1 /* Language-independent node constructors for parse phase of GNU compiler. 2 Copyright (C) 1987-2019 Free Software Foundation, Inc. 3 4 This file is part of GCC. 5 6 GCC is free software; you can redistribute it and/or modify it under 7 the terms of the GNU General Public License as published by the Free 8 Software Foundation; either version 3, or (at your option) any later 9 version. 10 11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY 12 WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 14 for more details. 15 16 You should have received a copy of the GNU General Public License 17 along with GCC; see the file COPYING3. If not see 18 <http://www.gnu.org/licenses/>. */ 19 20 /* This file contains the low level primitives for operating on tree nodes, 21 including allocation, list operations, interning of identifiers, 22 construction of data type nodes and statement nodes, 23 and construction of type conversion nodes. It also contains 24 tables index by tree code that describe how to take apart 25 nodes of that code. 26 27 It is intended to be language-independent but can occasionally 28 calls language-dependent routines. */ 29 30 #include "config.h" 31 #include "system.h" 32 #include "coretypes.h" 33 #include "backend.h" 34 #include "target.h" 35 #include "tree.h" 36 #include "gimple.h" 37 #include "tree-pass.h" 38 #include "ssa.h" 39 #include "cgraph.h" 40 #include "diagnostic.h" 41 #include "flags.h" 42 #include "alias.h" 43 #include "fold-const.h" 44 #include "stor-layout.h" 45 #include "calls.h" 46 #include "attribs.h" 47 #include "toplev.h" /* get_random_seed */ 48 #include "output.h" 49 #include "common/common-target.h" 50 #include "langhooks.h" 51 #include "tree-inline.h" 52 #include "tree-iterator.h" 53 #include "internal-fn.h" 54 #include "gimple-iterator.h" 55 #include "gimplify.h" 56 #include "tree-dfa.h" 57 #include "params.h" 58 #include "langhooks-def.h" 59 #include "tree-diagnostic.h" 60 #include "except.h" 61 #include "builtins.h" 62 #include "print-tree.h" 63 #include "ipa-utils.h" 64 #include "selftest.h" 65 #include "stringpool.h" 66 #include "attribs.h" 67 #include "rtl.h" 68 #include "regs.h" 69 #include "tree-vector-builder.h" 70 71 /* Tree code classes. */ 72 73 #define DEFTREECODE(SYM, NAME, TYPE, LENGTH) TYPE, 74 #define END_OF_BASE_TREE_CODES tcc_exceptional, 75 76 const enum tree_code_class tree_code_type[] = { 77 #include "all-tree.def" 78 }; 79 80 #undef DEFTREECODE 81 #undef END_OF_BASE_TREE_CODES 82 83 /* Table indexed by tree code giving number of expression 84 operands beyond the fixed part of the node structure. 85 Not used for types or decls. */ 86 87 #define DEFTREECODE(SYM, NAME, TYPE, LENGTH) LENGTH, 88 #define END_OF_BASE_TREE_CODES 0, 89 90 const unsigned char tree_code_length[] = { 91 #include "all-tree.def" 92 }; 93 94 #undef DEFTREECODE 95 #undef END_OF_BASE_TREE_CODES 96 97 /* Names of tree components. 98 Used for printing out the tree and error messages. */ 99 #define DEFTREECODE(SYM, NAME, TYPE, LEN) NAME, 100 #define END_OF_BASE_TREE_CODES "@dummy", 101 102 static const char *const tree_code_name[] = { 103 #include "all-tree.def" 104 }; 105 106 #undef DEFTREECODE 107 #undef END_OF_BASE_TREE_CODES 108 109 /* Each tree code class has an associated string representation. 110 These must correspond to the tree_code_class entries. */ 111 112 const char *const tree_code_class_strings[] = 113 { 114 "exceptional", 115 "constant", 116 "type", 117 "declaration", 118 "reference", 119 "comparison", 120 "unary", 121 "binary", 122 "statement", 123 "vl_exp", 124 "expression" 125 }; 126 127 /* obstack.[ch] explicitly declined to prototype this. */ 128 extern int _obstack_allocated_p (struct obstack *h, void *obj); 129 130 /* Statistics-gathering stuff. */ 131 132 static uint64_t tree_code_counts[MAX_TREE_CODES]; 133 uint64_t tree_node_counts[(int) all_kinds]; 134 uint64_t tree_node_sizes[(int) all_kinds]; 135 136 /* Keep in sync with tree.h:enum tree_node_kind. */ 137 static const char * const tree_node_kind_names[] = { 138 "decls", 139 "types", 140 "blocks", 141 "stmts", 142 "refs", 143 "exprs", 144 "constants", 145 "identifiers", 146 "vecs", 147 "binfos", 148 "ssa names", 149 "constructors", 150 "random kinds", 151 "lang_decl kinds", 152 "lang_type kinds", 153 "omp clauses", 154 }; 155 156 /* Unique id for next decl created. */ 157 static GTY(()) int next_decl_uid; 158 /* Unique id for next type created. */ 159 static GTY(()) unsigned next_type_uid = 1; 160 /* Unique id for next debug decl created. Use negative numbers, 161 to catch erroneous uses. */ 162 static GTY(()) int next_debug_decl_uid; 163 164 /* Since we cannot rehash a type after it is in the table, we have to 165 keep the hash code. */ 166 167 struct GTY((for_user)) type_hash { 168 unsigned long hash; 169 tree type; 170 }; 171 172 /* Initial size of the hash table (rounded to next prime). */ 173 #define TYPE_HASH_INITIAL_SIZE 1000 174 175 struct type_cache_hasher : ggc_cache_ptr_hash<type_hash> 176 { 177 static hashval_t hash (type_hash *t) { return t->hash; } 178 static bool equal (type_hash *a, type_hash *b); 179 180 static int 181 keep_cache_entry (type_hash *&t) 182 { 183 return ggc_marked_p (t->type); 184 } 185 }; 186 187 /* Now here is the hash table. When recording a type, it is added to 188 the slot whose index is the hash code. Note that the hash table is 189 used for several kinds of types (function types, array types and 190 array index range types, for now). While all these live in the 191 same table, they are completely independent, and the hash code is 192 computed differently for each of these. */ 193 194 static GTY ((cache)) hash_table<type_cache_hasher> *type_hash_table; 195 196 /* Hash table and temporary node for larger integer const values. */ 197 static GTY (()) tree int_cst_node; 198 199 struct int_cst_hasher : ggc_cache_ptr_hash<tree_node> 200 { 201 static hashval_t hash (tree t); 202 static bool equal (tree x, tree y); 203 }; 204 205 static GTY ((cache)) hash_table<int_cst_hasher> *int_cst_hash_table; 206 207 /* Class and variable for making sure that there is a single POLY_INT_CST 208 for a given value. */ 209 struct poly_int_cst_hasher : ggc_cache_ptr_hash<tree_node> 210 { 211 typedef std::pair<tree, const poly_wide_int *> compare_type; 212 static hashval_t hash (tree t); 213 static bool equal (tree x, const compare_type &y); 214 }; 215 216 static GTY ((cache)) hash_table<poly_int_cst_hasher> *poly_int_cst_hash_table; 217 218 /* Hash table for optimization flags and target option flags. Use the same 219 hash table for both sets of options. Nodes for building the current 220 optimization and target option nodes. The assumption is most of the time 221 the options created will already be in the hash table, so we avoid 222 allocating and freeing up a node repeatably. */ 223 static GTY (()) tree cl_optimization_node; 224 static GTY (()) tree cl_target_option_node; 225 226 struct cl_option_hasher : ggc_cache_ptr_hash<tree_node> 227 { 228 static hashval_t hash (tree t); 229 static bool equal (tree x, tree y); 230 }; 231 232 static GTY ((cache)) hash_table<cl_option_hasher> *cl_option_hash_table; 233 234 /* General tree->tree mapping structure for use in hash tables. */ 235 236 237 static GTY ((cache)) 238 hash_table<tree_decl_map_cache_hasher> *debug_expr_for_decl; 239 240 static GTY ((cache)) 241 hash_table<tree_decl_map_cache_hasher> *value_expr_for_decl; 242 243 struct tree_vec_map_cache_hasher : ggc_cache_ptr_hash<tree_vec_map> 244 { 245 static hashval_t hash (tree_vec_map *m) { return DECL_UID (m->base.from); } 246 247 static bool 248 equal (tree_vec_map *a, tree_vec_map *b) 249 { 250 return a->base.from == b->base.from; 251 } 252 253 static int 254 keep_cache_entry (tree_vec_map *&m) 255 { 256 return ggc_marked_p (m->base.from); 257 } 258 }; 259 260 static GTY ((cache)) 261 hash_table<tree_vec_map_cache_hasher> *debug_args_for_decl; 262 263 static void set_type_quals (tree, int); 264 static void print_type_hash_statistics (void); 265 static void print_debug_expr_statistics (void); 266 static void print_value_expr_statistics (void); 267 268 static tree build_array_type_1 (tree, tree, bool, bool, bool); 269 270 tree global_trees[TI_MAX]; 271 tree integer_types[itk_none]; 272 273 bool int_n_enabled_p[NUM_INT_N_ENTS]; 274 struct int_n_trees_t int_n_trees [NUM_INT_N_ENTS]; 275 276 bool tree_contains_struct[MAX_TREE_CODES][64]; 277 278 /* Number of operands for each OpenMP clause. */ 279 unsigned const char omp_clause_num_ops[] = 280 { 281 0, /* OMP_CLAUSE_ERROR */ 282 1, /* OMP_CLAUSE_PRIVATE */ 283 1, /* OMP_CLAUSE_SHARED */ 284 1, /* OMP_CLAUSE_FIRSTPRIVATE */ 285 2, /* OMP_CLAUSE_LASTPRIVATE */ 286 5, /* OMP_CLAUSE_REDUCTION */ 287 5, /* OMP_CLAUSE_TASK_REDUCTION */ 288 5, /* OMP_CLAUSE_IN_REDUCTION */ 289 1, /* OMP_CLAUSE_COPYIN */ 290 1, /* OMP_CLAUSE_COPYPRIVATE */ 291 3, /* OMP_CLAUSE_LINEAR */ 292 2, /* OMP_CLAUSE_ALIGNED */ 293 1, /* OMP_CLAUSE_DEPEND */ 294 1, /* OMP_CLAUSE_NONTEMPORAL */ 295 1, /* OMP_CLAUSE_UNIFORM */ 296 1, /* OMP_CLAUSE_TO_DECLARE */ 297 1, /* OMP_CLAUSE_LINK */ 298 2, /* OMP_CLAUSE_FROM */ 299 2, /* OMP_CLAUSE_TO */ 300 2, /* OMP_CLAUSE_MAP */ 301 1, /* OMP_CLAUSE_USE_DEVICE_PTR */ 302 1, /* OMP_CLAUSE_IS_DEVICE_PTR */ 303 2, /* OMP_CLAUSE__CACHE_ */ 304 2, /* OMP_CLAUSE_GANG */ 305 1, /* OMP_CLAUSE_ASYNC */ 306 1, /* OMP_CLAUSE_WAIT */ 307 0, /* OMP_CLAUSE_AUTO */ 308 0, /* OMP_CLAUSE_SEQ */ 309 1, /* OMP_CLAUSE__LOOPTEMP_ */ 310 1, /* OMP_CLAUSE__REDUCTEMP_ */ 311 1, /* OMP_CLAUSE_IF */ 312 1, /* OMP_CLAUSE_NUM_THREADS */ 313 1, /* OMP_CLAUSE_SCHEDULE */ 314 0, /* OMP_CLAUSE_NOWAIT */ 315 1, /* OMP_CLAUSE_ORDERED */ 316 0, /* OMP_CLAUSE_DEFAULT */ 317 3, /* OMP_CLAUSE_COLLAPSE */ 318 0, /* OMP_CLAUSE_UNTIED */ 319 1, /* OMP_CLAUSE_FINAL */ 320 0, /* OMP_CLAUSE_MERGEABLE */ 321 1, /* OMP_CLAUSE_DEVICE */ 322 1, /* OMP_CLAUSE_DIST_SCHEDULE */ 323 0, /* OMP_CLAUSE_INBRANCH */ 324 0, /* OMP_CLAUSE_NOTINBRANCH */ 325 1, /* OMP_CLAUSE_NUM_TEAMS */ 326 1, /* OMP_CLAUSE_THREAD_LIMIT */ 327 0, /* OMP_CLAUSE_PROC_BIND */ 328 1, /* OMP_CLAUSE_SAFELEN */ 329 1, /* OMP_CLAUSE_SIMDLEN */ 330 0, /* OMP_CLAUSE_FOR */ 331 0, /* OMP_CLAUSE_PARALLEL */ 332 0, /* OMP_CLAUSE_SECTIONS */ 333 0, /* OMP_CLAUSE_TASKGROUP */ 334 1, /* OMP_CLAUSE_PRIORITY */ 335 1, /* OMP_CLAUSE_GRAINSIZE */ 336 1, /* OMP_CLAUSE_NUM_TASKS */ 337 0, /* OMP_CLAUSE_NOGROUP */ 338 0, /* OMP_CLAUSE_THREADS */ 339 0, /* OMP_CLAUSE_SIMD */ 340 1, /* OMP_CLAUSE_HINT */ 341 0, /* OMP_CLAUSE_DEFALTMAP */ 342 1, /* OMP_CLAUSE__SIMDUID_ */ 343 0, /* OMP_CLAUSE__SIMT_ */ 344 0, /* OMP_CLAUSE_INDEPENDENT */ 345 1, /* OMP_CLAUSE_WORKER */ 346 1, /* OMP_CLAUSE_VECTOR */ 347 1, /* OMP_CLAUSE_NUM_GANGS */ 348 1, /* OMP_CLAUSE_NUM_WORKERS */ 349 1, /* OMP_CLAUSE_VECTOR_LENGTH */ 350 3, /* OMP_CLAUSE_TILE */ 351 2, /* OMP_CLAUSE__GRIDDIM_ */ 352 0, /* OMP_CLAUSE_IF_PRESENT */ 353 0, /* OMP_CLAUSE_FINALIZE */ 354 }; 355 356 const char * const omp_clause_code_name[] = 357 { 358 "error_clause", 359 "private", 360 "shared", 361 "firstprivate", 362 "lastprivate", 363 "reduction", 364 "task_reduction", 365 "in_reduction", 366 "copyin", 367 "copyprivate", 368 "linear", 369 "aligned", 370 "depend", 371 "nontemporal", 372 "uniform", 373 "to", 374 "link", 375 "from", 376 "to", 377 "map", 378 "use_device_ptr", 379 "is_device_ptr", 380 "_cache_", 381 "gang", 382 "async", 383 "wait", 384 "auto", 385 "seq", 386 "_looptemp_", 387 "_reductemp_", 388 "if", 389 "num_threads", 390 "schedule", 391 "nowait", 392 "ordered", 393 "default", 394 "collapse", 395 "untied", 396 "final", 397 "mergeable", 398 "device", 399 "dist_schedule", 400 "inbranch", 401 "notinbranch", 402 "num_teams", 403 "thread_limit", 404 "proc_bind", 405 "safelen", 406 "simdlen", 407 "for", 408 "parallel", 409 "sections", 410 "taskgroup", 411 "priority", 412 "grainsize", 413 "num_tasks", 414 "nogroup", 415 "threads", 416 "simd", 417 "hint", 418 "defaultmap", 419 "_simduid_", 420 "_simt_", 421 "independent", 422 "worker", 423 "vector", 424 "num_gangs", 425 "num_workers", 426 "vector_length", 427 "tile", 428 "_griddim_", 429 "if_present", 430 "finalize", 431 }; 432 433 434 /* Return the tree node structure used by tree code CODE. */ 435 436 static inline enum tree_node_structure_enum 437 tree_node_structure_for_code (enum tree_code code) 438 { 439 switch (TREE_CODE_CLASS (code)) 440 { 441 case tcc_declaration: 442 { 443 switch (code) 444 { 445 case FIELD_DECL: 446 return TS_FIELD_DECL; 447 case PARM_DECL: 448 return TS_PARM_DECL; 449 case VAR_DECL: 450 return TS_VAR_DECL; 451 case LABEL_DECL: 452 return TS_LABEL_DECL; 453 case RESULT_DECL: 454 return TS_RESULT_DECL; 455 case DEBUG_EXPR_DECL: 456 return TS_DECL_WRTL; 457 case CONST_DECL: 458 return TS_CONST_DECL; 459 case TYPE_DECL: 460 return TS_TYPE_DECL; 461 case FUNCTION_DECL: 462 return TS_FUNCTION_DECL; 463 case TRANSLATION_UNIT_DECL: 464 return TS_TRANSLATION_UNIT_DECL; 465 default: 466 return TS_DECL_NON_COMMON; 467 } 468 } 469 case tcc_type: 470 return TS_TYPE_NON_COMMON; 471 case tcc_reference: 472 case tcc_comparison: 473 case tcc_unary: 474 case tcc_binary: 475 case tcc_expression: 476 case tcc_statement: 477 case tcc_vl_exp: 478 return TS_EXP; 479 default: /* tcc_constant and tcc_exceptional */ 480 break; 481 } 482 switch (code) 483 { 484 /* tcc_constant cases. */ 485 case VOID_CST: return TS_TYPED; 486 case INTEGER_CST: return TS_INT_CST; 487 case POLY_INT_CST: return TS_POLY_INT_CST; 488 case REAL_CST: return TS_REAL_CST; 489 case FIXED_CST: return TS_FIXED_CST; 490 case COMPLEX_CST: return TS_COMPLEX; 491 case VECTOR_CST: return TS_VECTOR; 492 case STRING_CST: return TS_STRING; 493 /* tcc_exceptional cases. */ 494 case ERROR_MARK: return TS_COMMON; 495 case IDENTIFIER_NODE: return TS_IDENTIFIER; 496 case TREE_LIST: return TS_LIST; 497 case TREE_VEC: return TS_VEC; 498 case SSA_NAME: return TS_SSA_NAME; 499 case PLACEHOLDER_EXPR: return TS_COMMON; 500 case STATEMENT_LIST: return TS_STATEMENT_LIST; 501 case BLOCK: return TS_BLOCK; 502 case CONSTRUCTOR: return TS_CONSTRUCTOR; 503 case TREE_BINFO: return TS_BINFO; 504 case OMP_CLAUSE: return TS_OMP_CLAUSE; 505 case OPTIMIZATION_NODE: return TS_OPTIMIZATION; 506 case TARGET_OPTION_NODE: return TS_TARGET_OPTION; 507 508 default: 509 gcc_unreachable (); 510 } 511 } 512 513 514 /* Initialize tree_contains_struct to describe the hierarchy of tree 515 nodes. */ 516 517 static void 518 initialize_tree_contains_struct (void) 519 { 520 unsigned i; 521 522 for (i = ERROR_MARK; i < LAST_AND_UNUSED_TREE_CODE; i++) 523 { 524 enum tree_code code; 525 enum tree_node_structure_enum ts_code; 526 527 code = (enum tree_code) i; 528 ts_code = tree_node_structure_for_code (code); 529 530 /* Mark the TS structure itself. */ 531 tree_contains_struct[code][ts_code] = 1; 532 533 /* Mark all the structures that TS is derived from. */ 534 switch (ts_code) 535 { 536 case TS_TYPED: 537 case TS_BLOCK: 538 case TS_OPTIMIZATION: 539 case TS_TARGET_OPTION: 540 MARK_TS_BASE (code); 541 break; 542 543 case TS_COMMON: 544 case TS_INT_CST: 545 case TS_POLY_INT_CST: 546 case TS_REAL_CST: 547 case TS_FIXED_CST: 548 case TS_VECTOR: 549 case TS_STRING: 550 case TS_COMPLEX: 551 case TS_SSA_NAME: 552 case TS_CONSTRUCTOR: 553 case TS_EXP: 554 case TS_STATEMENT_LIST: 555 MARK_TS_TYPED (code); 556 break; 557 558 case TS_IDENTIFIER: 559 case TS_DECL_MINIMAL: 560 case TS_TYPE_COMMON: 561 case TS_LIST: 562 case TS_VEC: 563 case TS_BINFO: 564 case TS_OMP_CLAUSE: 565 MARK_TS_COMMON (code); 566 break; 567 568 case TS_TYPE_WITH_LANG_SPECIFIC: 569 MARK_TS_TYPE_COMMON (code); 570 break; 571 572 case TS_TYPE_NON_COMMON: 573 MARK_TS_TYPE_WITH_LANG_SPECIFIC (code); 574 break; 575 576 case TS_DECL_COMMON: 577 MARK_TS_DECL_MINIMAL (code); 578 break; 579 580 case TS_DECL_WRTL: 581 case TS_CONST_DECL: 582 MARK_TS_DECL_COMMON (code); 583 break; 584 585 case TS_DECL_NON_COMMON: 586 MARK_TS_DECL_WITH_VIS (code); 587 break; 588 589 case TS_DECL_WITH_VIS: 590 case TS_PARM_DECL: 591 case TS_LABEL_DECL: 592 case TS_RESULT_DECL: 593 MARK_TS_DECL_WRTL (code); 594 break; 595 596 case TS_FIELD_DECL: 597 MARK_TS_DECL_COMMON (code); 598 break; 599 600 case TS_VAR_DECL: 601 MARK_TS_DECL_WITH_VIS (code); 602 break; 603 604 case TS_TYPE_DECL: 605 case TS_FUNCTION_DECL: 606 MARK_TS_DECL_NON_COMMON (code); 607 break; 608 609 case TS_TRANSLATION_UNIT_DECL: 610 MARK_TS_DECL_COMMON (code); 611 break; 612 613 default: 614 gcc_unreachable (); 615 } 616 } 617 618 /* Basic consistency checks for attributes used in fold. */ 619 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_NON_COMMON]); 620 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_NON_COMMON]); 621 gcc_assert (tree_contains_struct[CONST_DECL][TS_DECL_COMMON]); 622 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_COMMON]); 623 gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_COMMON]); 624 gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_COMMON]); 625 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_COMMON]); 626 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_COMMON]); 627 gcc_assert (tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_COMMON]); 628 gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_COMMON]); 629 gcc_assert (tree_contains_struct[FIELD_DECL][TS_DECL_COMMON]); 630 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_WRTL]); 631 gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_WRTL]); 632 gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_WRTL]); 633 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_WRTL]); 634 gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_WRTL]); 635 gcc_assert (tree_contains_struct[CONST_DECL][TS_DECL_MINIMAL]); 636 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_MINIMAL]); 637 gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_MINIMAL]); 638 gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_MINIMAL]); 639 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_MINIMAL]); 640 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_MINIMAL]); 641 gcc_assert (tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_MINIMAL]); 642 gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_MINIMAL]); 643 gcc_assert (tree_contains_struct[FIELD_DECL][TS_DECL_MINIMAL]); 644 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_WITH_VIS]); 645 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_WITH_VIS]); 646 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_WITH_VIS]); 647 gcc_assert (tree_contains_struct[VAR_DECL][TS_VAR_DECL]); 648 gcc_assert (tree_contains_struct[FIELD_DECL][TS_FIELD_DECL]); 649 gcc_assert (tree_contains_struct[PARM_DECL][TS_PARM_DECL]); 650 gcc_assert (tree_contains_struct[LABEL_DECL][TS_LABEL_DECL]); 651 gcc_assert (tree_contains_struct[RESULT_DECL][TS_RESULT_DECL]); 652 gcc_assert (tree_contains_struct[CONST_DECL][TS_CONST_DECL]); 653 gcc_assert (tree_contains_struct[TYPE_DECL][TS_TYPE_DECL]); 654 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_FUNCTION_DECL]); 655 gcc_assert (tree_contains_struct[IMPORTED_DECL][TS_DECL_MINIMAL]); 656 gcc_assert (tree_contains_struct[IMPORTED_DECL][TS_DECL_COMMON]); 657 gcc_assert (tree_contains_struct[NAMELIST_DECL][TS_DECL_MINIMAL]); 658 gcc_assert (tree_contains_struct[NAMELIST_DECL][TS_DECL_COMMON]); 659 } 660 661 662 /* Init tree.c. */ 663 664 void 665 init_ttree (void) 666 { 667 /* Initialize the hash table of types. */ 668 type_hash_table 669 = hash_table<type_cache_hasher>::create_ggc (TYPE_HASH_INITIAL_SIZE); 670 671 debug_expr_for_decl 672 = hash_table<tree_decl_map_cache_hasher>::create_ggc (512); 673 674 value_expr_for_decl 675 = hash_table<tree_decl_map_cache_hasher>::create_ggc (512); 676 677 int_cst_hash_table = hash_table<int_cst_hasher>::create_ggc (1024); 678 679 poly_int_cst_hash_table = hash_table<poly_int_cst_hasher>::create_ggc (64); 680 681 int_cst_node = make_int_cst (1, 1); 682 683 cl_option_hash_table = hash_table<cl_option_hasher>::create_ggc (64); 684 685 cl_optimization_node = make_node (OPTIMIZATION_NODE); 686 cl_target_option_node = make_node (TARGET_OPTION_NODE); 687 688 /* Initialize the tree_contains_struct array. */ 689 initialize_tree_contains_struct (); 690 lang_hooks.init_ts (); 691 } 692 693 694 /* The name of the object as the assembler will see it (but before any 695 translations made by ASM_OUTPUT_LABELREF). Often this is the same 696 as DECL_NAME. It is an IDENTIFIER_NODE. */ 697 tree 698 decl_assembler_name (tree decl) 699 { 700 if (!DECL_ASSEMBLER_NAME_SET_P (decl)) 701 lang_hooks.set_decl_assembler_name (decl); 702 return DECL_ASSEMBLER_NAME_RAW (decl); 703 } 704 705 /* The DECL_ASSEMBLER_NAME_RAW of DECL is being explicitly set to NAME 706 (either of which may be NULL). Inform the FE, if this changes the 707 name. */ 708 709 void 710 overwrite_decl_assembler_name (tree decl, tree name) 711 { 712 if (DECL_ASSEMBLER_NAME_RAW (decl) != name) 713 lang_hooks.overwrite_decl_assembler_name (decl, name); 714 } 715 716 /* When the target supports COMDAT groups, this indicates which group the 717 DECL is associated with. This can be either an IDENTIFIER_NODE or a 718 decl, in which case its DECL_ASSEMBLER_NAME identifies the group. */ 719 tree 720 decl_comdat_group (const_tree node) 721 { 722 struct symtab_node *snode = symtab_node::get (node); 723 if (!snode) 724 return NULL; 725 return snode->get_comdat_group (); 726 } 727 728 /* Likewise, but make sure it's been reduced to an IDENTIFIER_NODE. */ 729 tree 730 decl_comdat_group_id (const_tree node) 731 { 732 struct symtab_node *snode = symtab_node::get (node); 733 if (!snode) 734 return NULL; 735 return snode->get_comdat_group_id (); 736 } 737 738 /* When the target supports named section, return its name as IDENTIFIER_NODE 739 or NULL if it is in no section. */ 740 const char * 741 decl_section_name (const_tree node) 742 { 743 struct symtab_node *snode = symtab_node::get (node); 744 if (!snode) 745 return NULL; 746 return snode->get_section (); 747 } 748 749 /* Set section name of NODE to VALUE (that is expected to be 750 identifier node) */ 751 void 752 set_decl_section_name (tree node, const char *value) 753 { 754 struct symtab_node *snode; 755 756 if (value == NULL) 757 { 758 snode = symtab_node::get (node); 759 if (!snode) 760 return; 761 } 762 else if (VAR_P (node)) 763 snode = varpool_node::get_create (node); 764 else 765 snode = cgraph_node::get_create (node); 766 snode->set_section (value); 767 } 768 769 /* Return TLS model of a variable NODE. */ 770 enum tls_model 771 decl_tls_model (const_tree node) 772 { 773 struct varpool_node *snode = varpool_node::get (node); 774 if (!snode) 775 return TLS_MODEL_NONE; 776 return snode->tls_model; 777 } 778 779 /* Set TLS model of variable NODE to MODEL. */ 780 void 781 set_decl_tls_model (tree node, enum tls_model model) 782 { 783 struct varpool_node *vnode; 784 785 if (model == TLS_MODEL_NONE) 786 { 787 vnode = varpool_node::get (node); 788 if (!vnode) 789 return; 790 } 791 else 792 vnode = varpool_node::get_create (node); 793 vnode->tls_model = model; 794 } 795 796 /* Compute the number of bytes occupied by a tree with code CODE. 797 This function cannot be used for nodes that have variable sizes, 798 including TREE_VEC, INTEGER_CST, STRING_CST, and CALL_EXPR. */ 799 size_t 800 tree_code_size (enum tree_code code) 801 { 802 switch (TREE_CODE_CLASS (code)) 803 { 804 case tcc_declaration: /* A decl node */ 805 switch (code) 806 { 807 case FIELD_DECL: return sizeof (tree_field_decl); 808 case PARM_DECL: return sizeof (tree_parm_decl); 809 case VAR_DECL: return sizeof (tree_var_decl); 810 case LABEL_DECL: return sizeof (tree_label_decl); 811 case RESULT_DECL: return sizeof (tree_result_decl); 812 case CONST_DECL: return sizeof (tree_const_decl); 813 case TYPE_DECL: return sizeof (tree_type_decl); 814 case FUNCTION_DECL: return sizeof (tree_function_decl); 815 case DEBUG_EXPR_DECL: return sizeof (tree_decl_with_rtl); 816 case TRANSLATION_UNIT_DECL: return sizeof (tree_translation_unit_decl); 817 case NAMESPACE_DECL: 818 case IMPORTED_DECL: 819 case NAMELIST_DECL: return sizeof (tree_decl_non_common); 820 default: 821 gcc_checking_assert (code >= NUM_TREE_CODES); 822 return lang_hooks.tree_size (code); 823 } 824 825 case tcc_type: /* a type node */ 826 switch (code) 827 { 828 case OFFSET_TYPE: 829 case ENUMERAL_TYPE: 830 case BOOLEAN_TYPE: 831 case INTEGER_TYPE: 832 case REAL_TYPE: 833 case POINTER_TYPE: 834 case REFERENCE_TYPE: 835 case NULLPTR_TYPE: 836 case FIXED_POINT_TYPE: 837 case COMPLEX_TYPE: 838 case VECTOR_TYPE: 839 case ARRAY_TYPE: 840 case RECORD_TYPE: 841 case UNION_TYPE: 842 case QUAL_UNION_TYPE: 843 case VOID_TYPE: 844 case FUNCTION_TYPE: 845 case METHOD_TYPE: 846 case LANG_TYPE: return sizeof (tree_type_non_common); 847 default: 848 gcc_checking_assert (code >= NUM_TREE_CODES); 849 return lang_hooks.tree_size (code); 850 } 851 852 case tcc_reference: /* a reference */ 853 case tcc_expression: /* an expression */ 854 case tcc_statement: /* an expression with side effects */ 855 case tcc_comparison: /* a comparison expression */ 856 case tcc_unary: /* a unary arithmetic expression */ 857 case tcc_binary: /* a binary arithmetic expression */ 858 return (sizeof (struct tree_exp) 859 + (TREE_CODE_LENGTH (code) - 1) * sizeof (tree)); 860 861 case tcc_constant: /* a constant */ 862 switch (code) 863 { 864 case VOID_CST: return sizeof (tree_typed); 865 case INTEGER_CST: gcc_unreachable (); 866 case POLY_INT_CST: return sizeof (tree_poly_int_cst); 867 case REAL_CST: return sizeof (tree_real_cst); 868 case FIXED_CST: return sizeof (tree_fixed_cst); 869 case COMPLEX_CST: return sizeof (tree_complex); 870 case VECTOR_CST: gcc_unreachable (); 871 case STRING_CST: gcc_unreachable (); 872 default: 873 gcc_checking_assert (code >= NUM_TREE_CODES); 874 return lang_hooks.tree_size (code); 875 } 876 877 case tcc_exceptional: /* something random, like an identifier. */ 878 switch (code) 879 { 880 case IDENTIFIER_NODE: return lang_hooks.identifier_size; 881 case TREE_LIST: return sizeof (tree_list); 882 883 case ERROR_MARK: 884 case PLACEHOLDER_EXPR: return sizeof (tree_common); 885 886 case TREE_VEC: gcc_unreachable (); 887 case OMP_CLAUSE: gcc_unreachable (); 888 889 case SSA_NAME: return sizeof (tree_ssa_name); 890 891 case STATEMENT_LIST: return sizeof (tree_statement_list); 892 case BLOCK: return sizeof (struct tree_block); 893 case CONSTRUCTOR: return sizeof (tree_constructor); 894 case OPTIMIZATION_NODE: return sizeof (tree_optimization_option); 895 case TARGET_OPTION_NODE: return sizeof (tree_target_option); 896 897 default: 898 gcc_checking_assert (code >= NUM_TREE_CODES); 899 return lang_hooks.tree_size (code); 900 } 901 902 default: 903 gcc_unreachable (); 904 } 905 } 906 907 /* Compute the number of bytes occupied by NODE. This routine only 908 looks at TREE_CODE, except for those nodes that have variable sizes. */ 909 size_t 910 tree_size (const_tree node) 911 { 912 const enum tree_code code = TREE_CODE (node); 913 switch (code) 914 { 915 case INTEGER_CST: 916 return (sizeof (struct tree_int_cst) 917 + (TREE_INT_CST_EXT_NUNITS (node) - 1) * sizeof (HOST_WIDE_INT)); 918 919 case TREE_BINFO: 920 return (offsetof (struct tree_binfo, base_binfos) 921 + vec<tree, va_gc> 922 ::embedded_size (BINFO_N_BASE_BINFOS (node))); 923 924 case TREE_VEC: 925 return (sizeof (struct tree_vec) 926 + (TREE_VEC_LENGTH (node) - 1) * sizeof (tree)); 927 928 case VECTOR_CST: 929 return (sizeof (struct tree_vector) 930 + (vector_cst_encoded_nelts (node) - 1) * sizeof (tree)); 931 932 case STRING_CST: 933 return TREE_STRING_LENGTH (node) + offsetof (struct tree_string, str) + 1; 934 935 case OMP_CLAUSE: 936 return (sizeof (struct tree_omp_clause) 937 + (omp_clause_num_ops[OMP_CLAUSE_CODE (node)] - 1) 938 * sizeof (tree)); 939 940 default: 941 if (TREE_CODE_CLASS (code) == tcc_vl_exp) 942 return (sizeof (struct tree_exp) 943 + (VL_EXP_OPERAND_LENGTH (node) - 1) * sizeof (tree)); 944 else 945 return tree_code_size (code); 946 } 947 } 948 949 /* Return tree node kind based on tree CODE. */ 950 951 static tree_node_kind 952 get_stats_node_kind (enum tree_code code) 953 { 954 enum tree_code_class type = TREE_CODE_CLASS (code); 955 956 switch (type) 957 { 958 case tcc_declaration: /* A decl node */ 959 return d_kind; 960 case tcc_type: /* a type node */ 961 return t_kind; 962 case tcc_statement: /* an expression with side effects */ 963 return s_kind; 964 case tcc_reference: /* a reference */ 965 return r_kind; 966 case tcc_expression: /* an expression */ 967 case tcc_comparison: /* a comparison expression */ 968 case tcc_unary: /* a unary arithmetic expression */ 969 case tcc_binary: /* a binary arithmetic expression */ 970 return e_kind; 971 case tcc_constant: /* a constant */ 972 return c_kind; 973 case tcc_exceptional: /* something random, like an identifier. */ 974 switch (code) 975 { 976 case IDENTIFIER_NODE: 977 return id_kind; 978 case TREE_VEC: 979 return vec_kind; 980 case TREE_BINFO: 981 return binfo_kind; 982 case SSA_NAME: 983 return ssa_name_kind; 984 case BLOCK: 985 return b_kind; 986 case CONSTRUCTOR: 987 return constr_kind; 988 case OMP_CLAUSE: 989 return omp_clause_kind; 990 default: 991 return x_kind; 992 } 993 break; 994 case tcc_vl_exp: 995 return e_kind; 996 default: 997 gcc_unreachable (); 998 } 999 } 1000 1001 /* Record interesting allocation statistics for a tree node with CODE 1002 and LENGTH. */ 1003 1004 static void 1005 record_node_allocation_statistics (enum tree_code code, size_t length) 1006 { 1007 if (!GATHER_STATISTICS) 1008 return; 1009 1010 tree_node_kind kind = get_stats_node_kind (code); 1011 1012 tree_code_counts[(int) code]++; 1013 tree_node_counts[(int) kind]++; 1014 tree_node_sizes[(int) kind] += length; 1015 } 1016 1017 /* Allocate and return a new UID from the DECL_UID namespace. */ 1018 1019 int 1020 allocate_decl_uid (void) 1021 { 1022 return next_decl_uid++; 1023 } 1024 1025 /* Return a newly allocated node of code CODE. For decl and type 1026 nodes, some other fields are initialized. The rest of the node is 1027 initialized to zero. This function cannot be used for TREE_VEC, 1028 INTEGER_CST or OMP_CLAUSE nodes, which is enforced by asserts in 1029 tree_code_size. 1030 1031 Achoo! I got a code in the node. */ 1032 1033 tree 1034 make_node (enum tree_code code MEM_STAT_DECL) 1035 { 1036 tree t; 1037 enum tree_code_class type = TREE_CODE_CLASS (code); 1038 size_t length = tree_code_size (code); 1039 1040 record_node_allocation_statistics (code, length); 1041 1042 t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT); 1043 TREE_SET_CODE (t, code); 1044 1045 switch (type) 1046 { 1047 case tcc_statement: 1048 if (code != DEBUG_BEGIN_STMT) 1049 TREE_SIDE_EFFECTS (t) = 1; 1050 break; 1051 1052 case tcc_declaration: 1053 if (CODE_CONTAINS_STRUCT (code, TS_DECL_COMMON)) 1054 { 1055 if (code == FUNCTION_DECL) 1056 { 1057 SET_DECL_ALIGN (t, FUNCTION_ALIGNMENT (FUNCTION_BOUNDARY)); 1058 SET_DECL_MODE (t, FUNCTION_MODE); 1059 } 1060 else 1061 SET_DECL_ALIGN (t, 1); 1062 } 1063 DECL_SOURCE_LOCATION (t) = input_location; 1064 if (TREE_CODE (t) == DEBUG_EXPR_DECL) 1065 DECL_UID (t) = --next_debug_decl_uid; 1066 else 1067 { 1068 DECL_UID (t) = allocate_decl_uid (); 1069 SET_DECL_PT_UID (t, -1); 1070 } 1071 if (TREE_CODE (t) == LABEL_DECL) 1072 LABEL_DECL_UID (t) = -1; 1073 1074 break; 1075 1076 case tcc_type: 1077 TYPE_UID (t) = next_type_uid++; 1078 SET_TYPE_ALIGN (t, BITS_PER_UNIT); 1079 TYPE_USER_ALIGN (t) = 0; 1080 TYPE_MAIN_VARIANT (t) = t; 1081 TYPE_CANONICAL (t) = t; 1082 1083 /* Default to no attributes for type, but let target change that. */ 1084 TYPE_ATTRIBUTES (t) = NULL_TREE; 1085 targetm.set_default_type_attributes (t); 1086 1087 /* We have not yet computed the alias set for this type. */ 1088 TYPE_ALIAS_SET (t) = -1; 1089 break; 1090 1091 case tcc_constant: 1092 TREE_CONSTANT (t) = 1; 1093 break; 1094 1095 case tcc_expression: 1096 switch (code) 1097 { 1098 case INIT_EXPR: 1099 case MODIFY_EXPR: 1100 case VA_ARG_EXPR: 1101 case PREDECREMENT_EXPR: 1102 case PREINCREMENT_EXPR: 1103 case POSTDECREMENT_EXPR: 1104 case POSTINCREMENT_EXPR: 1105 /* All of these have side-effects, no matter what their 1106 operands are. */ 1107 TREE_SIDE_EFFECTS (t) = 1; 1108 break; 1109 1110 default: 1111 break; 1112 } 1113 break; 1114 1115 case tcc_exceptional: 1116 switch (code) 1117 { 1118 case TARGET_OPTION_NODE: 1119 TREE_TARGET_OPTION(t) 1120 = ggc_cleared_alloc<struct cl_target_option> (); 1121 break; 1122 1123 case OPTIMIZATION_NODE: 1124 TREE_OPTIMIZATION (t) 1125 = ggc_cleared_alloc<struct cl_optimization> (); 1126 break; 1127 1128 default: 1129 break; 1130 } 1131 break; 1132 1133 default: 1134 /* Other classes need no special treatment. */ 1135 break; 1136 } 1137 1138 return t; 1139 } 1140 1141 /* Free tree node. */ 1142 1143 void 1144 free_node (tree node) 1145 { 1146 enum tree_code code = TREE_CODE (node); 1147 if (GATHER_STATISTICS) 1148 { 1149 enum tree_node_kind kind = get_stats_node_kind (code); 1150 1151 gcc_checking_assert (tree_code_counts[(int) TREE_CODE (node)] != 0); 1152 gcc_checking_assert (tree_node_counts[(int) kind] != 0); 1153 gcc_checking_assert (tree_node_sizes[(int) kind] >= tree_size (node)); 1154 1155 tree_code_counts[(int) TREE_CODE (node)]--; 1156 tree_node_counts[(int) kind]--; 1157 tree_node_sizes[(int) kind] -= tree_size (node); 1158 } 1159 if (CODE_CONTAINS_STRUCT (code, TS_CONSTRUCTOR)) 1160 vec_free (CONSTRUCTOR_ELTS (node)); 1161 else if (code == BLOCK) 1162 vec_free (BLOCK_NONLOCALIZED_VARS (node)); 1163 else if (code == TREE_BINFO) 1164 vec_free (BINFO_BASE_ACCESSES (node)); 1165 ggc_free (node); 1166 } 1167 1168 /* Return a new node with the same contents as NODE except that its 1169 TREE_CHAIN, if it has one, is zero and it has a fresh uid. */ 1170 1171 tree 1172 copy_node (tree node MEM_STAT_DECL) 1173 { 1174 tree t; 1175 enum tree_code code = TREE_CODE (node); 1176 size_t length; 1177 1178 gcc_assert (code != STATEMENT_LIST); 1179 1180 length = tree_size (node); 1181 record_node_allocation_statistics (code, length); 1182 t = ggc_alloc_tree_node_stat (length PASS_MEM_STAT); 1183 memcpy (t, node, length); 1184 1185 if (CODE_CONTAINS_STRUCT (code, TS_COMMON)) 1186 TREE_CHAIN (t) = 0; 1187 TREE_ASM_WRITTEN (t) = 0; 1188 TREE_VISITED (t) = 0; 1189 1190 if (TREE_CODE_CLASS (code) == tcc_declaration) 1191 { 1192 if (code == DEBUG_EXPR_DECL) 1193 DECL_UID (t) = --next_debug_decl_uid; 1194 else 1195 { 1196 DECL_UID (t) = allocate_decl_uid (); 1197 if (DECL_PT_UID_SET_P (node)) 1198 SET_DECL_PT_UID (t, DECL_PT_UID (node)); 1199 } 1200 if ((TREE_CODE (node) == PARM_DECL || VAR_P (node)) 1201 && DECL_HAS_VALUE_EXPR_P (node)) 1202 { 1203 SET_DECL_VALUE_EXPR (t, DECL_VALUE_EXPR (node)); 1204 DECL_HAS_VALUE_EXPR_P (t) = 1; 1205 } 1206 /* DECL_DEBUG_EXPR is copied explicitely by callers. */ 1207 if (VAR_P (node)) 1208 { 1209 DECL_HAS_DEBUG_EXPR_P (t) = 0; 1210 t->decl_with_vis.symtab_node = NULL; 1211 } 1212 if (VAR_P (node) && DECL_HAS_INIT_PRIORITY_P (node)) 1213 { 1214 SET_DECL_INIT_PRIORITY (t, DECL_INIT_PRIORITY (node)); 1215 DECL_HAS_INIT_PRIORITY_P (t) = 1; 1216 } 1217 if (TREE_CODE (node) == FUNCTION_DECL) 1218 { 1219 DECL_STRUCT_FUNCTION (t) = NULL; 1220 t->decl_with_vis.symtab_node = NULL; 1221 } 1222 } 1223 else if (TREE_CODE_CLASS (code) == tcc_type) 1224 { 1225 TYPE_UID (t) = next_type_uid++; 1226 /* The following is so that the debug code for 1227 the copy is different from the original type. 1228 The two statements usually duplicate each other 1229 (because they clear fields of the same union), 1230 but the optimizer should catch that. */ 1231 TYPE_SYMTAB_ADDRESS (t) = 0; 1232 TYPE_SYMTAB_DIE (t) = 0; 1233 1234 /* Do not copy the values cache. */ 1235 if (TYPE_CACHED_VALUES_P (t)) 1236 { 1237 TYPE_CACHED_VALUES_P (t) = 0; 1238 TYPE_CACHED_VALUES (t) = NULL_TREE; 1239 } 1240 } 1241 else if (code == TARGET_OPTION_NODE) 1242 { 1243 TREE_TARGET_OPTION (t) = ggc_alloc<struct cl_target_option>(); 1244 memcpy (TREE_TARGET_OPTION (t), TREE_TARGET_OPTION (node), 1245 sizeof (struct cl_target_option)); 1246 } 1247 else if (code == OPTIMIZATION_NODE) 1248 { 1249 TREE_OPTIMIZATION (t) = ggc_alloc<struct cl_optimization>(); 1250 memcpy (TREE_OPTIMIZATION (t), TREE_OPTIMIZATION (node), 1251 sizeof (struct cl_optimization)); 1252 } 1253 1254 return t; 1255 } 1256 1257 /* Return a copy of a chain of nodes, chained through the TREE_CHAIN field. 1258 For example, this can copy a list made of TREE_LIST nodes. */ 1259 1260 tree 1261 copy_list (tree list) 1262 { 1263 tree head; 1264 tree prev, next; 1265 1266 if (list == 0) 1267 return 0; 1268 1269 head = prev = copy_node (list); 1270 next = TREE_CHAIN (list); 1271 while (next) 1272 { 1273 TREE_CHAIN (prev) = copy_node (next); 1274 prev = TREE_CHAIN (prev); 1275 next = TREE_CHAIN (next); 1276 } 1277 return head; 1278 } 1279 1280 1281 /* Return the value that TREE_INT_CST_EXT_NUNITS should have for an 1282 INTEGER_CST with value CST and type TYPE. */ 1283 1284 static unsigned int 1285 get_int_cst_ext_nunits (tree type, const wide_int &cst) 1286 { 1287 gcc_checking_assert (cst.get_precision () == TYPE_PRECISION (type)); 1288 /* We need extra HWIs if CST is an unsigned integer with its 1289 upper bit set. */ 1290 if (TYPE_UNSIGNED (type) && wi::neg_p (cst)) 1291 return cst.get_precision () / HOST_BITS_PER_WIDE_INT + 1; 1292 return cst.get_len (); 1293 } 1294 1295 /* Return a new INTEGER_CST with value CST and type TYPE. */ 1296 1297 static tree 1298 build_new_int_cst (tree type, const wide_int &cst) 1299 { 1300 unsigned int len = cst.get_len (); 1301 unsigned int ext_len = get_int_cst_ext_nunits (type, cst); 1302 tree nt = make_int_cst (len, ext_len); 1303 1304 if (len < ext_len) 1305 { 1306 --ext_len; 1307 TREE_INT_CST_ELT (nt, ext_len) 1308 = zext_hwi (-1, cst.get_precision () % HOST_BITS_PER_WIDE_INT); 1309 for (unsigned int i = len; i < ext_len; ++i) 1310 TREE_INT_CST_ELT (nt, i) = -1; 1311 } 1312 else if (TYPE_UNSIGNED (type) 1313 && cst.get_precision () < len * HOST_BITS_PER_WIDE_INT) 1314 { 1315 len--; 1316 TREE_INT_CST_ELT (nt, len) 1317 = zext_hwi (cst.elt (len), 1318 cst.get_precision () % HOST_BITS_PER_WIDE_INT); 1319 } 1320 1321 for (unsigned int i = 0; i < len; i++) 1322 TREE_INT_CST_ELT (nt, i) = cst.elt (i); 1323 TREE_TYPE (nt) = type; 1324 return nt; 1325 } 1326 1327 /* Return a new POLY_INT_CST with coefficients COEFFS and type TYPE. */ 1328 1329 static tree 1330 build_new_poly_int_cst (tree type, tree (&coeffs)[NUM_POLY_INT_COEFFS] 1331 CXX_MEM_STAT_INFO) 1332 { 1333 size_t length = sizeof (struct tree_poly_int_cst); 1334 record_node_allocation_statistics (POLY_INT_CST, length); 1335 1336 tree t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT); 1337 1338 TREE_SET_CODE (t, POLY_INT_CST); 1339 TREE_CONSTANT (t) = 1; 1340 TREE_TYPE (t) = type; 1341 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i) 1342 POLY_INT_CST_COEFF (t, i) = coeffs[i]; 1343 return t; 1344 } 1345 1346 /* Create a constant tree that contains CST sign-extended to TYPE. */ 1347 1348 tree 1349 build_int_cst (tree type, poly_int64 cst) 1350 { 1351 /* Support legacy code. */ 1352 if (!type) 1353 type = integer_type_node; 1354 1355 return wide_int_to_tree (type, wi::shwi (cst, TYPE_PRECISION (type))); 1356 } 1357 1358 /* Create a constant tree that contains CST zero-extended to TYPE. */ 1359 1360 tree 1361 build_int_cstu (tree type, poly_uint64 cst) 1362 { 1363 return wide_int_to_tree (type, wi::uhwi (cst, TYPE_PRECISION (type))); 1364 } 1365 1366 /* Create a constant tree that contains CST sign-extended to TYPE. */ 1367 1368 tree 1369 build_int_cst_type (tree type, poly_int64 cst) 1370 { 1371 gcc_assert (type); 1372 return wide_int_to_tree (type, wi::shwi (cst, TYPE_PRECISION (type))); 1373 } 1374 1375 /* Constructs tree in type TYPE from with value given by CST. Signedness 1376 of CST is assumed to be the same as the signedness of TYPE. */ 1377 1378 tree 1379 double_int_to_tree (tree type, double_int cst) 1380 { 1381 return wide_int_to_tree (type, widest_int::from (cst, TYPE_SIGN (type))); 1382 } 1383 1384 /* We force the wide_int CST to the range of the type TYPE by sign or 1385 zero extending it. OVERFLOWABLE indicates if we are interested in 1386 overflow of the value, when >0 we are only interested in signed 1387 overflow, for <0 we are interested in any overflow. OVERFLOWED 1388 indicates whether overflow has already occurred. CONST_OVERFLOWED 1389 indicates whether constant overflow has already occurred. We force 1390 T's value to be within range of T's type (by setting to 0 or 1 all 1391 the bits outside the type's range). We set TREE_OVERFLOWED if, 1392 OVERFLOWED is nonzero, 1393 or OVERFLOWABLE is >0 and signed overflow occurs 1394 or OVERFLOWABLE is <0 and any overflow occurs 1395 We return a new tree node for the extended wide_int. The node 1396 is shared if no overflow flags are set. */ 1397 1398 1399 tree 1400 force_fit_type (tree type, const poly_wide_int_ref &cst, 1401 int overflowable, bool overflowed) 1402 { 1403 signop sign = TYPE_SIGN (type); 1404 1405 /* If we need to set overflow flags, return a new unshared node. */ 1406 if (overflowed || !wi::fits_to_tree_p (cst, type)) 1407 { 1408 if (overflowed 1409 || overflowable < 0 1410 || (overflowable > 0 && sign == SIGNED)) 1411 { 1412 poly_wide_int tmp = poly_wide_int::from (cst, TYPE_PRECISION (type), 1413 sign); 1414 tree t; 1415 if (tmp.is_constant ()) 1416 t = build_new_int_cst (type, tmp.coeffs[0]); 1417 else 1418 { 1419 tree coeffs[NUM_POLY_INT_COEFFS]; 1420 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i) 1421 { 1422 coeffs[i] = build_new_int_cst (type, tmp.coeffs[i]); 1423 TREE_OVERFLOW (coeffs[i]) = 1; 1424 } 1425 t = build_new_poly_int_cst (type, coeffs); 1426 } 1427 TREE_OVERFLOW (t) = 1; 1428 return t; 1429 } 1430 } 1431 1432 /* Else build a shared node. */ 1433 return wide_int_to_tree (type, cst); 1434 } 1435 1436 /* These are the hash table functions for the hash table of INTEGER_CST 1437 nodes of a sizetype. */ 1438 1439 /* Return the hash code X, an INTEGER_CST. */ 1440 1441 hashval_t 1442 int_cst_hasher::hash (tree x) 1443 { 1444 const_tree const t = x; 1445 hashval_t code = TYPE_UID (TREE_TYPE (t)); 1446 int i; 1447 1448 for (i = 0; i < TREE_INT_CST_NUNITS (t); i++) 1449 code = iterative_hash_host_wide_int (TREE_INT_CST_ELT(t, i), code); 1450 1451 return code; 1452 } 1453 1454 /* Return nonzero if the value represented by *X (an INTEGER_CST tree node) 1455 is the same as that given by *Y, which is the same. */ 1456 1457 bool 1458 int_cst_hasher::equal (tree x, tree y) 1459 { 1460 const_tree const xt = x; 1461 const_tree const yt = y; 1462 1463 if (TREE_TYPE (xt) != TREE_TYPE (yt) 1464 || TREE_INT_CST_NUNITS (xt) != TREE_INT_CST_NUNITS (yt) 1465 || TREE_INT_CST_EXT_NUNITS (xt) != TREE_INT_CST_EXT_NUNITS (yt)) 1466 return false; 1467 1468 for (int i = 0; i < TREE_INT_CST_NUNITS (xt); i++) 1469 if (TREE_INT_CST_ELT (xt, i) != TREE_INT_CST_ELT (yt, i)) 1470 return false; 1471 1472 return true; 1473 } 1474 1475 /* Create an INT_CST node of TYPE and value CST. 1476 The returned node is always shared. For small integers we use a 1477 per-type vector cache, for larger ones we use a single hash table. 1478 The value is extended from its precision according to the sign of 1479 the type to be a multiple of HOST_BITS_PER_WIDE_INT. This defines 1480 the upper bits and ensures that hashing and value equality based 1481 upon the underlying HOST_WIDE_INTs works without masking. */ 1482 1483 static tree 1484 wide_int_to_tree_1 (tree type, const wide_int_ref &pcst) 1485 { 1486 tree t; 1487 int ix = -1; 1488 int limit = 0; 1489 1490 gcc_assert (type); 1491 unsigned int prec = TYPE_PRECISION (type); 1492 signop sgn = TYPE_SIGN (type); 1493 1494 /* Verify that everything is canonical. */ 1495 int l = pcst.get_len (); 1496 if (l > 1) 1497 { 1498 if (pcst.elt (l - 1) == 0) 1499 gcc_checking_assert (pcst.elt (l - 2) < 0); 1500 if (pcst.elt (l - 1) == HOST_WIDE_INT_M1) 1501 gcc_checking_assert (pcst.elt (l - 2) >= 0); 1502 } 1503 1504 wide_int cst = wide_int::from (pcst, prec, sgn); 1505 unsigned int ext_len = get_int_cst_ext_nunits (type, cst); 1506 1507 if (ext_len == 1) 1508 { 1509 /* We just need to store a single HOST_WIDE_INT. */ 1510 HOST_WIDE_INT hwi; 1511 if (TYPE_UNSIGNED (type)) 1512 hwi = cst.to_uhwi (); 1513 else 1514 hwi = cst.to_shwi (); 1515 1516 switch (TREE_CODE (type)) 1517 { 1518 case NULLPTR_TYPE: 1519 gcc_assert (hwi == 0); 1520 /* Fallthru. */ 1521 1522 case POINTER_TYPE: 1523 case REFERENCE_TYPE: 1524 /* Cache NULL pointer and zero bounds. */ 1525 if (hwi == 0) 1526 { 1527 limit = 1; 1528 ix = 0; 1529 } 1530 break; 1531 1532 case BOOLEAN_TYPE: 1533 /* Cache false or true. */ 1534 limit = 2; 1535 if (IN_RANGE (hwi, 0, 1)) 1536 ix = hwi; 1537 break; 1538 1539 case INTEGER_TYPE: 1540 case OFFSET_TYPE: 1541 if (TYPE_SIGN (type) == UNSIGNED) 1542 { 1543 /* Cache [0, N). */ 1544 limit = INTEGER_SHARE_LIMIT; 1545 if (IN_RANGE (hwi, 0, INTEGER_SHARE_LIMIT - 1)) 1546 ix = hwi; 1547 } 1548 else 1549 { 1550 /* Cache [-1, N). */ 1551 limit = INTEGER_SHARE_LIMIT + 1; 1552 if (IN_RANGE (hwi, -1, INTEGER_SHARE_LIMIT - 1)) 1553 ix = hwi + 1; 1554 } 1555 break; 1556 1557 case ENUMERAL_TYPE: 1558 break; 1559 1560 default: 1561 gcc_unreachable (); 1562 } 1563 1564 if (ix >= 0) 1565 { 1566 /* Look for it in the type's vector of small shared ints. */ 1567 if (!TYPE_CACHED_VALUES_P (type)) 1568 { 1569 TYPE_CACHED_VALUES_P (type) = 1; 1570 TYPE_CACHED_VALUES (type) = make_tree_vec (limit); 1571 } 1572 1573 t = TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix); 1574 if (t) 1575 /* Make sure no one is clobbering the shared constant. */ 1576 gcc_checking_assert (TREE_TYPE (t) == type 1577 && TREE_INT_CST_NUNITS (t) == 1 1578 && TREE_INT_CST_OFFSET_NUNITS (t) == 1 1579 && TREE_INT_CST_EXT_NUNITS (t) == 1 1580 && TREE_INT_CST_ELT (t, 0) == hwi); 1581 else 1582 { 1583 /* Create a new shared int. */ 1584 t = build_new_int_cst (type, cst); 1585 TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix) = t; 1586 } 1587 } 1588 else 1589 { 1590 /* Use the cache of larger shared ints, using int_cst_node as 1591 a temporary. */ 1592 1593 TREE_INT_CST_ELT (int_cst_node, 0) = hwi; 1594 TREE_TYPE (int_cst_node) = type; 1595 1596 tree *slot = int_cst_hash_table->find_slot (int_cst_node, INSERT); 1597 t = *slot; 1598 if (!t) 1599 { 1600 /* Insert this one into the hash table. */ 1601 t = int_cst_node; 1602 *slot = t; 1603 /* Make a new node for next time round. */ 1604 int_cst_node = make_int_cst (1, 1); 1605 } 1606 } 1607 } 1608 else 1609 { 1610 /* The value either hashes properly or we drop it on the floor 1611 for the gc to take care of. There will not be enough of them 1612 to worry about. */ 1613 1614 tree nt = build_new_int_cst (type, cst); 1615 tree *slot = int_cst_hash_table->find_slot (nt, INSERT); 1616 t = *slot; 1617 if (!t) 1618 { 1619 /* Insert this one into the hash table. */ 1620 t = nt; 1621 *slot = t; 1622 } 1623 else 1624 ggc_free (nt); 1625 } 1626 1627 return t; 1628 } 1629 1630 hashval_t 1631 poly_int_cst_hasher::hash (tree t) 1632 { 1633 inchash::hash hstate; 1634 1635 hstate.add_int (TYPE_UID (TREE_TYPE (t))); 1636 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i) 1637 hstate.add_wide_int (wi::to_wide (POLY_INT_CST_COEFF (t, i))); 1638 1639 return hstate.end (); 1640 } 1641 1642 bool 1643 poly_int_cst_hasher::equal (tree x, const compare_type &y) 1644 { 1645 if (TREE_TYPE (x) != y.first) 1646 return false; 1647 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i) 1648 if (wi::to_wide (POLY_INT_CST_COEFF (x, i)) != y.second->coeffs[i]) 1649 return false; 1650 return true; 1651 } 1652 1653 /* Build a POLY_INT_CST node with type TYPE and with the elements in VALUES. 