dvar->refcount++;
4195       dst_can_be_shared = false;
4196     }
4197   else
4198     dst_can_be_shared = false;
4199 
4200   return 1;
4201 }
4202 
4203 /* Copy s2slot (in DSM->src) to DSM->dst if the variable is a
4204    multi-part variable.  Unions of multi-part variables and
4205    intersections of one-part ones will be handled in
4206    variable_merge_over_cur().  */
4207 
4208 static int
4209 variable_merge_over_src (variable s2var, struct dfset_merge *dsm)
4210 {
4211   dataflow_set *dst = dsm->dst;
4212   decl_or_value dv = s2var->dv;
4213 
4214   if (!s2var->onepart)
4215     {
4216       variable_def **dstp = shared_hash_find_slot (dst->vars, dv);
4217       *dstp = s2var;
4218       s2var->refcount++;
4219       return 1;
4220     }
4221 
4222   dsm->src_onepart_cnt++;
4223   return 1;
4224 }
4225 
4226 /* Combine dataflow set information from SRC2 into DST, using PDST
4227    to carry over information across passes.  */
4228 
4229 static void
4230 dataflow_set_merge (dataflow_set *dst, dataflow_set *src2)
4231 {
4232   dataflow_set cur = *dst;
4233   dataflow_set *src1 = &cur;
4234   struct dfset_merge dsm;
4235   int i;
4236   size_t src1_elems, src2_elems;
4237   variable_iterator_type hi;
4238   variable var;
4239 
4240   src1_elems = shared_hash_htab (src1->vars)->elements ();
4241   src2_elems = shared_hash_htab (src2->vars)->elements ();
4242   dataflow_set_init (dst);
4243   dst->stack_adjust = cur.stack_adjust;
4244   shared_hash_destroy (dst->vars);
4245   dst->vars = (shared_hash) pool_alloc (shared_hash_pool);
4246   dst->vars->refcount = 1;
4247   dst->vars->htab = new variable_table_type (MAX (src1_elems, src2_elems));
4248 
4249   for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4250     attrs_list_mpdv_union (&dst->regs[i], src1->regs[i], src2->regs[i]);
4251 
4252   dsm.dst = dst;
4253   dsm.src = src2;
4254   dsm.cur = src1;
4255   dsm.src_onepart_cnt = 0;
4256 
4257   FOR_EACH_HASH_TABLE_ELEMENT (*shared_hash_htab (dsm.src->vars),
4258 			       var, variable, hi)
4259     variable_merge_over_src (var, &dsm);
4260   FOR_EACH_HASH_TABLE_ELEMENT (*shared_hash_htab (dsm.cur->vars),
4261 			       var, variable, hi)
4262     variable_merge_over_cur (var, &dsm);
4263 
4264   if (dsm.src_onepart_cnt)
4265     dst_can_be_shared = false;
4266 
4267   dataflow_set_destroy (src1);
4268 }
4269 
4270 /* Mark register equivalences.  */
4271 
4272 static void
4273 dataflow_set_equiv_regs (dataflow_set *set)
4274 {
4275   int i;
4276   attrs list, *listp;
4277 
4278   for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4279     {
4280       rtx canon[NUM_MACHINE_MODES];
4281 
4282       /* If the list is empty or one entry, no need to canonicalize
4283 	 anything.  */
4284       if (set->regs[i] == NULL || set->regs[i]->next == NULL)
4285 	continue;
4286 
4287       memset (canon, 0, sizeof (canon));
4288 
4289       for (list = set->regs[i]; list; list = list->next)
4290 	if (list->offset == 0 && dv_is_value_p (list->dv))
4291 	  {
4292 	    rtx val = dv_as_value (list->dv);
4293 	    rtx *cvalp = &canon[(int)GET_MODE (val)];
4294 	    rtx cval = *cvalp;
4295 
4296 	    if (canon_value_cmp (val, cval))
4297 	      *cvalp = val;
4298 	  }
4299 
4300       for (list = set->regs[i]; list; list = list->next)
4301 	if (list->offset == 0 && dv_onepart_p (list->dv))
4302 	  {
4303 	    rtx cval = canon[(int)GET_MODE (list->loc)];
4304 
4305 	    if (!cval)
4306 	      continue;
4307 
4308 	    if (dv_is_value_p (list->dv))
4309 	      {
4310 		rtx val = dv_as_value (list->dv);
4311 
4312 		if (val == cval)
4313 		  continue;
4314 
4315 		VALUE_RECURSED_INTO (val) = true;
4316 		set_variable_part (set, val, dv_from_value (cval), 0,
4317 				   VAR_INIT_STATUS_INITIALIZED,
4318 				   NULL, NO_INSERT);
4319 	      }
4320 
4321 	    VALUE_RECURSED_INTO (cval) = true;
4322 	    set_variable_part (set, cval, list->dv, 0,
4323 			       VAR_INIT_STATUS_INITIALIZED, NULL, NO_INSERT);
4324 	  }
4325 
4326       for (listp = &set->regs[i]; (list = *listp);
4327 	   listp = list ? &list->next : listp)
4328 	if (list->offset == 0 && dv_onepart_p (list->dv))
4329 	  {
4330 	    rtx cval = canon[(int)GET_MODE (list->loc)];
4331 	    variable_def **slot;
4332 
4333 	    if (!cval)
4334 	      continue;
4335 
4336 	    if (dv_is_value_p (list->dv))
4337 	      {
4338 		rtx val = dv_as_value (list->dv);
4339 		if (!VALUE_RECURSED_INTO (val))
4340 		  continue;
4341 	      }
4342 
4343 	    slot = shared_hash_find_slot_noinsert (set->vars, list->dv);
4344 	    canonicalize_values_star (slot, set);
4345 	    if (*listp != list)
4346 	      list = NULL;
4347 	  }
4348     }
4349 }
4350 
4351 /* Remove any redundant values in the location list of VAR, which must
4352    be unshared and 1-part.  */
4353 
4354 static void
4355 remove_duplicate_values (variable var)
4356 {
4357   location_chain node, *nodep;
4358 
4359   gcc_assert (var->onepart);
4360   gcc_assert (var->n_var_parts == 1);
4361   gcc_assert (var->refcount == 1);
4362 
4363   for (nodep = &var->var_part[0].loc_chain; (node = *nodep); )
4364     {
4365       if (GET_CODE (node->loc) == VALUE)
4366 	{
4367 	  if (VALUE_RECURSED_INTO (node->loc))
4368 	    {
4369 	      /* Remove duplicate value node.  */
4370 	      *nodep = node->next;
4371 	      pool_free (loc_chain_pool, node);
4372 	      continue;
4373 	    }
4374 	  else
4375 	    VALUE_RECURSED_INTO (node->loc) = true;
4376 	}
4377       nodep = &node->next;
4378     }
4379 
4380   for (node = var->var_part[0].loc_chain; node; node = node->next)
4381     if (GET_CODE (node->loc) == VALUE)
4382       {
4383 	gcc_assert (VALUE_RECURSED_INTO (node->loc));
4384 	VALUE_RECURSED_INTO (node->loc) = false;
4385       }
4386 }
4387 
4388 
4389 /* Hash table iteration argument passed to variable_post_merge.  */
4390 struct dfset_post_merge
4391 {
4392   /* The new input set for the current block.  */
4393   dataflow_set *set;
4394   /* Pointer to the permanent input set for the current block, or
4395      NULL.  */
4396   dataflow_set **permp;
4397 };
4398 
4399 /* Create values for incoming expressions associated with one-part
4400    variables that don't have value numbers for them.  */
4401 
4402 int
4403 variable_post_merge_new_vals (variable_def **slot, dfset_post_merge *dfpm)
4404 {
4405   dataflow_set *set = dfpm->set;
4406   variable var = *slot;
4407   location_chain node;
4408 
4409   if (!var->onepart || !var->n_var_parts)
4410     return 1;
4411 
4412   gcc_assert (var->n_var_parts == 1);
4413 
4414   if (dv_is_decl_p (var->dv))
4415     {
4416       bool check_dupes = false;
4417 
4418     restart:
4419       for (node = var->var_part[0].loc_chain; node; node = node->next)
4420 	{
4421 	  if (GET_CODE (node->loc) == VALUE)
4422 	    gcc_assert (!VALUE_RECURSED_INTO (node->loc));
4423 	  else if (GET_CODE (node->loc) == REG)
4424 	    {
4425 	      attrs att, *attp, *curp = NULL;
4426 
4427 	      if (var->refcount != 1)
4428 		{
4429 		  slot = unshare_variable (set, slot, var,
4430 					   VAR_INIT_STATUS_INITIALIZED);
4431 		  var = *slot;
4432 		  goto restart;
4433 		}
4434 
4435 	      for (attp = &set->regs[REGNO (node->loc)]; (att = *attp);
4436 		   attp = &att->next)
4437 		if (att->offset == 0
4438 		    && GET_MODE (att->loc) == GET_MODE (node->loc))
4439 		  {
4440 		    if (dv_is_value_p (att->dv))
4441 		      {
4442 			rtx cval = dv_as_value (att->dv);
4443 			node->loc = cval;
4444 			check_dupes = true;
4445 			break;
4446 		      }
4447 		    else if (dv_as_opaque (att->dv) == dv_as_opaque (var->dv))
4448 		      curp = attp;
4449 		  }
4450 
4451 	      if (!curp)
4452 		{
4453 		  curp = attp;
4454 		  while (*curp)
4455 		    if ((*curp)->offset == 0
4456 			&& GET_MODE ((*curp)->loc) == GET_MODE (node->loc)
4457 			&& dv_as_opaque ((*curp)->dv) == dv_as_opaque (var->dv))
4458 		      break;
4459 		    else
4460 		      curp = &(*curp)->next;
4461 		  gcc_assert (*curp);
4462 		}
4463 
4464 	      if (!att)
4465 		{
4466 		  decl_or_value cdv;
4467 		  rtx cval;
4468 
4469 		  if (!*dfpm->permp)
4470 		    {
4471 		      *dfpm->permp = XNEW (dataflow_set);
4472 		      dataflow_set_init (*dfpm->permp);
4473 		    }
4474 
4475 		  for (att = (*dfpm->permp)->regs[REGNO (node->loc)];
4476 		       att; att = att->next)
4477 		    if (GET_MODE (att->loc) == GET_MODE (node->loc))
4478 		      {
4479 			gcc_assert (att->offset == 0
4480 				    && dv_is_value_p (att->dv));
4481 			val_reset (set, att->dv);
4482 			break;
4483 		      }
4484 
4485 		  if (att)
4486 		    {
4487 		      cdv = att->dv;
4488 		      cval = dv_as_value (cdv);
4489 		    }
4490 		  else
4491 		    {
4492 		      /* Create a unique value to hold this register,
4493 			 that ought to be found and reused in
4494 			 subsequent rounds.  */
4495 		      cselib_val *v;
4496 		      gcc_assert (!cselib_lookup (node->loc,
4497 						  GET_MODE (node->loc), 0,
4498 						  VOIDmode));
4499 		      v = cselib_lookup (node->loc, GET_MODE (node->loc), 1,
4500 					 VOIDmode);
4501 		      cselib_preserve_value (v);
4502 		      cselib_invalidate_rtx (node->loc);
4503 		      cval = v->val_rtx;
4504 		      cdv = dv_from_value (cval);
4505 		      if (dump_file)
4506 			fprintf (dump_file,
4507 				 "Created new value %u:%u for reg %i\n",
4508 				 v->uid, v->hash, REGNO (node->loc));
4509 		    }
4510 
4511 		  var_reg_decl_set (*dfpm->permp, node->loc,
4512 				    VAR_INIT_STATUS_INITIALIZED,
4513 				    cdv, 0, NULL, INSERT);
4514 
4515 		  node->loc = cval;
4516 		  check_dupes = true;
4517 		}
4518 
4519 	      /* Remove attribute referring to the decl, which now
4520 		 uses the value for the register, already existing or
4521 		 to be added when we bring perm in.  */
4522 	      att = *curp;
4523 	      *curp = att->next;
4524 	      pool_free (attrs_pool, att);
4525 	    }
4526 	}
4527 
4528       if (check_dupes)
4529 	remove_duplicate_values (var);
4530     }
4531 
4532   return 1;
4533 }
4534 
4535 /* Reset values in the permanent set that are not associated with the
4536    chosen expression.  */
4537 
4538 int
4539 variable_post_merge_perm_vals (variable_def **pslot, dfset_post_merge *dfpm)
4540 {
4541   dataflow_set *set = dfpm->set;
4542   variable pvar = *pslot, var;
4543   location_chain pnode;
4544   decl_or_value dv;
4545   attrs att;
4546 
4547   gcc_assert (dv_is_value_p (pvar->dv)
4548 	      && pvar->n_var_parts == 1);
4549   pnode = pvar->var_part[0].loc_chain;
4550   gcc_assert (pnode
4551 	      && !pnode->next
4552 	      && REG_P (pnode->loc));
4553 
4554   dv = pvar->dv;
4555 
4556   var = shared_hash_find (set->vars, dv);
4557   if (var)
4558     {
4559       /* Although variable_post_merge_new_vals may have made decls
4560 	 non-star-canonical, values that pre-existed in canonical form
4561 	 remain canonical, and newly-created values reference a single
4562 	 REG, so they are canonical as well.  Since VAR has the
4563 	 location list for a VALUE, using find_loc_in_1pdv for it is
4564 	 fine, since VALUEs don't map back to DECLs.  */
4565       if (find_loc_in_1pdv (pnode->loc, var, shared_hash_htab (set->vars)))
4566 	return 1;
4567       val_reset (set, dv);
4568     }
4569 
4570   for (att = set->regs[REGNO (pnode->loc)]; att; att = att->next)
4571     if (att->offset == 0
4572 	&& GET_MODE (att->loc) == GET_MODE (pnode->loc)
4573 	&& dv_is_value_p (att->dv))
4574       break;
4575 
4576   /* If there is a value associated with this register already, create
4577      an equivalence.  */
4578   if (att && dv_as_value (att->dv) != dv_as_value (dv))
4579     {
4580       rtx cval = dv_as_value (att->dv);
4581       set_variable_part (set, cval, dv, 0, pnode->init, NULL, INSERT);
4582       set_variable_part (set, dv_as_value (dv), att->dv, 0, pnode->init,
4583 			 NULL, INSERT);
4584     }
4585   else if (!att)
4586     {
4587       attrs_list_insert (&set->regs[REGNO (pnode->loc)],
4588 			 dv, 0, pnode->loc);
4589       variable_union (pvar, set);
4590     }
4591 
4592   return 1;
4593 }
4594 
4595 /* Just checking stuff and registering register attributes for
4596    now.  */
4597 
4598 static void
4599 dataflow_post_merge_adjust (dataflow_set *set, dataflow_set **permp)
4600 {
4601   struct dfset_post_merge dfpm;
4602 
4603   dfpm.set = set;
4604   dfpm.permp = permp;
4605 
4606   shared_hash_htab (set->vars)
4607     ->traverse <dfset_post_merge*, variable_post_merge_new_vals> (&dfpm);
4608   if (*permp)
4609     shared_hash_htab ((*permp)->vars)
4610       ->traverse <dfset_post_merge*, variable_post_merge_perm_vals> (&dfpm);
4611   shared_hash_htab (set->vars)
4612     ->traverse <dataflow_set *, canonicalize_values_star> (set);
4613   shared_hash_htab (set->vars)
4614     ->traverse <dataflow_set *, canonicalize_vars_star> (set);
4615 }
4616 
4617 /* Return a node whose loc is a MEM that refers to EXPR in the
4618    location list of a one-part variable or value VAR, or in that of
4619    any values recursively mentioned in the location lists.  */
4620 
4621 static location_chain
4622 find_mem_expr_in_1pdv (tree expr, rtx val, variable_table_type *vars)
4623 {
4624   location_chain node;
4625   decl_or_value dv;
4626   variable var;
4627   location_chain where = NULL;
4628 
4629   if (!val)
4630     return NULL;
4631 
4632   gcc_assert (GET_CODE (val) == VALUE
4633 	      && !VALUE_RECURSED_INTO (val));
4634 
4635   dv = dv_from_value (val);
4636   var = vars->find_with_hash (dv, dv_htab_hash (dv));
4637 
4638   if (!var)
4639     return NULL;
4640 
4641   gcc_assert (var->onepart);
4642 
4643   if (!var->n_var_parts)
4644     return NULL;
4645 
4646   VALUE_RECURSED_INTO (val) = true;
4647 
4648   for (node = var->var_part[0].loc_chain; node; node = node->next)
4649     if (MEM_P (node->loc)
4650 	&& MEM_EXPR (node->loc) == expr
4651 	&& INT_MEM_OFFSET (node->loc) == 0)
4652       {
4653 	where = node;
4654 	break;
4655       }
4656     else if (GET_CODE (node->loc) == VALUE
4657 	     && !VALUE_RECURSED_INTO (node->loc)
4658 	     && (where = find_mem_expr_in_1pdv (expr, node->loc, vars)))
4659       break;
4660 
4661   VALUE_RECURSED_INTO (val) = false;
4662 
4663   return where;
4664 }
4665 
4666 /* Return TRUE if the value of MEM may vary across a call.  */
4667 
4668 static bool
4669 mem_dies_at_call (rtx mem)
4670 {
4671   tree expr = MEM_EXPR (mem);
4672   tree decl;
4673 
4674   if (!expr)
4675     return true;
4676 
4677   decl = get_base_address (expr);
4678 
4679   if (!decl)
4680     return true;
4681 
4682   if (!DECL_P (decl))
4683     return true;
4684 
4685   return (may_be_aliased (decl)
4686 	  || (!TREE_READONLY (decl) && is_global_var (decl)));
4687 }
4688 
4689 /* Remove all MEMs from the location list of a hash table entry for a
4690    one-part variable, except those whose MEM attributes map back to
4691    the variable itself, directly or within a VALUE.  */
4692 
4693 int
4694 dataflow_set_preserve_mem_locs (variable_def **slot, dataflow_set *set)
4695 {
4696   variable var = *slot;
4697 
4698   if (var->onepart == ONEPART_VDECL || var->onepart == ONEPART_DEXPR)
4699     {
4700       tree decl = dv_as_decl (var->dv);
4701       location_chain loc, *locp;
4702       bool changed = false;
4703 
4704       if (!var->n_var_parts)
4705 	return 1;
4706 
4707       gcc_assert (var->n_var_parts == 1);
4708 
4709       if (shared_var_p (var, set->vars))
4710 	{
4711 	  for (loc = var->var_part[0].loc_chain; loc; loc = loc->next)
4712 	    {
4713 	      /* We want to remove dying MEMs that doesn't refer to DECL.  */
4714 	      if (GET_CODE (loc->loc) == MEM
4715 		  && (MEM_EXPR (loc->loc) != decl
4716 		      || INT_MEM_OFFSET (loc->loc) != 0)
4717 		  && !mem_dies_at_call (loc->loc))
4718 		break;
4719 	      /* We want to move here MEMs that do refer to DECL.  */
4720 	      else if (GET_CODE (loc->loc) == VALUE
4721 		       && find_mem_expr_in_1pdv (decl, loc->loc,
4722 						 shared_hash_htab (set->vars)))
4723 		break;
4724 	    }
4725 
4726 	  if (!loc)
4727 	    return 1;
4728 
4729 	  slot = unshare_variable (set, slot, var, VAR_INIT_STATUS_UNKNOWN);
4730 	  var = *slot;
4731 	  gcc_assert (var->n_var_parts == 1);
4732 	}
4733 
4734       for (locp = &var->var_part[0].loc_chain, loc = *locp;
4735 	   loc; loc = *locp)
4736 	{
4737 	  rtx old_loc = loc->loc;
4738 	  if (GET_CODE (old_loc) == VALUE)
4739 	    {
4740 	      location_chain mem_node
4741 		= find_mem_expr_in_1pdv (decl, loc->loc,
4742 					 shared_hash_htab (set->vars));
4743 
4744 	      /* ??? This picks up only one out of multiple MEMs that
4745 		 refer to the same variable.  Do we ever need to be
4746 		 concerned about dealing with more than one, or, given
4747 		 that they should all map to the same variable
4748 		 location, their addresses will have been merged and
4749 		 they will be regarded as equivalent?  */
4750 	      if (mem_node)
4751 		{
4752 		  loc->loc = mem_node->loc;
4753 		  loc->set_src = mem_node->set_src;
4754 		  loc->init = MIN (loc->init, mem_node->init);
4755 		}
4756 	    }
4757 
4758 	  if (GET_CODE (loc->loc) != MEM
4759 	      || (MEM_EXPR (loc->loc) == decl
4760 		  && INT_MEM_OFFSET (loc->loc) == 0)
4761 	      || !mem_dies_at_call (loc->loc))
4762 	    {
4763 	      if (old_loc != loc->loc && emit_notes)
4764 		{
4765 		  if (old_loc == var->var_part[0].cur_loc)
4766 		    {
4767 		      changed = true;
4768 		      var->var_part[0].cur_loc = NULL;
4769 		    }
4770 		}
4771 	      locp = &loc->next;
4772 	      continue;
4773 	    }
4774 
4775 	  if (emit_notes)
4776 	    {
4777 	      if (old_loc == var->var_part[0].cur_loc)
4778 		{
4779 		  changed = true;
4780 		  var->var_part[0].cur_loc = NULL;
4781 		}
4782 	    }
4783 	  *locp = loc->next;
4784 	  pool_free (loc_chain_pool, loc);
4785 	}
4786 
4787       if (!var->var_part[0].loc_chain)
4788 	{
4789 	  var->n_var_parts--;
4790 	  changed = true;
4791 	}
4792       if (changed)
4793 	variable_was_changed (var, set);
4794     }
4795 
4796   return 1;
4797 }
4798 
4799 /* Remove all MEMs from the location list of a hash table entry for a
4800    value.  */
4801 
4802 int
4803 dataflow_set_remove_mem_locs (variable_def **slot, dataflow_set *set)
4804 {
4805   variable var = *slot;
4806 
4807   if (var->onepart == ONEPART_VALUE)
4808     {
4809       location_chain loc, *locp;
4810       bool changed = false;
4811       rtx cur_loc;
4812 
4813       gcc_assert (var->n_var_parts == 1);
4814 
4815       if (shared_var_p (var, set->vars))
4816 	{
4817 	  for (loc = var->var_part[0].loc_chain; loc; loc = loc->next)
4818 	    if (GET_CODE (loc->loc) == MEM
4819 		&& mem_dies_at_call (loc->loc))
4820 	      break;
4821 
4822 	  if (!loc)
4823 	    return 1;
4824 
4825 	  slot = unshare_variable (set, slot, var, VAR_INIT_STATUS_UNKNOWN);
4826 	  var = *slot;
4827 	  gcc_assert (var->n_var_parts == 1);
4828 	}
4829 
4830       if (VAR_LOC_1PAUX (var))
4831 	cur_loc = VAR_LOC_FROM (var);
4832       else
4833 	cur_loc = var->var_part[0].cur_loc;
4834 
4835       for (locp = &var->var_part[0].loc_chain, loc = *locp;
4836 	   loc; loc = *locp)
4837 	{
4838 	  if (GET_CODE (loc->loc) != MEM
4839 	      || !mem_dies_at_call (loc->loc))
4840 	    {
4841 	      locp = &loc->next;
4842 	      continue;
4843 	    }
4844 
4845 	  *locp = loc->next;
4846 	  /* If we have deleted the location which was last emitted
4847 	     we have to emit new location so add the variable to set
4848 	     of changed variables.  */
4849 	  if (cur_loc == loc->loc)
4850 	    {
4851 	      changed = true;
4852 	      var->var_part[0].cur_loc = NULL;
4853 	      if (VAR_LOC_1PAUX (var))
4854 		VAR_LOC_FROM (var) = NULL;
4855 	    }
4856 	  pool_free (loc_chain_pool, loc);
4857 	}
4858 
4859       if (!var->var_part[0].loc_chain)
4860 	{
4861 	  var->n_var_parts--;
4862 	  changed = true;
4863 	}
4864       if (changed)
4865 	variable_was_changed (var, set);
4866     }
4867 
4868   return 1;
4869 }
4870 
4871 /* Remove all variable-location information about call-clobbered
4872    registers, as well as associations between MEMs and VALUEs.  */
4873 
4874 static void
4875 dataflow_set_clear_at_call (dataflow_set *set)
4876 {
4877   unsigned int r;
4878   hard_reg_set_iterator hrsi;
4879 
4880   EXECUTE_IF_SET_IN_HARD_REG_SET (regs_invalidated_by_call, 0, r, hrsi)
4881     var_regno_delete (set, r);
4882 
4883   if (MAY_HAVE_DEBUG_INSNS)
4884     {
4885       set->traversed_vars = set->vars;
4886       shared_hash_htab (set->vars)
4887 	->traverse <dataflow_set *, dataflow_set_preserve_mem_locs> (set);
4888       set->traversed_vars = set->vars;
4889       shared_hash_htab (set->vars)
4890 	->traverse <dataflow_set *, dataflow_set_remove_mem_locs> (set);
4891       set->traversed_vars = NULL;
4892     }
4893 }
4894 
4895 static bool
4896 variable_part_different_p (variable_part *vp1, variable_part *vp2)
4897 {
4898   location_chain lc1, lc2;
4899 
4900   for (lc1 = vp1->loc_chain; lc1; lc1 = lc1->next)
4901     {
4902       for (lc2 = vp2->loc_chain; lc2; lc2 = lc2->next)
4903 	{
4904 	  if (REG_P (lc1->loc) && REG_P (lc2->loc))
4905 	    {
4906 	      if (REGNO (lc1->loc) == REGNO (lc2->loc))
4907 		break;
4908 	    }
4909 	  if (rtx_equal_p (lc1->loc, lc2->loc))
4910 	    break;
4911 	}
4912       if (!lc2)
4913 	return true;
4914     }
4915   return false;
4916 }
4917 
4918 /* Return true if one-part variables VAR1 and VAR2 are different.
4919    They must be in canonical order.  */
4920 
4921 static bool
4922 onepart_variable_different_p (variable var1, variable var2)
4923 {
4924   location_chain lc1, lc2;
4925 
4926   if (var1 == var2)
4927     return false;
4928 
4929   gcc_assert (var1->n_var_parts == 1
4930 	      && var2->n_var_parts == 1);
4931 
4932   lc1 = var1->var_part[0].loc_chain;
4933   lc2 = var2->var_part[0].loc_chain;
4934 
4935   gcc_assert (lc1 && lc2);
4936 
4937   while (lc1 && lc2)
4938     {
4939       if (loc_cmp (lc1->loc, lc2->loc))
4940 	return true;
4941       lc1 = lc1->next;
4942       lc2 = lc2->next;
4943     }
4944 
4945   return lc1 != lc2;
4946 }
4947 
4948 /* Return true if variables VAR1 and VAR2 are different.  */
4949 
4950 static bool
4951 variable_different_p (variable var1, variable var2)
4952 {
4953   int i;
4954 
4955   if (var1 == var2)
4956     return false;
4957 
4958   if (var1->onepart != var2->onepart)
4959     return true;
4960 
4961   if (var1->n_var_parts != var2->n_var_parts)
4962     return true;
4963 
4964   if (var1->onepart && var1->n_var_parts)
4965     {
4966       gcc_checking_assert (dv_as_opaque (var1->dv) == dv_as_opaque (var2->dv)
4967 			   && var1->n_var_parts == 1);
4968       /* One-part values have locations in a canonical order.  */
4969       return onepart_variable_different_p (var1, var2);
4970     }
4971 
4972   for (i = 0; i < var1->n_var_parts; i++)
4973     {
4974       if (VAR_PART_OFFSET (var1, i) != VAR_PART_OFFSET (var2, i))
4975 	return true;
4976       if (variable_part_different_p (&var1->var_part[i], &var2->var_part[i]))
4977 	return true;
4978       if (variable_part_different_p (&var2->var_part[i], &var1->var_part[i]))
4979 	return true;
4980     }
4981   return false;
4982 }
4983 
4984 /* Return true if dataflow sets OLD_SET and NEW_SET differ.  */
4985 
4986 static bool
4987 dataflow_set_different (dataflow_set *old_set, dataflow_set *new_set)
4988 {
4989   variable_iterator_type hi;
4990   variable var1;
4991 
4992   if (old_set->vars == new_set->vars)
4993     return false;
4994 
4995   if (shared_hash_htab (old_set->vars)->elements ()
4996       != shared_hash_htab (new_set->vars)->elements ())
4997     return true;
4998 
4999   FOR_EACH_HASH_TABLE_ELEMENT (*shared_hash_htab (old_set->vars),
5000 			       var1, variable, hi)
5001     {
5002       variable_table_type *htab = shared_hash_htab (new_set->vars);
5003       variable var2 = htab->find_with_hash (var1->dv, dv_htab_hash (var1->dv));
5004       if (!var2)
5005 	{
5006 	  if (dump_file && (dump_flags & TDF_DETAILS))
5007 	    {
5008 	      fprintf (dump_file, "dataflow difference found: removal of:\n");
5009 	      dump_var (var1);
5010 	    }
5011 	  return true;
5012 	}
5013 
5014       if (variable_different_p (var1, var2))
5015 	{
5016 	  if (dump_file && (dump_flags & TDF_DETAILS))
5017 	    {
5018 	      fprintf (dump_file, "dataflow difference found: "
5019 		       "old and new follow:\n");
5020 	      dump_var (var1);
5021 	      dump_var (var2);
5022 	    }
5023 	  return true;
5024 	}
5025     }
5026 
5027   /* No need to traverse the second hashtab, if both have the same number
5028      of elements and the second one had all entries found in the first one,
5029      then it can't have any extra entries.  */
5030   return false;
5031 }
5032 
5033 /* Free the contents of dataflow set SET.  */
5034 
5035 static void
5036 dataflow_set_destroy (dataflow_set *set)
5037 {
5038   int i;
5039 
5040   for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5041     attrs_list_clear (&set->regs[i]);
5042 
5043   shared_hash_destroy (set->vars);
5044   set->vars = NULL;
5045 }
5046 
5047 /* Return true if RTL X contains a SYMBOL_REF.  */
5048 
5049 static bool
5050 contains_symbol_ref (rtx x)
5051 {
5052   const char *fmt;
5053   RTX_CODE code;
5054   int i;
5055 
5056   if (!x)
5057     return false;
5058 
5059   code = GET_CODE (x);
5060   if (code == SYMBOL_REF)
5061     return true;
5062 
5063   fmt = GET_RTX_FORMAT (code);
5064   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5065     {
5066       if (fmt[i] == 'e')
5067 	{
5068 	  if (contains_symbol_ref (XEXP (x, i)))
5069 	    return true;
5070 	}
5071       else if (fmt[i] == 'E')
5072 	{
5073 	  int j;
5074 	  for (j = 0; j < XVECLEN (x, i); j++)
5075 	    if (contains_symbol_ref (XVECEXP (x, i, j)))
5076 	      return true;
5077 	}
5078     }
5079 
5080   return false;
5081 }
5082 
5083 /* Shall EXPR be tracked?  */
5084 
5085 static bool
5086 track_expr_p (tree expr, bool need_rtl)
5087 {
5088   rtx decl_rtl;
5089   tree realdecl;
5090 
5091   if (TREE_CODE (expr) == DEBUG_EXPR_DECL)
5092     return DECL_RTL_SET_P (expr);
5093 
5094   /* If EXPR is not a parameter or a variable do not track it.  */
5095   if (TREE_CODE (expr) != VAR_DECL && TREE_CODE (expr) != PARM_DECL)
5096     return 0;
5097 
5098   /* It also must have a name...  */
5099   if (!DECL_NAME (expr) && need_rtl)
5100     return 0;
5101 
5102   /* ... and a RTL assigned to it.  */
5103   decl_rtl = DECL_RTL_IF_SET (expr);
5104   if (!decl_rtl && need_rtl)
5105     return 0;
5106 
5107   /* If this expression is really a debug alias of some other declaration, we
5108      don't need to track this expression if the ultimate declaration is
5109      ignored.  */
5110   realdecl = expr;
5111   if (TREE_CODE (realdecl) == VAR_DECL && DECL_HAS_DEBUG_EXPR_P (realdecl))
5112     {
5113       realdecl = DECL_DEBUG_EXPR (realdecl);
5114       if (!DECL_P (realdecl))
5115 	{
5116 	  if (handled_component_p (realdecl)
5117 	      || (TREE_CODE (realdecl) == MEM_REF
5118 		  && TREE_CODE (TREE_OPERAND (realdecl, 0)) == ADDR_EXPR))
5119 	    {
5120 	      HOST_WIDE_INT bitsize, bitpos, maxsize;
5121 	      tree innerdecl
5122 		= get_ref_base_and_extent (realdecl, &bitpos, &bitsize,
5123 					   &maxsize);
5124 	      if (!DECL_P (innerdecl)
5125 		  || DECL_IGNORED_P (innerdecl)
5126 		  /* Do not track declarations for parts of tracked parameters
5127 		     since we want to track them as a whole instead.  */
5128 		  || (TREE_CODE (innerdecl) == PARM_DECL
5129 		      && DECL_MODE (innerdecl) != BLKmode
5130 		      && TREE_CODE (TREE_TYPE (innerdecl)) != UNION_TYPE)
5131 		  || TREE_STATIC (innerdecl)
5132 		  || bitsize <= 0
5133 		  || bitpos + bitsize > 256
5134 		  || bitsize != maxsize)
5135 		return 0;
5136 	      else
5137 		realdecl = expr;
5138 	    }
5139 	  else
5140 	    return 0;
5141 	}
5142     }
5143 
5144   /* Do not track EXPR if REALDECL it should be ignored for debugging
5145      purposes.  */
5146   if (DECL_IGNORED_P (realdecl))
5147     return 0;
5148 
5149   /* Do not track global variables until we are able to emit correct location
5150      list for them.  */
5151   if (TREE_STATIC (realdecl))
5152     return 0;
5153 
5154   /* When the EXPR is a DECL for alias of some variable (see example)
5155      the TREE_STATIC flag is not used.  Disable tracking all DECLs whose
5156      DECL_RTL contains SYMBOL_REF.
5157 
5158      Example:
5159      extern char **_dl_argv_internal __attribute__ ((alias ("_dl_argv")));
5160      char **_dl_argv;
5161   */
5162   if (decl_rtl && MEM_P (decl_rtl)
5163       && contains_symbol_ref (XEXP (decl_rtl, 0)))
5164     return 0;
5165 
5166   /* If RTX is a memory it should not be very large (because it would be
5167      an array or struct).  */
5168   if (decl_rtl && MEM_P (decl_rtl))
5169     {
5170       /* Do not track structures and arrays.  */
5171       if (GET_MODE (decl_rtl) == BLKmode
5172 	  || AGGREGATE_TYPE_P (TREE_TYPE (realdecl)))
5173 	return 0;
5174       if (MEM_SIZE_KNOWN_P (decl_rtl)
5175 	  && MEM_SIZE (decl_rtl) > MAX_VAR_PARTS)
5176 	return 0;
5177     }
5178 
5179   DECL_CHANGED (expr) = 0;
5180   DECL_CHANGED (realdecl) = 0;
5181   return 1;
5182 }
5183 
5184 /* Determine whether a given LOC refers to the same variable part as
5185    EXPR+OFFSET.  */
5186 
5187 static bool
5188 same_variable_part_p (rtx loc, tree expr, HOST_WIDE_INT offset)
5189 {
5190   tree expr2;
5191   HOST_WIDE_INT offset2;
5192 
5193   if (! DECL_P (expr))
5194     return false;
5195 
5196   if (REG_P (loc))
5197     {
5198       expr2 = REG_EXPR (loc);
5199       offset2 = REG_OFFSET (loc);
5200     }
5201   else if (MEM_P (loc))
5202     {
5203       expr2 = MEM_EXPR (loc);
5204       offset2 = INT_MEM_OFFSET (loc);
5205     }
5206   else
5207     return false;
5208 
5209   if (! expr2 || ! DECL_P (expr2))
5210     return false;
5211 
5212   expr = var_debug_decl (expr);
5213   expr2 = var_debug_decl (expr2);
5214 
5215   return (expr == expr2 && offset == offset2);
5216 }
5217 
5218 /* LOC is a REG or MEM that we would like to track if possible.
5219    If EXPR is null, we don't know what expression LOC refers to,
5220    otherwise it refers to EXPR + OFFSET.  STORE_REG_P is true if
5221    LOC is an lvalue register.
5222 
5223    Return true if EXPR is nonnull and if LOC, or some lowpart of it,
5224    is something we can track.  When returning true, store the mode of
5225    the lowpart we can track in *MODE_OUT (if nonnull) and its offset
5226    from EXPR in *OFFSET_OUT (if nonnull).  */
5227 
5228 static bool
5229 track_loc_p (rtx loc, tree expr, HOST_WIDE_INT offset, bool store_reg_p,
5230 	     machine_mode *mode_out, HOST_WIDE_INT *offset_out)
5231 {
5232   machine_mode mode;
5233 
5234   if (expr == NULL || !track_expr_p (expr, true))
5235     return false;
5236 
5237   /* If REG was a paradoxical subreg, its REG_ATTRS will describe the
5238      whole subreg, but only the old inner part is really relevant.  */
5239   mode = GET_MODE (loc);
5240   if (REG_P (loc) && !HARD_REGISTER_NUM_P (ORIGINAL_REGNO (loc)))
5241     {
5242       machine_mode pseudo_mode;
5243 
5244       pseudo_mode = PSEUDO_REGNO_MODE (ORIGINAL_REGNO (loc));
5245       if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (pseudo_mode))
5246 	{
5247 	  offset += byte_lowpart_offset (pseudo_mode, mode);
5248 	  mode = pseudo_mode;
5249 	}
5250     }
5251 
5252   /* If LOC is a paradoxical lowpart of EXPR, refer to EXPR itself.
5253      Do the same if we are storing to a register and EXPR occupies
5254      the whole of register LOC; in that case, the whole of EXPR is
5255      being changed.  We exclude complex modes from the second case
5256      because the real and imaginary parts are represented as separate
5257      pseudo registers, even if the whole complex value fits into one
5258      hard register.  */
5259   if ((GET_MODE_SIZE (mode) > GET_MODE_SIZE (DECL_MODE (expr))
5260        || (store_reg_p
5261 	   && !COMPLEX_MODE_P (DECL_MODE (expr))
5262 	   && hard_regno_nregs[REGNO (loc)][DECL_MODE (expr)] == 1))
5263       && offset + byte_lowpart_offset (DECL_MODE (expr), mode) == 0)
5264     {
5265       mode = DECL_MODE (expr);
5266       offset = 0;
5267     }
5268 
5269   if (offset < 0 || offset >= MAX_VAR_PARTS)
5270     return false;
5271 
5272   if (mode_out)
5273     *mode_out = mode;
5274   if (offset_out)
5275     *offset_out = offset;
5276   return true;
5277 }
5278 
5279 /* Return the MODE lowpart of LOC, or null if LOC is not something we
5280    want to track.  When returning nonnull, make sure that the attributes
5281    on the returned value are updated.  */
5282 
5283 static rtx
5284 var_lowpart (machine_mode mode, rtx loc)
5285 {
5286   unsigned int offset, reg_offset, regno;
5287 
5288   if (GET_MODE (loc) == mode)
5289     return loc;
5290 
5291   if (!REG_P (loc) && !MEM_P (loc))
5292     return NULL;
5293 
5294   offset = byte_lowpart_offset (mode, GET_MODE (loc));
5295 
5296   if (MEM_P (loc))
5297     return adjust_address_nv (loc, mode, offset);
5298 
5299   reg_offset = subreg_lowpart_offset (mode, GET_MODE (loc));
5300   regno = REGNO (loc) + subreg_regno_offset (REGNO (loc), GET_MODE (loc),
5301 					     reg_offset, mode);
5302   return gen_rtx_REG_offset (loc, mode, regno, offset);
5303 }
5304 
5305 /* Carry information about uses and stores while walking rtx.  */
5306 
5307 struct count_use_info
5308 {
5309   /* The insn where the RTX is.  */
5310   rtx_insn *insn;
5311 
5312   /* The basic block where insn is.  */
5313   basic_block bb;
5314 
5315   /* The array of n_sets sets in the insn, as determined by cselib.  */
5316   struct cselib_set *sets;
5317   int n_sets;
5318 
5319   /* True if we're counting stores, false otherwise.  */
5320   bool store_p;
5321 };
5322 
5323 /* Find a VALUE corresponding to X.   */
5324 
5325 static inline cselib_val *
5326 find_use_val (rtx x, machine_mode mode, struct count_use_info *cui)
5327 {
5328   int i;
5329 
5330   if (cui->sets)
5331     {
5332       /* This is called after uses are set up and before stores are
5333 	 processed by cselib, so it's safe to look up srcs, but not
5334 	 dsts.  So we look up expressions that appear in srcs or in
5335 	 dest expressions, but we search the sets array for dests of
5336 	 stores.  */
5337       if (cui->store_p)
5338 	{
5339 	  /* Some targets represent memset and memcpy patterns
5340 	     by (set (mem:BLK ...) (reg:[QHSD]I ...)) or
5341 	     (set (mem:BLK ...) (const_int ...)) or
5342 	     (set (mem:BLK ...) (mem:BLK ...)).  Don't return anything
5343 	     in that case, otherwise we end up with mode mismatches.  */
5344 	  if (mode == BLKmode && MEM_P (x))
5345 	    return NULL;
5346 	  for (i = 0; i < cui->n_sets; i++)
5347 	    if (cui->sets[i].dest == x)
5348 	      return cui->sets[i].src_elt;
5349 	}
5350       else
5351 	return cselib_lookup (x, mode, 0, VOIDmode);
5352     }
5353 
5354   return NULL;
5355 }
5356 
5357 /* Replace all registers and addresses in an expression with VALUE
5358    expressions that map back to them, unless the expression is a
5359    register.  If no mapping is or can be performed, returns NULL.  */
5360 
5361 static rtx
5362 replace_expr_with_values (rtx loc)
5363 {
5364   if (REG_P (loc) || GET_CODE (loc) == ENTRY_VALUE)
5365     return NULL;
5366   else if (MEM_P (loc))
5367     {
5368       cselib_val *addr = cselib_lookup (XEXP (loc, 0),
5369 					get_address_mode (loc), 0,
5370 					GET_MODE (loc));
5371       if (addr)
5372 	return replace_equiv_address_nv (loc, addr->val_rtx);
5373       else
5374 	return NULL;
5375     }
5376   else
5377     return cselib_subst_to_values (loc, VOIDmode);
5378 }
5379 
5380 /* Return true if X contains a DEBUG_EXPR.  */
5381 
5382 static bool
5383 rtx_debug_expr_p (const_rtx x)
5384 {
5385   subrtx_iterator::array_type array;
5386   FOR_EACH_SUBRTX (iter, array, x, ALL)
5387     if (GET_CODE (*iter) == DEBUG_EXPR)
5388       return true;
5389   return false;
5390 }
5391 
5392 /* Determine what kind of micro operation to choose for a USE.  Return
5393    MO_CLOBBER if no micro operation is to be generated.  */
5394 
5395 static enum micro_operation_type
5396 use_type (rtx loc, struct count_use_info *cui, machine_mode *modep)
5397 {
5398   tree expr;
5399 
5400   if (cui && cui->sets)
5401     {
5402       if (GET_CODE (loc) == VAR_LOCATION)
5403 	{
5404 	  if (track_expr_p (PAT_VAR_LOCATION_DECL (loc), false))
5405 	    {
5406 	      rtx ploc = PAT_VAR_LOCATION_LOC (loc);
5407 	      if (! VAR_LOC_UNKNOWN_P (ploc))
5408 		{
5409 		  cselib_val *val = cselib_lookup (ploc, GET_MODE (loc), 1,
5410 						   VOIDmode);
5411 
5412 		  /* ??? flag_float_store and volatile mems are never
5413 		     given values, but we could in theory use them for
5414 		     locations.  */
5415 		  gcc_assert (val || 1);
5416 		}
5417 	      return MO_VAL_LOC;
5418 	    }
5419 	  else
5420 	    return MO_CLOBBER;
5421 	}
5422 
5423       if (REG_P (loc) || MEM_P (loc))
5424 	{
5425 	  if (modep)
5426 	    *modep = GET_MODE (loc);
5427 	  if (cui->store_p)
5428 	    {
5429 	      if (REG_P (loc)
5430 		  || (find_use_val (loc, GET_MODE (loc), cui)
5431 		      && cselib_lookup (XEXP (loc, 0),
5432 					get_address_mode (loc), 0,
5433 					GET_MODE (loc))))
5434 		return MO_VAL_SET;
5435 	    }
5436 	  else
5437 	    {
5438 	      cselib_val *val = find_use_val (loc, GET_MODE (loc), cui);
5439 
5440 	      if (val && !cselib_preserved_value_p (val))
5441 		return MO_VAL_USE;
5442 	    }
5443 	}
5444     }
5445 
5446   if (REG_P (loc))
5447     {
5448       gcc_assert (REGNO (loc) < FIRST_PSEUDO_REGISTER);
5449 
5450       if (loc == cfa_base_rtx)
5451 	return MO_CLOBBER;
5452       expr = REG_EXPR (loc);
5453 
5454       if (!expr)
5455 	return MO_USE_NO_VAR;
5456       else if (target_for_debug_bind (var_debug_decl (expr)))
5457 	return MO_CLOBBER;
5458       else if (track_loc_p (loc, expr, REG_OFFSET (loc),
5459 			    false, modep, NULL))
5460 	return MO_USE;
5461       else
5462 	return MO_USE_NO_VAR;
5463     }
5464   else if (MEM_P (loc))
5465     {
5466       expr = MEM_EXPR (loc);
5467 
5468       if (!expr)
5469 	return MO_CLOBBER;
5470       else if (target_for_debug_bind (var_debug_decl (expr)))
5471 	return MO_CLOBBER;
5472       else if (track_loc_p (loc, expr, INT_MEM_OFFSET (loc),
5473 			    false, modep, NULL)
5474 	       /* Multi-part variables shouldn't refer to one-part
5475 		  variable names such as VALUEs (never happens) or
5476 		  DEBUG_EXPRs (only happens in the presence of debug
5477 		  insns).  */
5478 	       && (!MAY_HAVE_DEBUG_INSNS
5479 		   || !rtx_debug_expr_p (XEXP (loc, 0))))
5480 	return MO_USE;
5481       else
5482 	return MO_CLOBBER;
5483     }
5484 
5485   return MO_CLOBBER;
5486 }
5487 
5488 /* Log to OUT information about micro-operation MOPT involving X in
5489    INSN of BB.  */
5490 
5491 static inline void
5492 log_op_type (rtx x, basic_block bb, rtx_insn *insn,
5493 	     enum micro_operation_type mopt, FILE *out)
5494 {
5495   fprintf (out, "bb %i op %i insn %i %s ",
5496 	   bb->index, VTI (bb)->mos.length (),
5497 	   INSN_UID (insn), micro_operation_type_name[mopt]);
5498   print_inline_rtx (out, x, 2);
5499   fputc ('\n', out);
5500 }
5501 
5502 /* Tell whether the CONCAT used to holds a VALUE and its location
5503    needs value resolution, i.e., an attempt of mapping the location
5504    back to other incoming values.  */
5505 #define VAL_NEEDS_RESOLUTION(x) \
5506   (RTL_FLAG_CHECK1 ("VAL_NEEDS_RESOLUTION", (x), CONCAT)->volatil)
5507 /* Whether the location in the CONCAT is a tracked expression, that
5508    should also be handled like a MO_USE.  */
5509 #define VAL_HOLDS_TRACK_EXPR(x) \
5510   (RTL_FLAG_CHECK1 ("VAL_HOLDS_TRACK_EXPR", (x), CONCAT)->used)
5511 /* Whether the location in the CONCAT should be handled like a MO_COPY
5512    as well.  */
5513 #define VAL_EXPR_IS_COPIED(x) \
5514   (RTL_FLAG_CHECK1 ("VAL_EXPR_IS_COPIED", (x), CONCAT)->jump)
5515 /* Whether the location in the CONCAT should be handled like a
5516    MO_CLOBBER as well.  */
5517 #define VAL_EXPR_IS_CLOBBERED(x) \
5518   (RTL_FLAG_CHECK1 ("VAL_EXPR_IS_CLOBBERED", (x), CONCAT)->unchanging)
5519 
5520 /* All preserved VALUEs.  */
5521 static vec<rtx> preserved_values;
5522 
5523 /* Ensure VAL is preserved and remember it in a vector for vt_emit_notes.  */
5524 
5525 static void
5526 preserve_value (cselib_val *val)
5527 {
5528   cselib_preserve_value (val);
5529   preserved_values.safe_push (val->val_rtx);
5530 }
5531 
5532 /* Helper function for MO_VAL_LOC handling.  Return non-zero if
5533    any rtxes not suitable for CONST use not replaced by VALUEs
5534    are discovered.  */
5535 
5536 static bool
5537 non_suitable_const (const_rtx x)
5538 {
5539   subrtx_iterator::array_type array;
5540   FOR_EACH_SUBRTX (iter, array, x, ALL)
5541     {
5542       const_rtx x = *iter;
5543       switch (GET_CODE (x))
5544 	{
5545 	case REG:
5546 	case DEBUG_EXPR:
5547 	case PC:
5548 	case SCRATCH:
5549 	case CC0:
5550 	case ASM_INPUT:
5551 	case ASM_OPERANDS:
5552 	  return true;
5553 	case MEM:
5554 	  if (!MEM_READONLY_P (x))
5555 	    return true;
5556 	  break;
5557 	default:
5558 	  break;
5559 	}
5560     }
5561   return false;
5562 }
5563 
5564 /* Add uses (register and memory references) LOC which will be tracked
5565    to VTI (bb)->mos.  */
5566 
5567 static void
5568 add_uses (rtx loc, struct count_use_info *cui)
5569 {
5570   machine_mode mode = VOIDmode;
5571   enum micro_operation_type type = use_type (loc, cui, &mode);
5572 
5573   if (type != MO_CLOBBER)
5574     {
5575       basic_block bb = cui->bb;
5576       micro_operation mo;
5577 
5578       mo.type = type;
5579       mo.u.loc = type == MO_USE ? var_lowpart (mode, loc) : loc;
5580       mo.insn = cui->insn;
5581 
5582       if (type == MO_VAL_LOC)
5583 	{
5584 	  rtx oloc = loc;
5585 	  rtx vloc = PAT_VAR_LOCATION_LOC (oloc);
5586 	  cselib_val *val;
5587 
5588 	  gcc_assert (cui->sets);
5589 
5590 	  if (MEM_P (vloc)
5591 	      && !REG_P (XEXP (vloc, 0))
5592 	      && !MEM_P (XEXP (vloc, 0)))
5593 	    {
5594 	      rtx mloc = vloc;
5595 	      machine_mode address_mode = get_address_mode (mloc);
5596 	      cselib_val *val
5597 		= cselib_lookup (XEXP (mloc, 0), address_mode, 0,
5598 				 GET_MODE (mloc));
5599 
5600 	      if (val && !cselib_preserved_value_p (val))
5601 		preserve_value (val);
5602 	    }
5603 
5604 	  if (CONSTANT_P (vloc)
5605 	      && (GET_CODE (vloc) != CONST || non_suitable_const (vloc)))
5606 	    /* For constants don't look up any value.  */;
5607 	  else if (!VAR_LOC_UNKNOWN_P (vloc) && !unsuitable_loc (vloc)
5608 		   && (val = find_use_val (vloc, GET_MODE (oloc), cui)))
5609 	    {
5610 	      machine_mode mode2;
5611 	      enum micro_operation_type type2;
5612 	      rtx nloc = NULL;
5613 	      bool resolvable = REG_P (vloc) || MEM_P (vloc);
5614 
5615 	      if (resolvable)
5616 		nloc = replace_expr_with_values (vloc);
5617 
5618 	      if (nloc)
5619 		{
5620 		  oloc = shallow_copy_rtx (oloc);
5621 		  PAT_VAR_LOCATION_LOC (oloc) = nloc;
5622 		}
5623 
5624 	      oloc = gen_rtx_CONCAT (mode, val->val_rtx, oloc);
5625 
5626 	      type2 = use_type (vloc, 0, &mode2);
5627 
5628 	      gcc_assert (type2 == MO_USE || type2 == MO_USE_NO_VAR
5629 			  || type2 == MO_CLOBBER);
5630 
5631 	      if (type2 == MO_CLOBBER
5632 		  && !cselib_preserved_value_p (val))
5633 		{
5634 		  VAL_NEEDS_RESOLUTION (oloc) = resolvable;
5635 		  preserve_value (val);
5636 		}
5637 	    }
5638 	  else if (!VAR_LOC_UNKNOWN_P (vloc))
5639 	    {
5640 	      oloc = shallow_copy_rtx (oloc);
5641 	      PAT_VAR_LOCATION_LOC (oloc) = gen_rtx_UNKNOWN_VAR_LOC ();
5642 	    }
5643 
5644 	  mo.u.loc = oloc;
5645 	}
5646       else if (type == MO_VAL_USE)
5647 	{
5648 	  machine_mode mode2 = VOIDmode;
5649 	  enum micro_operation_type type2;
5650 	  cselib_val *val = find_use_val (loc, GET_MODE (loc), cui);
5651 	  rtx vloc, oloc = loc, nloc;
5652 
5653 	  gcc_assert (cui->sets);
5654 
5655 	  if (MEM_P (oloc)
5656 	      && !REG_P (XEXP (oloc, 0))
5657 	      && !MEM_P (XEXP (oloc, 0)))
5658 	    {
5659 	      rtx mloc = oloc;
5660 	      machine_mode address_mode = get_address_mode (mloc);
5661 	      cselib_val *val
5662 		= cselib_lookup (XEXP (mloc, 0), address_mode, 0,
5663 				 GET_MODE (mloc));
5664 
5665 	      if (val && !cselib_preserved_value_p (val))
5666 		preserve_value (val);
5667 	    }
5668 
5669 	  type2 = use_type (loc, 0, &mode2);
5670 
5671 	  gcc_assert (type2 == MO_USE || type2 == MO_USE_NO_VAR
5672 		      || type2 == MO_CLOBBER);
5673 
5674 	  if (type2 == MO_USE)
5675 	    vloc = var_lowpart (mode2, loc);
5676 	  else
5677 	    vloc = oloc;
5678 
5679 	  /* The loc of a MO_VAL_USE may have two forms:
5680 
5681 	     (concat val src): val is at src, a value-based
5682 	     representation.
5683 
5684 	     (concat (concat val use) src): same as above, with use as
5685 	     the MO_USE tracked value, if it differs from src.
5686 
5687 	  */
5688 
5689 	  gcc_checking_assert (REG_P (loc) || MEM_P (loc));
5690 	  nloc = replace_expr_with_values (loc);
5691 	  if (!nloc)
5692 	    nloc = oloc;
5693 
5694 	  if (vloc != nloc)
5695 	    oloc = gen_rtx_CONCAT (mode2, val->val_rtx, vloc);
5696 	  else
5697 	    oloc = val->val_rtx;
5698 
5699 	  mo.u.loc = gen_rtx_CONCAT (mode, oloc, nloc);
5700 
5701 	  if (type2 == MO_USE)
5702 	    VAL_HOLDS_TRACK_EXPR (mo.u.loc) = 1;
5703 	  if (!cselib_preserved_value_p (val))
5704 	    {
5705 	      VAL_NEEDS_RESOLUTION (mo.u.loc) = 1;
5706 	      preserve_value (val);
5707 	    }
5708 	}
5709       else
5710 	gcc_assert (type == MO_USE || type == MO_USE_NO_VAR);
5711 
5712       if (dump_file && (dump_flags & TDF_DETAILS))
5713 	log_op_type (mo.u.loc, cui->bb, cui->insn, mo.type, dump_file);
5714       VTI (bb)->mos.safe_push (mo);
5715     }
5716 }
5717 
5718 /* Helper function for finding all uses of REG/MEM in X in insn INSN.  */
5719 
5720 static void
5721 add_uses_1 (rtx *x, void *cui)
5722 {
5723   subrtx_var_iterator::array_type array;
5724   FOR_EACH_SUBRTX_VAR (iter, array, *x, NONCONST)
5725     add_uses (*iter, (struct count_use_info *) cui);
5726 }
5727 
5728 /* This is the value used during expansion of locations.  We want it
5729    to be unbounded, so that variables expanded deep in a recursion
5730    nest are fully evaluated, so that their values are cached
5731    correctly.  We avoid recursion cycles through other means, and we
5732    don't unshare RTL, so excess complexity is not a problem.  */
5733 #define EXPR_DEPTH (INT_MAX)
5734 /* We use this to keep too-complex expressions from being emitted as
5735    location notes, and then to debug information.  Users can trade
5736    compile time for ridiculously complex expressions, although they're
5737    seldom useful, and they may often have to be discarded as not
5738    representable anyway.  */
5739 #define EXPR_USE_DEPTH (PARAM_VALUE (PARAM_MAX_VARTRACK_EXPR_DEPTH))
5740 
5741 /* Attempt to reverse the EXPR operation in the debug info and record
5742    it in the cselib table.  Say for reg1 = reg2 + 6 even when reg2 is
5743    no longer live we can express its value as VAL - 6.  */
5744 
5745 static void
5746 reverse_op (rtx val, const_rtx expr, rtx_insn *insn)
5747 {
5748   rtx src, arg, ret;
5749   cselib_val *v;
5750   struct elt_loc_list *l;
5751   enum rtx_code code;
5752   int count;
5753 
5754   if (GET_CODE (expr) != SET)
5755     return;
5756 
5757   if (!REG_P (SET_DEST (expr)) || GET_MODE (val) != GET_MODE (SET_DEST (expr)))
5758     return;
5759 
5760   src = SET_SRC (expr);
5761   switch (GET_CODE (src))
5762     {
5763     case PLUS:
5764     case MINUS:
5765     case XOR:
5766     case NOT:
5767     case NEG:
5768       if (!REG_P (XEXP (src, 0)))
5769 	return;
5770       break;
5771     case SIGN_EXTEND:
5772     case ZERO_EXTEND:
5773       if (!REG_P (XEXP (src, 0)) && !MEM_P (XEXP (src, 0)))
5774 	return;
5775       break;
5776     default:
5777       return;
5778     }
5779 
5780   if (!SCALAR_INT_MODE_P (GET_MODE (src)) || XEXP (src, 0) == cfa_base_rtx)
5781     return;
5782 
5783   v = cselib_lookup (XEXP (src, 0), GET_MODE (XEXP (src, 0)), 0, VOIDmode);
5784   if (!v || !cselib_preserved_value_p (v))
5785     return;
5786 
5787   /* Use canonical V to avoid creating multiple redundant expressions
5788      for different VALUES equivalent to V.  */
5789   v = canonical_cselib_val (v);
5790 
5791   /* Adding a reverse op isn't useful if V already has an always valid
5792      location.  Ignore ENTRY_VALUE, while it is always constant, we should
5793      prefer non-ENTRY_VALUE locations whenever possible.  */
5794   for (l = v->locs, count = 0; l; l = l->next, count++)
5795     if (CONSTANT_P (l->loc)
5796 	&& (GET_CODE (l->loc) != CONST || !references_value_p (l->loc, 0)))
5797       return;
5798     /* Avoid creating too large locs lists.  */
5799     else if (count == PARAM_VALUE (PARAM_MAX_VARTRACK_REVERSE_OP_SIZE))
5800       return;
5801 
5802   switch (GET_CODE (src))
5803     {
5804     case NOT:
5805     case NEG:
5806       if (GET_MODE (v->val_rtx) != GET_MODE (val))
5807 	return;
5808       ret = gen_rtx_fmt_e (GET_CODE (src), GET_MODE (val), val);
5809       break;
5810     case SIGN_EXTEND:
5811     case ZERO_EXTEND:
5812       ret = gen_lowpart_SUBREG (GET_MODE (v->val_rtx), val);
5813       break;
5814     case XOR:
5815       code = XOR;
5816       goto binary;
5817     case PLUS:
5818       code = MINUS;
5819       goto binary;
5820     case MINUS:
5821       code = PLUS;
5822       goto binary;
5823     binary:
5824       if (GET_MODE (v->val_rtx) != GET_MODE (val))
5825 	return;
5826       arg = XEXP (src, 1);
5827       if (!CONST_INT_P (arg) && GET_CODE (arg) != SYMBOL_REF)
5828 	{
5829 	  arg = cselib_expand_value_rtx (arg, scratch_regs, 5);
5830 	  if (arg == NULL_RTX)
5831 	    return;
5832 	  if (!CONST_INT_P (arg) && GET_CODE (arg) != SYMBOL_REF)
5833 	    return;
5834 	}
5835       ret = simplify_gen_binary (code, GET_MODE (val), val, arg);
5836       break;
5837     default:
5838       gcc_unreachable ();
5839     }
5840 
5841   cselib_add_permanent_equiv (v, ret, insn);
5842 }
5843 
5844 /* Add stores (register and memory references) LOC which will be tracked
5845    to VTI (bb)->mos.  EXPR is the RTL expression containing the store.