1654 The elements must also have type TYPE. */ 1655 1656 tree 1657 build_poly_int_cst (tree type, const poly_wide_int_ref &values) 1658 { 1659 unsigned int prec = TYPE_PRECISION (type); 1660 gcc_assert (prec <= values.coeffs[0].get_precision ()); 1661 poly_wide_int c = poly_wide_int::from (values, prec, SIGNED); 1662 1663 inchash::hash h; 1664 h.add_int (TYPE_UID (type)); 1665 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i) 1666 h.add_wide_int (c.coeffs[i]); 1667 poly_int_cst_hasher::compare_type comp (type, &c); 1668 tree *slot = poly_int_cst_hash_table->find_slot_with_hash (comp, h.end (), 1669 INSERT); 1670 if (*slot == NULL_TREE) 1671 { 1672 tree coeffs[NUM_POLY_INT_COEFFS]; 1673 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i) 1674 coeffs[i] = wide_int_to_tree_1 (type, c.coeffs[i]); 1675 *slot = build_new_poly_int_cst (type, coeffs); 1676 } 1677 return *slot; 1678 } 1679 1680 /* Create a constant tree with value VALUE in type TYPE. */ 1681 1682 tree 1683 wide_int_to_tree (tree type, const poly_wide_int_ref &value) 1684 { 1685 if (value.is_constant ()) 1686 return wide_int_to_tree_1 (type, value.coeffs[0]); 1687 return build_poly_int_cst (type, value); 1688 } 1689 1690 void 1691 cache_integer_cst (tree t) 1692 { 1693 tree type = TREE_TYPE (t); 1694 int ix = -1; 1695 int limit = 0; 1696 int prec = TYPE_PRECISION (type); 1697 1698 gcc_assert (!TREE_OVERFLOW (t)); 1699 1700 switch (TREE_CODE (type)) 1701 { 1702 case NULLPTR_TYPE: 1703 gcc_assert (integer_zerop (t)); 1704 /* Fallthru. */ 1705 1706 case POINTER_TYPE: 1707 case REFERENCE_TYPE: 1708 /* Cache NULL pointer. */ 1709 if (integer_zerop (t)) 1710 { 1711 limit = 1; 1712 ix = 0; 1713 } 1714 break; 1715 1716 case BOOLEAN_TYPE: 1717 /* Cache false or true. */ 1718 limit = 2; 1719 if (wi::ltu_p (wi::to_wide (t), 2)) 1720 ix = TREE_INT_CST_ELT (t, 0); 1721 break; 1722 1723 case INTEGER_TYPE: 1724 case OFFSET_TYPE: 1725 if (TYPE_UNSIGNED (type)) 1726 { 1727 /* Cache 0..N */ 1728 limit = INTEGER_SHARE_LIMIT; 1729 1730 /* This is a little hokie, but if the prec is smaller than 1731 what is necessary to hold INTEGER_SHARE_LIMIT, then the 1732 obvious test will not get the correct answer. */ 1733 if (prec < HOST_BITS_PER_WIDE_INT) 1734 { 1735 if (tree_to_uhwi (t) < (unsigned HOST_WIDE_INT) INTEGER_SHARE_LIMIT) 1736 ix = tree_to_uhwi (t); 1737 } 1738 else if (wi::ltu_p (wi::to_wide (t), INTEGER_SHARE_LIMIT)) 1739 ix = tree_to_uhwi (t); 1740 } 1741 else 1742 { 1743 /* Cache -1..N */ 1744 limit = INTEGER_SHARE_LIMIT + 1; 1745 1746 if (integer_minus_onep (t)) 1747 ix = 0; 1748 else if (!wi::neg_p (wi::to_wide (t))) 1749 { 1750 if (prec < HOST_BITS_PER_WIDE_INT) 1751 { 1752 if (tree_to_shwi (t) < INTEGER_SHARE_LIMIT) 1753 ix = tree_to_shwi (t) + 1; 1754 } 1755 else if (wi::ltu_p (wi::to_wide (t), INTEGER_SHARE_LIMIT)) 1756 ix = tree_to_shwi (t) + 1; 1757 } 1758 } 1759 break; 1760 1761 case ENUMERAL_TYPE: 1762 break; 1763 1764 default: 1765 gcc_unreachable (); 1766 } 1767 1768 if (ix >= 0) 1769 { 1770 /* Look for it in the type's vector of small shared ints. */ 1771 if (!TYPE_CACHED_VALUES_P (type)) 1772 { 1773 TYPE_CACHED_VALUES_P (type) = 1; 1774 TYPE_CACHED_VALUES (type) = make_tree_vec (limit); 1775 } 1776 1777 gcc_assert (TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix) == NULL_TREE); 1778 TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix) = t; 1779 } 1780 else 1781 { 1782 /* Use the cache of larger shared ints. */ 1783 tree *slot = int_cst_hash_table->find_slot (t, INSERT); 1784 /* If there is already an entry for the number verify it's the 1785 same. */ 1786 if (*slot) 1787 gcc_assert (wi::to_wide (tree (*slot)) == wi::to_wide (t)); 1788 else 1789 /* Otherwise insert this one into the hash table. */ 1790 *slot = t; 1791 } 1792 } 1793 1794 1795 /* Builds an integer constant in TYPE such that lowest BITS bits are ones 1796 and the rest are zeros. */ 1797 1798 tree 1799 build_low_bits_mask (tree type, unsigned bits) 1800 { 1801 gcc_assert (bits <= TYPE_PRECISION (type)); 1802 1803 return wide_int_to_tree (type, wi::mask (bits, false, 1804 TYPE_PRECISION (type))); 1805 } 1806 1807 /* Checks that X is integer constant that can be expressed in (unsigned) 1808 HOST_WIDE_INT without loss of precision. */ 1809 1810 bool 1811 cst_and_fits_in_hwi (const_tree x) 1812 { 1813 return (TREE_CODE (x) == INTEGER_CST 1814 && (tree_fits_shwi_p (x) || tree_fits_uhwi_p (x))); 1815 } 1816 1817 /* Build a newly constructed VECTOR_CST with the given values of 1818 (VECTOR_CST_)LOG2_NPATTERNS and (VECTOR_CST_)NELTS_PER_PATTERN. */ 1819 1820 tree 1821 make_vector (unsigned log2_npatterns, 1822 unsigned int nelts_per_pattern MEM_STAT_DECL) 1823 { 1824 gcc_assert (IN_RANGE (nelts_per_pattern, 1, 3)); 1825 tree t; 1826 unsigned npatterns = 1 << log2_npatterns; 1827 unsigned encoded_nelts = npatterns * nelts_per_pattern; 1828 unsigned length = (sizeof (struct tree_vector) 1829 + (encoded_nelts - 1) * sizeof (tree)); 1830 1831 record_node_allocation_statistics (VECTOR_CST, length); 1832 1833 t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT); 1834 1835 TREE_SET_CODE (t, VECTOR_CST); 1836 TREE_CONSTANT (t) = 1; 1837 VECTOR_CST_LOG2_NPATTERNS (t) = log2_npatterns; 1838 VECTOR_CST_NELTS_PER_PATTERN (t) = nelts_per_pattern; 1839 1840 return t; 1841 } 1842 1843 /* Return a new VECTOR_CST node whose type is TYPE and whose values 1844 are extracted from V, a vector of CONSTRUCTOR_ELT. */ 1845 1846 tree 1847 build_vector_from_ctor (tree type, vec<constructor_elt, va_gc> *v) 1848 { 1849 unsigned HOST_WIDE_INT idx, nelts; 1850 tree value; 1851 1852 /* We can't construct a VECTOR_CST for a variable number of elements. */ 1853 nelts = TYPE_VECTOR_SUBPARTS (type).to_constant (); 1854 tree_vector_builder vec (type, nelts, 1); 1855 FOR_EACH_CONSTRUCTOR_VALUE (v, idx, value) 1856 { 1857 if (TREE_CODE (value) == VECTOR_CST) 1858 { 1859 /* If NELTS is constant then this must be too. */ 1860 unsigned int sub_nelts = VECTOR_CST_NELTS (value).to_constant (); 1861 for (unsigned i = 0; i < sub_nelts; ++i) 1862 vec.quick_push (VECTOR_CST_ELT (value, i)); 1863 } 1864 else 1865 vec.quick_push (value); 1866 } 1867 while (vec.length () < nelts) 1868 vec.quick_push (build_zero_cst (TREE_TYPE (type))); 1869 1870 return vec.build (); 1871 } 1872 1873 /* Build a vector of type VECTYPE where all the elements are SCs. */ 1874 tree 1875 build_vector_from_val (tree vectype, tree sc) 1876 { 1877 unsigned HOST_WIDE_INT i, nunits; 1878 1879 if (sc == error_mark_node) 1880 return sc; 1881 1882 /* Verify that the vector type is suitable for SC. Note that there 1883 is some inconsistency in the type-system with respect to restrict 1884 qualifications of pointers. Vector types always have a main-variant 1885 element type and the qualification is applied to the vector-type. 1886 So TREE_TYPE (vector-type) does not return a properly qualified 1887 vector element-type. */ 1888 gcc_checking_assert (types_compatible_p (TYPE_MAIN_VARIANT (TREE_TYPE (sc)), 1889 TREE_TYPE (vectype))); 1890 1891 if (CONSTANT_CLASS_P (sc)) 1892 { 1893 tree_vector_builder v (vectype, 1, 1); 1894 v.quick_push (sc); 1895 return v.build (); 1896 } 1897 else if (!TYPE_VECTOR_SUBPARTS (vectype).is_constant (&nunits)) 1898 return fold_build1 (VEC_DUPLICATE_EXPR, vectype, sc); 1899 else 1900 { 1901 vec<constructor_elt, va_gc> *v; 1902 vec_alloc (v, nunits); 1903 for (i = 0; i < nunits; ++i) 1904 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, sc); 1905 return build_constructor (vectype, v); 1906 } 1907 } 1908 1909 /* If TYPE is not a vector type, just return SC, otherwise return 1910 build_vector_from_val (TYPE, SC). */ 1911 1912 tree 1913 build_uniform_cst (tree type, tree sc) 1914 { 1915 if (!VECTOR_TYPE_P (type)) 1916 return sc; 1917 1918 return build_vector_from_val (type, sc); 1919 } 1920 1921 /* Build a vector series of type TYPE in which element I has the value 1922 BASE + I * STEP. The result is a constant if BASE and STEP are constant 1923 and a VEC_SERIES_EXPR otherwise. */ 1924 1925 tree 1926 build_vec_series (tree type, tree base, tree step) 1927 { 1928 if (integer_zerop (step)) 1929 return build_vector_from_val (type, base); 1930 if (TREE_CODE (base) == INTEGER_CST && TREE_CODE (step) == INTEGER_CST) 1931 { 1932 tree_vector_builder builder (type, 1, 3); 1933 tree elt1 = wide_int_to_tree (TREE_TYPE (base), 1934 wi::to_wide (base) + wi::to_wide (step)); 1935 tree elt2 = wide_int_to_tree (TREE_TYPE (base), 1936 wi::to_wide (elt1) + wi::to_wide (step)); 1937 builder.quick_push (base); 1938 builder.quick_push (elt1); 1939 builder.quick_push (elt2); 1940 return builder.build (); 1941 } 1942 return build2 (VEC_SERIES_EXPR, type, base, step); 1943 } 1944 1945 /* Return a vector with the same number of units and number of bits 1946 as VEC_TYPE, but in which the elements are a linear series of unsigned 1947 integers { BASE, BASE + STEP, BASE + STEP * 2, ... }. */ 1948 1949 tree 1950 build_index_vector (tree vec_type, poly_uint64 base, poly_uint64 step) 1951 { 1952 tree index_vec_type = vec_type; 1953 tree index_elt_type = TREE_TYPE (vec_type); 1954 poly_uint64 nunits = TYPE_VECTOR_SUBPARTS (vec_type); 1955 if (!INTEGRAL_TYPE_P (index_elt_type) || !TYPE_UNSIGNED (index_elt_type)) 1956 { 1957 index_elt_type = build_nonstandard_integer_type 1958 (GET_MODE_BITSIZE (SCALAR_TYPE_MODE (index_elt_type)), true); 1959 index_vec_type = build_vector_type (index_elt_type, nunits); 1960 } 1961 1962 tree_vector_builder v (index_vec_type, 1, 3); 1963 for (unsigned int i = 0; i < 3; ++i) 1964 v.quick_push (build_int_cstu (index_elt_type, base + i * step)); 1965 return v.build (); 1966 } 1967 1968 /* Something has messed with the elements of CONSTRUCTOR C after it was built; 1969 calculate TREE_CONSTANT and TREE_SIDE_EFFECTS. */ 1970 1971 void 1972 recompute_constructor_flags (tree c) 1973 { 1974 unsigned int i; 1975 tree val; 1976 bool constant_p = true; 1977 bool side_effects_p = false; 1978 vec<constructor_elt, va_gc> *vals = CONSTRUCTOR_ELTS (c); 1979 1980 FOR_EACH_CONSTRUCTOR_VALUE (vals, i, val) 1981 { 1982 /* Mostly ctors will have elts that don't have side-effects, so 1983 the usual case is to scan all the elements. Hence a single 1984 loop for both const and side effects, rather than one loop 1985 each (with early outs). */ 1986 if (!TREE_CONSTANT (val)) 1987 constant_p = false; 1988 if (TREE_SIDE_EFFECTS (val)) 1989 side_effects_p = true; 1990 } 1991 1992 TREE_SIDE_EFFECTS (c) = side_effects_p; 1993 TREE_CONSTANT (c) = constant_p; 1994 } 1995 1996 /* Make sure that TREE_CONSTANT and TREE_SIDE_EFFECTS are correct for 1997 CONSTRUCTOR C. */ 1998 1999 void 2000 verify_constructor_flags (tree c) 2001 { 2002 unsigned int i; 2003 tree val; 2004 bool constant_p = TREE_CONSTANT (c); 2005 bool side_effects_p = TREE_SIDE_EFFECTS (c); 2006 vec<constructor_elt, va_gc> *vals = CONSTRUCTOR_ELTS (c); 2007 2008 FOR_EACH_CONSTRUCTOR_VALUE (vals, i, val) 2009 { 2010 if (constant_p && !TREE_CONSTANT (val)) 2011 internal_error ("non-constant element in constant CONSTRUCTOR"); 2012 if (!side_effects_p && TREE_SIDE_EFFECTS (val)) 2013 internal_error ("side-effects element in no-side-effects CONSTRUCTOR"); 2014 } 2015 } 2016 2017 /* Return a new CONSTRUCTOR node whose type is TYPE and whose values 2018 are in the vec pointed to by VALS. */ 2019 tree 2020 build_constructor (tree type, vec<constructor_elt, va_gc> *vals) 2021 { 2022 tree c = make_node (CONSTRUCTOR); 2023 2024 TREE_TYPE (c) = type; 2025 CONSTRUCTOR_ELTS (c) = vals; 2026 2027 recompute_constructor_flags (c); 2028 2029 return c; 2030 } 2031 2032 /* Build a CONSTRUCTOR node made of a single initializer, with the specified 2033 INDEX and VALUE. */ 2034 tree 2035 build_constructor_single (tree type, tree index, tree value) 2036 { 2037 vec<constructor_elt, va_gc> *v; 2038 constructor_elt elt = {index, value}; 2039 2040 vec_alloc (v, 1); 2041 v->quick_push (elt); 2042 2043 return build_constructor (type, v); 2044 } 2045 2046 2047 /* Return a new CONSTRUCTOR node whose type is TYPE and whose values 2048 are in a list pointed to by VALS. */ 2049 tree 2050 build_constructor_from_list (tree type, tree vals) 2051 { 2052 tree t; 2053 vec<constructor_elt, va_gc> *v = NULL; 2054 2055 if (vals) 2056 { 2057 vec_alloc (v, list_length (vals)); 2058 for (t = vals; t; t = TREE_CHAIN (t)) 2059 CONSTRUCTOR_APPEND_ELT (v, TREE_PURPOSE (t), TREE_VALUE (t)); 2060 } 2061 2062 return build_constructor (type, v); 2063 } 2064 2065 /* Return a new CONSTRUCTOR node whose type is TYPE. NELTS is the number 2066 of elements, provided as index/value pairs. */ 2067 2068 tree 2069 build_constructor_va (tree type, int nelts, ...) 2070 { 2071 vec<constructor_elt, va_gc> *v = NULL; 2072 va_list p; 2073 2074 va_start (p, nelts); 2075 vec_alloc (v, nelts); 2076 while (nelts--) 2077 { 2078 tree index = va_arg (p, tree); 2079 tree value = va_arg (p, tree); 2080 CONSTRUCTOR_APPEND_ELT (v, index, value); 2081 } 2082 va_end (p); 2083 return build_constructor (type, v); 2084 } 2085 2086 /* Return a node of type TYPE for which TREE_CLOBBER_P is true. */ 2087 2088 tree 2089 build_clobber (tree type) 2090 { 2091 tree clobber = build_constructor (type, NULL); 2092 TREE_THIS_VOLATILE (clobber) = true; 2093 return clobber; 2094 } 2095 2096 /* Return a new FIXED_CST node whose type is TYPE and value is F. */ 2097 2098 tree 2099 build_fixed (tree type, FIXED_VALUE_TYPE f) 2100 { 2101 tree v; 2102 FIXED_VALUE_TYPE *fp; 2103 2104 v = make_node (FIXED_CST); 2105 fp = ggc_alloc<fixed_value> (); 2106 memcpy (fp, &f, sizeof (FIXED_VALUE_TYPE)); 2107 2108 TREE_TYPE (v) = type; 2109 TREE_FIXED_CST_PTR (v) = fp; 2110 return v; 2111 } 2112 2113 /* Return a new REAL_CST node whose type is TYPE and value is D. */ 2114 2115 tree 2116 build_real (tree type, REAL_VALUE_TYPE d) 2117 { 2118 tree v; 2119 REAL_VALUE_TYPE *dp; 2120 int overflow = 0; 2121 2122 /* ??? Used to check for overflow here via CHECK_FLOAT_TYPE. 2123 Consider doing it via real_convert now. */ 2124 2125 v = make_node (REAL_CST); 2126 dp = ggc_alloc<real_value> (); 2127 memcpy (dp, &d, sizeof (REAL_VALUE_TYPE)); 2128 2129 TREE_TYPE (v) = type; 2130 TREE_REAL_CST_PTR (v) = dp; 2131 TREE_OVERFLOW (v) = overflow; 2132 return v; 2133 } 2134 2135 /* Like build_real, but first truncate D to the type. */ 2136 2137 tree 2138 build_real_truncate (tree type, REAL_VALUE_TYPE d) 2139 { 2140 return build_real (type, real_value_truncate (TYPE_MODE (type), d)); 2141 } 2142 2143 /* Return a new REAL_CST node whose type is TYPE 2144 and whose value is the integer value of the INTEGER_CST node I. */ 2145 2146 REAL_VALUE_TYPE 2147 real_value_from_int_cst (const_tree type, const_tree i) 2148 { 2149 REAL_VALUE_TYPE d; 2150 2151 /* Clear all bits of the real value type so that we can later do 2152 bitwise comparisons to see if two values are the same. */ 2153 memset (&d, 0, sizeof d); 2154 2155 real_from_integer (&d, type ? TYPE_MODE (type) : VOIDmode, wi::to_wide (i), 2156 TYPE_SIGN (TREE_TYPE (i))); 2157 return d; 2158 } 2159 2160 /* Given a tree representing an integer constant I, return a tree 2161 representing the same value as a floating-point constant of type TYPE. */ 2162 2163 tree 2164 build_real_from_int_cst (tree type, const_tree i) 2165 { 2166 tree v; 2167 int overflow = TREE_OVERFLOW (i); 2168 2169 v = build_real (type, real_value_from_int_cst (type, i)); 2170 2171 TREE_OVERFLOW (v) |= overflow; 2172 return v; 2173 } 2174 2175 /* Return a newly constructed STRING_CST node whose value is the LEN 2176 characters at STR when STR is nonnull, or all zeros otherwise. 2177 Note that for a C string literal, LEN should include the trailing NUL. 2178 The TREE_TYPE is not initialized. */ 2179 2180 tree 2181 build_string (unsigned len, const char *str /*= NULL */) 2182 { 2183 /* Do not waste bytes provided by padding of struct tree_string. */ 2184 unsigned size = len + offsetof (struct tree_string, str) + 1; 2185 2186 record_node_allocation_statistics (STRING_CST, size); 2187 2188 tree s = (tree) ggc_internal_alloc (size); 2189 2190 memset (s, 0, sizeof (struct tree_typed)); 2191 TREE_SET_CODE (s, STRING_CST); 2192 TREE_CONSTANT (s) = 1; 2193 TREE_STRING_LENGTH (s) = len; 2194 if (str) 2195 memcpy (s->string.str, str, len); 2196 else 2197 memset (s->string.str, 0, len); 2198 s->string.str[len] = '\0'; 2199 2200 return s; 2201 } 2202 2203 /* Return a newly constructed COMPLEX_CST node whose value is 2204 specified by the real and imaginary parts REAL and IMAG. 2205 Both REAL and IMAG should be constant nodes. TYPE, if specified, 2206 will be the type of the COMPLEX_CST; otherwise a new type will be made. */ 2207 2208 tree 2209 build_complex (tree type, tree real, tree imag) 2210 { 2211 gcc_assert (CONSTANT_CLASS_P (real)); 2212 gcc_assert (CONSTANT_CLASS_P (imag)); 2213 2214 tree t = make_node (COMPLEX_CST); 2215 2216 TREE_REALPART (t) = real; 2217 TREE_IMAGPART (t) = imag; 2218 TREE_TYPE (t) = type ? type : build_complex_type (TREE_TYPE (real)); 2219 TREE_OVERFLOW (t) = TREE_OVERFLOW (real) | TREE_OVERFLOW (imag); 2220 return t; 2221 } 2222 2223 /* Build a complex (inf +- 0i), such as for the result of cproj. 2224 TYPE is the complex tree type of the result. If NEG is true, the 2225 imaginary zero is negative. */ 2226 2227 tree 2228 build_complex_inf (tree type, bool neg) 2229 { 2230 REAL_VALUE_TYPE rinf, rzero = dconst0; 2231 2232 real_inf (&rinf); 2233 rzero.sign = neg; 2234 return build_complex (type, build_real (TREE_TYPE (type), rinf), 2235 build_real (TREE_TYPE (type), rzero)); 2236 } 2237 2238 /* Return the constant 1 in type TYPE. If TYPE has several elements, each 2239 element is set to 1. In particular, this is 1 + i for complex types. */ 2240 2241 tree 2242 build_each_one_cst (tree type) 2243 { 2244 if (TREE_CODE (type) == COMPLEX_TYPE) 2245 { 2246 tree scalar = build_one_cst (TREE_TYPE (type)); 2247 return build_complex (type, scalar, scalar); 2248 } 2249 else 2250 return build_one_cst (type); 2251 } 2252 2253 /* Return a constant of arithmetic type TYPE which is the 2254 multiplicative identity of the set TYPE. */ 2255 2256 tree 2257 build_one_cst (tree type) 2258 { 2259 switch (TREE_CODE (type)) 2260 { 2261 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE: 2262 case POINTER_TYPE: case REFERENCE_TYPE: 2263 case OFFSET_TYPE: 2264 return build_int_cst (type, 1); 2265 2266 case REAL_TYPE: 2267 return build_real (type, dconst1); 2268 2269 case FIXED_POINT_TYPE: 2270 /* We can only generate 1 for accum types. */ 2271 gcc_assert (ALL_SCALAR_ACCUM_MODE_P (TYPE_MODE (type))); 2272 return build_fixed (type, FCONST1 (TYPE_MODE (type))); 2273 2274 case VECTOR_TYPE: 2275 { 2276 tree scalar = build_one_cst (TREE_TYPE (type)); 2277 2278 return build_vector_from_val (type, scalar); 2279 } 2280 2281 case COMPLEX_TYPE: 2282 return build_complex (type, 2283 build_one_cst (TREE_TYPE (type)), 2284 build_zero_cst (TREE_TYPE (type))); 2285 2286 default: 2287 gcc_unreachable (); 2288 } 2289 } 2290 2291 /* Return an integer of type TYPE containing all 1's in as much precision as 2292 it contains, or a complex or vector whose subparts are such integers. */ 2293 2294 tree 2295 build_all_ones_cst (tree type) 2296 { 2297 if (TREE_CODE (type) == COMPLEX_TYPE) 2298 { 2299 tree scalar = build_all_ones_cst (TREE_TYPE (type)); 2300 return build_complex (type, scalar, scalar); 2301 } 2302 else 2303 return build_minus_one_cst (type); 2304 } 2305 2306 /* Return a constant of arithmetic type TYPE which is the 2307 opposite of the multiplicative identity of the set TYPE. */ 2308 2309 tree 2310 build_minus_one_cst (tree type) 2311 { 2312 switch (TREE_CODE (type)) 2313 { 2314 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE: 2315 case POINTER_TYPE: case REFERENCE_TYPE: 2316 case OFFSET_TYPE: 2317 return build_int_cst (type, -1); 2318 2319 case REAL_TYPE: 2320 return build_real (type, dconstm1); 2321 2322 case FIXED_POINT_TYPE: 2323 /* We can only generate 1 for accum types. */ 2324 gcc_assert (ALL_SCALAR_ACCUM_MODE_P (TYPE_MODE (type))); 2325 return build_fixed (type, 2326 fixed_from_double_int (double_int_minus_one, 2327 SCALAR_TYPE_MODE (type))); 2328 2329 case VECTOR_TYPE: 2330 { 2331 tree scalar = build_minus_one_cst (TREE_TYPE (type)); 2332 2333 return build_vector_from_val (type, scalar); 2334 } 2335 2336 case COMPLEX_TYPE: 2337 return build_complex (type, 2338 build_minus_one_cst (TREE_TYPE (type)), 2339 build_zero_cst (TREE_TYPE (type))); 2340 2341 default: 2342 gcc_unreachable (); 2343 } 2344 } 2345 2346 /* Build 0 constant of type TYPE. This is used by constructor folding 2347 and thus the constant should be represented in memory by 2348 zero(es). */ 2349 2350 tree 2351 build_zero_cst (tree type) 2352 { 2353 switch (TREE_CODE (type)) 2354 { 2355 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE: 2356 case POINTER_TYPE: case REFERENCE_TYPE: 2357 case OFFSET_TYPE: case NULLPTR_TYPE: 2358 return build_int_cst (type, 0); 2359 2360 case REAL_TYPE: 2361 return build_real (type, dconst0); 2362 2363 case FIXED_POINT_TYPE: 2364 return build_fixed (type, FCONST0 (TYPE_MODE (type))); 2365 2366 case VECTOR_TYPE: 2367 { 2368 tree scalar = build_zero_cst (TREE_TYPE (type)); 2369 2370 return build_vector_from_val (type, scalar); 2371 } 2372 2373 case COMPLEX_TYPE: 2374 { 2375 tree zero = build_zero_cst (TREE_TYPE (type)); 2376 2377 return build_complex (type, zero, zero); 2378 } 2379 2380 default: 2381 if (!AGGREGATE_TYPE_P (type)) 2382 return fold_convert (type, integer_zero_node); 2383 return build_constructor (type, NULL); 2384 } 2385 } 2386 2387 2388 /* Build a BINFO with LEN language slots. */ 2389 2390 tree 2391 make_tree_binfo (unsigned base_binfos MEM_STAT_DECL) 2392 { 2393 tree t; 2394 size_t length = (offsetof (struct tree_binfo, base_binfos) 2395 + vec<tree, va_gc>::embedded_size (base_binfos)); 2396 2397 record_node_allocation_statistics (TREE_BINFO, length); 2398 2399 t = ggc_alloc_tree_node_stat (length PASS_MEM_STAT); 2400 2401 memset (t, 0, offsetof (struct tree_binfo, base_binfos)); 2402 2403 TREE_SET_CODE (t, TREE_BINFO); 2404 2405 BINFO_BASE_BINFOS (t)->embedded_init (base_binfos); 2406 2407 return t; 2408 } 2409 2410 /* Create a CASE_LABEL_EXPR tree node and return it. */ 2411 2412 tree 2413 build_case_label (tree low_value, tree high_value, tree label_decl) 2414 { 2415 tree t = make_node (CASE_LABEL_EXPR); 2416 2417 TREE_TYPE (t) = void_type_node; 2418 SET_EXPR_LOCATION (t, DECL_SOURCE_LOCATION (label_decl)); 2419 2420 CASE_LOW (t) = low_value; 2421 CASE_HIGH (t) = high_value; 2422 CASE_LABEL (t) = label_decl; 2423 CASE_CHAIN (t) = NULL_TREE; 2424 2425 return t; 2426 } 2427 2428 /* Build a newly constructed INTEGER_CST node. LEN and EXT_LEN are the 2429 values of TREE_INT_CST_NUNITS and TREE_INT_CST_EXT_NUNITS respectively. 2430 The latter determines the length of the HOST_WIDE_INT vector. */ 2431 2432 tree 2433 make_int_cst (int len, int ext_len MEM_STAT_DECL) 2434 { 2435 tree t; 2436 int length = ((ext_len - 1) * sizeof (HOST_WIDE_INT) 2437 + sizeof (struct tree_int_cst)); 2438 2439 gcc_assert (len); 2440 record_node_allocation_statistics (INTEGER_CST, length); 2441 2442 t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT); 2443 2444 TREE_SET_CODE (t, INTEGER_CST); 2445 TREE_INT_CST_NUNITS (t) = len; 2446 TREE_INT_CST_EXT_NUNITS (t) = ext_len; 2447 /* to_offset can only be applied to trees that are offset_int-sized 2448 or smaller. EXT_LEN is correct if it fits, otherwise the constant 2449 must be exactly the precision of offset_int and so LEN is correct. */ 2450 if (ext_len <= OFFSET_INT_ELTS) 2451 TREE_INT_CST_OFFSET_NUNITS (t) = ext_len; 2452 else 2453 TREE_INT_CST_OFFSET_NUNITS (t) = len; 2454 2455 TREE_CONSTANT (t) = 1; 2456 2457 return t; 2458 } 2459 2460 /* Build a newly constructed TREE_VEC node of length LEN. */ 2461 2462 tree 2463 make_tree_vec (int len MEM_STAT_DECL) 2464 { 2465 tree t; 2466 size_t length = (len - 1) * sizeof (tree) + sizeof (struct tree_vec); 2467 2468 record_node_allocation_statistics (TREE_VEC, length); 2469 2470 t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT); 2471 2472 TREE_SET_CODE (t, TREE_VEC); 2473 TREE_VEC_LENGTH (t) = len; 2474 2475 return t; 2476 } 2477 2478 /* Grow a TREE_VEC node to new length LEN. */ 2479 2480 tree 2481 grow_tree_vec (tree v, int len MEM_STAT_DECL) 2482 { 2483 gcc_assert (TREE_CODE (v) == TREE_VEC); 2484 2485 int oldlen = TREE_VEC_LENGTH (v); 2486 gcc_assert (len > oldlen); 2487 2488 size_t oldlength = (oldlen - 1) * sizeof (tree) + sizeof (struct tree_vec); 2489 size_t length = (len - 1) * sizeof (tree) + sizeof (struct tree_vec); 2490 2491 record_node_allocation_statistics (TREE_VEC, length - oldlength); 2492 2493 v = (tree) ggc_realloc (v, length PASS_MEM_STAT); 2494 2495 TREE_VEC_LENGTH (v) = len; 2496 2497 return v; 2498 } 2499 2500 /* Return 1 if EXPR is the constant zero, whether it is integral, float or 2501 fixed, and scalar, complex or vector. */ 2502 2503 bool 2504 zerop (const_tree expr) 2505 { 2506 return (integer_zerop (expr) 2507 || real_zerop (expr) 2508 || fixed_zerop (expr)); 2509 } 2510 2511 /* Return 1 if EXPR is the integer constant zero or a complex constant 2512 of zero, or a location wrapper for such a constant. */ 2513 2514 bool 2515 integer_zerop (const_tree expr) 2516 { 2517 STRIP_ANY_LOCATION_WRAPPER (expr); 2518 2519 switch (TREE_CODE (expr)) 2520 { 2521 case INTEGER_CST: 2522 return wi::to_wide (expr) == 0; 2523 case COMPLEX_CST: 2524 return (integer_zerop (TREE_REALPART (expr)) 2525 && integer_zerop (TREE_IMAGPART (expr))); 2526 case VECTOR_CST: 2527 return (VECTOR_CST_NPATTERNS (expr) == 1 2528 && VECTOR_CST_DUPLICATE_P (expr) 2529 && integer_zerop (VECTOR_CST_ENCODED_ELT (expr, 0))); 2530 default: 2531 return false; 2532 } 2533 } 2534 2535 /* Return 1 if EXPR is the integer constant one or the corresponding 2536 complex constant, or a location wrapper for such a constant. */ 2537 2538 bool 2539 integer_onep (const_tree expr) 2540 { 2541 STRIP_ANY_LOCATION_WRAPPER (expr); 2542 2543 switch (TREE_CODE (expr)) 2544 { 2545 case INTEGER_CST: 2546 return wi::eq_p (wi::to_widest (expr), 1); 2547 case COMPLEX_CST: 2548 return (integer_onep (TREE_REALPART (expr)) 2549 && integer_zerop (TREE_IMAGPART (expr))); 2550 case VECTOR_CST: 2551 return (VECTOR_CST_NPATTERNS (expr) == 1 2552 && VECTOR_CST_DUPLICATE_P (expr) 2553 && integer_onep (VECTOR_CST_ENCODED_ELT (expr, 0))); 2554 default: 2555 return false; 2556 } 2557 } 2558 2559 /* Return 1 if EXPR is the integer constant one. For complex and vector, 2560 return 1 if every piece is the integer constant one. 2561 Also return 1 for location wrappers for such a constant. */ 2562 2563 bool 2564 integer_each_onep (const_tree expr) 2565 { 2566 STRIP_ANY_LOCATION_WRAPPER (expr); 2567 2568 if (TREE_CODE (expr) == COMPLEX_CST) 2569 return (integer_onep (TREE_REALPART (expr)) 2570 && integer_onep (TREE_IMAGPART (expr))); 2571 else 2572 return integer_onep (expr); 2573 } 2574 2575 /* Return 1 if EXPR is an integer containing all 1's in as much precision as 2576 it contains, or a complex or vector whose subparts are such integers, 2577 or a location wrapper for such a constant. */ 2578 2579 bool 2580 integer_all_onesp (const_tree expr) 2581 { 2582 STRIP_ANY_LOCATION_WRAPPER (expr); 2583 2584 if (TREE_CODE (expr) == COMPLEX_CST 2585 && integer_all_onesp (TREE_REALPART (expr)) 2586 && integer_all_onesp (TREE_IMAGPART (expr))) 2587 return true; 2588 2589 else if (TREE_CODE (expr) == VECTOR_CST) 2590 return (VECTOR_CST_NPATTERNS (expr) == 1 2591 && VECTOR_CST_DUPLICATE_P (expr) 2592 && integer_all_onesp (VECTOR_CST_ENCODED_ELT (expr, 0))); 2593 2594 else if (TREE_CODE (expr) != INTEGER_CST) 2595 return false; 2596 2597 return (wi::max_value (TYPE_PRECISION (TREE_TYPE (expr)), UNSIGNED) 2598 == wi::to_wide (expr)); 2599 } 2600 2601 /* Return 1 if EXPR is the integer constant minus one, or a location wrapper 2602 for such a constant. */ 2603 2604 bool 2605 integer_minus_onep (const_tree expr) 2606 { 2607 STRIP_ANY_LOCATION_WRAPPER (expr); 2608 2609 if (TREE_CODE (expr) == COMPLEX_CST) 2610 return (integer_all_onesp (TREE_REALPART (expr)) 2611 && integer_zerop (TREE_IMAGPART (expr))); 2612 else 2613 return integer_all_onesp (expr); 2614 } 2615 2616 /* Return 1 if EXPR is an integer constant that is a power of 2 (i.e., has only 2617 one bit on), or a location wrapper for such a constant. */ 2618 2619 bool 2620 integer_pow2p (const_tree expr) 2621 { 2622 STRIP_ANY_LOCATION_WRAPPER (expr); 2623 2624 if (TREE_CODE (expr) == COMPLEX_CST 2625 && integer_pow2p (TREE_REALPART (expr)) 2626 && integer_zerop (TREE_IMAGPART (expr))) 2627 return true; 2628 2629 if (TREE_CODE (expr) != INTEGER_CST) 2630 return false; 2631 2632 return wi::popcount (wi::to_wide (expr)) == 1; 2633 } 2634 2635 /* Return 1 if EXPR is an integer constant other than zero or a 2636 complex constant other than zero, or a location wrapper for such a 2637 constant. */ 2638 2639 bool 2640 integer_nonzerop (const_tree expr) 2641 { 2642 STRIP_ANY_LOCATION_WRAPPER (expr); 2643 2644 return ((TREE_CODE (expr) == INTEGER_CST 2645 && wi::to_wide (expr) != 0) 2646 || (TREE_CODE (expr) == COMPLEX_CST 2647 && (integer_nonzerop (TREE_REALPART (expr)) 2648 || integer_nonzerop (TREE_IMAGPART (expr))))); 2649 } 2650 2651 /* Return 1 if EXPR is the integer constant one. For vector, 2652 return 1 if every piece is the integer constant minus one 2653 (representing the value TRUE). 2654 Also return 1 for location wrappers for such a constant. */ 2655 2656 bool 2657 integer_truep (const_tree expr) 2658 { 2659 STRIP_ANY_LOCATION_WRAPPER (expr); 2660 2661 if (TREE_CODE (expr) == VECTOR_CST) 2662 return integer_all_onesp (expr); 2663 return integer_onep (expr); 2664 } 2665 2666 /* Return 1 if EXPR is the fixed-point constant zero, or a location wrapper 2667 for such a constant. */ 2668 2669 bool 2670 fixed_zerop (const_tree expr) 2671 { 2672 STRIP_ANY_LOCATION_WRAPPER (expr); 2673 2674 return (TREE_CODE (expr) == FIXED_CST 2675 && TREE_FIXED_CST (expr).data.is_zero ()); 2676 } 2677 2678 /* Return the power of two represented by a tree node known to be a 2679 power of two. */ 2680 2681 int 2682 tree_log2 (const_tree expr) 2683 { 2684 if (TREE_CODE (expr) == COMPLEX_CST) 2685 return tree_log2 (TREE_REALPART (expr)); 2686 2687 return wi::exact_log2 (wi::to_wide (expr)); 2688 } 2689 2690 /* Similar, but return the largest integer Y such that 2 ** Y is less 2691 than or equal to EXPR. */ 2692 2693 int 2694 tree_floor_log2 (const_tree expr) 2695 { 2696 if (TREE_CODE (expr) == COMPLEX_CST) 2697 return tree_log2 (TREE_REALPART (expr)); 2698 2699 return wi::floor_log2 (wi::to_wide (expr)); 2700 } 2701 2702 /* Return number of known trailing zero bits in EXPR, or, if the value of 2703 EXPR is known to be zero, the precision of it's type. */ 2704 2705 unsigned int 2706 tree_ctz (const_tree expr) 2707 { 2708 if (!INTEGRAL_TYPE_P (TREE_TYPE (expr)) 2709 && !POINTER_TYPE_P (TREE_TYPE (expr))) 2710 return 0; 2711 2712 unsigned int ret1, ret2, prec = TYPE_PRECISION (TREE_TYPE (expr)); 2713 switch (TREE_CODE (expr)) 2714 { 2715 case INTEGER_CST: 2716 ret1 = wi::ctz (wi::to_wide (expr)); 2717 return MIN (ret1, prec); 2718 case SSA_NAME: 2719 ret1 = wi::ctz (get_nonzero_bits (expr)); 2720 return MIN (ret1, prec); 2721 case PLUS_EXPR: 2722 case MINUS_EXPR: 2723 case BIT_IOR_EXPR: 2724 case BIT_XOR_EXPR: 2725 case MIN_EXPR: 2726 case MAX_EXPR: 2727 ret1 = tree_ctz (TREE_OPERAND (expr, 0)); 2728 if (ret1 == 0) 2729 return ret1; 2730 ret2 = tree_ctz (TREE_OPERAND (expr, 1)); 2731 return MIN (ret1, ret2); 2732 case POINTER_PLUS_EXPR: 2733 ret1 = tree_ctz (TREE_OPERAND (expr, 0)); 2734 ret2 = tree_ctz (TREE_OPERAND (expr, 1)); 2735 /* Second operand is sizetype, which could be in theory 2736 wider than pointer's precision. Make sure we never 2737 return more than prec. */ 2738 ret2 = MIN (ret2, prec); 2739 return MIN (ret1, ret2); 2740 case BIT_AND_EXPR: 2741 ret1 = tree_ctz (TREE_OPERAND (expr, 0)); 2742 ret2 = tree_ctz (TREE_OPERAND (expr, 1)); 2743 return MAX (ret1, ret2); 2744 case MULT_EXPR: 2745 ret1 = tree_ctz (TREE_OPERAND (expr, 0)); 2746 ret2 = tree_ctz (TREE_OPERAND (expr, 1)); 2747 return MIN (ret1 + ret2, prec); 2748 case LSHIFT_EXPR: 2749 ret1 = tree_ctz (TREE_OPERAND (expr, 0)); 2750 if (tree_fits_uhwi_p (TREE_OPERAND (expr, 1)) 2751 && (tree_to_uhwi (TREE_OPERAND (expr, 1)) < prec)) 2752 { 2753 ret2 = tree_to_uhwi (TREE_OPERAND (expr, 1)); 2754 return MIN (ret1 + ret2, prec); 2755 } 2756 return ret1; 2757 case RSHIFT_EXPR: 2758 if (tree_fits_uhwi_p (TREE_OPERAND (expr, 1)) 2759 && (tree_to_uhwi (TREE_OPERAND (expr, 1)) < prec)) 2760 { 2761 ret1 = tree_ctz (TREE_OPERAND (expr, 0)); 2762 ret2 = tree_to_uhwi (TREE_OPERAND (expr, 1)); 2763 if (ret1 > ret2) 2764 return ret1 - ret2; 2765 } 2766 return 0; 2767 case TRUNC_DIV_EXPR: 2768 case CEIL_DIV_EXPR: 2769 case FLOOR_DIV_EXPR: 2770 case ROUND_DIV_EXPR: 2771 case EXACT_DIV_EXPR: 2772 if (TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST 2773 && tree_int_cst_sgn (TREE_OPERAND (expr, 1)) == 1) 2774 { 2775 int l = tree_log2 (TREE_OPERAND (expr, 1)); 2776 if (l >= 0) 2777 { 2778 ret1 = tree_ctz (TREE_OPERAND (expr, 0)); 2779 ret2 = l; 2780 if (ret1 > ret2) 2781 return ret1 - ret2; 2782 } 2783 } 2784 return 0; 2785 CASE_CONVERT: 2786 ret1 = tree_ctz (TREE_OPERAND (expr, 0)); 2787 if (ret1 && ret1 == TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (expr, 0)))) 2788 ret1 = prec; 2789 return MIN (ret1, prec); 2790 case SAVE_EXPR: 2791 return tree_ctz (TREE_OPERAND (expr, 0)); 2792 case COND_EXPR: 2793 ret1 = tree_ctz (TREE_OPERAND (expr, 1)); 2794 if (ret1 == 0) 2795 return 0; 2796 ret2 = tree_ctz (TREE_OPERAND (expr, 2)); 2797 return MIN (ret1, ret2); 2798 case COMPOUND_EXPR: 2799 return tree_ctz (TREE_OPERAND (expr, 1)); 2800 case ADDR_EXPR: 2801 ret1 = get_pointer_alignment (CONST_CAST_TREE (expr)); 2802 if (ret1 > BITS_PER_UNIT) 2803 { 2804 ret1 = ctz_hwi (ret1 / BITS_PER_UNIT); 2805 return MIN (ret1, prec); 2806 } 2807 return 0; 2808 default: 2809 return 0; 2810 } 2811 } 2812 2813 /* Return 1 if EXPR is the real constant zero. Trailing zeroes matter for 2814 decimal float constants, so don't return 1 for them. 2815 Also return 1 for location wrappers around such a constant. */ 2816 2817 bool 2818 real_zerop (const_tree expr) 2819 { 2820 STRIP_ANY_LOCATION_WRAPPER (expr); 2821 2822 switch (TREE_CODE (expr)) 2823 { 2824 case REAL_CST: 2825 return real_equal (&TREE_REAL_CST (expr), &dconst0) 2826 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr)))); 2827 case COMPLEX_CST: 2828 return real_zerop (TREE_REALPART (expr)) 2829 && real_zerop (TREE_IMAGPART (expr)); 2830 case VECTOR_CST: 2831 { 2832 /* Don't simply check for a duplicate because the predicate 2833 accepts both +0.0 and -0.0. */ 2834 unsigned count = vector_cst_encoded_nelts (expr); 2835 for (unsigned int i = 0; i < count; ++i) 2836 if (!real_zerop (VECTOR_CST_ENCODED_ELT (expr, i))) 2837 return false; 2838 return true; 2839 } 2840 default: 2841 return false; 2842 } 2843 } 2844 2845 /* Return 1 if EXPR is the real constant one in real or complex form. 2846 Trailing zeroes matter for decimal float constants, so don't return 2847 1 for them. 2848 Also return 1 for location wrappers around such a constant. */ 2849 2850 bool 2851 real_onep (const_tree expr) 2852 { 2853 STRIP_ANY_LOCATION_WRAPPER (expr); 2854 2855 switch (TREE_CODE (expr)) 2856 { 2857 case REAL_CST: 2858 return real_equal (&TREE_REAL_CST (expr), &dconst1) 2859 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr)))); 2860 case COMPLEX_CST: 2861 return real_onep (TREE_REALPART (expr)) 2862 && real_zerop (TREE_IMAGPART (expr)); 2863 case VECTOR_CST: 2864 return (VECTOR_CST_NPATTERNS (expr) == 1 2865 && VECTOR_CST_DUPLICATE_P (expr) 2866 && real_onep (VECTOR_CST_ENCODED_ELT (expr, 0))); 2867 default: 2868 return false; 2869 } 2870 } 2871 2872 /* Return 1 if EXPR is the real constant minus one. Trailing zeroes 2873 matter for decimal float constants, so don't return 1 for them. 2874 Also return 1 for location wrappers around such a constant. */ 2875 2876 bool 2877 real_minus_onep (const_tree expr) 2878 { 2879 STRIP_ANY_LOCATION_WRAPPER (expr); 2880 2881 switch (TREE_CODE (expr)) 2882 { 2883 case REAL_CST: 2884 return real_equal (&TREE_REAL_CST (expr), &dconstm1) 2885 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr)))); 2886 case COMPLEX_CST: 2887 return real_minus_onep (TREE_REALPART (expr)) 2888 && real_zerop (TREE_IMAGPART (expr)); 2889 case VECTOR_CST: 2890 return (VECTOR_CST_NPATTERNS (expr) == 1 2891 && VECTOR_CST_DUPLICATE_P (expr) 2892 && real_minus_onep (VECTOR_CST_ENCODED_ELT (expr, 0))); 2893 default: 2894 return false; 2895 } 2896 } 2897 2898 /* Nonzero if EXP is a constant or a cast of a constant. */ 2899 2900 bool 2901 really_constant_p (const_tree exp) 2902 { 2903 /* This is not quite the same as STRIP_NOPS. It does more. */ 2904 while (CONVERT_EXPR_P (exp) 2905 || TREE_CODE (exp) == NON_LVALUE_EXPR) 2906 exp = TREE_OPERAND (exp, 0); 2907 return TREE_CONSTANT (exp); 2908 } 2909 2910 /* Return true if T holds a polynomial pointer difference, storing it in 2911 *VALUE if so. A true return means that T's precision is no greater 2912 than 64 bits, which is the largest address space we support, so *VALUE 2913 never loses precision. However, the signedness of the result does 2914 not necessarily match the signedness of T: sometimes an unsigned type 2915 like sizetype is used to encode a value that is actually negative. */ 2916 2917 bool 2918 ptrdiff_tree_p (const_tree t, poly_int64_pod *value) 2919 { 2920 if (!t) 2921 return false; 2922 if (TREE_CODE (t) == INTEGER_CST) 2923 { 2924 if (!cst_and_fits_in_hwi (t)) 2925 return false; 2926 *value = int_cst_value (t); 2927 return true; 2928 } 2929 if (POLY_INT_CST_P (t)) 2930 { 2931 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i) 2932 if (!cst_and_fits_in_hwi (POLY_INT_CST_COEFF (t, i))) 2933 return false; 2934 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i) 2935 value->coeffs[i] = int_cst_value (POLY_INT_CST_COEFF (t, i)); 2936 return true; 2937 } 2938 return false; 2939 } 2940 2941 poly_int64 2942 tree_to_poly_int64 (const_tree t) 2943 { 2944 gcc_assert (tree_fits_poly_int64_p (t)); 2945 if (POLY_INT_CST_P (t)) 2946 return poly_int_cst_value (t).force_shwi (); 2947 return TREE_INT_CST_LOW (t); 2948 } 2949 2950 poly_uint64 2951 tree_to_poly_uint64 (const_tree t) 2952 { 2953 gcc_assert (tree_fits_poly_uint64_p (t)); 2954 if (POLY_INT_CST_P (t)) 2955 return poly_int_cst_value (t).force_uhwi (); 2956 return TREE_INT_CST_LOW (t); 2957 } 2958 2959 /* Return first list element whose TREE_VALUE is ELEM. 2960 Return 0 if ELEM is not in LIST. */ 2961 2962 tree 2963 value_member (tree elem, tree list) 2964 { 2965 while (list) 2966 { 2967 if (elem == TREE_VALUE (list)) 2968 return list; 2969 list = TREE_CHAIN (list); 2970 } 2971 return NULL_TREE; 2972 } 2973 2974 /* Return first list element whose TREE_PURPOSE is ELEM. 2975 Return 0 if ELEM is not in LIST. */ 2976 2977 tree 2978 purpose_member (const_tree elem, tree list) 2979 { 2980 while (list) 2981 { 2982 if (elem == TREE_PURPOSE (list)) 2983 return list; 2984 list = TREE_CHAIN (list); 2985 } 2986 return NULL_TREE; 2987 } 2988 2989 /* Return true if ELEM is in V. */ 2990 2991 bool 2992 vec_member (const_tree elem, vec<tree, va_gc> *v) 2993 { 2994 unsigned ix; 2995 tree t; 2996 FOR_EACH_VEC_SAFE_ELT (v, ix, t) 2997 if (elem == t) 2998 return true; 2999 return false; 3000 } 3001 3002 /* Returns element number IDX (zero-origin) of chain CHAIN, or 3003 NULL_TREE. */ 3004 3005 tree 3006 chain_index (int idx, tree chain) 3007 { 3008 for (; chain && idx > 0; --idx) 3009 chain = TREE_CHAIN (chain); 3010 return chain; 3011 } 3012 3013 /* Return nonzero if ELEM is part of the chain CHAIN. */ 3014 3015 bool 3016 chain_member (const_tree elem, const_tree chain) 3017 { 3018 while (chain) 3019 { 3020 if (elem == chain) 3021 return true; 3022 chain = DECL_CHAIN (chain); 3023 } 3024 3025 return false; 3026 } 3027 3028 /* Return the length of a chain of nodes chained through TREE_CHAIN. 3029 We expect a null pointer to mark the end of the chain. 3030 This is the Lisp primitive `length'. */ 3031 3032 int 3033 list_length (const_tree t) 3034 { 3035 const_tree p = t; 3036 #ifdef ENABLE_TREE_CHECKING 3037 const_tree q = t; 3038 #endif 3039 int len = 0; 3040 3041 while (p) 3042 { 3043 p = TREE_CHAIN (p); 3044 #ifdef ENABLE_TREE_CHECKING 3045 if (len % 2) 3046 q = TREE_CHAIN (q); 3047 gcc_assert (p != q); 3048 #endif 3049 len++; 3050 } 3051 3052 return len; 3053 } 3054 3055 /* Returns the first FIELD_DECL in the TYPE_FIELDS of the RECORD_TYPE or 3056 UNION_TYPE TYPE, or NULL_TREE if none. */ 3057 3058 tree 3059 first_field (const_tree type) 3060 { 3061 tree t = TYPE_FIELDS (type); 3062 while (t && TREE_CODE (t) != FIELD_DECL) 3063 t = TREE_CHAIN (t); 3064 return t; 3065 } 3066 3067 /* Concatenate two chains of nodes (chained through TREE_CHAIN) 3068 by modifying the last node in chain 1 to point to chain 2. 3069 This is the Lisp primitive `nconc'. */ 3070 3071 tree 3072 chainon (tree op1, tree op2) 3073 { 3074 tree t1; 3075 3076 if (!op1) 3077 return op2; 3078 if (!op2) 3079 return op1; 3080 3081 for (t1 = op1; TREE_CHAIN (t1); t1 = TREE_CHAIN (t1)) 3082 continue; 3083 TREE_CHAIN (t1) = op2; 3084 3085 #ifdef ENABLE_TREE_CHECKING 3086 { 3087 tree t2; 3088 for (t2 = op2; t2; t2 = TREE_CHAIN (t2)) 3089 gcc_assert (t2 != t1); 3090 } 3091 #endif 3092 3093 return op1; 3094 } 3095 3096 /* Return the last node in a chain of nodes (chained through TREE_CHAIN). */ 3097 3098 tree 3099 tree_last (tree chain) 3100 { 3101 tree next; 3102 if (chain) 3103 while ((next = TREE_CHAIN (chain))) 3104 chain = next; 3105 return chain; 3106 } 3107 3108 /* Reverse the order of elements in the chain T, 3109 and return the new head of the chain (old last element). */ 3110 3111 tree 3112 nreverse (tree t) 3113 { 3114 tree prev = 0, decl, next; 3115 for (decl = t; decl; decl = next) 3116 { 3117 /* We shouldn't be using this function to reverse BLOCK chains; we 3118 have blocks_nreverse for that. */ 3119 gcc_checking_assert (TREE_CODE (decl) != BLOCK); 3120 next = TREE_CHAIN (decl); 3121 TREE_CHAIN (decl) = prev; 3122 prev = decl; 3123 } 3124 return prev; 3125 } 3126 3127 /* Return a newly created TREE_LIST node whose 3128 purpose and value fields are PARM and VALUE. */ 3129 3130 tree 3131 build_tree_list (tree parm, tree value MEM_STAT_DECL) 3132 { 3133 tree t = make_node (TREE_LIST PASS_MEM_STAT); 3134 TREE_PURPOSE (t) = parm; 3135 TREE_VALUE (t) = value; 3136 return t; 3137 } 3138 3139 /* Build a chain of TREE_LIST nodes from a vector. */ 3140 3141 tree 3142 build_tree_list_vec (const vec<tree, va_gc> *vec MEM_STAT_DECL) 3143 { 3144 tree ret = NULL_TREE; 3145 tree *pp = &ret; 3146 unsigned int i; 3147 tree t; 3148 FOR_EACH_VEC_SAFE_ELT (vec, i, t) 3149 { 3150 *pp = build_tree_list (NULL, t PASS_MEM_STAT); 3151 pp = &TREE_CHAIN (*pp); 3152 } 3153 return ret; 3154 } 3155 3156 /* Return a newly created TREE_LIST node whose 3157 purpose and value fields are PURPOSE and VALUE 3158 and whose TREE_CHAIN is CHAIN. */ 3159 3160 tree 3161 tree_cons (tree purpose, tree value, tree chain MEM_STAT_DECL) 3162 { 3163 tree node; 3164 3165 node = ggc_alloc_tree_node_stat (sizeof (struct tree_list) PASS_MEM_STAT); 3166 memset (node, 0, sizeof (struct tree_common)); 3167 3168 record_node_allocation_statistics (TREE_LIST, sizeof (struct tree_list)); 3169 3170 TREE_SET_CODE (node, TREE_LIST); 3171 TREE_CHAIN (node) = chain; 3172 TREE_PURPOSE (node) = purpose; 3173 TREE_VALUE (node) = value; 3174 return node; 3175 } 3176 3177 /* Return the values of the elements of a CONSTRUCTOR as a vector of 3178 trees. */ 3179 3180 vec<tree, va_gc> * 3181 ctor_to_vec (tree ctor) 3182 { 3183 vec<tree, va_gc> *vec; 3184 vec_alloc (vec, CONSTRUCTOR_NELTS (ctor)); 3185 unsigned int ix; 3186 tree val; 3187 3188 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (ctor), ix, val) 3189 vec->quick_push (val); 3190 3191 return vec; 3192 } 3193 3194 /* Return the size nominally occupied by an object of type TYPE 3195 when it resides in memory. The value is measured in units of bytes, 3196 and its data type is that normally used for type sizes 3197 (which is the first type created by make_signed_type or 3198 make_unsigned_type). */ 3199 3200 tree 3201 size_in_bytes_loc (location_t loc, const_tree type) 3202 { 3203 tree t; 3204 3205 if (type == error_mark_node) 3206 return integer_zero_node; 3207 3208 type = TYPE_MAIN_VARIANT (type); 3209 t = TYPE_SIZE_UNIT (type); 3210 3211 if (t == 0) 3212 { 3213 lang_hooks.types.incomplete_type_error (loc, NULL_TREE, type); 3214 return size_zero_node; 3215 } 3216 3217 return t; 3218 } 3219 3220 /* Return the size of TYPE (in bytes) as a wide integer 3221 or return -1 if the size can vary or is larger than an integer. */ 3222 3223 HOST_WIDE_INT 3224 int_size_in_bytes (const_tree type) 3225 { 3226 tree t; 3227 3228 if (type == error_mark_node) 3229 return 0; 3230 3231 type = TYPE_MAIN_VARIANT (type); 3232 t = TYPE_SIZE_UNIT (type); 3233 3234 if (t && tree_fits_uhwi_p (t)) 3235 return TREE_INT_CST_LOW (t); 3236 else 3237 return -1; 3238 } 3239 3240 /* Return the maximum size of TYPE (in bytes) as a wide integer 3241 or return -1 if the size can vary or is larger than an integer. */ 3242 3243 HOST_WIDE_INT 3244 max_int_size_in_bytes (const_tree type) 3245 { 3246 HOST_WIDE_INT size = -1; 3247 tree size_tree; 3248 3249 /* If this is an array type, check for a possible MAX_SIZE attached. */ 3250 3251 if (TREE_CODE (type) == ARRAY_TYPE) 3252 { 3253 size_tree = TYPE_ARRAY_MAX_SIZE (type); 3254 3255 if (size_tree && tree_fits_uhwi_p (size_tree)) 3256 size = tree_to_uhwi (size_tree); 3257 } 3258 3259 /* If we still haven't been able to get a size, see if the language 3260 can compute a maximum size. */ 3261 3262 if (size == -1) 3263 { 3264 size_tree = lang_hooks.types.max_size (type); 3265 3266 if (size_tree && tree_fits_uhwi_p (size_tree)) 3267 size = tree_to_uhwi (size_tree); 3268 } 3269 3270 return size; 3271 } 3272 3273 /* Return the bit position of FIELD, in bits from the start of the record. 3274 This is a tree of type bitsizetype. */ 3275 3276 tree 3277 bit_position (const_tree field) 3278 { 3279 return bit_from_pos (DECL_FIELD_OFFSET (field), 3280 DECL_FIELD_BIT_OFFSET (field)); 3281 } 3282 3283 /* Return the byte position of FIELD, in bytes from the start of the record. 3284 This is a tree of type sizetype. */ 3285 3286 tree 3287 byte_position (const_tree field) 3288 { 3289 return byte_from_pos (DECL_FIELD_OFFSET (field), 3290 DECL_FIELD_BIT_OFFSET (field)); 3291 } 3292 3293 /* Likewise, but return as an integer. It must be representable in 3294 that way (since it could be a signed value, we don't have the 3295 option of returning -1 like int_size_in_byte can. */ 3296 3297 HOST_WIDE_INT 3298 int_byte_position (const_tree field) 3299 { 3300 return tree_to_shwi (byte_position (field)); 3301 } 3302 3303 /* Return the strictest alignment, in bits, that T is known to have. */ 3304 3305 unsigned int 3306 expr_align (const_tree t) 3307 { 3308 unsigned int align0, align1; 3309 3310 switch (TREE_CODE (t)) 3311 { 3312 CASE_CONVERT: case NON_LVALUE_EXPR: 3313 /* If we have conversions, we know that the alignment of the 3314 object must meet each of the alignments of the types. */ 3315 align0 = expr_align (TREE_OPERAND (t, 0)); 3316 align1 = TYPE_ALIGN (TREE_TYPE (t)); 3317 return MAX (align0, align1); 3318 3319 case SAVE_EXPR: case COMPOUND_EXPR: case MODIFY_EXPR: 3320 case INIT_EXPR: case TARGET_EXPR: case WITH_CLEANUP_EXPR: 3321 case CLEANUP_POINT_EXPR: 3322 /* These don't change the alignment of an object. */ 3323 return expr_align (TREE_OPERAND (t, 0)); 3324 3325 case COND_EXPR: 3326 /* The best we can do is say that the alignment is the least aligned 3327 of the two arms. */ 3328 align0 = expr_align (TREE_OPERAND (t, 1)); 3329 align1 = expr_align (TREE_OPERAND (t, 2)); 3330 return MIN (align0, align1); 3331 3332 /* FIXME: LABEL_DECL and CONST_DECL never have DECL_ALIGN set 3333 meaningfully, it's always 1. */ 3334 case LABEL_DECL: case CONST_DECL: 3335 case VAR_DECL: case PARM_DECL: case RESULT_DECL: 3336 case FUNCTION_DECL: 3337 gcc_assert (DECL_ALIGN (t) != 0); 3338 return DECL_ALIGN (t); 3339 3340 default: 3341 break; 3342 } 3343 3344 /* Otherwise take the alignment from that of the type. */ 3345 return TYPE_ALIGN (TREE_TYPE (t)); 3346 } 3347 3348 /* Return, as a tree node, the number of elements for TYPE (which is an 3349 ARRAY_TYPE) minus one. This counts only elements of the top array. */ 3350 3351 tree 3352 array_type_nelts (const_tree type) 3353 { 3354 tree index_type, min, max; 3355 3356 /* If they did it with unspecified bounds, then we should have already 3357 given an error about it before we got here. */ 3358 if (! TYPE_DOMAIN (type)) 3359 return error_mark_node; 3360 3361 index_type = TYPE_DOMAIN (type); 3362 min = TYPE_MIN_VALUE (index_type); 3363 max = TYPE_MAX_VALUE (index_type); 3364 3365 /* TYPE_MAX_VALUE may not be set if the array has unknown length. */ 3366 if (!max) 3367 return error_mark_node; 3368 3369 return (integer_zerop (min) 3370 ? max 3371 : fold_build2 (MINUS_EXPR, TREE_TYPE (max), max, min)); 3372 } 3373 3374 /* If arg is static -- a reference to an object in static storage -- then 3375 return the object. This is not the same as the C meaning of `static'. 