5846    CUIP->insn is instruction which the LOC is part of.  */
5847 
5848 static void
5849 add_stores (rtx loc, const_rtx expr, void *cuip)
5850 {
5851   machine_mode mode = VOIDmode, mode2;
5852   struct count_use_info *cui = (struct count_use_info *)cuip;
5853   basic_block bb = cui->bb;
5854   micro_operation mo;
5855   rtx oloc = loc, nloc, src = NULL;
5856   enum micro_operation_type type = use_type (loc, cui, &mode);
5857   bool track_p = false;
5858   cselib_val *v;
5859   bool resolve, preserve;
5860 
5861   if (type == MO_CLOBBER)
5862     return;
5863 
5864   mode2 = mode;
5865 
5866   if (REG_P (loc))
5867     {
5868       gcc_assert (loc != cfa_base_rtx);
5869       if ((GET_CODE (expr) == CLOBBER && type != MO_VAL_SET)
5870 	  || !(track_p = use_type (loc, NULL, &mode2) == MO_USE)
5871 	  || GET_CODE (expr) == CLOBBER)
5872 	{
5873 	  mo.type = MO_CLOBBER;
5874 	  mo.u.loc = loc;
5875 	  if (GET_CODE (expr) == SET
5876 	      && SET_DEST (expr) == loc
5877 	      && !unsuitable_loc (SET_SRC (expr))
5878 	      && find_use_val (loc, mode, cui))
5879 	    {
5880 	      gcc_checking_assert (type == MO_VAL_SET);
5881 	      mo.u.loc = gen_rtx_SET (VOIDmode, loc, SET_SRC (expr));
5882 	    }
5883 	}
5884       else
5885 	{
5886 	  if (GET_CODE (expr) == SET
5887 	      && SET_DEST (expr) == loc
5888 	      && GET_CODE (SET_SRC (expr)) != ASM_OPERANDS)
5889 	    src = var_lowpart (mode2, SET_SRC (expr));
5890 	  loc = var_lowpart (mode2, loc);
5891 
5892 	  if (src == NULL)
5893 	    {
5894 	      mo.type = MO_SET;
5895 	      mo.u.loc = loc;
5896 	    }
5897 	  else
5898 	    {
5899 	      rtx xexpr = gen_rtx_SET (VOIDmode, loc, src);
5900 	      if (same_variable_part_p (src, REG_EXPR (loc), REG_OFFSET (loc)))
5901 		{
5902 		  /* If this is an instruction copying (part of) a parameter
5903 		     passed by invisible reference to its register location,
5904 		     pretend it's a SET so that the initial memory location
5905 		     is discarded, as the parameter register can be reused
5906 		     for other purposes and we do not track locations based
5907 		     on generic registers.  */
5908 		  if (MEM_P (src)
5909 		      && REG_EXPR (loc)
5910 		      && TREE_CODE (REG_EXPR (loc)) == PARM_DECL
5911 		      && DECL_MODE (REG_EXPR (loc)) != BLKmode
5912 		      && MEM_P (DECL_INCOMING_RTL (REG_EXPR (loc)))
5913 		      && XEXP (DECL_INCOMING_RTL (REG_EXPR (loc)), 0)
5914 			 != arg_pointer_rtx)
5915 		    mo.type = MO_SET;
5916 		  else
5917 		    mo.type = MO_COPY;
5918 		}
5919 	      else
5920 		mo.type = MO_SET;
5921 	      mo.u.loc = xexpr;
5922 	    }
5923 	}
5924       mo.insn = cui->insn;
5925     }
5926   else if (MEM_P (loc)
5927 	   && ((track_p = use_type (loc, NULL, &mode2) == MO_USE)
5928 	       || cui->sets))
5929     {
5930       if (MEM_P (loc) && type == MO_VAL_SET
5931 	  && !REG_P (XEXP (loc, 0))
5932 	  && !MEM_P (XEXP (loc, 0)))
5933 	{
5934 	  rtx mloc = loc;
5935 	  machine_mode address_mode = get_address_mode (mloc);
5936 	  cselib_val *val = cselib_lookup (XEXP (mloc, 0),
5937 					   address_mode, 0,
5938 					   GET_MODE (mloc));
5939 
5940 	  if (val && !cselib_preserved_value_p (val))
5941 	    preserve_value (val);
5942 	}
5943 
5944       if (GET_CODE (expr) == CLOBBER || !track_p)
5945 	{
5946 	  mo.type = MO_CLOBBER;
5947 	  mo.u.loc = track_p ? var_lowpart (mode2, loc) : loc;
5948 	}
5949       else
5950 	{
5951 	  if (GET_CODE (expr) == SET
5952 	      && SET_DEST (expr) == loc
5953 	      && GET_CODE (SET_SRC (expr)) != ASM_OPERANDS)
5954 	    src = var_lowpart (mode2, SET_SRC (expr));
5955 	  loc = var_lowpart (mode2, loc);
5956 
5957 	  if (src == NULL)
5958 	    {
5959 	      mo.type = MO_SET;
5960 	      mo.u.loc = loc;
5961 	    }
5962 	  else
5963 	    {
5964 	      rtx xexpr = gen_rtx_SET (VOIDmode, loc, src);
5965 	      if (same_variable_part_p (SET_SRC (xexpr),
5966 					MEM_EXPR (loc),
5967 					INT_MEM_OFFSET (loc)))
5968 		mo.type = MO_COPY;
5969 	      else
5970 		mo.type = MO_SET;
5971 	      mo.u.loc = xexpr;
5972 	    }
5973 	}
5974       mo.insn = cui->insn;
5975     }
5976   else
5977     return;
5978 
5979   if (type != MO_VAL_SET)
5980     goto log_and_return;
5981 
5982   v = find_use_val (oloc, mode, cui);
5983 
5984   if (!v)
5985     goto log_and_return;
5986 
5987   resolve = preserve = !cselib_preserved_value_p (v);
5988 
5989   /* We cannot track values for multiple-part variables, so we track only
5990      locations for tracked parameters passed either by invisible reference
5991      or directly in multiple locations.  */
5992   if (track_p
5993       && REG_P (loc)
5994       && REG_EXPR (loc)
5995       && TREE_CODE (REG_EXPR (loc)) == PARM_DECL
5996       && DECL_MODE (REG_EXPR (loc)) != BLKmode
5997       && TREE_CODE (TREE_TYPE (REG_EXPR (loc))) != UNION_TYPE
5998       && ((MEM_P (DECL_INCOMING_RTL (REG_EXPR (loc)))
5999 	   && XEXP (DECL_INCOMING_RTL (REG_EXPR (loc)), 0) != arg_pointer_rtx)
6000           || (GET_CODE (DECL_INCOMING_RTL (REG_EXPR (loc))) == PARALLEL
6001 	      && XVECLEN (DECL_INCOMING_RTL (REG_EXPR (loc)), 0) > 1)))
6002     {
6003       /* Although we don't use the value here, it could be used later by the
6004 	 mere virtue of its existence as the operand of the reverse operation
6005 	 that gave rise to it (typically extension/truncation).  Make sure it
6006 	 is preserved as required by vt_expand_var_loc_chain.  */
6007       if (preserve)
6008 	preserve_value (v);
6009       goto log_and_return;
6010     }
6011 
6012   if (loc == stack_pointer_rtx
6013       && hard_frame_pointer_adjustment != -1
6014       && preserve)
6015     cselib_set_value_sp_based (v);
6016 
6017   nloc = replace_expr_with_values (oloc);
6018   if (nloc)
6019     oloc = nloc;
6020 
6021   if (GET_CODE (PATTERN (cui->insn)) == COND_EXEC)
6022     {
6023       cselib_val *oval = cselib_lookup (oloc, GET_MODE (oloc), 0, VOIDmode);
6024 
6025       if (oval == v)
6026 	return;
6027       gcc_assert (REG_P (oloc) || MEM_P (oloc));
6028 
6029       if (oval && !cselib_preserved_value_p (oval))
6030 	{
6031 	  micro_operation moa;
6032 
6033 	  preserve_value (oval);
6034 
6035 	  moa.type = MO_VAL_USE;
6036 	  moa.u.loc = gen_rtx_CONCAT (mode, oval->val_rtx, oloc);
6037 	  VAL_NEEDS_RESOLUTION (moa.u.loc) = 1;
6038 	  moa.insn = cui->insn;
6039 
6040 	  if (dump_file && (dump_flags & TDF_DETAILS))
6041 	    log_op_type (moa.u.loc, cui->bb, cui->insn,
6042 			 moa.type, dump_file);
6043 	  VTI (bb)->mos.safe_push (moa);
6044 	}
6045 
6046       resolve = false;
6047     }
6048   else if (resolve && GET_CODE (mo.u.loc) == SET)
6049     {
6050       if (REG_P (SET_SRC (expr)) || MEM_P (SET_SRC (expr)))
6051 	nloc = replace_expr_with_values (SET_SRC (expr));
6052       else
6053 	nloc = NULL_RTX;
6054 
6055       /* Avoid the mode mismatch between oexpr and expr.  */
6056       if (!nloc && mode != mode2)
6057 	{
6058 	  nloc = SET_SRC (expr);
6059 	  gcc_assert (oloc == SET_DEST (expr));
6060 	}
6061 
6062       if (nloc && nloc != SET_SRC (mo.u.loc))
6063 	oloc = gen_rtx_SET (GET_MODE (mo.u.loc), oloc, nloc);
6064       else
6065 	{
6066 	  if (oloc == SET_DEST (mo.u.loc))
6067 	    /* No point in duplicating.  */
6068 	    oloc = mo.u.loc;
6069 	  if (!REG_P (SET_SRC (mo.u.loc)))
6070 	    resolve = false;
6071 	}
6072     }
6073   else if (!resolve)
6074     {
6075       if (GET_CODE (mo.u.loc) == SET
6076 	  && oloc == SET_DEST (mo.u.loc))
6077 	/* No point in duplicating.  */
6078 	oloc = mo.u.loc;
6079     }
6080   else
6081     resolve = false;
6082 
6083   loc = gen_rtx_CONCAT (mode, v->val_rtx, oloc);
6084 
6085   if (mo.u.loc != oloc)
6086     loc = gen_rtx_CONCAT (GET_MODE (mo.u.loc), loc, mo.u.loc);
6087 
6088   /* The loc of a MO_VAL_SET may have various forms:
6089 
6090      (concat val dst): dst now holds val
6091 
6092      (concat val (set dst src)): dst now holds val, copied from src
6093 
6094      (concat (concat val dstv) dst): dst now holds val; dstv is dst
6095      after replacing mems and non-top-level regs with values.
6096 
6097      (concat (concat val dstv) (set dst src)): dst now holds val,
6098      copied from src.  dstv is a value-based representation of dst, if
6099      it differs from dst.  If resolution is needed, src is a REG, and
6100      its mode is the same as that of val.
6101 
6102      (concat (concat val (set dstv srcv)) (set dst src)): src
6103      copied to dst, holding val.  dstv and srcv are value-based
6104      representations of dst and src, respectively.
6105 
6106   */
6107 
6108   if (GET_CODE (PATTERN (cui->insn)) != COND_EXEC)
6109     reverse_op (v->val_rtx, expr, cui->insn);
6110 
6111   mo.u.loc = loc;
6112 
6113   if (track_p)
6114     VAL_HOLDS_TRACK_EXPR (loc) = 1;
6115   if (preserve)
6116     {
6117       VAL_NEEDS_RESOLUTION (loc) = resolve;
6118       preserve_value (v);
6119     }
6120   if (mo.type == MO_CLOBBER)
6121     VAL_EXPR_IS_CLOBBERED (loc) = 1;
6122   if (mo.type == MO_COPY)
6123     VAL_EXPR_IS_COPIED (loc) = 1;
6124 
6125   mo.type = MO_VAL_SET;
6126 
6127  log_and_return:
6128   if (dump_file && (dump_flags & TDF_DETAILS))
6129     log_op_type (mo.u.loc, cui->bb, cui->insn, mo.type, dump_file);
6130   VTI (bb)->mos.safe_push (mo);
6131 }
6132 
6133 /* Arguments to the call.  */
6134 static rtx call_arguments;
6135 
6136 /* Compute call_arguments.  */
6137 
6138 static void
6139 prepare_call_arguments (basic_block bb, rtx_insn *insn)
6140 {
6141   rtx link, x, call;
6142   rtx prev, cur, next;
6143   rtx this_arg = NULL_RTX;
6144   tree type = NULL_TREE, t, fndecl = NULL_TREE;
6145   tree obj_type_ref = NULL_TREE;
6146   CUMULATIVE_ARGS args_so_far_v;
6147   cumulative_args_t args_so_far;
6148 
6149   memset (&args_so_far_v, 0, sizeof (args_so_far_v));
6150   args_so_far = pack_cumulative_args (&args_so_far_v);
6151   call = get_call_rtx_from (insn);
6152   if (call)
6153     {
6154       if (GET_CODE (XEXP (XEXP (call, 0), 0)) == SYMBOL_REF)
6155 	{
6156 	  rtx symbol = XEXP (XEXP (call, 0), 0);
6157 	  if (SYMBOL_REF_DECL (symbol))
6158 	    fndecl = SYMBOL_REF_DECL (symbol);
6159 	}
6160       if (fndecl == NULL_TREE)
6161 	fndecl = MEM_EXPR (XEXP (call, 0));
6162       if (fndecl
6163 	  && TREE_CODE (TREE_TYPE (fndecl)) != FUNCTION_TYPE
6164 	  && TREE_CODE (TREE_TYPE (fndecl)) != METHOD_TYPE)
6165 	fndecl = NULL_TREE;
6166       if (fndecl && TYPE_ARG_TYPES (TREE_TYPE (fndecl)))
6167 	type = TREE_TYPE (fndecl);
6168       if (fndecl && TREE_CODE (fndecl) != FUNCTION_DECL)
6169 	{
6170 	  if (TREE_CODE (fndecl) == INDIRECT_REF
6171 	      && TREE_CODE (TREE_OPERAND (fndecl, 0)) == OBJ_TYPE_REF)
6172 	    obj_type_ref = TREE_OPERAND (fndecl, 0);
6173 	  fndecl = NULL_TREE;
6174 	}
6175       if (type)
6176 	{
6177 	  for (t = TYPE_ARG_TYPES (type); t && t != void_list_node;
6178 	       t = TREE_CHAIN (t))
6179 	    if (TREE_CODE (TREE_VALUE (t)) == REFERENCE_TYPE
6180 		&& INTEGRAL_TYPE_P (TREE_TYPE (TREE_VALUE (t))))
6181 	      break;
6182 	  if ((t == NULL || t == void_list_node) && obj_type_ref == NULL_TREE)
6183 	    type = NULL;
6184 	  else
6185 	    {
6186 	      int nargs ATTRIBUTE_UNUSED = list_length (TYPE_ARG_TYPES (type));
6187 	      link = CALL_INSN_FUNCTION_USAGE (insn);
6188 #ifndef PCC_STATIC_STRUCT_RETURN
6189 	      if (aggregate_value_p (TREE_TYPE (type), type)
6190 		  && targetm.calls.struct_value_rtx (type, 0) == 0)
6191 		{
6192 		  tree struct_addr = build_pointer_type (TREE_TYPE (type));
6193 		  machine_mode mode = TYPE_MODE (struct_addr);
6194 		  rtx reg;
6195 		  INIT_CUMULATIVE_ARGS (args_so_far_v, type, NULL_RTX, fndecl,
6196 					nargs + 1);
6197 		  reg = targetm.calls.function_arg (args_so_far, mode,
6198 						    struct_addr, true);
6199 		  targetm.calls.function_arg_advance (args_so_far, mode,
6200 						      struct_addr, true);
6201 		  if (reg == NULL_RTX)
6202 		    {
6203 		      for (; link; link = XEXP (link, 1))
6204 			if (GET_CODE (XEXP (link, 0)) == USE
6205 			    && MEM_P (XEXP (XEXP (link, 0), 0)))
6206 			  {
6207 			    link = XEXP (link, 1);
6208 			    break;
6209 			  }
6210 		    }
6211 		}
6212 	      else
6213 #endif
6214 		INIT_CUMULATIVE_ARGS (args_so_far_v, type, NULL_RTX, fndecl,
6215 				      nargs);
6216 	      if (obj_type_ref && TYPE_ARG_TYPES (type) != void_list_node)
6217 		{
6218 		  machine_mode mode;
6219 		  t = TYPE_ARG_TYPES (type);
6220 		  mode = TYPE_MODE (TREE_VALUE (t));
6221 		  this_arg = targetm.calls.function_arg (args_so_far, mode,
6222 							 TREE_VALUE (t), true);
6223 		  if (this_arg && !REG_P (this_arg))
6224 		    this_arg = NULL_RTX;
6225 		  else if (this_arg == NULL_RTX)
6226 		    {
6227 		      for (; link; link = XEXP (link, 1))
6228 			if (GET_CODE (XEXP (link, 0)) == USE
6229 			    && MEM_P (XEXP (XEXP (link, 0), 0)))
6230 			  {
6231 			    this_arg = XEXP (XEXP (link, 0), 0);
6232 			    break;
6233 			  }
6234 		    }
6235 		}
6236 	    }
6237 	}
6238     }
6239   t = type ? TYPE_ARG_TYPES (type) : NULL_TREE;
6240 
6241   for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
6242     if (GET_CODE (XEXP (link, 0)) == USE)
6243       {
6244 	rtx item = NULL_RTX;
6245 	x = XEXP (XEXP (link, 0), 0);
6246 	if (GET_MODE (link) == VOIDmode
6247 	    || GET_MODE (link) == BLKmode
6248 	    || (GET_MODE (link) != GET_MODE (x)
6249 		&& ((GET_MODE_CLASS (GET_MODE (link)) != MODE_INT
6250 		     && GET_MODE_CLASS (GET_MODE (link)) != MODE_PARTIAL_INT)
6251 		    || (GET_MODE_CLASS (GET_MODE (x)) != MODE_INT
6252 			&& GET_MODE_CLASS (GET_MODE (x)) != MODE_PARTIAL_INT))))
6253 	  /* Can't do anything for these, if the original type mode
6254 	     isn't known or can't be converted.  */;
6255 	else if (REG_P (x))
6256 	  {
6257 	    cselib_val *val = cselib_lookup (x, GET_MODE (x), 0, VOIDmode);
6258 	    if (val && cselib_preserved_value_p (val))
6259 	      item = val->val_rtx;
6260 	    else if (GET_MODE_CLASS (GET_MODE (x)) == MODE_INT
6261 		     || GET_MODE_CLASS (GET_MODE (x)) == MODE_PARTIAL_INT)
6262 	      {
6263 		machine_mode mode = GET_MODE (x);
6264 
6265 		while ((mode = GET_MODE_WIDER_MODE (mode)) != VOIDmode
6266 		       && GET_MODE_BITSIZE (mode) <= BITS_PER_WORD)
6267 		  {
6268 		    rtx reg = simplify_subreg (mode, x, GET_MODE (x), 0);
6269 
6270 		    if (reg == NULL_RTX || !REG_P (reg))
6271 		      continue;
6272 		    val = cselib_lookup (reg, mode, 0, VOIDmode);
6273 		    if (val && cselib_preserved_value_p (val))
6274 		      {
6275 			item = val->val_rtx;
6276 			break;
6277 		      }
6278 		  }
6279 	      }
6280 	  }
6281 	else if (MEM_P (x))
6282 	  {
6283 	    rtx mem = x;
6284 	    cselib_val *val;
6285 
6286 	    if (!frame_pointer_needed)
6287 	      {
6288 		struct adjust_mem_data amd;
6289 		amd.mem_mode = VOIDmode;
6290 		amd.stack_adjust = -VTI (bb)->out.stack_adjust;
6291 		amd.side_effects = NULL;
6292 		amd.store = true;
6293 		mem = simplify_replace_fn_rtx (mem, NULL_RTX, adjust_mems,
6294 					       &amd);
6295 		gcc_assert (amd.side_effects == NULL_RTX);
6296 	      }
6297 	    val = cselib_lookup (mem, GET_MODE (mem), 0, VOIDmode);
6298 	    if (val && cselib_preserved_value_p (val))
6299 	      item = val->val_rtx;
6300 	    else if (GET_MODE_CLASS (GET_MODE (mem)) != MODE_INT
6301 		     && GET_MODE_CLASS (GET_MODE (mem)) != MODE_PARTIAL_INT)
6302 	      {
6303 		/* For non-integer stack argument see also if they weren't
6304 		   initialized by integers.  */
6305 		machine_mode imode = int_mode_for_mode (GET_MODE (mem));
6306 		if (imode != GET_MODE (mem) && imode != BLKmode)
6307 		  {
6308 		    val = cselib_lookup (adjust_address_nv (mem, imode, 0),
6309 					 imode, 0, VOIDmode);
6310 		    if (val && cselib_preserved_value_p (val))
6311 		      item = lowpart_subreg (GET_MODE (x), val->val_rtx,
6312 					     imode);
6313 		  }
6314 	      }
6315 	  }
6316 	if (item)
6317 	  {
6318 	    rtx x2 = x;
6319 	    if (GET_MODE (item) != GET_MODE (link))
6320 	      item = lowpart_subreg (GET_MODE (link), item, GET_MODE (item));
6321 	    if (GET_MODE (x2) != GET_MODE (link))
6322 	      x2 = lowpart_subreg (GET_MODE (link), x2, GET_MODE (x2));
6323 	    item = gen_rtx_CONCAT (GET_MODE (link), x2, item);
6324 	    call_arguments
6325 	      = gen_rtx_EXPR_LIST (VOIDmode, item, call_arguments);
6326 	  }
6327 	if (t && t != void_list_node)
6328 	  {
6329 	    tree argtype = TREE_VALUE (t);
6330 	    machine_mode mode = TYPE_MODE (argtype);
6331 	    rtx reg;
6332 	    if (pass_by_reference (&args_so_far_v, mode, argtype, true))
6333 	      {
6334 		argtype = build_pointer_type (argtype);
6335 		mode = TYPE_MODE (argtype);
6336 	      }
6337 	    reg = targetm.calls.function_arg (args_so_far, mode,
6338 					      argtype, true);
6339 	    if (TREE_CODE (argtype) == REFERENCE_TYPE
6340 		&& INTEGRAL_TYPE_P (TREE_TYPE (argtype))
6341 		&& reg
6342 		&& REG_P (reg)
6343 		&& GET_MODE (reg) == mode
6344 		&& (GET_MODE_CLASS (mode) == MODE_INT
6345 		    || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
6346 		&& REG_P (x)
6347 		&& REGNO (x) == REGNO (reg)
6348 		&& GET_MODE (x) == mode
6349 		&& item)
6350 	      {
6351 		machine_mode indmode
6352 		  = TYPE_MODE (TREE_TYPE (argtype));
6353 		rtx mem = gen_rtx_MEM (indmode, x);
6354 		cselib_val *val = cselib_lookup (mem, indmode, 0, VOIDmode);
6355 		if (val && cselib_preserved_value_p (val))
6356 		  {
6357 		    item = gen_rtx_CONCAT (indmode, mem, val->val_rtx);
6358 		    call_arguments = gen_rtx_EXPR_LIST (VOIDmode, item,
6359 							call_arguments);
6360 		  }
6361 		else
6362 		  {
6363 		    struct elt_loc_list *l;
6364 		    tree initial;
6365 
6366 		    /* Try harder, when passing address of a constant
6367 		       pool integer it can be easily read back.  */
6368 		    item = XEXP (item, 1);
6369 		    if (GET_CODE (item) == SUBREG)
6370 		      item = SUBREG_REG (item);
6371 		    gcc_assert (GET_CODE (item) == VALUE);
6372 		    val = CSELIB_VAL_PTR (item);
6373 		    for (l = val->locs; l; l = l->next)
6374 		      if (GET_CODE (l->loc) == SYMBOL_REF
6375 			  && TREE_CONSTANT_POOL_ADDRESS_P (l->loc)
6376 			  && SYMBOL_REF_DECL (l->loc)
6377 			  && DECL_INITIAL (SYMBOL_REF_DECL (l->loc)))
6378 			{
6379 			  initial = DECL_INITIAL (SYMBOL_REF_DECL (l->loc));
6380 			  if (tree_fits_shwi_p (initial))
6381 			    {
6382 			      item = GEN_INT (tree_to_shwi (initial));
6383 			      item = gen_rtx_CONCAT (indmode, mem, item);
6384 			      call_arguments
6385 				= gen_rtx_EXPR_LIST (VOIDmode, item,
6386 						     call_arguments);
6387 			    }
6388 			  break;
6389 			}
6390 		  }
6391 	      }
6392 	    targetm.calls.function_arg_advance (args_so_far, mode,
6393 						argtype, true);
6394 	    t = TREE_CHAIN (t);
6395 	  }
6396       }
6397 
6398   /* Add debug arguments.  */
6399   if (fndecl
6400       && TREE_CODE (fndecl) == FUNCTION_DECL
6401       && DECL_HAS_DEBUG_ARGS_P (fndecl))
6402     {
6403       vec<tree, va_gc> **debug_args = decl_debug_args_lookup (fndecl);
6404       if (debug_args)
6405 	{
6406 	  unsigned int ix;
6407 	  tree param;
6408 	  for (ix = 0; vec_safe_iterate (*debug_args, ix, &param); ix += 2)
6409 	    {
6410 	      rtx item;
6411 	      tree dtemp = (**debug_args)[ix + 1];
6412 	      machine_mode mode = DECL_MODE (dtemp);
6413 	      item = gen_rtx_DEBUG_PARAMETER_REF (mode, param);
6414 	      item = gen_rtx_CONCAT (mode, item, DECL_RTL_KNOWN_SET (dtemp));
6415 	      call_arguments = gen_rtx_EXPR_LIST (VOIDmode, item,
6416 						  call_arguments);
6417 	    }
6418 	}
6419     }
6420 
6421   /* Reverse call_arguments chain.  */
6422   prev = NULL_RTX;
6423   for (cur = call_arguments; cur; cur = next)
6424     {
6425       next = XEXP (cur, 1);
6426       XEXP (cur, 1) = prev;
6427       prev = cur;
6428     }
6429   call_arguments = prev;
6430 
6431   x = get_call_rtx_from (insn);
6432   if (x)
6433     {
6434       x = XEXP (XEXP (x, 0), 0);
6435       if (GET_CODE (x) == SYMBOL_REF)
6436 	/* Don't record anything.  */;
6437       else if (CONSTANT_P (x))
6438 	{
6439 	  x = gen_rtx_CONCAT (GET_MODE (x) == VOIDmode ? Pmode : GET_MODE (x),
6440 			      pc_rtx, x);
6441 	  call_arguments
6442 	    = gen_rtx_EXPR_LIST (VOIDmode, x, call_arguments);
6443 	}
6444       else
6445 	{
6446 	  cselib_val *val = cselib_lookup (x, GET_MODE (x), 0, VOIDmode);
6447 	  if (val && cselib_preserved_value_p (val))
6448 	    {
6449 	      x = gen_rtx_CONCAT (GET_MODE (x), pc_rtx, val->val_rtx);
6450 	      call_arguments
6451 		= gen_rtx_EXPR_LIST (VOIDmode, x, call_arguments);
6452 	    }
6453 	}
6454     }
6455   if (this_arg)
6456     {
6457       machine_mode mode
6458 	= TYPE_MODE (TREE_TYPE (OBJ_TYPE_REF_EXPR (obj_type_ref)));
6459       rtx clobbered = gen_rtx_MEM (mode, this_arg);
6460       HOST_WIDE_INT token
6461 	= tree_to_shwi (OBJ_TYPE_REF_TOKEN (obj_type_ref));
6462       if (token)
6463 	clobbered = plus_constant (mode, clobbered,
6464 				   token * GET_MODE_SIZE (mode));
6465       clobbered = gen_rtx_MEM (mode, clobbered);
6466       x = gen_rtx_CONCAT (mode, gen_rtx_CLOBBER (VOIDmode, pc_rtx), clobbered);
6467       call_arguments
6468 	= gen_rtx_EXPR_LIST (VOIDmode, x, call_arguments);
6469     }
6470 }
6471 
6472 /* Callback for cselib_record_sets_hook, that records as micro
6473    operations uses and stores in an insn after cselib_record_sets has
6474    analyzed the sets in an insn, but before it modifies the stored
6475    values in the internal tables, unless cselib_record_sets doesn't
6476    call it directly (perhaps because we're not doing cselib in the
6477    first place, in which case sets and n_sets will be 0).  */
6478 
6479 static void
6480 add_with_sets (rtx_insn *insn, struct cselib_set *sets, int n_sets)
6481 {
6482   basic_block bb = BLOCK_FOR_INSN (insn);
6483   int n1, n2;
6484   struct count_use_info cui;
6485   micro_operation *mos;
6486 
6487   cselib_hook_called = true;
6488 
6489   cui.insn = insn;
6490   cui.bb = bb;
6491   cui.sets = sets;
6492   cui.n_sets = n_sets;
6493 
6494   n1 = VTI (bb)->mos.length ();
6495   cui.store_p = false;
6496   note_uses (&PATTERN (insn), add_uses_1, &cui);
6497   n2 = VTI (bb)->mos.length () - 1;
6498   mos = VTI (bb)->mos.address ();
6499 
6500   /* Order the MO_USEs to be before MO_USE_NO_VARs and MO_VAL_USE, and
6501      MO_VAL_LOC last.  */
6502   while (n1 < n2)
6503     {
6504       while (n1 < n2 && mos[n1].type == MO_USE)
6505 	n1++;
6506       while (n1 < n2 && mos[n2].type != MO_USE)
6507 	n2--;
6508       if (n1 < n2)
6509 	{
6510 	  micro_operation sw;
6511 
6512 	  sw = mos[n1];
6513 	  mos[n1] = mos[n2];
6514 	  mos[n2] = sw;
6515 	}
6516     }
6517 
6518   n2 = VTI (bb)->mos.length () - 1;
6519   while (n1 < n2)
6520     {
6521       while (n1 < n2 && mos[n1].type != MO_VAL_LOC)
6522 	n1++;
6523       while (n1 < n2 && mos[n2].type == MO_VAL_LOC)
6524 	n2--;
6525       if (n1 < n2)
6526 	{
6527 	  micro_operation sw;
6528 
6529 	  sw = mos[n1];
6530 	  mos[n1] = mos[n2];
6531 	  mos[n2] = sw;
6532 	}
6533     }
6534 
6535   if (CALL_P (insn))
6536     {
6537       micro_operation mo;
6538 
6539       mo.type = MO_CALL;
6540       mo.insn = insn;
6541       mo.u.loc = call_arguments;
6542       call_arguments = NULL_RTX;
6543 
6544       if (dump_file && (dump_flags & TDF_DETAILS))
6545 	log_op_type (PATTERN (insn), bb, insn, mo.type, dump_file);
6546       VTI (bb)->mos.safe_push (mo);
6547     }
6548 
6549   n1 = VTI (bb)->mos.length ();
6550   /* This will record NEXT_INSN (insn), such that we can
6551      insert notes before it without worrying about any
6552      notes that MO_USEs might emit after the insn.  */
6553   cui.store_p = true;
6554   note_stores (PATTERN (insn), add_stores, &cui);
6555   n2 = VTI (bb)->mos.length () - 1;
6556   mos = VTI (bb)->mos.address ();
6557 
6558   /* Order the MO_VAL_USEs first (note_stores does nothing
6559      on DEBUG_INSNs, so there are no MO_VAL_LOCs from this
6560      insn), then MO_CLOBBERs, then MO_SET/MO_COPY/MO_VAL_SET.  */
6561   while (n1 < n2)
6562     {
6563       while (n1 < n2 && mos[n1].type == MO_VAL_USE)
6564 	n1++;
6565       while (n1 < n2 && mos[n2].type != MO_VAL_USE)
6566 	n2--;
6567       if (n1 < n2)
6568 	{
6569 	  micro_operation sw;
6570 
6571 	  sw = mos[n1];
6572 	  mos[n1] = mos[n2];
6573 	  mos[n2] = sw;
6574 	}
6575     }
6576 
6577   n2 = VTI (bb)->mos.length () - 1;
6578   while (n1 < n2)
6579     {
6580       while (n1 < n2 && mos[n1].type == MO_CLOBBER)
6581 	n1++;
6582       while (n1 < n2 && mos[n2].type != MO_CLOBBER)
6583 	n2--;
6584       if (n1 < n2)
6585 	{
6586 	  micro_operation sw;
6587 
6588 	  sw = mos[n1];
6589 	  mos[n1] = mos[n2];
6590 	  mos[n2] = sw;
6591 	}
6592     }
6593 }
6594 
6595 static enum var_init_status
6596 find_src_status (dataflow_set *in, rtx src)
6597 {
6598   tree decl = NULL_TREE;
6599   enum var_init_status status = VAR_INIT_STATUS_UNINITIALIZED;
6600 
6601   if (! flag_var_tracking_uninit)
6602     status = VAR_INIT_STATUS_INITIALIZED;
6603 
6604   if (src && REG_P (src))
6605     decl = var_debug_decl (REG_EXPR (src));
6606   else if (src && MEM_P (src))
6607     decl = var_debug_decl (MEM_EXPR (src));
6608 
6609   if (src && decl)
6610     status = get_init_value (in, src, dv_from_decl (decl));
6611 
6612   return status;
6613 }
6614 
6615 /* SRC is the source of an assignment.  Use SET to try to find what