3376 If arg isn't static, return NULL. */ 3377 3378 tree 3379 staticp (tree arg) 3380 { 3381 switch (TREE_CODE (arg)) 3382 { 3383 case FUNCTION_DECL: 3384 /* Nested functions are static, even though taking their address will 3385 involve a trampoline as we unnest the nested function and create 3386 the trampoline on the tree level. */ 3387 return arg; 3388 3389 case VAR_DECL: 3390 return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg)) 3391 && ! DECL_THREAD_LOCAL_P (arg) 3392 && ! DECL_DLLIMPORT_P (arg) 3393 ? arg : NULL); 3394 3395 case CONST_DECL: 3396 return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg)) 3397 ? arg : NULL); 3398 3399 case CONSTRUCTOR: 3400 return TREE_STATIC (arg) ? arg : NULL; 3401 3402 case LABEL_DECL: 3403 case STRING_CST: 3404 return arg; 3405 3406 case COMPONENT_REF: 3407 /* If the thing being referenced is not a field, then it is 3408 something language specific. */ 3409 gcc_assert (TREE_CODE (TREE_OPERAND (arg, 1)) == FIELD_DECL); 3410 3411 /* If we are referencing a bitfield, we can't evaluate an 3412 ADDR_EXPR at compile time and so it isn't a constant. */ 3413 if (DECL_BIT_FIELD (TREE_OPERAND (arg, 1))) 3414 return NULL; 3415 3416 return staticp (TREE_OPERAND (arg, 0)); 3417 3418 case BIT_FIELD_REF: 3419 return NULL; 3420 3421 case INDIRECT_REF: 3422 return TREE_CONSTANT (TREE_OPERAND (arg, 0)) ? arg : NULL; 3423 3424 case ARRAY_REF: 3425 case ARRAY_RANGE_REF: 3426 if (TREE_CODE (TYPE_SIZE (TREE_TYPE (arg))) == INTEGER_CST 3427 && TREE_CODE (TREE_OPERAND (arg, 1)) == INTEGER_CST) 3428 return staticp (TREE_OPERAND (arg, 0)); 3429 else 3430 return NULL; 3431 3432 case COMPOUND_LITERAL_EXPR: 3433 return TREE_STATIC (COMPOUND_LITERAL_EXPR_DECL (arg)) ? arg : NULL; 3434 3435 default: 3436 return NULL; 3437 } 3438 } 3439 3440 3441 3442 3443 /* Return whether OP is a DECL whose address is function-invariant. */ 3444 3445 bool 3446 decl_address_invariant_p (const_tree op) 3447 { 3448 /* The conditions below are slightly less strict than the one in 3449 staticp. */ 3450 3451 switch (TREE_CODE (op)) 3452 { 3453 case PARM_DECL: 3454 case RESULT_DECL: 3455 case LABEL_DECL: 3456 case FUNCTION_DECL: 3457 return true; 3458 3459 case VAR_DECL: 3460 if ((TREE_STATIC (op) || DECL_EXTERNAL (op)) 3461 || DECL_THREAD_LOCAL_P (op) 3462 || DECL_CONTEXT (op) == current_function_decl 3463 || decl_function_context (op) == current_function_decl) 3464 return true; 3465 break; 3466 3467 case CONST_DECL: 3468 if ((TREE_STATIC (op) || DECL_EXTERNAL (op)) 3469 || decl_function_context (op) == current_function_decl) 3470 return true; 3471 break; 3472 3473 default: 3474 break; 3475 } 3476 3477 return false; 3478 } 3479 3480 /* Return whether OP is a DECL whose address is interprocedural-invariant. */ 3481 3482 bool 3483 decl_address_ip_invariant_p (const_tree op) 3484 { 3485 /* The conditions below are slightly less strict than the one in 3486 staticp. */ 3487 3488 switch (TREE_CODE (op)) 3489 { 3490 case LABEL_DECL: 3491 case FUNCTION_DECL: 3492 case STRING_CST: 3493 return true; 3494 3495 case VAR_DECL: 3496 if (((TREE_STATIC (op) || DECL_EXTERNAL (op)) 3497 && !DECL_DLLIMPORT_P (op)) 3498 || DECL_THREAD_LOCAL_P (op)) 3499 return true; 3500 break; 3501 3502 case CONST_DECL: 3503 if ((TREE_STATIC (op) || DECL_EXTERNAL (op))) 3504 return true; 3505 break; 3506 3507 default: 3508 break; 3509 } 3510 3511 return false; 3512 } 3513 3514 3515 /* Return true if T is function-invariant (internal function, does 3516 not handle arithmetic; that's handled in skip_simple_arithmetic and 3517 tree_invariant_p). */ 3518 3519 static bool 3520 tree_invariant_p_1 (tree t) 3521 { 3522 tree op; 3523 3524 if (TREE_CONSTANT (t) 3525 || (TREE_READONLY (t) && !TREE_SIDE_EFFECTS (t))) 3526 return true; 3527 3528 switch (TREE_CODE (t)) 3529 { 3530 case SAVE_EXPR: 3531 return true; 3532 3533 case ADDR_EXPR: 3534 op = TREE_OPERAND (t, 0); 3535 while (handled_component_p (op)) 3536 { 3537 switch (TREE_CODE (op)) 3538 { 3539 case ARRAY_REF: 3540 case ARRAY_RANGE_REF: 3541 if (!tree_invariant_p (TREE_OPERAND (op, 1)) 3542 || TREE_OPERAND (op, 2) != NULL_TREE 3543 || TREE_OPERAND (op, 3) != NULL_TREE) 3544 return false; 3545 break; 3546 3547 case COMPONENT_REF: 3548 if (TREE_OPERAND (op, 2) != NULL_TREE) 3549 return false; 3550 break; 3551 3552 default:; 3553 } 3554 op = TREE_OPERAND (op, 0); 3555 } 3556 3557 return CONSTANT_CLASS_P (op) || decl_address_invariant_p (op); 3558 3559 default: 3560 break; 3561 } 3562 3563 return false; 3564 } 3565 3566 /* Return true if T is function-invariant. */ 3567 3568 bool 3569 tree_invariant_p (tree t) 3570 { 3571 tree inner = skip_simple_arithmetic (t); 3572 return tree_invariant_p_1 (inner); 3573 } 3574 3575 /* Wrap a SAVE_EXPR around EXPR, if appropriate. 3576 Do this to any expression which may be used in more than one place, 3577 but must be evaluated only once. 3578 3579 Normally, expand_expr would reevaluate the expression each time. 3580 Calling save_expr produces something that is evaluated and recorded 3581 the first time expand_expr is called on it. Subsequent calls to 3582 expand_expr just reuse the recorded value. 3583 3584 The call to expand_expr that generates code that actually computes 3585 the value is the first call *at compile time*. Subsequent calls 3586 *at compile time* generate code to use the saved value. 3587 This produces correct result provided that *at run time* control 3588 always flows through the insns made by the first expand_expr 3589 before reaching the other places where the save_expr was evaluated. 3590 You, the caller of save_expr, must make sure this is so. 3591 3592 Constants, and certain read-only nodes, are returned with no 3593 SAVE_EXPR because that is safe. Expressions containing placeholders 3594 are not touched; see tree.def for an explanation of what these 3595 are used for. */ 3596 3597 tree 3598 save_expr (tree expr) 3599 { 3600 tree inner; 3601 3602 /* If the tree evaluates to a constant, then we don't want to hide that 3603 fact (i.e. this allows further folding, and direct checks for constants). 3604 However, a read-only object that has side effects cannot be bypassed. 3605 Since it is no problem to reevaluate literals, we just return the 3606 literal node. */ 3607 inner = skip_simple_arithmetic (expr); 3608 if (TREE_CODE (inner) == ERROR_MARK) 3609 return inner; 3610 3611 if (tree_invariant_p_1 (inner)) 3612 return expr; 3613 3614 /* If INNER contains a PLACEHOLDER_EXPR, we must evaluate it each time, since 3615 it means that the size or offset of some field of an object depends on 3616 the value within another field. 3617 3618 Note that it must not be the case that EXPR contains both a PLACEHOLDER_EXPR 3619 and some variable since it would then need to be both evaluated once and 3620 evaluated more than once. Front-ends must assure this case cannot 3621 happen by surrounding any such subexpressions in their own SAVE_EXPR 3622 and forcing evaluation at the proper time. */ 3623 if (contains_placeholder_p (inner)) 3624 return expr; 3625 3626 expr = build1_loc (EXPR_LOCATION (expr), SAVE_EXPR, TREE_TYPE (expr), expr); 3627 3628 /* This expression might be placed ahead of a jump to ensure that the 3629 value was computed on both sides of the jump. So make sure it isn't 3630 eliminated as dead. */ 3631 TREE_SIDE_EFFECTS (expr) = 1; 3632 return expr; 3633 } 3634 3635 /* Look inside EXPR into any simple arithmetic operations. Return the 3636 outermost non-arithmetic or non-invariant node. */ 3637 3638 tree 3639 skip_simple_arithmetic (tree expr) 3640 { 3641 /* We don't care about whether this can be used as an lvalue in this 3642 context. */ 3643 while (TREE_CODE (expr) == NON_LVALUE_EXPR) 3644 expr = TREE_OPERAND (expr, 0); 3645 3646 /* If we have simple operations applied to a SAVE_EXPR or to a SAVE_EXPR and 3647 a constant, it will be more efficient to not make another SAVE_EXPR since 3648 it will allow better simplification and GCSE will be able to merge the 3649 computations if they actually occur. */ 3650 while (true) 3651 { 3652 if (UNARY_CLASS_P (expr)) 3653 expr = TREE_OPERAND (expr, 0); 3654 else if (BINARY_CLASS_P (expr)) 3655 { 3656 if (tree_invariant_p (TREE_OPERAND (expr, 1))) 3657 expr = TREE_OPERAND (expr, 0); 3658 else if (tree_invariant_p (TREE_OPERAND (expr, 0))) 3659 expr = TREE_OPERAND (expr, 1); 3660 else 3661 break; 3662 } 3663 else 3664 break; 3665 } 3666 3667 return expr; 3668 } 3669 3670 /* Look inside EXPR into simple arithmetic operations involving constants. 3671 Return the outermost non-arithmetic or non-constant node. */ 3672 3673 tree 3674 skip_simple_constant_arithmetic (tree expr) 3675 { 3676 while (TREE_CODE (expr) == NON_LVALUE_EXPR) 3677 expr = TREE_OPERAND (expr, 0); 3678 3679 while (true) 3680 { 3681 if (UNARY_CLASS_P (expr)) 3682 expr = TREE_OPERAND (expr, 0); 3683 else if (BINARY_CLASS_P (expr)) 3684 { 3685 if (TREE_CONSTANT (TREE_OPERAND (expr, 1))) 3686 expr = TREE_OPERAND (expr, 0); 3687 else if (TREE_CONSTANT (TREE_OPERAND (expr, 0))) 3688 expr = TREE_OPERAND (expr, 1); 3689 else 3690 break; 3691 } 3692 else 3693 break; 3694 } 3695 3696 return expr; 3697 } 3698 3699 /* Return which tree structure is used by T. */ 3700 3701 enum tree_node_structure_enum 3702 tree_node_structure (const_tree t) 3703 { 3704 const enum tree_code code = TREE_CODE (t); 3705 return tree_node_structure_for_code (code); 3706 } 3707 3708 /* Set various status flags when building a CALL_EXPR object T. */ 3709 3710 static void 3711 process_call_operands (tree t) 3712 { 3713 bool side_effects = TREE_SIDE_EFFECTS (t); 3714 bool read_only = false; 3715 int i = call_expr_flags (t); 3716 3717 /* Calls have side-effects, except those to const or pure functions. */ 3718 if ((i & ECF_LOOPING_CONST_OR_PURE) || !(i & (ECF_CONST | ECF_PURE))) 3719 side_effects = true; 3720 /* Propagate TREE_READONLY of arguments for const functions. */ 3721 if (i & ECF_CONST) 3722 read_only = true; 3723 3724 if (!side_effects || read_only) 3725 for (i = 1; i < TREE_OPERAND_LENGTH (t); i++) 3726 { 3727 tree op = TREE_OPERAND (t, i); 3728 if (op && TREE_SIDE_EFFECTS (op)) 3729 side_effects = true; 3730 if (op && !TREE_READONLY (op) && !CONSTANT_CLASS_P (op)) 3731 read_only = false; 3732 } 3733 3734 TREE_SIDE_EFFECTS (t) = side_effects; 3735 TREE_READONLY (t) = read_only; 3736 } 3737 3738 /* Return true if EXP contains a PLACEHOLDER_EXPR, i.e. if it represents a 3739 size or offset that depends on a field within a record. */ 3740 3741 bool 3742 contains_placeholder_p (const_tree exp) 3743 { 3744 enum tree_code code; 3745 3746 if (!exp) 3747 return 0; 3748 3749 code = TREE_CODE (exp); 3750 if (code == PLACEHOLDER_EXPR) 3751 return 1; 3752 3753 switch (TREE_CODE_CLASS (code)) 3754 { 3755 case tcc_reference: 3756 /* Don't look at any PLACEHOLDER_EXPRs that might be in index or bit 3757 position computations since they will be converted into a 3758 WITH_RECORD_EXPR involving the reference, which will assume 3759 here will be valid. */ 3760 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0)); 3761 3762 case tcc_exceptional: 3763 if (code == TREE_LIST) 3764 return (CONTAINS_PLACEHOLDER_P (TREE_VALUE (exp)) 3765 || CONTAINS_PLACEHOLDER_P (TREE_CHAIN (exp))); 3766 break; 3767 3768 case tcc_unary: 3769 case tcc_binary: 3770 case tcc_comparison: 3771 case tcc_expression: 3772 switch (code) 3773 { 3774 case COMPOUND_EXPR: 3775 /* Ignoring the first operand isn't quite right, but works best. */ 3776 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1)); 3777 3778 case COND_EXPR: 3779 return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0)) 3780 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1)) 3781 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 2))); 3782 3783 case SAVE_EXPR: 3784 /* The save_expr function never wraps anything containing 3785 a PLACEHOLDER_EXPR. */ 3786 return 0; 3787 3788 default: 3789 break; 3790 } 3791 3792 switch (TREE_CODE_LENGTH (code)) 3793 { 3794 case 1: 3795 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0)); 3796 case 2: 3797 return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0)) 3798 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1))); 3799 default: 3800 return 0; 3801 } 3802 3803 case tcc_vl_exp: 3804 switch (code) 3805 { 3806 case CALL_EXPR: 3807 { 3808 const_tree arg; 3809 const_call_expr_arg_iterator iter; 3810 FOR_EACH_CONST_CALL_EXPR_ARG (arg, iter, exp) 3811 if (CONTAINS_PLACEHOLDER_P (arg)) 3812 return 1; 3813 return 0; 3814 } 3815 default: 3816 return 0; 3817 } 3818 3819 default: 3820 return 0; 3821 } 3822 return 0; 3823 } 3824 3825 /* Return true if any part of the structure of TYPE involves a PLACEHOLDER_EXPR 3826 directly. This includes size, bounds, qualifiers (for QUAL_UNION_TYPE) and 3827 field positions. */ 3828 3829 static bool 3830 type_contains_placeholder_1 (const_tree type) 3831 { 3832 /* If the size contains a placeholder or the parent type (component type in 3833 the case of arrays) type involves a placeholder, this type does. */ 3834 if (CONTAINS_PLACEHOLDER_P (TYPE_SIZE (type)) 3835 || CONTAINS_PLACEHOLDER_P (TYPE_SIZE_UNIT (type)) 3836 || (!POINTER_TYPE_P (type) 3837 && TREE_TYPE (type) 3838 && type_contains_placeholder_p (TREE_TYPE (type)))) 3839 return true; 3840 3841 /* Now do type-specific checks. Note that the last part of the check above 3842 greatly limits what we have to do below. */ 3843 switch (TREE_CODE (type)) 3844 { 3845 case VOID_TYPE: 3846 case COMPLEX_TYPE: 3847 case ENUMERAL_TYPE: 3848 case BOOLEAN_TYPE: 3849 case POINTER_TYPE: 3850 case OFFSET_TYPE: 3851 case REFERENCE_TYPE: 3852 case METHOD_TYPE: 3853 case FUNCTION_TYPE: 3854 case VECTOR_TYPE: 3855 case NULLPTR_TYPE: 3856 return false; 3857 3858 case INTEGER_TYPE: 3859 case REAL_TYPE: 3860 case FIXED_POINT_TYPE: 3861 /* Here we just check the bounds. */ 3862 return (CONTAINS_PLACEHOLDER_P (TYPE_MIN_VALUE (type)) 3863 || CONTAINS_PLACEHOLDER_P (TYPE_MAX_VALUE (type))); 3864 3865 case ARRAY_TYPE: 3866 /* We have already checked the component type above, so just check 3867 the domain type. Flexible array members have a null domain. */ 3868 return TYPE_DOMAIN (type) ? 3869 type_contains_placeholder_p (TYPE_DOMAIN (type)) : false; 3870 3871 case RECORD_TYPE: 3872 case UNION_TYPE: 3873 case QUAL_UNION_TYPE: 3874 { 3875 tree field; 3876 3877 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field)) 3878 if (TREE_CODE (field) == FIELD_DECL 3879 && (CONTAINS_PLACEHOLDER_P (DECL_FIELD_OFFSET (field)) 3880 || (TREE_CODE (type) == QUAL_UNION_TYPE 3881 && CONTAINS_PLACEHOLDER_P (DECL_QUALIFIER (field))) 3882 || type_contains_placeholder_p (TREE_TYPE (field)))) 3883 return true; 3884 3885 return false; 3886 } 3887 3888 default: 3889 gcc_unreachable (); 3890 } 3891 } 3892 3893 /* Wrapper around above function used to cache its result. */ 3894 3895 bool 3896 type_contains_placeholder_p (tree type) 3897 { 3898 bool result; 3899 3900 /* If the contains_placeholder_bits field has been initialized, 3901 then we know the answer. */ 3902 if (TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) > 0) 3903 return TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) - 1; 3904 3905 /* Indicate that we've seen this type node, and the answer is false. 3906 This is what we want to return if we run into recursion via fields. */ 3907 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) = 1; 3908 3909 /* Compute the real value. */ 3910 result = type_contains_placeholder_1 (type); 3911 3912 /* Store the real value. */ 3913 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) = result + 1; 3914 3915 return result; 3916 } 3917 3918 /* Push tree EXP onto vector QUEUE if it is not already present. */ 3919 3920 static void 3921 push_without_duplicates (tree exp, vec<tree> *queue) 3922 { 3923 unsigned int i; 3924 tree iter; 3925 3926 FOR_EACH_VEC_ELT (*queue, i, iter) 3927 if (simple_cst_equal (iter, exp) == 1) 3928 break; 3929 3930 if (!iter) 3931 queue->safe_push (exp); 3932 } 3933 3934 /* Given a tree EXP, find all occurrences of references to fields 3935 in a PLACEHOLDER_EXPR and place them in vector REFS without 3936 duplicates. Also record VAR_DECLs and CONST_DECLs. Note that 3937 we assume here that EXP contains only arithmetic expressions 3938 or CALL_EXPRs with PLACEHOLDER_EXPRs occurring only in their 3939 argument list. */ 3940 3941 void 3942 find_placeholder_in_expr (tree exp, vec<tree> *refs) 3943 { 3944 enum tree_code code = TREE_CODE (exp); 3945 tree inner; 3946 int i; 3947 3948 /* We handle TREE_LIST and COMPONENT_REF separately. */ 3949 if (code == TREE_LIST) 3950 { 3951 FIND_PLACEHOLDER_IN_EXPR (TREE_CHAIN (exp), refs); 3952 FIND_PLACEHOLDER_IN_EXPR (TREE_VALUE (exp), refs); 3953 } 3954 else if (code == COMPONENT_REF) 3955 { 3956 for (inner = TREE_OPERAND (exp, 0); 3957 REFERENCE_CLASS_P (inner); 3958 inner = TREE_OPERAND (inner, 0)) 3959 ; 3960 3961 if (TREE_CODE (inner) == PLACEHOLDER_EXPR) 3962 push_without_duplicates (exp, refs); 3963 else 3964 FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), refs); 3965 } 3966 else 3967 switch (TREE_CODE_CLASS (code)) 3968 { 3969 case tcc_constant: 3970 break; 3971 3972 case tcc_declaration: 3973 /* Variables allocated to static storage can stay. */ 3974 if (!TREE_STATIC (exp)) 3975 push_without_duplicates (exp, refs); 3976 break; 3977 3978 case tcc_expression: 3979 /* This is the pattern built in ada/make_aligning_type. */ 3980 if (code == ADDR_EXPR 3981 && TREE_CODE (TREE_OPERAND (exp, 0)) == PLACEHOLDER_EXPR) 3982 { 3983 push_without_duplicates (exp, refs); 3984 break; 3985 } 3986 3987 /* Fall through. */ 3988 3989 case tcc_exceptional: 3990 case tcc_unary: 3991 case tcc_binary: 3992 case tcc_comparison: 3993 case tcc_reference: 3994 for (i = 0; i < TREE_CODE_LENGTH (code); i++) 3995 FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, i), refs); 3996 break; 3997 3998 case tcc_vl_exp: 3999 for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++) 4000 FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, i), refs); 4001 break; 4002 4003 default: 4004 gcc_unreachable (); 4005 } 4006 } 4007 4008 /* Given a tree EXP, a FIELD_DECL F, and a replacement value R, 4009 return a tree with all occurrences of references to F in a 4010 PLACEHOLDER_EXPR replaced by R. Also handle VAR_DECLs and 4011 CONST_DECLs. Note that we assume here that EXP contains only 4012 arithmetic expressions or CALL_EXPRs with PLACEHOLDER_EXPRs 4013 occurring only in their argument list. */ 4014 4015 tree 4016 substitute_in_expr (tree exp, tree f, tree r) 4017 { 4018 enum tree_code code = TREE_CODE (exp); 4019 tree op0, op1, op2, op3; 4020 tree new_tree; 4021 4022 /* We handle TREE_LIST and COMPONENT_REF separately. */ 4023 if (code == TREE_LIST) 4024 { 4025 op0 = SUBSTITUTE_IN_EXPR (TREE_CHAIN (exp), f, r); 4026 op1 = SUBSTITUTE_IN_EXPR (TREE_VALUE (exp), f, r); 4027 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp)) 4028 return exp; 4029 4030 return tree_cons (TREE_PURPOSE (exp), op1, op0); 4031 } 4032 else if (code == COMPONENT_REF) 4033 { 4034 tree inner; 4035 4036 /* If this expression is getting a value from a PLACEHOLDER_EXPR 4037 and it is the right field, replace it with R. */ 4038 for (inner = TREE_OPERAND (exp, 0); 4039 REFERENCE_CLASS_P (inner); 4040 inner = TREE_OPERAND (inner, 0)) 4041 ; 4042 4043 /* The field. */ 4044 op1 = TREE_OPERAND (exp, 1); 4045 4046 if (TREE_CODE (inner) == PLACEHOLDER_EXPR && op1 == f) 4047 return r; 4048 4049 /* If this expression hasn't been completed let, leave it alone. */ 4050 if (TREE_CODE (inner) == PLACEHOLDER_EXPR && !TREE_TYPE (inner)) 4051 return exp; 4052 4053 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r); 4054 if (op0 == TREE_OPERAND (exp, 0)) 4055 return exp; 4056 4057 new_tree 4058 = fold_build3 (COMPONENT_REF, TREE_TYPE (exp), op0, op1, NULL_TREE); 4059 } 4060 else 4061 switch (TREE_CODE_CLASS (code)) 4062 { 4063 case tcc_constant: 4064 return exp; 4065 4066 case tcc_declaration: 4067 if (exp == f) 4068 return r; 4069 else 4070 return exp; 4071 4072 case tcc_expression: 4073 if (exp == f) 4074 return r; 4075 4076 /* Fall through. */ 4077 4078 case tcc_exceptional: 4079 case tcc_unary: 4080 case tcc_binary: 4081 case tcc_comparison: 4082 case tcc_reference: 4083 switch (TREE_CODE_LENGTH (code)) 4084 { 4085 case 0: 4086 return exp; 4087 4088 case 1: 4089 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r); 4090 if (op0 == TREE_OPERAND (exp, 0)) 4091 return exp; 4092 4093 new_tree = fold_build1 (code, TREE_TYPE (exp), op0); 4094 break; 4095 4096 case 2: 4097 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r); 4098 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r); 4099 4100 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)) 4101 return exp; 4102 4103 new_tree = fold_build2 (code, TREE_TYPE (exp), op0, op1); 4104 break; 4105 4106 case 3: 4107 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r); 4108 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r); 4109 op2 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 2), f, r); 4110 4111 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1) 4112 && op2 == TREE_OPERAND (exp, 2)) 4113 return exp; 4114 4115 new_tree = fold_build3 (code, TREE_TYPE (exp), op0, op1, op2); 4116 break; 4117 4118 case 4: 4119 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r); 4120 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r); 4121 op2 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 2), f, r); 4122 op3 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 3), f, r); 4123 4124 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1) 4125 && op2 == TREE_OPERAND (exp, 2) 4126 && op3 == TREE_OPERAND (exp, 3)) 4127 return exp; 4128 4129 new_tree 4130 = fold (build4 (code, TREE_TYPE (exp), op0, op1, op2, op3)); 4131 break; 4132 4133 default: 4134 gcc_unreachable (); 4135 } 4136 break; 4137 4138 case tcc_vl_exp: 4139 { 4140 int i; 4141 4142 new_tree = NULL_TREE; 4143 4144 /* If we are trying to replace F with a constant or with another 4145 instance of one of the arguments of the call, inline back 4146 functions which do nothing else than computing a value from 4147 the arguments they are passed. This makes it possible to 4148 fold partially or entirely the replacement expression. */ 4149 if (code == CALL_EXPR) 4150 { 4151 bool maybe_inline = false; 4152 if (CONSTANT_CLASS_P (r)) 4153 maybe_inline = true; 4154 else 4155 for (i = 3; i < TREE_OPERAND_LENGTH (exp); i++) 4156 if (operand_equal_p (TREE_OPERAND (exp, i), r, 0)) 4157 { 4158 maybe_inline = true; 4159 break; 4160 } 4161 if (maybe_inline) 4162 { 4163 tree t = maybe_inline_call_in_expr (exp); 4164 if (t) 4165 return SUBSTITUTE_IN_EXPR (t, f, r); 4166 } 4167 } 4168 4169 for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++) 4170 { 4171 tree op = TREE_OPERAND (exp, i); 4172 tree new_op = SUBSTITUTE_IN_EXPR (op, f, r); 4173 if (new_op != op) 4174 { 4175 if (!new_tree) 4176 new_tree = copy_node (exp); 4177 TREE_OPERAND (new_tree, i) = new_op; 4178 } 4179 } 4180 4181 if (new_tree) 4182 { 4183 new_tree = fold (new_tree); 4184 if (TREE_CODE (new_tree) == CALL_EXPR) 4185 process_call_operands (new_tree); 4186 } 4187 else 4188 return exp; 4189 } 4190 break; 4191 4192 default: 4193 gcc_unreachable (); 4194 } 4195 4196 TREE_READONLY (new_tree) |= TREE_READONLY (exp); 4197 4198 if (code == INDIRECT_REF || code == ARRAY_REF || code == ARRAY_RANGE_REF) 4199 TREE_THIS_NOTRAP (new_tree) |= TREE_THIS_NOTRAP (exp); 4200 4201 return new_tree; 4202 } 4203 4204 /* Similar, but look for a PLACEHOLDER_EXPR in EXP and find a replacement 4205 for it within OBJ, a tree that is an object or a chain of references. */ 4206 4207 tree 4208 substitute_placeholder_in_expr (tree exp, tree obj) 4209 { 4210 enum tree_code code = TREE_CODE (exp); 4211 tree op0, op1, op2, op3; 4212 tree new_tree; 4213 4214 /* If this is a PLACEHOLDER_EXPR, see if we find a corresponding type 4215 in the chain of OBJ. */ 4216 if (code == PLACEHOLDER_EXPR) 4217 { 4218 tree need_type = TYPE_MAIN_VARIANT (TREE_TYPE (exp)); 4219 tree elt; 4220 4221 for (elt = obj; elt != 0; 4222 elt = ((TREE_CODE (elt) == COMPOUND_EXPR 4223 || TREE_CODE (elt) == COND_EXPR) 4224 ? TREE_OPERAND (elt, 1) 4225 : (REFERENCE_CLASS_P (elt) 4226 || UNARY_CLASS_P (elt) 4227 || BINARY_CLASS_P (elt) 4228 || VL_EXP_CLASS_P (elt) 4229 || EXPRESSION_CLASS_P (elt)) 4230 ? TREE_OPERAND (elt, 0) : 0)) 4231 if (TYPE_MAIN_VARIANT (TREE_TYPE (elt)) == need_type) 4232 return elt; 4233 4234 for (elt = obj; elt != 0; 4235 elt = ((TREE_CODE (elt) == COMPOUND_EXPR 4236 || TREE_CODE (elt) == COND_EXPR) 4237 ? TREE_OPERAND (elt, 1) 4238 : (REFERENCE_CLASS_P (elt) 4239 || UNARY_CLASS_P (elt) 4240 || BINARY_CLASS_P (elt) 4241 || VL_EXP_CLASS_P (elt) 4242 || EXPRESSION_CLASS_P (elt)) 4243 ? TREE_OPERAND (elt, 0) : 0)) 4244 if (POINTER_TYPE_P (TREE_TYPE (elt)) 4245 && (TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (elt))) 4246 == need_type)) 4247 return fold_build1 (INDIRECT_REF, need_type, elt); 4248 4249 /* If we didn't find it, return the original PLACEHOLDER_EXPR. If it 4250 survives until RTL generation, there will be an error. */ 4251 return exp; 4252 } 4253 4254 /* TREE_LIST is special because we need to look at TREE_VALUE 4255 and TREE_CHAIN, not TREE_OPERANDS. */ 4256 else if (code == TREE_LIST) 4257 { 4258 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_CHAIN (exp), obj); 4259 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_VALUE (exp), obj); 4260 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp)) 4261 return exp; 4262 4263 return tree_cons (TREE_PURPOSE (exp), op1, op0); 4264 } 4265 else 4266 switch (TREE_CODE_CLASS (code)) 4267 { 4268 case tcc_constant: 4269 case tcc_declaration: 4270 return exp; 4271 4272 case tcc_exceptional: 4273 case tcc_unary: 4274 case tcc_binary: 4275 case tcc_comparison: 4276 case tcc_expression: 4277 case tcc_reference: 4278 case tcc_statement: 4279 switch (TREE_CODE_LENGTH (code)) 4280 { 4281 case 0: 4282 return exp; 4283 4284 case 1: 4285 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj); 4286 if (op0 == TREE_OPERAND (exp, 0)) 4287 return exp; 4288 4289 new_tree = fold_build1 (code, TREE_TYPE (exp), op0); 4290 break; 4291 4292 case 2: 4293 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj); 4294 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj); 4295 4296 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)) 4297 return exp; 4298 4299 new_tree = fold_build2 (code, TREE_TYPE (exp), op0, op1); 4300 break; 4301 4302 case 3: 4303 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj); 4304 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj); 4305 op2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 2), obj); 4306 4307 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1) 4308 && op2 == TREE_OPERAND (exp, 2)) 4309 return exp; 4310 4311 new_tree = fold_build3 (code, TREE_TYPE (exp), op0, op1, op2); 4312 break; 4313 4314 case 4: 4315 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj); 4316 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj); 4317 op2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 2), obj); 4318 op3 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 3), obj); 4319 4320 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1) 4321 && op2 == TREE_OPERAND (exp, 2) 4322 && op3 == TREE_OPERAND (exp, 3)) 4323 return exp; 4324 4325 new_tree 4326 = fold (build4 (code, TREE_TYPE (exp), op0, op1, op2, op3)); 4327 break; 4328 4329 default: 4330 gcc_unreachable (); 4331 } 4332 break; 4333 4334 case tcc_vl_exp: 4335 { 4336 int i; 4337 4338 new_tree = NULL_TREE; 4339 4340 for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++) 4341 { 4342 tree op = TREE_OPERAND (exp, i); 4343 tree new_op = SUBSTITUTE_PLACEHOLDER_IN_EXPR (op, obj); 4344 if (new_op != op) 4345 { 4346 if (!new_tree) 4347 new_tree = copy_node (exp); 4348 TREE_OPERAND (new_tree, i) = new_op; 4349 } 4350 } 4351 4352 if (new_tree) 4353 { 4354 new_tree = fold (new_tree); 4355 if (TREE_CODE (new_tree) == CALL_EXPR) 4356 process_call_operands (new_tree); 4357 } 4358 else 4359 return exp; 4360 } 4361 break; 4362 4363 default: 4364 gcc_unreachable (); 4365 } 4366 4367 TREE_READONLY (new_tree) |= TREE_READONLY (exp); 4368 4369 if (code == INDIRECT_REF || code == ARRAY_REF || code == ARRAY_RANGE_REF) 4370 TREE_THIS_NOTRAP (new_tree) |= TREE_THIS_NOTRAP (exp); 4371 4372 return new_tree; 4373 } 4374 4375 4376 /* Subroutine of stabilize_reference; this is called for subtrees of 4377 references. Any expression with side-effects must be put in a SAVE_EXPR 4378 to ensure that it is only evaluated once. 4379 4380 We don't put SAVE_EXPR nodes around everything, because assigning very 4381 simple expressions to temporaries causes us to miss good opportunities 4382 for optimizations. Among other things, the opportunity to fold in the 4383 addition of a constant into an addressing mode often gets lost, e.g. 4384 "y[i+1] += x;". In general, we take the approach that we should not make 4385 an assignment unless we are forced into it - i.e., that any non-side effect 4386 operator should be allowed, and that cse should take care of coalescing 4387 multiple utterances of the same expression should that prove fruitful. */ 4388 4389 static tree 4390 stabilize_reference_1 (tree e) 4391 { 4392 tree result; 4393 enum tree_code code = TREE_CODE (e); 4394 4395 /* We cannot ignore const expressions because it might be a reference 4396 to a const array but whose index contains side-effects. But we can 4397 ignore things that are actual constant or that already have been 4398 handled by this function. */ 4399 4400 if (tree_invariant_p (e)) 4401 return e; 4402 4403 switch (TREE_CODE_CLASS (code)) 4404 { 4405 case tcc_exceptional: 4406 /* Always wrap STATEMENT_LIST into SAVE_EXPR, even if it doesn't 4407 have side-effects. */ 4408 if (code == STATEMENT_LIST) 4409 return save_expr (e); 4410 /* FALLTHRU */ 4411 case tcc_type: 4412 case tcc_declaration: 4413 case tcc_comparison: 4414 case tcc_statement: 4415 case tcc_expression: 4416 case tcc_reference: 4417 case tcc_vl_exp: 4418 /* If the expression has side-effects, then encase it in a SAVE_EXPR 4419 so that it will only be evaluated once. */ 4420 /* The reference (r) and comparison (<) classes could be handled as 4421 below, but it is generally faster to only evaluate them once. */ 4422 if (TREE_SIDE_EFFECTS (e)) 4423 return save_expr (e); 4424 return e; 4425 4426 case tcc_constant: 4427 /* Constants need no processing. In fact, we should never reach 4428 here. */ 4429 return e; 4430 4431 case tcc_binary: 4432 /* Division is slow and tends to be compiled with jumps, 4433 especially the division by powers of 2 that is often 4434 found inside of an array reference. So do it just once. */ 4435 if (code == TRUNC_DIV_EXPR || code == TRUNC_MOD_EXPR 4436 || code == FLOOR_DIV_EXPR || code == FLOOR_MOD_EXPR 4437 || code == CEIL_DIV_EXPR || code == CEIL_MOD_EXPR 4438 || code == ROUND_DIV_EXPR || code == ROUND_MOD_EXPR) 4439 return save_expr (e); 4440 /* Recursively stabilize each operand. */ 4441 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)), 4442 stabilize_reference_1 (TREE_OPERAND (e, 1))); 4443 break; 4444 4445 case tcc_unary: 4446 /* Recursively stabilize each operand. */ 4447 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0))); 4448 break; 4449 4450 default: 4451 gcc_unreachable (); 4452 } 4453 4454 TREE_TYPE (result) = TREE_TYPE (e); 4455 TREE_READONLY (result) = TREE_READONLY (e); 4456 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (e); 4457 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (e); 4458 4459 return result; 4460 } 4461 4462 /* Stabilize a reference so that we can use it any number of times 4463 without causing its operands to be evaluated more than once. 4464 Returns the stabilized reference. This works by means of save_expr, 4465 so see the caveats in the comments about save_expr. 4466 4467 Also allows conversion expressions whose operands are references. 4468 Any other kind of expression is returned unchanged. */ 4469 4470 tree 4471 stabilize_reference (tree ref) 4472 { 4473 tree result; 4474 enum tree_code code = TREE_CODE (ref); 4475 4476 switch (code) 4477 { 4478 case VAR_DECL: 4479 case PARM_DECL: 4480 case RESULT_DECL: 4481 /* No action is needed in this case. */ 4482 return ref; 4483 4484 CASE_CONVERT: 4485 case FLOAT_EXPR: 4486 case FIX_TRUNC_EXPR: 4487 result = build_nt (code, stabilize_reference (TREE_OPERAND (ref, 0))); 4488 break; 4489 4490 case INDIRECT_REF: 4491 result = build_nt (INDIRECT_REF, 4492 stabilize_reference_1 (TREE_OPERAND (ref, 0))); 4493 break; 4494 4495 case COMPONENT_REF: 4496 result = build_nt (COMPONENT_REF, 4497 stabilize_reference (TREE_OPERAND (ref, 0)), 4498 TREE_OPERAND (ref, 1), NULL_TREE); 4499 break; 4500 4501 case BIT_FIELD_REF: 4502 result = build_nt (BIT_FIELD_REF, 4503 stabilize_reference (TREE_OPERAND (ref, 0)), 4504 TREE_OPERAND (ref, 1), TREE_OPERAND (ref, 2)); 4505 REF_REVERSE_STORAGE_ORDER (result) = REF_REVERSE_STORAGE_ORDER (ref); 4506 break; 4507 4508 case ARRAY_REF: 4509 result = build_nt (ARRAY_REF, 4510 stabilize_reference (TREE_OPERAND (ref, 0)), 4511 stabilize_reference_1 (TREE_OPERAND (ref, 1)), 4512 TREE_OPERAND (ref, 2), TREE_OPERAND (ref, 3)); 4513 break; 4514 4515 case ARRAY_RANGE_REF: 4516 result = build_nt (ARRAY_RANGE_REF, 4517 stabilize_reference (TREE_OPERAND (ref, 0)), 4518 stabilize_reference_1 (TREE_OPERAND (ref, 1)), 4519 TREE_OPERAND (ref, 2), TREE_OPERAND (ref, 3)); 4520 break; 4521 4522 case COMPOUND_EXPR: 4523 /* We cannot wrap the first expression in a SAVE_EXPR, as then 4524 it wouldn't be ignored. This matters when dealing with 4525 volatiles. */ 4526 return stabilize_reference_1 (ref); 4527 4528 /* If arg isn't a kind of lvalue we recognize, make no change. 4529 Caller should recognize the error for an invalid lvalue. */ 4530 default: 4531 return ref; 4532 4533 case ERROR_MARK: 4534 return error_mark_node; 4535 } 4536 4537 TREE_TYPE (result) = TREE_TYPE (ref); 4538 TREE_READONLY (result) = TREE_READONLY (ref); 4539 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (ref); 4540 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (ref); 4541 4542 return result; 4543 } 4544 4545 /* Low-level constructors for expressions. */ 4546 4547 /* A helper function for build1 and constant folders. Set TREE_CONSTANT, 4548 and TREE_SIDE_EFFECTS for an ADDR_EXPR. */ 4549 4550 void 4551 recompute_tree_invariant_for_addr_expr (tree t) 4552 { 4553 tree node; 4554 bool tc = true, se = false; 4555 4556 gcc_assert (TREE_CODE (t) == ADDR_EXPR); 4557 4558 /* We started out assuming this address is both invariant and constant, but 4559 does not have side effects. Now go down any handled components and see if 4560 any of them involve offsets that are either non-constant or non-invariant. 4561 Also check for side-effects. 4562 4563 ??? Note that this code makes no attempt to deal with the case where 4564 taking the address of something causes a copy due to misalignment. */ 4565 4566 #define UPDATE_FLAGS(NODE) \ 4567 do { tree _node = (NODE); \ 4568 if (_node && !TREE_CONSTANT (_node)) tc = false; \ 4569 if (_node && TREE_SIDE_EFFECTS (_node)) se = true; } while (0) 4570 4571 for (node = TREE_OPERAND (t, 0); handled_component_p (node); 4572 node = TREE_OPERAND (node, 0)) 4573 { 4574 /* If the first operand doesn't have an ARRAY_TYPE, this is a bogus 4575 array reference (probably made temporarily by the G++ front end), 4576 so ignore all the operands. */ 4577 if ((TREE_CODE (node) == ARRAY_REF 4578 || TREE_CODE (node) == ARRAY_RANGE_REF) 4579 && TREE_CODE (TREE_TYPE (TREE_OPERAND (node, 0))) == ARRAY_TYPE) 4580 { 4581 UPDATE_FLAGS (TREE_OPERAND (node, 1)); 4582 if (TREE_OPERAND (node, 2)) 4583 UPDATE_FLAGS (TREE_OPERAND (node, 2)); 4584 if (TREE_OPERAND (node, 3)) 4585 UPDATE_FLAGS (TREE_OPERAND (node, 3)); 4586 } 4587 /* Likewise, just because this is a COMPONENT_REF doesn't mean we have a 4588 FIELD_DECL, apparently. The G++ front end can put something else 4589 there, at least temporarily. */ 4590 else if (TREE_CODE (node) == COMPONENT_REF 4591 && TREE_CODE (TREE_OPERAND (node, 1)) == FIELD_DECL) 4592 { 4593 if (TREE_OPERAND (node, 2)) 4594 UPDATE_FLAGS (TREE_OPERAND (node, 2)); 4595 } 4596 } 4597 4598 node = lang_hooks.expr_to_decl (node, &tc, &se); 4599 4600 /* Now see what's inside. If it's an INDIRECT_REF, copy our properties from 4601 the address, since &(*a)->b is a form of addition. If it's a constant, the 4602 address is constant too. If it's a decl, its address is constant if the 4603 decl is static. Everything else is not constant and, furthermore, 4604 taking the address of a volatile variable is not volatile. */ 4605 if (TREE_CODE (node) == INDIRECT_REF 4606 || TREE_CODE (node) == MEM_REF) 4607 UPDATE_FLAGS (TREE_OPERAND (node, 0)); 4608 else if (CONSTANT_CLASS_P (node)) 4609 ; 4610 else if (DECL_P (node)) 4611 tc &= (staticp (node) != NULL_TREE); 4612 else 4613 { 4614 tc = false; 4615 se |= TREE_SIDE_EFFECTS (node); 4616 } 4617 4618 4619 TREE_CONSTANT (t) = tc; 4620 TREE_SIDE_EFFECTS (t) = se; 4621 #undef UPDATE_FLAGS 4622 } 4623 4624 /* Build an expression of code CODE, data type TYPE, and operands as 4625 specified. Expressions and reference nodes can be created this way. 4626 Constants, decls, types and misc nodes cannot be. 4627 4628 We define 5 non-variadic functions, from 0 to 4 arguments. This is 4629 enough for all extant tree codes. */ 4630 4631 tree 4632 build0 (enum tree_code code, tree tt MEM_STAT_DECL) 4633 { 4634 tree t; 4635 4636 gcc_assert (TREE_CODE_LENGTH (code) == 0); 4637 4638 t = make_node (code PASS_MEM_STAT); 4639 TREE_TYPE (t) = tt; 4640 4641 return t; 4642 } 4643 4644 tree 4645 build1 (enum tree_code code, tree type, tree node MEM_STAT_DECL) 4646 { 4647 int length = sizeof (struct tree_exp); 4648 tree t; 4649 4650 record_node_allocation_statistics (code, length); 4651 4652 gcc_assert (TREE_CODE_LENGTH (code) == 1); 4653 4654 t = ggc_alloc_tree_node_stat (length PASS_MEM_STAT); 4655 4656 memset (t, 0, sizeof (struct tree_common)); 4657 4658 TREE_SET_CODE (t, code); 4659 4660 TREE_TYPE (t) = type; 4661 SET_EXPR_LOCATION (t, UNKNOWN_LOCATION); 4662 TREE_OPERAND (t, 0) = node; 4663 if (node && !TYPE_P (node)) 4664 { 4665 TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (node); 4666 TREE_READONLY (t) = TREE_READONLY (node); 4667 } 4668 4669 if (TREE_CODE_CLASS (code) == tcc_statement) 4670 { 4671 if (code != DEBUG_BEGIN_STMT) 4672 TREE_SIDE_EFFECTS (t) = 1; 4673 } 4674 else switch (code) 4675 { 4676 case VA_ARG_EXPR: 4677 /* All of these have side-effects, no matter what their 4678 operands are. */ 4679 TREE_SIDE_EFFECTS (t) = 1; 4680 TREE_READONLY (t) = 0; 4681 break; 4682 4683 case INDIRECT_REF: 4684 /* Whether a dereference is readonly has nothing to do with whether 4685 its operand is readonly. */ 4686 TREE_READONLY (t) = 0; 4687 break; 4688 4689 case ADDR_EXPR: 4690 if (node) 4691 recompute_tree_invariant_for_addr_expr (t); 4692 break; 4693 4694 default: 4695 if ((TREE_CODE_CLASS (code) == tcc_unary || code == VIEW_CONVERT_EXPR) 4696 && node && !TYPE_P (node) 4697 && TREE_CONSTANT (node)) 4698 TREE_CONSTANT (t) = 1; 4699 if (TREE_CODE_CLASS (code) == tcc_reference 4700 && node && TREE_THIS_VOLATILE (node)) 4701 TREE_THIS_VOLATILE (t) = 1; 4702 break; 4703 } 4704 4705 return t; 4706 } 4707 4708 #define PROCESS_ARG(N) \ 4709 do { \ 4710 TREE_OPERAND (t, N) = arg##N; \ 4711 if (arg##N &&!TYPE_P (arg##N)) \ 4712 { \ 4713 if (TREE_SIDE_EFFECTS (arg##N)) \ 4714 side_effects = 1; \ 4715 if (!TREE_READONLY (arg##N) \ 4716 && !CONSTANT_CLASS_P (arg##N)) \ 4717 (void) (read_only = 0); \ 4718 if (!TREE_CONSTANT (arg##N)) \ 4719 (void) (constant = 0); \ 4720 } \ 4721 } while (0) 4722 4723 tree 4724 build2 (enum tree_code code, tree tt, tree arg0, tree arg1 MEM_STAT_DECL) 4725 { 4726 bool constant, read_only, side_effects, div_by_zero; 4727 tree t; 4728 4729 gcc_assert (TREE_CODE_LENGTH (code) == 2); 4730 4731 if ((code == MINUS_EXPR || code == PLUS_EXPR || code == MULT_EXPR) 4732 && arg0 && arg1 && tt && POINTER_TYPE_P (tt) 4733 /* When sizetype precision doesn't match that of pointers 4734 we need to be able to build explicit extensions or truncations 4735 of the offset argument. */ 4736 && TYPE_PRECISION (sizetype) == TYPE_PRECISION (tt)) 4737 gcc_assert (TREE_CODE (arg0) == INTEGER_CST 4738 && TREE_CODE (arg1) == INTEGER_CST); 4739 4740 if (code == POINTER_PLUS_EXPR && arg0 && arg1 && tt) 4741 gcc_assert (POINTER_TYPE_P (tt) && POINTER_TYPE_P (TREE_TYPE (arg0)) 4742 && ptrofftype_p (TREE_TYPE (arg1))); 4743 4744 t = make_node (code PASS_MEM_STAT); 4745 TREE_TYPE (t) = tt; 4746 4747 /* Below, we automatically set TREE_SIDE_EFFECTS and TREE_READONLY for the 4748 result based on those same flags for the arguments. But if the 4749 arguments aren't really even `tree' expressions, we shouldn't be trying 4750 to do this. */ 4751 4752 /* Expressions without side effects may be constant if their 4753 arguments are as well. */ 4754 constant = (TREE_CODE_CLASS (code) == tcc_comparison 4755 || TREE_CODE_CLASS (code) == tcc_binary); 4756 read_only = 1; 4757 side_effects = TREE_SIDE_EFFECTS (t); 4758 4759 switch (code) 4760 { 4761 case TRUNC_DIV_EXPR: 4762 case CEIL_DIV_EXPR: 4763 case FLOOR_DIV_EXPR: 4764 case ROUND_DIV_EXPR: 4765 case EXACT_DIV_EXPR: 4766 case CEIL_MOD_EXPR: 4767 case FLOOR_MOD_EXPR: 4768 case ROUND_MOD_EXPR: 4769 case TRUNC_MOD_EXPR: 4770 div_by_zero = integer_zerop (arg1); 4771 break; 4772 default: 4773 div_by_zero = false; 4774 } 4775 4776 PROCESS_ARG (0); 4777 PROCESS_ARG (1); 4778 4779 TREE_SIDE_EFFECTS (t) = side_effects; 4780 if (code == MEM_REF) 4781 { 4782 if (arg0 && TREE_CODE (arg0) == ADDR_EXPR) 4783 { 4784 tree o = TREE_OPERAND (arg0, 0); 4785 TREE_READONLY (t) = TREE_READONLY (o); 4786 TREE_THIS_VOLATILE (t) = TREE_THIS_VOLATILE (o); 4787 } 4788 } 4789 else 4790 { 4791 TREE_READONLY (t) = read_only; 4792 /* Don't mark X / 0 as constant. */ 4793 TREE_CONSTANT (t) = constant && !div_by_zero; 4794 TREE_THIS_VOLATILE (t) 4795 = (TREE_CODE_CLASS (code) == tcc_reference 4796 && arg0 && TREE_THIS_VOLATILE (arg0)); 4797 } 4798 4799 return t; 4800 } 4801 4802 4803 tree 4804 build3 (enum tree_code code, tree tt, tree arg0, tree arg1, 4805 tree arg2 MEM_STAT_DECL) 4806 { 4807 bool constant, read_only, side_effects; 4808 tree t; 4809 4810 gcc_assert (TREE_CODE_LENGTH (code) == 3); 4811 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp); 4812 4813 t = make_node (code PASS_MEM_STAT); 4814 TREE_TYPE (t) = tt; 4815 4816 read_only = 1; 4817 4818 /* As a special exception, if COND_EXPR has NULL branches, we 4819 assume that it is a gimple statement and always consider 4820 it to have side effects. */ 4821 if (code == COND_EXPR 4822 && tt == void_type_node 4823 && arg1 == NULL_TREE 4824 && arg2 == NULL_TREE) 4825 side_effects = true; 4826 else 4827 side_effects = TREE_SIDE_EFFECTS (t); 4828 4829 PROCESS_ARG (0); 4830 PROCESS_ARG (1); 4831 PROCESS_ARG (2); 4832 4833 if (code == COND_EXPR) 4834 TREE_READONLY (t) = read_only; 4835 4836 TREE_SIDE_EFFECTS (t) = side_effects; 4837 TREE_THIS_VOLATILE (t) 4838 = (TREE_CODE_CLASS (code) == tcc_reference 4839 && arg0 && TREE_THIS_VOLATILE (arg0)); 4840 4841 return t; 4842 } 4843 4844 tree 4845 build4 (enum tree_code code, tree tt, tree arg0, tree arg1, 4846 tree arg2, tree arg3 MEM_STAT_DECL) 4847 { 4848 bool constant, read_only, side_effects; 4849 tree t; 4850 4851 gcc_assert (TREE_CODE_LENGTH (code) == 4); 4852 4853 t = make_node (code PASS_MEM_STAT); 4854 TREE_TYPE (t) = tt; 4855 4856 side_effects = TREE_SIDE_EFFECTS (t); 4857 4858 PROCESS_ARG (0); 4859 PROCESS_ARG (1); 4860 PROCESS_ARG (2); 4861 PROCESS_ARG (3); 4862 4863 TREE_SIDE_EFFECTS (t) = side_effects; 4864 TREE_THIS_VOLATILE (t) 4865 = (TREE_CODE_CLASS (code) == tcc_reference 4866 && arg0 && TREE_THIS_VOLATILE (arg0)); 4867 4868 return t; 4869 } 4870 4871 tree 4872 build5 (enum tree_code code, tree tt, tree arg0, tree arg1, 4873 tree arg2, tree arg3, tree arg4 MEM_STAT_DECL) 4874 { 4875 bool constant, read_only, side_effects; 4876 tree t; 4877 4878 gcc_assert (TREE_CODE_LENGTH (code) == 5); 4879 4880 t = make_node (code PASS_MEM_STAT); 4881 TREE_TYPE (t) = tt; 4882 4883 side_effects = TREE_SIDE_EFFECTS (t); 4884 4885 PROCESS_ARG (0); 4886 PROCESS_ARG (1); 4887 PROCESS_ARG (2); 4888 PROCESS_ARG (3); 4889 PROCESS_ARG (4); 4890 4891 TREE_SIDE_EFFECTS (t) = side_effects; 4892 if (code == TARGET_MEM_REF) 4893 { 4894 if (arg0 && TREE_CODE (arg0) == ADDR_EXPR) 4895 { 4896 tree o = TREE_OPERAND (arg0, 0); 4897 TREE_READONLY (t) = TREE_READONLY (o); 4898 TREE_THIS_VOLATILE (t) = TREE_THIS_VOLATILE (o); 4899 } 4900 } 4901 else 4902 TREE_THIS_VOLATILE (t) 4903 = (TREE_CODE_CLASS (code) == tcc_reference 4904 && arg0 && TREE_THIS_VOLATILE (arg0)); 4905 4906 return t; 4907 } 4908 4909 /* Build a simple MEM_REF tree with the sematics of a plain INDIRECT_REF 4910 on the pointer PTR. */ 4911 4912 tree 4913 build_simple_mem_ref_loc (location_t loc, tree ptr) 4914 { 4915 poly_int64 offset = 0; 4916 tree ptype = TREE_TYPE (ptr); 4917 tree tem; 4918 /* For convenience allow addresses that collapse to a simple base 4919 and offset. */ 4920 if (TREE_CODE (ptr) == ADDR_EXPR 4921 && (handled_component_p (TREE_OPERAND (ptr, 0)) 4922 || TREE_CODE (TREE_OPERAND (ptr, 0)) == MEM_REF)) 4923 { 4924 ptr = get_addr_base_and_unit_offset (TREE_OPERAND (ptr, 0), &offset); 4925 gcc_assert (ptr); 4926 if (TREE_CODE (ptr) == MEM_REF) 4927 { 4928 offset += mem_ref_offset (ptr).force_shwi (); 4929 ptr = TREE_OPERAND (ptr, 0); 4930 } 4931 else 4932 ptr = build_fold_addr_expr (ptr); 4933 gcc_assert (is_gimple_reg (ptr) || is_gimple_min_invariant (ptr)); 4934 } 4935 tem = build2 (MEM_REF, TREE_TYPE (ptype), 4936 ptr, build_int_cst (ptype, offset)); 4937 SET_EXPR_LOCATION (tem, loc); 4938 return tem; 4939 } 4940 4941 /* Return the constant offset of a MEM_REF or TARGET_MEM_REF tree T. */ 4942 4943 poly_offset_int 4944 mem_ref_offset (const_tree t) 4945 { 4946 return poly_offset_int::from (wi::to_poly_wide (TREE_OPERAND (t, 1)), 4947 SIGNED); 4948 } 4949 4950 /* Return an invariant ADDR_EXPR of type TYPE taking the address of BASE 4951 offsetted by OFFSET units. */ 4952 4953 tree 4954 build_invariant_address (tree type, tree base, poly_int64 offset) 4955 { 4956 tree ref = fold_build2 (MEM_REF, TREE_TYPE (type), 4957 build_fold_addr_expr (base), 4958 build_int_cst (ptr_type_node, offset)); 4959 tree addr = build1 (ADDR_EXPR, type, ref); 4960 recompute_tree_invariant_for_addr_expr (addr); 4961 return addr; 4962 } 4963 4964 /* Similar except don't specify the TREE_TYPE 4965 and leave the TREE_SIDE_EFFECTS as 0. 4966 It is permissible for arguments to be null, 4967 or even garbage if their values do not matter. */ 4968 4969 tree 4970 build_nt (enum tree_code code, ...) 4971 { 4972 tree t; 4973 int length; 4974 int i; 4975 va_list p; 4976 4977 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp); 4978 4979 va_start (p, code); 4980 4981 t = make_node (code); 4982 length = TREE_CODE_LENGTH (code); 4983 4984 for (i = 0; i < length; i++) 4985 TREE_OPERAND (t, i) = va_arg (p, tree); 4986 4987 va_end (p); 4988 return t; 4989 } 4990 4991 /* Similar to build_nt, but for creating a CALL_EXPR object with a 4992 tree vec. */ 4993 4994 tree 4995 build_nt_call_vec (tree fn, vec<tree, va_gc> *args) 4996 { 4997 tree ret, t; 4998 unsigned int ix; 4999 5000 ret = build_vl_exp (CALL_EXPR, vec_safe_length (args) + 3); 5001 CALL_EXPR_FN (ret) = fn; 5002 CALL_EXPR_STATIC_CHAIN (ret) = NULL_TREE; 5003 FOR_EACH_VEC_SAFE_ELT (args, ix, t) 5004 CALL_EXPR_ARG (ret, ix) = t; 5005 return ret; 5006 } 5007 5008 /* Create a DECL_... node of code CODE, name NAME (if non-null) 5009 and data type TYPE. 5010 We do NOT enter this node in any sort of symbol table. 5011 5012 LOC is the location of the decl. 5013 5014 layout_decl is used to set up the decl's storage layout. 5015 Other slots are initialized to 0 or null pointers. */ 5016 5017 tree 5018 build_decl (location_t loc, enum tree_code code, tree name, 5019 tree type MEM_STAT_DECL) 5020 { 5021 tree t; 5022 5023 t = make_node (code PASS_MEM_STAT); 5024 DECL_SOURCE_LOCATION (t) = loc; 5025 5026 /* if (type == error_mark_node) 5027 type = integer_type_node; */ 5028 /* That is not done, deliberately, so that having error_mark_node 5029 as the type can suppress useless errors in the use of this variable. */ 5030 5031 DECL_NAME (t) = name; 5032 TREE_TYPE (t) = type; 5033 5034 if (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL) 5035 layout_decl (t, 0); 5036 5037 return t; 5038 } 5039 5040 /* Builds and returns function declaration with NAME and TYPE. */ 5041 5042 tree 5043 build_fn_decl (const char *name, tree type) 5044 { 5045 tree id = get_identifier (name); 5046 tree decl = build_decl (input_location, FUNCTION_DECL, id, type); 5047 5048 DECL_EXTERNAL (decl) = 1; 5049 TREE_PUBLIC (decl) = 1; 5050 DECL_ARTIFICIAL (decl) = 1; 5051 TREE_NOTHROW (decl) = 1; 5052 5053 return decl; 5054 } 5055 5056 vec<tree, va_gc> *all_translation_units; 5057 5058 /* Builds a new translation-unit decl with name NAME, queues it in the 5059 global list of translation-unit decls and returns it. */ 5060 5061 tree 5062 build_translation_unit_decl (tree name) 5063 { 5064 tree tu = build_decl (UNKNOWN_LOCATION, TRANSLATION_UNIT_DECL, 5065 name, NULL_TREE); 5066 TRANSLATION_UNIT_LANGUAGE (tu) = lang_hooks.name; 5067 vec_safe_push (all_translation_units, tu); 5068 return tu; 5069 } 5070 5071 5072 /* BLOCK nodes are used to represent the structure of binding contours 5073 and declarations, once those contours have been exited and their contents 5074 compiled. This information is used for outputting debugging info. */ 5075 5076 tree 5077 build_block (tree vars, tree subblocks, tree supercontext, tree chain) 5078 { 5079 tree block = make_node (BLOCK); 5080 5081 BLOCK_VARS (block) = vars; 5082 BLOCK_SUBBLOCKS (block) = subblocks; 5083 BLOCK_SUPERCONTEXT (block) = supercontext; 5084 BLOCK_CHAIN (block) = chain; 5085 return block; 5086 } 5087 5088 5089 /* Like SET_EXPR_LOCATION, but make sure the tree can have a location. 5090 5091 LOC is the location to use in tree T. */ 5092 5093 void 5094 protected_set_expr_location (tree t, location_t loc) 5095 { 5096 if (CAN_HAVE_LOCATION_P (t)) 5097 SET_EXPR_LOCATION (t, loc); 5098 } 5099 5100 /* Data used when collecting DECLs and TYPEs for language data removal. */ 5101 5102 struct free_lang_data_d 5103 { 5104 free_lang_data_d () : decls (100), types (100) {} 5105 5106 /* Worklist to avoid excessive recursion. */ 5107 auto_vec<tree> worklist; 5108 5109 /* Set of traversed objects. Used to avoid duplicate visits. */ 5110 hash_set<tree> pset; 5111 5112 /* Array of symbols to process with free_lang_data_in_decl. */ 5113 auto_vec<tree> decls; 5114 5115 /* Array of types to process with free_lang_data_in_type. */ 5116 auto_vec<tree> types; 5117 }; 5118 5119 5120 /* Add type or decl T to one of the list of tree nodes that need their 5121 language data removed. The lists are held inside FLD. */ 5122 5123 static void 5124 add_tree_to_fld_list (tree t, struct free_lang_data_d *fld) 5125 { 5126 if (DECL_P (t)) 5127 fld->decls.safe_push (t); 5128 else if (TYPE_P (t)) 5129 fld->types.safe_push (t); 5130 else 5131 gcc_unreachable (); 5132 } 5133 5134 /* Push tree node T into FLD->WORKLIST. */ 5135 5136 static inline void 5137 fld_worklist_push (tree t, struct free_lang_data_d *fld) 5138 { 5139 if (t && !is_lang_specific (t) && !fld->pset.contains (t)) 5140 fld->worklist.safe_push ((t)); 5141 } 5142 5143 5144 5145 /* Return simplified TYPE_NAME of TYPE. */ 5146 5147 static tree 5148 fld_simplified_type_name (tree type) 5149 { 5150 if (!TYPE_NAME (type) || TREE_CODE (TYPE_NAME (type)) != TYPE_DECL) 5151 return TYPE_NAME (type); 5152 /* Drop TYPE_DECLs in TYPE_NAME in favor of the identifier in the 5153 TYPE_DECL if the type doesn't have linkage. 5154 this must match fld_ */ 5155 if (type != TYPE_MAIN_VARIANT (type) 5156 || (!DECL_ASSEMBLER_NAME_SET_P (TYPE_NAME (type)) 5157 && (TREE_CODE (type) != RECORD_TYPE 5158 || !TYPE_BINFO (type) 5159 || !BINFO_VTABLE (TYPE_BINFO (type))))) 5160 return DECL_NAME (TYPE_NAME (type)); 5161 return TYPE_NAME (type); 5162 } 5163 5164 /* Do same comparsion as check_qualified_type skipping lang part of type 5165 and be more permissive about type names: we only care that names are 5166 same (for diagnostics) and that ODR names are the same. 5167 If INNER_TYPE is non-NULL, be sure that TREE_TYPE match it. */ 5168 5169 static bool 5170 fld_type_variant_equal_p (tree t, tree v, tree inner_type) 5171 { 5172 if (TYPE_QUALS (t) != TYPE_QUALS (v) 5173 /* We want to match incomplete variants with complete types. 5174 In this case we need to ignore alignment. */ 5175 || ((!RECORD_OR_UNION_TYPE_P (t) || COMPLETE_TYPE_P (v)) 5176 && (TYPE_ALIGN (t) != TYPE_ALIGN (v) 5177 || TYPE_USER_ALIGN (t) != TYPE_USER_ALIGN (v))) 5178 || fld_simplified_type_name (t) != fld_simplified_type_name (v) 5179 || !attribute_list_equal (TYPE_ATTRIBUTES (t), 5180 TYPE_ATTRIBUTES (v)) 5181 || (inner_type && TREE_TYPE (v) != inner_type)) 5182 return false; 5183 5184 return true; 5185 } 5186 5187 /* Find variant of FIRST that match T and create new one if necessary. 5188 Set TREE_TYPE to INNER_TYPE if non-NULL. */ 5189 5190 static tree 5191 fld_type_variant (tree first, tree t, struct free_lang_data_d *fld, 5192 tree inner_type = NULL) 5193 { 5194 if (first == TYPE_MAIN_VARIANT (t)) 5195 return t; 5196 for (tree v = first; v; v = TYPE_NEXT_VARIANT (v)) 5197 if (fld_type_variant_equal_p (t, v, inner_type)) 5198 return v; 5199 tree v = build_variant_type_copy (first); 5200 TYPE_READONLY (v) = TYPE_READONLY (t); 5201 TYPE_VOLATILE (v) = TYPE_VOLATILE (t); 5202 TYPE_ATOMIC (v) = TYPE_ATOMIC (t); 5203 TYPE_RESTRICT (v) = TYPE_RESTRICT (t); 5204 TYPE_ADDR_SPACE (v) = TYPE_ADDR_SPACE (t); 5205 TYPE_NAME (v) = TYPE_NAME (t); 5206 TYPE_ATTRIBUTES (v) = TYPE_ATTRIBUTES (t); 5207 TYPE_CANONICAL (v) = TYPE_CANONICAL (t); 5208 /* Variants of incomplete types should have alignment 5209 set to BITS_PER_UNIT. Do not copy the actual alignment. */ 5210 if (!RECORD_OR_UNION_TYPE_P (v) || COMPLETE_TYPE_P (v)) 5211 { 5212 SET_TYPE_ALIGN (v, TYPE_ALIGN (t)); 5213 TYPE_USER_ALIGN (v) = TYPE_USER_ALIGN (t); 5214 } 5215 if (inner_type) 5216 TREE_TYPE (v) = inner_type; 5217 gcc_checking_assert (fld_type_variant_equal_p (t,v, inner_type)); 5218 if (!fld->pset.add (v)) 5219 add_tree_to_fld_list (v, fld); 5220 return v; 5221 } 5222 5223 /* Map complete types to incomplete types. */ 5224 5225 static hash_map<tree, tree> *fld_incomplete_types; 5226 5227 /* Map types to simplified types. */ 5228 5229 static hash_map<tree, tree> *fld_simplified_types; 5230 5231 /* Produce variant of T whose TREE_TYPE is T2. If it is main variant, 5232 use MAP to prevent duplicates. */ 5233 5234 static tree 5235 fld_process_array_type (tree t, tree t2, hash_map<tree, tree> *map, 5236 struct free_lang_data_d *fld) 5237 { 5238 if (TREE_TYPE (t) == t2) 5239 return t; 5240 5241 if (TYPE_MAIN_VARIANT (t) != t) 5242 { 5243 return fld_type_variant 5244 (fld_process_array_type (TYPE_MAIN_VARIANT (t), 5245 TYPE_MAIN_VARIANT (t2), map, fld), 5246 t, fld, t2); 5247 } 5248 5249 bool existed; 5250 tree &array 5251 = map->get_or_insert (t, &existed); 5252 if (!existed) 5253 { 5254 array 5255 = build_array_type_1 (t2, TYPE_DOMAIN (t), TYPE_TYPELESS_STORAGE (t), 5256 false, false); 5257 TYPE_CANONICAL (array) = TYPE_CANONICAL (t); 5258 if (!fld->pset.add (array)) 5259 add_tree_to_fld_list (array, fld); 5260 } 5261 return array; 5262 } 5263 5264 /* Return CTX after removal of contexts that are not relevant */ 5265 5266 static tree 5267 fld_decl_context (tree ctx) 5268 { 5269 /* Variably modified types are needed for tree_is_indexable to decide 5270 whether the type needs to go to local or global section. 5271 This code is semi-broken but for now it is easiest to keep contexts 5272 as expected. */ 5273 if (ctx && TYPE_P (ctx) 5274 && !variably_modified_type_p (ctx, NULL_TREE)) 5275 { 5276 while (ctx && TYPE_P (ctx)) 5277 ctx = TYPE_CONTEXT (ctx); 5278 } 5279 return ctx; 5280 } 5281 5282 /* For T being aggregate type try to turn it into a incomplete variant. 5283 Return T if no simplification is possible. */ 5284 5285 static tree 5286 fld_incomplete_type_of (tree t, struct free_lang_data_d *fld) 5287 { 5288 if (!t) 5289 return NULL; 5290 if (POINTER_TYPE_P (t)) 5291 { 5292 tree t2 = fld_incomplete_type_of (TREE_TYPE (t), fld); 5293 if (t2 != TREE_TYPE (t)) 5294 { 5295 tree first; 5296 if (TREE_CODE (t) == POINTER_TYPE) 5297 first = build_pointer_type_for_mode (t2, TYPE_MODE (t), 5298 TYPE_REF_CAN_ALIAS_ALL (t)); 5299 else 5300 first = build_reference_type_for_mode (t2, TYPE_MODE (t), 5301 TYPE_REF_CAN_ALIAS_ALL (t)); 5302 gcc_assert (TYPE_CANONICAL (t2) != t2 5303 && TYPE_CANONICAL (t2) == TYPE_CANONICAL (TREE_TYPE (t))); 5304 if (!fld->pset.add (first)) 5305 add_tree_to_fld_list (first, fld); 5306 return fld_type_variant (first, t, fld); 5307 } 5308 return t; 5309 } 5310 if (TREE_CODE (t) == ARRAY_TYPE) 5311 return fld_process_array_type (t, 5312 fld_incomplete_type_of (TREE_TYPE (t), fld), 5313 fld_incomplete_types, fld); 5314 if ((!RECORD_OR_UNION_TYPE_P (t) && TREE_CODE (t) != ENUMERAL_TYPE) 5315 || !COMPLETE_TYPE_P (t)) 5316 return t; 5317 if (TYPE_MAIN_VARIANT (t) == t) 5318 { 5319 bool existed; 5320 tree © 5321 = fld_incomplete_types->get_or_insert (t, &existed); 5322 5323 if (!existed) 5324 { 5325 copy = build_distinct_type_copy (t); 5326 5327 /* It is possible that type was not seen by free_lang_data yet. */ 5328 if (!fld->pset.add (copy)) 5329 add_tree_to_fld_list (copy, fld); 5330 TYPE_SIZE (copy) = NULL; 5331 TYPE_USER_ALIGN (copy) = 0; 5332 TYPE_SIZE_UNIT (copy) = NULL; 5333 TYPE_CANONICAL (copy) = TYPE_CANONICAL (t); 5334 TREE_ADDRESSABLE (copy) = 0; 5335 if (AGGREGATE_TYPE_P (t)) 5336 { 5337 SET_TYPE_MODE (copy, VOIDmode); 5338 SET_TYPE_ALIGN (copy, BITS_PER_UNIT); 5339 TYPE_TYPELESS_STORAGE (copy) = 0; 5340 TYPE_FIELDS (copy) = NULL; 5341 TYPE_BINFO (copy) = NULL; 5342 } 5343 else 5344 TYPE_VALUES (copy) = NULL; 5345 5346 /* Build copy of TYPE_DECL in TYPE_NAME if necessary. 5347 This is needed for ODR violation warnings to come out right (we 5348 want duplicate TYPE_DECLs whenever the type is duplicated because 5349 of ODR violation. Because lang data in the TYPE_DECL may not 5350 have been freed yet, rebuild it from scratch and copy relevant 5351 fields. */ 5352 TYPE_NAME (copy) = fld_simplified_type_name (copy); 5353 tree name = TYPE_NAME (copy); 5354 5355 if (name && TREE_CODE (name) == TYPE_DECL) 5356 { 5357 gcc_checking_assert (TREE_TYPE (name) == t); 5358 tree name2 = build_decl (DECL_SOURCE_LOCATION (name), TYPE_DECL, 5359 DECL_NAME (name), copy); 5360 if (DECL_ASSEMBLER_NAME_SET_P (name)) 5361 SET_DECL_ASSEMBLER_NAME (name2, DECL_ASSEMBLER_NAME (name)); 5362 SET_DECL_ALIGN (name2, 0); 5363 DECL_CONTEXT (name2) = fld_decl_context 5364 (DECL_CONTEXT (name)); 5365 TYPE_NAME (copy) = name2; 5366 } 5367 } 5368 return copy; 5369 } 5370 return (fld_type_variant 5371 (fld_incomplete_type_of (TYPE_MAIN_VARIANT (t), fld), t, fld)); 5372 } 5373 5374 /* Simplify type T for scenarios where we do not need complete pointer 5375 types. */ 5376 5377 static tree 5378 fld_simplified_type (tree t, struct free_lang_data_d *fld) 5379 { 5380 if (!t) 5381 return t; 5382 if (POINTER_TYPE_P (t)) 5383 return fld_incomplete_type_of (t, fld); 5384 /* FIXME: This triggers verification error, see PR88140. */ 5385 if (TREE_CODE (t) == ARRAY_TYPE && 0) 5386 return fld_process_array_type (t, fld_simplified_type (TREE_TYPE (t), fld), 5387 fld_simplified_types, fld); 5388 return t; 5389 } 5390 5391 /* Reset the expression *EXPR_P, a size or position. 5392 5393 ??? We could reset all non-constant sizes or positions. But it's cheap 5394 enough to not do so and refrain from adding workarounds to dwarf2out.c. 5395 5396 We need to reset self-referential sizes or positions because they cannot 5397 be gimplified and thus can contain a CALL_EXPR after the gimplification 5398 is finished, which will run afoul of LTO streaming. And they need to be 5399 reset to something essentially dummy but not constant, so as to preserve 5400 the properties of the object they are attached to. */ 5401 5402 static inline void 5403 free_lang_data_in_one_sizepos (tree *expr_p) 5404 { 5405 tree expr = *expr_p; 5406 if (CONTAINS_PLACEHOLDER_P (expr)) 5407 *expr_p = build0 (PLACEHOLDER_EXPR, TREE_TYPE (expr)); 5408 } 5409 5410 5411 /* Reset all the fields in a binfo node BINFO. We only keep 5412 BINFO_VTABLE, which is used by gimple_fold_obj_type_ref. */ 5413 5414 static void 5415 free_lang_data_in_binfo (tree binfo) 5416 { 5417 unsigned i; 5418 tree t; 5419 5420 gcc_assert (TREE_CODE (binfo) == TREE_BINFO); 5421 5422 BINFO_VIRTUALS (binfo) = NULL_TREE; 5423 BINFO_BASE_ACCESSES (binfo) = NULL; 5424 BINFO_INHERITANCE_CHAIN (binfo) = NULL_TREE; 5425 BINFO_SUBVTT_INDEX (binfo) = NULL_TREE; 5426 BINFO_VPTR_FIELD (binfo) = NULL_TREE; 5427 5428 FOR_EACH_VEC_ELT (*BINFO_BASE_BINFOS (binfo), i, t) 5429 free_lang_data_in_binfo (t); 5430 } 5431 5432 5433 /* Reset all language specific information still present in TYPE. */ 5434 5435 static void 5436 free_lang_data_in_type (tree type, struct free_lang_data_d *fld) 5437 { 5438 gcc_assert (TYPE_P (type)); 5439 5440 /* Give the FE a chance to remove its own data first. */ 5441 lang_hooks.free_lang_data (type); 5442 5443 TREE_LANG_FLAG_0 (type) = 0; 5444 TREE_LANG_FLAG_1 (type) = 0; 5445 TREE_LANG_FLAG_2 (type) = 0; 5446 TREE_LANG_FLAG_3 (type) = 0; 5447 TREE_LANG_FLAG_4 (type) = 0; 5448 TREE_LANG_FLAG_5 (type) = 0; 5449 TREE_LANG_FLAG_6 (type) = 0; 5450 5451 TYPE_NEEDS_CONSTRUCTING (type) = 0; 5452 5453 /* Purge non-marked variants from the variants chain, so that they 5454 don't reappear in the IL after free_lang_data. */ 5455 while (TYPE_NEXT_VARIANT (type) 5456 && !fld->pset.contains (TYPE_NEXT_VARIANT (type))) 5457 { 5458 tree t = TYPE_NEXT_VARIANT (type); 5459 TYPE_NEXT_VARIANT (type) = TYPE_NEXT_VARIANT (t); 5460 /* Turn the removed types into distinct types. */ 5461 TYPE_MAIN_VARIANT (t) = t; 5462 TYPE_NEXT_VARIANT (t) = NULL_TREE; 5463 } 5464 5465 if (TREE_CODE (type) == FUNCTION_TYPE) 5466 { 5467 TREE_TYPE (type) = fld_simplified_type (TREE_TYPE (type), fld); 5468 /* Remove the const and volatile qualifiers from arguments. The 5469 C++ front end removes them, but the C front end does not, 5470 leading to false ODR violation errors when merging two 5471 instances of the same function signature compiled by 5472 different front ends. */ 5473 for (tree p = TYPE_ARG_TYPES (type); p; p = TREE_CHAIN (p)) 5474 { 5475 TREE_VALUE (p) = fld_simplified_type (TREE_VALUE (p), fld); 5476 tree arg_type = TREE_VALUE (p); 5477 5478 if (TYPE_READONLY (arg_type) || TYPE_VOLATILE (arg_type)) 5479 { 5480 int quals = TYPE_QUALS (arg_type) 5481 & ~TYPE_QUAL_CONST 5482 & ~TYPE_QUAL_VOLATILE; 5483 TREE_VALUE (p) = build_qualified_type (arg_type, quals); 5484 if (!fld->pset.add (TREE_VALUE (p))) 5485 free_lang_data_in_type (TREE_VALUE (p), fld); 5486 } 5487 /* C++ FE uses TREE_PURPOSE to store initial values. */ 5488 TREE_PURPOSE (p) = NULL; 5489 } 5490 } 5491 else if (TREE_CODE (type) == METHOD_TYPE) 5492 { 5493 TREE_TYPE (type) = fld_simplified_type (TREE_TYPE (type), fld); 5494 for (tree p = TYPE_ARG_TYPES (type); p; p = TREE_CHAIN (p)) 5495 { 5496 /* C++ FE uses TREE_PURPOSE to store initial values. */ 5497 TREE_VALUE (p) = fld_simplified_type (TREE_VALUE (p), fld); 5498 TREE_PURPOSE (p) = NULL; 5499 } 5500 } 5501 else if (RECORD_OR_UNION_TYPE_P (type)) 5502 { 5503 /* Remove members that are not FIELD_DECLs from the field list 5504 of an aggregate. These occur in C++. */ 5505 for (tree *prev = &TYPE_FIELDS (type), member; (member = *prev);) 5506 if (TREE_CODE (member) == FIELD_DECL) 5507 prev = &DECL_CHAIN (member); 5508 else 5509 *prev = DECL_CHAIN (member); 5510 5511 TYPE_VFIELD (type) = NULL_TREE; 5512 5513 if (TYPE_BINFO (type)) 5514 { 5515 free_lang_data_in_binfo (TYPE_BINFO (type)); 5516 /* We need to preserve link to bases and virtual table for all 5517 polymorphic types to make devirtualization machinery working. */ 5518 if (!BINFO_VTABLE (TYPE_BINFO (type))) 5519 TYPE_BINFO (type) = NULL; 5520 } 5521 } 5522 else if (INTEGRAL_TYPE_P (type) 5523 || SCALAR_FLOAT_TYPE_P (type) 5524 || FIXED_POINT_TYPE_P (type)) 5525 { 5526 if (TREE_CODE (type) == ENUMERAL_TYPE) 5527 { 5528 /* Type values are used only for C++ ODR checking. Drop them 5529 for all type variants and non-ODR types. 5530 For ODR types the data is freed in free_odr_warning_data. */ 5531 if (TYPE_MAIN_VARIANT (type) != type 5532 || !type_with_linkage_p (type)) 5533 TYPE_VALUES (type) = NULL; 5534 else 5535 /* Simplify representation by recording only values rather 5536 than const decls. */ 5537 for (tree e = TYPE_VALUES (type); e; e = TREE_CHAIN (e)) 5538 if (TREE_CODE (TREE_VALUE (e)) == CONST_DECL) 5539 TREE_VALUE (e) = DECL_INITIAL (TREE_VALUE (e)); 5540 } 5541 free_lang_data_in_one_sizepos (&TYPE_MIN_VALUE (type)); 5542 free_lang_data_in_one_sizepos (&TYPE_MAX_VALUE (type)); 5543 } 5544 5545 TYPE_LANG_SLOT_1 (type) = NULL_TREE; 5546 5547 free_lang_data_in_one_sizepos (&TYPE_SIZE (type)); 5548 free_lang_data_in_one_sizepos (&TYPE_SIZE_UNIT (type)); 5549 5550 if (TYPE_CONTEXT (type) 5551 && TREE_CODE (TYPE_CONTEXT (type)) == BLOCK) 5552 { 5553 tree ctx = TYPE_CONTEXT (type); 5554 do 5555 { 5556 ctx = BLOCK_SUPERCONTEXT (ctx); 5557 } 5558 while (ctx && TREE_CODE (ctx) == BLOCK); 5559 TYPE_CONTEXT (type) = ctx; 5560 } 5561 5562 TYPE_STUB_DECL (type) = NULL; 5563 TYPE_NAME (type) = fld_simplified_type_name (type); 5564 } 5565 5566 5567 /* Return true if DECL may need an assembler name to be set. */ 5568 5569 static inline bool 5570 need_assembler_name_p (tree decl) 5571 { 5572 /* We use DECL_ASSEMBLER_NAME to hold mangled type names for One Definition 5573 Rule merging. This makes type_odr_p to return true on those types during 5574 LTO and by comparing the mangled name, we can say what types are intended 5575 to be equivalent across compilation unit. 5576 5577 We do not store names of type_in_anonymous_namespace_p. 5578 5579 Record, union and enumeration type have linkage that allows use 5580 to check type_in_anonymous_namespace_p. We do not mangle compound types 5581 that always can be compared structurally. 5582 5583 Similarly for builtin types, we compare properties of their main variant. 5584 A special case are integer types where mangling do make differences 5585 between char/signed char/unsigned char etc. Storing name for these makes 5586 e.g. -fno-signed-char/-fsigned-char mismatches to be handled well. 5587 See cp/mangle.c:write_builtin_type for details. */ 5588 5589 if (TREE_CODE (decl) == TYPE_DECL) 5590 { 5591 if (flag_lto_odr_type_mering 5592 && DECL_NAME (decl) 5593 && decl == TYPE_NAME (TREE_TYPE (decl)) 5594 && TYPE_MAIN_VARIANT (TREE_TYPE (decl)) == TREE_TYPE (decl) 5595 && !TYPE_ARTIFICIAL (TREE_TYPE (decl)) 5596 && (type_with_linkage_p (TREE_TYPE (decl)) 5597 || TREE_CODE (TREE_TYPE (decl)) == INTEGER_TYPE) 5598 && !variably_modified_type_p (TREE_TYPE (decl), NULL_TREE)) 5599 return !DECL_ASSEMBLER_NAME_SET_P (decl); 5600 return false; 5601 } 5602 /* Only FUNCTION_DECLs and VAR_DECLs are considered. */ 5603 if (!VAR_OR_FUNCTION_DECL_P (decl)) 5604 return false; 5605 5606 /* If DECL already has its assembler name set, it does not need a 5607 new one. */ 5608 if (!HAS_DECL_ASSEMBLER_NAME_P (decl) 5609 || DECL_ASSEMBLER_NAME_SET_P (decl)) 5610 return false; 5611 5612 /* Abstract decls do not need an assembler name. */ 5613 if (DECL_ABSTRACT_P (decl)) 5614 return false; 5615 5616 /* For VAR_DECLs, only static, public and external symbols need an 5617 assembler name. */ 5618 if (VAR_P (decl) 5619 && !TREE_STATIC (decl) 5620 && !TREE_PUBLIC (decl) 5621 && !DECL_EXTERNAL (decl)) 5622 return false; 5623 5624 if (TREE_CODE (decl) == FUNCTION_DECL) 5625 { 5626 /* Do not set assembler name on builtins. Allow RTL expansion to 5627 decide whether to expand inline or via a regular call. */ 5628 if (fndecl_built_in_p (decl) 5629 && DECL_BUILT_IN_CLASS (decl) != BUILT_IN_FRONTEND) 5630 return false; 5631 5632 /* Functions represented in the callgraph need an assembler name. */ 5633 if (cgraph_node::get (decl) != NULL) 5634 return true; 5635 5636 /* Unused and not public functions don't need an assembler name. */ 5637 if (!TREE_USED (decl) && !TREE_PUBLIC (decl)) 5638 return false; 5639 } 5640 5641 return true; 5642 } 5643 5644 5645 /* Reset all language specific information still present in symbol 5646 DECL. */ 5647 5648 static void 5649 free_lang_data_in_decl (tree decl, struct free_lang_data_d *fld) 5650 { 5651 gcc_assert (DECL_P (decl)); 5652 5653 /* Give the FE a chance to remove its own data first. */ 5654 lang_hooks.free_lang_data (decl); 5655 5656 TREE_LANG_FLAG_0 (decl) = 0; 5657 TREE_LANG_FLAG_1 (decl) = 0; 5658 TREE_LANG_FLAG_2 (decl) = 0; 5659 TREE_LANG_FLAG_3 (decl) = 0; 5660 TREE_LANG_FLAG_4 (decl) = 0; 5661 TREE_LANG_FLAG_5 (decl) = 0; 5662 TREE_LANG_FLAG_6 (decl) = 0; 5663 5664 free_lang_data_in_one_sizepos (&DECL_SIZE (decl)); 5665 free_lang_data_in_one_sizepos (&DECL_SIZE_UNIT (decl)); 5666 if (TREE_CODE (decl) == FIELD_DECL) 5667 { 5668 DECL_FCONTEXT (decl) = NULL; 5669 free_lang_data_in_one_sizepos (&DECL_FIELD_OFFSET (decl)); 5670 if (TREE_CODE (DECL_CONTEXT (decl)) == QUAL_UNION_TYPE) 5671 DECL_QUALIFIER (decl) = NULL_TREE; 5672 } 5673 5674 if (TREE_CODE (decl) == FUNCTION_DECL) 5675 { 5676 struct cgraph_node *node; 5677 /* Frontends do not set TREE_ADDRESSABLE on public variables even though 5678 the address may be taken in other unit, so this flag has no practical 5679 use for middle-end. 5680 5681 It would make more sense if frontends set TREE_ADDRESSABLE to 0 only 5682 for public objects that indeed cannot be adressed, but it is not 5683 the case. Set the flag to true so we do not get merge failures for 5684 i.e. virtual tables between units that take address of it and 5685 units that don't. */ 5686 if (TREE_PUBLIC (decl)) 5687 TREE_ADDRESSABLE (decl) = true; 5688 TREE_TYPE (decl) = fld_simplified_type (TREE_TYPE (decl), fld); 5689 if (!(node = cgraph_node::get (decl)) 5690 || (!node->definition && !node->clones)) 5691 { 5692 if (node) 5693 node->release_body (); 5694 else 5695 { 5696 release_function_body (decl); 5697 DECL_ARGUMENTS (decl) = NULL; 5698 DECL_RESULT (decl) = NULL; 5699 DECL_INITIAL (decl) = error_mark_node; 5700 } 5701 } 5702 if (gimple_has_body_p (decl) || (node && node->thunk.thunk_p)) 5703 { 5704 tree t; 5705 5706 /* If DECL has a gimple body, then the context for its 5707 arguments must be DECL. Otherwise, it doesn't really 5708 matter, as we will not be emitting any code for DECL. In 5709 general, there may be other instances of DECL created by 5710 the front end and since PARM_DECLs are generally shared, 5711 their DECL_CONTEXT changes as the replicas of DECL are 5712 created. The only time where DECL_CONTEXT is important 5713 is for the FUNCTION_DECLs that have a gimple body (since 5714 the PARM_DECL will be used in the function's body). */ 5715 for (t = DECL_ARGUMENTS (decl); t; t = TREE_CHAIN (t)) 5716 DECL_CONTEXT (t) = decl; 5717 if (!DECL_FUNCTION_SPECIFIC_TARGET (decl)) 5718 DECL_FUNCTION_SPECIFIC_TARGET (decl) 5719 = target_option_default_node; 5720 if (!DECL_FUNCTION_SPECIFIC_OPTIMIZATION (decl)) 5721 DECL_FUNCTION_SPECIFIC_OPTIMIZATION (decl) 5722 = optimization_default_node; 5723 } 5724 5725 /* DECL_SAVED_TREE holds the GENERIC representation for DECL. 5726 At this point, it is not needed anymore. */ 5727 DECL_SAVED_TREE (decl) = NULL_TREE; 5728 5729 /* Clear the abstract origin if it refers to a method. 5730 Otherwise dwarf2out.c will ICE as we splice functions out of 5731 TYPE_FIELDS and thus the origin will not be output 5732 correctly. */ 5733 if (DECL_ABSTRACT_ORIGIN (decl) 5734 && DECL_CONTEXT (DECL_ABSTRACT_ORIGIN (decl)) 5735 && RECORD_OR_UNION_TYPE_P 5736 (DECL_CONTEXT (DECL_ABSTRACT_ORIGIN (decl)))) 5737 DECL_ABSTRACT_ORIGIN (decl) = NULL_TREE; 5738 5739 DECL_VINDEX (decl) = NULL_TREE; 5740 } 5741 else if (VAR_P (decl)) 5742 { 5743 /* See comment above why we set the flag for functoins. */ 5744 if (TREE_PUBLIC (decl)) 5745 TREE_ADDRESSABLE (decl) = true; 5746 if ((DECL_EXTERNAL (decl) 5747 && (!TREE_STATIC (decl) || !TREE_READONLY (decl))) 5748 || (decl_function_context (decl) && !TREE_STATIC (decl))) 5749 DECL_INITIAL (decl) = NULL_TREE; 5750 } 5751 else if (TREE_CODE (decl) == TYPE_DECL) 5752 { 5753 DECL_VISIBILITY (decl) = VISIBILITY_DEFAULT; 5754 DECL_VISIBILITY_SPECIFIED (decl) = 0; 5755 TREE_PUBLIC (decl) = 0; 5756 TREE_PRIVATE (decl) = 0; 5757 DECL_ARTIFICIAL (decl) = 0; 5758 TYPE_DECL_SUPPRESS_DEBUG (decl) = 0; 5759 DECL_INITIAL (decl) = NULL_TREE; 5760 DECL_ORIGINAL_TYPE (decl) = NULL_TREE; 5761 DECL_MODE (decl) = VOIDmode; 5762 SET_DECL_ALIGN (decl, 0); 5763 /* TREE_TYPE is cleared at WPA time in free_odr_warning_data. */ 5764 } 5765 else if (TREE_CODE (decl) == FIELD_DECL) 5766 { 5767 TREE_TYPE (decl) = fld_simplified_type (TREE_TYPE (decl), fld); 5768 DECL_INITIAL (decl) = NULL_TREE; 5769 } 5770 else if (TREE_CODE (decl) == TRANSLATION_UNIT_DECL 5771 && DECL_INITIAL (decl) 5772 && TREE_CODE (DECL_INITIAL (decl)) == BLOCK) 5773 { 5774 /* Strip builtins from the translation-unit BLOCK. We still have targets 5775 without builtin_decl_explicit support and also builtins are shared 5776 nodes and thus we can't use TREE_CHAIN in multiple lists. */ 5777 tree *nextp = &BLOCK_VARS (DECL_INITIAL (decl)); 5778 while (*nextp) 5779 { 5780 tree var = *nextp; 5781 if (TREE_CODE (var) == FUNCTION_DECL 5782 && fndecl_built_in_p (var)) 5783 *nextp = TREE_CHAIN (var); 5784 else 5785 nextp = &TREE_CHAIN (var); 5786 } 5787 } 5788 /* We need to keep field decls associated with their trees. Otherwise tree 5789 merging may merge some fileds and keep others disjoint wich in turn will 5790 not do well with TREE_CHAIN pointers linking them. 5791 5792 Also do not drop containing types for virtual methods and tables because 5793 these are needed by devirtualization. 5794 C++ destructors are special because C++ frontends sometimes produces 5795 virtual destructor as an alias of non-virtual destructor. In 5796 devirutalization code we always walk through aliases and we need 5797 context to be preserved too. See PR89335 */ 5798 if (TREE_CODE (decl) != FIELD_DECL 5799 && ((TREE_CODE (decl) != VAR_DECL && TREE_CODE (decl) != FUNCTION_DECL) 5800 || (!DECL_VIRTUAL_P (decl) 5801 && (TREE_CODE (decl) != FUNCTION_DECL 5802 || !DECL_CXX_DESTRUCTOR_P (decl))))) 5803 DECL_CONTEXT (decl) = fld_decl_context (DECL_CONTEXT (decl)); 5804 } 5805 5806 5807 /* Operand callback helper for free_lang_data_in_node. *TP is the 5808 subtree operand being considered. */ 5809 5810 static tree 5811 find_decls_types_r (tree *tp, int *ws, void *data) 5812 { 5813 tree t = *tp; 5814 struct free_lang_data_d *fld = (struct free_lang_data_d *) data; 5815 5816 if (TREE_CODE (t) == TREE_LIST) 5817 return NULL_TREE; 5818 5819 /* Language specific nodes will be removed, so there is no need 5820 to gather anything under them. */ 5821 if (is_lang_specific (t)) 5822 { 5823 *ws = 0; 5824 return NULL_TREE; 5825 } 5826 5827 if (DECL_P (t)) 5828 { 5829 /* Note that walk_tree does not traverse every possible field in 5830 decls, so we have to do our own traversals here. */ 5831 add_tree_to_fld_list (t, fld); 5832 5833 fld_worklist_push (DECL_NAME (t), fld); 5834 fld_worklist_push (DECL_CONTEXT (t), fld); 5835 fld_worklist_push (DECL_SIZE (t), fld); 5836 fld_worklist_push (DECL_SIZE_UNIT (t), fld); 5837 5838 /* We are going to remove everything under DECL_INITIAL for 5839 TYPE_DECLs. No point walking them. */ 5840 if (TREE_CODE (t) != TYPE_DECL) 5841 fld_worklist_push (DECL_INITIAL (t), fld); 5842 5843 fld_worklist_push (DECL_ATTRIBUTES (t), fld); 5844 fld_worklist_push (DECL_ABSTRACT_ORIGIN (t), fld); 5845 5846 if (TREE_CODE (t) == FUNCTION_DECL) 5847 { 5848 fld_worklist_push (DECL_ARGUMENTS (t), fld); 5849 fld_worklist_push (DECL_RESULT (t), fld); 5850 } 5851 else if (TREE_CODE (t) == FIELD_DECL) 5852 { 5853 fld_worklist_push (DECL_FIELD_OFFSET (t), fld); 5854 fld_worklist_push (DECL_BIT_FIELD_TYPE (t), fld); 5855 fld_worklist_push (DECL_FIELD_BIT_OFFSET (t), fld); 5856 fld_worklist_push (DECL_FCONTEXT (t), fld); 5857 } 5858 5859 if ((VAR_P (t) || TREE_CODE (t) == PARM_DECL) 5860 && DECL_HAS_VALUE_EXPR_P (t)) 5861 fld_worklist_push (DECL_VALUE_EXPR (t), fld); 5862 5863 if (TREE_CODE (t) != FIELD_DECL 5864 && TREE_CODE (t) != TYPE_DECL) 5865 fld_worklist_push (TREE_CHAIN (t), fld); 5866 *ws = 0; 5867 } 5868 else if (TYPE_P (t)) 5869 { 5870 /* Note that walk_tree does not traverse every possible field in 5871 types, so we have to do our own traversals here. */ 5872 add_tree_to_fld_list (t, fld); 5873 5874 if (!RECORD_OR_UNION_TYPE_P (t)) 5875 fld_worklist_push (TYPE_CACHED_VALUES (t), fld); 5876 fld_worklist_push (TYPE_SIZE (t), fld); 5877 fld_worklist_push (TYPE_SIZE_UNIT (t), fld); 5878 fld_worklist_push (TYPE_ATTRIBUTES (t), fld); 5879 fld_worklist_push (TYPE_POINTER_TO (t), fld); 5880 fld_worklist_push (TYPE_REFERENCE_TO (t), fld); 5881 fld_worklist_push (TYPE_NAME (t), fld); 5882 /* While we do not stream TYPE_POINTER_TO and TYPE_REFERENCE_TO 5883 lists, we may look types up in these lists and use them while 5884 optimizing the function body. Thus we need to free lang data 5885 in them. */ 5886 if (TREE_CODE (t) == POINTER_TYPE) 5887 fld_worklist_push (TYPE_NEXT_PTR_TO (t), fld); 5888 if (TREE_CODE (t) == REFERENCE_TYPE) 5889 fld_worklist_push (TYPE_NEXT_REF_TO (t), fld); 5890 if (!POINTER_TYPE_P (t)) 5891 fld_worklist_push (TYPE_MIN_VALUE_RAW (t), fld); 5892 /* TYPE_MAX_VALUE_RAW is TYPE_BINFO for record types. */ 5893 if (!RECORD_OR_UNION_TYPE_P (t)) 5894 fld_worklist_push (TYPE_MAX_VALUE_RAW (t), fld); 5895 fld_worklist_push (TYPE_MAIN_VARIANT (t), fld); 5896 /* Do not walk TYPE_NEXT_VARIANT. We do not stream it and thus 5897 do not and want not to reach unused variants this way. */ 5898 if (TYPE_CONTEXT (t)) 5899 { 5900 tree ctx = TYPE_CONTEXT (t); 5901 /* We adjust BLOCK TYPE_CONTEXTs to the innermost non-BLOCK one. 5902 So push that instead. */ 5903 while (ctx && TREE_CODE (ctx) == BLOCK) 5904 ctx = BLOCK_SUPERCONTEXT (ctx); 5905 fld_worklist_push (ctx, fld); 5906 } 5907 fld_worklist_push (TYPE_CANONICAL (t), fld); 5908 5909 if (RECORD_OR_UNION_TYPE_P (t) && TYPE_BINFO (t)) 5910 { 5911 unsigned i; 5912 tree tem; 5913 FOR_EACH_VEC_ELT (*BINFO_BASE_BINFOS (TYPE_BINFO (t)), i, tem) 5914 fld_worklist_push (TREE_TYPE (tem), fld); 5915 fld_worklist_push (BINFO_TYPE (TYPE_BINFO (t)), fld); 5916 fld_worklist_push (BINFO_VTABLE (TYPE_BINFO (t)), fld); 5917 } 5918 if (RECORD_OR_UNION_TYPE_P (t)) 5919 { 5920 tree tem; 5921 /* Push all TYPE_FIELDS - there can be interleaving interesting 5922 and non-interesting things. */ 5923 tem = TYPE_FIELDS (t); 5924 while (tem) 5925 { 5926 if (TREE_CODE (tem) == FIELD_DECL) 5927 fld_worklist_push (tem, fld); 5928 tem = TREE_CHAIN (tem); 5929 } 5930 } 5931 if (FUNC_OR_METHOD_TYPE_P (t)) 5932 fld_worklist_push (TYPE_METHOD_BASETYPE (t), fld); 5933 5934 fld_worklist_push (TYPE_STUB_DECL (t), fld); 5935 *ws = 0; 5936 } 5937 else if (TREE_CODE (t) == BLOCK) 5938 { 5939 for (tree *tem = &BLOCK_VARS (t); *tem; ) 5940 { 5941 if (TREE_CODE (*tem) != LABEL_DECL 5942 && (TREE_CODE (*tem) != VAR_DECL 5943 || !auto_var_in_fn_p (*tem, DECL_CONTEXT (*tem)))) 5944 { 5945 gcc_assert (TREE_CODE (*tem) != RESULT_DECL 5946 && TREE_CODE (*tem) != PARM_DECL); 5947 *tem = TREE_CHAIN (*tem); 5948 } 5949 else 5950 { 5951 fld_worklist_push (*tem, fld); 5952 tem = &TREE_CHAIN (*tem); 5953 } 5954 } 5955 for (tree tem = BLOCK_SUBBLOCKS (t); tem; tem = BLOCK_CHAIN (tem)) 5956 fld_worklist_push (tem, fld); 5957 fld_worklist_push (BLOCK_ABSTRACT_ORIGIN (t), fld); 5958 } 5959 5960 if (TREE_CODE (t) != IDENTIFIER_NODE 5961 && CODE_CONTAINS_STRUCT (TREE_CODE (t), TS_TYPED)) 5962 fld_worklist_push (TREE_TYPE (t), fld); 5963 5964 return NULL_TREE; 5965 } 5966 5967 5968 /* Find decls and types in T. */ 5969 5970 static void 5971 find_decls_types (tree t, struct free_lang_data_d *fld) 5972 { 5973 while (1) 5974 { 5975 if (!fld->pset.contains (t)) 5976 walk_tree (&t, find_decls_types_r, fld, &fld->pset); 5977 if (fld->worklist.is_empty ()) 5978 break; 5979 t = fld->worklist.pop (); 5980 } 5981 } 5982 5983 /* Translate all the types in LIST with the corresponding runtime 5984 types. */ 5985 5986 static tree 5987 get_eh_types_for_runtime (tree list) 5988 { 5989 tree head, prev; 5990 5991 if (list == NULL_TREE) 5992 return NULL_TREE; 5993 5994 head = build_tree_list (0, lookup_type_for_runtime (TREE_VALUE (list))); 5995 prev = head; 5996 list = TREE_CHAIN (list); 5997 while (list) 5998 { 5999 tree n = build_tree_list (0, lookup_type_for_runtime (TREE_VALUE (list))); 6000 TREE_CHAIN (prev) = n; 6001 prev = TREE_CHAIN (prev); 6002 list = TREE_CHAIN (list); 6003 } 6004 6005 return head; 6006 } 6007 6008 6009 /* Find decls and types referenced in EH region R and store them in 6010 FLD->DECLS and FLD->TYPES. */ 6011 6012 static void 6013 find_decls_types_in_eh_region (eh_region r, struct free_lang_data_d *fld) 6014 { 6015 switch (r->type) 6016 { 6017 case ERT_CLEANUP: 6018 break; 6019 6020 case ERT_TRY: 6021 { 6022 eh_catch c; 6023 6024 /* The types referenced in each catch must first be changed to the 6025 EH types used at runtime. This removes references to FE types 6026 in the region. */ 6027 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch) 6028 { 6029 c->type_list = get_eh_types_for_runtime (c->type_list); 6030 walk_tree (&c->type_list, find_decls_types_r, fld, &fld->pset); 6031 } 6032 } 6033 break; 6034 6035 case ERT_ALLOWED_EXCEPTIONS: 6036 r->u.allowed.type_list 6037 = get_eh_types_for_runtime (r->u.allowed.type_list); 6038 walk_tree (&r->u.allowed.type_list, find_decls_types_r, fld, &fld->pset); 6039 break; 6040 6041 case ERT_MUST_NOT_THROW: 6042 walk_tree (&r->u.must_not_throw.failure_decl, 6043 find_decls_types_r, fld, &fld->pset); 6044 break; 6045 } 6046 } 6047 6048 6049 /* Find decls and types referenced in cgraph node N and store them in 6050 FLD->DECLS and FLD->TYPES. Unlike pass_referenced_vars, this will 6051 look for *every* kind of DECL and TYPE node reachable from N, 6052 including those embedded inside types and decls (i.e,, TYPE_DECLs, 6053 NAMESPACE_DECLs, etc). */ 6054 6055 static void 6056 find_decls_types_in_node (struct cgraph_node *n, struct free_lang_data_d *fld) 6057 { 6058 basic_block bb; 6059 struct function *fn; 6060 unsigned ix; 6061 tree t; 6062 6063 find_decls_types (n->decl, fld); 6064 6065 if (!gimple_has_body_p (n->decl)) 6066 return; 6067 6068 gcc_assert (current_function_decl == NULL_TREE && cfun == NULL); 6069 6070 fn = DECL_STRUCT_FUNCTION (n->decl); 6071 6072 /* Traverse locals. */ 6073 FOR_EACH_LOCAL_DECL (fn, ix, t) 6074 find_decls_types (t, fld); 6075 6076 /* Traverse EH regions in FN. */ 6077 { 6078 eh_region r; 6079 FOR_ALL_EH_REGION_FN (r, fn) 6080 find_decls_types_in_eh_region (r, fld); 6081 } 6082 6083 /* Traverse every statement in FN. */ 6084 FOR_EACH_BB_FN (bb, fn) 6085 { 6086 gphi_iterator psi; 6087 gimple_stmt_iterator si; 6088 unsigned i; 6089 6090 for (psi = gsi_start_phis (bb); !gsi_end_p (psi); gsi_next (&psi)) 6091 { 6092 gphi *phi = psi.phi (); 6093 6094 for (i = 0; i < gimple_phi_num_args (phi); i++) 6095 { 6096 tree *arg_p = gimple_phi_arg_def_ptr (phi, i); 6097 find_decls_types (*arg_p, fld); 6098 } 6099 } 6100 6101 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si)) 6102 { 6103 gimple *stmt = gsi_stmt (si); 6104 6105 if (is_gimple_call (stmt)) 6106 find_decls_types (gimple_call_fntype (stmt), fld); 6107 6108 for (i = 0; i < gimple_num_ops (stmt); i++) 6109 { 6110 tree arg = gimple_op (stmt, i); 6111 find_decls_types (arg, fld); 6112 /* find_decls_types doesn't walk TREE_PURPOSE of TREE_LISTs, 6113 which we need for asm stmts. */ 6114 if (arg 6115 && TREE_CODE (arg) == TREE_LIST 6116 && TREE_PURPOSE (arg) 6117 && gimple_code (stmt) == GIMPLE_ASM) 6118 find_decls_types (TREE_PURPOSE (arg), fld); 6119 } 6120 } 6121 } 6122 } 6123 6124 6125 /* Find decls and types referenced in varpool node N and store them in 6126 FLD->DECLS and FLD->TYPES. Unlike pass_referenced_vars, this will 6127 look for *every* kind of DECL and TYPE node reachable from N, 6128 including those embedded inside types and decls (i.e,, TYPE_DECLs, 6129 NAMESPACE_DECLs, etc). */ 6130 6131 static void 6132 find_decls_types_in_var (varpool_node *v, struct free_lang_data_d *fld) 6133 { 6134 find_decls_types (v->decl, fld); 6135 } 6136 6137 /* If T needs an assembler name, have one created for it. */ 6138 6139 void 6140 assign_assembler_name_if_needed (tree t) 6141 { 6142 if (need_assembler_name_p (t)) 6143 { 6144 /* When setting DECL_ASSEMBLER_NAME, the C++ mangler may emit 6145 diagnostics that use input_location to show locus 6146 information. The problem here is that, at this point, 6147 input_location is generally anchored to the end of the file 6148 (since the parser is long gone), so we don't have a good 6149 position to pin it to. 6150 6151 To alleviate this problem, this uses the location of T's 6152 declaration. Examples of this are 6153 testsuite/g++.dg/template/cond2.C and 6154 testsuite/g++.dg/template/pr35240.C. */ 6155 location_t saved_location = input_location; 6156 input_location = DECL_SOURCE_LOCATION (t); 6157 6158 decl_assembler_name (t); 6159 6160 input_location = saved_location; 6161 } 6162 } 6163 6164 6165 /* Free language specific information for every operand and expression 6166 in every node of the call graph. This process operates in three stages: 6167 6168 1- Every callgraph node and varpool node is traversed looking for 6169 decls and types embedded in them. This is a more exhaustive 6170 search than that done by find_referenced_vars, because it will 6171 also collect individual fields, decls embedded in types, etc. 6172 6173 2- All the decls found are sent to free_lang_data_in_decl. 6174 6175 3- All the types found are sent to free_lang_data_in_type. 6176 6177 The ordering between decls and types is important because 6178 free_lang_data_in_decl sets assembler names, which includes 6179 mangling. So types cannot be freed up until assembler names have 6180 been set up. */ 6181 6182 static void 6183 free_lang_data_in_cgraph (struct free_lang_data_d *fld) 6184 { 6185 struct cgraph_node *n; 6186 varpool_node *v; 6187 tree t; 6188 unsigned i; 6189 alias_pair *p; 6190 6191 /* Find decls and types in the body of every function in the callgraph. */ 6192 FOR_EACH_FUNCTION (n) 6193 find_decls_types_in_node (n, fld); 6194 6195 FOR_EACH_VEC_SAFE_ELT (alias_pairs, i, p) 6196 find_decls_types (p->decl, fld); 6197 6198 /* Find decls and types in every varpool symbol. */ 6199 FOR_EACH_VARIABLE (v) 6200 find_decls_types_in_var (v, fld); 6201 6202 /* Set the assembler name on every decl found. We need to do this 6203 now because free_lang_data_in_decl will invalidate data needed 6204 for mangling. This breaks mangling on interdependent decls. */ 6205 FOR_EACH_VEC_ELT (fld->decls, i, t) 6206 assign_assembler_name_if_needed (t); 6207 6208 /* Traverse every decl found freeing its language data. */ 6209 FOR_EACH_VEC_ELT (fld->decls, i, t) 6210 free_lang_data_in_decl (t, fld); 6211 6212 /* Traverse every type found freeing its language data. */ 6213 FOR_EACH_VEC_ELT (fld->types, i, t) 6214 free_lang_data_in_type (t, fld); 6215 } 6216 6217 6218 /* Free resources that are used by FE but are not needed once they are done. */ 6219 6220 static unsigned 6221 free_lang_data (void) 6222 { 6223 unsigned i; 6224 struct free_lang_data_d fld; 6225 6226 /* If we are the LTO frontend we have freed lang-specific data already. */ 6227 if (in_lto_p 6228 || (!flag_generate_lto && !flag_generate_offload)) 6229 { 6230 /* Rebuild type inheritance graph even when not doing LTO to get 6231 consistent profile data. */ 6232 rebuild_type_inheritance_graph (); 6233 return 0; 6234 } 6235 6236 fld_incomplete_types = new hash_map<tree, tree>; 6237 fld_simplified_types = new hash_map<tree, tree>; 6238 6239 /* Provide a dummy TRANSLATION_UNIT_DECL if the FE failed to provide one. */ 6240 if (vec_safe_is_empty (all_translation_units)) 6241 build_translation_unit_decl (NULL_TREE); 6242 6243 /* Allocate and assign alias sets to the standard integer types 6244 while the slots are still in the way the frontends generated them. */ 6245 for (i = 0; i < itk_none; ++i) 6246 if (integer_types[i]) 6247 TYPE_ALIAS_SET (integer_types[i]) = get_alias_set (integer_types[i]); 6248 6249 /* Traverse the IL resetting language specific information for 6250 operands, expressions, etc. */ 6251 free_lang_data_in_cgraph (&fld); 6252 6253 /* Create gimple variants for common types. */ 6254 for (unsigned i = 0; 6255 i < sizeof (builtin_structptr_types) / sizeof (builtin_structptr_type); 6256 ++i) 6257 builtin_structptr_types[i].node = builtin_structptr_types[i].base; 6258 6259 /* Reset some langhooks. Do not reset types_compatible_p, it may 6260 still be used indirectly via the get_alias_set langhook. */ 6261 lang_hooks.dwarf_name = lhd_dwarf_name; 6262 lang_hooks.decl_printable_name = gimple_decl_printable_name; 6263 lang_hooks.gimplify_expr = lhd_gimplify_expr; 6264 lang_hooks.overwrite_decl_assembler_name = lhd_overwrite_decl_assembler_name; 6265 lang_hooks.print_xnode = lhd_print_tree_nothing; 6266 lang_hooks.print_decl = lhd_print_tree_nothing; 6267 lang_hooks.print_type = lhd_print_tree_nothing; 6268 lang_hooks.print_identifier = lhd_print_tree_nothing; 6269 6270 lang_hooks.tree_inlining.var_mod_type_p = hook_bool_tree_tree_false; 6271 6272 if (flag_checking) 6273 { 6274 int i; 6275 tree t; 6276 6277 FOR_EACH_VEC_ELT (fld.types, i, t) 6278 verify_type (t); 6279 } 6280 6281 /* We do not want the default decl_assembler_name implementation, 6282 rather if we have fixed everything we want a wrapper around it 6283 asserting that all non-local symbols already got their assembler 6284 name and only produce assembler names for local symbols. Or rather 6285 make sure we never call decl_assembler_name on local symbols and 6286 devise a separate, middle-end private scheme for it. */ 6287 6288 /* Reset diagnostic machinery. */ 6289 tree_diagnostics_defaults (global_dc); 6290 6291 rebuild_type_inheritance_graph (); 6292 6293 delete fld_incomplete_types; 6294 delete fld_simplified_types; 6295 6296 return 0; 6297 } 6298 6299 6300 namespace { 6301 6302 const pass_data pass_data_ipa_free_lang_data = 6303 { 6304 SIMPLE_IPA_PASS, /* type */ 6305 "*free_lang_data", /* name */ 6306 OPTGROUP_NONE, /* optinfo_flags */ 6307 TV_IPA_FREE_LANG_DATA, /* tv_id */ 6308 0, /* properties_required */ 6309 0, /* properties_provided */ 6310 0, /* properties_destroyed */ 6311 0, /* todo_flags_start */ 6312 0, /* todo_flags_finish */ 6313 }; 6314 6315 class pass_ipa_free_lang_data : public simple_ipa_opt_pass 6316 { 6317 public: 6318 pass_ipa_free_lang_data (gcc::context *ctxt) 6319 : simple_ipa_opt_pass (pass_data_ipa_free_lang_data, ctxt) 6320 {} 6321 6322 /* opt_pass methods: */ 6323 virtual unsigned int execute (function *) { return free_lang_data (); } 6324 6325 }; // class pass_ipa_free_lang_data 6326 6327 } // anon namespace 6328 6329 simple_ipa_opt_pass * 6330 make_pass_ipa_free_lang_data (gcc::context *ctxt) 6331 { 6332 return new pass_ipa_free_lang_data (ctxt); 6333 } 6334 6335 /* Set the type qualifiers for TYPE to TYPE_QUALS, which is a bitmask 6336 of the various TYPE_QUAL values. */ 6337 6338 static void 6339 set_type_quals (tree type, int type_quals) 6340 { 6341 TYPE_READONLY (type) = (type_quals & TYPE_QUAL_CONST) != 0; 6342 TYPE_VOLATILE (type) = (type_quals & TYPE_QUAL_VOLATILE) != 0; 6343 TYPE_RESTRICT (type) = (type_quals & TYPE_QUAL_RESTRICT) != 0; 6344 TYPE_ATOMIC (type) = (type_quals & TYPE_QUAL_ATOMIC) != 0; 6345 TYPE_ADDR_SPACE (type) = DECODE_QUAL_ADDR_SPACE (type_quals); 6346 } 6347 6348 /* Returns true iff CAND and BASE have equivalent language-specific 6349 qualifiers. */ 6350 6351 bool 6352 check_lang_type (const_tree cand, const_tree base) 6353 { 6354 if (lang_hooks.types.type_hash_eq == NULL) 6355 return true; 6356 /* type_hash_eq currently only applies to these types. */ 6357 if (TREE_CODE (cand) != FUNCTION_TYPE 6358 && TREE_CODE (cand) != METHOD_TYPE) 6359 return true; 6360 return lang_hooks.types.type_hash_eq (cand, base); 6361 } 6362 6363 /* This function checks to see if TYPE matches the size one of the built-in 6364 atomic types, and returns that core atomic type. */ 6365 6366 static tree 6367 find_atomic_core_type (const_tree type) 6368 { 6369 tree base_atomic_type; 6370 6371 /* Only handle complete types. */ 6372 if (!tree_fits_uhwi_p (TYPE_SIZE (type))) 6373 return NULL_TREE; 6374 6375 switch (tree_to_uhwi (TYPE_SIZE (type))) 6376 { 6377 case 8: 6378 base_atomic_type = atomicQI_type_node; 6379 break; 6380 6381 case 16: 6382 base_atomic_type = atomicHI_type_node; 6383 break; 6384 6385 case 32: 6386 base_atomic_type = atomicSI_type_node; 6387 break; 6388 6389 case 64: 6390 base_atomic_type = atomicDI_type_node; 6391 break; 6392 6393 case 128: 6394 base_atomic_type = atomicTI_type_node; 6395 break; 6396 6397 default: 6398 base_atomic_type = NULL_TREE; 6399 } 6400 6401 return base_atomic_type; 6402 } 6403 6404 /* Returns true iff unqualified CAND and BASE are equivalent. */ 6405 6406 bool 6407 check_base_type (const_tree cand, const_tree base) 6408 { 6409 if (TYPE_NAME (cand) != TYPE_NAME (base) 6410 /* Apparently this is needed for Objective-C. */ 6411 || TYPE_CONTEXT (cand) != TYPE_CONTEXT (base) 6412 || !attribute_list_equal (TYPE_ATTRIBUTES (cand), 6413 TYPE_ATTRIBUTES (base))) 6414 return false; 6415 /* Check alignment. */ 6416 if (TYPE_ALIGN (cand) == TYPE_ALIGN (base)) 6417 return true; 6418 /* Atomic types increase minimal alignment. We must to do so as well 6419 or we get duplicated canonical types. See PR88686. */ 6420 if ((TYPE_QUALS (cand) & TYPE_QUAL_ATOMIC)) 6421 { 6422 /* See if this object can map to a basic atomic type. */ 6423 tree atomic_type = find_atomic_core_type (cand); 6424 if (atomic_type && TYPE_ALIGN (atomic_type) == TYPE_ALIGN (cand)) 6425 return true; 6426 } 6427 return false; 6428 } 6429 6430 /* Returns true iff CAND is equivalent to BASE with TYPE_QUALS. */ 6431 6432 bool 6433 check_qualified_type (const_tree cand, const_tree base, int type_quals) 6434 { 6435 return (TYPE_QUALS (cand) == type_quals 6436 && check_base_type (cand, base) 6437 && check_lang_type (cand, base)); 6438 } 6439 6440 /* Returns true iff CAND is equivalent to BASE with ALIGN. */ 6441 6442 static bool 6443 check_aligned_type (const_tree cand, const_tree base, unsigned int align) 6444 { 6445 return (TYPE_QUALS (cand) == TYPE_QUALS (base) 6446 && TYPE_NAME (cand) == TYPE_NAME (base) 6447 /* Apparently this is needed for Objective-C. */ 6448 && TYPE_CONTEXT (cand) == TYPE_CONTEXT (base) 6449 /* Check alignment. */ 6450 && TYPE_ALIGN (cand) == align 6451 && attribute_list_equal (TYPE_ATTRIBUTES (cand), 6452 TYPE_ATTRIBUTES (base)) 6453 && check_lang_type (cand, base)); 6454 } 6455 6456 /* Return a version of the TYPE, qualified as indicated by the 6457 TYPE_QUALS, if one exists. If no qualified version exists yet, 6458 return NULL_TREE. */ 6459 6460 tree 6461 get_qualified_type (tree type, int type_quals) 6462 { 6463 if (TYPE_QUALS (type) == type_quals) 6464 return type; 6465 6466 tree mv = TYPE_MAIN_VARIANT (type); 6467 if (check_qualified_type (mv, type, type_quals)) 6468 return mv; 6469 6470 /* Search the chain of variants to see if there is already