6616    was ultimately assigned to SRC.  Return that value if known,
6617    otherwise return SRC itself.  */
6618 
6619 static rtx
6620 find_src_set_src (dataflow_set *set, rtx src)
6621 {
6622   tree decl = NULL_TREE;   /* The variable being copied around.          */
6623   rtx set_src = NULL_RTX;  /* The value for "decl" stored in "src".      */
6624   variable var;
6625   location_chain nextp;
6626   int i;
6627   bool found;
6628 
6629   if (src && REG_P (src))
6630     decl = var_debug_decl (REG_EXPR (src));
6631   else if (src && MEM_P (src))
6632     decl = var_debug_decl (MEM_EXPR (src));
6633 
6634   if (src && decl)
6635     {
6636       decl_or_value dv = dv_from_decl (decl);
6637 
6638       var = shared_hash_find (set->vars, dv);
6639       if (var)
6640 	{
6641 	  found = false;
6642 	  for (i = 0; i < var->n_var_parts && !found; i++)
6643 	    for (nextp = var->var_part[i].loc_chain; nextp && !found;
6644 		 nextp = nextp->next)
6645 	      if (rtx_equal_p (nextp->loc, src))
6646 		{
6647 		  set_src = nextp->set_src;
6648 		  found = true;
6649 		}
6650 
6651 	}
6652     }
6653 
6654   return set_src;
6655 }
6656 
6657 /* Compute the changes of variable locations in the basic block BB.  */
6658 
6659 static bool
6660 compute_bb_dataflow (basic_block bb)
6661 {
6662   unsigned int i;
6663   micro_operation *mo;
6664   bool changed;
6665   dataflow_set old_out;
6666   dataflow_set *in = &VTI (bb)->in;
6667   dataflow_set *out = &VTI (bb)->out;
6668 
6669   dataflow_set_init (&old_out);
6670   dataflow_set_copy (&old_out, out);
6671   dataflow_set_copy (out, in);
6672 
6673   if (MAY_HAVE_DEBUG_INSNS)
6674     local_get_addr_cache = new hash_map<rtx, rtx>;
6675 
6676   FOR_EACH_VEC_ELT (VTI (bb)->mos, i, mo)
6677     {
6678       rtx_insn *insn = mo->insn;
6679 
6680       switch (mo->type)
6681 	{
6682 	  case MO_CALL:
6683 	    dataflow_set_clear_at_call (out);
6684 	    break;
6685 
6686 	  case MO_USE:
6687 	    {
6688 	      rtx loc = mo->u.loc;
6689 
6690 	      if (REG_P (loc))
6691 		var_reg_set (out, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
6692 	      else if (MEM_P (loc))
6693 		var_mem_set (out, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
6694 	    }
6695 	    break;
6696 
6697 	  case MO_VAL_LOC:
6698 	    {
6699 	      rtx loc = mo->u.loc;
6700 	      rtx val, vloc;
6701 	      tree var;
6702 
6703 	      if (GET_CODE (loc) == CONCAT)
6704 		{
6705 		  val = XEXP (loc, 0);
6706 		  vloc = XEXP (loc, 1);
6707 		}
6708 	      else
6709 		{
6710 		  val = NULL_RTX;
6711 		  vloc = loc;
6712 		}
6713 
6714 	      var = PAT_VAR_LOCATION_DECL (vloc);
6715 
6716 	      clobber_variable_part (out, NULL_RTX,
6717 				     dv_from_decl (var), 0, NULL_RTX);
6718 	      if (val)
6719 		{
6720 		  if (VAL_NEEDS_RESOLUTION (loc))
6721 		    val_resolve (out, val, PAT_VAR_LOCATION_LOC (vloc), insn);
6722 		  set_variable_part (out, val, dv_from_decl (var), 0,
6723 				     VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
6724 				     INSERT);
6725 		}
6726 	      else if (!VAR_LOC_UNKNOWN_P (PAT_VAR_LOCATION_LOC (vloc)))
6727 		set_variable_part (out, PAT_VAR_LOCATION_LOC (vloc),
6728 				   dv_from_decl (var), 0,
6729 				   VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
6730 				   INSERT);
6731 	    }
6732 	    break;
6733 
6734 	  case MO_VAL_USE:
6735 	    {
6736 	      rtx loc = mo->u.loc;
6737 	      rtx val, vloc, uloc;
6738 
6739 	      vloc = uloc = XEXP (loc, 1);
6740 	      val = XEXP (loc, 0);
6741 
6742 	      if (GET_CODE (val) == CONCAT)
6743 		{
6744 		  uloc = XEXP (val, 1);
6745 		  val = XEXP (val, 0);
6746 		}
6747 
6748 	      if (VAL_NEEDS_RESOLUTION (loc))
6749 		val_resolve (out, val, vloc, insn);
6750 	      else
6751 		val_store (out, val, uloc, insn, false);
6752 
6753 	      if (VAL_HOLDS_TRACK_EXPR (loc))
6754 		{
6755 		  if (GET_CODE (uloc) == REG)
6756 		    var_reg_set (out, uloc, VAR_INIT_STATUS_UNINITIALIZED,
6757 				 NULL);
6758 		  else if (GET_CODE (uloc) == MEM)
6759 		    var_mem_set (out, uloc, VAR_INIT_STATUS_UNINITIALIZED,
6760 				 NULL);
6761 		}
6762 	    }
6763 	    break;
6764 
6765 	  case MO_VAL_SET:
6766 	    {
6767 	      rtx loc = mo->u.loc;
6768 	      rtx val, vloc, uloc;
6769 	      rtx dstv, srcv;
6770 
6771 	      vloc = loc;
6772 	      uloc = XEXP (vloc, 1);
6773 	      val = XEXP (vloc, 0);
6774 	      vloc = uloc;
6775 
6776 	      if (GET_CODE (uloc) == SET)
6777 		{
6778 		  dstv = SET_DEST (uloc);
6779 		  srcv = SET_SRC (uloc);
6780 		}
6781 	      else
6782 		{
6783 		  dstv = uloc;
6784 		  srcv = NULL;
6785 		}
6786 
6787 	      if (GET_CODE (val) == CONCAT)
6788 		{
6789 		  dstv = vloc = XEXP (val, 1);
6790 		  val = XEXP (val, 0);
6791 		}
6792 
6793 	      if (GET_CODE (vloc) == SET)
6794 		{
6795 		  srcv = SET_SRC (vloc);
6796 
6797 		  gcc_assert (val != srcv);
6798 		  gcc_assert (vloc == uloc || VAL_NEEDS_RESOLUTION (loc));
6799 
6800 		  dstv = vloc = SET_DEST (vloc);
6801 
6802 		  if (VAL_NEEDS_RESOLUTION (loc))
6803 		    val_resolve (out, val, srcv, insn);
6804 		}
6805 	      else if (VAL_NEEDS_RESOLUTION (loc))
6806 		{
6807 		  gcc_assert (GET_CODE (uloc) == SET
6808 			      && GET_CODE (SET_SRC (uloc)) == REG);
6809 		  val_resolve (out, val, SET_SRC (uloc), insn);
6810 		}
6811 
6812 	      if (VAL_HOLDS_TRACK_EXPR (loc))
6813 		{
6814 		  if (VAL_EXPR_IS_CLOBBERED (loc))
6815 		    {
6816 		      if (REG_P (uloc))
6817 			var_reg_delete (out, uloc, true);
6818 		      else if (MEM_P (uloc))
6819 			{
6820 			  gcc_assert (MEM_P (dstv));
6821 			  gcc_assert (MEM_ATTRS (dstv) == MEM_ATTRS (uloc));
6822 			  var_mem_delete (out, dstv, true);
6823 			}
6824 		    }
6825 		  else
6826 		    {
6827 		      bool copied_p = VAL_EXPR_IS_COPIED (loc);
6828 		      rtx src = NULL, dst = uloc;
6829 		      enum var_init_status status = VAR_INIT_STATUS_INITIALIZED;
6830 
6831 		      if (GET_CODE (uloc) == SET)
6832 			{
6833 			  src = SET_SRC (uloc);
6834 			  dst = SET_DEST (uloc);
6835 			}
6836 
6837 		      if (copied_p)
6838 			{
6839 			  if (flag_var_tracking_uninit)
6840 			    {
6841 			      status = find_src_status (in, src);
6842 
6843 			      if (status == VAR_INIT_STATUS_UNKNOWN)
6844 				status = find_src_status (out, src);
6845 			    }
6846 
6847 			  src = find_src_set_src (in, src);
6848 			}
6849 
6850 		      if (REG_P (dst))
6851 			var_reg_delete_and_set (out, dst, !copied_p,
6852 						status, srcv);
6853 		      else if (MEM_P (dst))
6854 			{
6855 			  gcc_assert (MEM_P (dstv));
6856 			  gcc_assert (MEM_ATTRS (dstv) == MEM_ATTRS (dst));
6857 			  var_mem_delete_and_set (out, dstv, !copied_p,
6858 						  status, srcv);
6859 			}
6860 		    }
6861 		}
6862 	      else if (REG_P (uloc))
6863 		var_regno_delete (out, REGNO (uloc));
6864 	      else if (MEM_P (uloc))
6865 		{
6866 		  gcc_checking_assert (GET_CODE (vloc) == MEM);
6867 		  gcc_checking_assert (dstv == vloc);
6868 		  if (dstv != vloc)
6869 		    clobber_overlapping_mems (out, vloc);
6870 		}
6871 
6872 	      val_store (out, val, dstv, insn, true);
6873 	    }
6874 	    break;
6875 
6876 	  case MO_SET:
6877 	    {
6878 	      rtx loc = mo->u.loc;
6879 	      rtx set_src = NULL;
6880 
6881 	      if (GET_CODE (loc) == SET)
6882 		{
6883 		  set_src = SET_SRC (loc);
6884 		  loc = SET_DEST (loc);
6885 		}
6886 
6887 	      if (REG_P (loc))
6888 		var_reg_delete_and_set (out, loc, true, VAR_INIT_STATUS_INITIALIZED,
6889 					set_src);
6890 	      else if (MEM_P (loc))
6891 		var_mem_delete_and_set (out, loc, true, VAR_INIT_STATUS_INITIALIZED,
6892 					set_src);
6893 	    }
6894 	    break;
6895 
6896 	  case MO_COPY:
6897 	    {
6898 	      rtx loc = mo->u.loc;
6899 	      enum var_init_status src_status;
6900 	      rtx set_src = NULL;
6901 
6902 	      if (GET_CODE (loc) == SET)
6903 		{
6904 		  set_src = SET_SRC (loc);
6905 		  loc = SET_DEST (loc);
6906 		}
6907 
6908 	      if (! flag_var_tracking_uninit)
6909 		src_status = VAR_INIT_STATUS_INITIALIZED;
6910 	      else
6911 		{
6912 		  src_status = find_src_status (in, set_src);
6913 
6914 		  if (src_status == VAR_INIT_STATUS_UNKNOWN)
6915 		    src_status = find_src_status (out, set_src);
6916 		}
6917 
6918 	      set_src = find_src_set_src (in, set_src);
6919 
6920 	      if (REG_P (loc))
6921 		var_reg_delete_and_set (out, loc, false, src_status, set_src);
6922 	      else if (MEM_P (loc))
6923 		var_mem_delete_and_set (out, loc, false, src_status, set_src);
6924 	    }
6925 	    break;
6926 
6927 	  case MO_USE_NO_VAR:
6928 	    {
6929 	      rtx loc = mo->u.loc;
6930 
6931 	      if (REG_P (loc))
6932 		var_reg_delete (out, loc, false);
6933 	      else if (MEM_P (loc))
6934 		var_mem_delete (out, loc, false);
6935 	    }
6936 	    break;
6937 
6938 	  case MO_CLOBBER:
6939 	    {
6940 	      rtx loc = mo->u.loc;
6941 
6942 	      if (REG_P (loc))
6943 		var_reg_delete (out, loc, true);
6944 	      else if (MEM_P (loc))
6945 		var_mem_delete (out, loc, true);
6946 	    }
6947 	    break;
6948 
6949 	  case MO_ADJUST:
6950 	    out->stack_adjust += mo->u.adjust;
6951 	    break;
6952 	}
6953     }
6954 
6955   if (MAY_HAVE_DEBUG_INSNS)
6956     {
6957       delete local_get_addr_cache;
6958       local_get_addr_cache = NULL;
6959 
6960       dataflow_set_equiv_regs (out);
6961       shared_hash_htab (out->vars)
6962 	->traverse <dataflow_set *, canonicalize_values_mark> (out);
6963       shared_hash_htab (out->vars)
6964 	->traverse <dataflow_set *, canonicalize_values_star> (out);
6965 #if ENABLE_CHECKING
6966       shared_hash_htab (out->vars)
6967 	->traverse <dataflow_set *, canonicalize_loc_order_check> (out);
6968 #endif
6969     }
6970   changed = dataflow_set_different (&old_out, out);
6971   dataflow_set_destroy (&old_out);
6972   return changed;
6973 }
6974 
6975 /* Find the locations of variables in the whole function.  */
6976 
6977 static bool
6978 vt_find_locations (void)
6979 {
6980   bb_heap_t *worklist = new bb_heap_t (LONG_MIN);
6981   bb_heap_t *pending = new bb_heap_t (LONG_MIN);
6982   bb_heap_t *fibheap_swap = NULL;
6983   sbitmap visited, in_worklist, in_pending, sbitmap_swap;
6984   basic_block bb;
6985   edge e;
6986   int *bb_order;
6987   int *rc_order;
6988   int i;
6989   int htabsz = 0;
6990   int htabmax = PARAM_VALUE (PARAM_MAX_VARTRACK_SIZE);
6991   bool success = true;
6992 
6993   timevar_push (TV_VAR_TRACKING_DATAFLOW);
6994   /* Compute reverse completion order of depth first search of the CFG
6995      so that the data-flow runs faster.  */
6996   rc_order = XNEWVEC (int, n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS);
6997   bb_order = XNEWVEC (int, last_basic_block_for_fn (cfun));
6998   pre_and_rev_post_order_compute (NULL, rc_order, false);
6999   for (i = 0; i < n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS; i++)
7000     bb_order[rc_order[i]] = i;
7001   free (rc_order);
7002 
7003   visited = sbitmap_alloc (last_basic_block_for_fn (cfun));
7004   in_worklist = sbitmap_alloc (last_basic_block_for_fn (cfun));
7005   in_pending = sbitmap_alloc (last_basic_block_for_fn (cfun));
7006   bitmap_clear (in_worklist);
7007 
7008   FOR_EACH_BB_FN (bb, cfun)
7009     pending->insert (bb_order[bb->index], bb);
7010   bitmap_ones (in_pending);
7011 
7012   while (success && !pending->empty ())
7013     {
7014       fibheap_swap = pending;
7015       pending = worklist;
7016       worklist = fibheap_swap;
7017       sbitmap_swap = in_pending;
7018       in_pending = in_worklist;
7019       in_worklist = sbitmap_swap;
7020 
7021       bitmap_clear (visited);
7022 
7023       while (!worklist->empty ())
7024 	{
7025 	  bb = worklist->extract_min ();
7026 	  bitmap_clear_bit (in_worklist, bb->index);
7027 	  gcc_assert (!bitmap_bit_p (visited, bb->index));
7028 	  if (!bitmap_bit_p (visited, bb->index))
7029 	    {
7030 	      bool changed;
7031 	      edge_iterator ei;
7032 	      int oldinsz, oldoutsz;
7033 
7034 	      bitmap_set_bit (visited, bb->index);
7035 
7036 	      if (VTI (bb)->in.vars)
7037 		{
7038 		  htabsz
7039 		    -= shared_hash_htab (VTI (bb)->in.vars)->size ()
7040 			+ shared_hash_htab (VTI (bb)->out.vars)->size ();
7041 		  oldinsz = shared_hash_htab (VTI (bb)->in.vars)->elements ();
7042 		  oldoutsz
7043 		    = shared_hash_htab (VTI (bb)->out.vars)->elements ();
7044 		}
7045 	      else
7046 		oldinsz = oldoutsz = 0;
7047 
7048 	      if (MAY_HAVE_DEBUG_INSNS)
7049 		{
7050 		  dataflow_set *in = &VTI (bb)->in, *first_out = NULL;
7051 		  bool first = true, adjust = false;
7052 
7053 		  /* Calculate the IN set as the intersection of
7054 		     predecessor OUT sets.  */
7055 
7056 		  dataflow_set_clear (in);
7057 		  dst_can_be_shared = true;
7058 
7059 		  FOR_EACH_EDGE (e, ei, bb->preds)
7060 		    if (!VTI (e->src)->flooded)
7061 		      gcc_assert (bb_order[bb->index]
7062 				  <= bb_order[e->src->index]);
7063 		    else if (first)
7064 		      {
7065 			dataflow_set_copy (in, &VTI (e->src)->out);
7066 			first_out = &VTI (e->src)->out;
7067 			first = false;
7068 		      }
7069 		    else
7070 		      {
7071 			dataflow_set_merge (in, &VTI (e->src)->out);
7072 			adjust = true;
7073 		      }
7074 
7075 		  if (adjust)
7076 		    {
7077 		      dataflow_post_merge_adjust (in, &VTI (bb)->permp);
7078 #if ENABLE_CHECKING
7079 		      /* Merge and merge_adjust should keep entries in
7080 			 canonical order.  */
7081 		      shared_hash_htab (in->vars)
7082 			->traverse <dataflow_set *,
7083 				    canonicalize_loc_order_check> (in);
7084 #endif
7085 		      if (dst_can_be_shared)
7086 			{
7087 			  shared_hash_destroy (in->vars);
7088 			  in->vars = shared_hash_copy (first_out->vars);
7089 			}
7090 		    }
7091 
7092 		  VTI (bb)->flooded = true;
7093 		}
7094 	      else
7095 		{
7096 		  /* Calculate the IN set as union of predecessor OUT sets.  */
7097 		  dataflow_set_clear (&VTI (bb)->in);
7098 		  FOR_EACH_EDGE (e, ei, bb->preds)
7099 		    dataflow_set_union (&VTI (bb)->in, &VTI (e->src)->out);
7100 		}
7101 
7102 	      changed = compute_bb_dataflow (bb);
7103 	      htabsz += shared_hash_htab (VTI (bb)->in.vars)->size ()
7104 			 + shared_hash_htab (VTI (bb)->out.vars)->size ();
7105 
7106 	      if (htabmax && htabsz > htabmax)
7107 		{
7108 		  if (MAY_HAVE_DEBUG_INSNS)
7109 		    inform (DECL_SOURCE_LOCATION (cfun->decl),
7110 			    "variable tracking size limit exceeded with "
7111 			    "-fvar-tracking-assignments, retrying without");
7112 		  else
7113 		    inform (DECL_SOURCE_LOCATION (cfun->decl),
7114 			    "variable tracking size limit exceeded");
7115 		  success = false;
7116 		  break;
7117 		}
7118 
7119 	      if (changed)
7120 		{
7121 		  FOR_EACH_EDGE (e, ei, bb->succs)
7122 		    {
7123 		      if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
7124 			continue;
7125 
7126 		      if (bitmap_bit_p (visited, e->dest->index))
7127 			{
7128 			  if (!bitmap_bit_p (in_pending, e->dest->index))
7129 			    {
7130 			      /* Send E->DEST to next round.  */
7131 			      bitmap_set_bit (in_pending, e->dest->index);
7132 			      pending->insert (bb_order[e->dest->index],
7133 					       e->dest);
7134 			    }
7135 			}
7136 		      else if (!bitmap_bit_p (in_worklist, e->dest->index))
7137 			{
7138 			  /* Add E->DEST to current round.  */
7139 			  bitmap_set_bit (in_worklist, e->dest->index);
7140 			  worklist->insert (bb_order[e->dest->index],
7141 					    e->dest);
7142 			}
7143 		    }
7144 		}
7145 
7146 	      if (dump_file)
7147 		fprintf (dump_file,
7148 			 "BB %i: in %i (was %i), out %i (was %i), rem %i + %i, tsz %i\n",
7149 			 bb->index,
7150 			 (int)shared_hash_htab (VTI (bb)->in.vars)->size (),
7151 			 oldinsz,
7152 			 (int)shared_hash_htab (VTI (bb)->out.vars)->size (),
7153 			 oldoutsz,
7154 			 (int)worklist->nodes (), (int)pending->nodes (),
7155 			 htabsz);
7156 
7157 	      if (dump_file && (dump_flags & TDF_DETAILS))
7158 		{
7159 		  fprintf (dump_file, "BB %i IN:\n", bb->index);
7160 		  dump_dataflow_set (&VTI (bb)->in);
7161 		  fprintf (dump_file, "BB %i OUT:\n", bb->index);
7162 		  dump_dataflow_set (&VTI (bb)->out);
7163 		}
7164 	    }
7165 	}
7166     }
7167 
7168   if (success && MAY_HAVE_DEBUG_INSNS)
7169     FOR_EACH_BB_FN (bb, cfun)
7170       gcc_assert (VTI (bb)->flooded);
7171 
7172   free (bb_order);
7173   delete worklist;
7174   delete pending;
7175   sbitmap_free (visited);
7176   sbitmap_free (in_worklist);
7177   sbitmap_free (in_pending);
7178 
7179   timevar_pop (TV_VAR_TRACKING_DATAFLOW);
7180   return success;
7181 }
7182 
7183 /* Print the content of the LIST to dump file.  */
7184 
7185 static void
7186 dump_attrs_list (attrs list)
7187 {
7188   for (; list; list = list->next)
7189     {
7190       if (dv_is_decl_p (list->dv))
7191 	print_mem_expr (dump_file, dv_as_decl (list->dv));
7192       else
7193 	print_rtl_single (dump_file, dv_as_value (list->dv));
7194       fprintf (dump_file, "+" HOST_WIDE_INT_PRINT_DEC, list->offset);
7195     }
7196   fprintf (dump_file, "\n");
7197 }
7198 
7199 /* Print the information about variable *SLOT to dump file.  */
7200 
7201 int
7202 dump_var_tracking_slot (variable_def **slot, void *data ATTRIBUTE_UNUSED)
7203 {
7204   variable var = *slot;
7205 
7206   dump_var (var);
7207 
7208   /* Continue traversing the hash table.  */
7209   return 1;
7210 }
7211 
7212 /* Print the information about variable VAR to dump file.  */
7213 
7214 static void
7215 dump_var (variable var)
7216 {
7217   int i;
7218   location_chain node;
7219 
7220   if (dv_is_decl_p (var->dv))
7221     {
7222       const_tree decl = dv_as_decl (var->dv);
7223 
7224       if (DECL_NAME (decl))
7225 	{
7226 	  fprintf (dump_file, "  name: %s",
7227 		   IDENTIFIER_POINTER (DECL_NAME (decl)));
7228 	  if (dump_flags & TDF_UID)
7229 	    fprintf (dump_file, "D.%u", DECL_UID (decl));
7230 	}
7231       else if (TREE_CODE (decl) == DEBUG_EXPR_DECL)
7232 	fprintf (dump_file, "  name: D#%u", DEBUG_TEMP_UID (decl));
7233       else
7234 	fprintf (dump_file, "  name: D.%u", DECL_UID (decl));
7235       fprintf (dump_file, "\n");
7236     }
7237   else
7238     {
7239       fputc (' ', dump_file);
7240       print_rtl_single (dump_file, dv_as_value (var->dv));
7241     }
7242 
7243   for (i = 0; i < var->n_var_parts; i++)
7244     {
7245       fprintf (dump_file, "    offset %ld\n",
7246 	       (long)(var->onepart ? 0 : VAR_PART_OFFSET (var, i)));
7247       for (node = var->var_part[i].loc_chain; node; node = node->next)
7248 	{
7249 	  fprintf (dump_file, "      ");
7250 	  if (node->init == VAR_INIT_STATUS_UNINITIALIZED)
7251 	    fprintf (dump_file, "[uninit]");
7252 	  print_rtl_single (dump_file, node->loc);
7253 	}
7254     }
7255 }
7256 
7257 /* Print the information about variables from hash table VARS to dump file.  */
7258 
7259 static void
7260 dump_vars (variable_table_type *vars)
7261 {
7262   if (vars->elements () > 0)
7263     {
7264       fprintf (dump_file, "Variables:\n");
7265       vars->traverse <void *, dump_var_tracking_slot> (NULL);
7266     }
7267 }
7268 
7269 /* Print the dataflow set SET to dump file.  */
7270 
7271 static void
7272 dump_dataflow_set (dataflow_set *set)
7273 {
7274   int i;
7275 
7276   fprintf (dump_file, "Stack adjustment: " HOST_WIDE_INT_PRINT_DEC "\n",
7277 	   set->stack_adjust);
7278   for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
7279     {
7280       if (set->regs[i])
7281 	{
7282 	  fprintf (dump_file, "Reg %d:", i);
7283 	  dump_attrs_list (set->regs[i]);
7284 	}
7285     }
7286   dump_vars (shared_hash_htab (set->vars));
7287   fprintf (dump_file, "\n");
7288 }
7289 
7290 /* Print the IN and OUT sets for each basic block to dump file.  */
7291 
7292 static void
7293 dump_dataflow_sets (void)
7294 {
7295   basic_block bb;
7296 
7297   FOR_EACH_BB_FN (bb, cfun)
7298     {
7299       fprintf (dump_file, "\nBasic block %d:\n", bb->index);
7300       fprintf (dump_file, "IN:\n");
7301       dump_dataflow_set (&VTI (bb)->in);
7302       fprintf (dump_file, "OUT:\n");
7303       dump_dataflow_set (&VTI (bb)->out);
7304     }
7305 }
7306 
7307 /* Return the variable for DV in dropped_values, inserting one if
7308    requested with INSERT.  */
7309 
7310 static inline variable
7311 variable_from_dropped (decl_or_value dv, enum insert_option insert)
7312 {
7313   variable_def **slot;
7314   variable empty_var;
7315   onepart_enum_t onepart;
7316 
7317   slot = dropped_values->find_slot_with_hash (dv, dv_htab_hash (dv), insert);
7318 
7319   if (!slot)
7320     return NULL;
7321 
7322   if (*slot)
7323     return *slot;
7324 
7325   gcc_checking_assert (insert == INSERT);
7326 
7327   onepart = dv_onepart_p (dv);
7328 
7329   gcc_checking_assert (onepart == ONEPART_VALUE || onepart == ONEPART_DEXPR);
7330 
7331   empty_var = (variable) pool_alloc (onepart_pool (onepart));
7332   empty_var->dv = dv;
7333   empty_var->refcount = 1;
7334   empty_var->n_var_parts = 0;
7335   empty_var->onepart = onepart;
7336   empty_var->in_changed_variables = false;
7337   empty_var->var_part[0].loc_chain = NULL;
7338   empty_var->var_part[0].cur_loc = NULL;
7339   VAR_LOC_1PAUX (empty_var) = NULL;
7340   set_dv_changed (dv, true);
7341 
7342   *slot = empty_var;
7343 
7344   return empty_var;
7345 }
7346 
7347 /* Recover the one-part aux from dropped_values.  */
7348 
7349 static struct onepart_aux *
7350 recover_dropped_1paux (variable var)
7351 {
7352   variable dvar;
7353 
7354   gcc_checking_assert (var->onepart);
7355 
7356   if (VAR_LOC_1PAUX (var))
7357     return VAR_LOC_1PAUX (var);
7358 
7359   if (var->onepart == ONEPART_VDECL)
7360     return NULL;
7361 
7362   dvar = variable_from_dropped (var->dv, NO_INSERT);
7363 
7364   if (!dvar)
7365     return NULL;
7366 
7367   VAR_LOC_1PAUX (var) = VAR_LOC_1PAUX (dvar);
7368   VAR_LOC_1PAUX (dvar) = NULL;
7369 
7370   return VAR_LOC_1PAUX (var);
7371 }
7372 
7373 /* Add variable VAR to the hash table of changed variables and
7374    if it has no locations delete it from SET's hash table.  */
7375 
7376 static void
7377 variable_was_changed (variable var, dataflow_set *set)
7378 {
7379   hashval_t hash = dv_htab_hash (var->dv);
7380 
7381   if (emit_notes)
7382     {
7383       variable_def **slot;
7384 
7385       /* Remember this decl or VALUE has been added to changed_variables.  */
7386       set_dv_changed (var->dv, true);
7387 
7388       slot = changed_variables->find_slot_with_hash (var->dv, hash, INSERT);
7389 
7390       if (*slot)
7391 	{
7392 	  variable old_var = *slot;
7393 	  gcc_assert (old_var->in_changed_variables);
7394 	  old_var->in_changed_variables = false;
7395 	  if (var != old_var && var->onepart)
7396 	    {
7397 	      /* Restore the auxiliary info from an empty variable
7398 		 previously created for changed_variables, so it is
7399 		 not lost.  */
7400 	      gcc_checking_assert (!VAR_LOC_1PAUX (var));
7401 	      VAR_LOC_1PAUX (var) = VAR_LOC_1PAUX (old_var);
7402 	      VAR_LOC_1PAUX (old_var) = NULL;
7403 	    }
7404 	  variable_htab_free (*slot);
7405 	}
7406 
7407       if (set && var->n_var_parts == 0)
7408 	{
7409 	  onepart_enum_t onepart = var->onepart;
7410 	  variable empty_var = NULL;
7411 	  variable_def **dslot = NULL;
7412 
7413 	  if (onepart == ONEPART_VALUE || onepart == ONEPART_DEXPR)
7414 	    {
7415 	      dslot = dropped_values->find_slot_with_hash (var->dv,
7416 							   dv_htab_hash (var->dv),
7417 							   INSERT);
7418 	      empty_var = *dslot;
7419 
7420 	      if (empty_var)
7421 		{
7422 		  gcc_checking_assert (!empty_var->in_changed_variables);
7423 		  if (!VAR_LOC_1PAUX (var))
7424 		    {
7425 		      VAR_LOC_1PAUX (var) = VAR_LOC_1PAUX (empty_var);
7426 		      VAR_LOC_1PAUX (empty_var) = NULL;
7427 		    }
7428 		  else
7429 		    gcc_checking_assert (!VAR_LOC_1PAUX (empty_var));
7430 		}
7431 	    }
7432 
7433 	  if (!empty_var)
7434 	    {
7435 	      empty_var = (variable) pool_alloc (onepart_pool (onepart));
7436 	      empty_var->dv = var->dv;
7437 	      empty_var->refcount = 1;
7438 	      empty_var->n_var_parts = 0;
7439 	      empty_var->onepart = onepart;
7440 	      if (dslot)
7441 		{
7442 		  empty_var->refcount++;
7443 		  *dslot = empty_var;
7444 		}
7445 	    }
7446 	  else
7447 	    empty_var->refcount++;
7448 	  empty_var->in_changed_variables = true;
7449 	  *slot = empty_var;
7450 	  if (onepart)
7451 	    {
7452 	      empty_var->var_part[0].loc_chain = NULL;
7453 	      empty_var->var_part[0].cur_loc = NULL;
7454 	      VAR_LOC_1PAUX (empty_var) = VAR_LOC_1PAUX (var);
7455 	      VAR_LOC_1PAUX (var) = NULL;
7456 	    }
7457 	  goto drop_var;
7458 	}
7459       else
7460 	{
7461 	  if (var->onepart && !VAR_LOC_1PAUX (var))
7462 	    recover_dropped_1paux (var);
7463 	  var->refcount++;
7464 	  var->in_changed_variables = true;
7465 	  *slot = var;
7466 	}
7467     }
7468   else
7469     {
7470       gcc_assert (set);
7471       if (var->n_var_parts == 0)
7472 	{
7473 	  variable_def **slot;
7474 
7475 	drop_var:
7476 	  slot = shared_hash_find_slot_noinsert (set->vars, var->dv);
7477 	  if (slot)
7478 	    {
7479 	      if (shared_hash_shared (set->vars))
7480 		slot = shared_hash_find_slot_unshare (&set->vars, var->dv,
7481 						      NO_INSERT);
7482 	      shared_hash_htab (set->vars)->clear_slot (slot);
7483 	    }
7484 	}
7485     }
7486 }
7487 
7488 /* Look for the index in VAR->var_part corresponding to OFFSET.