one there just 6471 like the one we need to have. If so, use that existing one. We must 6472 preserve the TYPE_NAME, since there is code that depends on this. */ 6473 for (tree *tp = &TYPE_NEXT_VARIANT (mv); *tp; tp = &TYPE_NEXT_VARIANT (*tp)) 6474 if (check_qualified_type (*tp, type, type_quals)) 6475 { 6476 /* Put the found variant at the head of the variant list so 6477 frequently searched variants get found faster. The C++ FE 6478 benefits greatly from this. */ 6479 tree t = *tp; 6480 *tp = TYPE_NEXT_VARIANT (t); 6481 TYPE_NEXT_VARIANT (t) = TYPE_NEXT_VARIANT (mv); 6482 TYPE_NEXT_VARIANT (mv) = t; 6483 return t; 6484 } 6485 6486 return NULL_TREE; 6487 } 6488 6489 /* Like get_qualified_type, but creates the type if it does not 6490 exist. This function never returns NULL_TREE. */ 6491 6492 tree 6493 build_qualified_type (tree type, int type_quals MEM_STAT_DECL) 6494 { 6495 tree t; 6496 6497 /* See if we already have the appropriate qualified variant. */ 6498 t = get_qualified_type (type, type_quals); 6499 6500 /* If not, build it. */ 6501 if (!t) 6502 { 6503 t = build_variant_type_copy (type PASS_MEM_STAT); 6504 set_type_quals (t, type_quals); 6505 6506 if (((type_quals & TYPE_QUAL_ATOMIC) == TYPE_QUAL_ATOMIC)) 6507 { 6508 /* See if this object can map to a basic atomic type. */ 6509 tree atomic_type = find_atomic_core_type (type); 6510 if (atomic_type) 6511 { 6512 /* Ensure the alignment of this type is compatible with 6513 the required alignment of the atomic type. */ 6514 if (TYPE_ALIGN (atomic_type) > TYPE_ALIGN (t)) 6515 SET_TYPE_ALIGN (t, TYPE_ALIGN (atomic_type)); 6516 } 6517 } 6518 6519 if (TYPE_STRUCTURAL_EQUALITY_P (type)) 6520 /* Propagate structural equality. */ 6521 SET_TYPE_STRUCTURAL_EQUALITY (t); 6522 else if (TYPE_CANONICAL (type) != type) 6523 /* Build the underlying canonical type, since it is different 6524 from TYPE. */ 6525 { 6526 tree c = build_qualified_type (TYPE_CANONICAL (type), type_quals); 6527 TYPE_CANONICAL (t) = TYPE_CANONICAL (c); 6528 } 6529 else 6530 /* T is its own canonical type. */ 6531 TYPE_CANONICAL (t) = t; 6532 6533 } 6534 6535 return t; 6536 } 6537 6538 /* Create a variant of type T with alignment ALIGN. */ 6539 6540 tree 6541 build_aligned_type (tree type, unsigned int align) 6542 { 6543 tree t; 6544 6545 if (TYPE_PACKED (type) 6546 || TYPE_ALIGN (type) == align) 6547 return type; 6548 6549 for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t)) 6550 if (check_aligned_type (t, type, align)) 6551 return t; 6552 6553 t = build_variant_type_copy (type); 6554 SET_TYPE_ALIGN (t, align); 6555 TYPE_USER_ALIGN (t) = 1; 6556 6557 return t; 6558 } 6559 6560 /* Create a new distinct copy of TYPE. The new type is made its own 6561 MAIN_VARIANT. If TYPE requires structural equality checks, the 6562 resulting type requires structural equality checks; otherwise, its 6563 TYPE_CANONICAL points to itself. */ 6564 6565 tree 6566 build_distinct_type_copy (tree type MEM_STAT_DECL) 6567 { 6568 tree t = copy_node (type PASS_MEM_STAT); 6569 6570 TYPE_POINTER_TO (t) = 0; 6571 TYPE_REFERENCE_TO (t) = 0; 6572 6573 /* Set the canonical type either to a new equivalence class, or 6574 propagate the need for structural equality checks. */ 6575 if (TYPE_STRUCTURAL_EQUALITY_P (type)) 6576 SET_TYPE_STRUCTURAL_EQUALITY (t); 6577 else 6578 TYPE_CANONICAL (t) = t; 6579 6580 /* Make it its own variant. */ 6581 TYPE_MAIN_VARIANT (t) = t; 6582 TYPE_NEXT_VARIANT (t) = 0; 6583 6584 /* Note that it is now possible for TYPE_MIN_VALUE to be a value 6585 whose TREE_TYPE is not t. This can also happen in the Ada 6586 frontend when using subtypes. */ 6587 6588 return t; 6589 } 6590 6591 /* Create a new variant of TYPE, equivalent but distinct. This is so 6592 the caller can modify it. TYPE_CANONICAL for the return type will 6593 be equivalent to TYPE_CANONICAL of TYPE, indicating that the types 6594 are considered equal by the language itself (or that both types 6595 require structural equality checks). */ 6596 6597 tree 6598 build_variant_type_copy (tree type MEM_STAT_DECL) 6599 { 6600 tree t, m = TYPE_MAIN_VARIANT (type); 6601 6602 t = build_distinct_type_copy (type PASS_MEM_STAT); 6603 6604 /* Since we're building a variant, assume that it is a non-semantic 6605 variant. This also propagates TYPE_STRUCTURAL_EQUALITY_P. */ 6606 TYPE_CANONICAL (t) = TYPE_CANONICAL (type); 6607 /* Type variants have no alias set defined. */ 6608 TYPE_ALIAS_SET (t) = -1; 6609 6610 /* Add the new type to the chain of variants of TYPE. */ 6611 TYPE_NEXT_VARIANT (t) = TYPE_NEXT_VARIANT (m); 6612 TYPE_NEXT_VARIANT (m) = t; 6613 TYPE_MAIN_VARIANT (t) = m; 6614 6615 return t; 6616 } 6617 6618 /* Return true if the from tree in both tree maps are equal. */ 6619 6620 int 6621 tree_map_base_eq (const void *va, const void *vb) 6622 { 6623 const struct tree_map_base *const a = (const struct tree_map_base *) va, 6624 *const b = (const struct tree_map_base *) vb; 6625 return (a->from == b->from); 6626 } 6627 6628 /* Hash a from tree in a tree_base_map. */ 6629 6630 unsigned int 6631 tree_map_base_hash (const void *item) 6632 { 6633 return htab_hash_pointer (((const struct tree_map_base *)item)->from); 6634 } 6635 6636 /* Return true if this tree map structure is marked for garbage collection 6637 purposes. We simply return true if the from tree is marked, so that this 6638 structure goes away when the from tree goes away. */ 6639 6640 int 6641 tree_map_base_marked_p (const void *p) 6642 { 6643 return ggc_marked_p (((const struct tree_map_base *) p)->from); 6644 } 6645 6646 /* Hash a from tree in a tree_map. */ 6647 6648 unsigned int 6649 tree_map_hash (const void *item) 6650 { 6651 return (((const struct tree_map *) item)->hash); 6652 } 6653 6654 /* Hash a from tree in a tree_decl_map. */ 6655 6656 unsigned int 6657 tree_decl_map_hash (const void *item) 6658 { 6659 return DECL_UID (((const struct tree_decl_map *) item)->base.from); 6660 } 6661 6662 /* Return the initialization priority for DECL. */ 6663 6664 priority_type 6665 decl_init_priority_lookup (tree decl) 6666 { 6667 symtab_node *snode = symtab_node::get (decl); 6668 6669 if (!snode) 6670 return DEFAULT_INIT_PRIORITY; 6671 return 6672 snode->get_init_priority (); 6673 } 6674 6675 /* Return the finalization priority for DECL. */ 6676 6677 priority_type 6678 decl_fini_priority_lookup (tree decl) 6679 { 6680 cgraph_node *node = cgraph_node::get (decl); 6681 6682 if (!node) 6683 return DEFAULT_INIT_PRIORITY; 6684 return 6685 node->get_fini_priority (); 6686 } 6687 6688 /* Set the initialization priority for DECL to PRIORITY. */ 6689 6690 void 6691 decl_init_priority_insert (tree decl, priority_type priority) 6692 { 6693 struct symtab_node *snode; 6694 6695 if (priority == DEFAULT_INIT_PRIORITY) 6696 { 6697 snode = symtab_node::get (decl); 6698 if (!snode) 6699 return; 6700 } 6701 else if (VAR_P (decl)) 6702 snode = varpool_node::get_create (decl); 6703 else 6704 snode = cgraph_node::get_create (decl); 6705 snode->set_init_priority (priority); 6706 } 6707 6708 /* Set the finalization priority for DECL to PRIORITY. */ 6709 6710 void 6711 decl_fini_priority_insert (tree decl, priority_type priority) 6712 { 6713 struct cgraph_node *node; 6714 6715 if (priority == DEFAULT_INIT_PRIORITY) 6716 { 6717 node = cgraph_node::get (decl); 6718 if (!node) 6719 return; 6720 } 6721 else 6722 node = cgraph_node::get_create (decl); 6723 node->set_fini_priority (priority); 6724 } 6725 6726 /* Print out the statistics for the DECL_DEBUG_EXPR hash table. */ 6727 6728 static void 6729 print_debug_expr_statistics (void) 6730 { 6731 fprintf (stderr, "DECL_DEBUG_EXPR hash: size %ld, %ld elements, %f collisions\n", 6732 (long) debug_expr_for_decl->size (), 6733 (long) debug_expr_for_decl->elements (), 6734 debug_expr_for_decl->collisions ()); 6735 } 6736 6737 /* Print out the statistics for the DECL_VALUE_EXPR hash table. */ 6738 6739 static void 6740 print_value_expr_statistics (void) 6741 { 6742 fprintf (stderr, "DECL_VALUE_EXPR hash: size %ld, %ld elements, %f collisions\n", 6743 (long) value_expr_for_decl->size (), 6744 (long) value_expr_for_decl->elements (), 6745 value_expr_for_decl->collisions ()); 6746 } 6747 6748 /* Lookup a debug expression for FROM, and return it if we find one. */ 6749 6750 tree 6751 decl_debug_expr_lookup (tree from) 6752 { 6753 struct tree_decl_map *h, in; 6754 in.base.from = from; 6755 6756 h = debug_expr_for_decl->find_with_hash (&in, DECL_UID (from)); 6757 if (h) 6758 return h->to; 6759 return NULL_TREE; 6760 } 6761 6762 /* Insert a mapping FROM->TO in the debug expression hashtable. */ 6763 6764 void 6765 decl_debug_expr_insert (tree from, tree to) 6766 { 6767 struct tree_decl_map *h; 6768 6769 h = ggc_alloc<tree_decl_map> (); 6770 h->base.from = from; 6771 h->to = to; 6772 *debug_expr_for_decl->find_slot_with_hash (h, DECL_UID (from), INSERT) = h; 6773 } 6774 6775 /* Lookup a value expression for FROM, and return it if we find one. */ 6776 6777 tree 6778 decl_value_expr_lookup (tree from) 6779 { 6780 struct tree_decl_map *h, in; 6781 in.base.from = from; 6782 6783 h = value_expr_for_decl->find_with_hash (&in, DECL_UID (from)); 6784 if (h) 6785 return h->to; 6786 return NULL_TREE; 6787 } 6788 6789 /* Insert a mapping FROM->TO in the value expression hashtable. */ 6790 6791 void 6792 decl_value_expr_insert (tree from, tree to) 6793 { 6794 struct tree_decl_map *h; 6795 6796 h = ggc_alloc<tree_decl_map> (); 6797 h->base.from = from; 6798 h->to = to; 6799 *value_expr_for_decl->find_slot_with_hash (h, DECL_UID (from), INSERT) = h; 6800 } 6801 6802 /* Lookup a vector of debug arguments for FROM, and return it if we 6803 find one. */ 6804 6805 vec<tree, va_gc> ** 6806 decl_debug_args_lookup (tree from) 6807 { 6808 struct tree_vec_map *h, in; 6809 6810 if (!DECL_HAS_DEBUG_ARGS_P (from)) 6811 return NULL; 6812 gcc_checking_assert (debug_args_for_decl != NULL); 6813 in.base.from = from; 6814 h = debug_args_for_decl->find_with_hash (&in, DECL_UID (from)); 6815 if (h) 6816 return &h->to; 6817 return NULL; 6818 } 6819 6820 /* Insert a mapping FROM->empty vector of debug arguments in the value 6821 expression hashtable. */ 6822 6823 vec<tree, va_gc> ** 6824 decl_debug_args_insert (tree from) 6825 { 6826 struct tree_vec_map *h; 6827 tree_vec_map **loc; 6828 6829 if (DECL_HAS_DEBUG_ARGS_P (from)) 6830 return decl_debug_args_lookup (from); 6831 if (debug_args_for_decl == NULL) 6832 debug_args_for_decl = hash_table<tree_vec_map_cache_hasher>::create_ggc (64); 6833 h = ggc_alloc<tree_vec_map> (); 6834 h->base.from = from; 6835 h->to = NULL; 6836 loc = debug_args_for_decl->find_slot_with_hash (h, DECL_UID (from), INSERT); 6837 *loc = h; 6838 DECL_HAS_DEBUG_ARGS_P (from) = 1; 6839 return &h->to; 6840 } 6841 6842 /* Hashing of types so that we don't make duplicates. 6843 The entry point is `type_hash_canon'. */ 6844 6845 /* Generate the default hash code for TYPE. This is designed for 6846 speed, rather than maximum entropy. */ 6847 6848 hashval_t 6849 type_hash_canon_hash (tree type) 6850 { 6851 inchash::hash hstate; 6852 6853 hstate.add_int (TREE_CODE (type)); 6854 6855 if (TREE_TYPE (type)) 6856 hstate.add_object (TYPE_HASH (TREE_TYPE (type))); 6857 6858 for (tree t = TYPE_ATTRIBUTES (type); t; t = TREE_CHAIN (t)) 6859 /* Just the identifier is adequate to distinguish. */ 6860 hstate.add_object (IDENTIFIER_HASH_VALUE (get_attribute_name (t))); 6861 6862 switch (TREE_CODE (type)) 6863 { 6864 case METHOD_TYPE: 6865 hstate.add_object (TYPE_HASH (TYPE_METHOD_BASETYPE (type))); 6866 /* FALLTHROUGH. */ 6867 case FUNCTION_TYPE: 6868 for (tree t = TYPE_ARG_TYPES (type); t; t = TREE_CHAIN (t)) 6869 if (TREE_VALUE (t) != error_mark_node) 6870 hstate.add_object (TYPE_HASH (TREE_VALUE (t))); 6871 break; 6872 6873 case OFFSET_TYPE: 6874 hstate.add_object (TYPE_HASH (TYPE_OFFSET_BASETYPE (type))); 6875 break; 6876 6877 case ARRAY_TYPE: 6878 { 6879 if (TYPE_DOMAIN (type)) 6880 hstate.add_object (TYPE_HASH (TYPE_DOMAIN (type))); 6881 if (!AGGREGATE_TYPE_P (TREE_TYPE (type))) 6882 { 6883 unsigned typeless = TYPE_TYPELESS_STORAGE (type); 6884 hstate.add_object (typeless); 6885 } 6886 } 6887 break; 6888 6889 case INTEGER_TYPE: 6890 { 6891 tree t = TYPE_MAX_VALUE (type); 6892 if (!t) 6893 t = TYPE_MIN_VALUE (type); 6894 for (int i = 0; i < TREE_INT_CST_NUNITS (t); i++) 6895 hstate.add_object (TREE_INT_CST_ELT (t, i)); 6896 break; 6897 } 6898 6899 case REAL_TYPE: 6900 case FIXED_POINT_TYPE: 6901 { 6902 unsigned prec = TYPE_PRECISION (type); 6903 hstate.add_object (prec); 6904 break; 6905 } 6906 6907 case VECTOR_TYPE: 6908 hstate.add_poly_int (TYPE_VECTOR_SUBPARTS (type)); 6909 break; 6910 6911 default: 6912 break; 6913 } 6914 6915 return hstate.end (); 6916 } 6917 6918 /* These are the Hashtable callback functions. */ 6919 6920 /* Returns true iff the types are equivalent. */ 6921 6922 bool 6923 type_cache_hasher::equal (type_hash *a, type_hash *b) 6924 { 6925 /* First test the things that are the same for all types. */ 6926 if (a->hash != b->hash 6927 || TREE_CODE (a->type) != TREE_CODE (b->type) 6928 || TREE_TYPE (a->type) != TREE_TYPE (b->type) 6929 || !attribute_list_equal (TYPE_ATTRIBUTES (a->type), 6930 TYPE_ATTRIBUTES (b->type)) 6931 || (TREE_CODE (a->type) != COMPLEX_TYPE 6932 && TYPE_NAME (a->type) != TYPE_NAME (b->type))) 6933 return 0; 6934 6935 /* Be careful about comparing arrays before and after the element type 6936 has been completed; don't compare TYPE_ALIGN unless both types are 6937 complete. */ 6938 if (COMPLETE_TYPE_P (a->type) && COMPLETE_TYPE_P (b->type) 6939 && (TYPE_ALIGN (a->type) != TYPE_ALIGN (b->type) 6940 || TYPE_MODE (a->type) != TYPE_MODE (b->type))) 6941 return 0; 6942 6943 switch (TREE_CODE (a->type)) 6944 { 6945 case VOID_TYPE: 6946 case COMPLEX_TYPE: 6947 case POINTER_TYPE: 6948 case REFERENCE_TYPE: 6949 case NULLPTR_TYPE: 6950 return 1; 6951 6952 case VECTOR_TYPE: 6953 return known_eq (TYPE_VECTOR_SUBPARTS (a->type), 6954 TYPE_VECTOR_SUBPARTS (b->type)); 6955 6956 case ENUMERAL_TYPE: 6957 if (TYPE_VALUES (a->type) != TYPE_VALUES (b->type) 6958 && !(TYPE_VALUES (a->type) 6959 && TREE_CODE (TYPE_VALUES (a->type)) == TREE_LIST 6960 && TYPE_VALUES (b->type) 6961 && TREE_CODE (TYPE_VALUES (b->type)) == TREE_LIST 6962 && type_list_equal (TYPE_VALUES (a->type), 6963 TYPE_VALUES (b->type)))) 6964 return 0; 6965 6966 /* fall through */ 6967 6968 case INTEGER_TYPE: 6969 case REAL_TYPE: 6970 case BOOLEAN_TYPE: 6971 if (TYPE_PRECISION (a->type) != TYPE_PRECISION (b->type)) 6972 return false; 6973 return ((TYPE_MAX_VALUE (a->type) == TYPE_MAX_VALUE (b->type) 6974 || tree_int_cst_equal (TYPE_MAX_VALUE (a->type), 6975 TYPE_MAX_VALUE (b->type))) 6976 && (TYPE_MIN_VALUE (a->type) == TYPE_MIN_VALUE (b->type) 6977 || tree_int_cst_equal (TYPE_MIN_VALUE (a->type), 6978 TYPE_MIN_VALUE (b->type)))); 6979 6980 case FIXED_POINT_TYPE: 6981 return TYPE_SATURATING (a->type) == TYPE_SATURATING (b->type); 6982 6983 case OFFSET_TYPE: 6984 return TYPE_OFFSET_BASETYPE (a->type) == TYPE_OFFSET_BASETYPE (b->type); 6985 6986 case METHOD_TYPE: 6987 if (TYPE_METHOD_BASETYPE (a->type) == TYPE_METHOD_BASETYPE (b->type) 6988 && (TYPE_ARG_TYPES (a->type) == TYPE_ARG_TYPES (b->type) 6989 || (TYPE_ARG_TYPES (a->type) 6990 && TREE_CODE (TYPE_ARG_TYPES (a->type)) == TREE_LIST 6991 && TYPE_ARG_TYPES (b->type) 6992 && TREE_CODE (TYPE_ARG_TYPES (b->type)) == TREE_LIST 6993 && type_list_equal (TYPE_ARG_TYPES (a->type), 6994 TYPE_ARG_TYPES (b->type))))) 6995 break; 6996 return 0; 6997 case ARRAY_TYPE: 6998 /* Don't compare TYPE_TYPELESS_STORAGE flag on aggregates, 6999 where the flag should be inherited from the element type 7000 and can change after ARRAY_TYPEs are created; on non-aggregates 7001 compare it and hash it, scalars will never have that flag set 7002 and we need to differentiate between arrays created by different 7003 front-ends or middle-end created arrays. */ 7004 return (TYPE_DOMAIN (a->type) == TYPE_DOMAIN (b->type) 7005 && (AGGREGATE_TYPE_P (TREE_TYPE (a->type)) 7006 || (TYPE_TYPELESS_STORAGE (a->type) 7007 == TYPE_TYPELESS_STORAGE (b->type)))); 7008 7009 case RECORD_TYPE: 7010 case UNION_TYPE: 7011 case QUAL_UNION_TYPE: 7012 return (TYPE_FIELDS (a->type) == TYPE_FIELDS (b->type) 7013 || (TYPE_FIELDS (a->type) 7014 && TREE_CODE (TYPE_FIELDS (a->type)) == TREE_LIST 7015 && TYPE_FIELDS (b->type) 7016 && TREE_CODE (TYPE_FIELDS (b->type)) == TREE_LIST 7017 && type_list_equal (TYPE_FIELDS (a->type), 7018 TYPE_FIELDS (b->type)))); 7019 7020 case FUNCTION_TYPE: 7021 if (TYPE_ARG_TYPES (a->type) == TYPE_ARG_TYPES (b->type) 7022 || (TYPE_ARG_TYPES (a->type) 7023 && TREE_CODE (TYPE_ARG_TYPES (a->type)) == TREE_LIST 7024 && TYPE_ARG_TYPES (b->type) 7025 && TREE_CODE (TYPE_ARG_TYPES (b->type)) == TREE_LIST 7026 && type_list_equal (TYPE_ARG_TYPES (a->type), 7027 TYPE_ARG_TYPES (b->type)))) 7028 break; 7029 return 0; 7030 7031 default: 7032 return 0; 7033 } 7034 7035 if (lang_hooks.types.type_hash_eq != NULL) 7036 return lang_hooks.types.type_hash_eq (a->type, b->type); 7037 7038 return 1; 7039 } 7040 7041 /* Given TYPE, and HASHCODE its hash code, return the canonical 7042 object for an identical type if one already exists. 7043 Otherwise, return TYPE, and record it as the canonical object. 7044 7045 To use this function, first create a type of the sort you want. 7046 Then compute its hash code from the fields of the type that 7047 make it different from other similar types. 7048 Then call this function and use the value. */ 7049 7050 tree 7051 type_hash_canon (unsigned int hashcode, tree type) 7052 { 7053 type_hash in; 7054 type_hash **loc; 7055 7056 /* The hash table only contains main variants, so ensure that's what we're 7057 being passed. */ 7058 gcc_assert (TYPE_MAIN_VARIANT (type) == type); 7059 7060 /* The TYPE_ALIGN field of a type is set by layout_type(), so we 7061 must call that routine before comparing TYPE_ALIGNs. */ 7062 layout_type (type); 7063 7064 in.hash = hashcode; 7065 in.type = type; 7066 7067 loc = type_hash_table->find_slot_with_hash (&in, hashcode, INSERT); 7068 if (*loc) 7069 { 7070 tree t1 = ((type_hash *) *loc)->type; 7071 gcc_assert (TYPE_MAIN_VARIANT (t1) == t1 7072 && t1 != type); 7073 if (TYPE_UID (type) + 1 == next_type_uid) 7074 --next_type_uid; 7075 /* Free also min/max values and the cache for integer 7076 types. This can't be done in free_node, as LTO frees 7077 those on its own. */ 7078 if (TREE_CODE (type) == INTEGER_TYPE) 7079 { 7080 if (TYPE_MIN_VALUE (type) 7081 && TREE_TYPE (TYPE_MIN_VALUE (type)) == type) 7082 { 7083 /* Zero is always in TYPE_CACHED_VALUES. */ 7084 if (! TYPE_UNSIGNED (type)) 7085 int_cst_hash_table->remove_elt (TYPE_MIN_VALUE (type)); 7086 ggc_free (TYPE_MIN_VALUE (type)); 7087 } 7088 if (TYPE_MAX_VALUE (type) 7089 && TREE_TYPE (TYPE_MAX_VALUE (type)) == type) 7090 { 7091 int_cst_hash_table->remove_elt (TYPE_MAX_VALUE (type)); 7092 ggc_free (TYPE_MAX_VALUE (type)); 7093 } 7094 if (TYPE_CACHED_VALUES_P (type)) 7095 ggc_free (TYPE_CACHED_VALUES (type)); 7096 } 7097 free_node (type); 7098 return t1; 7099 } 7100 else 7101 { 7102 struct type_hash *h; 7103 7104 h = ggc_alloc<type_hash> (); 7105 h->hash = hashcode; 7106 h->type = type; 7107 *loc = h; 7108 7109 return type; 7110 } 7111 } 7112 7113 static void 7114 print_type_hash_statistics (void) 7115 { 7116 fprintf (stderr, "Type hash: size %ld, %ld elements, %f collisions\n", 7117 (long) type_hash_table->size (), 7118 (long) type_hash_table->elements (), 7119 type_hash_table->collisions ()); 7120 } 7121 7122 /* Given two lists of types 7123 (chains of TREE_LIST nodes with types in the TREE_VALUE slots) 7124 return 1 if the lists contain the same types in the same order. 7125 Also, the TREE_PURPOSEs must match. */ 7126 7127 bool 7128 type_list_equal (const_tree l1, const_tree l2) 7129 { 7130 const_tree t1, t2; 7131 7132 for (t1 = l1, t2 = l2; t1 && t2; t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2)) 7133 if (TREE_VALUE (t1) != TREE_VALUE (t2) 7134 || (TREE_PURPOSE (t1) != TREE_PURPOSE (t2) 7135 && ! (1 == simple_cst_equal (TREE_PURPOSE (t1), TREE_PURPOSE (t2)) 7136 && (TREE_TYPE (TREE_PURPOSE (t1)) 7137 == TREE_TYPE (TREE_PURPOSE (t2)))))) 7138 return false; 7139 7140 return t1 == t2; 7141 } 7142 7143 /* Returns the number of arguments to the FUNCTION_TYPE or METHOD_TYPE 7144 given by TYPE. If the argument list accepts variable arguments, 7145 then this function counts only the ordinary arguments. */ 7146 7147 int 7148 type_num_arguments (const_tree fntype) 7149 { 7150 int i = 0; 7151 7152 for (tree t = TYPE_ARG_TYPES (fntype); t; t = TREE_CHAIN (t)) 7153 /* If the function does not take a variable number of arguments, 7154 the last element in the list will have type `void'. */ 7155 if (VOID_TYPE_P (TREE_VALUE (t))) 7156 break; 7157 else 7158 ++i; 7159 7160 return i; 7161 } 7162 7163 /* Return the type of the function TYPE's argument ARGNO if known. 7164 For vararg function's where ARGNO refers to one of the variadic 7165 arguments return null. Otherwise, return a void_type_node for 7166 out-of-bounds ARGNO. */ 7167 7168 tree 7169 type_argument_type (const_tree fntype, unsigned argno) 7170 { 7171 /* Treat zero the same as an out-of-bounds argument number. */ 7172 if (!argno) 7173 return void_type_node; 7174 7175 function_args_iterator iter; 7176 7177 tree argtype; 7178 unsigned i = 1; 7179 FOREACH_FUNCTION_ARGS (fntype, argtype, iter) 7180 { 7181 /* A vararg function's argument list ends in a null. Otherwise, 7182 an ordinary function's argument list ends with void. Return 7183 null if ARGNO refers to a vararg argument, void_type_node if 7184 it's out of bounds, and the formal argument type otherwise. */ 7185 if (!argtype) 7186 break; 7187 7188 if (i == argno || VOID_TYPE_P (argtype)) 7189 return argtype; 7190 7191 ++i; 7192 } 7193 7194 return NULL_TREE; 7195 } 7196 7197 /* Nonzero if integer constants T1 and T2 7198 represent the same constant value. */ 7199 7200 int 7201 tree_int_cst_equal (const_tree t1, const_tree t2) 7202 { 7203 if (t1 == t2) 7204 return 1; 7205 7206 if (t1 == 0 || t2 == 0) 7207 return 0; 7208 7209 STRIP_ANY_LOCATION_WRAPPER (t1); 7210 STRIP_ANY_LOCATION_WRAPPER (t2); 7211 7212 if (TREE_CODE (t1) == INTEGER_CST 7213 && TREE_CODE (t2) == INTEGER_CST 7214 && wi::to_widest (t1) == wi::to_widest (t2)) 7215 return 1; 7216 7217 return 0; 7218 } 7219 7220 /* Return true if T is an INTEGER_CST whose numerical value (extended 7221 according to TYPE_UNSIGNED) fits in a signed HOST_WIDE_INT. */ 7222 7223 bool 7224 tree_fits_shwi_p (const_tree t) 7225 { 7226 return (t != NULL_TREE 7227 && TREE_CODE (t) == INTEGER_CST 7228 && wi::fits_shwi_p (wi::to_widest (t))); 7229 } 7230 7231 /* Return true if T is an INTEGER_CST or POLY_INT_CST whose numerical 7232 value (extended according to TYPE_UNSIGNED) fits in a poly_int64. */ 7233 7234 bool 7235 tree_fits_poly_int64_p (const_tree t) 7236 { 7237 if (t == NULL_TREE) 7238 return false; 7239 if (POLY_INT_CST_P (t)) 7240 { 7241 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; i++) 7242 if (!wi::fits_shwi_p (wi::to_wide (POLY_INT_CST_COEFF (t, i)))) 7243 return false; 7244 return true; 7245 } 7246 return (TREE_CODE (t) == INTEGER_CST 7247 && wi::fits_shwi_p (wi::to_widest (t))); 7248 } 7249 7250 /* Return true if T is an INTEGER_CST whose numerical value (extended 7251 according to TYPE_UNSIGNED) fits in an unsigned HOST_WIDE_INT. */ 7252 7253 bool 7254 tree_fits_uhwi_p (const_tree t) 7255 { 7256 return (t != NULL_TREE 7257 && TREE_CODE (t) == INTEGER_CST 7258 && wi::fits_uhwi_p (wi::to_widest (t))); 7259 } 7260 7261 /* Return true if T is an INTEGER_CST or POLY_INT_CST whose numerical 7262 value (extended according to TYPE_UNSIGNED) fits in a poly_uint64. */ 7263 7264 bool 7265 tree_fits_poly_uint64_p (const_tree t) 7266 { 7267 if (t == NULL_TREE) 7268 return false; 7269 if (POLY_INT_CST_P (t)) 7270 { 7271 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; i++) 7272 if (!wi::fits_uhwi_p (wi::to_widest (POLY_INT_CST_COEFF (t, i)))) 7273 return false; 7274 return true; 7275 } 7276 return (TREE_CODE (t) == INTEGER_CST 7277 && wi::fits_uhwi_p (wi::to_widest (t))); 7278 } 7279 7280 /* T is an INTEGER_CST whose numerical value (extended according to 7281 TYPE_UNSIGNED) fits in a signed HOST_WIDE_INT. Return that 7282 HOST_WIDE_INT. */ 7283 7284 HOST_WIDE_INT 7285 tree_to_shwi (const_tree t) 7286 { 7287 gcc_assert (tree_fits_shwi_p (t)); 7288 return TREE_INT_CST_LOW (t); 7289 } 7290 7291 /* T is an INTEGER_CST whose numerical value (extended according to 7292 TYPE_UNSIGNED) fits in an unsigned HOST_WIDE_INT. Return that 7293 HOST_WIDE_INT. */ 7294 7295 unsigned HOST_WIDE_INT 7296 tree_to_uhwi (const_tree t) 7297 { 7298 gcc_assert (tree_fits_uhwi_p (t)); 7299 return TREE_INT_CST_LOW (t); 7300 } 7301 7302 /* Return the most significant (sign) bit of T. */ 7303 7304 int 7305 tree_int_cst_sign_bit (const_tree t) 7306 { 7307 unsigned bitno = TYPE_PRECISION (TREE_TYPE (t)) - 1; 7308 7309 return wi::extract_uhwi (wi::to_wide (t), bitno, 1); 7310 } 7311 7312 /* Return an indication of the sign of the integer constant T. 7313 The return value is -1 if T < 0, 0 if T == 0, and 1 if T > 0. 7314 Note that -1 will never be returned if T's type is unsigned. */ 7315 7316 int 7317 tree_int_cst_sgn (const_tree t) 7318 { 7319 if (wi::to_wide (t) == 0) 7320 return 0; 7321 else if (TYPE_UNSIGNED (TREE_TYPE (t))) 7322 return 1; 7323 else if (wi::neg_p (wi::to_wide (t))) 7324 return -1; 7325 else 7326 return 1; 7327 } 7328 7329 /* Return the minimum number of bits needed to represent VALUE in a 7330 signed or unsigned type, UNSIGNEDP says which. */ 7331 7332 unsigned int 7333 tree_int_cst_min_precision (tree value, signop sgn) 7334 { 7335 /* If the value is negative, compute its negative minus 1. The latter 7336 adjustment is because the absolute value of the largest negative value 7337 is one larger than the largest positive value. This is equivalent to 7338 a bit-wise negation, so use that operation instead. */ 7339 7340 if (tree_int_cst_sgn (value) < 0) 7341 value = fold_build1 (BIT_NOT_EXPR, TREE_TYPE (value), value); 7342 7343 /* Return the number of bits needed, taking into account the fact 7344 that we need one more bit for a signed than unsigned type. 7345 If value is 0 or -1, the minimum precision is 1 no matter 7346 whether unsignedp is true or false. */ 7347 7348 if (integer_zerop (value)) 7349 return 1; 7350 else 7351 return tree_floor_log2 (value) + 1 + (sgn == SIGNED ? 1 : 0) ; 7352 } 7353 7354 /* Return truthvalue of whether T1 is the same tree structure as T2. 7355 Return 1 if they are the same. 7356 Return 0 if they are understandably different. 7357 Return -1 if either contains tree structure not understood by 7358 this function. */ 7359 7360 int 7361 simple_cst_equal (const_tree t1, const_tree t2) 7362 { 7363 enum tree_code code1, code2; 7364 int cmp; 7365 int i; 7366 7367 if (t1 == t2) 7368 return 1; 7369 if (t1 == 0 || t2 == 0) 7370 return 0; 7371 7372 /* For location wrappers to be the same, they must be at the same 7373 source location (and wrap the same thing). */ 7374 if (location_wrapper_p (t1) && location_wrapper_p (t2)) 7375 { 7376 if (EXPR_LOCATION (t1) != EXPR_LOCATION (t2)) 7377 return 0; 7378 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0)); 7379 } 7380 7381 code1 = TREE_CODE (t1); 7382 code2 = TREE_CODE (t2); 7383 7384 if (CONVERT_EXPR_CODE_P (code1) || code1 == NON_LVALUE_EXPR) 7385 { 7386 if (CONVERT_EXPR_CODE_P (code2) 7387 || code2 == NON_LVALUE_EXPR) 7388 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0)); 7389 else 7390 return simple_cst_equal (TREE_OPERAND (t1, 0), t2); 7391 } 7392 7393 else if (CONVERT_EXPR_CODE_P (code2) 7394 || code2 == NON_LVALUE_EXPR) 7395 return simple_cst_equal (t1, TREE_OPERAND (t2, 0)); 7396 7397 if (code1 != code2) 7398 return 0; 7399 7400 switch (code1) 7401 { 7402 case INTEGER_CST: 7403 return wi::to_widest (t1) == wi::to_widest (t2); 7404 7405 case REAL_CST: 7406 return real_identical (&TREE_REAL_CST (t1), &TREE_REAL_CST (t2)); 7407 7408 case FIXED_CST: 7409 return FIXED_VALUES_IDENTICAL (TREE_FIXED_CST (t1), TREE_FIXED_CST (t2)); 7410 7411 case STRING_CST: 7412 return (TREE_STRING_LENGTH (t1) == TREE_STRING_LENGTH (t2) 7413 && ! memcmp (TREE_STRING_POINTER (t1), TREE_STRING_POINTER (t2), 7414 TREE_STRING_LENGTH (t1))); 7415 7416 case CONSTRUCTOR: 7417 { 7418 unsigned HOST_WIDE_INT idx; 7419 vec<constructor_elt, va_gc> *v1 = CONSTRUCTOR_ELTS (t1); 7420 vec<constructor_elt, va_gc> *v2 = CONSTRUCTOR_ELTS (t2); 7421 7422 if (vec_safe_length (v1) != vec_safe_length (v2)) 7423 return false; 7424 7425 for (idx = 0; idx < vec_safe_length (v1); ++idx) 7426 /* ??? Should we handle also fields here? */ 7427 if (!simple_cst_equal ((*v1)[idx].value, (*v2)[idx].value)) 7428 return false; 7429 return true; 7430 } 7431 7432 case SAVE_EXPR: 7433 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0)); 7434 7435 case CALL_EXPR: 7436 cmp = simple_cst_equal (CALL_EXPR_FN (t1), CALL_EXPR_FN (t2)); 7437 if (cmp <= 0) 7438 return cmp; 7439 if (call_expr_nargs (t1) != call_expr_nargs (t2)) 7440 return 0; 7441 { 7442 const_tree arg1, arg2; 7443 const_call_expr_arg_iterator iter1, iter2; 7444 for (arg1 = first_const_call_expr_arg (t1, &iter1), 7445 arg2 = first_const_call_expr_arg (t2, &iter2); 7446 arg1 && arg2; 7447 arg1 = next_const_call_expr_arg (&iter1), 7448 arg2 = next_const_call_expr_arg (&iter2)) 7449 { 7450 cmp = simple_cst_equal (arg1, arg2); 7451 if (cmp <= 0) 7452 return cmp; 7453 } 7454 return arg1 == arg2; 7455 } 7456 7457 case TARGET_EXPR: 7458 /* Special case: if either target is an unallocated VAR_DECL, 7459 it means that it's going to be unified with whatever the 7460 TARGET_EXPR is really supposed to initialize, so treat it 7461 as being equivalent to anything. */ 7462 if ((TREE_CODE (TREE_OPERAND (t1, 0)) == VAR_DECL 7463 && DECL_NAME (TREE_OPERAND (t1, 0)) == NULL_TREE 7464 && !DECL_RTL_SET_P (TREE_OPERAND (t1, 0))) 7465 || (TREE_CODE (TREE_OPERAND (t2, 0)) == VAR_DECL 7466 && DECL_NAME (TREE_OPERAND (t2, 0)) == NULL_TREE 7467 && !DECL_RTL_SET_P (TREE_OPERAND (t2, 0)))) 7468 cmp = 1; 7469 else 7470 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0)); 7471 7472 if (cmp <= 0) 7473 return cmp; 7474 7475 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1)); 7476 7477 case WITH_CLEANUP_EXPR: 7478 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0)); 7479 if (cmp <= 0) 7480 return cmp; 7481 7482 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t1, 1)); 7483 7484 case COMPONENT_REF: 7485 if (TREE_OPERAND (t1, 1) == TREE_OPERAND (t2, 1)) 7486 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0)); 7487 7488 return 0; 7489 7490 case VAR_DECL: 7491 case PARM_DECL: 7492 case CONST_DECL: 7493 case FUNCTION_DECL: 7494 return 0; 7495 7496 default: 7497 if (POLY_INT_CST_P (t1)) 7498 /* A false return means maybe_ne rather than known_ne. */ 7499 return known_eq (poly_widest_int::from (poly_int_cst_value (t1), 7500 TYPE_SIGN (TREE_TYPE (t1))), 7501 poly_widest_int::from (poly_int_cst_value (t2), 7502 TYPE_SIGN (TREE_TYPE (t2)))); 7503 break; 7504 } 7505 7506 /* This general rule works for most tree codes. All exceptions should be 7507 handled above. If this is a language-specific tree code, we can't 7508 trust what might be in the operand, so say we don't know 7509 the situation. */ 7510 if ((int) code1 >= (int) LAST_AND_UNUSED_TREE_CODE) 7511 return -1; 7512 7513 switch (TREE_CODE_CLASS (code1)) 7514 { 7515 case tcc_unary: 7516 case tcc_binary: 7517 case tcc_comparison: 7518 case tcc_expression: 7519 case tcc_reference: 7520 case tcc_statement: 7521 cmp = 1; 7522 for (i = 0; i < TREE_CODE_LENGTH (code1); i++) 7523 { 7524 cmp = simple_cst_equal (TREE_OPERAND (t1, i), TREE_OPERAND (t2, i)); 7525 if (cmp <= 0) 7526 return cmp; 7527 } 7528 7529 return cmp; 7530 7531 default: 7532 return -1; 7533 } 7534 } 7535 7536 /* Compare the value of T, an INTEGER_CST, with U, an unsigned integer value. 7537 Return -1, 0, or 1 if the value of T is less than, equal to, or greater 7538 than U, respectively. */ 7539 7540 int 7541 compare_tree_int (const_tree t, unsigned HOST_WIDE_INT u) 7542 { 7543 if (tree_int_cst_sgn (t) < 0) 7544 return -1; 7545 else if (!tree_fits_uhwi_p (t)) 7546 return 1; 7547 else if (TREE_INT_CST_LOW (t) == u) 7548 return 0; 7549 else if (TREE_INT_CST_LOW (t) < u) 7550 return -1; 7551 else 7552 return 1; 7553 } 7554 7555 /* Return true if SIZE represents a constant size that is in bounds of 7556 what the middle-end and the backend accepts (covering not more than 7557 half of the address-space). 7558 When PERR is non-null, set *PERR on failure to the description of 7559 why SIZE is not valid. */ 7560 7561 bool 7562 valid_constant_size_p (const_tree size, cst_size_error *perr /* = NULL */) 7563 { 7564 if (POLY_INT_CST_P (size)) 7565 { 7566 if (TREE_OVERFLOW (size)) 7567 return false; 7568 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i) 7569 if (!valid_constant_size_p (POLY_INT_CST_COEFF (size, i))) 7570 return false; 7571 return true; 7572 } 7573 7574 cst_size_error error; 7575 if (!perr) 7576 perr = &error; 7577 7578 if (TREE_CODE (size) != INTEGER_CST) 7579 { 7580 *perr = cst_size_not_constant; 7581 return false; 7582 } 7583 7584 if (TREE_OVERFLOW_P (size)) 7585 { 7586 *perr = cst_size_overflow; 7587 return false; 7588 } 7589 7590 if (tree_int_cst_sgn (size) < 0) 7591 { 7592 *perr = cst_size_negative; 7593 return false; 7594 } 7595 if (!tree_fits_uhwi_p (size) 7596 || (wi::to_widest (TYPE_MAX_VALUE (sizetype)) 7597 < wi::to_widest (size) * 2)) 7598 { 7599 *perr = cst_size_too_big; 7600 return false; 7601 } 7602 7603 return true; 7604 } 7605 7606 /* Return the precision of the type, or for a complex or vector type the 7607 precision of the type of its elements. */ 7608 7609 unsigned int 7610 element_precision (const_tree type) 7611 { 7612 if (!TYPE_P (type)) 7613 type = TREE_TYPE (type); 7614 enum tree_code code = TREE_CODE (type); 7615 if (code == COMPLEX_TYPE || code == VECTOR_TYPE) 7616 type = TREE_TYPE (type); 7617 7618 return TYPE_PRECISION (type); 7619 } 7620 7621 /* Return true if CODE represents an associative tree code. Otherwise 7622 return false. */ 7623 bool 7624 associative_tree_code (enum tree_code code) 7625 { 7626 switch (code) 7627 { 7628 case BIT_IOR_EXPR: 7629 case BIT_AND_EXPR: 7630 case BIT_XOR_EXPR: 7631 case PLUS_EXPR: 7632 case MULT_EXPR: 7633 case MIN_EXPR: 7634 case MAX_EXPR: 7635 return true; 7636 7637 default: 7638 break; 7639 } 7640 return false; 7641 } 7642 7643 /* Return true if CODE represents a commutative tree code. Otherwise 7644 return false. */ 7645 bool 7646 commutative_tree_code (enum tree_code code) 7647 { 7648 switch (code) 7649 { 7650 case PLUS_EXPR: 7651 case MULT_EXPR: 7652 case MULT_HIGHPART_EXPR: 7653 case MIN_EXPR: 7654 case MAX_EXPR: 7655 case BIT_IOR_EXPR: 7656 case BIT_XOR_EXPR: 7657 case BIT_AND_EXPR: 7658 case NE_EXPR: 7659 case EQ_EXPR: 7660 case UNORDERED_EXPR: 7661 case ORDERED_EXPR: 7662 case UNEQ_EXPR: 7663 case LTGT_EXPR: 7664 case TRUTH_AND_EXPR: 7665 case TRUTH_XOR_EXPR: 7666 case TRUTH_OR_EXPR: 7667 case WIDEN_MULT_EXPR: 7668 case VEC_WIDEN_MULT_HI_EXPR: 7669 case VEC_WIDEN_MULT_LO_EXPR: 7670 case VEC_WIDEN_MULT_EVEN_EXPR: 7671 case VEC_WIDEN_MULT_ODD_EXPR: 7672 return true; 7673 7674 default: 7675 break; 7676 } 7677 return false; 7678 } 7679 7680 /* Return true if CODE represents a ternary tree code for which the 7681 first two operands are commutative. Otherwise return false. */ 7682 bool 7683 commutative_ternary_tree_code (enum tree_code code) 7684 { 7685 switch (code) 7686 { 7687 case WIDEN_MULT_PLUS_EXPR: 7688 case WIDEN_MULT_MINUS_EXPR: 7689 case DOT_PROD_EXPR: 7690 return true; 7691 7692 default: 7693 break; 7694 } 7695 return false; 7696 } 7697 7698 /* Returns true if CODE can overflow. */ 7699 7700 bool 7701 operation_can_overflow (enum tree_code code) 7702 { 7703 switch (code) 7704 { 7705 case PLUS_EXPR: 7706 case MINUS_EXPR: 7707 case MULT_EXPR: 7708 case LSHIFT_EXPR: 7709 /* Can overflow in various ways. */ 7710 return true; 7711 case TRUNC_DIV_EXPR: 7712 case EXACT_DIV_EXPR: 7713 case FLOOR_DIV_EXPR: 7714 case CEIL_DIV_EXPR: 7715 /* For INT_MIN / -1. */ 7716 return true; 7717 case NEGATE_EXPR: 7718 case ABS_EXPR: 7719 /* For -INT_MIN. */ 7720 return true; 7721 default: 7722 /* These operators cannot overflow. */ 7723 return false; 7724 } 7725 } 7726 7727 /* Returns true if CODE operating on operands of type TYPE doesn't overflow, or 7728 ftrapv doesn't generate trapping insns for CODE. */ 7729 7730 bool 7731 operation_no_trapping_overflow (tree type, enum tree_code code) 7732 { 7733 gcc_checking_assert (ANY_INTEGRAL_TYPE_P (type)); 7734 7735 /* We don't generate instructions that trap on overflow for complex or vector 7736 types. */ 7737 if (!INTEGRAL_TYPE_P (type)) 7738 return true; 7739 7740 if (!TYPE_OVERFLOW_TRAPS (type)) 7741 return true; 7742 7743 switch (code) 7744 { 7745 case PLUS_EXPR: 7746 case MINUS_EXPR: 7747 case MULT_EXPR: 7748 case NEGATE_EXPR: 7749 case ABS_EXPR: 7750 /* These operators can overflow, and -ftrapv generates trapping code for 7751 these. */ 7752 return false; 7753 case TRUNC_DIV_EXPR: 7754 case EXACT_DIV_EXPR: 7755 case FLOOR_DIV_EXPR: 7756 case CEIL_DIV_EXPR: 7757 case LSHIFT_EXPR: 7758 /* These operators can overflow, but -ftrapv does not generate trapping 7759 code for these. */ 7760 return true; 7761 default: 7762 /* These operators cannot overflow. */ 7763 return true; 7764 } 7765 } 7766 7767 namespace inchash 7768 { 7769 7770 /* Generate a hash value for an expression. This can be used iteratively 7771 by passing a previous result as the HSTATE argument. 7772 7773 This function is intended to produce the same hash for expressions which 7774 would compare equal using operand_equal_p. */ 7775 void 7776 add_expr (const_tree t, inchash::hash &hstate, unsigned int flags) 7777 { 7778 int i; 7779 enum tree_code code; 7780 enum tree_code_class tclass; 7781 7782 if (t == NULL_TREE || t == error_mark_node) 7783 { 7784 hstate.merge_hash (0); 7785 return; 7786 } 7787 7788 STRIP_ANY_LOCATION_WRAPPER (t); 7789 7790 if (!(flags & OEP_ADDRESS_OF)) 7791 STRIP_NOPS (t); 7792 7793 code = TREE_CODE (t); 7794 7795 switch (code) 7796 { 7797 /* Alas, constants aren't shared, so we can't rely on pointer 7798 identity. */ 7799 case VOID_CST: 7800 hstate.merge_hash (0); 7801 return; 7802 case INTEGER_CST: 7803 gcc_checking_assert (!(flags & OEP_ADDRESS_OF)); 7804 for (i = 0; i < TREE_INT_CST_EXT_NUNITS (t); i++) 7805 hstate.add_hwi (TREE_INT_CST_ELT (t, i)); 7806 return; 7807 case REAL_CST: 7808 { 7809 unsigned int val2; 7810 if (!HONOR_SIGNED_ZEROS (t) && real_zerop (t)) 7811 val2 = rvc_zero; 7812 else 7813 val2 = real_hash (TREE_REAL_CST_PTR (t)); 7814 hstate.merge_hash (val2); 7815 return; 7816 } 7817 case FIXED_CST: 7818 { 7819 unsigned int val2 = fixed_hash (TREE_FIXED_CST_PTR (t)); 7820 hstate.merge_hash (val2); 7821 return; 7822 } 7823 case STRING_CST: 7824 hstate.add ((const void *) TREE_STRING_POINTER (t), 7825 TREE_STRING_LENGTH (t)); 7826 return; 7827 case COMPLEX_CST: 7828 inchash::add_expr (TREE_REALPART (t), hstate, flags); 7829 inchash::add_expr (TREE_IMAGPART (t), hstate, flags); 7830 return; 7831 case VECTOR_CST: 7832 { 7833 hstate.add_int (VECTOR_CST_NPATTERNS (t)); 7834 hstate.add_int (VECTOR_CST_NELTS_PER_PATTERN (t)); 7835 unsigned int count = vector_cst_encoded_nelts (t); 7836 for (unsigned int i = 0; i < count; ++i) 7837 inchash::add_expr (VECTOR_CST_ENCODED_ELT (t, i), hstate, flags); 7838 return; 7839 } 7840 case SSA_NAME: 7841 /* We can just compare by pointer. */ 7842 hstate.add_hwi (SSA_NAME_VERSION (t)); 7843 return; 7844 case PLACEHOLDER_EXPR: 7845 /* The node itself doesn't matter. */ 7846 return; 7847 case BLOCK: 7848 case OMP_CLAUSE: 7849 /* Ignore. */ 7850 return; 7851 case TREE_LIST: 7852 /* A list of expressions, for a CALL_EXPR or as the elements of a 7853 VECTOR_CST. */ 7854 for (; t; t = TREE_CHAIN (t)) 7855 inchash::add_expr (TREE_VALUE (t), hstate, flags); 7856 return; 7857 case CONSTRUCTOR: 7858 { 7859 unsigned HOST_WIDE_INT idx; 7860 tree field, value; 7861 flags &= ~OEP_ADDRESS_OF; 7862 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (t), idx, field, value) 7863 { 7864 inchash::add_expr (field, hstate, flags); 7865 inchash::add_expr (value, hstate, flags); 7866 } 7867 return; 7868 } 7869 case STATEMENT_LIST: 7870 { 7871 tree_stmt_iterator i; 7872 for (i = tsi_start (CONST_CAST_TREE (t)); 7873 !tsi_end_p (i); tsi_next (&i)) 7874 inchash::add_expr (tsi_stmt (i), hstate, flags); 7875 return; 7876 } 7877 case TREE_VEC: 7878 for (i = 0; i < TREE_VEC_LENGTH (t); ++i) 7879 inchash::add_expr (TREE_VEC_ELT (t, i), hstate, flags); 7880 return; 7881 case IDENTIFIER_NODE: 7882 hstate.add_object (IDENTIFIER_HASH_VALUE (t)); 7883 return; 7884 case FUNCTION_DECL: 7885 /* When referring to a built-in FUNCTION_DECL, use the __builtin__ form. 7886 Otherwise nodes that compare equal according to operand_equal_p might 7887 get different hash codes. However, don't do this for machine specific 7888 or front end builtins, since the function code is overloaded in those 7889 cases. */ 7890 if (DECL_BUILT_IN_CLASS (t) == BUILT_IN_NORMAL 7891 && builtin_decl_explicit_p (DECL_FUNCTION_CODE (t))) 7892 { 7893 t = builtin_decl_explicit (DECL_FUNCTION_CODE (t)); 7894 code = TREE_CODE (t); 7895 } 7896 /* FALL THROUGH */ 7897 default: 7898 if (POLY_INT_CST_P (t)) 7899 { 7900 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i) 7901 hstate.add_wide_int (wi::to_wide (POLY_INT_CST_COEFF (t, i))); 7902 return; 7903 } 7904 tclass = TREE_CODE_CLASS (code); 7905 7906 if (tclass == tcc_declaration) 7907 { 7908 /* DECL's have a unique ID */ 7909 hstate.add_hwi (DECL_UID (t)); 7910 } 7911 else if (tclass == tcc_comparison && !commutative_tree_code (code)) 7912 { 7913 /* For comparisons that can be swapped, use the lower 7914 tree code. */ 7915 enum tree_code ccode = swap_tree_comparison (code); 7916 if (code < ccode) 7917 ccode = code; 7918 hstate.add_object (ccode); 7919 inchash::add_expr (TREE_OPERAND (t, ccode != code), hstate, flags); 7920 inchash::add_expr (TREE_OPERAND (t, ccode == code), hstate, flags); 7921 } 7922 else if (CONVERT_EXPR_CODE_P (code)) 7923 { 7924 /* NOP_EXPR and CONVERT_EXPR are considered equal by 7925 operand_equal_p. */ 7926 enum tree_code ccode = NOP_EXPR; 7927 hstate.add_object (ccode); 7928 7929 /* Don't hash the type, that can lead to having nodes which 7930 compare equal according to operand_equal_p, but which 7931 have different hash codes. Make sure to include signedness 7932 in the hash computation. */ 7933 hstate.add_int (TYPE_UNSIGNED (TREE_TYPE (t))); 7934 inchash::add_expr (TREE_OPERAND (t, 0), hstate, flags); 7935 } 7936 /* For OEP_ADDRESS_OF, hash MEM_EXPR[&decl, 0] the same as decl. */ 7937 else if (code == MEM_REF 7938 && (flags & OEP_ADDRESS_OF) != 0 7939 && TREE_CODE (TREE_OPERAND (t, 0)) == ADDR_EXPR 7940 && DECL_P (TREE_OPERAND (TREE_OPERAND (t, 0), 0)) 7941 && integer_zerop (TREE_OPERAND (t, 1))) 7942 inchash::add_expr (TREE_OPERAND (TREE_OPERAND (t, 0), 0), 7943 hstate, flags); 7944 /* Don't ICE on FE specific trees, or their arguments etc. 7945 during operand_equal_p hash verification. */ 7946 else if (!IS_EXPR_CODE_CLASS (tclass)) 7947 gcc_assert (flags & OEP_HASH_CHECK); 7948 else 7949 { 7950 unsigned int sflags = flags; 7951 7952 hstate.add_object (code); 7953 7954 switch (code) 7955 { 7956 case ADDR_EXPR: 7957 gcc_checking_assert (!(flags & OEP_ADDRESS_OF)); 7958 flags |= OEP_ADDRESS_OF; 7959 sflags = flags; 7960 break; 7961 7962 case INDIRECT_REF: 7963 case MEM_REF: 7964 case TARGET_MEM_REF: 7965 flags &= ~OEP_ADDRESS_OF; 7966 sflags = flags; 7967 break; 7968 7969 case ARRAY_REF: 7970 case ARRAY_RANGE_REF: 7971 case COMPONENT_REF: 7972 case BIT_FIELD_REF: 7973 sflags &= ~OEP_ADDRESS_OF; 7974 break; 7975 7976 case COND_EXPR: 7977 flags &= ~OEP_ADDRESS_OF; 7978 break; 7979 7980 case WIDEN_MULT_PLUS_EXPR: 7981 case WIDEN_MULT_MINUS_EXPR: 7982 { 7983 /* The multiplication operands are commutative. */ 7984 inchash::hash one, two; 7985 inchash::add_expr (TREE_OPERAND (t, 0), one, flags); 7986 inchash::add_expr (TREE_OPERAND (t, 1), two, flags); 7987 hstate.add_commutative (one, two); 7988 inchash::add_expr (TREE_OPERAND (t, 2), two, flags); 7989 return; 7990 } 7991 7992 case CALL_EXPR: 7993 if (CALL_EXPR_FN (t) == NULL_TREE) 7994 hstate.add_int (CALL_EXPR_IFN (t)); 7995 break; 7996 7997 case TARGET_EXPR: 7998 /* For TARGET_EXPR, just hash on the TARGET_EXPR_SLOT. 7999 Usually different TARGET_EXPRs just should use 8000 different temporaries in their slots. */ 8001 inchash::add_expr (TARGET_EXPR_SLOT (t), hstate, flags); 8002 return; 8003 8004 default: 8005 break; 8006 } 8007 8008 /* Don't hash the type, that can lead to having nodes which 8009 compare equal according to operand_equal_p, but which 8010 have different hash codes. */ 8011 if (code == NON_LVALUE_EXPR) 8012 { 8013 /* Make sure to include signness in the hash computation. */ 8014 hstate.add_int (TYPE_UNSIGNED (TREE_TYPE (t))); 8015 inchash::add_expr (TREE_OPERAND (t, 0), hstate, flags); 8016 } 8017 8018 else if (commutative_tree_code (code)) 8019 { 8020 /* It's a commutative expression. We want to hash it the same 8021 however it appears. We do this by first hashing both operands 8022 and then rehashing based on the order of their independent 8023 hashes. */ 8024 inchash::hash one, two; 8025 inchash::add_expr (TREE_OPERAND (t, 0), one, flags); 8026 inchash::add_expr (TREE_OPERAND (t, 1), two, flags); 8027 hstate.add_commutative (one, two); 8028 } 8029 else 8030 for (i = TREE_OPERAND_LENGTH (t) - 1; i >= 0; --i) 8031 inchash::add_expr (TREE_OPERAND (t, i), hstate, 8032 i == 0 ? flags : sflags); 8033 } 8034 return; 8035 } 8036 } 8037 8038 } 8039 8040 /* Constructors for pointer, array and function types. 8041 (RECORD_TYPE, UNION_TYPE and ENUMERAL_TYPE nodes are 8042 constructed by language-dependent code, not here.) */ 8043 8044 /* Construct, lay out and return the type of pointers to TO_TYPE with 8045 mode MODE. If CAN_ALIAS_ALL is TRUE, indicate this type can 8046 reference all of memory. If such a type has already been 8047 constructed, reuse it. */ 8048 8049 tree 8050 build_pointer_type_for_mode (tree to_type, machine_mode mode, 8051 bool can_alias_all) 8052 { 8053 tree t; 8054 bool could_alias = can_alias_all; 8055 8056 if (to_type == error_mark_node) 8057 return error_mark_node; 8058 8059 /* If the pointed-to type has the may_alias attribute set, force 8060 a TYPE_REF_CAN_ALIAS_ALL pointer to be generated. */ 8061 if (lookup_attribute ("may_alias", TYPE_ATTRIBUTES (to_type))) 8062 can_alias_all = true; 8063 8064 /* In some cases, languages will have things that aren't a POINTER_TYPE 8065 (such as a RECORD_TYPE for fat pointers in Ada) as TYPE_POINTER_TO. 8066 In that case, return that type without regard to the rest of our 8067 operands. 8068 8069 ??? This is a kludge, but consistent with the way this function has 8070 always operated and there doesn't seem to be a good way to avoid this 8071 at the moment. */ 8072 if (TYPE_POINTER_TO (to_type) != 0 8073 && TREE_CODE (TYPE_POINTER_TO (to_type)) != POINTER_TYPE) 8074 return TYPE_POINTER_TO (to_type); 8075 8076 /* First, if we already have a type for pointers to TO_TYPE and it's 8077 the proper mode, use it. */ 8078 for (t = TYPE_POINTER_TO (to_type); t; t = TYPE_NEXT_PTR_TO (t)) 8079 if (TYPE_MODE (t) == mode && TYPE_REF_CAN_ALIAS_ALL (t) == can_alias_all) 8080 return t; 8081 8082 t = make_node (POINTER_TYPE); 8083 8084 TREE_TYPE (t) = to_type; 8085 SET_TYPE_MODE (t, mode); 8086 TYPE_REF_CAN_ALIAS_ALL (t) = can_alias_all; 8087 TYPE_NEXT_PTR_TO (t) = TYPE_POINTER_TO (to_type); 8088 TYPE_POINTER_TO (to_type) = t; 8089 8090 /* During LTO we do not set TYPE_CANONICAL of pointers and references. */ 8091 if (TYPE_STRUCTURAL_EQUALITY_P (to_type) || in_lto_p) 8092 SET_TYPE_STRUCTURAL_EQUALITY (t); 8093 else if (TYPE_CANONICAL (to_type) != to_type || could_alias) 8094 TYPE_CANONICAL (t) 8095 = build_pointer_type_for_mode (TYPE_CANONICAL (to_type), 8096 mode, false); 8097 8098 /* Lay out the type. This function has many callers that are concerned 8099 with expression-construction, and this simplifies them all. */ 8100 layout_type (t); 8101 8102 return t; 8103 } 8104 8105 /* By default build pointers in ptr_mode. */ 8106 8107 tree 8108 build_pointer_type (tree to_type) 8109 { 8110 addr_space_t as = to_type == error_mark_node? ADDR_SPACE_GENERIC 8111 : TYPE_ADDR_SPACE (to_type); 8112 machine_mode pointer_mode = targetm.addr_space.pointer_mode (as); 8113 return build_pointer_type_for_mode (to_type, pointer_mode, false); 8114 } 8115 8116 /* Same as build_pointer_type_for_mode, but for REFERENCE_TYPE. */ 8117 8118 tree 8119 build_reference_type_for_mode (tree to_type, machine_mode mode, 8120 bool can_alias_all) 8121 { 8122 tree t; 8123 bool could_alias = can_alias_all; 8124 8125 if (to_type == error_mark_node) 8126 return error_mark_node; 8127 8128 /* If the pointed-to type has the may_alias attribute set, force 8129 a TYPE_REF_CAN_ALIAS_ALL pointer to be generated. */ 8130 if (lookup_attribute ("may_alias", TYPE_ATTRIBUTES (to_type))) 8131 can_alias_all = true; 8132 8133 /* In some cases, languages will have things that aren't a REFERENCE_TYPE 8134 (such as a RECORD_TYPE for fat pointers in Ada) as TYPE_REFERENCE_TO. 8135 In that case, return that type without regard to the rest of our 8136 operands. 8137 8138 ??? This is a kludge, but consistent with the way this function has 8139 always operated and there doesn't seem to be a good way to avoid this 8140 at the moment. */ 8141 if (TYPE_REFERENCE_TO (to_type) != 0 8142 && TREE_CODE (TYPE_REFERENCE_TO (to_type)) != REFERENCE_TYPE) 8143 return TYPE_REFERENCE_TO (to_type); 8144 8145 /* First, if we already have a type for pointers to TO_TYPE and it's 8146 the proper mode, use it. */ 8147 for (t = TYPE_REFERENCE_TO (to_type); t; t = TYPE_NEXT_REF_TO (t)) 8148 if (TYPE_MODE (t) == mode && TYPE_REF_CAN_ALIAS_ALL (t) == can_alias_all) 8149 return t; 8150 8151 t = make_node (REFERENCE_TYPE); 8152 8153 TREE_TYPE (t) = to_type; 8154 SET_TYPE_MODE (t, mode); 8155 TYPE_REF_CAN_ALIAS_ALL (t) = can_alias_all; 8156 TYPE_NEXT_REF_TO (t) = TYPE_REFERENCE_TO (to_type); 8157 TYPE_REFERENCE_TO (to_type) = t; 8158 8159 /* During LTO we do not set TYPE_CANONICAL of pointers and references. */ 8160 if (TYPE_STRUCTURAL_EQUALITY_P (to_type) || in_lto_p) 8161 SET_TYPE_STRUCTURAL_EQUALITY (t); 8162 else if (TYPE_CANONICAL (to_type) != to_type || could_alias) 8163 TYPE_CANONICAL (t) 8164 = build_reference_type_for_mode (TYPE_CANONICAL (to_type), 8165 mode, false); 8166 8167 layout_type (t); 8168 8169 return t; 8170 } 8171 8172 8173 /* Build the node for the type of references-to-TO_TYPE by default 8174 in ptr_mode. */ 8175 8176 tree 8177 build_reference_type (tree to_type) 8178 { 8179 addr_space_t as = to_type == error_mark_node? ADDR_SPACE_GENERIC 8180 : TYPE_ADDR_SPACE (to_type); 8181 machine_mode pointer_mode = targetm.addr_space.pointer_mode (as); 8182 return build_reference_type_for_mode (to_type, pointer_mode, false); 8183 } 8184 8185 #define MAX_INT_CACHED_PREC \ 8186 (HOST_BITS_PER_WIDE_INT > 64 ? HOST_BITS_PER_WIDE_INT : 64) 8187 static GTY(()) tree nonstandard_integer_type_cache[2 * MAX_INT_CACHED_PREC + 2]; 8188 8189 /* Builds a signed or unsigned integer type of precision PRECISION. 8190 Used for C bitfields whose precision does not match that of 8191 built-in target types. */ 8192 tree 8193 build_nonstandard_integer_type (unsigned HOST_WIDE_INT precision, 8194 int unsignedp) 8195 { 8196 tree itype, ret; 8197 8198 if (unsignedp) 8199 unsignedp = MAX_INT_CACHED_PREC + 1; 8200 8201 if (precision <= MAX_INT_CACHED_PREC) 8202 { 8203 itype = nonstandard_integer_type_cache[precision + unsignedp]; 8204 if (itype) 8205 return itype; 8206 } 8207 8208 itype = make_node (INTEGER_TYPE); 8209 TYPE_PRECISION (itype) = precision; 8210 8211 if (unsignedp) 8212 fixup_unsigned_type (itype); 8213 else 8214 fixup_signed_type (itype); 8215 8216 ret = itype; 8217 8218 inchash::hash hstate; 8219 inchash::add_expr (TYPE_MAX_VALUE (itype), hstate); 8220 ret = type_hash_canon (hstate.end (), itype); 8221 if (precision <= MAX_INT_CACHED_PREC) 8222 nonstandard_integer_type_cache[precision + unsignedp] = ret; 8223 8224 return ret; 8225 } 8226 8227 #define MAX_BOOL_CACHED_PREC \ 8228 (HOST_BITS_PER_WIDE_INT > 64 ? HOST_BITS_PER_WIDE_INT : 64) 8229 static GTY(()) tree nonstandard_boolean_type_cache[MAX_BOOL_CACHED_PREC + 1]; 8230 8231 /* Builds a boolean type of precision PRECISION. 8232 Used for boolean vectors to choose proper vector element size. */ 8233 tree 8234 build_nonstandard_boolean_type (unsigned HOST_WIDE_INT precision) 8235 { 8236 tree type; 8237 8238 if (precision <= MAX_BOOL_CACHED_PREC) 8239 { 8240 type = nonstandard_boolean_type_cache[precision]; 8241 if (type) 8242 return type; 8243 } 8244 8245 type = make_node (BOOLEAN_TYPE); 8246 TYPE_PRECISION (type) = precision; 8247 fixup_signed_type (type); 8248 8249 if (precision <= MAX_INT_CACHED_PREC) 8250 nonstandard_boolean_type_cache[precision] = type; 8251 8252 return type; 8253 } 8254 8255 /* Create a range of some discrete type TYPE (an INTEGER_TYPE, ENUMERAL_TYPE 8256 or BOOLEAN_TYPE) with low bound LOWVAL and high bound HIGHVAL. If SHARED 8257 is true, reuse such a type that has already been constructed. */ 8258 8259 static tree 8260 build_range_type_1 (tree type, tree lowval, tree highval, bool shared) 8261 { 8262 tree itype = make_node (INTEGER_TYPE); 8263 8264 TREE_TYPE (itype) = type; 8265 8266 TYPE_MIN_VALUE (itype) = fold_convert (type, lowval); 8267 TYPE_MAX_VALUE (itype) = highval ? fold_convert (type, highval) : NULL; 8268 8269 TYPE_PRECISION (itype) = TYPE_PRECISION (type); 8270 SET_TYPE_MODE (itype, TYPE_MODE (type)); 8271 TYPE_SIZE (itype) = TYPE_SIZE (type); 8272 TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (type); 8273 SET_TYPE_ALIGN (itype, TYPE_ALIGN (type)); 8274 TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (type); 8275 SET_TYPE_WARN_IF_NOT_ALIGN (itype, TYPE_WARN_IF_NOT_ALIGN (type)); 8276 8277 if (!shared) 8278 return itype; 8279 8280 if ((TYPE_MIN_VALUE (itype) 8281 && TREE_CODE (TYPE_MIN_VALUE (itype)) != INTEGER_CST) 8282 || (TYPE_MAX_VALUE (itype) 8283 && TREE_CODE (TYPE_MAX_VALUE (itype)) != INTEGER_CST)) 8284 { 8285 /* Since we cannot reliably merge this type, we need to compare it using 8286 structural equality checks. */ 8287 SET_TYPE_STRUCTURAL_EQUALITY (itype); 8288 return itype; 8289 } 8290 8291 hashval_t hash = type_hash_canon_hash (itype); 8292 itype = type_hash_canon (hash, itype); 8293 8294 return itype; 8295 } 8296 8297 /* Wrapper around build_range_type_1 with SHARED set to true. */ 8298 8299 tree 8300 build_range_type (tree type, tree lowval, tree highval) 8301 { 8302 return build_range_type_1 (type, lowval, highval, true); 8303 } 8304 8305 /* Wrapper around build_range_type_1 with SHARED set to false. */ 8306 8307 tree 8308 build_nonshared_range_type (tree type, tree lowval, tree highval) 8309 { 8310 return build_range_type_1 (type, lowval, highval, false); 8311 } 8312 8313 /* Create a type of integers to be the TYPE_DOMAIN of an ARRAY_TYPE. 8314 MAXVAL should be the maximum value in the domain 8315 (one less than the length of the array). 8316 8317 The maximum value that MAXVAL can have is INT_MAX for a HOST_WIDE_INT. 8318 We don't enforce this limit, that is up to caller (e.g. language front end). 8319 The limit exists because the result is a signed type and we don't handle 8320 sizes that use more than one HOST_WIDE_INT. */ 8321 8322 tree 8323 build_index_type (tree maxval) 8324 { 8325 return build_range_type (sizetype, size_zero_node, maxval); 8326 } 8327 8328 /* Return true if the debug information for TYPE, a subtype, should be emitted 8329 as a subrange type. If so, set LOWVAL to the low bound and HIGHVAL to the 8330 high bound, respectively. Sometimes doing so unnecessarily obfuscates the 8331 debug info and doesn't reflect the source code. */ 8332 8333 bool 8334 subrange_type_for_debug_p (const_tree type, tree *lowval, tree *highval) 8335 { 8336 tree base_type = TREE_TYPE (type), low, high; 8337 8338 /* Subrange types have a base type which is an integral type. */ 8339 if (!INTEGRAL_TYPE_P (base_type)) 8340 return false; 8341 8342 /* Get the real bounds of the subtype. */ 8343 if (lang_hooks.types.get_subrange_bounds) 8344 lang_hooks.types.get_subrange_bounds (type, &low, &high); 8345 else 8346 { 8347 low = TYPE_MIN_VALUE (type); 8348 high = TYPE_MAX_VALUE (type); 8349 } 8350 8351 /* If the type and its base type have the same representation and the same 8352 name, then the type is not a subrange but a copy of the base type. */ 8353 if ((TREE_CODE (base_type) == INTEGER_TYPE 8354 || TREE_CODE (base_type) == BOOLEAN_TYPE) 8355 && int_size_in_bytes (type) == int_size_in_bytes (base_type) 8356 && tree_int_cst_equal (low, TYPE_MIN_VALUE (base_type)) 8357 && tree_int_cst_equal (high, TYPE_MAX_VALUE (base_type)) 8358 && TYPE_IDENTIFIER (type) == TYPE_IDENTIFIER (base_type)) 8359 return false; 8360 8361 if (lowval) 8362 *lowval = low; 8363 if (highval) 8364 *highval = high; 8365 return true; 8366 } 8367 8368 /* Construct, lay out and return the type of arrays of elements with ELT_TYPE 8369 and number of elements specified by the range of values of INDEX_TYPE. 8370 If TYPELESS_STORAGE is true, TYPE_TYPELESS_STORAGE flag is set on the type. 8371 If SHARED is true, reuse such a type that has already been constructed. 8372 If SET_CANONICAL is true, compute TYPE_CANONICAL from the element type. */ 8373 8374 static tree 8375 build_array_type_1 (tree elt_type, tree index_type, bool typeless_storage, 8376 bool shared, bool set_canonical) 8377 { 8378 tree t; 8379 8380 if (TREE_CODE (elt_type) == FUNCTION_TYPE) 8381 { 8382 error ("arrays of functions are not meaningful"); 8383 elt_type = integer_type_node; 8384 } 8385 8386 t = make_node (ARRAY_TYPE); 8387 TREE_TYPE (t) = elt_type; 8388 TYPE_DOMAIN (t) = index_type; 8389 TYPE_ADDR_SPACE (t) = TYPE_ADDR_SPACE (elt_type); 8390 TYPE_TYPELESS_STORAGE (t) = typeless_storage; 8391 layout_type (t); 8392 8393 if (shared) 8394 { 8395 hashval_t hash = type_hash_canon_hash (t); 8396 t = type_hash_canon (hash, t); 8397 } 8398 8399 if (TYPE_CANONICAL (t) == t && set_canonical) 8400 { 8401 if (TYPE_STRUCTURAL_EQUALITY_P (elt_type) 8402 || (index_type && TYPE_STRUCTURAL_EQUALITY_P (index_type)) 8403 || in_lto_p) 8404 SET_TYPE_STRUCTURAL_EQUALITY (t); 8405 else if (TYPE_CANONICAL (elt_type) != elt_type 8406 || (index_type && TYPE_CANONICAL (index_type) != index_type)) 8407 TYPE_CANONICAL (t) 8408 = build_array_type_1 (TYPE_CANONICAL (elt_type), 8409 index_type 8410 ? TYPE_CANONICAL (index_type) : NULL_TREE, 8411 typeless_storage, shared, set_canonical); 8412 } 8413 8414 return t; 8415 } 8416 8417 /* Wrapper around build_array_type_1 with SHARED set to true. */ 8418 8419 tree 8420 build_array_type (tree elt_type, tree index_type, bool typeless_storage) 8421 { 8422 return 8423 build_array_type_1 (elt_type, index_type, typeless_storage, true, true); 8424 } 8425 8426 /* Wrapper around build_array_type_1 with SHARED set to false. */ 8427 8428 tree 8429 build_nonshared_array_type (tree elt_type, tree index_type) 8430 { 8431 return build_array_type_1 (elt_type, index_type, false, false, true); 8432 } 8433 8434 /* Return a representation of ELT_TYPE[NELTS], using indices of type 8435 sizetype. */ 8436 8437 tree 8438 build_array_type_nelts (tree elt_type, poly_uint64 nelts) 8439 { 8440 return build_array_type (elt_type, build_index_type (size_int (nelts - 1))); 8441 } 8442 8443 /* Recursively examines the array elements of TYPE, until a non-array 8444 element type is found. */ 8445 8446 tree 8447 strip_array_types (tree type) 8448 { 8449 while (TREE_CODE (type) == ARRAY_TYPE) 8450 type = TREE_TYPE (type); 8451 8452 return type; 8453 } 8454 8455 /* Computes the canonical argument types from the argument type list 8456 ARGTYPES. 8457 8458 Upon return, *ANY_STRUCTURAL_P will be true iff either it was true 8459 on entry to this function, or if any of the ARGTYPES are 8460 structural. 8461 8462 Upon return, *ANY_NONCANONICAL_P will be true iff either it was 8463 true on entry to this function, or if any of the ARGTYPES are 8464 non-canonical. 8465 8466 Returns a canonical argument list, which may be ARGTYPES when the 8467 canonical argument list is unneeded (i.e., *ANY_STRUCTURAL_P is 8468 true) or would not differ from ARGTYPES. */ 8469 8470 static tree 8471 maybe_canonicalize_argtypes (tree argtypes, 8472 bool *any_structural_p, 8473 bool *any_noncanonical_p) 8474 { 8475 tree arg; 8476 bool any_noncanonical_argtypes_p = false; 8477 8478 for (arg = argtypes; arg && !(*any_structural_p); arg = TREE_CHAIN (arg)) 8479 { 8480 if (!TREE_VALUE (arg) || TREE_VALUE (arg) == error_mark_node) 8481 /* Fail gracefully by stating that the type is structural. */ 8482 *any_structural_p = true; 8483 else if (TYPE_STRUCTURAL_EQUALITY_P (TREE_VALUE (arg))) 8484 *any_structural_p = true; 8485 else if (TYPE_CANONICAL (TREE_VALUE (arg)) != TREE_VALUE (arg) 8486 || TREE_PURPOSE (arg)) 8487 /* If the argument has a default argument, we consider it 8488 non-canonical even though the type itself is canonical. 8489 That way, different variants of function and method types 8490 with default arguments will all point to the variant with 8491 no defaults as their canonical type. */ 8492 any_noncanonical_argtypes_p = true; 8493 } 8494 8495 if (*any_structural_p) 8496 return argtypes; 8497 8498 if (any_noncanonical_argtypes_p) 8499 { 8500 /* Build the canonical list of argument types. */ 8501 tree canon_argtypes = NULL_TREE; 8502 bool is_void = false; 8503 8504 for (arg = argtypes; arg; arg = TREE_CHAIN (arg)) 8505 { 8506 if (arg == void_list_node) 8507 is_void = true; 8508 else 8509 canon_argtypes = tree_cons (NULL_TREE, 8510 TYPE_CANONICAL (TREE_VALUE (arg)), 8511 canon_argtypes); 8512 } 8513 8514 canon_argtypes = nreverse (canon_argtypes); 8515 if (is_void) 8516 canon_argtypes = chainon (canon_argtypes, void_list_node); 8517 8518 /* There is a non-canonical type. */ 8519 *any_noncanonical_p = true; 8520 return canon_argtypes; 8521 } 8522 8523 /* The canonical argument types are the same as ARGTYPES. */ 8524 return argtypes; 8525 } 8526 8527 /* Construct, lay out and return 8528 the type of functions returning type VALUE_TYPE 8529 given arguments of types ARG_TYPES. 8530 ARG_TYPES is a chain of TREE_LIST nodes whose TREE_VALUEs 8531 are data type nodes for the arguments of the function. 8532 If such a type has already been constructed, reuse it. */ 8533 8534 tree 8535 build_function_type (tree value_type, tree arg_types) 8536 { 8537 tree t; 8538 inchash::hash hstate; 8539 bool any_structural_p, any_noncanonical_p; 8540 tree canon_argtypes; 8541 8542 gcc_assert (arg_types != error_mark_node); 8543 8544 if (TREE_CODE (value_type) == FUNCTION_TYPE) 8545 { 8546 error ("function return type cannot be function"); 8547 value_type = integer_type_node; 8548 } 8549 8550 /* Make a node of the sort we want. */ 8551 t = make_node (FUNCTION_TYPE); 8552 TREE_TYPE (t) = value_type; 8553 TYPE_ARG_TYPES (t) = arg_types; 8554 8555 /* If we already have such a type, use the old one. */ 8556 hashval_t hash = type_hash_canon_hash (t); 8557 t = type_hash_canon (hash, t); 8558 8559 /* Set up the canonical type. */ 8560 any_structural_p = TYPE_STRUCTURAL_EQUALITY_P (value_type); 8561 any_noncanonical_p = TYPE_CANONICAL (value_type) != value_type; 8562 canon_argtypes = maybe_canonicalize_argtypes (arg_types, 8563 &any_structural_p, 8564 &any_noncanonical_p); 8565 if (any_structural_p) 8566 SET_TYPE_STRUCTURAL_EQUALITY (t); 8567 else if (any_noncanonical_p) 8568 TYPE_CANONICAL (t) = build_function_type (TYPE_CANONICAL (value_type), 8569 canon_argtypes); 8570 8571 if (!COMPLETE_TYPE_P (t)) 8572 layout_type (t); 8573 return t; 8574 } 8575 8576 /* Build a function type. The RETURN_TYPE is the type returned by the 8577 function. If VAARGS is set, no void_type_node is appended to the 8578 list. ARGP must be always be terminated be a NULL_TREE. */ 8579 8580 static tree 8581 build_function_type_list_1 (bool vaargs, tree return_type, va_list argp) 8582 { 8583 tree t, args, last; 8584 8585 t = va_arg (argp, tree); 8586 for (args = NULL_TREE; t != NULL_TREE; t = va_arg (argp, tree)) 8587 args = tree_cons (NULL_TREE, t, args); 8588 8589 if (vaargs) 8590 { 8591 last = args; 8592 if (args != NULL_TREE) 8593 args = nreverse (args); 8594 gcc_assert (last != void_list_node); 8595 } 8596 else if (args == NULL_TREE) 8597 args = void_list_node; 8598 else 8599 { 8600 last = args; 8601 args = nreverse (args); 8602 TREE_CHAIN (last) = void_list_node; 8603 } 8604 args = build_function_type (return_type, args); 8605 8606 return args; 8607 } 8608 8609 /* Build a function type. The RETURN_TYPE is the type returned by the 8610 function. If additional arguments are provided, they are 8611 additional argument types. The list of argument types must always 8612 be terminated by NULL_TREE. */ 8613 8614 tree 8615 build_function_type_list (tree return_type, ...) 8616 { 8617 tree args; 8618 va_list p; 8619 8620 va_start (p, return_type); 8621 args = build_function_type_list_1 (false, return_type, p); 8622 va_end (p); 8623 return args; 8624 } 8625 8626 /* Build a variable argument function type. The RETURN_TYPE is the 8627 type returned by the function. If additional arguments are provided, 8628 they are additional argument types. The list of argument types must 8629 always be terminated by NULL_TREE. */ 8630 8631 tree 8632 build_varargs_function_type_list (tree return_type, ...) 8633 { 8634 tree args; 8635 va_list p; 8636 8637 va_start (p, return_type); 8638 args = build_function_type_list_1 (true, return_type, p); 8639 va_end (p); 8640 8641 return args; 8642 } 8643 8644 /* Build a function type. RETURN_TYPE is the type returned by the 8645 function; VAARGS indicates whether the function takes varargs. The 8646 function takes N named arguments, the types of which are provided in 8647 ARG_TYPES. */ 8648 8649 static tree 8650 build_function_type_array_1 (bool vaargs, tree return_type, int n, 8651 tree *arg_types) 8652 { 8653 int i; 8654 tree t = vaargs ? NULL_TREE : void_list_node; 8655 8656 for (i = n - 1; i >= 0; i--) 8657 t = tree_cons (NULL_TREE, arg_types[i], t); 8658 8659 return build_function_type (return_type, t); 8660 } 8661 8662 /* Build a function type. RETURN_TYPE is the type returned by the 8663 function. The function takes N named arguments, the types of which 8664 are provided in ARG_TYPES. */ 8665 8666 tree 8667 build_function_type_array (tree return_type, int n, tree *arg_types) 8668 { 8669 return build_function_type_array_1 (false, return_type, n, arg_types); 8670 } 8671 8672 /* Build a variable argument function type. RETURN_TYPE is the type 8673 returned by the function. The function takes N named arguments, the 8674 types of which are provided in ARG_TYPES. */ 8675 8676 tree 8677 build_varargs_function_type_array (tree return_type, int n, tree *arg_types) 8678 { 8679 return build_function_type_array_1 (true, return_type, n, arg_types); 8680 } 8681 8682 /* Build a METHOD_TYPE for a member of BASETYPE. The RETTYPE (a TYPE) 8683 and ARGTYPES (a TREE_LIST) are the return type and arguments types 8684 for the method. An implicit additional parameter (of type 8685 pointer-to-BASETYPE) is added to the ARGTYPES. */ 8686 8687 tree 8688 build_method_type_directly (tree basetype, 8689 tree rettype, 8690 tree argtypes) 8691 { 8692 tree t; 8693 tree ptype; 8694 bool any_structural_p, any_noncanonical_p; 8695 tree canon_argtypes; 8696 8697 /* Make a node of the sort we want. */ 8698 t = make_node (METHOD_TYPE); 8699 8700 TYPE_METHOD_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype); 8701 TREE_TYPE (t) = rettype; 8702 ptype = build_pointer_type (basetype); 8703 8704 /* The actual arglist for this function includes a "hidden" argument 8705 which is "this". Put it into the list of argument types. */ 8706 argtypes = tree_cons (NULL_TREE, ptype, argtypes); 8707 TYPE_ARG_TYPES (t) = argtypes; 8708 8709 /* If we already have such a type, use the old one. */ 8710 hashval_t hash = type_hash_canon_hash (t); 8711 t = type_hash_canon (hash, t); 8712 8713 /* Set up the canonical type. */ 8714 any_structural_p 8715 = (TYPE_STRUCTURAL_EQUALITY_P (basetype) 8716 || TYPE_STRUCTURAL_EQUALITY_P (rettype)); 8717 any_noncanonical_p 8718 = (TYPE_CANONICAL (basetype) != basetype 8719 || TYPE_CANONICAL (rettype) != rettype); 8720 canon_argtypes = maybe_canonicalize_argtypes (TREE_CHAIN (argtypes), 8721 &any_structural_p, 8722 &any_noncanonical_p); 8723 if (any_structural_p) 8724 SET_TYPE_STRUCTURAL_EQUALITY (t); 8725 else if (any_noncanonical_p) 8726 TYPE_CANONICAL (t) 8727 = build_method_type_directly (TYPE_CANONICAL (basetype), 8728 TYPE_CANONICAL (rettype), 8729 canon_argtypes); 8730 if (!COMPLETE_TYPE_P (t)) 8731 layout_type (t); 8732 8733 return t; 8734 } 8735 8736 /* Construct, lay out and return the type of methods belonging to class 8737 BASETYPE and whose arguments and values are described by TYPE. 8738 If that type exists already, reuse it. 8739 TYPE must be a FUNCTION_TYPE node. */ 8740 8741 tree 8742 build_method_type (tree basetype, tree type) 8743 { 8744 gcc_assert (TREE_CODE (type) == FUNCTION_TYPE); 8745 8746 return build_method_type_directly (basetype, 8747 TREE_TYPE (type), 8748 TYPE_ARG_TYPES (type)); 8749 } 8750 8751 /* Construct, lay out and return the type of offsets to a value 8752 of type TYPE, within an object of type BASETYPE. 8753 If a suitable offset type exists already, reuse it. */ 8754 8755 tree 8756 build_offset_type (tree basetype, tree type) 8757 { 8758 tree t; 8759 8760 /* Make a node of the sort we want. */ 8761 t = make_node (OFFSET_TYPE); 8762 8763 TYPE_OFFSET_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype); 8764 TREE_TYPE (t) = type; 8765 8766 /* If we already have such a type, use the old one. */ 8767 hashval_t hash = type_hash_canon_hash (t); 8768 t = type_hash_canon (hash, t); 8769 8770 if (!COMPLETE_TYPE_P (t)) 8771 layout_type (t); 8772 8773 if (TYPE_CANONICAL (t) == t) 8774 { 8775 if (TYPE_STRUCTURAL_EQUALITY_P (basetype) 8776 || TYPE_STRUCTURAL_EQUALITY_P (type)) 8777 SET_TYPE_STRUCTURAL_EQUALITY (t); 8778 else if (TYPE_CANONICAL (TYPE_MAIN_VARIANT (basetype)) != basetype 8779 || TYPE_CANONICAL (type) != type) 8780 TYPE_CANONICAL (t) 8781 = build_offset_type (TYPE_CANONICAL (TYPE_MAIN_VARIANT (basetype)), 8782 TYPE_CANONICAL (type)); 8783 } 8784 8785 return t; 8786 } 8787 8788 /* Create a complex type whose components are COMPONENT_TYPE. 8789 8790 If NAMED is true, the type is given a TYPE_NAME. We do not always 8791 do so because this creates a DECL node and thus make the DECL_UIDs 8792 dependent on the type canonicalization hashtable, which is GC-ed, 8793 so the DECL_UIDs would not be stable wrt garbage collection. */ 8794 8795 tree 8796 build_complex_type (tree component_type, bool named) 8797 { 8798 gcc_assert (INTEGRAL_TYPE_P (component_type) 8799 || SCALAR_FLOAT_TYPE_P (component_type) 8800 || FIXED_POINT_TYPE_P (component_type)); 8801 8802 /* Make a node of the sort we want. */ 8803 tree probe = make_node (COMPLEX_TYPE); 8804 8805 TREE_TYPE (probe) = TYPE_MAIN_VARIANT (component_type); 8806 8807 /* If we already have such a type, use the old one. */ 8808 hashval_t hash = type_hash_canon_hash (probe); 8809 tree t = type_hash_canon (hash, probe); 8810 8811 if (t == probe) 8812 { 8813 /* We created a new type. The hash insertion will have laid 8814 out the type. We need to check the canonicalization and 8815 maybe set the name. */ 8816 gcc_checking_assert (COMPLETE_TYPE_P (t) 8817 && !TYPE_NAME (t) 8818 && TYPE_CANONICAL (t) == t); 8819 8820 if (TYPE_STRUCTURAL_EQUALITY_P (TREE_TYPE (t))) 8821 SET_TYPE_STRUCTURAL_EQUALITY (t); 8822 else if (TYPE_CANONICAL (TREE_TYPE (t)) != TREE_TYPE (t)) 8823 TYPE_CANONICAL (t) 8824 = build_complex_type (TYPE_CANONICAL (TREE_TYPE (t)), named); 8825 8826 /* We need to create a name, since complex is a fundamental type. */ 8827 if (named) 8828 { 8829 const char *name = NULL; 8830 8831 if (TREE_TYPE (t) == char_type_node) 8832 name = "complex char"; 8833 else if (TREE_TYPE (t) == signed_char_type_node) 8834 name = "complex signed char"; 8835 else if (TREE_TYPE (t) == unsigned_char_type_node) 8836 name = "complex unsigned char"; 8837 else if (TREE_TYPE (t) == short_integer_type_node) 8838 name = "complex short int"; 8839 else if (TREE_TYPE (t) == short_unsigned_type_node) 8840 name = "complex short unsigned int"; 8841 else if (TREE_TYPE (t) == integer_type_node) 8842 name = "complex int"; 8843 else if (TREE_TYPE (t) == unsigned_type_node) 8844 name = "complex unsigned int"; 8845 else if (TREE_TYPE (t) == long_integer_type_node) 8846 name = "complex long int"; 8847 else if (TREE_TYPE (t) == long_unsigned_type_node) 8848 name = "complex long unsigned int"; 8849 else if (TREE_TYPE (t) == long_long_integer_type_node) 8850 name = "complex long long int"; 8851 else if (TREE_TYPE (t) == long_long_unsigned_type_node) 8852 name = "complex long long unsigned int"; 8853 8854 if (name != NULL) 8855 TYPE_NAME (t) = build_decl (UNKNOWN_LOCATION, TYPE_DECL, 8856 get_identifier (name), t); 8857 } 8858 } 8859 8860 return build_qualified_type (t, TYPE_QUALS (component_type)); 8861 } 8862 8863 /* If TYPE is a real or complex floating-point type and the target 8864 does not directly support arithmetic on TYPE then return the wider 8865 type to be used for arithmetic on TYPE. Otherwise, return 8866 NULL_TREE. */ 8867 8868 tree 8869 excess_precision_type (tree type) 8870 { 8871 /* The target can give two different responses to the question of 8872 which excess precision mode it would like depending on whether we 8873 are in -fexcess-precision=standard or -fexcess-precision=fast. */ 8874 8875 enum excess_precision_type requested_type 8876 = (flag_excess_precision == EXCESS_PRECISION_FAST 8877 ? EXCESS_PRECISION_TYPE_FAST 8878 : EXCESS_PRECISION_TYPE_STANDARD); 8879 8880 enum flt_eval_method target_flt_eval_method 8881 = targetm.c.excess_precision (requested_type); 8882 8883 /* The target should not ask for unpredictable float evaluation (though 8884 it might advertise that implicitly the evaluation is unpredictable, 8885 but we don't care about that here, it will have been reported 8886 elsewhere). If it does ask for unpredictable evaluation, we have 8887 nothing to do here. */ 8888 gcc_assert (target_flt_eval_method != FLT_EVAL_METHOD_UNPREDICTABLE); 8889 8890 /* Nothing to do. The target has asked for all types we know about 8891 to be computed with their native precision and range. */ 8892 if (target_flt_eval_method == FLT_EVAL_METHOD_PROMOTE_TO_FLOAT16) 8893 return NULL_TREE; 8894 8895 /* The target will promote this type in a target-dependent way, so excess 8896 precision ought to leave it alone. */ 8897 if (targetm.promoted_type (type) != NULL_TREE) 8898 return NULL_TREE; 8899 8900 machine_mode float16_type_mode = (float16_type_node 8901 ? TYPE_MODE (float16_type_node) 8902 : VOIDmode); 8903 machine_mode float_type_mode = TYPE_MODE (float_type_node); 8904 machine_mode double_type_mode = TYPE_MODE (double_type_node); 8905 8906 switch (TREE_CODE (type)) 8907 { 8908 case REAL_TYPE: 8909 { 8910 machine_mode type_mode = TYPE_MODE (type); 8911 switch (target_flt_eval_method) 8912 { 8913 case FLT_EVAL_METHOD_PROMOTE_TO_FLOAT: 8914 if (type_mode == float16_type_mode) 8915 return float_type_node; 8916 break; 8917 case FLT_EVAL_METHOD_PROMOTE_TO_DOUBLE: 8918 if (type_mode == float16_type_mode 8919 || type_mode == float_type_mode) 8920 return double_type_node; 8921 break; 8922 case FLT_EVAL_METHOD_PROMOTE_TO_LONG_DOUBLE: 8923 if (type_mode == float16_type_mode 8924 || type_mode == float_type_mode 8925 || type_mode == double_type_mode) 8926 return long_double_type_node; 8927 break; 8928 default: 8929 gcc_unreachable (); 8930 } 8931 break; 8932 } 8933 case COMPLEX_TYPE: 8934 { 8935 if (TREE_CODE (TREE_TYPE (type)) != REAL_TYPE) 8936 return NULL_TREE; 8937 machine_mode type_mode = TYPE_MODE (TREE_TYPE (type)); 8938 switch (target_flt_eval_method) 8939 { 8940 case FLT_EVAL_METHOD_PROMOTE_TO_FLOAT: 8941 if (type_mode == float16_type_mode) 8942 return complex_float_type_node; 8943 break; 8944 case FLT_EVAL_METHOD_PROMOTE_TO_DOUBLE: 8945 if (type_mode == float16_type_mode 8946 || type_mode == float_type_mode) 8947 return complex_double_type_node; 8948 break; 8949 case FLT_EVAL_METHOD_PROMOTE_TO_LONG_DOUBLE: 8950 if (type_mode == float16_type_mode 8951 || type_mode == float_type_mode 8952 || type_mode == double_type_mode) 8953 return complex_long_double_type_node; 8954 break; 8955 default: 8956 gcc_unreachable (); 8957 } 8958 break; 8959 } 8960 default: 8961 break; 8962 } 8963 8964 return NULL_TREE; 8965 } 8966 8967 /* Return OP, stripped of any conversions to wider types as much as is safe. 8968 Converting the value back to OP's type makes a value equivalent to OP. 8969 8970 If FOR_TYPE is nonzero, we return a value which, if converted to 8971 type FOR_TYPE, would be equivalent to converting OP to type FOR_TYPE. 8972 8973 OP must have integer, real or enumeral type. Pointers are not allowed! 8974 8975 There are some cases where the obvious value we could return 8976 would regenerate to OP if converted to OP's type, 8977 but would not extend like OP to wider types. 8978 If FOR_TYPE indicates such extension is contemplated, we eschew such values. 8979 For example, if OP is (unsigned short)(signed char)-1, 8980 we avoid returning (signed char)-1 if FOR_TYPE is int, 8981 even though extending that to an unsigned short would regenerate OP, 8982 since the result of extending (signed char)-1 to (int) 8983 is different from (int) OP. */ 8984 8985 tree 8986 get_unwidened (tree op, tree for_type) 8987 { 8988 /* Set UNS initially if converting OP to FOR_TYPE is a zero-extension. */ 8989 tree type = TREE_TYPE (op); 8990 unsigned final_prec 8991 = TYPE_PRECISION (for_type != 0 ? for_type : type); 8992 int uns 8993 = (for_type != 0 && for_type != type 8994 && final_prec > TYPE_PRECISION (type) 8995 && TYPE_UNSIGNED (type)); 8996 tree win = op; 8997 8998 while (CONVERT_EXPR_P (op)) 8999 { 9000 int bitschange; 9001 9002 /* TYPE_PRECISION on vector types has different meaning 9003 (TYPE_VECTOR_SUBPARTS) and casts from vectors are view conversions, 9004 so avoid them here. */ 9005 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (op, 0))) == VECTOR_TYPE) 9006 break; 9007 9008 bitschange = TYPE_PRECISION (TREE_TYPE (op)) 9009 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0))); 9010 9011 /* Truncations are many-one so cannot be removed. 9012 Unless we are later going to truncate down even farther. */ 9013 if (bitschange < 0 9014 && final_prec > TYPE_PRECISION (TREE_TYPE (op))) 9015 break; 9016 9017 /* See what's inside this conversion. If we decide to strip it, 9018 we will set WIN. */ 9019 op = TREE_OPERAND (op, 0); 9020 9021 /* If we have not stripped any zero-extensions (uns is 0), 9022 we can strip any kind of extension. 9023 If we have previously stripped a zero-extension, 9024 only zero-extensions can safely be stripped. 9025 Any extension can be stripped if the bits it would produce 9026 are all going to be discarded later by truncating to FOR_TYPE. */ 9027 9028 if (bitschange > 0) 9029 { 9030 if (! uns || final_prec <= TYPE_PRECISION (TREE_TYPE (op))) 9031 win = op; 9032 /* TYPE_UNSIGNED says whether this is a zero-extension. 9033 Let's avoid computing it if it does not affect WIN 9034 and if UNS will not be needed again. */ 9035 if ((uns 9036 || CONVERT_EXPR_P (op)) 9037 && TYPE_UNSIGNED (TREE_TYPE (op))) 9038 { 9039 uns = 1; 9040 win = op; 9041 } 9042 } 9043 } 9044 9045 /* If we finally reach a constant see if it fits in sth smaller and 9046 in that case convert it. */ 9047 if (TREE_CODE (win) == INTEGER_CST) 9048 { 9049 tree wtype = TREE_TYPE (win); 9050 unsigned prec = wi::min_precision (wi::to_wide (win), TYPE_SIGN (wtype)); 9051 if (for_type) 9052 prec = MAX (prec, final_prec); 9053 if (prec < TYPE_PRECISION (wtype)) 9054 { 9055 tree t = lang_hooks.types.type_for_size (prec, TYPE_UNSIGNED (wtype)); 9056 if (t && TYPE_PRECISION (t) < TYPE_PRECISION (wtype)) 9057 win = fold_convert (t, win); 9058 } 9059 } 9060 9061 return win; 9062 } 9063 9064 /* Return OP or a simpler expression for a narrower value 9065 which can be sign-extended or zero-extended to give back OP. 9066 Store in *UNSIGNEDP_PTR either 1 if the value should be zero-extended 9067 or 0 if the value should be sign-extended. */ 9068 9069 tree 9070 get_narrower (tree op, int *unsignedp_ptr) 9071 { 9072 int uns = 0; 9073 int first = 1; 9074 tree win = op; 9075 bool integral_p = INTEGRAL_TYPE_P (TREE_TYPE (op)); 9076 9077 while (TREE_CODE (op) == NOP_EXPR) 9078 { 9079 int bitschange 9080 = (TYPE_PRECISION (TREE_TYPE (op)) 9081 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0)))); 9082 9083 /* Truncations are many-one so cannot be removed. */ 9084 if (bitschange < 0) 9085 break; 9086 9087 /* See what's inside this conversion. If we decide to strip it, 9088 we will set WIN. */ 9089 9090 if (bitschange > 0) 9091 { 9092 op = TREE_OPERAND (op, 0); 9093 /* An extension: the outermost one can be stripped, 9094 but remember whether it is zero or sign extension. */ 9095 if (first) 9096 uns = TYPE_UNSIGNED (TREE_TYPE (op)); 9097 /* Otherwise, if a sign extension has been stripped, 9098 only sign extensions can now be stripped; 9099 if a zero extension has been stripped, only zero-extensions. */ 9100 else if (uns != TYPE_UNSIGNED (TREE_TYPE (op))) 9101 break; 9102 first = 0; 9103 } 9104 else /* bitschange == 0 */ 9105 { 9106 /* A change in nominal type can always be stripped, but we must 9107 preserve the unsignedness. */ 9108 if (first) 9109 uns = TYPE_UNSIGNED (TREE_TYPE (op)); 9110 first = 0; 9111 op = TREE_OPERAND (op, 0); 9112 /* Keep trying to narrow, but don't assign op to win if it 9113 would turn an integral type into something else. */ 9114 if (INTEGRAL_TYPE_P (TREE_TYPE (op)) != integral_p) 9115 continue; 9116 } 9117 9118 win = op; 9119 } 9120 9121 if (TREE_CODE (op) == COMPONENT_REF 9122 /* Since type_for_size always gives an integer type. */ 9123 && TREE_CODE (TREE_TYPE (op)) != REAL_TYPE 9124 && TREE_CODE (TREE_TYPE (op)) != FIXED_POINT_TYPE 9125 /* Ensure field is laid out already. */ 9126 && DECL_SIZE (TREE_OPERAND (op, 1)) != 0 9127 && tree_fits_uhwi_p (DECL_SIZE (TREE_OPERAND (op, 1)))) 9128 { 9129 unsigned HOST_WIDE_INT innerprec 9130 = tree_to_uhwi (DECL_SIZE (TREE_OPERAND (op, 1))); 9131 int unsignedp = (DECL_UNSIGNED (TREE_OPERAND (op, 1)) 9132 || TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (op, 1)))); 9133 tree type = lang_hooks.types.type_for_size (innerprec, unsignedp); 9134 9135 /* We can get this structure field in a narrower type that fits it, 9136 but the resulting extension to its nominal type (a fullword type) 9137 must satisfy the same conditions as for other extensions. 9138 9139 Do this only for fields that are aligned (not bit-fields), 9140 because when bit-field insns will be used there is no 9141 advantage in doing this. */ 9142 9143 if (innerprec < TYPE_PRECISION (TREE_TYPE (op)) 9144 && ! DECL_BIT_FIELD (TREE_OPERAND (op, 1)) 9145 && (first || uns == DECL_UNSIGNED (TREE_OPERAND (op, 1))) 9146 && type != 0) 9147 { 9148 if (first) 9149 uns = DECL_UNSIGNED (TREE_OPERAND (op, 1)); 9150 win = fold_convert (type, op); 9151 } 9152 } 9153 9154 *unsignedp_ptr = uns; 9155 return win; 9156 } 9157 9158 /* Return true if integer constant C has a value that is permissible 9159 for TYPE, an integral type. */ 9160 9161 bool 9162 int_fits_type_p (const_tree c, const_tree type) 9163 { 9164 tree type_low_bound, type_high_bound; 9165 bool ok_for_low_bound, ok_for_high_bound; 9166 signop sgn_c = TYPE_SIGN (TREE_TYPE (c)); 9167 9168 /* Non-standard boolean types can have arbitrary precision but various 9169 transformations assume that they can only take values 0 and +/-1. */ 9170 if (TREE_CODE (type) == BOOLEAN_TYPE) 9171 return wi::fits_to_boolean_p (wi::to_wide (c), type); 9172 9173 retry: 9174 type_low_bound = TYPE_MIN_VALUE (type); 9175 type_high_bound = TYPE_MAX_VALUE (type); 9176 9177 /* If at least one bound of the type is a constant integer, we can check 9178 ourselves and maybe make a decision. If no such decision is possible, but 9179 this type is a subtype, try checking against that. Otherwise, use 9180 fits_to_tree_p, which checks against the precision. 9181 9182 Compute the status for each possibly constant bound, and return if we see 9183 one does not match. Use ok_for_xxx_bound for this purpose, assigning -1 9184 for "unknown if constant fits", 0 for "constant known *not* to fit" and 1 9185 for "constant known to fit". */ 9186 9187 /* Check if c >= type_low_bound. */ 9188 if (type_low_bound && TREE_CODE (type_low_bound) == INTEGER_CST) 9189 { 9190 if (tree_int_cst_lt (c, type_low_bound)) 9191 return false; 9192 ok_for_low_bound = true; 9193 } 9194 else 9195 ok_for_low_bound = false; 9196 9197 /* Check if c <= type_high_bound. */ 9198 if (type_high_bound && TREE_CODE (type_high_bound) == INTEGER_CST) 9199 { 9200 if (tree_int_cst_lt (type_high_bound, c)) 9201 return false; 9202 ok_for_high_bound = true; 9203 } 9204 else 9205 ok_for_high_bound = false; 9206 9207 /* If the constant fits both bounds, the result is known. */ 9208 if (ok_for_low_bound && ok_for_high_bound) 9209 return true; 9210 9211 /* Perform some generic filtering which may allow making a decision 9212 even if the bounds are not constant. First, negative integers 9213 never fit in unsigned types, */ 9214 if (TYPE_UNSIGNED (type) && sgn_c == SIGNED && wi::neg_p (wi::to_wide (c))) 9215 return false; 9216 9217 /* Second, narrower types always fit in wider ones. */ 9218 if (TYPE_PRECISION (type) > TYPE_PRECISION (TREE_TYPE (c))) 9219 return true; 9220 9221 /* Third, unsigned integers with top bit set never fit signed types. */ 9222 if (!TYPE_UNSIGNED (type) && sgn_c == UNSIGNED) 9223 { 9224 int prec = GET_MODE_PRECISION (SCALAR_INT_TYPE_MODE (TREE_TYPE (c))) - 1; 9225 if (prec < TYPE_PRECISION (TREE_TYPE (c))) 9226 { 9227 /* When a tree_cst is converted to a wide-int, the precision 9228 is taken from the type. However, if the precision of the 9229 mode underneath the type is smaller than that, it is 9230 possible that the value will not fit. The test below 9231 fails if any bit is set between the sign bit of the 9232 underlying mode and the top bit of the type. */ 9233 if (wi::zext (wi::to_wide (c), prec - 1) != wi::to_wide (c)) 9234 return false; 9235 } 9236 else if (wi::neg_p (wi::to_wide (c))) 9237 return false; 9238 } 9239 9240 /* If we haven't been able to decide at this point, there nothing more we 9241 can check ourselves here. Look at the base type if we have one and it 9242 has the same precision. */ 9243 if (TREE_CODE (type) == INTEGER_TYPE 9244 && TREE_TYPE (type) != 0 9245 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (type))) 9246 { 9247 type = TREE_TYPE (type); 9248 goto retry; 9249 } 9250 9251 /* Or to fits_to_tree_p, if nothing else. */ 9252 return wi::fits_to_tree_p (wi::to_wide (c), type); 9253 } 9254 9255 /* Stores bounds of an integer TYPE in MIN and MAX. If TYPE has non-constant 9256 bounds or is a POINTER_TYPE, the maximum and/or minimum values that can be 9257 represented (assuming two's-complement arithmetic) within the bit 9258 precision of the type are returned instead. */ 9259 9260 void 9261 get_type_static_bounds (const_tree type, mpz_t min, mpz_t max) 9262 { 9263 if (!POINTER_TYPE_P (type) && TYPE_MIN_VALUE (type) 9264 && TREE_CODE (TYPE_MIN_VALUE (type)) == INTEGER_CST) 9265 wi::to_mpz (wi::to_wide (TYPE_MIN_VALUE (type)), min, TYPE_SIGN (type)); 9266 else 9267 { 9268 if (TYPE_UNSIGNED (type)) 9269 mpz_set_ui (min, 0); 9270 else 9271 { 9272 wide_int mn = wi::min_value (TYPE_PRECISION (type), SIGNED); 9273 wi::to_mpz (mn, min, SIGNED); 9274 } 9275 } 9276 9277 if (!POINTER_TYPE_P (type) && TYPE_MAX_VALUE (type) 9278 && TREE_CODE (TYPE_MAX_VALUE (type)) == INTEGER_CST) 9279 wi::to_mpz (wi::to_wide (TYPE_MAX_VALUE (type)), max, TYPE_SIGN (type)); 9280 else 9281 { 9282 wide_int mn = wi::max_value (TYPE_PRECISION (type), TYPE_SIGN (type)); 9283 wi::to_mpz (mn, max, TYPE_SIGN (type)); 9284 } 9285 } 9286 9287 /* Return true if VAR is an automatic variable. */ 9288 9289 bool 9290 auto_var_p (const_tree var) 9291 { 9292 return ((((VAR_P (var) && ! DECL_EXTERNAL (var)) 9293 || TREE_CODE (var) == PARM_DECL) 9294 && ! TREE_STATIC (var)) 9295 || TREE_CODE (var) == RESULT_DECL); 9296 } 9297 9298 /* Return true if VAR is an automatic variable defined in function FN. */ 9299 9300 bool 9301 auto_var_in_fn_p (const_tree var, const_tree fn) 9302 { 9303 return (DECL_P (var) && DECL_CONTEXT (var) == fn 9304 && (auto_var_p (var) 9305 || TREE_CODE (var) == LABEL_DECL)); 9306 } 9307 9308 /* Subprogram of following function. Called by walk_tree. 9309 9310 Return *TP if it is an automatic variable or parameter of the 9311 function passed in as DATA. */ 9312 9313 static tree 9314 find_var_from_fn (tree *tp, int *walk_subtrees, void *data) 9315 { 9316 tree fn = (tree) data; 9317 9318 if (TYPE_P (*tp)) 9319 *walk_subtrees = 0; 9320 9321 else if (DECL_P (*tp) 9322 && auto_var_in_fn_p (*tp, fn)) 9323 return *tp; 9324 9325 return NULL_TREE; 9326 } 9327 9328 /* Returns true if T is, contains, or refers to a type with variable 9329 size. For METHOD_TYPEs and FUNCTION_TYPEs we exclude the 9330 arguments, but not the return type. If FN is nonzero, only return 9331 true if a modifier of the type or position of FN is a variable or 9332 parameter inside FN. 9333 9334 This concept is more general than that of C99 'variably modified types': 9335 in C99, a struct type is never variably modified because a VLA may not 9336 appear as a structure member. However, in GNU C code like: 9337 9338 struct S { int i[f()]; }; 9339 9340 is valid, and other languages may define similar constructs. */ 9341 9342 bool 9343 variably_modified_type_p (tree type, tree fn) 9344 { 9345 tree t; 9346 9347 /* Test if T is either variable (if FN is zero) or an expression containing 9348 a variable in FN. If TYPE isn't gimplified, return true also if 9349 gimplify_one_sizepos would gimplify the expression into a local 9350 variable. */ 9351 #define RETURN_TRUE_IF_VAR(T) \ 9352 do { tree _t = (T); \ 9353 if (_t != NULL_TREE \ 9354 && _t != error_mark_node \ 9355 && !CONSTANT_CLASS_P (_t) \ 9356 && TREE_CODE (_t) != PLACEHOLDER_EXPR \ 9357 && (!fn \ 9358 || (!TYPE_SIZES_GIMPLIFIED (type) \ 9359 && (TREE_CODE (_t) != VAR_DECL \ 9360 && !CONTAINS_PLACEHOLDER_P (_t))) \ 9361 || walk_tree (&_t, find_var_from_fn, fn, NULL))) \ 9362 return true; } while (0) 9363 9364 if (type == error_mark_node) 9365 return false; 9366 9367 /* If TYPE itself has variable size, it is variably modified. */ 9368 RETURN_TRUE_IF_VAR (TYPE_SIZE (type)); 9369 RETURN_TRUE_IF_VAR (TYPE_SIZE_UNIT (type)); 9370 9371 switch (TREE_CODE (type)) 9372 { 9373 case POINTER_TYPE: 9374 case REFERENCE_TYPE: 9375 case VECTOR_TYPE: 9376 /* Ada can have pointer types refering to themselves indirectly. */ 9377 if (TREE_VISITED (type)) 9378 return false; 9379 TREE_VISITED (type) = true; 9380 if (variably_modified_type_p (TREE_TYPE (type), fn)) 9381 { 9382 TREE_VISITED (type) = false; 9383 return true; 9384 } 9385 TREE_VISITED (type) = false; 9386 break; 9387 9388 case FUNCTION_TYPE: 9389 case METHOD_TYPE: 9390 /* If TYPE is a function type, it is variably modified if the 9391 return type is variably modified. */ 9392 if (variably_modified_type_p (TREE_TYPE (type), fn)) 9393 return true; 9394 break; 9395 9396 case INTEGER_TYPE: 9397 case REAL_TYPE: 9398 case FIXED_POINT_TYPE: 9399 case ENUMERAL_TYPE: 9400 case BOOLEAN_TYPE: 9401 /* Scalar types are variably modified if their end points 9402 aren't constant. */ 9403 RETURN_TRUE_IF_VAR (TYPE_MIN_VALUE (type)); 9404 RETURN_TRUE_IF_VAR (TYPE_MAX_VALUE (type)); 9405 break; 9406 9407 case RECORD_TYPE: 9408 case UNION_TYPE: 9409 case QUAL_UNION_TYPE: 9410 /* We can't see if any of the fields are variably-modified by the 9411 definition we normally use, since that would produce infinite 9412 recursion via pointers. */ 9413 /* This is variably modified if some field's type is. */ 9414 for (t = TYPE_FIELDS (type); t; t = DECL_CHAIN (t)) 9415 if (TREE_CODE (t) == FIELD_DECL) 9416 { 9417 RETURN_TRUE_IF_VAR (DECL_FIELD_OFFSET (t)); 9418 RETURN_TRUE_IF_VAR (DECL_SIZE (t)); 9419 RETURN_TRUE_IF_VAR (DECL_SIZE_UNIT (t)); 9420 9421 if (TREE_CODE (type) == QUAL_UNION_TYPE) 9422 RETURN_TRUE_IF_VAR (DECL_QUALIFIER (t)); 9423 } 9424 break; 9425 9426 case ARRAY_TYPE: 9427 /* Do not call ourselves to avoid infinite recursion. This is 9428 variably modified if the element type is. */ 9429 RETURN_TRUE_IF_VAR (TYPE_SIZE (TREE_TYPE (type))); 9430 RETURN_TRUE_IF_VAR (TYPE_SIZE_UNIT (TREE_TYPE (type))); 9431 break; 9432 9433 default: 9434 break; 9435 } 9436 9437 /* The current language may have other cases to check, but in general, 9438 all other types are not variably modified. */ 9439 return lang_hooks.tree_inlining.var_mod_type_p (type, fn); 9440 9441 #undef RETURN_TRUE_IF_VAR 9442 } 9443 9444 /* Given a DECL or TYPE, return the scope in which it was declared, or 9445 NULL_TREE if there is no containing scope. */ 9446 9447 tree 9448 get_containing_scope (const_tree t) 9449 { 9450 return (TYPE_P (t) ? TYPE_CONTEXT (t) : DECL_CONTEXT (t)); 9451 } 9452 9453 /* Returns the ultimate TRANSLATION_UNIT_DECL context of DECL or NULL. */ 9454 9455 const_tree 9456 get_ultimate_context (const_tree decl) 9457 { 9458 while (decl && TREE_CODE (decl) != TRANSLATION_UNIT_DECL) 9459 { 9460 if (TREE_CODE (decl) == BLOCK) 9461 decl = BLOCK_SUPERCONTEXT (decl); 9462 else 9463 decl = get_containing_scope (decl); 9464 } 9465 return decl; 9466 } 9467 9468 /* Return the innermost context enclosing DECL that is 9469 a FUNCTION_DECL, or zero if none. */ 9470 9471 tree 9472 decl_function_context (const_tree decl) 9473 { 9474 tree context; 9475 9476 if (TREE_CODE (decl) == ERROR_MARK) 9477 return 0; 9478 9479 /* C++ virtual functions use DECL_CONTEXT for the class of the vtable 9480 where we look up the function at runtime. Such functions always take 9481 a first argument of type 'pointer to real context'. 