7489    Return -1 if not found.  If INSERTION_POINT is non-NULL, the
7490    referenced int will be set to the index that the part has or should
7491    have, if it should be inserted.  */
7492 
7493 static inline int
7494 find_variable_location_part (variable var, HOST_WIDE_INT offset,
7495 			     int *insertion_point)
7496 {
7497   int pos, low, high;
7498 
7499   if (var->onepart)
7500     {
7501       if (offset != 0)
7502 	return -1;
7503 
7504       if (insertion_point)
7505 	*insertion_point = 0;
7506 
7507       return var->n_var_parts - 1;
7508     }
7509 
7510   /* Find the location part.  */
7511   low = 0;
7512   high = var->n_var_parts;
7513   while (low != high)
7514     {
7515       pos = (low + high) / 2;
7516       if (VAR_PART_OFFSET (var, pos) < offset)
7517 	low = pos + 1;
7518       else
7519 	high = pos;
7520     }
7521   pos = low;
7522 
7523   if (insertion_point)
7524     *insertion_point = pos;
7525 
7526   if (pos < var->n_var_parts && VAR_PART_OFFSET (var, pos) == offset)
7527     return pos;
7528 
7529   return -1;
7530 }
7531 
7532 static variable_def **
7533 set_slot_part (dataflow_set *set, rtx loc, variable_def **slot,
7534 	       decl_or_value dv, HOST_WIDE_INT offset,
7535 	       enum var_init_status initialized, rtx set_src)
7536 {
7537   int pos;
7538   location_chain node, next;
7539   location_chain *nextp;
7540   variable var;
7541   onepart_enum_t onepart;
7542 
7543   var = *slot;
7544 
7545   if (var)
7546     onepart = var->onepart;
7547   else
7548     onepart = dv_onepart_p (dv);
7549 
7550   gcc_checking_assert (offset == 0 || !onepart);
7551   gcc_checking_assert (loc != dv_as_opaque (dv));
7552 
7553   if (! flag_var_tracking_uninit)
7554     initialized = VAR_INIT_STATUS_INITIALIZED;
7555 
7556   if (!var)
7557     {
7558       /* Create new variable information.  */
7559       var = (variable) pool_alloc (onepart_pool (onepart));
7560       var->dv = dv;
7561       var->refcount = 1;
7562       var->n_var_parts = 1;
7563       var->onepart = onepart;
7564       var->in_changed_variables = false;
7565       if (var->onepart)
7566 	VAR_LOC_1PAUX (var) = NULL;
7567       else
7568 	VAR_PART_OFFSET (var, 0) = offset;
7569       var->var_part[0].loc_chain = NULL;
7570       var->var_part[0].cur_loc = NULL;
7571       *slot = var;
7572       pos = 0;
7573       nextp = &var->var_part[0].loc_chain;
7574     }
7575   else if (onepart)
7576     {
7577       int r = -1, c = 0;
7578 
7579       gcc_assert (dv_as_opaque (var->dv) == dv_as_opaque (dv));
7580 
7581       pos = 0;
7582 
7583       if (GET_CODE (loc) == VALUE)
7584 	{
7585 	  for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
7586 	       nextp = &node->next)
7587 	    if (GET_CODE (node->loc) == VALUE)
7588 	      {
7589 		if (node->loc == loc)
7590 		  {
7591 		    r = 0;
7592 		    break;
7593 		  }
7594 		if (canon_value_cmp (node->loc, loc))
7595 		  c++;
7596 		else
7597 		  {
7598 		    r = 1;
7599 		    break;
7600 		  }
7601 	      }
7602 	    else if (REG_P (node->loc) || MEM_P (node->loc))
7603 	      c++;
7604 	    else
7605 	      {
7606 		r = 1;
7607 		break;
7608 	      }
7609 	}
7610       else if (REG_P (loc))
7611 	{
7612 	  for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
7613 	       nextp = &node->next)
7614 	    if (REG_P (node->loc))
7615 	      {
7616 		if (REGNO (node->loc) < REGNO (loc))
7617 		  c++;
7618 		else
7619 		  {
7620 		    if (REGNO (node->loc) == REGNO (loc))
7621 		      r = 0;
7622 		    else
7623 		      r = 1;
7624 		    break;
7625 		  }
7626 	      }
7627 	    else
7628 	      {
7629 		r = 1;
7630 		break;
7631 	      }
7632 	}
7633       else if (MEM_P (loc))
7634 	{
7635 	  for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
7636 	       nextp = &node->next)
7637 	    if (REG_P (node->loc))
7638 	      c++;
7639 	    else if (MEM_P (node->loc))
7640 	      {
7641 		if ((r = loc_cmp (XEXP (node->loc, 0), XEXP (loc, 0))) >= 0)
7642 		  break;
7643 		else
7644 		  c++;
7645 	      }
7646 	    else
7647 	      {
7648 		r = 1;
7649 		break;
7650 	      }
7651 	}
7652       else
7653 	for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
7654 	     nextp = &node->next)
7655 	  if ((r = loc_cmp (node->loc, loc)) >= 0)
7656 	    break;
7657 	  else
7658 	    c++;
7659 
7660       if (r == 0)
7661 	return slot;
7662 
7663       if (shared_var_p (var, set->vars))
7664 	{
7665 	  slot = unshare_variable (set, slot, var, initialized);
7666 	  var = *slot;
7667 	  for (nextp = &var->var_part[0].loc_chain; c;
7668 	       nextp = &(*nextp)->next)
7669 	    c--;
7670 	  gcc_assert ((!node && !*nextp) || node->loc == (*nextp)->loc);
7671 	}
7672     }
7673   else
7674     {
7675       int inspos = 0;
7676 
7677       gcc_assert (dv_as_decl (var->dv) == dv_as_decl (dv));
7678 
7679       pos = find_variable_location_part (var, offset, &inspos);
7680 
7681       if (pos >= 0)
7682 	{
7683 	  node = var->var_part[pos].loc_chain;
7684 
7685 	  if (node
7686 	      && ((REG_P (node->loc) && REG_P (loc)
7687 		   && REGNO (node->loc) == REGNO (loc))
7688 		  || rtx_equal_p (node->loc, loc)))
7689 	    {
7690 	      /* LOC is in the beginning of the chain so we have nothing
7691 		 to do.  */
7692 	      if (node->init < initialized)
7693 		node->init = initialized;
7694 	      if (set_src != NULL)
7695 		node->set_src = set_src;
7696 
7697 	      return slot;
7698 	    }
7699 	  else
7700 	    {
7701 	      /* We have to make a copy of a shared variable.  */
7702 	      if (shared_var_p (var, set->vars))
7703 		{
7704 		  slot = unshare_variable (set, slot, var, initialized);
7705 		  var = *slot;
7706 		}
7707 	    }
7708 	}
7709       else
7710 	{
7711 	  /* We have not found the location part, new one will be created.  */
7712 
7713 	  /* We have to make a copy of the shared variable.  */
7714 	  if (shared_var_p (var, set->vars))
7715 	    {
7716 	      slot = unshare_variable (set, slot, var, initialized);
7717 	      var = *slot;
7718 	    }
7719 
7720 	  /* We track only variables whose size is <= MAX_VAR_PARTS bytes
7721 	     thus there are at most MAX_VAR_PARTS different offsets.  */
7722 	  gcc_assert (var->n_var_parts < MAX_VAR_PARTS
7723 		      && (!var->n_var_parts || !onepart));
7724 
7725 	  /* We have to move the elements of array starting at index
7726 	     inspos to the next position.  */
7727 	  for (pos = var->n_var_parts; pos > inspos; pos--)
7728 	    var->var_part[pos] = var->var_part[pos - 1];
7729 
7730 	  var->n_var_parts++;
7731 	  gcc_checking_assert (!onepart);
7732 	  VAR_PART_OFFSET (var, pos) = offset;
7733 	  var->var_part[pos].loc_chain = NULL;
7734 	  var->var_part[pos].cur_loc = NULL;
7735 	}
7736 
7737       /* Delete the location from the list.  */
7738       nextp = &var->var_part[pos].loc_chain;
7739       for (node = var->var_part[pos].loc_chain; node; node = next)
7740 	{
7741 	  next = node->next;
7742 	  if ((REG_P (node->loc) && REG_P (loc)
7743 	       && REGNO (node->loc) == REGNO (loc))
7744 	      || rtx_equal_p (node->loc, loc))
7745 	    {
7746 	      /* Save these values, to assign to the new node, before
7747 		 deleting this one.  */
7748 	      if (node->init > initialized)
7749 		initialized = node->init;
7750 	      if (node->set_src != NULL && set_src == NULL)
7751 		set_src = node->set_src;
7752 	      if (var->var_part[pos].cur_loc == node->loc)
7753 		var->var_part[pos].cur_loc = NULL;
7754 	      pool_free (loc_chain_pool, node);
7755 	      *nextp = next;
7756 	      break;
7757 	    }
7758 	  else
7759 	    nextp = &node->next;
7760 	}
7761 
7762       nextp = &var->var_part[pos].loc_chain;
7763     }
7764 
7765   /* Add the location to the beginning.  */
7766   node = (location_chain) pool_alloc (loc_chain_pool);
7767   node->loc = loc;
7768   node->init = initialized;
7769   node->set_src = set_src;
7770   node->next = *nextp;
7771   *nextp = node;
7772 
7773   /* If no location was emitted do so.  */
7774   if (var->var_part[pos].cur_loc == NULL)
7775     variable_was_changed (var, set);
7776 
7777   return slot;
7778 }
7779 
7780 /* Set the part of variable's location in the dataflow set SET.  The
7781    variable part is specified by variable's declaration in DV and
7782    offset OFFSET and the part's location by LOC.  IOPT should be
7783    NO_INSERT if the variable is known to be in SET already and the
7784    variable hash table must not be resized, and INSERT otherwise.  */
7785 
7786 static void
7787 set_variable_part (dataflow_set *set, rtx loc,
7788 		   decl_or_value dv, HOST_WIDE_INT offset,
7789 		   enum var_init_status initialized, rtx set_src,
7790 		   enum insert_option iopt)
7791 {
7792   variable_def **slot;
7793 
7794   if (iopt == NO_INSERT)
7795     slot = shared_hash_find_slot_noinsert (set->vars, dv);
7796   else
7797     {
7798       slot = shared_hash_find_slot (set->vars, dv);
7799       if (!slot)
7800 	slot = shared_hash_find_slot_unshare (&set->vars, dv, iopt);
7801     }
7802   set_slot_part (set, loc, slot, dv, offset, initialized, set_src);
7803 }
7804 
7805 /* Remove all recorded register locations for the given variable part
7806    from dataflow set SET, except for those that are identical to loc.
7807    The variable part is specified by variable's declaration or value
7808    DV and offset OFFSET.  */
7809 
7810 static variable_def **
7811 clobber_slot_part (dataflow_set *set, rtx loc, variable_def **slot,
7812 		   HOST_WIDE_INT offset, rtx set_src)
7813 {
7814   variable var = *slot;
7815   int pos = find_variable_location_part (var, offset, NULL);
7816 
7817   if (pos >= 0)
7818     {
7819       location_chain node, next;
7820 
7821       /* Remove the register locations from the dataflow set.  */
7822       next = var->var_part[pos].loc_chain;
7823       for (node = next; node; node = next)
7824 	{
7825 	  next = node->next;
7826 	  if (node->loc != loc
7827 	      && (!flag_var_tracking_uninit
7828 		  || !set_src
7829 		  || MEM_P (set_src)
7830 		  || !rtx_equal_p (set_src, node->set_src)))
7831 	    {
7832 	      if (REG_P (node->loc))
7833 		{
7834 		  attrs anode, anext;
7835 		  attrs *anextp;
7836 
7837 		  /* Remove the variable part from the register's
7838 		     list, but preserve any other variable parts
7839 		     that might be regarded as live in that same
7840 		     register.  */
7841 		  anextp = &set->regs[REGNO (node->loc)];
7842 		  for (anode = *anextp; anode; anode = anext)
7843 		    {
7844 		      anext = anode->next;
7845 		      if (dv_as_opaque (anode->dv) == dv_as_opaque (var->dv)
7846 			  && anode->offset == offset)
7847 			{
7848 			  pool_free (attrs_pool, anode);
7849 			  *anextp = anext;
7850 			}
7851 		      else
7852 			anextp = &anode->next;
7853 		    }
7854 		}
7855 
7856 	      slot = delete_slot_part (set, node->loc, slot, offset);
7857 	    }
7858 	}
7859     }
7860 
7861   return slot;
7862 }
7863 
7864 /* Remove all recorded register locations for the given variable part
7865    from dataflow set SET, except for those that are identical to loc.
7866    The variable part is specified by variable's declaration or value
7867    DV and offset OFFSET.  */
7868 
7869 static void
7870 clobber_variable_part (dataflow_set *set, rtx loc, decl_or_value dv,
7871 		       HOST_WIDE_INT offset, rtx set_src)
7872 {
7873   variable_def **slot;
7874 
7875   if (!dv_as_opaque (dv)
7876       || (!dv_is_value_p (dv) && ! DECL_P (dv_as_decl (dv))))
7877     return;
7878 
7879   slot = shared_hash_find_slot_noinsert (set->vars, dv);
7880   if (!slot)
7881     return;
7882 
7883   clobber_slot_part (set, loc, slot, offset, set_src);
7884 }
7885 
7886 /* Delete the part of variable's location from dataflow set SET.  The
7887    variable part is specified by its SET->vars slot SLOT and offset
7888    OFFSET and the part's location by LOC.  */
7889 
7890 static variable_def **
7891 delete_slot_part (dataflow_set *set, rtx loc, variable_def **slot,
7892 		  HOST_WIDE_INT offset)
7893 {
7894   variable var = *slot;
7895   int pos = find_variable_location_part (var, offset, NULL);
7896 
7897   if (pos >= 0)
7898     {
7899       location_chain node, next;
7900       location_chain *nextp;
7901       bool changed;
7902       rtx cur_loc;
7903 
7904       if (shared_var_p (var, set->vars))
7905 	{
7906 	  /* If the variable contains the location part we have to
7907 	     make a copy of the variable.  */
7908 	  for (node = var->var_part[pos].loc_chain; node;
7909 	       node = node->next)
7910 	    {
7911 	      if ((REG_P (node->loc) && REG_P (loc)
7912 		   && REGNO (node->loc) == REGNO (loc))
7913 		  || rtx_equal_p (node->loc, loc))
7914 		{
7915 		  slot = unshare_variable (set, slot, var,
7916 					   VAR_INIT_STATUS_UNKNOWN);
7917 		  var = *slot;
7918 		  break;
7919 		}
7920 	    }
7921 	}
7922 
7923       if (pos == 0 && var->onepart && VAR_LOC_1PAUX (var))
7924 	cur_loc = VAR_LOC_FROM (var);
7925       else
7926 	cur_loc = var->var_part[pos].cur_loc;
7927 
7928       /* Delete the location part.  */
7929       changed = false;
7930       nextp = &var->var_part[pos].loc_chain;
7931       for (node = *nextp; node; node = next)
7932 	{
7933 	  next = node->next;
7934 	  if ((REG_P (node->loc) && REG_P (loc)
7935 	       && REGNO (node->loc) == REGNO (loc))
7936 	      || rtx_equal_p (node->loc, loc))
7937 	    {
7938 	      /* If we have deleted the location which was last emitted
7939 		 we have to emit new location so add the variable to set
7940 		 of changed variables.  */
7941 	      if (cur_loc == node->loc)
7942 		{
7943 		  changed = true;
7944 		  var->var_part[pos].cur_loc = NULL;
7945 		  if (pos == 0 && var->onepart && VAR_LOC_1PAUX (var))
7946 		    VAR_LOC_FROM (var) = NULL;
7947 		}
7948 	      pool_free (loc_chain_pool, node);
7949 	      *nextp = next;
7950 	      break;
7951 	    }
7952 	  else
7953 	    nextp = &node->next;
7954 	}
7955 
7956       if (var->var_part[pos].loc_chain == NULL)
7957 	{
7958 	  changed = true;
7959 	  var->n_var_parts--;
7960 	  while (pos < var->n_var_parts)
7961 	    {
7962 	      var->var_part[pos] = var->var_part[pos + 1];
7963 	      pos++;
7964 	    }
7965 	}
7966       if (changed)
7967 	variable_was_changed (var, set);
7968     }
7969 
7970   return slot;
7971 }
7972 
7973 /* Delete the part of variable's location from dataflow set SET.  The
7974    variable part is specified by variable's declaration or value DV
7975    and offset OFFSET and the part's location by LOC.  */
7976 
7977 static void
7978 delete_variable_part (dataflow_set *set, rtx loc, decl_or_value dv,
7979 		      HOST_WIDE_INT offset)
7980 {
7981   variable_def **slot = shared_hash_find_slot_noinsert (set->vars, dv);
7982   if (!slot)
7983     return;
7984 
7985   delete_slot_part (set, loc, slot, offset);
7986 }
7987 
7988 
7989 /* Structure for passing some other parameters to function
7990    vt_expand_loc_callback.  */
7991 struct expand_loc_callback_data
7992 {
7993   /* The variables and values active at this point.  */
7994   variable_table_type *vars;
7995 
7996   /* Stack of values and debug_exprs under expansion, and their
7997      children.  */
7998   auto_vec<rtx, 4> expanding;
7999 
8000   /* Stack of values and debug_exprs whose expansion hit recursion
8001      cycles.  They will have VALUE_RECURSED_INTO marked when added to
8002      this list.  This flag will be cleared if any of its dependencies
8003      resolves to a valid location.  So, if the flag remains set at the
8004      end of the search, we know no valid location for this one can
8005      possibly exist.  */
8006   auto_vec<rtx, 4> pending;
8007 
8008   /* The maximum depth among the sub-expressions under expansion.