9482 9483 C++ should really be fixed to use DECL_CONTEXT for the real context, 9484 and use something else for the "virtual context". */ 9485 else if (TREE_CODE (decl) == FUNCTION_DECL && DECL_VIRTUAL_P (decl)) 9486 context 9487 = TYPE_MAIN_VARIANT 9488 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl))))); 9489 else 9490 context = DECL_CONTEXT (decl); 9491 9492 while (context && TREE_CODE (context) != FUNCTION_DECL) 9493 { 9494 if (TREE_CODE (context) == BLOCK) 9495 context = BLOCK_SUPERCONTEXT (context); 9496 else 9497 context = get_containing_scope (context); 9498 } 9499 9500 return context; 9501 } 9502 9503 /* Return the innermost context enclosing DECL that is 9504 a RECORD_TYPE, UNION_TYPE or QUAL_UNION_TYPE, or zero if none. 9505 TYPE_DECLs and FUNCTION_DECLs are transparent to this function. */ 9506 9507 tree 9508 decl_type_context (const_tree decl) 9509 { 9510 tree context = DECL_CONTEXT (decl); 9511 9512 while (context) 9513 switch (TREE_CODE (context)) 9514 { 9515 case NAMESPACE_DECL: 9516 case TRANSLATION_UNIT_DECL: 9517 return NULL_TREE; 9518 9519 case RECORD_TYPE: 9520 case UNION_TYPE: 9521 case QUAL_UNION_TYPE: 9522 return context; 9523 9524 case TYPE_DECL: 9525 case FUNCTION_DECL: 9526 context = DECL_CONTEXT (context); 9527 break; 9528 9529 case BLOCK: 9530 context = BLOCK_SUPERCONTEXT (context); 9531 break; 9532 9533 default: 9534 gcc_unreachable (); 9535 } 9536 9537 return NULL_TREE; 9538 } 9539 9540 /* CALL is a CALL_EXPR. Return the declaration for the function 9541 called, or NULL_TREE if the called function cannot be 9542 determined. */ 9543 9544 tree 9545 get_callee_fndecl (const_tree call) 9546 { 9547 tree addr; 9548 9549 if (call == error_mark_node) 9550 return error_mark_node; 9551 9552 /* It's invalid to call this function with anything but a 9553 CALL_EXPR. */ 9554 gcc_assert (TREE_CODE (call) == CALL_EXPR); 9555 9556 /* The first operand to the CALL is the address of the function 9557 called. */ 9558 addr = CALL_EXPR_FN (call); 9559 9560 /* If there is no function, return early. */ 9561 if (addr == NULL_TREE) 9562 return NULL_TREE; 9563 9564 STRIP_NOPS (addr); 9565 9566 /* If this is a readonly function pointer, extract its initial value. */ 9567 if (DECL_P (addr) && TREE_CODE (addr) != FUNCTION_DECL 9568 && TREE_READONLY (addr) && ! TREE_THIS_VOLATILE (addr) 9569 && DECL_INITIAL (addr)) 9570 addr = DECL_INITIAL (addr); 9571 9572 /* If the address is just `&f' for some function `f', then we know 9573 that `f' is being called. */ 9574 if (TREE_CODE (addr) == ADDR_EXPR 9575 && TREE_CODE (TREE_OPERAND (addr, 0)) == FUNCTION_DECL) 9576 return TREE_OPERAND (addr, 0); 9577 9578 /* We couldn't figure out what was being called. */ 9579 return NULL_TREE; 9580 } 9581 9582 /* If CALL_EXPR CALL calls a normal built-in function or an internal function, 9583 return the associated function code, otherwise return CFN_LAST. */ 9584 9585 combined_fn 9586 get_call_combined_fn (const_tree call) 9587 { 9588 /* It's invalid to call this function with anything but a CALL_EXPR. */ 9589 gcc_assert (TREE_CODE (call) == CALL_EXPR); 9590 9591 if (!CALL_EXPR_FN (call)) 9592 return as_combined_fn (CALL_EXPR_IFN (call)); 9593 9594 tree fndecl = get_callee_fndecl (call); 9595 if (fndecl && fndecl_built_in_p (fndecl, BUILT_IN_NORMAL)) 9596 return as_combined_fn (DECL_FUNCTION_CODE (fndecl)); 9597 9598 return CFN_LAST; 9599 } 9600 9601 /* Comparator of indices based on tree_node_counts. */ 9602 9603 static int 9604 tree_nodes_cmp (const void *p1, const void *p2) 9605 { 9606 const unsigned *n1 = (const unsigned *)p1; 9607 const unsigned *n2 = (const unsigned *)p2; 9608 9609 return tree_node_counts[*n1] - tree_node_counts[*n2]; 9610 } 9611 9612 /* Comparator of indices based on tree_code_counts. */ 9613 9614 static int 9615 tree_codes_cmp (const void *p1, const void *p2) 9616 { 9617 const unsigned *n1 = (const unsigned *)p1; 9618 const unsigned *n2 = (const unsigned *)p2; 9619 9620 return tree_code_counts[*n1] - tree_code_counts[*n2]; 9621 } 9622 9623 #define TREE_MEM_USAGE_SPACES 40 9624 9625 /* Print debugging information about tree nodes generated during the compile, 9626 and any language-specific information. */ 9627 9628 void 9629 dump_tree_statistics (void) 9630 { 9631 if (GATHER_STATISTICS) 9632 { 9633 uint64_t total_nodes, total_bytes; 9634 fprintf (stderr, "\nKind Nodes Bytes\n"); 9635 mem_usage::print_dash_line (TREE_MEM_USAGE_SPACES); 9636 total_nodes = total_bytes = 0; 9637 9638 { 9639 auto_vec<unsigned> indices (all_kinds); 9640 for (unsigned i = 0; i < all_kinds; i++) 9641 indices.quick_push (i); 9642 indices.qsort (tree_nodes_cmp); 9643 9644 for (unsigned i = 0; i < (int) all_kinds; i++) 9645 { 9646 unsigned j = indices[i]; 9647 fprintf (stderr, "%-20s %6" PRIu64 "%c %9" PRIu64 "%c\n", 9648 tree_node_kind_names[i], SIZE_AMOUNT (tree_node_counts[j]), 9649 SIZE_AMOUNT (tree_node_sizes[j])); 9650 total_nodes += tree_node_counts[j]; 9651 total_bytes += tree_node_sizes[j]; 9652 } 9653 mem_usage::print_dash_line (TREE_MEM_USAGE_SPACES); 9654 fprintf (stderr, "%-20s %6" PRIu64 "%c %9" PRIu64 "%c\n", "Total", 9655 SIZE_AMOUNT (total_nodes), SIZE_AMOUNT (total_bytes)); 9656 mem_usage::print_dash_line (TREE_MEM_USAGE_SPACES); 9657 } 9658 9659 { 9660 fprintf (stderr, "Code Nodes\n"); 9661 mem_usage::print_dash_line (TREE_MEM_USAGE_SPACES); 9662 9663 auto_vec<unsigned> indices (MAX_TREE_CODES); 9664 for (unsigned i = 0; i < MAX_TREE_CODES; i++) 9665 indices.quick_push (i); 9666 indices.qsort (tree_codes_cmp); 9667 9668 for (unsigned i = 0; i < MAX_TREE_CODES; i++) 9669 { 9670 unsigned j = indices[i]; 9671 fprintf (stderr, "%-32s %6" PRIu64 "%c\n", 9672 get_tree_code_name ((enum tree_code) j), 9673 SIZE_AMOUNT (tree_code_counts[j])); 9674 } 9675 mem_usage::print_dash_line (TREE_MEM_USAGE_SPACES); 9676 fprintf (stderr, "\n"); 9677 ssanames_print_statistics (); 9678 fprintf (stderr, "\n"); 9679 phinodes_print_statistics (); 9680 fprintf (stderr, "\n"); 9681 } 9682 } 9683 else 9684 fprintf (stderr, "(No per-node statistics)\n"); 9685 9686 print_type_hash_statistics (); 9687 print_debug_expr_statistics (); 9688 print_value_expr_statistics (); 9689 lang_hooks.print_statistics (); 9690 } 9691 9692 #define FILE_FUNCTION_FORMAT "_GLOBAL__%s_%s" 9693 9694 /* Generate a crc32 of the low BYTES bytes of VALUE. */ 9695 9696 unsigned 9697 crc32_unsigned_n (unsigned chksum, unsigned value, unsigned bytes) 9698 { 9699 /* This relies on the raw feedback's top 4 bits being zero. */ 9700 #define FEEDBACK(X) ((X) * 0x04c11db7) 9701 #define SYNDROME(X) (FEEDBACK ((X) & 1) ^ FEEDBACK ((X) & 2) \ 9702 ^ FEEDBACK ((X) & 4) ^ FEEDBACK ((X) & 8)) 9703 static const unsigned syndromes[16] = 9704 { 9705 SYNDROME(0x0), SYNDROME(0x1), SYNDROME(0x2), SYNDROME(0x3), 9706 SYNDROME(0x4), SYNDROME(0x5), SYNDROME(0x6), SYNDROME(0x7), 9707 SYNDROME(0x8), SYNDROME(0x9), SYNDROME(0xa), SYNDROME(0xb), 9708 SYNDROME(0xc), SYNDROME(0xd), SYNDROME(0xe), SYNDROME(0xf), 9709 }; 9710 #undef FEEDBACK 9711 #undef SYNDROME 9712 9713 value <<= (32 - bytes * 8); 9714 for (unsigned ix = bytes * 2; ix--; value <<= 4) 9715 { 9716 unsigned feedback = syndromes[((value ^ chksum) >> 28) & 0xf]; 9717 9718 chksum = (chksum << 4) ^ feedback; 9719 } 9720 9721 return chksum; 9722 } 9723 9724 /* Generate a crc32 of a string. */ 9725 9726 unsigned 9727 crc32_string (unsigned chksum, const char *string) 9728 { 9729 do 9730 chksum = crc32_byte (chksum, *string); 9731 while (*string++); 9732 return chksum; 9733 } 9734 9735 /* P is a string that will be used in a symbol. Mask out any characters 9736 that are not valid in that context. */ 9737 9738 void 9739 clean_symbol_name (char *p) 9740 { 9741 for (; *p; p++) 9742 if (! (ISALNUM (*p) 9743 #ifndef NO_DOLLAR_IN_LABEL /* this for `$'; unlikely, but... -- kr */ 9744 || *p == '$' 9745 #endif 9746 #ifndef NO_DOT_IN_LABEL /* this for `.'; unlikely, but... */ 9747 || *p == '.' 9748 #endif 9749 )) 9750 *p = '_'; 9751 } 9752 9753 /* For anonymous aggregate types, we need some sort of name to 9754 hold on to. In practice, this should not appear, but it should 9755 not be harmful if it does. */ 9756 bool 9757 anon_aggrname_p(const_tree id_node) 9758 { 9759 #ifndef NO_DOT_IN_LABEL 9760 return (IDENTIFIER_POINTER (id_node)[0] == '.' 9761 && IDENTIFIER_POINTER (id_node)[1] == '_'); 9762 #else /* NO_DOT_IN_LABEL */ 9763 #ifndef NO_DOLLAR_IN_LABEL 9764 return (IDENTIFIER_POINTER (id_node)[0] == '$' \ 9765 && IDENTIFIER_POINTER (id_node)[1] == '_'); 9766 #else /* NO_DOLLAR_IN_LABEL */ 9767 #define ANON_AGGRNAME_PREFIX "__anon_" 9768 return (!strncmp (IDENTIFIER_POINTER (id_node), ANON_AGGRNAME_PREFIX, 9769 sizeof (ANON_AGGRNAME_PREFIX) - 1)); 9770 #endif /* NO_DOLLAR_IN_LABEL */ 9771 #endif /* NO_DOT_IN_LABEL */ 9772 } 9773 9774 /* Return a format for an anonymous aggregate name. */ 9775 const char * 9776 anon_aggrname_format() 9777 { 9778 #ifndef NO_DOT_IN_LABEL 9779 return "._%d"; 9780 #else /* NO_DOT_IN_LABEL */ 9781 #ifndef NO_DOLLAR_IN_LABEL 9782 return "$_%d"; 9783 #else /* NO_DOLLAR_IN_LABEL */ 9784 return "__anon_%d"; 9785 #endif /* NO_DOLLAR_IN_LABEL */ 9786 #endif /* NO_DOT_IN_LABEL */ 9787 } 9788 9789 /* Generate a name for a special-purpose function. 9790 The generated name may need to be unique across the whole link. 9791 Changes to this function may also require corresponding changes to 9792 xstrdup_mask_random. 9793 TYPE is some string to identify the purpose of this function to the 9794 linker or collect2; it must start with an uppercase letter, 9795 one of: 9796 I - for constructors 9797 D - for destructors 9798 N - for C++ anonymous namespaces 9799 F - for DWARF unwind frame information. */ 9800 9801 tree 9802 get_file_function_name (const char *type) 9803 { 9804 char *buf; 9805 const char *p; 9806 char *q; 9807 9808 /* If we already have a name we know to be unique, just use that. */ 9809 if (first_global_object_name) 9810 p = q = ASTRDUP (first_global_object_name); 9811 /* If the target is handling the constructors/destructors, they 9812 will be local to this file and the name is only necessary for 9813 debugging purposes. 9814 We also assign sub_I and sub_D sufixes to constructors called from 9815 the global static constructors. These are always local. */ 9816 else if (((type[0] == 'I' || type[0] == 'D') && targetm.have_ctors_dtors) 9817 || (strncmp (type, "sub_", 4) == 0 9818 && (type[4] == 'I' || type[4] == 'D'))) 9819 { 9820 const char *file = main_input_filename; 9821 if (! file) 9822 file = LOCATION_FILE (input_location); 9823 /* Just use the file's basename, because the full pathname 9824 might be quite long. */ 9825 p = q = ASTRDUP (lbasename (file)); 9826 } 9827 else 9828 { 9829 /* Otherwise, the name must be unique across the entire link. 9830 We don't have anything that we know to be unique to this translation 9831 unit, so use what we do have and throw in some randomness. */ 9832 unsigned len; 9833 const char *name = weak_global_object_name; 9834 const char *file = main_input_filename; 9835 9836 if (! name) 9837 name = ""; 9838 if (! file) 9839 file = LOCATION_FILE (input_location); 9840 9841 len = strlen (file); 9842 q = (char *) alloca (9 + 19 + len + 1); 9843 memcpy (q, file, len + 1); 9844 9845 snprintf (q + len, 9 + 19 + 1, "_%08X_" HOST_WIDE_INT_PRINT_HEX, 9846 crc32_string (0, name), get_random_seed (false)); 9847 9848 p = q; 9849 } 9850 9851 clean_symbol_name (q); 9852 buf = (char *) alloca (sizeof (FILE_FUNCTION_FORMAT) + strlen (p) 9853 + strlen (type)); 9854 9855 /* Set up the name of the file-level functions we may need. 9856 Use a global object (which is already required to be unique over 9857 the program) rather than the file name (which imposes extra 9858 constraints). */ 9859 sprintf (buf, FILE_FUNCTION_FORMAT, type, p); 9860 9861 return get_identifier (buf); 9862 } 9863 9864 #if defined ENABLE_TREE_CHECKING && (GCC_VERSION >= 2007) 9865 9866 /* Complain that the tree code of NODE does not match the expected 0 9867 terminated list of trailing codes. The trailing code list can be 9868 empty, for a more vague error message. FILE, LINE, and FUNCTION 9869 are of the caller. */ 9870 9871 void 9872 tree_check_failed (const_tree node, const char *file, 9873 int line, const char *function, ...) 9874 { 9875 va_list args; 9876 const char *buffer; 9877 unsigned length = 0; 9878 enum tree_code code; 9879 9880 va_start (args, function); 9881 while ((code = (enum tree_code) va_arg (args, int))) 9882 length += 4 + strlen (get_tree_code_name (code)); 9883 va_end (args); 9884 if (length) 9885 { 9886 char *tmp; 9887 va_start (args, function); 9888 length += strlen ("expected "); 9889 buffer = tmp = (char *) alloca (length); 9890 length = 0; 9891 while ((code = (enum tree_code) va_arg (args, int))) 9892 { 9893 const char *prefix = length ? " or " : "expected "; 9894 9895 strcpy (tmp + length, prefix); 9896 length += strlen (prefix); 9897 strcpy (tmp + length, get_tree_code_name (code)); 9898 length += strlen (get_tree_code_name (code)); 9899 } 9900 va_end (args); 9901 } 9902 else 9903 buffer = "unexpected node"; 9904 9905 internal_error ("tree check: %s, have %s in %s, at %s:%d", 9906 buffer, get_tree_code_name (TREE_CODE (node)), 9907 function, trim_filename (file), line); 9908 } 9909 9910 /* Complain that the tree code of NODE does match the expected 0 9911 terminated list of trailing codes. FILE, LINE, and FUNCTION are of 9912 the caller. */ 9913 9914 void 9915 tree_not_check_failed (const_tree node, const char *file, 9916 int line, const char *function, ...) 9917 { 9918 va_list args; 9919 char *buffer; 9920 unsigned length = 0; 9921 enum tree_code code; 9922 9923 va_start (args, function); 9924 while ((code = (enum tree_code) va_arg (args, int))) 9925 length += 4 + strlen (get_tree_code_name (code)); 9926 va_end (args); 9927 va_start (args, function); 9928 buffer = (char *) alloca (length); 9929 length = 0; 9930 while ((code = (enum tree_code) va_arg (args, int))) 9931 { 9932 if (length) 9933 { 9934 strcpy (buffer + length, " or "); 9935 length += 4; 9936 } 9937 strcpy (buffer + length, get_tree_code_name (code)); 9938 length += strlen (get_tree_code_name (code)); 9939 } 9940 va_end (args); 9941 9942 internal_error ("tree check: expected none of %s, have %s in %s, at %s:%d", 9943 buffer, get_tree_code_name (TREE_CODE (node)), 9944 function, trim_filename (file), line); 9945 } 9946 9947 /* Similar to tree_check_failed, except that we check for a class of tree 9948 code, given in CL. */ 9949 9950 void 9951 tree_class_check_failed (const_tree node, const enum tree_code_class cl, 9952 const char *file, int line, const char *function) 9953 { 9954 internal_error 9955 ("tree check: expected class %qs, have %qs (%s) in %s, at %s:%d", 9956 TREE_CODE_CLASS_STRING (cl), 9957 TREE_CODE_CLASS_STRING (TREE_CODE_CLASS (TREE_CODE (node))), 9958 get_tree_code_name (TREE_CODE (node)), function, trim_filename (file), line); 9959 } 9960 9961 /* Similar to tree_check_failed, except that instead of specifying a 9962 dozen codes, use the knowledge that they're all sequential. */ 9963 9964 void 9965 tree_range_check_failed (const_tree node, const char *file, int line, 9966 const char *function, enum tree_code c1, 9967 enum tree_code c2) 9968 { 9969 char *buffer; 9970 unsigned length = 0; 9971 unsigned int c; 9972 9973 for (c = c1; c <= c2; ++c) 9974 length += 4 + strlen (get_tree_code_name ((enum tree_code) c)); 9975 9976 length += strlen ("expected "); 9977 buffer = (char *) alloca (length); 9978 length = 0; 9979 9980 for (c = c1; c <= c2; ++c) 9981 { 9982 const char *prefix = length ? " or " : "expected "; 9983 9984 strcpy (buffer + length, prefix); 9985 length += strlen (prefix); 9986 strcpy (buffer + length, get_tree_code_name ((enum tree_code) c)); 9987 length += strlen (get_tree_code_name ((enum tree_code) c)); 9988 } 9989 9990 internal_error ("tree check: %s, have %s in %s, at %s:%d", 9991 buffer, get_tree_code_name (TREE_CODE (node)), 9992 function, trim_filename (file), line); 9993 } 9994 9995 9996 /* Similar to tree_check_failed, except that we check that a tree does 9997 not have the specified code, given in CL. */ 9998 9999 void 10000 tree_not_class_check_failed (const_tree node, const enum tree_code_class cl, 10001 const char *file, int line, const char *function) 10002 { 10003 internal_error 10004 ("tree check: did not expect class %qs, have %qs (%s) in %s, at %s:%d", 10005 TREE_CODE_CLASS_STRING (cl), 10006 TREE_CODE_CLASS_STRING (TREE_CODE_CLASS (TREE_CODE (node))), 10007 get_tree_code_name (TREE_CODE (node)), function, trim_filename (file), line); 10008 } 10009 10010 10011 /* Similar to tree_check_failed but applied to OMP_CLAUSE codes. */ 10012 10013 void 10014 omp_clause_check_failed (const_tree node, const char *file, int line, 10015 const char *function, enum omp_clause_code code) 10016 { 10017 internal_error ("tree check: expected omp_clause %s, have %s in %s, at %s:%d", 10018 omp_clause_code_name[code], get_tree_code_name (TREE_CODE (node)), 10019 function, trim_filename (file), line); 10020 } 10021 10022 10023 /* Similar to tree_range_check_failed but applied to OMP_CLAUSE codes. */ 10024 10025 void 10026 omp_clause_range_check_failed (const_tree node, const char *file, int line, 10027 const char *function, enum omp_clause_code c1, 10028 enum omp_clause_code c2) 10029 { 10030 char *buffer; 10031 unsigned length = 0; 10032 unsigned int c; 10033 10034 for (c = c1; c <= c2; ++c) 10035 length += 4 + strlen (omp_clause_code_name[c]); 10036 10037 length += strlen ("expected "); 10038 buffer = (char *) alloca (length); 10039 length = 0; 10040 10041 for (c = c1; c <= c2; ++c) 10042 { 10043 const char *prefix = length ? " or " : "expected "; 10044 10045 strcpy (buffer + length, prefix); 10046 length += strlen (prefix); 10047 strcpy (buffer + length, omp_clause_code_name[c]); 10048 length += strlen (omp_clause_code_name[c]); 10049 } 10050 10051 internal_error ("tree check: %s, have %s in %s, at %s:%d", 10052 buffer, omp_clause_code_name[TREE_CODE (node)], 10053 function, trim_filename (file), line); 10054 } 10055 10056 10057 #undef DEFTREESTRUCT 10058 #define DEFTREESTRUCT(VAL, NAME) NAME, 10059 10060 static const char *ts_enum_names[] = { 10061 #include "treestruct.def" 10062 }; 10063 #undef DEFTREESTRUCT 10064 10065 #define TS_ENUM_NAME(EN) (ts_enum_names[(EN)]) 10066 10067 /* Similar to tree_class_check_failed, except that we check for 10068 whether CODE contains the tree structure identified by EN. */ 10069 10070 void 10071 tree_contains_struct_check_failed (const_tree node, 10072 const enum tree_node_structure_enum en, 10073 const char *file, int line, 10074 const char *function) 10075 { 10076 internal_error 10077 ("tree check: expected tree that contains %qs structure, have %qs in %s, at %s:%d", 10078 TS_ENUM_NAME (en), 10079 get_tree_code_name (TREE_CODE (node)), function, trim_filename (file), line); 10080 } 10081 10082 10083 /* Similar to above, except that the check is for the bounds of a TREE_VEC's 10084 (dynamically sized) vector. */ 10085 10086 void 10087 tree_int_cst_elt_check_failed (int idx, int len, const char *file, int line, 10088 const char *function) 10089 { 10090 internal_error 10091 ("tree check: accessed elt %d of tree_int_cst with %d elts in %s, at %s:%d", 10092 idx + 1, len, function, trim_filename (file), line); 10093 } 10094 10095 /* Similar to above, except that the check is for the bounds of a TREE_VEC's 10096 (dynamically sized) vector. */ 10097 10098 void 10099 tree_vec_elt_check_failed (int idx, int len, const char *file, int line, 10100 const char *function) 10101 { 10102 internal_error 10103 ("tree check: accessed elt %d of tree_vec with %d elts in %s, at %s:%d", 10104 idx + 1, len, function, trim_filename (file), line); 10105 } 10106 10107 /* Similar to above, except that the check is for the bounds of the operand 10108 vector of an expression node EXP. */ 10109 10110 void 10111 tree_operand_check_failed (int idx, const_tree exp, const char *file, 10112 int line, const char *function) 10113 { 10114 enum tree_code code = TREE_CODE (exp); 10115 internal_error 10116 ("tree check: accessed operand %d of %s with %d operands in %s, at %s:%d", 10117 idx + 1, get_tree_code_name (code), TREE_OPERAND_LENGTH (exp), 10118 function, trim_filename (file), line); 10119 } 10120 10121 /* Similar to above, except that the check is for the number of 10122 operands of an OMP_CLAUSE node. */ 10123 10124 void 10125 omp_clause_operand_check_failed (int idx, const_tree t, const char *file, 10126 int line, const char *function) 10127 { 10128 internal_error 10129 ("tree check: accessed operand %d of omp_clause %s with %d operands " 10130 "in %s, at %s:%d", idx + 1, omp_clause_code_name[OMP_CLAUSE_CODE (t)], 10131 omp_clause_num_ops [OMP_CLAUSE_CODE (t)], function, 10132 trim_filename (file), line); 10133 } 10134 #endif /* ENABLE_TREE_CHECKING */ 10135 10136 /* Create a new vector type node holding NUNITS units of type INNERTYPE, 10137 and mapped to the machine mode MODE. Initialize its fields and build 10138 the information necessary for debugging output. */ 10139 10140 static tree 10141 make_vector_type (tree innertype, poly_int64 nunits, machine_mode mode) 10142 { 10143 tree t; 10144 tree mv_innertype = TYPE_MAIN_VARIANT (innertype); 10145 10146 t = make_node (VECTOR_TYPE); 10147 TREE_TYPE (t) = mv_innertype; 10148 SET_TYPE_VECTOR_SUBPARTS (t, nunits); 10149 SET_TYPE_MODE (t, mode); 10150 10151 if (TYPE_STRUCTURAL_EQUALITY_P (mv_innertype) || in_lto_p) 10152 SET_TYPE_STRUCTURAL_EQUALITY (t); 10153 else if ((TYPE_CANONICAL (mv_innertype) != innertype 10154 || mode != VOIDmode) 10155 && !VECTOR_BOOLEAN_TYPE_P (t)) 10156 TYPE_CANONICAL (t) 10157 = make_vector_type (TYPE_CANONICAL (mv_innertype), nunits, VOIDmode); 10158 10159 layout_type (t); 10160 10161 hashval_t hash = type_hash_canon_hash (t); 10162 t = type_hash_canon (hash, t); 10163 10164 /* We have built a main variant, based on the main variant of the 10165 inner type. Use it to build the variant we return. */ 10166 if ((TYPE_ATTRIBUTES (innertype) || TYPE_QUALS (innertype)) 10167 && TREE_TYPE (t) != innertype) 10168 return build_type_attribute_qual_variant (t, 10169 TYPE_ATTRIBUTES (innertype), 10170 TYPE_QUALS (innertype)); 10171 10172 return t; 10173 } 10174 10175 static tree 10176 make_or_reuse_type (unsigned size, int unsignedp) 10177 { 10178 int i; 10179 10180 if (size == INT_TYPE_SIZE) 10181 return unsignedp ? unsigned_type_node : integer_type_node; 10182 if (size == CHAR_TYPE_SIZE) 10183 return unsignedp ? unsigned_char_type_node : signed_char_type_node; 10184 if (size == SHORT_TYPE_SIZE) 10185 return unsignedp ? short_unsigned_type_node : short_integer_type_node; 10186 if (size == LONG_TYPE_SIZE) 10187 return unsignedp ? long_unsigned_type_node : long_integer_type_node; 10188 if (size == LONG_LONG_TYPE_SIZE) 10189 return (unsignedp ? long_long_unsigned_type_node 10190 : long_long_integer_type_node); 10191 10192 for (i = 0; i < NUM_INT_N_ENTS; i ++) 10193 if (size == int_n_data[i].bitsize 10194 && int_n_enabled_p[i]) 10195 return (unsignedp ? int_n_trees[i].unsigned_type 10196 : int_n_trees[i].signed_type); 10197 10198 if (unsignedp) 10199 return make_unsigned_type (size); 10200 else 10201 return make_signed_type (size); 10202 } 10203 10204 /* Create or reuse a fract type by SIZE, UNSIGNEDP, and SATP. */ 10205 10206 static tree 10207 make_or_reuse_fract_type (unsigned size, int unsignedp, int satp) 10208 { 10209 if (satp) 10210 { 10211 if (size == SHORT_FRACT_TYPE_SIZE) 10212 return unsignedp ? sat_unsigned_short_fract_type_node 10213 : sat_short_fract_type_node; 10214 if (size == FRACT_TYPE_SIZE) 10215 return unsignedp ? sat_unsigned_fract_type_node : sat_fract_type_node; 10216 if (size == LONG_FRACT_TYPE_SIZE) 10217 return unsignedp ? sat_unsigned_long_fract_type_node 10218 : sat_long_fract_type_node; 10219 if (size == LONG_LONG_FRACT_TYPE_SIZE) 10220 return unsignedp ? sat_unsigned_long_long_fract_type_node 10221 : sat_long_long_fract_type_node; 10222 } 10223 else 10224 { 10225 if (size == SHORT_FRACT_TYPE_SIZE) 10226 return unsignedp ? unsigned_short_fract_type_node 10227 : short_fract_type_node; 10228 if (size == FRACT_TYPE_SIZE) 10229 return unsignedp ? unsigned_fract_type_node : fract_type_node; 10230 if (size == LONG_FRACT_TYPE_SIZE) 10231 return unsignedp ? unsigned_long_fract_type_node 10232 : long_fract_type_node; 10233 if (size == LONG_LONG_FRACT_TYPE_SIZE) 10234 return unsignedp ? unsigned_long_long_fract_type_node 10235 : long_long_fract_type_node; 10236 } 10237 10238 return make_fract_type (size, unsignedp, satp); 10239 } 10240 10241 /* Create or reuse an accum type by SIZE, UNSIGNEDP, and SATP. */ 10242 10243 static tree 10244 make_or_reuse_accum_type (unsigned size, int unsignedp, int satp) 10245 { 10246 if (satp) 10247 { 10248 if (size == SHORT_ACCUM_TYPE_SIZE) 10249 return unsignedp ? sat_unsigned_short_accum_type_node 10250 : sat_short_accum_type_node; 10251 if (size == ACCUM_TYPE_SIZE) 10252 return unsignedp ? sat_unsigned_accum_type_node : sat_accum_type_node; 10253 if (size == LONG_ACCUM_TYPE_SIZE) 10254 return unsignedp ? sat_unsigned_long_accum_type_node 10255 : sat_long_accum_type_node; 10256 if (size == LONG_LONG_ACCUM_TYPE_SIZE) 10257 return unsignedp ? sat_unsigned_long_long_accum_type_node 10258 : sat_long_long_accum_type_node; 10259 } 10260 else 10261 { 10262 if (size == SHORT_ACCUM_TYPE_SIZE) 10263 return unsignedp ? unsigned_short_accum_type_node 10264 : short_accum_type_node; 10265 if (size == ACCUM_TYPE_SIZE) 10266 return unsignedp ? unsigned_accum_type_node : accum_type_node; 10267 if (size == LONG_ACCUM_TYPE_SIZE) 10268 return unsignedp ? unsigned_long_accum_type_node 10269 : long_accum_type_node; 10270 if (size == LONG_LONG_ACCUM_TYPE_SIZE) 10271 return unsignedp ? unsigned_long_long_accum_type_node 10272 : long_long_accum_type_node; 10273 } 10274 10275 return make_accum_type (size, unsignedp, satp); 10276 } 10277 10278 10279 /* Create an atomic variant node for TYPE. This routine is called 10280 during initialization of data types to create the 5 basic atomic 10281 types. The generic build_variant_type function requires these to 10282 already be set up in order to function properly, so cannot be 10283 called from there. If ALIGN is non-zero, then ensure alignment is 10284 overridden to this value. */ 10285 10286 static tree 10287 build_atomic_base (tree type, unsigned int align) 10288 { 10289 tree t; 10290 10291 /* Make sure its not already registered. */ 10292 if ((t = get_qualified_type (type, TYPE_QUAL_ATOMIC))) 10293 return t; 10294 10295 t = build_variant_type_copy (type); 10296 set_type_quals (t, TYPE_QUAL_ATOMIC); 10297 10298 if (align) 10299 SET_TYPE_ALIGN (t, align); 10300 10301 return t; 10302 } 10303 10304 /* Information about the _FloatN and _FloatNx types. This must be in 10305 the same order as the corresponding TI_* enum values. */ 10306 const floatn_type_info floatn_nx_types[NUM_FLOATN_NX_TYPES] = 10307 { 10308 { 16, false }, 10309 { 32, false }, 10310 { 64, false }, 10311 { 128, false }, 10312 { 32, true }, 10313 { 64, true }, 10314 { 128, true }, 10315 }; 10316 10317 10318 /* Create nodes for all integer types (and error_mark_node) using the sizes 10319 of C datatypes. SIGNED_CHAR specifies whether char is signed. */ 10320 10321 void 10322 build_common_tree_nodes (bool signed_char) 10323 { 10324 int i; 10325 10326 error_mark_node = make_node (ERROR_MARK); 10327 TREE_TYPE (error_mark_node) = error_mark_node; 10328 10329 initialize_sizetypes (); 10330 10331 /* Define both `signed char' and `unsigned char'. */ 10332 signed_char_type_node = make_signed_type (CHAR_TYPE_SIZE); 10333 TYPE_STRING_FLAG (signed_char_type_node) = 1; 10334 unsigned_char_type_node = make_unsigned_type (CHAR_TYPE_SIZE); 10335 TYPE_STRING_FLAG (unsigned_char_type_node) = 1; 10336 10337 /* Define `char', which is like either `signed char' or `unsigned char' 10338 but not the same as either. */ 10339 char_type_node 10340 = (signed_char 10341 ? make_signed_type (CHAR_TYPE_SIZE) 10342 : make_unsigned_type (CHAR_TYPE_SIZE)); 10343 TYPE_STRING_FLAG (char_type_node) = 1; 10344 10345 short_integer_type_node = make_signed_type (SHORT_TYPE_SIZE); 10346 short_unsigned_type_node = make_unsigned_type (SHORT_TYPE_SIZE); 10347 integer_type_node = make_signed_type (INT_TYPE_SIZE); 10348 unsigned_type_node = make_unsigned_type (INT_TYPE_SIZE); 10349 long_integer_type_node = make_signed_type (LONG_TYPE_SIZE); 10350 long_unsigned_type_node = make_unsigned_type (LONG_TYPE_SIZE); 10351 long_long_integer_type_node = make_signed_type (LONG_LONG_TYPE_SIZE); 10352 long_long_unsigned_type_node = make_unsigned_type (LONG_LONG_TYPE_SIZE); 10353 10354 for (i = 0; i < NUM_INT_N_ENTS; i ++) 10355 { 10356 int_n_trees[i].signed_type = make_signed_type (int_n_data[i].bitsize); 10357 int_n_trees[i].unsigned_type = make_unsigned_type (int_n_data[i].bitsize); 10358 10359 if (int_n_enabled_p[i]) 10360 { 10361 integer_types[itk_intN_0 + i * 2] = int_n_trees[i].signed_type; 10362 integer_types[itk_unsigned_intN_0 + i * 2] = int_n_trees[i].unsigned_type; 10363 } 10364 } 10365 10366 /* Define a boolean type. This type only represents boolean values but 10367 may be larger than char depending on the value of BOOL_TYPE_SIZE. */ 10368 boolean_type_node = make_unsigned_type (BOOL_TYPE_SIZE); 10369 TREE_SET_CODE (boolean_type_node, BOOLEAN_TYPE); 10370 TYPE_PRECISION (boolean_type_node) = 1; 10371 TYPE_MAX_VALUE (boolean_type_node) = build_int_cst (boolean_type_node, 1); 10372 10373 /* Define what type to use for size_t. */ 10374 if (strcmp (SIZE_TYPE, "unsigned int") == 0) 10375 size_type_node = unsigned_type_node; 10376 else if (strcmp (SIZE_TYPE, "long unsigned int") == 0) 10377 size_type_node = long_unsigned_type_node; 10378 else if (strcmp (SIZE_TYPE, "long long unsigned int") == 0) 10379 size_type_node = long_long_unsigned_type_node; 10380 else if (strcmp (SIZE_TYPE, "short unsigned int") == 0) 10381 size_type_node = short_unsigned_type_node; 10382 else 10383 { 10384 int i; 10385 10386 size_type_node = NULL_TREE; 10387 for (i = 0; i < NUM_INT_N_ENTS; i++) 10388 if (int_n_enabled_p[i]) 10389 { 10390 char name[50]; 10391 sprintf (name, "__int%d unsigned", int_n_data[i].bitsize); 10392 10393 if (strcmp (name, SIZE_TYPE) == 0) 10394 { 10395 size_type_node = int_n_trees[i].unsigned_type; 10396 } 10397 } 10398 if (size_type_node == NULL_TREE) 10399 gcc_unreachable (); 10400 } 10401 10402 /* Define what type to use for ptrdiff_t. */ 10403 if (strcmp (PTRDIFF_TYPE, "int") == 0) 10404 ptrdiff_type_node = integer_type_node; 10405 else if (strcmp (PTRDIFF_TYPE, "long int") == 0) 10406 ptrdiff_type_node = long_integer_type_node; 10407 else if (strcmp (PTRDIFF_TYPE, "long long int") == 0) 10408 ptrdiff_type_node = long_long_integer_type_node; 10409 else if (strcmp (PTRDIFF_TYPE, "short int") == 0) 10410 ptrdiff_type_node = short_integer_type_node; 10411 else 10412 { 10413 ptrdiff_type_node = NULL_TREE; 10414 for (int i = 0; i < NUM_INT_N_ENTS; i++) 10415 if (int_n_enabled_p[i]) 10416 { 10417 char name[50]; 10418 sprintf (name, "__int%d", int_n_data[i].bitsize); 10419 if (strcmp (name, PTRDIFF_TYPE) == 0) 10420 ptrdiff_type_node = int_n_trees[i].signed_type; 10421 } 10422 if (ptrdiff_type_node == NULL_TREE) 10423 gcc_unreachable (); 10424 } 10425 10426 /* Fill in the rest of the sized types. Reuse existing type nodes 10427 when possible. */ 10428 intQI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (QImode), 0); 10429 intHI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (HImode), 0); 10430 intSI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (SImode), 0); 10431 intDI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (DImode), 0); 10432 intTI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (TImode), 0); 10433 10434 unsigned_intQI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (QImode), 1); 10435 unsigned_intHI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (HImode), 1); 10436 unsigned_intSI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (SImode), 1); 10437 unsigned_intDI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (DImode), 1); 10438 unsigned_intTI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (TImode), 1); 10439 10440 /* Don't call build_qualified type for atomics. That routine does 10441 special processing for atomics, and until they are initialized 10442 it's better not to make that call. 10443 10444 Check to see if there is a target override for atomic types. */ 10445 10446 atomicQI_type_node = build_atomic_base (unsigned_intQI_type_node, 10447 targetm.atomic_align_for_mode (QImode)); 10448 atomicHI_type_node = build_atomic_base (unsigned_intHI_type_node, 10449 targetm.atomic_align_for_mode (HImode)); 10450 atomicSI_type_node = build_atomic_base (unsigned_intSI_type_node, 10451 targetm.atomic_align_for_mode (SImode)); 10452 atomicDI_type_node = build_atomic_base (unsigned_intDI_type_node, 10453 targetm.atomic_align_for_mode (DImode)); 10454 atomicTI_type_node = build_atomic_base (unsigned_intTI_type_node, 10455 targetm.atomic_align_for_mode (TImode)); 10456 10457 access_public_node = get_identifier ("public"); 10458 access_protected_node = get_identifier ("protected"); 10459 access_private_node = get_identifier ("private"); 10460 10461 /* Define these next since types below may used them. */ 10462 integer_zero_node = build_int_cst (integer_type_node, 0); 10463 integer_one_node = build_int_cst (integer_type_node, 1); 10464 integer_three_node = build_int_cst (integer_type_node, 3); 10465 integer_minus_one_node = build_int_cst (integer_type_node, -1); 10466 10467 size_zero_node = size_int (0); 10468 size_one_node = size_int (1); 10469 bitsize_zero_node = bitsize_int (0); 10470 bitsize_one_node = bitsize_int (1); 10471 bitsize_unit_node = bitsize_int (BITS_PER_UNIT); 10472 10473 boolean_false_node = TYPE_MIN_VALUE (boolean_type_node); 10474 boolean_true_node = TYPE_MAX_VALUE (boolean_type_node); 10475 10476 void_type_node = make_node (VOID_TYPE); 10477 layout_type (void_type_node); 10478 10479 /* We are not going to have real types in C with less than byte alignment, 10480 so we might as well not have any types that claim to have it. */ 10481 SET_TYPE_ALIGN (void_type_node, BITS_PER_UNIT); 10482 TYPE_USER_ALIGN (void_type_node) = 0; 10483 10484 void_node = make_node (VOID_CST); 10485 TREE_TYPE (void_node) = void_type_node; 10486 10487 null_pointer_node = build_int_cst (build_pointer_type (void_type_node), 0); 10488 layout_type (TREE_TYPE (null_pointer_node)); 10489 10490 ptr_type_node = build_pointer_type (void_type_node); 10491 const_ptr_type_node 10492 = build_pointer_type (build_type_variant (void_type_node, 1, 0)); 10493 for (unsigned i = 0; 10494 i < sizeof (builtin_structptr_types) / sizeof (builtin_structptr_type); 10495 ++i) 10496 builtin_structptr_types[i].node = builtin_structptr_types[i].base; 10497 10498 pointer_sized_int_node = build_nonstandard_integer_type (POINTER_SIZE, 1); 10499 10500 float_type_node = make_node (REAL_TYPE); 10501 TYPE_PRECISION (float_type_node) = FLOAT_TYPE_SIZE; 10502 layout_type (float_type_node); 10503 10504 double_type_node = make_node (REAL_TYPE); 10505 TYPE_PRECISION (double_type_node) = DOUBLE_TYPE_SIZE; 10506 layout_type (double_type_node); 10507 10508 long_double_type_node = make_node (REAL_TYPE); 10509 TYPE_PRECISION (long_double_type_node) = LONG_DOUBLE_TYPE_SIZE; 10510 layout_type (long_double_type_node); 10511 10512 for (i = 0; i < NUM_FLOATN_NX_TYPES; i++) 10513 { 10514 int n = floatn_nx_types[i].n; 10515 bool extended = floatn_nx_types[i].extended; 10516 scalar_float_mode mode; 10517 if (!targetm.floatn_mode (n, extended).exists (&mode)) 10518 continue; 10519 int precision = GET_MODE_PRECISION (mode); 10520 /* Work around the rs6000 KFmode having precision 113 not 10521 128. */ 10522 const struct real_format *fmt = REAL_MODE_FORMAT (mode); 10523 gcc_assert (fmt->b == 2 && fmt->emin + fmt->emax == 3); 10524 int min_precision = fmt->p + ceil_log2 (fmt->emax - fmt->emin); 10525 if (!extended) 10526 gcc_assert (min_precision == n); 10527 if (precision < min_precision) 10528 precision = min_precision; 10529 FLOATN_NX_TYPE_NODE (i) = make_node (REAL_TYPE); 10530 TYPE_PRECISION (FLOATN_NX_TYPE_NODE (i)) = precision; 10531 layout_type (FLOATN_NX_TYPE_NODE (i)); 10532 SET_TYPE_MODE (FLOATN_NX_TYPE_NODE (i), mode); 10533 } 10534 10535 float_ptr_type_node = build_pointer_type (float_type_node); 10536 double_ptr_type_node = build_pointer_type (double_type_node); 10537 long_double_ptr_type_node = build_pointer_type (long_double_type_node); 10538 integer_ptr_type_node = build_pointer_type (integer_type_node); 10539 10540 /* Fixed size integer types. */ 10541 uint16_type_node = make_or_reuse_type (16, 1); 10542 uint32_type_node = make_or_reuse_type (32, 1); 10543 uint64_type_node = make_or_reuse_type (64, 1); 10544 10545 /* Decimal float types. */ 10546 dfloat32_type_node = make_node (REAL_TYPE); 10547 TYPE_PRECISION (dfloat32_type_node) = DECIMAL32_TYPE_SIZE; 10548 SET_TYPE_MODE (dfloat32_type_node, SDmode); 10549 layout_type (dfloat32_type_node); 10550 dfloat32_ptr_type_node = build_pointer_type (dfloat32_type_node); 10551 10552 dfloat64_type_node = make_node (REAL_TYPE); 10553 TYPE_PRECISION (dfloat64_type_node) = DECIMAL64_TYPE_SIZE; 10554 SET_TYPE_MODE (dfloat64_type_node, DDmode); 10555 layout_type (dfloat64_type_node); 10556 dfloat64_ptr_type_node = build_pointer_type (dfloat64_type_node); 10557 10558 dfloat128_type_node = make_node (REAL_TYPE); 10559 TYPE_PRECISION (dfloat128_type_node) = DECIMAL128_TYPE_SIZE; 10560 SET_TYPE_MODE (dfloat128_type_node, TDmode); 10561 layout_type (dfloat128_type_node); 10562 dfloat128_ptr_type_node = build_pointer_type (dfloat128_type_node); 10563 10564 complex_integer_type_node = build_complex_type (integer_type_node, true); 10565 complex_float_type_node = build_complex_type (float_type_node, true); 10566 complex_double_type_node = build_complex_type (double_type_node, true); 10567 complex_long_double_type_node = build_complex_type (long_double_type_node, 10568 true); 10569 10570 for (i = 0; i < NUM_FLOATN_NX_TYPES; i++) 10571 { 10572 if (FLOATN_NX_TYPE_NODE (i) != NULL_TREE) 10573 COMPLEX_FLOATN_NX_TYPE_NODE (i) 10574 = build_complex_type (FLOATN_NX_TYPE_NODE (i)); 10575 } 10576 10577 /* Make fixed-point nodes based on sat/non-sat and signed/unsigned. */ 10578 #define MAKE_FIXED_TYPE_NODE(KIND,SIZE) \ 10579 sat_ ## KIND ## _type_node = \ 10580 make_sat_signed_ ## KIND ## _type (SIZE); \ 10581 sat_unsigned_ ## KIND ## _type_node = \ 10582 make_sat_unsigned_ ## KIND ## _type (SIZE); \ 10583 KIND ## _type_node = make_signed_ ## KIND ## _type (SIZE); \ 10584 unsigned_ ## KIND ## _type_node = \ 10585 make_unsigned_ ## KIND ## _type (SIZE); 10586 10587 #define MAKE_FIXED_TYPE_NODE_WIDTH(KIND,WIDTH,SIZE) \ 10588 sat_ ## WIDTH ## KIND ## _type_node = \ 10589 make_sat_signed_ ## KIND ## _type (SIZE); \ 10590 sat_unsigned_ ## WIDTH ## KIND ## _type_node = \ 10591 make_sat_unsigned_ ## KIND ## _type (SIZE); \ 10592 WIDTH ## KIND ## _type_node = make_signed_ ## KIND ## _type (SIZE); \ 10593 unsigned_ ## WIDTH ## KIND ## _type_node = \ 10594 make_unsigned_ ## KIND ## _type (SIZE); 10595 10596 /* Make fixed-point type nodes based on four different widths. */ 10597 #define MAKE_FIXED_TYPE_NODE_FAMILY(N1,N2) \ 10598 MAKE_FIXED_TYPE_NODE_WIDTH (N1, short_, SHORT_ ## N2 ## _TYPE_SIZE) \ 10599 MAKE_FIXED_TYPE_NODE (N1, N2 ## _TYPE_SIZE) \ 10600 MAKE_FIXED_TYPE_NODE_WIDTH (N1, long_, LONG_ ## N2 ## _TYPE_SIZE) \ 10601 MAKE_FIXED_TYPE_NODE_WIDTH (N1, long_long_, LONG_LONG_ ## N2 ## _TYPE_SIZE) 10602 10603 /* Make fixed-point mode nodes based on sat/non-sat and signed/unsigned. */ 10604 #define MAKE_FIXED_MODE_NODE(KIND,NAME,MODE) \ 10605 NAME ## _type_node = \ 10606 make_or_reuse_signed_ ## KIND ## _type (GET_MODE_BITSIZE (MODE ## mode)); \ 10607 u ## NAME ## _type_node = \ 10608 make_or_reuse_unsigned_ ## KIND ## _type \ 10609 (GET_MODE_BITSIZE (U ## MODE ## mode)); \ 10610 sat_ ## NAME ## _type_node = \ 10611 make_or_reuse_sat_signed_ ## KIND ## _type \ 10612 (GET_MODE_BITSIZE (MODE ## mode)); \ 10613 sat_u ## NAME ## _type_node = \ 10614 make_or_reuse_sat_unsigned_ ## KIND ## _type \ 10615 (GET_MODE_BITSIZE (U ## MODE ## mode)); 10616 10617 /* Fixed-point type and mode nodes. */ 10618 MAKE_FIXED_TYPE_NODE_FAMILY (fract, FRACT) 10619 MAKE_FIXED_TYPE_NODE_FAMILY (accum, ACCUM) 10620 MAKE_FIXED_MODE_NODE (fract, qq, QQ) 10621 MAKE_FIXED_MODE_NODE (fract, hq, HQ) 10622 MAKE_FIXED_MODE_NODE (fract, sq, SQ) 10623 MAKE_FIXED_MODE_NODE (fract, dq, DQ) 10624 MAKE_FIXED_MODE_NODE (fract, tq, TQ) 10625 MAKE_FIXED_MODE_NODE (accum, ha, HA) 10626 MAKE_FIXED_MODE_NODE (accum, sa, SA) 10627 MAKE_FIXED_MODE_NODE (accum, da, DA) 10628 MAKE_FIXED_MODE_NODE (accum, ta, TA) 10629 10630 { 10631 tree t = targetm.build_builtin_va_list (); 10632 10633 /* Many back-ends define record types without setting TYPE_NAME. 10634 If we copied the record type here, we'd keep the original 10635 record type without a name. This breaks name mangling. So, 10636 don't copy record types and let c_common_nodes_and_builtins() 10637 declare the type to be __builtin_va_list. */ 10638 if (TREE_CODE (t) != RECORD_TYPE) 10639 t = build_variant_type_copy (t); 10640 10641 va_list_type_node = t; 10642 } 10643 } 10644 10645 /* Modify DECL for given flags. 10646 TM_PURE attribute is set only on types, so the function will modify 10647 DECL's type when ECF_TM_PURE is used. */ 10648 10649 void 10650 set_call_expr_flags (tree decl, int flags) 10651 { 10652 if (flags & ECF_NOTHROW) 10653 TREE_NOTHROW (decl) = 1; 10654 if (flags & ECF_CONST) 10655 TREE_READONLY (decl) = 1; 10656 if (flags & ECF_PURE) 10657 DECL_PURE_P (decl) = 1; 10658 if (flags & ECF_LOOPING_CONST_OR_PURE) 10659 DECL_LOOPING_CONST_OR_PURE_P (decl) = 1; 10660 if (flags & ECF_NOVOPS) 10661 DECL_IS_NOVOPS (decl) = 1; 10662 if (flags & ECF_NORETURN) 10663 TREE_THIS_VOLATILE (decl) = 1; 10664 if (flags & ECF_MALLOC) 10665 DECL_IS_MALLOC (decl) = 1; 10666 if (flags & ECF_RETURNS_TWICE) 10667 DECL_IS_RETURNS_TWICE (decl) = 1; 10668 if (flags & ECF_LEAF) 10669 DECL_ATTRIBUTES (decl) = tree_cons (get_identifier ("leaf"), 10670 NULL, DECL_ATTRIBUTES (decl)); 10671 if (flags & ECF_COLD) 10672 DECL_ATTRIBUTES (decl) = tree_cons (get_identifier ("cold"), 10673 NULL, DECL_ATTRIBUTES (decl)); 10674 if (flags & ECF_RET1) 10675 DECL_ATTRIBUTES (decl) 10676 = tree_cons (get_identifier ("fn spec"), 10677 build_tree_list (NULL_TREE, build_string (1, "1")), 10678 DECL_ATTRIBUTES (decl)); 10679 if ((flags & ECF_TM_PURE) && flag_tm) 10680 apply_tm_attr (decl, get_identifier ("transaction_pure")); 10681 /* Looping const or pure is implied by noreturn. 10682 There is currently no way to declare looping const or looping pure alone. */ 10683 gcc_assert (!(flags & ECF_LOOPING_CONST_OR_PURE) 10684 || ((flags & ECF_NORETURN) && (flags & (ECF_CONST | ECF_PURE)))); 10685 } 10686 10687 10688 /* A subroutine of build_common_builtin_nodes. Define a builtin function. */ 10689 10690 static void 10691 local_define_builtin (const char *name, tree type, enum built_in_function code, 10692 const char *library_name, int ecf_flags) 10693 { 10694 tree decl; 10695 10696 decl = add_builtin_function (name, type, code, BUILT_IN_NORMAL, 10697 library_name, NULL_TREE); 10698 set_call_expr_flags (decl, ecf_flags); 10699 10700 set_builtin_decl (code, decl, true); 10701 } 10702 10703 /* Call this function after instantiating all builtins that the language 10704 front end cares about. This will build the rest of the builtins 10705 and internal functions that are relied upon by the tree optimizers and 10706 the middle-end. */ 10707 10708 void 10709 build_common_builtin_nodes (void) 10710 { 10711 tree tmp, ftype; 10712 int ecf_flags; 10713 10714 if (!builtin_decl_explicit_p (BUILT_IN_UNREACHABLE) 10715 || !builtin_decl_explicit_p (BUILT_IN_ABORT)) 10716 { 10717 ftype = build_function_type (void_type_node, void_list_node); 10718 if (!builtin_decl_explicit_p (BUILT_IN_UNREACHABLE)) 10719 local_define_builtin ("__builtin_unreachable", ftype, 10720 BUILT_IN_UNREACHABLE, 10721 "__builtin_unreachable", 10722 ECF_NOTHROW | ECF_LEAF | ECF_NORETURN 10723 | ECF_CONST | ECF_COLD); 10724 if (!builtin_decl_explicit_p (BUILT_IN_ABORT)) 10725 local_define_builtin ("__builtin_abort", ftype, BUILT_IN_ABORT, 10726 "abort", 10727 ECF_LEAF | ECF_NORETURN | ECF_CONST | ECF_COLD); 10728 } 10729 10730 if (!builtin_decl_explicit_p (BUILT_IN_MEMCPY) 10731 || !builtin_decl_explicit_p (BUILT_IN_MEMMOVE)) 10732 { 10733 ftype = build_function_type_list (ptr_type_node, 10734 ptr_type_node, const_ptr_type_node, 10735 size_type_node, NULL_TREE); 10736 10737 if (!builtin_decl_explicit_p (BUILT_IN_MEMCPY)) 10738 local_define_builtin ("__builtin_memcpy", ftype, BUILT_IN_MEMCPY, 10739 "memcpy", ECF_NOTHROW | ECF_LEAF | ECF_RET1); 10740 if (!builtin_decl_explicit_p (BUILT_IN_MEMMOVE)) 10741 local_define_builtin ("__builtin_memmove", ftype, BUILT_IN_MEMMOVE, 10742 "memmove", ECF_NOTHROW | ECF_LEAF | ECF_RET1); 10743 } 10744 10745 if (!builtin_decl_explicit_p (BUILT_IN_MEMCMP)) 10746 { 10747 ftype = build_function_type_list (integer_type_node, const_ptr_type_node, 10748 const_ptr_type_node, size_type_node, 10749 NULL_TREE); 10750 local_define_builtin ("__builtin_memcmp", ftype, BUILT_IN_MEMCMP, 10751 "memcmp", ECF_PURE | ECF_NOTHROW | ECF_LEAF); 10752 } 10753 10754 if (!builtin_decl_explicit_p (BUILT_IN_MEMSET)) 10755 { 10756 ftype = build_function_type_list (ptr_type_node, 10757 ptr_type_node, integer_type_node, 10758 size_type_node, NULL_TREE); 10759 local_define_builtin ("__builtin_memset", ftype, BUILT_IN_MEMSET, 10760 "memset", ECF_NOTHROW | ECF_LEAF | ECF_RET1); 10761 } 10762 10763 /* If we're checking the stack, `alloca' can throw. */ 10764 const int alloca_flags 10765 = ECF_MALLOC | ECF_LEAF | (flag_stack_check ? 