8009      Zero indicates no expansion so far.  */
8010   expand_depth depth;
8011 };
8012 
8013 /* Allocate the one-part auxiliary data structure for VAR, with enough
8014    room for COUNT dependencies.  */
8015 
8016 static void
8017 loc_exp_dep_alloc (variable var, int count)
8018 {
8019   size_t allocsize;
8020 
8021   gcc_checking_assert (var->onepart);
8022 
8023   /* We can be called with COUNT == 0 to allocate the data structure
8024      without any dependencies, e.g. for the backlinks only.  However,
8025      if we are specifying a COUNT, then the dependency list must have
8026      been emptied before.  It would be possible to adjust pointers or
8027      force it empty here, but this is better done at an earlier point
8028      in the algorithm, so we instead leave an assertion to catch
8029      errors.  */
8030   gcc_checking_assert (!count
8031 		       || VAR_LOC_DEP_VEC (var) == NULL
8032 		       || VAR_LOC_DEP_VEC (var)->is_empty ());
8033 
8034   if (VAR_LOC_1PAUX (var) && VAR_LOC_DEP_VEC (var)->space (count))
8035     return;
8036 
8037   allocsize = offsetof (struct onepart_aux, deps)
8038 	      + vec<loc_exp_dep, va_heap, vl_embed>::embedded_size (count);
8039 
8040   if (VAR_LOC_1PAUX (var))
8041     {
8042       VAR_LOC_1PAUX (var) = XRESIZEVAR (struct onepart_aux,
8043 					VAR_LOC_1PAUX (var), allocsize);
8044       /* If the reallocation moves the onepaux structure, the
8045 	 back-pointer to BACKLINKS in the first list member will still
8046 	 point to its old location.  Adjust it.  */
8047       if (VAR_LOC_DEP_LST (var))
8048 	VAR_LOC_DEP_LST (var)->pprev = VAR_LOC_DEP_LSTP (var);
8049     }
8050   else
8051     {
8052       VAR_LOC_1PAUX (var) = XNEWVAR (struct onepart_aux, allocsize);
8053       *VAR_LOC_DEP_LSTP (var) = NULL;
8054       VAR_LOC_FROM (var) = NULL;
8055       VAR_LOC_DEPTH (var).complexity = 0;
8056       VAR_LOC_DEPTH (var).entryvals = 0;
8057     }
8058   VAR_LOC_DEP_VEC (var)->embedded_init (count);
8059 }
8060 
8061 /* Remove all entries from the vector of active dependencies of VAR,
8062    removing them from the back-links lists too.  */
8063 
8064 static void
8065 loc_exp_dep_clear (variable var)
8066 {
8067   while (VAR_LOC_DEP_VEC (var) && !VAR_LOC_DEP_VEC (var)->is_empty ())
8068     {
8069       loc_exp_dep *led = &VAR_LOC_DEP_VEC (var)->last ();
8070       if (led->next)
8071 	led->next->pprev = led->pprev;
8072       if (led->pprev)
8073 	*led->pprev = led->next;
8074       VAR_LOC_DEP_VEC (var)->pop ();
8075     }
8076 }
8077 
8078 /* Insert an active dependency from VAR on X to the vector of
8079    dependencies, and add the corresponding back-link to X's list of
8080    back-links in VARS.  */
8081 
8082 static void
8083 loc_exp_insert_dep (variable var, rtx x, variable_table_type *vars)
8084 {
8085   decl_or_value dv;
8086   variable xvar;
8087   loc_exp_dep *led;
8088 
8089   dv = dv_from_rtx (x);
8090 
8091   /* ??? Build a vector of variables parallel to EXPANDING, to avoid
8092      an additional look up?  */
8093   xvar = vars->find_with_hash (dv, dv_htab_hash (dv));
8094 
8095   if (!xvar)
8096     {
8097       xvar = variable_from_dropped (dv, NO_INSERT);
8098       gcc_checking_assert (xvar);
8099     }
8100 
8101   /* No point in adding the same backlink more than once.  This may
8102      arise if say the same value appears in two complex expressions in
8103      the same loc_list, or even more than once in a single
8104      expression.  */
8105   if (VAR_LOC_DEP_LST (xvar) && VAR_LOC_DEP_LST (xvar)->dv == var->dv)
8106     return;
8107 
8108   if (var->onepart == NOT_ONEPART)
8109     led = (loc_exp_dep *) pool_alloc (loc_exp_dep_pool);
8110   else
8111     {
8112       loc_exp_dep empty;
8113       memset (&empty, 0, sizeof (empty));
8114       VAR_LOC_DEP_VEC (var)->quick_push (empty);
8115       led = &VAR_LOC_DEP_VEC (var)->last ();
8116     }
8117   led->dv = var->dv;
8118   led->value = x;
8119 
8120   loc_exp_dep_alloc (xvar, 0);
8121   led->pprev = VAR_LOC_DEP_LSTP (xvar);
8122   led->next = *led->pprev;
8123   if (led->next)
8124     led->next->pprev = &led->next;
8125   *led->pprev = led;
8126 }
8127 
8128 /* Create active dependencies of VAR on COUNT values starting at
8129    VALUE, and corresponding back-links to the entries in VARS.  Return
8130    true if we found any pending-recursion results.  */
8131 
8132 static bool
8133 loc_exp_dep_set (variable var, rtx result, rtx *value, int count,
8134 		 variable_table_type *vars)
8135 {
8136   bool pending_recursion = false;
8137 
8138   gcc_checking_assert (VAR_LOC_DEP_VEC (var) == NULL
8139 		       || VAR_LOC_DEP_VEC (var)->is_empty ());
8140 
8141   /* Set up all dependencies from last_child (as set up at the end of
8142      the loop above) to the end.  */
8143   loc_exp_dep_alloc (var, count);
8144 
8145   while (count--)
8146     {
8147       rtx x = *value++;
8148 
8149       if (!pending_recursion)
8150 	pending_recursion = !result && VALUE_RECURSED_INTO (x);
8151 
8152       loc_exp_insert_dep (var, x, vars);
8153     }
8154 
8155   return pending_recursion;
8156 }
8157 
8158 /* Notify the back-links of IVAR that are pending recursion that we
8159    have found a non-NIL value for it, so they are cleared for another
8160    attempt to compute a current location.  */
8161 
8162 static void
8163 notify_dependents_of_resolved_value (variable ivar, variable_table_type *vars)
8164 {
8165   loc_exp_dep *led, *next;
8166 
8167   for (led = VAR_LOC_DEP_LST (ivar); led; led = next)
8168     {
8169       decl_or_value dv = led->dv;
8170       variable var;
8171 
8172       next = led->next;
8173 
8174       if (dv_is_value_p (dv))
8175 	{
8176 	  rtx value = dv_as_value (dv);
8177 
8178 	  /* If we have already resolved it, leave it alone.  */
8179 	  if (!VALUE_RECURSED_INTO (value))
8180 	    continue;
8181 
8182 	  /* Check that VALUE_RECURSED_INTO, true from the test above,
8183 	     implies NO_LOC_P.  */
8184 	  gcc_checking_assert (NO_LOC_P (value));
8185 
8186 	  /* We won't notify variables that are being expanded,
8187 	     because their dependency list is cleared before
8188 	     recursing.  */
8189 	  NO_LOC_P (value) = false;
8190 	  VALUE_RECURSED_INTO (value) = false;
8191 
8192 	  gcc_checking_assert (dv_changed_p (dv));
8193 	}
8194       else
8195 	{
8196 	  gcc_checking_assert (dv_onepart_p (dv) != NOT_ONEPART);
8197 	  if (!dv_changed_p (dv))
8198 	    continue;
8199       }
8200 
8201       var = vars->find_with_hash (dv, dv_htab_hash (dv));
8202 
8203       if (!var)
8204 	var = variable_from_dropped (dv, NO_INSERT);
8205 
8206       if (var)
8207 	notify_dependents_of_resolved_value (var, vars);
8208 
8209       if (next)
8210 	next->pprev = led->pprev;
8211       if (led->pprev)
8212 	*led->pprev = next;
8213       led->next = NULL;
8214       led->pprev = NULL;
8215     }
8216 }
8217 
8218 static rtx vt_expand_loc_callback (rtx x, bitmap regs,
8219 				   int max_depth, void *data);
8220 
8221 /* Return the combined depth, when one sub-expression evaluated to
8222    BEST_DEPTH and the previous known depth was SAVED_DEPTH.  */
8223 
8224 static inline expand_depth
8225 update_depth (expand_depth saved_depth, expand_depth best_depth)
8226 {
8227   /* If we didn't find anything, stick with what we had.  */
8228   if (!best_depth.complexity)
8229     return saved_depth;
8230 
8231   /* If we found hadn't found anything, use the depth of the current
8232      expression.  Do NOT add one extra level, we want to compute the
8233      maximum depth among sub-expressions.  We'll increment it later,
8234      if appropriate.  */
8235   if (!saved_depth.complexity)
8236     return best_depth;
8237 
8238   /* Combine the entryval count so that regardless of which one we
8239      return, the entryval count is accurate.  */
8240   best_depth.entryvals = saved_depth.entryvals
8241     = best_depth.entryvals + saved_depth.entryvals;
8242 
8243   if (saved_depth.complexity < best_depth.complexity)
8244     return best_depth;
8245   else
8246     return saved_depth;
8247 }
8248 
8249 /* Expand VAR to a location RTX, updating its cur_loc.  Use REGS and
8250    DATA for cselib expand callback.  If PENDRECP is given, indicate in
8251    it whether any sub-expression couldn't be fully evaluated because
8252    it is pending recursion resolution.  */
8253 
8254 static inline rtx
8255 vt_expand_var_loc_chain (variable var, bitmap regs, void *data, bool *pendrecp)
8256 {
8257   struct expand_loc_callback_data *elcd
8258     = (struct expand_loc_callback_data *) data;
8259   location_chain loc, next;
8260   rtx result = NULL;
8261   int first_child, result_first_child, last_child;
8262   bool pending_recursion;
8263   rtx loc_from = NULL;
8264   struct elt_loc_list *cloc = NULL;
8265   expand_depth depth = { 0, 0 }, saved_depth = elcd->depth;
8266   int wanted_entryvals, found_entryvals = 0;
8267 
8268   /* Clear all backlinks pointing at this, so that we're not notified
8269      while we're active.  */
8270   loc_exp_dep_clear (var);
8271 
8272  retry:
8273   if (var->onepart == ONEPART_VALUE)
8274     {
8275       cselib_val *val = CSELIB_VAL_PTR (dv_as_value (var->dv));
8276 
8277       gcc_checking_assert (cselib_preserved_value_p (val));
8278 
8279       cloc = val->locs;
8280     }
8281 
8282   first_child = result_first_child = last_child
8283     = elcd->expanding.length ();
8284 
8285   wanted_entryvals = found_entryvals;
8286 
8287   /* Attempt to expand each available location in turn.  */
8288   for (next = loc = var->n_var_parts ? var->var_part[0].loc_chain : NULL;
8289        loc || cloc; loc = next)
8290     {
8291       result_first_child = last_child;
8292 
8293       if (!loc)
8294 	{
8295 	  loc_from = cloc->loc;
8296 	  next = loc;
8297 	  cloc = cloc->next;
8298 	  if (unsuitable_loc (loc_from))
8299 	    continue;
8300 	}
8301       else
8302 	{
8303 	  loc_from = loc->loc;
8304 	  next = loc->next;
8305 	}
8306 
8307       gcc_checking_assert (!unsuitable_loc (loc_from));
8308 
8309       elcd->depth.complexity = elcd->depth.entryvals = 0;
8310       result = cselib_expand_value_rtx_cb (loc_from, regs, EXPR_DEPTH,
8311 					   vt_expand_loc_callback, data);
8312       last_child = elcd->expanding.length ();
8313 
8314       if (result)
8315 	{
8316 	  depth = elcd->depth;
8317 
8318 	  gcc_checking_assert (depth.complexity
8319 			       || result_first_child == last_child);
8320 
8321 	  if (last_child - result_first_child != 1)
8322 	    {
8323 	      if (!depth.complexity && GET_CODE (result) == ENTRY_VALUE)
8324 		depth.entryvals++;
8325 	      depth.complexity++;
8326 	    }
8327 
8328 	  if (depth.complexity <= EXPR_USE_DEPTH)
8329 	    {
8330 	      if (depth.entryvals <= wanted_entryvals)
8331 		break;
8332 	      else if (!found_entryvals || depth.entryvals < found_entryvals)
8333 		found_entryvals = depth.entryvals;
8334 	    }
8335 
8336 	  result = NULL;
8337 	}
8338 
8339       /* Set it up in case we leave the loop.  */
8340       depth.complexity = depth.entryvals = 0;
8341       loc_from = NULL;
8342       result_first_child = first_child;
8343     }
8344 
8345   if (!loc_from && wanted_entryvals < found_entryvals)
8346     {
8347       /* We found entries with ENTRY_VALUEs and skipped them.  Since
8348 	 we could not find any expansions without ENTRY_VALUEs, but we
8349 	 found at least one with them, go back and get an entry with
8350 	 the minimum number ENTRY_VALUE count that we found.  We could
8351 	 avoid looping, but since each sub-loc is already resolved,
8352 	 the re-expansion should be trivial.  ??? Should we record all
8353 	 attempted locs as dependencies, so that we retry the
8354 	 expansion should any of them change, in the hope it can give
8355 	 us a new entry without an ENTRY_VALUE?  */
8356       elcd->expanding.truncate (first_child);
8357       goto retry;
8358     }
8359 
8360   /* Register all encountered dependencies as active.  */
8361   pending_recursion = loc_exp_dep_set
8362     (var, result, elcd->expanding.address () + result_first_child,
8363      last_child - result_first_child, elcd->vars);
8364 
8365   elcd->expanding.truncate (first_child);
8366 
8367   /* Record where the expansion came from.  */
8368   gcc_checking_assert (!result || !pending_recursion);
8369   VAR_LOC_FROM (var) = loc_from;
8370   VAR_LOC_DEPTH (var) = depth;
8371 
8372   gcc_checking_assert (!depth.complexity == !result);
8373 
8374   elcd->depth = update_depth (saved_depth, depth);
8375 
8376   /* Indicate whether any of the dependencies are pending recursion
8377      resolution.  */
8378   if (pendrecp)
8379     *pendrecp = pending_recursion;
8380 
8381   if (!pendrecp || !pending_recursion)
8382     var->var_part[0].cur_loc = result;
8383 
8384   return result;
8385 }
8386 
8387 /* Callback for cselib_expand_value, that looks for expressions
8388    holding the value in the var-tracking hash tables.  Return X for
8389    standard processing, anything else is to be used as-is.  */
8390 
8391 static rtx
8392 vt_expand_loc_callback (rtx x, bitmap regs,
8393 			int max_depth ATTRIBUTE_UNUSED,
8394 			void *data)
8395 {
8396   struct expand_loc_callback_data *elcd
8397     = (struct expand_loc_callback_data *) data;
8398   decl_or_value dv;
8399   variable var;
8400   rtx result, subreg;
8401   bool pending_recursion = false;
8402   bool from_empty = false;
8403 
8404   switch (GET_CODE (x))
8405     {
8406     case SUBREG:
8407       subreg = cselib_expand_value_rtx_cb (SUBREG_REG (x), regs,
8408 					   EXPR_DEPTH,
8409 					   vt_expand_loc_callback, data);
8410 
8411       if (!subreg)
8412 	return NULL;
8413 
8414       result = simplify_gen_subreg (GET_MODE (x), subreg,
8415 				    GET_MODE (SUBREG_REG (x)),
8416 				    SUBREG_BYTE (x));
8417 
8418       /* Invalid SUBREGs are ok in debug info.  ??? We could try
8419 	 alternate expansions for the VALUE as well.  */
8420       if (!result)
8421 	result = gen_rtx_raw_SUBREG (GET_MODE (x), subreg, SUBREG_BYTE (x));
8422 
8423       return result;
8424 
8425     case DEBUG_EXPR:
8426     case VALUE:
8427       dv = dv_from_rtx (x);
8428       break;
8429 
8430     default:
8431       return x;
8432     }
8433 
8434   elcd->expanding.safe_push (x);
8435 
8436   /* Check that VALUE_RECURSED_INTO implies NO_LOC_P.  */
8437   gcc_checking_assert (!VALUE_RECURSED_INTO (x) || NO_LOC_P (x));
8438 
8439   if (NO_LOC_P (x))
8440     {
8441       gcc_checking_assert (VALUE_RECURSED_INTO (x) || !dv_changed_p (dv));
8442       return NULL;
8443     }
8444 
8445   var = elcd->vars->find_with_hash (dv, dv_htab_hash (dv));
8446 
8447   if (!var)
8448     {
8449       from_empty = true;
8450       var = variable_from_dropped (dv, INSERT);
8451     }
8452 
8453   gcc_checking_assert (var);
8454 
8455   if (!dv_changed_p (dv))
8456     {
8457       gcc_checking_assert (!NO_LOC_P (x));
8458       gcc_checking_assert (var->var_part[0].cur_loc);
8459       gcc_checking_assert (VAR_LOC_1PAUX (var));
8460       gcc_checking_assert (VAR_LOC_1PAUX (var)->depth.complexity);
8461 
8462       elcd->depth = update_depth (elcd->depth, VAR_LOC_1PAUX (var)->depth);
8463 
8464       return var->var_part[0].cur_loc;
8465     }
8466 
8467   VALUE_RECURSED_INTO (x) = true;
8468   /* This is tentative, but it makes some tests simpler.  */
8469   NO_LOC_P (x) = true;
8470 
8471   gcc_checking_assert (var->n_var_parts == 1 || from_empty);
8472 
8473   result = vt_expand_var_loc_chain (var, regs, data, &pending_recursion);
8474 
8475   if (pending_recursion)
8476     {
8477       gcc_checking_assert (!result);
8478       elcd->pending.safe_push (x);
8479     }
8480   else
8481     {
8482       NO_LOC_P (x) = !result;
8483       VALUE_RECURSED_INTO (x) = false;
8484       set_dv_changed (dv, false);
8485 
8486       if (result)
8487 	notify_dependents_of_resolved_value (var, elcd->vars);
8488     }
8489 
8490   return result;
8491 }
8492 
8493 /* While expanding variables, we may encounter recursion cycles
8494    because of mutual (possibly indirect) dependencies between two
8495    particular variables (or values), say A and B.  If we're trying to
8496    expand A when we get to B, which in turn attempts to expand A, if
8497    we can't find any other expansion for B, we'll add B to this
8498    pending-recursion stack, and tentatively return NULL for its
8499    location.  This tentative value will be used for any other
8500    occurrences of B, unless A gets some other location, in which case
8501    it will notify B that it is worth another try at computing a
8502    location for it, and it will use the location computed for A then.
8503    At the end of the expansion, the tentative NULL locations become
8504    final for all members of PENDING that didn't get a notification.
8505    This function performs this finalization of NULL locations.  */
8506 
8507 static void
8508 resolve_expansions_pending_recursion (vec<rtx, va_heap> *pending)
8509 {
8510   while (!pending->is_empty ())
8511     {
8512       rtx x = pending->pop ();
8513       decl_or_value dv;
8514 
8515       if (!VALUE_RECURSED_INTO (x))
8516 	continue;
8517 
8518       gcc_checking_assert (NO_LOC_P (x));
8519       VALUE_RECURSED_INTO (x) = false;
8520       dv = dv_from_rtx (x);
8521       gcc_checking_assert (dv_changed_p (dv));
8522       set_dv_changed (dv, false);
8523     }
8524 }
8525 
8526 /* Initialize expand_loc_callback_data D with variable hash table V.
8527    It must be a macro because of alloca (vec stack).  */
8528 #define INIT_ELCD(d, v)						\
8529   do								\
8530     {								\
8531       (d).vars = (v);						\
8532       (d).depth.complexity = (d).depth.entryvals = 0;		\
8533     }								\
8534   while (0)
8535 /* Finalize expand_loc_callback_data D, resolved to location L.  */
8536 #define FINI_ELCD(d, l)						\
8537   do								\
8538     {								\
8539       resolve_expansions_pending_recursion (&(d).pending);	\
8540       (d).pending.release ();					\
8541       (d).expanding.release ();					\
8542 								\
8543       if ((l) && MEM_P (l))					\
8544 	(l) = targetm.delegitimize_address (l);			\
8545     }								\
8546   while (0)
8547 
8548 /* Expand VALUEs and DEBUG_EXPRs in LOC to a location, using the
8549    equivalences in VARS, updating their CUR_LOCs in the process.  */
8550 
8551 static rtx
8552 vt_expand_loc (rtx loc, variable_table_type *vars)
8553 {
8554   struct expand_loc_callback_data data;
8555   rtx result;
8556 
8557   if (!MAY_HAVE_DEBUG_INSNS)
8558     return loc;
8559 
8560   INIT_ELCD (data, vars);
8561 
8562   result = cselib_expand_value_rtx_cb (loc, scratch_regs, EXPR_DEPTH,
8563 				       vt_expand_loc_callback, &data);
8564 
8565   FINI_ELCD (data, result);
8566 
8567   return result;
8568 }
8569 
8570 /* Expand the one-part VARiable to a location, using the equivalences
8571    in VARS, updating their CUR_LOCs in the process.  */
8572 
8573 static rtx
8574 vt_expand_1pvar (variable var, variable_table_type *vars)
8575 {
8576   struct expand_loc_callback_data data;
8577   rtx loc;
8578 
8579   gcc_checking_assert (var->onepart && var->n_var_parts == 1);
8580 
8581   if (!dv_changed_p (var->dv))
8582     return var->var_part[0].cur_loc;
8583 
8584   INIT_ELCD (data, vars);
8585 
8586   loc = vt_expand_var_loc_chain (var, scratch_regs, &data, NULL);
8587 
8588   gcc_checking_assert (data.expanding.is_empty ());
8589 
8590   FINI_ELCD (data, loc);
8591 
8592   return loc;
8593 }
8594 
8595 /* Emit the NOTE_INSN_VAR_LOCATION for variable *VARP.  DATA contains
8596    additional parameters: WHERE specifies whether the note shall be emitted
8597    before or after instruction INSN.  */
8598 
8599 int
8600 emit_note_insn_var_location (variable_def **varp, emit_note_data *data)
8601 {
8602   variable var = *varp;
8603   rtx_insn *insn = data->insn;
8604   enum emit_note_where where = data->where;
8605   variable_table_type *vars = data->vars;
8606   rtx_note *note;
8607   rtx note_vl;
8608   int i, j, n_var_parts;
8609   bool complete;
8610   enum var_init_status initialized = VAR_INIT_STATUS_UNINITIALIZED;
8611   HOST_WIDE_INT last_limit;
8612   tree type_size_unit;
8613   HOST_WIDE_INT offsets[MAX_VAR_PARTS];
8614   rtx loc[MAX_VAR_PARTS];
8615   tree decl;
8616   location_chain lc;
8617 
8618   gcc_checking_assert (var->onepart == NOT_ONEPART
8619 		       || var->onepart == ONEPART_VDECL);
8620 
8621   decl = dv_as_decl (var->dv);
8622 
8623   complete = true;
8624   last_limit = 0;
8625   n_var_parts = 0;
8626   if (!var->onepart)
8627     for (i = 0; i < var->n_var_parts; i++)
8628       if (var->var_part[i].cur_loc == NULL && var->var_part[i].loc_chain)
8629 	var->var_part[i].cur_loc = var->var_part[i].loc_chain->loc;
8630   for (i = 0; i < var->n_var_parts; i++)
8631     {
8632       machine_mode mode, wider_mode;
8633       rtx loc2;
8634       HOST_WIDE_INT offset;
8635 
8636       if (i == 0 && var->onepart)
8637 	{
8638 	  gcc_checking_assert (var->n_var_parts == 1);
8639 	  offset = 0;
8640 	  initialized = VAR_INIT_STATUS_INITIALIZED;
8641 	  loc2 = vt_expand_1pvar (var, vars);
8642 	}
8643       else
8644 	{
8645 	  if (last_limit < VAR_PART_OFFSET (var, i))
8646 	    {
8647 	      complete = false;
8648 	      break;
8649 	    }
8650 	  else if (last_limit > VAR_PART_OFFSET (var, i))
8651 	    continue;
8652 	  offset = VAR_PART_OFFSET (var, i);
8653 	  loc2 = var->var_part[i].cur_loc;
8654 	  if (loc2 && GET_CODE (loc2) == MEM
8655 	      && GET_CODE (XEXP (loc2, 0)) == VALUE)
8656 	    {
8657 	      rtx depval = XEXP (loc2, 0);
8658 
8659 	      loc2 = vt_expand_loc (loc2, vars);
8660 
8661 	      if (loc2)
8662 		loc_exp_insert_dep (var, depval, vars);
8663 	    }
8664 	  if (!loc2)
8665 	    {
8666 	      complete = false;
8667 	      continue;
8668 	    }
8669 	  gcc_checking_assert (GET_CODE (loc2) != VALUE);
8670 	  for (lc = var->var_part[i].loc_chain; lc; lc = lc->next)
8671 	    if (var->var_part[i].cur_loc == lc->loc)
8672 	      {
8673 		initialized = lc->init;
8674 		break;
8675 	      }
8676 	  gcc_assert (lc);
8677 	}
8678 
8679       offsets[n_var_parts] = offset;
8680       if (!loc2)
8681 	{
8682 	  complete = false;
8683 	  continue;
8684 	}
8685       loc[n_var_parts] = loc2;
8686       mode = GET_MODE (var->var_part[i].cur_loc);
8687       if (mode == VOIDmode && var->onepart)
8688 	mode = DECL_MODE (decl);
8689       last_limit = offsets[n_var_parts] + GET_MODE_SIZE (mode);
8690 
8691       /* Attempt to merge adjacent registers or memory.  */
8692       wider_mode = GET_MODE_WIDER_MODE (mode);
8693       for (j = i + 1; j < var->n_var_parts; j++)
8694 	if (last_limit <= VAR_PART_OFFSET (var, j))
8695 	  break;
8696       if (j < var->n_var_parts
8697 	  && wider_mode != VOIDmode
8698 	  && var->var_part[j].cur_loc
8699 	  && mode == GET_MODE (var->var_part[j].cur_loc)
8700 	  && (REG_P (loc[n_var_parts]) || MEM_P (loc[n_var_parts]))
8701 	  && last_limit == (var->onepart ? 0 : VAR_PART_OFFSET (var, j))
8702 	  && (loc2 = vt_expand_loc (var->var_part[j].cur_loc, vars))
8703 	  && GET_CODE (loc[n_var_parts]) == GET_CODE (loc2))
8704 	{
8705 	  rtx new_loc = NULL;
8706 
8707 	  if (REG_P (loc[n_var_parts])
8708 	      && hard_regno_nregs[REGNO (loc[n_var_parts])][mode] * 2
8709 		 == hard_regno_nregs[REGNO (loc[n_var_parts])][wider_mode]
8710 	      && end_hard_regno (mode, REGNO (loc[n_var_parts]))
8711 		 == REGNO (loc2))
8712 	    {
8713 	      if (! WORDS_BIG_ENDIAN && ! BYTES_BIG_ENDIAN)
8714 		new_loc = simplify_subreg (wider_mode, loc[n_var_parts],
8715 					   mode, 0);
8716 	      else if (WORDS_BIG_ENDIAN && BYTES_BIG_ENDIAN)
8717 		new_loc = simplify_subreg (wider_mode, loc2, mode, 0);
8718 	      if (new_loc)
8719 		{
8720 		  if (!REG_P (new_loc)
8721 		      || REGNO (new_loc) != REGNO (loc[n_var_parts]))
8722 		    new_loc = NULL;
8723 		  else
8724 		    REG_ATTRS (new_loc) = REG_ATTRS (loc[n_var_parts]);
8725 		}
8726 	    }
8727 	  else if (MEM_P (loc[n_var_parts])
8728 		   && GET_CODE (XEXP (loc2, 0)) == PLUS
8729 		   && REG_P (XEXP (XEXP (loc2, 0), 0))
8730 		   && CONST_INT_P (XEXP (XEXP (loc2, 0), 1)))
8731 	    {
8732 	      if ((REG_P (XEXP (loc[n_var_parts], 0))
8733 		   && rtx_equal_p (XEXP (loc[n_var_parts], 0),
8734 				   XEXP (XEXP (loc2, 0), 0))
8735 		   && INTVAL (XEXP (XEXP (loc2, 0), 1))
8736 		      == GET_MODE_SIZE (mode))
8737 		  || (GET_CODE (XEXP (loc[n_var_parts], 0)) == PLUS
8738 		      && CONST_INT_P (XEXP (XEXP (loc[n_var_parts], 0), 1))
8739 		      && rtx_equal_p (XEXP (XEXP (loc[n_var_parts], 0), 0),
8740 				      XEXP (XEXP (loc2, 0), 0))
8741 		      && INTVAL (XEXP (XEXP (loc[n_var_parts], 0), 1))
8742 			 + GET_MODE_SIZE (mode)
8743 			 == INTVAL (XEXP (XEXP (loc2, 0), 1))))
8744 		new_loc = adjust_address_nv (loc[n_var_parts],
8745 					     wider_mode, 0);
8746 	    }
8747 
8748 	  if (new_loc)
8749 	    {
8750 	      loc[n_var_parts] = new_loc;
8751 	      mode = wider_mode;
8752 	      last_limit = offsets[n_var_parts] + GET_MODE_SIZE (mode);
8753 	      i = j;
8754 	    }
8755 	}
8756       ++n_var_parts;
8757     }
8758   type_size_unit = TYPE_SIZE_UNIT (TREE_TYPE (decl));
8759   if ((unsigned HOST_WIDE_INT) last_limit < TREE_INT_CST_LOW (type_size_unit))
8760     complete = false;
8761 
8762   if (! flag_var_tracking_uninit)
8763     initialized = VAR_INIT_STATUS_INITIALIZED;
8764 
8765   note_vl = NULL_RTX;
8766   if (!complete)
8767     note_vl = gen_rtx_VAR_LOCATION (VOIDmode, decl, NULL_RTX, initialized);
8768   else if (n_var_parts == 1)
8769     {
8770       rtx expr_list;
8771 
8772       if (offsets[0] || GET_CODE (loc[0]) == PARALLEL)
8773 	expr_list = gen_rtx_EXPR_LIST (VOIDmode, loc[0], GEN_INT (offsets[0]));
8774       else
8775 	expr_list = loc[0];
8776 
8777       note_vl = gen_rtx_VAR_LOCATION (VOIDmode, decl, expr_list, initialized);
8778     }
8779   else if (n_var_parts)
8780     {
8781       rtx parallel;
8782 
8783       for (i = 0; i < n_var_parts; i++)
8784 	loc[i]
8785 	  = gen_rtx_EXPR_LIST (VOIDmode, loc[i], GEN_INT (offsets[i]));
8786 
8787       parallel = gen_rtx_PARALLEL (VOIDmode,
8788 				   gen_rtvec_v (n_var_parts, loc));
8789       note_vl = gen_rtx_VAR_LOCATION (VOIDmode, decl,
8790 				      parallel, initialized);
8791     }
8792 
8793   if (where != EMIT_NOTE_BEFORE_INSN)
8794     {
8795       note = emit_note_after (NOTE_INSN_VAR_LOCATION, insn);
8796       if (where == EMIT_NOTE_AFTER_CALL_INSN)
8797 	NOTE_DURING_CALL_P (note) = true;
8798     }
8799   else
8800     {
8801       /* Make sure that the call related notes come first.  */
8802       while (NEXT_INSN (insn)
8803 	     && NOTE_P (insn)
8804 	     && ((NOTE_KIND (insn) == NOTE_INSN_VAR_LOCATION
8805 		  && NOTE_DURING_CALL_P (insn))
8806 		 || NOTE_KIND (insn) == NOTE_INSN_CALL_ARG_LOCATION))
8807 	insn = NEXT_INSN (insn);
8808       if (NOTE_P (insn)
8809 	  && ((NOTE_KIND (insn) == NOTE_INSN_VAR_LOCATION
8810 	       && NOTE_DURING_CALL_P (insn))
8811 	      || NOTE_KIND (insn) == NOTE_INSN_CALL_ARG_LOCATION))
8812 	note = emit_note_after (NOTE_INSN_VAR_LOCATION, insn);
8813       else
8814 	note = emit_note_before (NOTE_INSN_VAR_LOCATION, insn);
8815     }
8816   NOTE_VAR_LOCATION (note) = note_vl;
8817 
8818   set_dv_changed (var->dv, false);
8819   gcc_assert (var->in_changed_variables);
8820   var->in_changed_variables = false;
8821   changed_variables->clear_slot (varp);
8822 
8823   /* Continue traversing the hash table.  */
8824   return 1;
8825 }
8826 
8827 /* While traversing changed_variables, push onto DATA (a stack of RTX
8828    values) entries that aren't user variables.  */
8829 
8830 int
8831 var_track_values_to_stack (variable_def **slot,
8832 			   vec<rtx, va_heap> *changed_values_stack)
8833 {
8834   variable var = *slot;
8835 
8836   if (var->onepart == ONEPART_VALUE)
8837     changed_values_stack->safe_push (dv_as_value (var->dv));
8838   else if (var->onepart == ONEPART_DEXPR)
8839     changed_values_stack->safe_push (DECL_RTL_KNOWN_SET (dv_as_decl (var->dv)));
8840 
8841   return 1;
8842 }
8843 
8844 /* Remove from changed_variables the entry whose DV corresponds to
8845    value or debug_expr VAL.  */
8846 static void
8847 remove_value_from_changed_variables (rtx val)
8848 {
8849   decl_or_value dv = dv_from_rtx (val);
8850   variable_def **slot;
8851   variable var;
8852 
8853   slot = changed_variables->find_slot_with_hash (dv, dv_htab_hash (dv),
8854 						NO_INSERT);
8855   var = *slot;
8856   var->in_changed_variables = false;
8857   changed_variables->clear_slot (slot);
8858 }
8859 
8860 /* If VAL (a value or debug_expr) has backlinks to variables actively
8861    dependent on it in HTAB or in CHANGED_VARIABLES, mark them as
8862    changed, adding to CHANGED_VALUES_STACK any dependencies that may
8863    have dependencies of their own to notify.  */
8864 
8865 static void
8866 notify_dependents_of_changed_value (rtx val, variable_table_type *htab,
8867 				    vec<rtx, va_heap> *changed_values_stack)
8868 {
8869   variable_def **slot;
8870   variable var;
8871   loc_exp_dep *led;
8872   decl_or_value dv = dv_from_rtx (val);
8873 
8874   slot = changed_variables->find_slot_with_hash (dv, dv_htab_hash (dv),
8875 						NO_INSERT);
8876   if (!slot)
8877     slot = htab->find_slot_with_hash (dv, dv_htab_hash (dv), NO_INSERT);
8878   if (!slot)
8879     slot = dropped_values->find_slot_with_hash (dv, dv_htab_hash (dv),
8880 						NO_INSERT);
8881   var = *slot;
8882 
8883   while ((led = VAR_LOC_DEP_LST (var)))
8884     {
8885       decl_or_value ldv = led->dv;
8886       variable ivar;
8887 
8888       /* Deactivate and remove the backlink, as it was “used up”.  It
8889 	 makes no sense to attempt to notify the same entity again:
8890 	 either it will be recomputed and re-register an active
8891 	 dependency, or it will still have the changed mark.  */
8892       if (led->next)
8893 	led->next->pprev = led->pprev;
8894       if (led->pprev)
8895 	*led->pprev = led->next;
8896       led->next = NULL;
8897       led->pprev = NULL;
8898 
8899       if (dv_changed_p (ldv))
8900 	continue;
8901 
8902       switch (dv_onepart_p (ldv))
8903 	{
8904 	case ONEPART_VALUE:
8905 	case ONEPART_DEXPR:
8906 	  set_dv_changed (ldv, true);
8907 	  changed_values_stack->safe_push (dv_as_rtx (ldv));
8908 	  break;
8909 
8910 	case ONEPART_VDECL:
8911 	  ivar = htab->find_with_hash (ldv, dv_htab_hash (ldv));
8912 	  gcc_checking_assert (!VAR_LOC_DEP_LST (ivar));
8913 	  variable_was_changed (ivar, NULL);
8914 	  break;
8915 
8916 	case NOT_ONEPART:
8917 	  pool_free (loc_exp_dep_pool, led);
8918 	  ivar = htab->find_with_hash (ldv, dv_htab_hash (ldv));
8919 	  if (ivar)
8920 	    {
8921 	      int i = ivar->n_var_parts;
8922 	      while (i--)
8923 		{
8924 		  rtx loc = ivar->var_part[i].cur_loc;
8925 
8926 		  if (loc && GET_CODE (loc) == MEM
8927 		      && XEXP (loc, 0) == val)
8928 		    {
8929 		      variable_was_changed (ivar, NULL);
8930 		      break;
8931 		    }
8932 		}
8933 	    }
8934 	  break;
8935 
8936 	default:
8937 	  gcc_unreachable ();
8938 	}
8939     }
8940 }
8941 
8942 /* Take out of changed_variables any entries that don't refer to use
8943    variables.  Back-propagate change notifications from values and
8944    debug_exprs to their active dependencies in HTAB or in
8945    CHANGED_VARIABLES.  */
8946 
8947 static void
8948 process_changed_values (variable_table_type *htab)
8949 {
8950   int i, n;
8951   rtx val;
8952   auto_vec<rtx, 20> changed_values_stack;
8953 
8954   /* Move values from changed_variables to changed_values_stack.  */
8955   changed_variables
8956     ->traverse <vec<rtx, va_heap>*, var_track_values_to_stack>
8957       (&changed_values_stack);
8958 
8959   /* Back-propagate change notifications in values while popping
8960      them from the stack.  */
8961   for (n = i = changed_values_stack.length ();
8962        i > 0; i = changed_values_stack.length ())
8963     {
8964       val = changed_values_stack.pop ();
8965       notify_dependents_of_changed_value (val, htab, &changed_values_stack);
8966 
8967       /* This condition will hold when visiting each of the entries
8968 	 originally in changed_variables.  We can't remove them
8969 	 earlier because this could drop the backlinks before we got a
8970 	 chance to use them.  */
8971       if (i == n)
8972 	{
8973 	  remove_value_from_changed_variables (val);
8974 	  n--;
8975 	}
8976     }
8977 }
8978 
8979 /* Emit NOTE_INSN_VAR_LOCATION note for each variable from a chain
8980    CHANGED_VARIABLES and delete this chain.  WHERE specifies whether
8981    the notes shall be emitted before of after instruction INSN.  */
8982 
8983 static void
8984 emit_notes_for_changes (rtx_insn *insn, enum emit_note_where where,
8985 			shared_hash vars)
8986 {
8987   emit_note_data data;
8988   variable_table_type *htab = shared_hash_htab (vars);
8989 
8990   if (!changed_variables->elements ())
8991     return;
8992 
8993   if (MAY_HAVE_DEBUG_INSNS)
8994     process_changed_values (htab);
8995 
8996   data.insn = insn;
8997   data.where = where;
8998   data.vars = htab;
8999 
9000   changed_variables
9001     ->traverse <emit_note_data*, emit_note_insn_var_location> (&data);
9002 }
9003 
9004 /* Add variable *SLOT to the chain CHANGED_VARIABLES if it differs from the
9005    same variable in hash table DATA or is not there at all.  */
9006 
9007 int
9008 emit_notes_for_differences_1 (variable_def **slot, variable_table_type *new_vars)
9009 {
9010   variable old_var, new_var;
9011 
9012   old_var = *slot;
9013   new_var = new_vars->find_with_hash (old_var->dv, dv_htab_hash (old_var->dv));
9014 
9015   if (!new_var)
9016     {
9017       /* Variable has disappeared.  */
9018       variable empty_var = NULL;
9019 
9020       if (old_var->onepart == ONEPART_VALUE
9021 	  || old_var->onepart == ONEPART_DEXPR)
9022 	{
9023 	  empty_var = variable_from_dropped (old_var->dv, NO_INSERT);
9024 	  if (empty_var)
9025 	    {
9026 	      gcc_checking_assert (!empty_var->in_changed_variables);
9027 	      if (!VAR_LOC_1PAUX (old_var))
9028 		{
9029 		  VAR_LOC_1PAUX (old_var) = VAR_LOC_1PAUX (empty_var);
9030 		  VAR_LOC_1PAUX (empty_var) = NULL;
9031 		}
9032 	      else
9033 		gcc_checking_assert (!VAR_LOC_1PAUX (empty_var));
9034 	    }
9035 	}
9036 
9037       if (!empty_var)
9038 	{
9039 	  empty_var = (variable) pool_alloc (onepart_pool (old_var->onepart));
9040 	  empty_var->dv = old_var->dv;
9041 	  empty_var->refcount = 0;
9042 	  empty_var->n_var_parts = 0;
9043 	  empty_var->onepart = old_var->onepart;
9044 	  empty_var->in_changed_variables = false;
9045 	}
9046 
9047       if (empty_var->onepart)
9048 	{
9049 	  /* Propagate the auxiliary data to (ultimately)
9050 	     changed_variables.  */
9051 	  empty_var->var_part[0].loc_chain = NULL;
9052 	  empty_var->var_part[0].cur_loc = NULL;
9053 	  VAR_LOC_1PAUX (empty_var) = VAR_LOC_1PAUX (old_var);
9054 	  VAR_LOC_1PAUX (old_var) = NULL;
9055 	}
9056       variable_was_changed (empty_var, NULL);
9057       /* Continue traversing the hash table.  */
9058       return 1;
9059     }
9060   /* Update cur_loc and one-part auxiliary data, before new_var goes
9061      through variable_was_changed.  */
9062   if (old_var != new_var && new_var->onepart)
9063     {
9064       gcc_checking_assert (VAR_LOC_1PAUX (new_var) == NULL);
9065       VAR_LOC_1PAUX (new_var) = VAR_LOC_1PAUX (old_var);
9066       VAR_LOC_1PAUX (old_var) = NULL;
9067       new_var->var_part[0].cur_loc = old_var->var_part[0].cur_loc;
9068     }
9069   if (variable_different_p (old_var, new_var))
9070     variable_was_changed (new_var, NULL);
9071 
9072   /* Continue traversing the hash table.  */
9073   return 1;
9074 }
9075 
9076 /* Add variable *SLOT to the chain CHANGED_VARIABLES if it is not in hash
9077    table DATA.  */
9078 
9079 int
9080 emit_notes_for_differences_2 (variable_def **slot, variable_table_type *old_vars)
9081 {
9082   variable old_var, new_var;
9083 
9084   new_var = *slot;
9085   old_var = old_vars->find_with_hash (new_var->dv, dv_htab_hash (new_var->dv));
9086   if (!old_var)
9087     {
9088       int i;
9089       for (i = 0; i < new_var->n_var_parts; i++)
9090 	new_var->var_part[i].cur_loc = NULL;
9091       variable_was_changed (new_var, NULL);
9092     }
9093 
9094   /* Continue traversing the hash table.  */
9095   return 1;
9096 }
9097 
9098 /* Emit notes before INSN for differences between dataflow sets OLD_SET and
9099    NEW_SET.  */
9100 
9101 static void
9102 emit_notes_for_differences (rtx_insn *insn, dataflow_set *old_set,
9103 			    dataflow_set *new_set)
9104 {
9105   shared_hash_htab (old_set->vars)
9106     ->traverse <variable_table_type *, emit_notes_for_differences_1>
9107       (shared_hash_htab (new_set->vars));
9108   shared_hash_htab (new_set->vars)
9109     ->traverse <variable_table_type *, emit_notes_for_differences_2>
9110       (shared_hash_htab (old_set->vars));
9111   emit_notes_for_changes (insn, EMIT_NOTE_BEFORE_INSN, new_set->vars);
9112 }
9113 
9114 /* Return the next insn after INSN that is not a NOTE_INSN_VAR_LOCATION.  */
9115 
9116 static rtx_insn *
9117 next_non_note_insn_var_location (rtx_insn *insn)
9118 {
9119   while (insn)
9120     {
9121       insn = NEXT_INSN (insn);
9122       if (insn == 0
9123 	  || !NOTE_P (insn)
9124 	  || NOTE_KIND (insn) != NOTE_INSN_VAR_LOCATION)
9125 	break;
9126     }
9127 
9128   return insn;
9129 }
9130 
9131 /* Emit the notes for changes of location parts in the basic block BB.  */
9132 
9133 static void
9134 emit_notes_in_bb (basic_block bb, dataflow_set *set)
9135 {
9136   unsigned int i;
9137   micro_operation *mo;
9138 
9139   dataflow_set_clear (set);
9140   dataflow_set_copy (set, &VTI (bb)->in);
9141 
9142   FOR_EACH_VEC_ELT (VTI (bb)->mos, i, mo)
9143     {
9144       rtx_insn *insn = mo->insn;
9145       rtx_insn *next_insn = next_non_note_insn_var_location (insn);
9146 
9147       switch (mo->type)
9148 	{
9149 	  case MO_CALL:
9150 	    dataflow_set_clear_at_call (set);
9151 	    emit_notes_for_changes (insn, EMIT_NOTE_AFTER_CALL_INSN, set->vars);
9152 	    {
9153 	      rtx arguments = mo->u.loc, *p = &arguments;
9154 	      rtx_note *note;
9155 	      while (*p)
9156 		{
9157 		  XEXP (XEXP (*p, 0), 1)
9158 		    = vt_expand_loc (XEXP (XEXP (*p, 0), 1),
9159 				     shared_hash_htab (set->vars));
9160 		  /* If expansion is successful, keep it in the list.  */
9161 		  if (XEXP (XEXP (*p, 0), 1))
9162 		    p = &XEXP (*p, 1);
9163 		  /* Otherwise, if the following item is data_value for it,
9164 		     drop it too too.  */
9165 		  else if (XEXP (*p, 1)
9166 			   && REG_P (XEXP (XEXP (*p, 0), 0))
9167 			   && MEM_P (XEXP (XEXP (XEXP (*p, 1), 0), 0))
9168 			   && REG_P (XEXP (XEXP (XEXP (XEXP (*p, 1), 0), 0),
9169 					   0))
9170 			   && REGNO (XEXP (XEXP (*p, 0), 0))
9171 			      == REGNO (XEXP (XEXP (XEXP (XEXP (*p, 1), 0),
9172 						    0), 0)))
9173 		    *p = XEXP (XEXP (*p, 1), 1);
9174 		  /* Just drop this item.  */
9175 		  else
9176 		    *p = XEXP (*p, 1);
9177 		}
9178 	      note = emit_note_after (NOTE_INSN_CALL_ARG_LOCATION, insn);
9179 	      NOTE_VAR_LOCATION (note) = arguments;
9180 	    }
9181 	    break;
9182 
9183 	  case MO_USE:
9184 	    {
9185 	      rtx loc = mo->u.loc;
9186 
9187 	      if (REG_P (loc))
9188 		var_reg_set (set, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
9189 	      else
9190 		var_mem_set (set, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
9191 
9192 	      emit_notes_for_changes (insn, EMIT_NOTE_BEFORE_INSN, set->vars);
9193 	    }
9194 	    break;
9195 
9196 	  case MO_VAL_LOC:
9197 	    {
9198 	      rtx loc = mo->u.loc;
9199 	      rtx val, vloc;
9200 	      tree var;
9201 
9202 	      if (GET_CODE (loc) == CONCAT)
9203 		{
9204 		  val = XEXP (loc, 0);
9205 		  vloc = XEXP (loc, 1);
9206 		}
9207 	      else
9208 		{
9209 		  val = NULL_RTX;
9210 		  vloc = loc;
9211 		}
9212 
9213 	      var = PAT_VAR_LOCATION_DECL (vloc);
9214 
9215 	      clobber_variable_part (set, NULL_RTX,
9216 				     dv_from_decl (var), 0, NULL_RTX);
9217 	      if (val)
9218 		{
9219 		  if (VAL_NEEDS_RESOLUTION (loc))
9220 		    val_resolve (set, val, PAT_VAR_LOCATION_LOC (vloc), insn);
9221 		  set_variable_part (set, val, dv_from_decl (var), 0,
9222 				     VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
9223 				     INSERT);
9224 		}
9225 	      else if (!VAR_LOC_UNKNOWN_P (PAT_VAR_LOCATION_LOC (vloc)))
9226 		set_variable_part (set, PAT_VAR_LOCATION_LOC (vloc),
9227 				   dv_from_decl (var), 0,
9228 				   VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
9229 				   INSERT);
9230 
9231 	      emit_notes_for_changes (insn, EMIT_NOTE_AFTER_INSN, set->vars);
9232 	    }
9233 	    break;
9234 
9235 	  case MO_VAL_USE:
9236 	    {
9237 	      rtx loc = mo->u.loc;
9238 	      rtx val, vloc, uloc;
9239 
9240 	      vloc = uloc = XEXP (loc, 1);
9241 	      val = XEXP (loc, 0);
9242 
9243 	      if (GET_CODE (val) == CONCAT)
9244 		{
9245 		  uloc = XEXP (val, 1);
9246 		  val = XEXP (val, 0);
9247 		}
9248 
9249 	      if (VAL_NEEDS_RESOLUTION (loc))
9250 		val_resolve (set, val, vloc, insn);
9251 	      else
9252 		val_store (set, val, uloc, insn, false);
9253 
9254 	      if (VAL_HOLDS_TRACK_EXPR (loc))
9255 		{
9256 		  if (GET_CODE (uloc) == REG)
9257 		    var_reg_set (set, uloc, VAR_INIT_STATUS_UNINITIALIZED,
9258 				 NULL);
9259 		  else if (GET_CODE (uloc) == MEM)
9260 		    var_mem_set (set, uloc, VAR_INIT_STATUS_UNINITIALIZED,
9261 				 NULL);
9262 		}
9263 
9264 	      emit_notes_for_changes (insn, EMIT_NOTE_BEFORE_INSN, set->vars);
9265 	    }
9266 	    break;
9267 
9268 	  case MO_VAL_SET:
9269 	    {
9270 	      rtx loc = mo->u.loc;
9271 	      rtx val, vloc, uloc;
9272 	      rtx dstv, srcv;
9273 
9274 	      vloc = loc;
9275 	      uloc = XEXP (vloc, 1);
9276 	      val = XEXP (vloc, 0);
9277 	      vloc = uloc;
9278 
9279 	      if (GET_CODE (uloc) == SET)
9280 		{
9281 		  dstv = SET_DEST (uloc);
9282 		  srcv = SET_SRC (uloc);
9283 		}
9284 	      else
9285 		{
9286 		  dstv = uloc;
9287 		  srcv = NULL;
9288 		}
9289 
9290 	      if (GET_CODE (val) == CONCAT)
9291 		{
9292 		  dstv = vloc = XEXP (val, 1);
9293 		  val = XEXP (val, 0);
9294 		}
9295 
9296 	      if (GET_CODE (vloc) == SET)
9297 		{
9298 		  srcv = SET_SRC (vloc);
9299 
9300 		  gcc_assert (val != srcv);
9301 		  gcc_assert (vloc == uloc || VAL_NEEDS_RESOLUTION (loc));
9302 
9303 		  dstv = vloc = SET_DEST (vloc);
9304 
9305 		  if (VAL_NEEDS_RESOLUTION (loc))
9306 		    val_resolve (set, val, srcv, insn);
9307 		}
9308 	      else if (VAL_NEEDS_RESOLUTION (loc))
9309 		{
9310 		  gcc_assert (GET_CODE (uloc) == SET
9311 			      && GET_CODE (SET_SRC (uloc)) == REG);
9312 		  val_resolve (set, val, SET_SRC (uloc), insn);
9313 		}
9314 
9315 	      if (VAL_HOLDS_TRACK_EXPR (loc))
9316 		{
9317 		  if (VAL_EXPR_IS_CLOBBERED (loc))
9318 		    {
9319 		      if (REG_P (uloc))
9320 			var_reg_delete (set, uloc, true);
9321 		      else if (MEM_P (uloc))
9322 			{
9323 			  gcc_assert (MEM_P (dstv));
9324 			  gcc_assert (MEM_ATTRS (dstv) == MEM_ATTRS (uloc));
9325 			  var_mem_delete (set, dstv, true);
9326 			}
9327 		    }
9328 		  else
9329 		    {
9330 		      bool copied_p = VAL_EXPR_IS_COPIED (loc);
9331 		      rtx src = NULL, dst = uloc;
9332 		      enum var_init_status status = VAR_INIT_STATUS_INITIALIZED;
9333 
9334 		      if (GET_CODE (uloc) == SET)
9335 			{
9336 			  src = SET_SRC (uloc);
9337 			  dst = SET_DEST (uloc);
9338 			}
9339 
9340 		      if (copied_p)
9341 			{
9342 			  status = find_src_status (set, src);
9343 
9344 			  src = find_src_set_src (set, src);
9345 			}
9346 
9347 		      if (REG_P (dst))
9348 			var_reg_delete_and_set (set, dst, !copied_p,
9349 						status, srcv);
9350 		      else if (MEM_P (dst))
9351 			{
9352 			  gcc_assert (MEM_P (dstv));
9353 			  gcc_assert (MEM_ATTRS (dstv) == MEM_ATTRS (dst));
9354 			  var_mem_delete_and_set (set, dstv, !copied_p,
9355 						  status, srcv);
9356 			}
9357 		    }
9358 		}
9359 	      else if (REG_P (uloc))
9360 		var_regno_delete (set, REGNO (uloc));
9361 	      else if (MEM_P (uloc))
9362 		{
9363 		  gcc_checking_assert (GET_CODE (vloc) == MEM);
9364 		  gcc_checking_assert (vloc == dstv);
9365 		  if (vloc != dstv)
9366 		    clobber_overlapping_mems (set, vloc);
9367 		}
9368 
9369 	      val_store (set, val, dstv, insn, true);
9370 
9371 	      emit_notes_for_changes (next_insn, EMIT_NOTE_BEFORE_INSN,
9372 				      set->vars);
9373 	    }
9374 	    break;
9375 
9376 	  case MO_SET:
9377 	    {
9378 	      rtx loc = mo->u.loc;
9379 	      rtx set_src = NULL;
9380 
9381 	      if (GET_CODE (loc) == SET)
9382 		{
9383 		  set_src = SET_SRC (loc);
9384 		  loc = SET_DEST (loc);
9385 		}
9386 
9387 	      if (REG_P (loc))
9388 		var_reg_delete_and_set (set, loc, true, VAR_INIT_STATUS_INITIALIZED,
9389 					set_src);
9390 	      else
9391 		var_mem_delete_and_set (set, loc, true, VAR_INIT_STATUS_INITIALIZED,
9392 					set_src);
9393 
9394 	      emit_notes_for_changes (next_insn, EMIT_NOTE_BEFORE_INSN,
9395 				      set->vars);
9396 	    }
9397 	    break;
9398 
9399 	  case MO_COPY:
9400 	    {
9401 	      rtx loc = mo->u.loc;
9402 	      enum var_init_status src_status;
9403 	      rtx set_src = NULL;
9404 
9405 	      if (GET_CODE (loc) == SET)
9406 		{
9407 		  set_src = SET_SRC (loc);
9408 		  loc = SET_DEST (loc);
9409 		}
9410 
9411 	      src_status = find_src_status (set, set_src);
9412 	      set_src = find_src_set_src (set, set_src);
9413 
9414 	      if (REG_P (loc))
9415 		var_reg_delete_and_set (set, loc, false, src_status, set_src);
9416 	      else
9417 		var_mem_delete_and_set (set, loc, false, src_status, set_src);
9418 
9419 	      emit_notes_for_changes (next_insn, EMIT_NOTE_BEFORE_INSN,
9420 				      set->vars);
9421 	    }
9422 	    break;
9423 
9424 	  case MO_USE_NO_VAR:
9425 	    {
9426 	      rtx loc = mo->u.loc;
9427 
9428 	      if (REG_P (loc))
9429 		var_reg_delete (set, loc, false);
9430 	      else
9431 		var_mem_delete (set, loc, false);
9432 
9433 	      emit_notes_for_changes (insn, EMIT_NOTE_AFTER_INSN, set->vars);
9434 	    }
9435 	    break;
9436 
9437 	  case MO_CLOBBER:
9438 	    {
9439 	      rtx loc = mo->u.loc;
9440 
9441 	      if (REG_P (loc))
9442 		var_reg_delete (set, loc, true);
9443 	      else
9444 		var_mem_delete (set, loc, true);
9445 
9446 	      emit_notes_for_changes (next_insn, EMIT_NOTE_BEFORE_INSN,
9447 				      set->vars);
9448 	    }
9449 	    break;
9450 
9451 	  case MO_ADJUST:
9452 	    set->stack_adjust += mo->u.adjust;
9453 	    break;
9454 	}
9455     }
9456 }
9457 
9458 /* Emit notes for the whole function.  */
9459 
9460 static void
9461 vt_emit_notes (void)
9462 {
9463   basic_block bb;
9464   dataflow_set cur;
9465 
9466   gcc_assert (!changed_variables->elements ());
9467 
9468   /* Free memory occupied by the out hash tables, as they aren't used
9469      anymore.  */
9470   FOR_EACH_BB_FN (bb, cfun)
9471     dataflow_set_clear (&VTI (bb)->out);
9472 
9473   /* Enable emitting notes by functions (mainly by set_variable_part and
9474      delete_variable_part).  */
9475   emit_notes = true;
9476 
9477   if (MAY_HAVE_DEBUG_INSNS)
9478     {
9479       dropped_values = new variable_table_type (cselib_get_next_uid () * 2);
9480       loc_exp_dep_pool = create_alloc_pool ("loc_exp_dep pool",
9481 					    sizeof (loc_exp_dep), 64);
9482     }
9483 
9484   dataflow_set_init (&cur);
9485 
9486   FOR_EACH_BB_FN (bb, cfun)
9487     {
9488       /* Emit the notes for changes of variable locations between two
9489 	 subsequent basic blocks.  */
9490       emit_notes_for_differences (BB_HEAD (bb), &cur, &VTI (bb)->in);
9491 
9492       if (MAY_HAVE_DEBUG_INSNS)
9493 	local_get_addr_cache = new hash_map<rtx, rtx>;
9494 
9495       /* Emit the notes for the changes in the basic block itself.  */
9496       emit_notes_in_bb (bb, &cur);
9497 
9498       if (MAY_HAVE_DEBUG_INSNS)
9499 	delete local_get_addr_cache;
9500       local_get_addr_cache = NULL;
9501 
9502       /* Free memory occupied by the in hash table, we won't need it
9503 	 again.  */
9504       dataflow_set_clear (&VTI (bb)->in);
9505     }
9506 #ifdef ENABLE_CHECKING
9507   shared_hash_htab (cur.vars)
9508     ->traverse <variable_table_type *, emit_notes_for_differences_1>
9509       (shared_hash_htab (empty_shared_hash));
9510 #endif
9511   dataflow_set_destroy (&cur);
9512 
9513   if (MAY_HAVE_DEBUG_INSNS)
9514     delete dropped_values;
9515   dropped_values = NULL;
9516 
9517   emit_notes = false;
9518 }
9519 
9520 /* If there is a declaration and offset associated with register/memory RTL
9521    assign declaration to *DECLP and offset to *OFFSETP, and return true.  */
9522 
9523 static bool
9524 vt_get_decl_and_offset (rtx rtl, tree *declp, HOST_WIDE_INT *offsetp)
9525 {
9526   if (REG_P (rtl))
9527     {
9528       if (REG_ATTRS (rtl))
9529 	{
9530 	  *declp = REG_EXPR (rtl);
9531 	  *offsetp = REG_OFFSET (rtl);
9532 	  return true;
9533 	}
9534     }
9535   else if (GET_CODE (rtl) == PARALLEL)
9536     {
9537       tree decl = NULL_TREE;
9538       HOST_WIDE_INT offset = MAX_VAR_PARTS;
9539       int len = XVECLEN (rtl, 0), i;
9540 
9541       for (i = 0; i < len; i++)
9542 	{
9543 	  rtx reg = XEXP (XVECEXP (rtl, 0, i), 0);
9544 	  if (!REG_P (reg) || !REG_ATTRS (reg))
9545 	    break;
9546 	  if (!decl)
9547 	    decl = REG_EXPR (reg);
9548 	  if (REG_EXPR (reg) != decl)
9549 	    break;
9550 	  if (REG_OFFSET (reg) < offset)
9551 	    offset = REG_OFFSET (reg);
9552 	}
9553 
9554       if (i == len)
9555 	{
9556 	  *declp = decl;
9557 	  *offsetp = offset;
9558 	  return true;
9559 	}
9560     }
9561   else if (MEM_P (rtl))
9562     {
9563       if (MEM_ATTRS (rtl))
9564 	{
9565 	  *declp = MEM_EXPR (rtl);
9566 	  *offsetp = INT_MEM_OFFSET (rtl);
9567 	  return true;
9568 	}
9569     }
9570   return false;
9571 }
9572 
9573 /* Record the value for the ENTRY_VALUE of RTL as a global equivalence
9574    of VAL.  */
9575 
9576 static void
9577 record_entry_value (cselib_val *val, rtx rtl)
9578 {
9579   rtx ev = gen_rtx_ENTRY_VALUE (GET_MODE (rtl));
9580 
9581   ENTRY_VALUE_EXP (ev) = rtl;
9582 
9583   cselib_add_permanent_equiv (val, ev, get_insns ());
9584 }
9585 
9586 /* Insert function parameter PARM in IN and OUT sets of ENTRY_BLOCK.  */
9587 
9588 static void
9589 vt_add_function_parameter (tree parm)
9590 {
9591   rtx decl_rtl = DECL_RTL_IF_SET (parm);
9592   rtx incoming = DECL_INCOMING_RTL (parm);
9593   tree decl;
9594   machine_mode mode;
9595   HOST_WIDE_INT offset;
9596   dataflow_set *out;
9597   decl_or_value dv;
9598 
9599   if (TREE_CODE (parm) != PARM_DECL)
9600     return;
9601 
9602   if (!decl_rtl || !incoming)
9603     return;
9604 
9605   if (GET_MODE (decl_rtl) == BLKmode || GET_MODE (incoming) == BLKmode)
9606     return;
9607 
9608   /* If there is a DRAP register or a pseudo in internal_arg_pointer,
9609      rewrite the incoming location of parameters passed on the stack
9610      into MEMs based on the argument pointer, so that incoming doesn't
9611      depend on a pseudo.  */
9612   if (MEM_P (incoming)
9613       && (XEXP (incoming, 0) == crtl->args.internal_arg_pointer
9614 	  || (GET_CODE (XEXP (incoming, 0)) == PLUS
9615 	      && XEXP (XEXP (incoming, 0), 0)
9616 		 == crtl->args.internal_arg_pointer
9617 	      && CONST_INT_P (XEXP (XEXP (incoming, 0), 1)))))
9618     {
9619       HOST_WIDE_INT off = -FIRST_PARM_OFFSET (current_function_decl);
9620       if (GET_CODE (XEXP (incoming, 0)) == PLUS)
9621 	off += INTVAL (XEXP (XEXP (incoming, 0), 1));
9622       incoming
9623 	= replace_equiv_address_nv (incoming,
9624 				    plus_constant (Pmode,
9625 						   arg_pointer_rtx, off));
9626     }
9627 
9628 #ifdef HAVE_window_save
9629   /* DECL_INCOMING_RTL uses the INCOMING_REGNO of parameter registers.
9630      If the target machine has an explicit window save instruction, the
9631      actual entry value is the corresponding OUTGOING_REGNO instead.  */
9632   if (HAVE_window_save && !crtl->uses_only_leaf_regs)
9633     {
9634       if (REG_P (incoming)
9635 	  && HARD_REGISTER_P (incoming)
9636 	  && OUTGOING_REGNO (REGNO (incoming)) != REGNO (incoming))
9637 	{
9638 	  parm_reg_t p;
9639 	  p.incoming = incoming;
9640 	  incoming
9641 	    = gen_rtx_REG_offset (incoming, GET_MODE (incoming),
9642 				  OUTGOING_REGNO (REGNO (incoming)), 0);
9643 	  p.outgoing = incoming;
9644 	  vec_safe_push (windowed_parm_regs, p);
9645 	}
9646       else if (GET_CODE (incoming) == PARALLEL)
9647 	{
9648 	  rtx outgoing
9649 	    = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (XVECLEN (incoming, 0)));
9650 	  int i;
9651 
9652 	  for (i = 0; i < XVECLEN (incoming, 0); i++)
9653 	    {
9654 	      rtx reg = XEXP (XVECEXP (incoming, 0, i), 0);
9655 	      parm_reg_t p;
9656 	      p.incoming = reg;
9657 	      reg = gen_rtx_REG_offset (reg, GET_MODE (reg),
9658 					OUTGOING_REGNO (REGNO (reg)), 0);
9659 	      p.outgoing = reg;
9660 	      XVECEXP (outgoing, 0, i)
9661 		= gen_rtx_EXPR_LIST (VOIDmode, reg,
9662 				     XEXP (XVECEXP (incoming, 0, i), 1));
9663 	      vec_safe_push (windowed_parm_regs, p);
9664 	    }
9665 
9666 	  incoming = outgoing;
9667 	}
9668       else if (MEM_P (incoming)
9669 	       && REG_P (XEXP (incoming, 0))
9670 	       && HARD_REGISTER_P (XEXP (incoming, 0)))
9671 	{
9672 	  rtx reg = XEXP (incoming, 0);
9673 	  if (OUTGOING_REGNO (REGNO (reg)) != REGNO (reg))
9674 	    {
9675 	      parm_reg_t p;
9676 	      p.incoming = reg;
9677 	      reg = gen_raw_REG (GET_MODE (reg), OUTGOING_REGNO (REGNO (reg)));
9678 	      p.outgoing = reg;
9679 	      vec_safe_push (windowed_parm_regs, p);
9680 	      incoming = replace_equiv_address_nv (incoming, reg);
9681 	    }
9682 	}
9683     }
9684 #endif
9685 
9686   if (!vt_get_decl_and_offset (incoming, &decl, &offset))
9687     {
9688       if (MEM_P (incoming))
9689 	{
9690 	  /* This means argument is passed by invisible reference.  */
9691 	  offset = 0;
9692 	  decl = parm;
9693 	}
9694       else
9695 	{
9696 	  if (!vt_get_decl_and_offset (decl_rtl, &decl, &offset))
9697 	    return;
9698 	  offset += byte_lowpart_offset (GET_MODE (incoming),
9699 					 GET_MODE (decl_rtl));
9700 	}
9701     }
9702 
9703   if (!decl)
9704     return;
9705 
9706   if (parm != decl)
9707     {
9708       /* If that DECL_RTL wasn't a pseudo that got spilled to
9709 	 memory, bail out.  Otherwise, the spill slot sharing code
9710 	 will force the memory to reference spill_slot_decl (%sfp),
9711 	 so we don't match above.  That's ok, the pseudo must have
9712 	 referenced the entire parameter, so just reset OFFSET.  */
9713       if (decl != get_spill_slot_decl (false))
9714         return;
9715       offset = 0;
9716     }
9717 
9718   if (!track_loc_p (incoming, parm, offset, false, &mode, &offset))
9719     return;
9720 
9721   out = &VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->out;
9722 
9723   dv = dv_from_decl (parm);
9724 
9725   if (target_for_debug_bind (parm)
9726       /* We can't deal with these right now, because this kind of
9727 	 variable is single-part.  ??? We could handle parallels
9728 	 that describe multiple locations for the same single
9729 	 value, but ATM we don't.  */
9730       && GET_CODE (incoming) != PARALLEL)
9731     {
9732       cselib_val *val;
9733       rtx lowpart;
9734 
9735       /* ??? We shouldn't ever hit this, but it may happen because
9736 	 arguments passed by invisible reference aren't dealt with
9737 	 above: incoming-rtl will have Pmode rather than the
9738 	 expected mode for the type.  */
9739       if (offset)
9740 	return;
9741 
9742       lowpart = var_lowpart (mode, incoming);
9743       if (!lowpart)
9744 	return;
9745 
9746       val = cselib_lookup_from_insn (lowpart, mode, true,
9747 				     VOIDmode, get_insns ());
9748 
9749       /* ??? Float-typed values in memory are not handled by
9750 	 cselib.  */
9751       if (val)
9752 	{
9753 	  preserve_value (val);
9754 	  set_variable_part (out, val->val_rtx, dv, offset,
9755 			     VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9756 	  dv = dv_from_value (val->val_rtx);
9757 	}
9758 
9759       if (MEM_P (incoming))
9760 	{
9761 	  val = cselib_lookup_from_insn (XEXP (incoming, 0), mode, true,
9762 					 VOIDmode, get_insns ());
9763 	  if (val)
9764 	    {
9765 	      preserve_value (val);
9766 	      incoming = replace_equiv_address_nv (incoming, val->val_rtx);
9767 	    }
9768 	}
9769     }
9770 
9771   if (REG_P (incoming))
9772     {
9773       incoming = var_lowpart (mode, incoming);
9774       gcc_assert (REGNO (incoming) < FIRST_PSEUDO_REGISTER);
9775       attrs_list_insert (&out->regs[REGNO (incoming)], dv, offset,
9776 			 incoming);
9777       set_variable_part (out, incoming, dv, offset,
9778 			 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9779       if (dv_is_value_p (dv))
9780 	{
9781 	  record_entry_value (CSELIB_VAL_PTR (dv_as_value (dv)), incoming);
9782 	  if (TREE_CODE (TREE_TYPE (parm)) == REFERENCE_TYPE
9783 	      && INTEGRAL_TYPE_P (TREE_TYPE (TREE_TYPE (parm))))
9784 	    {
9785 	      machine_mode indmode
9786 		= TYPE_MODE (TREE_TYPE (TREE_TYPE (parm)));
9787 	      rtx mem = gen_rtx_MEM (indmode, incoming);
9788 	      cselib_val *val = cselib_lookup_from_insn (mem, indmode, true,
9789 							 VOIDmode,
9790 							 get_insns ());
9791 	      if (val)
9792 		{
9793 		  preserve_value (val);
9794 		  record_entry_value (val, mem);
9795 		  set_variable_part (out, mem, dv_from_value (val->val_rtx), 0,
9796 				     VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9797 		}
9798 	    }
9799 	}
9800     }
9801   else if (GET_CODE (incoming) == PARALLEL && !dv_onepart_p (dv))
9802     {
9803       int i;
9804 
9805       for (i = 0; i < XVECLEN (incoming, 0); i++)
9806 	{
9807 	  rtx reg = XEXP (XVECEXP (incoming, 0, i), 0);
9808 	  offset = REG_OFFSET (reg);
9809 	  gcc_assert (REGNO (reg) < FIRST_PSEUDO_REGISTER);
9810 	  attrs_list_insert (&out->regs[REGNO (reg)], dv, offset, reg);
9811 	  set_variable_part (out, reg, dv, offset,
9812 			     VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9813 	}
9814     }
9815   else if (MEM_P (incoming))
9816     {
9817       incoming = var_lowpart (mode, incoming);
9818       set_variable_part (out, incoming, dv, offset,
9819 			 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9820     }
9821 }
9822 
9823 /* Insert function parameters to IN and OUT sets of ENTRY_BLOCK.  */
9824 
9825 static void
9826 vt_add_function_parameters (void)
9827 {
9828   tree parm;
9829 
9830   for (parm = DECL_ARGUMENTS (current_function_decl);
9831        parm; parm = DECL_CHAIN (parm))
9832     if (!POINTER_BOUNDS_P (parm))
9833       vt_add_function_parameter (parm);
9834 
9835   if (DECL_HAS_VALUE_EXPR_P (DECL_RESULT (current_function_decl)))
9836     {
9837       tree vexpr = DECL_VALUE_EXPR (DECL_RESULT (current_function_decl));
9838 
9839       if (TREE_CODE (vexpr) == INDIRECT_REF)
9840 	vexpr = TREE_OPERAND (vexpr, 0);
9841 
9842       if (TREE_CODE (vexpr) == PARM_DECL
9843 	  && DECL_ARTIFICIAL (vexpr)
9844 	  && !DECL_IGNORED_P (vexpr)
9845 	  && DECL_NAMELESS (vexpr))
9846 	vt_add_function_parameter (vexpr);
9847     }
9848 }
9849 
9850 /* Initialize cfa_base_rtx, create a preserved VALUE for it and
9851    ensure it isn't flushed during cselib_reset_table.
9852    Can be called only if frame_pointer_rtx resp. arg_pointer_rtx
9853    has been eliminated.  */
9854 
9855 static void
9856 vt_init_cfa_base (void)
9857 {
9858   cselib_val *val;
9859 
9860 #ifdef FRAME_POINTER_CFA_OFFSET
9861   cfa_base_rtx = frame_pointer_rtx;
9862   cfa_base_offset = -FRAME_POINTER_CFA_OFFSET (current_function_decl);
9863 #else
9864   cfa_base_rtx = arg_pointer_rtx;
9865   cfa_base_offset = -ARG_POINTER_CFA_OFFSET (current_function_decl);
9866 #endif
9867   if (cfa_base_rtx == hard_frame_pointer_rtx
9868       || !fixed_regs[REGNO (cfa_base_rtx)])
9869     {
9870       cfa_base_rtx = NULL_RTX;
9871       return;
9872     }
9873   if (!MAY_HAVE_DEBUG_INSNS)
9874     return;
9875 
9876   /* Tell alias analysis that cfa_base_rtx should share
9877      find_base_term value with stack pointer or hard frame pointer.  */
9878   if (!frame_pointer_needed)
9879     vt_equate_reg_base_value (cfa_base_rtx, stack_pointer_rtx);
9880   else if (!crtl->stack_realign_tried)
9881     vt_equate_reg_base_value (cfa_base_rtx, hard_frame_pointer_rtx);
9882 
9883   val = cselib_lookup_from_insn (cfa_base_rtx, GET_MODE (cfa_base_rtx), 1,
9884 				 VOIDmode, get_insns ());
9885   preserve_value (val);
9886   cselib_preserve_cfa_base_value (val, REGNO (cfa_base_rtx));
9887 }
9888 
9889 /* Allocate and initialize the data structures for variable tracking
9890    and parse the RTL to get the micro operations.  */
9891 
9892 static bool
9893 vt_initialize (void)
9894 {
9895   basic_block bb;
9896   HOST_WIDE_INT fp_cfa_offset = -1;
9897 
9898   alloc_aux_for_blocks (sizeof (struct variable_tracking_info_def));
9899 
9900   attrs_pool = create_alloc_pool ("attrs_def pool",
9901 				  sizeof (struct attrs_def), 1024);
9902   var_pool = create_alloc_pool ("variable_def pool",
9903 				sizeof (struct variable_def)
9904 				+ (MAX_VAR_PARTS - 1)
9905 				* sizeof (((variable)NULL)->var_part[0]), 64);
9906   loc_chain_pool = create_alloc_pool ("location_chain_def pool",
9907 				      sizeof (struct location_chain_def),
9908 				      1024);
9909   shared_hash_pool = create_alloc_pool ("shared_hash_def pool",
9910 					sizeof (struct shared_hash_def), 256);
9911   empty_shared_hash = (shared_hash) pool_alloc (shared_hash_pool);
9912   empty_shared_hash->refcount = 1;
9913   empty_shared_hash->htab = new variable_table_type (1);
9914   changed_variables = new variable_table_type (10);
9915 
9916   /* Init the IN and OUT sets.  */
9917   FOR_ALL_BB_FN (bb, cfun)
9918     {
9919       VTI (bb)->visited = false;
9920       VTI (bb)->flooded = false;
9921       dataflow_set_init (&VTI (bb)->in);
9922       dataflow_set_init (&VTI (bb)->out);
9923       VTI (bb)->permp = NULL;
9924     }
9925 
9926   if (MAY_HAVE_DEBUG_INSNS)
9927     {
9928       cselib_init (CSELIB_RECORD_MEMORY | CSELIB_PRESERVE_CONSTANTS);
9929       scratch_regs = BITMAP_ALLOC (NULL);
9930       valvar_pool = create_alloc_pool ("small variable_def pool",
9931 				       sizeof (struct variable_def), 256);
9932       preserved_values.create (256);
9933       global_get_addr_cache = new hash_map<rtx, rtx>;
9934     }
9935   else
9936     {
9937       scratch_regs = NULL;
9938       valvar_pool = NULL;
9939       global_get_addr_cache = NULL;
9940     }
9941 
9942   if (MAY_HAVE_DEBUG_INSNS)
9943     {
9944       rtx reg, expr;
9945       int ofst;
9946       cselib_val *val;
9947 
9948 #ifdef FRAME_POINTER_CFA_OFFSET
9949       reg = frame_pointer_rtx;
9950       ofst = FRAME_POINTER_CFA_OFFSET (current_function_decl);
9951 #else
9952       reg = arg_pointer_rtx;
9953       ofst = ARG_POINTER_CFA_OFFSET (current_function_decl);
9954 #endif
9955 
9956       ofst -= INCOMING_FRAME_SP_OFFSET;
9957 
9958       val = cselib_lookup_from_insn (reg, GET_MODE (reg), 1,
9959 				     VOIDmode, get_insns ());
9960       preserve_value (val);
9961       if (reg != hard_frame_pointer_rtx && fixed_regs[REGNO (reg)])
9962 	cselib_preserve_cfa_base_value (val, REGNO (reg));
9963       expr = plus_constant (GET_MODE (stack_pointer_rtx),
9964 			    stack_pointer_rtx, -ofst);
9965       cselib_add_permanent_equiv (val, expr, get_insns ());
9966 
9967       if (ofst)
9968 	{
9969 	  val = cselib_lookup_from_insn (stack_pointer_rtx,
9970 					 GET_MODE (stack_pointer_rtx), 1,
9971 					 VOIDmode, get_insns ());
9972 	  preserve_value (val);
9973 	  expr = plus_constant (GET_MODE (reg), reg, ofst);
9974 	  cselib_add_permanent_equiv (val, expr, get_insns ());
9975 	}
9976     }
9977 
9978   /* In order to factor out the adjustments made to the stack pointer or to
9979      the hard frame pointer and thus be able to use DW_OP_fbreg operations
9980      instead of individual location lists, we're going to rewrite MEMs based
9981      on them into MEMs based on the CFA by de-eliminating stack_pointer_rtx
9982      or hard_frame_pointer_rtx to the virtual CFA pointer frame_pointer_rtx
9983      resp. arg_pointer_rtx.  We can do this either when there is no frame
9984      pointer in the function and stack adjustments are consistent for all
9985      basic blocks or when there is a frame pointer and no stack realignment.
9986      But we first have to check that frame_pointer_rtx resp. arg_pointer_rtx
9987      has been eliminated.  */
9988   if (!frame_pointer_needed)
9989     {
9990       rtx reg, elim;
9991 
9992       if (!vt_stack_adjustments ())
9993 	return false;
9994 
9995 #ifdef FRAME_POINTER_CFA_OFFSET
9996       reg = frame_pointer_rtx;
9997 #else
9998       reg = arg_pointer_rtx;
9999 #endif
10000       elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
10001       if (elim != reg)
10002 	{
10003 	  if (GET_CODE (elim) == PLUS)
10004 	    elim = XEXP (elim, 0);
10005 	  if (elim == stack_pointer_rtx)
10006 	    vt_init_cfa_base ();
10007 	}
10008     }
10009   else if (!crtl->stack_realign_tried)
10010     {
10011       rtx reg, elim;
10012 
10013 #ifdef FRAME_POINTER_CFA_OFFSET
10014       reg = frame_pointer_rtx;
10015       fp_cfa_offset = FRAME_POINTER_CFA_OFFSET (current_function_decl);
10016 #else
10017       reg = arg_pointer_rtx;
10018       fp_cfa_offset = ARG_POINTER_CFA_OFFSET (current_function_decl);
10019 #endif
10020       elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
10021       if (elim != reg)
10022 	{
10023 	  if (GET_CODE (elim) == PLUS)
10024 	    {
10025 	      fp_cfa_offset -= INTVAL (XEXP (elim, 1));
10026 	      elim = XEXP (elim, 0);
10027 	    }
10028 	  if (elim != hard_frame_pointer_rtx)
10029 	    fp_cfa_offset = -1;
10030 	}
10031       else
10032 	fp_cfa_offset = -1;
10033     }
10034 
10035   /* If the stack is realigned and a DRAP register is used, we're going to
10036      rewrite MEMs based on it representing incoming locations of parameters
10037      passed on the stack into MEMs based on the argument pointer.  Although
10038      we aren't going to rewrite other MEMs, we still need to initialize the
10039      virtual CFA pointer in order to ensure that the argument pointer will
10040      be seen as a constant throughout the function.
10041 
10042      ??? This doesn't work if FRAME_POINTER_CFA_OFFSET is defined.  */
10043   else if (stack_realign_drap)
10044     {
10045       rtx reg, elim;
10046 
10047 #ifdef FRAME_POINTER_CFA_OFFSET
10048       reg = frame_pointer_rtx;
10049 #else
10050       reg = arg_pointer_rtx;
10051 #endif
10052       elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
10053       if (elim != reg)
10054 	{
10055 	  if (GET_CODE (elim) == PLUS)
10056 	    elim = XEXP (elim, 0);
10057 	  if (elim == hard_frame_pointer_rtx)
10058 	    vt_init_cfa_base ();
10059 	}
10060     }
10061 
10062   hard_frame_pointer_adjustment = -1;
10063 
10064   vt_add_function_parameters ();
10065 
10066   FOR_EACH_BB_FN (bb, cfun)
10067     {
10068       rtx_insn *insn;
10069       HOST_WIDE_INT pre, post = 0;
10070       basic_block first_bb, last_bb;
10071 
10072       if (MAY_HAVE_DEBUG_INSNS)
10073 	{
10074 	  cselib_record_sets_hook = add_with_sets;
10075 	  if (dump_file && (dump_flags & TDF_DETAILS))
10076 	    fprintf (dump_file, "first value: %i\n",
10077 		     cselib_get_next_uid ());
10078 	}
10079 
10080       first_bb = bb;
10081       for (;;)
10082 	{
10083 	  edge e;
10084 	  if (bb->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
10085 	      || ! single_pred_p (bb->next_bb))
10086 	    break;
10087 	  e = find_edge (bb, bb->next_bb);
10088 	  if (! e || (e->flags & EDGE_FALLTHRU) == 0)
10089 	    break;
10090 	  bb = bb->next_bb;
10091 	}
10092       last_bb = bb;
10093 
10094       /* Add the micro-operations to the vector.  */
10095       FOR_BB_BETWEEN (bb, first_bb, last_bb->next_bb, next_bb)
10096 	{
10097 	  HOST_WIDE_INT offset = VTI (bb)->out.stack_adjust;
10098 	  VTI (bb)->out.stack_adjust = VTI (bb)->in.stack_adjust;
10099 	  for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb));
10100 	       insn = NEXT_INSN (insn))
10101 	    {
10102 	      if (INSN_P (insn))
10103 		{
10104 		  if (!frame_pointer_needed)
10105 		    {
10106 		      insn_stack_adjust_offset_pre_post (insn, &pre, &post);
10107 		      if (pre)
10108 			{
10109 			  micro_operation mo;
10110 			  mo.type = MO_ADJUST;
10111 			  mo.u.adjust = pre;
10112 			  mo.insn = insn;
10113 			  if (dump_file && (dump_flags & TDF_DETAILS))
10114 			    log_op_type (PATTERN (insn), bb, insn,
10115 					 MO_ADJUST, dump_file);
10116 			  VTI (bb)->mos.safe_push (mo);
10117 			  VTI (bb)->out.stack_adjust += pre;
10118 			}
10119 		    }
10120 
10121 		  cselib_hook_called = false;
10122 		  adjust_insn (bb, insn);
10123 		  if (MAY_HAVE_DEBUG_INSNS)
10124 		    {
10125 		      if (CALL_P (insn))
10126 			prepare_call_arguments (bb, insn);
10127 		      cselib_process_insn (insn);
10128 		      if (dump_file && (dump_flags & TDF_DETAILS))
10129 			{
10130 			  print_rtl_single (dump_file, insn);
10131 			  dump_cselib_table (dump_file);
10132 			}
10133 		    }
10134 		  if (!cselib_hook_called)
10135 		    add_with_sets (insn, 0, 0);
10136 		  cancel_changes (0);
10137 
10138 		  if (!frame_pointer_needed && post)
10139 		    {
10140 		      micro_operation mo;
10141 		      mo.type = MO_ADJUST;
10142 		      mo.u.adjust = post;
10143 		      mo.insn = insn;
10144 		      if (dump_file && (dump_flags & TDF_DETAILS))
10145 			log_op_type (PATTERN (insn), bb, insn,
10146 				     MO_ADJUST, dump_file);
10147 		      VTI (bb)->mos.safe_push (mo);
10148 		      VTI (bb)->out.stack_adjust += post;
10149 		    }
10150 
10151 		  if (fp_cfa_offset != -1
10152 		      && hard_frame_pointer_adjustment == -1
10153 		      && fp_setter_insn (insn))
10154 		    {
10155 		      vt_init_cfa_base ();
10156 		      hard_frame_pointer_adjustment = fp_cfa_offset;
10157 		      /* Disassociate sp from fp now.  */
10158 		      if (MAY_HAVE_DEBUG_INSNS)
10159 			{
10160 			  cselib_val *v;
10161 			  cselib_invalidate_rtx (stack_pointer_rtx);
10162 			  v = cselib_lookup (stack_pointer_rtx, Pmode, 1,
10163 					     VOIDmode);
10164 			  if (v && !cselib_preserved_value_p (v))
10165 			    {
10166 			      cselib_set_value_sp_based (v);
10167 			      preserve_value (v);
10168 			    }
10169 			}
10170 		    }
10171 		}
10172 	    }
10173 	  gcc_assert (offset == VTI (bb)->out.stack_adjust);
10174 	}
10175 
10176       bb = last_bb;
10177 
10178       if (MAY_HAVE_DEBUG_INSNS)
10179 	{
10180 	  cselib_preserve_only_values ();
10181 	  cselib_reset_table (cselib_get_next_uid ());
10182 	  cselib_record_sets_hook = NULL;
10183 	}
10184     }
10185 
10186   hard_frame_pointer_adjustment = -1;
10187   VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->flooded = true;
10188   cfa_base_rtx = NULL_RTX;
10189   return true;
10190 }
10191 
10192 /* This is *not* reset after each function.  It gives each
10193    NOTE_INSN_DELETED_DEBUG_LABEL in the entire compilation
10194    a unique label number.  */
10195 
10196 static int debug_label_num = 1;
10197 
10198 /* Get rid of all debug insns from the insn stream.  */
10199 
10200 static void
10201 delete_debug_insns (void)
10202 {
10203   basic_block bb;
10204   rtx_insn *insn, *next;
10205 
10206   if (!MAY_HAVE_DEBUG_INSNS)
10207     return;
10208 
10209   FOR_EACH_BB_FN (bb, cfun)
10210     {
10211       FOR_BB_INSNS_SAFE (bb, insn, next)
10212 	if (DEBUG_INSN_P (insn))
10213 	  {
10214 	    tree decl = INSN_VAR_LOCATION_DECL (insn);
10215 	    if (TREE_CODE (decl) == LABEL_DECL
10216 		&& DECL_NAME (decl)
10217 		&& !DECL_RTL_SET_P (decl))
10218 	      {
10219 		PUT_CODE (insn, NOTE);
10220 		NOTE_KIND (insn) = NOTE_INSN_DELETED_DEBUG_LABEL;
10221 		NOTE_DELETED_LABEL_NAME (insn)
10222 		  = IDENTIFIER_POINTER (DECL_NAME (decl));
10223 		SET_DECL_RTL (decl, insn);
10224 		CODE_LABEL_NUMBER (insn) = debug_label_num++;
10225 	      }
10226 	    else
10227 	      delete_insn (insn);
10228 	  }
10229     }
10230 }
10231 
10232 /* Run a fast, BB-local only version of var tracking, to take care of
10233    information that we don't do global analysis on, such that not all
10234    information is lost.  If SKIPPED holds, we're skipping the global
10235    pass entirely, so we should try to use information it would have
10236    handled as well..  */
10237 
10238 static void
10239 vt_debug_insns_local (bool skipped ATTRIBUTE_UNUSED)
10240 {
10241   /* ??? Just skip it all for now.  */
10242   delete_debug_insns ();
10243 }
10244 
10245 /* Free the data structures needed for variable tracking.  */
10246 
10247 static void
10248 vt_finalize (void)
10249 {
10250   basic_block bb;
10251 
10252   FOR_EACH_BB_FN (bb, cfun)
10253     {
10254       VTI (bb)->mos.release ();
10255     }
10256 
10257   FOR_ALL_BB_FN (bb, cfun)
10258     {
10259       dataflow_set_destroy (&VTI (bb)->in);
10260       dataflow_set_destroy (&VTI (bb)->out);
10261       if (VTI (bb)->permp)
10262 	{
10263 	  dataflow_set_destroy (VTI (bb)->permp);
10264 	  XDELETE (VTI (bb)->permp);
10265 	}
10266     }
10267   free_aux_for_blocks ();
10268   delete empty_shared_hash->htab;
10269   empty_shared_hash->htab = NULL;
10270   delete changed_variables;
10271   changed_variables = NULL;
10272   free_alloc_pool (attrs_pool);
10273   free_alloc_pool (var_pool);
10274   free_alloc_pool (loc_chain_pool);
10275   free_alloc_pool (shared_hash_pool);
10276 
10277   if (MAY_HAVE_DEBUG_INSNS)
10278     {
10279       if (global_get_addr_cache)
10280 	delete global_get_addr_cache;
10281       global_get_addr_cache = NULL;
10282       if (loc_exp_dep_pool)
10283 	free_alloc_pool (loc_exp_dep_pool);
10284       loc_exp_dep_pool = NULL;
10285       free_alloc_pool (valvar_pool);
10286       preserved_values.release ();
10287       cselib_finish ();
10288       BITMAP_FREE (scratch_regs);
10289       scratch_regs = NULL;
10290     }
10291 
10292 #ifdef HAVE_window_save
10293   vec_free (windowed_parm_regs);
10294 #endif
10295 
10296   if (vui_vec)
10297     XDELETEVEC (vui_vec);
10298   vui_vec = NULL;
10299   vui_allocated = 0;
10300 }
10301 
10302 /* The entry point to variable tracking pass.  */
10303 
10304 static inline unsigned int
10305 variable_tracking_main_1 (void)
10306 {
10307   bool success;
10308 
10309   if (flag_var_tracking_assignments < 0
10310       /* Var-tracking right now assumes the IR doesn't contain
10311 	 any pseudos at this point.  */
10312       || targetm.no_register_allocation)
10313     {
10314       delete_debug_insns ();
10315       return 0;
10316     }
10317 
10318   if (n_basic_blocks_for_fn (cfun) > 500 &&
10319       n_edges_for_fn (cfun) / n_basic_blocks_for_fn (cfun) >= 20)
10320     {
10321       vt_debug_insns_local (true);
10322       return 0;
10323     }
10324 
10325   mark_dfs_back_edges ();
10326   if (!vt_initialize ())
10327     {
10328       vt_finalize ();
10329       vt_debug_insns_local (true);
10330       return 0;
10331     }
10332 
10333   success = vt_find_locations ();
10334 
10335   if (!success && flag_var_tracking_assignments > 0)
10336     {
10337       vt_finalize ();
10338 
10339       delete_debug_insns ();
10340 
10341       /* This is later restored by our caller.  */
10342       flag_var_tracking_assignments = 0;
10343 
10344       success = vt_initialize ();
10345       gcc_assert (success);
10346 
10347       success = vt_find_locations ();
10348     }
10349 
10350   if (!success)
10351     {
10352       vt_finalize ();
10353       vt_debug_insns_local (false);
10354       return 0;
10355     }
10356 
10357   if (dump_file && (dump_flags & TDF_DETAILS))
10358     {
10359       dump_dataflow_sets ();
10360       dump_reg_info (dump_file);
10361       dump_flow_info (dump_file, dump_flags);
10362     }
10363 
10364   timevar_push (TV_VAR_TRACKING_EMIT);
10365   vt_emit_notes ();
10366   timevar_pop (TV_VAR_TRACKING_EMIT);
10367 
10368   vt_finalize ();
10369   vt_debug_insns_local (false);
10370   return 0;
10371 }
10372 
10373 unsigned int
10374 variable_tracking_main (void)
10375 {
10376   unsigned int ret;
10377   int save = flag_var_tracking_assignments;
10378 
10379   ret = variable_tracking_main_1 ();
10380 
10381   flag_var_tracking_assignments = save;
10382 
10383   return ret;
10384 }
10385 
10386 namespace {
10387 
10388 const pass_data pass_data_variable_tracking =
10389 {
10390   RTL_PASS, /* type */
10391   "vartrack", /* name */
10392   OPTGROUP_NONE, /* optinfo_flags */
10393   TV_VAR_TRACKING, /* tv_id */
10394   0, /* properties_required */
10395   0, /* properties_provided */
10396   0, /* properties_destroyed */
10397   0, /* todo_flags_start */
10398   0, /* todo_flags_finish */
10399 };
10400 
10401 class pass_variable_tracking : public rtl_opt_pass
10402 {
10403 public:
10404   pass_variable_tracking (gcc::context *ctxt)
10405     : rtl_opt_pass (pass_data_variable_tracking, ctxt)
10406   {}
10407 
10408   /* opt_pass methods: */
10409   virtual bool gate (function *)
10410     {
10411       return (flag_var_tracking && !targetm.delay_vartrack);
10412     }
10413 
10414   virtual unsigned int execute (function *)
10415     {
10416       return variable_tracking_main ();
10417     }
10418 
10419 }; // class pass_variable_tracking
10420 
10421 } // anon namespace
10422 
10423 rtl_opt_pass *
10424 make_pass_variable_tracking (gcc::context *ctxt)
10425 {
10426   return new pass_variable_tracking (ctxt);
10427 }
10428