0 : ECF_NOTHROW); 10766 10767 if (!builtin_decl_explicit_p (BUILT_IN_ALLOCA)) 10768 { 10769 ftype = build_function_type_list (ptr_type_node, 10770 size_type_node, NULL_TREE); 10771 local_define_builtin ("__builtin_alloca", ftype, BUILT_IN_ALLOCA, 10772 "alloca", alloca_flags); 10773 } 10774 10775 ftype = build_function_type_list (ptr_type_node, size_type_node, 10776 size_type_node, NULL_TREE); 10777 local_define_builtin ("__builtin_alloca_with_align", ftype, 10778 BUILT_IN_ALLOCA_WITH_ALIGN, 10779 "__builtin_alloca_with_align", 10780 alloca_flags); 10781 10782 ftype = build_function_type_list (ptr_type_node, size_type_node, 10783 size_type_node, size_type_node, NULL_TREE); 10784 local_define_builtin ("__builtin_alloca_with_align_and_max", ftype, 10785 BUILT_IN_ALLOCA_WITH_ALIGN_AND_MAX, 10786 "__builtin_alloca_with_align_and_max", 10787 alloca_flags); 10788 10789 ftype = build_function_type_list (void_type_node, 10790 ptr_type_node, ptr_type_node, 10791 ptr_type_node, NULL_TREE); 10792 local_define_builtin ("__builtin_init_trampoline", ftype, 10793 BUILT_IN_INIT_TRAMPOLINE, 10794 "__builtin_init_trampoline", ECF_NOTHROW | ECF_LEAF); 10795 local_define_builtin ("__builtin_init_heap_trampoline", ftype, 10796 BUILT_IN_INIT_HEAP_TRAMPOLINE, 10797 "__builtin_init_heap_trampoline", 10798 ECF_NOTHROW | ECF_LEAF); 10799 local_define_builtin ("__builtin_init_descriptor", ftype, 10800 BUILT_IN_INIT_DESCRIPTOR, 10801 "__builtin_init_descriptor", ECF_NOTHROW | ECF_LEAF); 10802 10803 ftype = build_function_type_list (ptr_type_node, ptr_type_node, NULL_TREE); 10804 local_define_builtin ("__builtin_adjust_trampoline", ftype, 10805 BUILT_IN_ADJUST_TRAMPOLINE, 10806 "__builtin_adjust_trampoline", 10807 ECF_CONST | ECF_NOTHROW); 10808 local_define_builtin ("__builtin_adjust_descriptor", ftype, 10809 BUILT_IN_ADJUST_DESCRIPTOR, 10810 "__builtin_adjust_descriptor", 10811 ECF_CONST | ECF_NOTHROW); 10812 10813 ftype = build_function_type_list (void_type_node, 10814 ptr_type_node, ptr_type_node, NULL_TREE); 10815 local_define_builtin ("__builtin_nonlocal_goto", ftype, 10816 BUILT_IN_NONLOCAL_GOTO, 10817 "__builtin_nonlocal_goto", 10818 ECF_NORETURN | ECF_NOTHROW); 10819 10820 ftype = build_function_type_list (void_type_node, 10821 ptr_type_node, ptr_type_node, NULL_TREE); 10822 local_define_builtin ("__builtin_setjmp_setup", ftype, 10823 BUILT_IN_SETJMP_SETUP, 10824 "__builtin_setjmp_setup", ECF_NOTHROW); 10825 10826 ftype = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE); 10827 local_define_builtin ("__builtin_setjmp_receiver", ftype, 10828 BUILT_IN_SETJMP_RECEIVER, 10829 "__builtin_setjmp_receiver", ECF_NOTHROW | ECF_LEAF); 10830 10831 ftype = build_function_type_list (ptr_type_node, NULL_TREE); 10832 local_define_builtin ("__builtin_stack_save", ftype, BUILT_IN_STACK_SAVE, 10833 "__builtin_stack_save", ECF_NOTHROW | ECF_LEAF); 10834 10835 ftype = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE); 10836 local_define_builtin ("__builtin_stack_restore", ftype, 10837 BUILT_IN_STACK_RESTORE, 10838 "__builtin_stack_restore", ECF_NOTHROW | ECF_LEAF); 10839 10840 ftype = build_function_type_list (integer_type_node, const_ptr_type_node, 10841 const_ptr_type_node, size_type_node, 10842 NULL_TREE); 10843 local_define_builtin ("__builtin_memcmp_eq", ftype, BUILT_IN_MEMCMP_EQ, 10844 "__builtin_memcmp_eq", 10845 ECF_PURE | ECF_NOTHROW | ECF_LEAF); 10846 10847 local_define_builtin ("__builtin_strncmp_eq", ftype, BUILT_IN_STRNCMP_EQ, 10848 "__builtin_strncmp_eq", 10849 ECF_PURE | ECF_NOTHROW | ECF_LEAF); 10850 10851 local_define_builtin ("__builtin_strcmp_eq", ftype, BUILT_IN_STRCMP_EQ, 10852 "__builtin_strcmp_eq", 10853 ECF_PURE | ECF_NOTHROW | ECF_LEAF); 10854 10855 /* If there's a possibility that we might use the ARM EABI, build the 10856 alternate __cxa_end_cleanup node used to resume from C++. */ 10857 if (targetm.arm_eabi_unwinder) 10858 { 10859 ftype = build_function_type_list (void_type_node, NULL_TREE); 10860 local_define_builtin ("__builtin_cxa_end_cleanup", ftype, 10861 BUILT_IN_CXA_END_CLEANUP, 10862 "__cxa_end_cleanup", ECF_NORETURN | ECF_LEAF); 10863 } 10864 10865 ftype = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE); 10866 local_define_builtin ("__builtin_unwind_resume", ftype, 10867 BUILT_IN_UNWIND_RESUME, 10868 ((targetm_common.except_unwind_info (&global_options) 10869 == UI_SJLJ) 10870 ? "_Unwind_SjLj_Resume" : "_Unwind_Resume"), 10871 ECF_NORETURN); 10872 10873 if (builtin_decl_explicit (BUILT_IN_RETURN_ADDRESS) == NULL_TREE) 10874 { 10875 ftype = build_function_type_list (ptr_type_node, integer_type_node, 10876 NULL_TREE); 10877 local_define_builtin ("__builtin_return_address", ftype, 10878 BUILT_IN_RETURN_ADDRESS, 10879 "__builtin_return_address", 10880 ECF_NOTHROW); 10881 } 10882 10883 if (!builtin_decl_explicit_p (BUILT_IN_PROFILE_FUNC_ENTER) 10884 || !builtin_decl_explicit_p (BUILT_IN_PROFILE_FUNC_EXIT)) 10885 { 10886 ftype = build_function_type_list (void_type_node, ptr_type_node, 10887 ptr_type_node, NULL_TREE); 10888 if (!builtin_decl_explicit_p (BUILT_IN_PROFILE_FUNC_ENTER)) 10889 local_define_builtin ("__cyg_profile_func_enter", ftype, 10890 BUILT_IN_PROFILE_FUNC_ENTER, 10891 "__cyg_profile_func_enter", 0); 10892 if (!builtin_decl_explicit_p (BUILT_IN_PROFILE_FUNC_EXIT)) 10893 local_define_builtin ("__cyg_profile_func_exit", ftype, 10894 BUILT_IN_PROFILE_FUNC_EXIT, 10895 "__cyg_profile_func_exit", 0); 10896 } 10897 10898 /* The exception object and filter values from the runtime. The argument 10899 must be zero before exception lowering, i.e. from the front end. After 10900 exception lowering, it will be the region number for the exception 10901 landing pad. These functions are PURE instead of CONST to prevent 10902 them from being hoisted past the exception edge that will initialize 10903 its value in the landing pad. */ 10904 ftype = build_function_type_list (ptr_type_node, 10905 integer_type_node, NULL_TREE); 10906 ecf_flags = ECF_PURE | ECF_NOTHROW | ECF_LEAF; 10907 /* Only use TM_PURE if we have TM language support. */ 10908 if (builtin_decl_explicit_p (BUILT_IN_TM_LOAD_1)) 10909 ecf_flags |= ECF_TM_PURE; 10910 local_define_builtin ("__builtin_eh_pointer", ftype, BUILT_IN_EH_POINTER, 10911 "__builtin_eh_pointer", ecf_flags); 10912 10913 tmp = lang_hooks.types.type_for_mode (targetm.eh_return_filter_mode (), 0); 10914 ftype = build_function_type_list (tmp, integer_type_node, NULL_TREE); 10915 local_define_builtin ("__builtin_eh_filter", ftype, BUILT_IN_EH_FILTER, 10916 "__builtin_eh_filter", ECF_PURE | ECF_NOTHROW | ECF_LEAF); 10917 10918 ftype = build_function_type_list (void_type_node, 10919 integer_type_node, integer_type_node, 10920 NULL_TREE); 10921 local_define_builtin ("__builtin_eh_copy_values", ftype, 10922 BUILT_IN_EH_COPY_VALUES, 10923 "__builtin_eh_copy_values", ECF_NOTHROW); 10924 10925 /* Complex multiplication and division. These are handled as builtins 10926 rather than optabs because emit_library_call_value doesn't support 10927 complex. Further, we can do slightly better with folding these 10928 beasties if the real and complex parts of the arguments are separate. */ 10929 { 10930 int mode; 10931 10932 for (mode = MIN_MODE_COMPLEX_FLOAT; mode <= MAX_MODE_COMPLEX_FLOAT; ++mode) 10933 { 10934 char mode_name_buf[4], *q; 10935 const char *p; 10936 enum built_in_function mcode, dcode; 10937 tree type, inner_type; 10938 const char *prefix = "__"; 10939 10940 if (targetm.libfunc_gnu_prefix) 10941 prefix = "__gnu_"; 10942 10943 type = lang_hooks.types.type_for_mode ((machine_mode) mode, 0); 10944 if (type == NULL) 10945 continue; 10946 inner_type = TREE_TYPE (type); 10947 10948 ftype = build_function_type_list (type, inner_type, inner_type, 10949 inner_type, inner_type, NULL_TREE); 10950 10951 mcode = ((enum built_in_function) 10952 (BUILT_IN_COMPLEX_MUL_MIN + mode - MIN_MODE_COMPLEX_FLOAT)); 10953 dcode = ((enum built_in_function) 10954 (BUILT_IN_COMPLEX_DIV_MIN + mode - MIN_MODE_COMPLEX_FLOAT)); 10955 10956 for (p = GET_MODE_NAME (mode), q = mode_name_buf; *p; p++, q++) 10957 *q = TOLOWER (*p); 10958 *q = '\0'; 10959 10960 /* For -ftrapping-math these should throw from a former 10961 -fnon-call-exception stmt. */ 10962 built_in_names[mcode] = concat (prefix, "mul", mode_name_buf, "3", 10963 NULL); 10964 local_define_builtin (built_in_names[mcode], ftype, mcode, 10965 built_in_names[mcode], 10966 ECF_CONST | ECF_LEAF); 10967 10968 built_in_names[dcode] = concat (prefix, "div", mode_name_buf, "3", 10969 NULL); 10970 local_define_builtin (built_in_names[dcode], ftype, dcode, 10971 built_in_names[dcode], 10972 ECF_CONST | ECF_LEAF); 10973 } 10974 } 10975 10976 init_internal_fns (); 10977 } 10978 10979 /* HACK. GROSS. This is absolutely disgusting. I wish there was a 10980 better way. 10981 10982 If we requested a pointer to a vector, build up the pointers that 10983 we stripped off while looking for the inner type. Similarly for 10984 return values from functions. 10985 10986 The argument TYPE is the top of the chain, and BOTTOM is the 10987 new type which we will point to. */ 10988 10989 tree 10990 reconstruct_complex_type (tree type, tree bottom) 10991 { 10992 tree inner, outer; 10993 10994 if (TREE_CODE (type) == POINTER_TYPE) 10995 { 10996 inner = reconstruct_complex_type (TREE_TYPE (type), bottom); 10997 outer = build_pointer_type_for_mode (inner, TYPE_MODE (type), 10998 TYPE_REF_CAN_ALIAS_ALL (type)); 10999 } 11000 else if (TREE_CODE (type) == REFERENCE_TYPE) 11001 { 11002 inner = reconstruct_complex_type (TREE_TYPE (type), bottom); 11003 outer = build_reference_type_for_mode (inner, TYPE_MODE (type), 11004 TYPE_REF_CAN_ALIAS_ALL (type)); 11005 } 11006 else if (TREE_CODE (type) == ARRAY_TYPE) 11007 { 11008 inner = reconstruct_complex_type (TREE_TYPE (type), bottom); 11009 outer = build_array_type (inner, TYPE_DOMAIN (type)); 11010 } 11011 else if (TREE_CODE (type) == FUNCTION_TYPE) 11012 { 11013 inner = reconstruct_complex_type (TREE_TYPE (type), bottom); 11014 outer = build_function_type (inner, TYPE_ARG_TYPES (type)); 11015 } 11016 else if (TREE_CODE (type) == METHOD_TYPE) 11017 { 11018 inner = reconstruct_complex_type (TREE_TYPE (type), bottom); 11019 /* The build_method_type_directly() routine prepends 'this' to argument list, 11020 so we must compensate by getting rid of it. */ 11021 outer 11022 = build_method_type_directly 11023 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (type))), 11024 inner, 11025 TREE_CHAIN (TYPE_ARG_TYPES (type))); 11026 } 11027 else if (TREE_CODE (type) == OFFSET_TYPE) 11028 { 11029 inner = reconstruct_complex_type (TREE_TYPE (type), bottom); 11030 outer = build_offset_type (TYPE_OFFSET_BASETYPE (type), inner); 11031 } 11032 else 11033 return bottom; 11034 11035 return build_type_attribute_qual_variant (outer, TYPE_ATTRIBUTES (type), 11036 TYPE_QUALS (type)); 11037 } 11038 11039 /* Returns a vector tree node given a mode (integer, vector, or BLKmode) and 11040 the inner type. */ 11041 tree 11042 build_vector_type_for_mode (tree innertype, machine_mode mode) 11043 { 11044 poly_int64 nunits; 11045 unsigned int bitsize; 11046 11047 switch (GET_MODE_CLASS (mode)) 11048 { 11049 case MODE_VECTOR_BOOL: 11050 case MODE_VECTOR_INT: 11051 case MODE_VECTOR_FLOAT: 11052 case MODE_VECTOR_FRACT: 11053 case MODE_VECTOR_UFRACT: 11054 case MODE_VECTOR_ACCUM: 11055 case MODE_VECTOR_UACCUM: 11056 nunits = GET_MODE_NUNITS (mode); 11057 break; 11058 11059 case MODE_INT: 11060 /* Check that there are no leftover bits. */ 11061 bitsize = GET_MODE_BITSIZE (as_a <scalar_int_mode> (mode)); 11062 gcc_assert (bitsize % TREE_INT_CST_LOW (TYPE_SIZE (innertype)) == 0); 11063 nunits = bitsize / TREE_INT_CST_LOW (TYPE_SIZE (innertype)); 11064 break; 11065 11066 default: 11067 gcc_unreachable (); 11068 } 11069 11070 return make_vector_type (innertype, nunits, mode); 11071 } 11072 11073 /* Similarly, but takes the inner type and number of units, which must be 11074 a power of two. */ 11075 11076 tree 11077 build_vector_type (tree innertype, poly_int64 nunits) 11078 { 11079 return make_vector_type (innertype, nunits, VOIDmode); 11080 } 11081 11082 /* Build truth vector with specified length and number of units. */ 11083 11084 tree 11085 build_truth_vector_type (poly_uint64 nunits, poly_uint64 vector_size) 11086 { 11087 machine_mode mask_mode 11088 = targetm.vectorize.get_mask_mode (nunits, vector_size).else_blk (); 11089 11090 poly_uint64 vsize; 11091 if (mask_mode == BLKmode) 11092 vsize = vector_size * BITS_PER_UNIT; 11093 else 11094 vsize = GET_MODE_BITSIZE (mask_mode); 11095 11096 unsigned HOST_WIDE_INT esize = vector_element_size (vsize, nunits); 11097 11098 tree bool_type = build_nonstandard_boolean_type (esize); 11099 11100 return make_vector_type (bool_type, nunits, mask_mode); 11101 } 11102 11103 /* Returns a vector type corresponding to a comparison of VECTYPE. */ 11104 11105 tree 11106 build_same_sized_truth_vector_type (tree vectype) 11107 { 11108 if (VECTOR_BOOLEAN_TYPE_P (vectype)) 11109 return vectype; 11110 11111 poly_uint64 size = GET_MODE_SIZE (TYPE_MODE (vectype)); 11112 11113 if (known_eq (size, 0U)) 11114 size = tree_to_uhwi (TYPE_SIZE_UNIT (vectype)); 11115 11116 return build_truth_vector_type (TYPE_VECTOR_SUBPARTS (vectype), size); 11117 } 11118 11119 /* Similarly, but builds a variant type with TYPE_VECTOR_OPAQUE set. */ 11120 11121 tree 11122 build_opaque_vector_type (tree innertype, poly_int64 nunits) 11123 { 11124 tree t = make_vector_type (innertype, nunits, VOIDmode); 11125 tree cand; 11126 /* We always build the non-opaque variant before the opaque one, 11127 so if it already exists, it is TYPE_NEXT_VARIANT of this one. */ 11128 cand = TYPE_NEXT_VARIANT (t); 11129 if (cand 11130 && TYPE_VECTOR_OPAQUE (cand) 11131 && check_qualified_type (cand, t, TYPE_QUALS (t))) 11132 return cand; 11133 /* Othewise build a variant type and make sure to queue it after 11134 the non-opaque type. */ 11135 cand = build_distinct_type_copy (t); 11136 TYPE_VECTOR_OPAQUE (cand) = true; 11137 TYPE_CANONICAL (cand) = TYPE_CANONICAL (t); 11138 TYPE_NEXT_VARIANT (cand) = TYPE_NEXT_VARIANT (t); 11139 TYPE_NEXT_VARIANT (t) = cand; 11140 TYPE_MAIN_VARIANT (cand) = TYPE_MAIN_VARIANT (t); 11141 return cand; 11142 } 11143 11144 /* Return the value of element I of VECTOR_CST T as a wide_int. */ 11145 11146 wide_int 11147 vector_cst_int_elt (const_tree t, unsigned int i) 11148 { 11149 /* First handle elements that are directly encoded. */ 11150 unsigned int encoded_nelts = vector_cst_encoded_nelts (t); 11151 if (i < encoded_nelts) 11152 return wi::to_wide (VECTOR_CST_ENCODED_ELT (t, i)); 11153 11154 /* Identify the pattern that contains element I and work out the index of 11155 the last encoded element for that pattern. */ 11156 unsigned int npatterns = VECTOR_CST_NPATTERNS (t); 11157 unsigned int pattern = i % npatterns; 11158 unsigned int count = i / npatterns; 11159 unsigned int final_i = encoded_nelts - npatterns + pattern; 11160 11161 /* If there are no steps, the final encoded value is the right one. */ 11162 if (!VECTOR_CST_STEPPED_P (t)) 11163 return wi::to_wide (VECTOR_CST_ENCODED_ELT (t, final_i)); 11164 11165 /* Otherwise work out the value from the last two encoded elements. */ 11166 tree v1 = VECTOR_CST_ENCODED_ELT (t, final_i - npatterns); 11167 tree v2 = VECTOR_CST_ENCODED_ELT (t, final_i); 11168 wide_int diff = wi::to_wide (v2) - wi::to_wide (v1); 11169 return wi::to_wide (v2) + (count - 2) * diff; 11170 } 11171 11172 /* Return the value of element I of VECTOR_CST T. */ 11173 11174 tree 11175 vector_cst_elt (const_tree t, unsigned int i) 11176 { 11177 /* First handle elements that are directly encoded. */ 11178 unsigned int encoded_nelts = vector_cst_encoded_nelts (t); 11179 if (i < encoded_nelts) 11180 return VECTOR_CST_ENCODED_ELT (t, i); 11181 11182 /* If there are no steps, the final encoded value is the right one. */ 11183 if (!VECTOR_CST_STEPPED_P (t)) 11184 { 11185 /* Identify the pattern that contains element I and work out the index of 11186 the last encoded element for that pattern. */ 11187 unsigned int npatterns = VECTOR_CST_NPATTERNS (t); 11188 unsigned int pattern = i % npatterns; 11189 unsigned int final_i = encoded_nelts - npatterns + pattern; 11190 return VECTOR_CST_ENCODED_ELT (t, final_i); 11191 } 11192 11193 /* Otherwise work out the value from the last two encoded elements. */ 11194 return wide_int_to_tree (TREE_TYPE (TREE_TYPE (t)), 11195 vector_cst_int_elt (t, i)); 11196 } 11197 11198 /* Given an initializer INIT, return TRUE if INIT is zero or some 11199 aggregate of zeros. Otherwise return FALSE. If NONZERO is not 11200 null, set *NONZERO if and only if INIT is known not to be all 11201 zeros. The combination of return value of false and *NONZERO 11202 false implies that INIT may but need not be all zeros. Other 11203 combinations indicate definitive answers. */ 11204 11205 bool 11206 initializer_zerop (const_tree init, bool *nonzero /* = NULL */) 11207 { 11208 bool dummy; 11209 if (!nonzero) 11210 nonzero = &dummy; 11211 11212 /* Conservatively clear NONZERO and set it only if INIT is definitely 11213 not all zero. */ 11214 *nonzero = false; 11215 11216 STRIP_NOPS (init); 11217 11218 unsigned HOST_WIDE_INT off = 0; 11219 11220 switch (TREE_CODE (init)) 11221 { 11222 case INTEGER_CST: 11223 if (integer_zerop (init)) 11224 return true; 11225 11226 *nonzero = true; 11227 return false; 11228 11229 case REAL_CST: 11230 /* ??? Note that this is not correct for C4X float formats. There, 11231 a bit pattern of all zeros is 1.0; 0.0 is encoded with the most 11232 negative exponent. */ 11233 if (real_zerop (init) 11234 && !REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (init))) 11235 return true; 11236 11237 *nonzero = true; 11238 return false; 11239 11240 case FIXED_CST: 11241 if (fixed_zerop (init)) 11242 return true; 11243 11244 *nonzero = true; 11245 return false; 11246 11247 case COMPLEX_CST: 11248 if (integer_zerop (init) 11249 || (real_zerop (init) 11250 && !REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_REALPART (init))) 11251 && !REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_IMAGPART (init))))) 11252 return true; 11253 11254 *nonzero = true; 11255 return false; 11256 11257 case VECTOR_CST: 11258 if (VECTOR_CST_NPATTERNS (init) == 1 11259 && VECTOR_CST_DUPLICATE_P (init) 11260 && initializer_zerop (VECTOR_CST_ENCODED_ELT (init, 0))) 11261 return true; 11262 11263 *nonzero = true; 11264 return false; 11265 11266 case CONSTRUCTOR: 11267 { 11268 if (TREE_CLOBBER_P (init)) 11269 return false; 11270 11271 unsigned HOST_WIDE_INT idx; 11272 tree elt; 11273 11274 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (init), idx, elt) 11275 if (!initializer_zerop (elt, nonzero)) 11276 return false; 11277 11278 return true; 11279 } 11280 11281 case MEM_REF: 11282 { 11283 tree arg = TREE_OPERAND (init, 0); 11284 if (TREE_CODE (arg) != ADDR_EXPR) 11285 return false; 11286 tree offset = TREE_OPERAND (init, 1); 11287 if (TREE_CODE (offset) != INTEGER_CST 11288 || !tree_fits_uhwi_p (offset)) 11289 return false; 11290 off = tree_to_uhwi (offset); 11291 if (INT_MAX < off) 11292 return false; 11293 arg = TREE_OPERAND (arg, 0); 11294 if (TREE_CODE (arg) != STRING_CST) 11295 return false; 11296 init = arg; 11297 } 11298 /* Fall through. */ 11299 11300 case STRING_CST: 11301 { 11302 gcc_assert (off <= INT_MAX); 11303 11304 int i = off; 11305 int n = TREE_STRING_LENGTH (init); 11306 if (n <= i) 11307 return false; 11308 11309 /* We need to loop through all elements to handle cases like 11310 "\0" and "\0foobar". */ 11311 for (i = 0; i < n; ++i) 11312 if (TREE_STRING_POINTER (init)[i] != '\0') 11313 { 11314 *nonzero = true; 11315 return false; 11316 } 11317 11318 return true; 11319 } 11320 11321 default: 11322 return false; 11323 } 11324 } 11325 11326 /* Return true if EXPR is an initializer expression in which every element 11327 is a constant that is numerically equal to 0 or 1. The elements do not 11328 need to be equal to each other. */ 11329 11330 bool 11331 initializer_each_zero_or_onep (const_tree expr) 11332 { 11333 STRIP_ANY_LOCATION_WRAPPER (expr); 11334 11335 switch (TREE_CODE (expr)) 11336 { 11337 case INTEGER_CST: 11338 return integer_zerop (expr) || integer_onep (expr); 11339 11340 case REAL_CST: 11341 return real_zerop (expr) || real_onep (expr); 11342 11343 case VECTOR_CST: 11344 { 11345 unsigned HOST_WIDE_INT nelts = vector_cst_encoded_nelts (expr); 11346 if (VECTOR_CST_STEPPED_P (expr) 11347 && !TYPE_VECTOR_SUBPARTS (TREE_TYPE (expr)).is_constant (&nelts)) 11348 return false; 11349 11350 for (unsigned int i = 0; i < nelts; ++i) 11351 { 11352 tree elt = vector_cst_elt (expr, i); 11353 if (!initializer_each_zero_or_onep (elt)) 11354 return false; 11355 } 11356 11357 return true; 11358 } 11359 11360 default: 11361 return false; 11362 } 11363 } 11364 11365 /* Check if vector VEC consists of all the equal elements and 11366 that the number of elements corresponds to the type of VEC. 11367 The function returns first element of the vector 11368 or NULL_TREE if the vector is not uniform. */ 11369 tree 11370 uniform_vector_p (const_tree vec) 11371 { 11372 tree first, t; 11373 unsigned HOST_WIDE_INT i, nelts; 11374 11375 if (vec == NULL_TREE) 11376 return NULL_TREE; 11377 11378 gcc_assert (VECTOR_TYPE_P (TREE_TYPE (vec))); 11379 11380 if (TREE_CODE (vec) == VEC_DUPLICATE_EXPR) 11381 return TREE_OPERAND (vec, 0); 11382 11383 else if (TREE_CODE (vec) == VECTOR_CST) 11384 { 11385 if (VECTOR_CST_NPATTERNS (vec) == 1 && VECTOR_CST_DUPLICATE_P (vec)) 11386 return VECTOR_CST_ENCODED_ELT (vec, 0); 11387 return NULL_TREE; 11388 } 11389 11390 else if (TREE_CODE (vec) == CONSTRUCTOR 11391 && TYPE_VECTOR_SUBPARTS (TREE_TYPE (vec)).is_constant (&nelts)) 11392 { 11393 first = error_mark_node; 11394 11395 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (vec), i, t) 11396 { 11397 if (i == 0) 11398 { 11399 first = t; 11400 continue; 11401 } 11402 if (!operand_equal_p (first, t, 0)) 11403 return NULL_TREE; 11404 } 11405 if (i != nelts) 11406 return NULL_TREE; 11407 11408 return first; 11409 } 11410 11411 return NULL_TREE; 11412 } 11413 11414 /* If the argument is INTEGER_CST, return it. If the argument is vector 11415 with all elements the same INTEGER_CST, return that INTEGER_CST. Otherwise 11416 return NULL_TREE. 11417 Look through location wrappers. */ 11418 11419 tree 11420 uniform_integer_cst_p (tree t) 11421 { 11422 STRIP_ANY_LOCATION_WRAPPER (t); 11423 11424 if (TREE_CODE (t) == INTEGER_CST) 11425 return t; 11426 11427 if (VECTOR_TYPE_P (TREE_TYPE (t))) 11428 { 11429 t = uniform_vector_p (t); 11430 if (t && TREE_CODE (t) == INTEGER_CST) 11431 return t; 11432 } 11433 11434 return NULL_TREE; 11435 } 11436 11437 /* If VECTOR_CST T has a single nonzero element, return the index of that 11438 element, otherwise return -1. */ 11439 11440 int 11441 single_nonzero_element (const_tree t) 11442 { 11443 unsigned HOST_WIDE_INT nelts; 11444 unsigned int repeat_nelts; 11445 if (VECTOR_CST_NELTS (t).is_constant (&nelts)) 11446 repeat_nelts = nelts; 11447 else if (VECTOR_CST_NELTS_PER_PATTERN (t) == 2) 11448 { 11449 nelts = vector_cst_encoded_nelts (t); 11450 repeat_nelts = VECTOR_CST_NPATTERNS (t); 11451 } 11452 else 11453 return -1; 11454 11455 int res = -1; 11456 for (unsigned int i = 0; i < nelts; ++i) 11457 { 11458 tree elt = vector_cst_elt (t, i); 11459 if (!integer_zerop (elt) && !real_zerop (elt)) 11460 { 11461 if (res >= 0 || i >= repeat_nelts) 11462 return -1; 11463 res = i; 11464 } 11465 } 11466 return res; 11467 } 11468 11469 /* Build an empty statement at location LOC. */ 11470 11471 tree 11472 build_empty_stmt (location_t loc) 11473 { 11474 tree t = build1 (NOP_EXPR, void_type_node, size_zero_node); 11475 SET_EXPR_LOCATION (t, loc); 11476 return t; 11477 } 11478 11479 11480 /* Build an OpenMP clause with code CODE. LOC is the location of the 11481 clause. */ 11482 11483 tree 11484 build_omp_clause (location_t loc, enum omp_clause_code code) 11485 { 11486 tree t; 11487 int size, length; 11488 11489 length = omp_clause_num_ops[code]; 11490 size = (sizeof (struct tree_omp_clause) + (length - 1) * sizeof (tree)); 11491 11492 record_node_allocation_statistics (OMP_CLAUSE, size); 11493 11494 t = (tree) ggc_internal_alloc (size); 11495 memset (t, 0, size); 11496 TREE_SET_CODE (t, OMP_CLAUSE); 11497 OMP_CLAUSE_SET_CODE (t, code); 11498 OMP_CLAUSE_LOCATION (t) = loc; 11499 11500 return t; 11501 } 11502 11503 /* Build a tcc_vl_exp object with code CODE and room for LEN operands. LEN 11504 includes the implicit operand count in TREE_OPERAND 0, and so must be >= 1. 11505 Except for the CODE and operand count field, other storage for the 11506 object is initialized to zeros. */ 11507 11508 tree 11509 build_vl_exp (enum tree_code code, int len MEM_STAT_DECL) 11510 { 11511 tree t; 11512 int length = (len - 1) * sizeof (tree) + sizeof (struct tree_exp); 11513 11514 gcc_assert (TREE_CODE_CLASS (code) == tcc_vl_exp); 11515 gcc_assert (len >= 1); 11516 11517 record_node_allocation_statistics (code, length); 11518 11519 t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT); 11520 11521 TREE_SET_CODE (t, code); 11522 11523 /* Can't use TREE_OPERAND to store the length because if checking is 11524 enabled, it will try to check the length before we store it. :-P */ 11525 t->exp.operands[0] = build_int_cst (sizetype, len); 11526 11527 return t; 11528 } 11529 11530 /* Helper function for build_call_* functions; build a CALL_EXPR with 11531 indicated RETURN_TYPE, FN, and NARGS, but do not initialize any of 11532 the argument slots. */ 11533 11534 static tree 11535 build_call_1 (tree return_type, tree fn, int nargs) 11536 { 11537 tree t; 11538 11539 t = build_vl_exp (CALL_EXPR, nargs + 3); 11540 TREE_TYPE (t) = return_type; 11541 CALL_EXPR_FN (t) = fn; 11542 CALL_EXPR_STATIC_CHAIN (t) = NULL; 11543 11544 return t; 11545 } 11546 11547 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and 11548 FN and a null static chain slot. NARGS is the number of call arguments 11549 which are specified as "..." arguments. */ 11550 11551 tree 11552 build_call_nary (tree return_type, tree fn, int nargs, ...) 11553 { 11554 tree ret; 11555 va_list args; 11556 va_start (args, nargs); 11557 ret = build_call_valist (return_type, fn, nargs, args); 11558 va_end (args); 11559 return ret; 11560 } 11561 11562 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and 11563 FN and a null static chain slot. NARGS is the number of call arguments 11564 which are specified as a va_list ARGS. */ 11565 11566 tree 11567 build_call_valist (tree return_type, tree fn, int nargs, va_list args) 11568 { 11569 tree t; 11570 int i; 11571 11572 t = build_call_1 (return_type, fn, nargs); 11573 for (i = 0; i < nargs; i++) 11574 CALL_EXPR_ARG (t, i) = va_arg (args, tree); 11575 process_call_operands (t); 11576 return t; 11577 } 11578 11579 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and 11580 FN and a null static chain slot. NARGS is the number of call arguments 11581 which are specified as a tree array ARGS. */ 11582 11583 tree 11584 build_call_array_loc (location_t loc, tree return_type, tree fn, 11585 int nargs, const tree *args) 11586 { 11587 tree t; 11588 int i; 11589 11590 t = build_call_1 (return_type, fn, nargs); 11591 for (i = 0; i < nargs; i++) 11592 CALL_EXPR_ARG (t, i) = args[i]; 11593 process_call_operands (t); 11594 SET_EXPR_LOCATION (t, loc); 11595 return t; 11596 } 11597 11598 /* Like build_call_array, but takes a vec. */ 11599 11600 tree 11601 build_call_vec (tree return_type, tree fn, vec<tree, va_gc> *args) 11602 { 11603 tree ret, t; 11604 unsigned int ix; 11605 11606 ret = build_call_1 (return_type, fn, vec_safe_length (args)); 11607 FOR_EACH_VEC_SAFE_ELT (args, ix, t) 11608 CALL_EXPR_ARG (ret, ix) = t; 11609 process_call_operands (ret); 11610 return ret; 11611 } 11612 11613 /* Conveniently construct a function call expression. FNDECL names the 11614 function to be called and N arguments are passed in the array 11615 ARGARRAY. */ 11616 11617 tree 11618 build_call_expr_loc_array (location_t loc, tree fndecl, int n, tree *argarray) 11619 { 11620 tree fntype = TREE_TYPE (fndecl); 11621 tree fn = build1 (ADDR_EXPR, build_pointer_type (fntype), fndecl); 11622 11623 return fold_build_call_array_loc (loc, TREE_TYPE (fntype), fn, n, argarray); 11624 } 11625 11626 /* Conveniently construct a function call expression. FNDECL names the 11627 function to be called and the arguments are passed in the vector 11628 VEC. */ 11629 11630 tree 11631 build_call_expr_loc_vec (location_t loc, tree fndecl, vec<tree, va_gc> *vec) 11632 { 11633 return build_call_expr_loc_array (loc, fndecl, vec_safe_length (vec), 11634 vec_safe_address (vec)); 11635 } 11636 11637 11638 /* Conveniently construct a function call expression. FNDECL names the 11639 function to be called, N is the number of arguments, and the "..." 11640 parameters are the argument expressions. */ 11641 11642 tree 11643 build_call_expr_loc (location_t loc, tree fndecl, int n, ...) 11644 { 11645 va_list ap; 11646 tree *argarray = XALLOCAVEC (tree, n); 11647 int i; 11648 11649 va_start (ap, n); 11650 for (i = 0; i < n; i++) 11651 argarray[i] = va_arg (ap, tree); 11652 va_end (ap); 11653 return build_call_expr_loc_array (loc, fndecl, n, argarray); 11654 } 11655 11656 /* Like build_call_expr_loc (UNKNOWN_LOCATION, ...). Duplicated because 11657 varargs macros aren't supported by all bootstrap compilers. */ 11658 11659 tree 11660 build_call_expr (tree fndecl, int n, ...) 11661 { 11662 va_list ap; 11663 tree *argarray = XALLOCAVEC (tree, n); 11664 int i; 11665 11666 va_start (ap, n); 11667 for (i = 0; i < n; i++) 11668 argarray[i] = va_arg (ap, tree); 11669 va_end (ap); 11670 return build_call_expr_loc_array (UNKNOWN_LOCATION, fndecl, n, argarray); 11671 } 11672 11673 /* Build an internal call to IFN, with arguments ARGS[0:N-1] and with return 11674 type TYPE. This is just like CALL_EXPR, except its CALL_EXPR_FN is NULL. 11675 It will get gimplified later into an ordinary internal function. */ 11676 11677 tree 11678 build_call_expr_internal_loc_array (location_t loc, internal_fn ifn, 11679 tree type, int n, const tree *args) 11680 { 11681 tree t = build_call_1 (type, NULL_TREE, n); 11682 for (int i = 0; i < n; ++i) 11683 CALL_EXPR_ARG (t, i) = args[i]; 11684 SET_EXPR_LOCATION (t, loc); 11685 CALL_EXPR_IFN (t) = ifn; 11686 return t; 11687 } 11688 11689 /* Build internal call expression. This is just like CALL_EXPR, except 11690 its CALL_EXPR_FN is NULL. It will get gimplified later into ordinary 11691 internal function. */ 11692 11693 tree 11694 build_call_expr_internal_loc (location_t loc, enum internal_fn ifn, 11695 tree type, int n, ...) 11696 { 11697 va_list ap; 11698 tree *argarray = XALLOCAVEC (tree, n); 11699 int i; 11700 11701 va_start (ap, n); 11702 for (i = 0; i < n; i++) 11703 argarray[i] = va_arg (ap, tree); 11704 va_end (ap); 11705 return build_call_expr_internal_loc_array (loc, ifn, type, n, argarray); 11706 } 11707 11708 /* Return a function call to FN, if the target is guaranteed to support it, 11709 or null otherwise. 11710 11711 N is the number of arguments, passed in the "...", and TYPE is the 11712 type of the return value. */ 11713 11714 tree 11715 maybe_build_call_expr_loc (location_t loc, combined_fn fn, tree type, 11716 int n, ...) 11717 { 11718 va_list ap; 11719 tree *argarray = XALLOCAVEC (tree, n); 11720 int i; 11721 11722 va_start (ap, n); 11723 for (i = 0; i < n; i++) 11724 argarray[i] = va_arg (ap, tree); 11725 va_end (ap); 11726 if (internal_fn_p (fn)) 11727 { 11728 internal_fn ifn = as_internal_fn (fn); 11729 if (direct_internal_fn_p (ifn)) 11730 { 11731 tree_pair types = direct_internal_fn_types (ifn, type, argarray); 11732 if (!direct_internal_fn_supported_p (ifn, types, 11733 OPTIMIZE_FOR_BOTH)) 11734 return NULL_TREE; 11735 } 11736 return build_call_expr_internal_loc_array (loc, ifn, type, n, argarray); 11737 } 11738 else 11739 { 11740 tree fndecl = builtin_decl_implicit (as_builtin_fn (fn)); 11741 if (!fndecl) 11742 return NULL_TREE; 11743 return build_call_expr_loc_array (loc, fndecl, n, argarray); 11744 } 11745 } 11746 11747 /* Return a function call to the appropriate builtin alloca variant. 11748 11749 SIZE is the size to be allocated. ALIGN, if non-zero, is the requested 11750 alignment of the allocated area. MAX_SIZE, if non-negative, is an upper 11751 bound for SIZE in case it is not a fixed value. */ 11752 11753 tree 11754 build_alloca_call_expr (tree size, unsigned int align, HOST_WIDE_INT max_size) 11755 { 11756 if (max_size >= 0) 11757 { 11758 tree t = builtin_decl_explicit (BUILT_IN_ALLOCA_WITH_ALIGN_AND_MAX); 11759 return 11760 build_call_expr (t, 3, size, size_int (align), size_int (max_size)); 11761 } 11762 else if (align > 0) 11763 { 11764 tree t = builtin_decl_explicit (BUILT_IN_ALLOCA_WITH_ALIGN); 11765 return build_call_expr (t, 2, size, size_int (align)); 11766 } 11767 else 11768 { 11769 tree t = builtin_decl_explicit (BUILT_IN_ALLOCA); 11770 return build_call_expr (t, 1, size); 11771 } 11772 } 11773 11774 /* Create a new constant string literal consisting of elements of type 11775 ELTYPE and return a tree node representing char* pointer to it as 11776 an ADDR_EXPR (ARRAY_REF (ELTYPE, ...)). The STRING_CST value is 11777 the LEN bytes at STR (the representation of the string, which may 11778 be wide). */ 11779 11780 tree 11781 build_string_literal (int len, const char *str, 11782 tree eltype /* = char_type_node */) 11783 { 11784 tree t = build_string (len, str); 11785 tree index = build_index_type (size_int (len - 1)); 11786 eltype = build_type_variant (eltype, 1, 0); 11787 tree type = build_array_type (eltype, index); 11788 TREE_TYPE (t) = type; 11789 TREE_CONSTANT (t) = 1; 11790 TREE_READONLY (t) = 1; 11791 TREE_STATIC (t) = 1; 11792 11793 type = build_pointer_type (eltype); 11794 t = build1 (ADDR_EXPR, type, 11795 build4 (ARRAY_REF, eltype, 11796 t, integer_zero_node, NULL_TREE, NULL_TREE)); 11797 return t; 11798 } 11799 11800 11801 11802 /* Return true if T (assumed to be a DECL) must be assigned a memory 11803 location. */ 11804 11805 bool 11806 needs_to_live_in_memory (const_tree t) 11807 { 11808 return (TREE_ADDRESSABLE (t) 11809 || is_global_var (t) 11810 || (TREE_CODE (t) == RESULT_DECL 11811 && !DECL_BY_REFERENCE (t) 11812 && aggregate_value_p (t, current_function_decl))); 11813 } 11814 11815 /* Return value of a constant X and sign-extend it. */ 11816 11817 HOST_WIDE_INT 11818 int_cst_value (const_tree x) 11819 { 11820 unsigned bits = TYPE_PRECISION (TREE_TYPE (x)); 11821 unsigned HOST_WIDE_INT val = TREE_INT_CST_LOW (x); 11822 11823 /* Make sure the sign-extended value will fit in a HOST_WIDE_INT. */ 11824 gcc_assert (cst_and_fits_in_hwi (x)); 11825 11826 if (bits < HOST_BITS_PER_WIDE_INT) 11827 { 11828 bool negative = ((val >> (bits - 1)) & 1) != 0; 11829 if (negative) 11830 val |= HOST_WIDE_INT_M1U << (bits - 1) << 1; 11831 else 11832 val &= ~(HOST_WIDE_INT_M1U << (bits - 1) << 1); 11833 } 11834 11835 return val; 11836 } 11837 11838 /* If TYPE is an integral or pointer type, return an integer type with 11839 the same precision which is unsigned iff UNSIGNEDP is true, or itself 11840 if TYPE is already an integer type of signedness UNSIGNEDP. 11841 If TYPE is a floating-point type, return an integer type with the same 11842 bitsize and with the signedness given by UNSIGNEDP; this is useful 11843 when doing bit-level operations on a floating-point value. */ 11844 11845 tree 11846 signed_or_unsigned_type_for (int unsignedp, tree type) 11847 { 11848 if (ANY_INTEGRAL_TYPE_P (type) && TYPE_UNSIGNED (type) == unsignedp) 11849 return type; 11850 11851 if (TREE_CODE (type) == VECTOR_TYPE) 11852 { 11853 tree inner = TREE_TYPE (type); 11854 tree inner2 = signed_or_unsigned_type_for (unsignedp, inner); 11855 if (!inner2) 11856 return NULL_TREE; 11857 if (inner == inner2) 11858 return type; 11859 return build_vector_type (inner2, TYPE_VECTOR_SUBPARTS (type)); 11860 } 11861 11862 if (TREE_CODE (type) == COMPLEX_TYPE) 11863 { 11864 tree inner = TREE_TYPE (type); 11865 tree inner2 = signed_or_unsigned_type_for (unsignedp, inner); 11866 if (!inner2) 11867 return NULL_TREE; 11868 if (inner == inner2) 11869 return type; 11870 return build_complex_type (inner2); 11871 } 11872 11873 unsigned int bits; 11874 if (INTEGRAL_TYPE_P (type) 11875 || POINTER_TYPE_P (type) 11876 || TREE_CODE (type) == OFFSET_TYPE) 11877 bits = TYPE_PRECISION (type); 11878 else if (TREE_CODE (type) == REAL_TYPE) 11879 bits = GET_MODE_BITSIZE (SCALAR_TYPE_MODE (type)); 11880 else 11881 return NULL_TREE; 11882 11883 return build_nonstandard_integer_type (bits, unsignedp); 11884 } 11885 11886 /* If TYPE is an integral or pointer type, return an integer type with 11887 the same precision which is unsigned, or itself if TYPE is already an 11888 unsigned integer type. If TYPE is a floating-point type, return an 11889 unsigned integer type with the same bitsize as TYPE. */ 11890 11891 tree 11892 unsigned_type_for (tree type) 11893 { 11894 return signed_or_unsigned_type_for (1, type); 11895 } 11896 11897 /* If TYPE is an integral or pointer type, return an integer type with 11898 the same precision which is signed, or itself if TYPE is already a 11899 signed integer type. If TYPE is a floating-point type, return a 11900 signed integer type with the same bitsize as TYPE. */ 11901 11902 tree 11903 signed_type_for (tree type) 11904 { 11905 return signed_or_unsigned_type_for (0, type); 11906 } 11907 11908 /* If TYPE is a vector type, return a signed integer vector type with the 11909 same width and number of subparts. Otherwise return boolean_type_node. */ 11910 11911 tree 11912 truth_type_for (tree type) 11913 { 11914 if (TREE_CODE (type) == VECTOR_TYPE) 11915 { 11916 if (VECTOR_BOOLEAN_TYPE_P (type)) 11917 return type; 11918 return build_truth_vector_type (TYPE_VECTOR_SUBPARTS (type), 11919 GET_MODE_SIZE (TYPE_MODE (type))); 11920 } 11921 else 11922 return boolean_type_node; 11923 } 11924 11925 /* Returns the largest value obtainable by casting something in INNER type to 11926 OUTER type. */ 11927 11928 tree 11929 upper_bound_in_type (tree outer, tree inner) 11930 { 11931 unsigned int det = 0; 11932 unsigned oprec = TYPE_PRECISION (outer); 11933 unsigned iprec = TYPE_PRECISION (inner); 11934 unsigned prec; 11935 11936 /* Compute a unique number for every combination. */ 11937 det |= (oprec > iprec) ? 4 : 0; 11938 det |= TYPE_UNSIGNED (outer) ? 2 : 0; 11939 det |= TYPE_UNSIGNED (inner) ? 1 : 0; 11940 11941 /* Determine the exponent to use. */ 11942 switch (det) 11943 { 11944 case 0: 11945 case 1: 11946 /* oprec <= iprec, outer: signed, inner: don't care. */ 11947 prec = oprec - 1; 11948 break; 11949 case 2: 11950 case 3: 11951 /* oprec <= iprec, outer: unsigned, inner: don't care. */ 11952 prec = oprec; 11953 break; 11954 case 4: 11955 /* oprec > iprec, outer: signed, inner: signed. */ 11956 prec = iprec - 1; 11957 break; 11958 case 5: 11959 /* oprec > iprec, outer: signed, inner: unsigned. */ 11960 prec = iprec; 11961 break; 11962 case 6: 11963 /* oprec > iprec, outer: unsigned, inner: signed. */ 11964 prec = oprec; 11965 break; 11966 case 7: 11967 /* oprec > iprec, outer: unsigned, inner: unsigned. */ 11968 prec = iprec; 11969 break; 11970 default: 11971 gcc_unreachable (); 11972 } 11973 11974 return wide_int_to_tree (outer, 11975 wi::mask (prec, false, TYPE_PRECISION (outer))); 11976 } 11977 11978 /* Returns the smallest value obtainable by casting something in INNER type to 11979 OUTER type. */ 11980 11981 tree 11982 lower_bound_in_type (tree outer, tree inner) 11983 { 11984 unsigned oprec = TYPE_PRECISION (outer); 11985 unsigned iprec = TYPE_PRECISION (inner); 11986 11987 /* If OUTER type is unsigned, we can definitely cast 0 to OUTER type 11988 and obtain 0. */ 11989 if (TYPE_UNSIGNED (outer) 11990 /* If we are widening something of an unsigned type, OUTER type 11991 contains all values of INNER type. In particular, both INNER 11992 and OUTER types have zero in common. */ 11993 || (oprec > iprec && TYPE_UNSIGNED (inner))) 11994 return build_int_cst (outer, 0); 11995 else 11996 { 11997 /* If we are widening a signed type to another signed type, we 11998 want to obtain -2^^(iprec-1). If we are keeping the 11999 precision or narrowing to a signed type, we want to obtain 12000 -2^(oprec-1). */ 12001 unsigned prec = oprec > iprec ? iprec : oprec; 12002 return wide_int_to_tree (outer, 12003 wi::mask (prec - 1, true, 12004 TYPE_PRECISION (outer))); 12005 } 12006 } 12007 12008 /* Return nonzero if two operands that are suitable for PHI nodes are 12009 necessarily equal. Specifically, both ARG0 and ARG1 must be either 12010 SSA_NAME or invariant. Note that this is strictly an optimization. 12011 That is, callers of this function can directly call operand_equal_p 12012 and get the same result, only slower. */ 12013 12014 int 12015 operand_equal_for_phi_arg_p (const_tree arg0, const_tree arg1) 12016 { 12017 if (arg0 == arg1) 12018 return 1; 12019 if (TREE_CODE (arg0) == SSA_NAME || TREE_CODE (arg1) == SSA_NAME) 12020 return 0; 12021 return operand_equal_p (arg0, arg1, 0); 12022 } 12023 12024 /* Returns number of zeros at the end of binary representation of X. */ 12025 12026 tree 12027 num_ending_zeros (const_tree x) 12028 { 12029 return build_int_cst (TREE_TYPE (x), wi::ctz (wi::to_wide (x))); 12030 } 12031 12032 12033 #define WALK_SUBTREE(NODE) \ 12034 do \ 12035 { \ 12036 result = walk_tree_1 (&(NODE), func, data, pset, lh); \ 12037 if (result) \ 12038 return result; \ 12039 } \ 12040 while (0) 12041 12042 /* This is a subroutine of walk_tree that walks field of TYPE that are to 12043 be walked whenever a type is seen in the tree. Rest of operands and return 12044 value are as for walk_tree. */ 12045 12046 static tree 12047 walk_type_fields (tree type, walk_tree_fn func, void *data, 12048 hash_set<tree> *pset, walk_tree_lh lh) 12049 { 12050 tree result = NULL_TREE; 12051 12052 switch (TREE_CODE (type)) 12053 { 12054 case POINTER_TYPE: 12055 case REFERENCE_TYPE: 12056 case VECTOR_TYPE: 12057 /* We have to worry about mutually recursive pointers. These can't 12058 be written in C. They can in Ada. It's pathological, but 12059 there's an ACATS test (c38102a) that checks it. Deal with this 12060 by checking if we're pointing to another pointer, that one 12061 points to another pointer, that one does too, and we have no htab. 12062 If so, get a hash table. We check three levels deep to avoid 12063 the cost of the hash table if we don't need one. */ 12064 if (POINTER_TYPE_P (TREE_TYPE (type)) 12065 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (type))) 12066 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (TREE_TYPE (type)))) 12067 && !pset) 12068 { 12069 result = walk_tree_without_duplicates (&TREE_TYPE (type), 12070 func, data); 12071 if (result) 12072 return result; 12073 12074 break; 12075 } 12076 12077 /* fall through */ 12078 12079 case COMPLEX_TYPE: 12080 WALK_SUBTREE (TREE_TYPE (type)); 12081 break; 12082 12083 case METHOD_TYPE: 12084 WALK_SUBTREE (TYPE_METHOD_BASETYPE (type)); 12085 12086 /* Fall through. */ 12087 12088 case FUNCTION_TYPE: 12089 WALK_SUBTREE (TREE_TYPE (type)); 12090 { 12091 tree arg; 12092 12093 /* We never want to walk into default arguments. */ 12094 for (arg = TYPE_ARG_TYPES (type); arg; arg = TREE_CHAIN (arg)) 12095 WALK_SUBTREE (TREE_VALUE (arg)); 12096 } 12097 break; 12098 12099 case ARRAY_TYPE: 12100 /* Don't follow this nodes's type if a pointer for fear that 12101 we'll have infinite recursion. If we have a PSET, then we 12102 need not fear. */ 12103 if (pset 12104 || (!POINTER_TYPE_P (TREE_TYPE (type)) 12105 && TREE_CODE (TREE_TYPE (type)) != OFFSET_TYPE)) 12106 WALK_SUBTREE (TREE_TYPE (type)); 12107 WALK_SUBTREE (TYPE_DOMAIN (type)); 12108 break; 12109 12110 case OFFSET_TYPE: 12111 WALK_SUBTREE (TREE_TYPE (type)); 12112 WALK_SUBTREE (TYPE_OFFSET_BASETYPE (type)); 12113 break; 12114 12115 default: 12116 break; 12117 } 12118 12119 return NULL_TREE; 12120 } 12121 12122 /* Apply FUNC to all the sub-trees of TP in a pre-order traversal. FUNC is 12123 called with the DATA and the address of each sub-tree. If FUNC returns a 12124 non-NULL value, the traversal is stopped, and the value returned by FUNC 12125 is returned. If PSET is non-NULL it is used to record the nodes visited, 12126 and to avoid visiting a node more than once. */ 12127 12128 tree 12129 walk_tree_1 (tree *tp, walk_tree_fn func, void *data, 12130 hash_set<tree> *pset, walk_tree_lh lh) 12131 { 12132 enum tree_code code; 12133 int walk_subtrees; 12134 tree result; 12135 12136 #define WALK_SUBTREE_TAIL(NODE) \ 12137 do \ 12138 { \ 12139 tp = & (NODE); \ 12140 goto tail_recurse; \ 12141 } \ 12142 while (0) 12143 12144 tail_recurse: 12145 /* Skip empty subtrees. */ 12146 if (!*tp) 12147 return NULL_TREE; 12148 12149 /* Don't walk the same tree twice, if the user has requested 12150 that we avoid doing so. */ 12151 if (pset && pset->add (*tp)) 12152 return NULL_TREE; 12153 12154 /* Call the function. */ 12155 walk_subtrees = 1; 12156 result = (*func) (tp, &walk_subtrees, data); 12157 12158 /* If we found something, return it. */ 12159 if (result) 12160 return result; 12161 12162 code = TREE_CODE (*tp); 12163 12164 /* Even if we didn't, FUNC may have decided that there was nothing 12165 interesting below this point in the tree. */ 12166 if (!walk_subtrees) 12167 { 12168 /* But we still need to check our siblings. */ 12169 if (code == TREE_LIST) 12170 WALK_SUBTREE_TAIL (TREE_CHAIN (*tp)); 12171 else if (code == OMP_CLAUSE) 12172 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp)); 12173 else 12174 return NULL_TREE; 12175 } 12176 12177 if (lh) 12178 { 12179 result = (*lh) (tp, &walk_subtrees, func, data, pset); 12180 if (result || !walk_subtrees) 12181 return result; 12182 } 12183 12184 switch (code) 12185 { 12186 case ERROR_MARK: 12187 case IDENTIFIER_NODE: 12188 case INTEGER_CST: 12189 case REAL_CST: 12190 case FIXED_CST: 12191 case VECTOR_CST: 12192 case STRING_CST: 12193 case BLOCK: 12194 case PLACEHOLDER_EXPR: 12195 case SSA_NAME: 12196 case FIELD_DECL: 12197 case RESULT_DECL: 12198 /* None of these have subtrees other than those already walked 12199 above. */ 12200 break; 12201 12202 case TREE_LIST: 12203 WALK_SUBTREE (TREE_VALUE (*tp)); 12204 WALK_SUBTREE_TAIL (TREE_CHAIN (*tp)); 12205 break; 12206 12207 case TREE_VEC: 12208 { 12209 int len = TREE_VEC_LENGTH (*tp); 12210 12211 if (len == 0) 12212 break; 12213 12214 /* Walk all elements but the first. */ 12215 while (--len) 12216 WALK_SUBTREE (TREE_VEC_ELT (*tp, len)); 12217 12218 /* Now walk the first one as a tail call. */ 12219 WALK_SUBTREE_TAIL (TREE_VEC_ELT (*tp, 0)); 12220 } 12221 12222 case COMPLEX_CST: 12223 WALK_SUBTREE (TREE_REALPART (*tp)); 12224 WALK_SUBTREE_TAIL (TREE_IMAGPART (*tp)); 12225 12226 case CONSTRUCTOR: 12227 { 12228 unsigned HOST_WIDE_INT idx; 12229 constructor_elt *ce; 12230 12231 for (idx = 0; vec_safe_iterate (CONSTRUCTOR_ELTS (*tp), idx, &ce); 12232 idx++) 12233 WALK_SUBTREE (ce->value); 12234 } 12235 break; 12236 12237 case SAVE_EXPR: 12238 WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, 0)); 12239 12240 case BIND_EXPR: 12241 { 12242 tree decl; 12243 for (decl = BIND_EXPR_VARS (*tp); decl; decl = DECL_CHAIN (decl)) 12244 { 12245 /* Walk the DECL_INITIAL and DECL_SIZE. We don't want to walk 12246 into declarations that are just mentioned, rather than 12247 declared; they don't really belong to this part of the tree. 12248 And, we can see cycles: the initializer for a declaration 12249 can refer to the declaration itself. */ 12250 WALK_SUBTREE (DECL_INITIAL (decl)); 12251 WALK_SUBTREE (DECL_SIZE (decl)); 12252 WALK_SUBTREE (DECL_SIZE_UNIT (decl)); 12253 } 12254 WALK_SUBTREE_TAIL (BIND_EXPR_BODY (*tp)); 12255 } 12256 12257 case STATEMENT_LIST: 12258 { 12259 tree_stmt_iterator i; 12260 for (i = tsi_start (*tp); !tsi_end_p (i); tsi_next (&i)) 12261 WALK_SUBTREE (*tsi_stmt_ptr (i)); 12262 } 12263 break; 12264 12265 case OMP_CLAUSE: 12266 switch (OMP_CLAUSE_CODE (*tp)) 12267 { 12268 case OMP_CLAUSE_GANG: 12269 case OMP_CLAUSE__GRIDDIM_: 12270 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, 1)); 12271 /* FALLTHRU */ 12272 12273 case OMP_CLAUSE_ASYNC: 12274 case OMP_CLAUSE_WAIT: 12275 case OMP_CLAUSE_WORKER: 12276 case OMP_CLAUSE_VECTOR: 12277 case OMP_CLAUSE_NUM_GANGS: 12278 case OMP_CLAUSE_NUM_WORKERS: 12279 case OMP_CLAUSE_VECTOR_LENGTH: 12280 case OMP_CLAUSE_PRIVATE: 12281 case OMP_CLAUSE_SHARED: 12282 case OMP_CLAUSE_FIRSTPRIVATE: 12283 case OMP_CLAUSE_COPYIN: 12284 case OMP_CLAUSE_COPYPRIVATE: 12285 case OMP_CLAUSE_FINAL: 12286 case OMP_CLAUSE_IF: 12287 case OMP_CLAUSE_NUM_THREADS: 12288 case OMP_CLAUSE_SCHEDULE: 12289 case OMP_CLAUSE_UNIFORM: 12290 case OMP_CLAUSE_DEPEND: 12291 case OMP_CLAUSE_NONTEMPORAL: 12292 case OMP_CLAUSE_NUM_TEAMS: 12293 case OMP_CLAUSE_THREAD_LIMIT: 12294 case OMP_CLAUSE_DEVICE: 12295 case OMP_CLAUSE_DIST_SCHEDULE: 12296 case OMP_CLAUSE_SAFELEN: 12297 case OMP_CLAUSE_SIMDLEN: 12298 case OMP_CLAUSE_ORDERED: 12299 case OMP_CLAUSE_PRIORITY: 12300 case OMP_CLAUSE_GRAINSIZE: 12301 case OMP_CLAUSE_NUM_TASKS: 12302 case OMP_CLAUSE_HINT: 12303 case OMP_CLAUSE_TO_DECLARE: 12304 case OMP_CLAUSE_LINK: 12305 case OMP_CLAUSE_USE_DEVICE_PTR: 12306 case OMP_CLAUSE_IS_DEVICE_PTR: 12307 case OMP_CLAUSE__LOOPTEMP_: 12308 case OMP_CLAUSE__REDUCTEMP_: 12309 case OMP_CLAUSE__SIMDUID_: 12310 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, 0)); 12311 /* FALLTHRU */ 12312 12313 case OMP_CLAUSE_INDEPENDENT: 12314 case OMP_CLAUSE_NOWAIT: 12315 case OMP_CLAUSE_DEFAULT: 12316 case OMP_CLAUSE_UNTIED: 12317 case OMP_CLAUSE_MERGEABLE: 12318 case OMP_CLAUSE_PROC_BIND: 12319 case OMP_CLAUSE_INBRANCH: 12320 case OMP_CLAUSE_NOTINBRANCH: 12321 case OMP_CLAUSE_FOR: 12322 case OMP_CLAUSE_PARALLEL: 12323 case OMP_CLAUSE_SECTIONS: 12324 case OMP_CLAUSE_TASKGROUP: 12325 case OMP_CLAUSE_NOGROUP: 12326 case OMP_CLAUSE_THREADS: 12327 case OMP_CLAUSE_SIMD: 12328 case OMP_CLAUSE_DEFAULTMAP: 12329 case OMP_CLAUSE_AUTO: 12330 case OMP_CLAUSE_SEQ: 12331 case OMP_CLAUSE_TILE: 12332 case OMP_CLAUSE__SIMT_: 12333 case OMP_CLAUSE_IF_PRESENT: 12334 case OMP_CLAUSE_FINALIZE: 12335 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp)); 12336 12337 case OMP_CLAUSE_LASTPRIVATE: 12338 WALK_SUBTREE (OMP_CLAUSE_DECL (*tp)); 12339 WALK_SUBTREE (OMP_CLAUSE_LASTPRIVATE_STMT (*tp)); 12340 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp)); 12341 12342 case OMP_CLAUSE_COLLAPSE: 12343 { 12344 int i; 12345 for (i = 0; i < 3; i++) 12346 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, i)); 12347 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp)); 12348 } 12349 12350 case OMP_CLAUSE_LINEAR: 12351 WALK_SUBTREE (OMP_CLAUSE_DECL (*tp)); 12352 WALK_SUBTREE (OMP_CLAUSE_LINEAR_STEP (*tp)); 12353 WALK_SUBTREE (OMP_CLAUSE_LINEAR_STMT (*tp)); 12354 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp)); 12355 12356 case OMP_CLAUSE_ALIGNED: 12357 case OMP_CLAUSE_FROM: 12358 case OMP_CLAUSE_TO: 12359 case OMP_CLAUSE_MAP: 12360 case OMP_CLAUSE__CACHE_: 12361 WALK_SUBTREE (OMP_CLAUSE_DECL (*tp)); 12362 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, 1)); 12363 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp)); 12364 12365 case OMP_CLAUSE_REDUCTION: 12366 case OMP_CLAUSE_TASK_REDUCTION: 12367 case OMP_CLAUSE_IN_REDUCTION: 12368 { 12369 int i; 12370 for (i = 0; i < 5; i++) 12371 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, i)); 12372 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp)); 12373 } 12374 12375 default: 12376 gcc_unreachable (); 12377 } 12378 break; 12379 12380 case TARGET_EXPR: 12381 { 12382 int i, len; 12383 12384 /* TARGET_EXPRs are peculiar: operands 1 and 3 can be the same. 12385 But, we only want to walk once. */ 12386 len = (TREE_OPERAND (*tp, 3) == TREE_OPERAND (*tp, 1)) ? 2 : 3; 12387 for (i = 0; i < len; ++i) 12388 WALK_SUBTREE (TREE_OPERAND (*tp, i)); 12389 WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, len)); 12390 } 12391 12392 case DECL_EXPR: 12393 /* If this is a TYPE_DECL, walk into the fields of the type that it's 12394 defining. We only want to walk into these fields of a type in this 12395 case and not in the general case of a mere reference to the type. 12396 12397 The criterion is as follows: if the field can be an expression, it 12398 must be walked only here. This should be in keeping with the fields 12399 that are directly gimplified in gimplify_type_sizes in order for the 12400 mark/copy-if-shared/unmark machinery of the gimplifier to work with 12401 variable-sized types. 12402 12403 Note that DECLs get walked as part of processing the BIND_EXPR. */ 12404 if (TREE_CODE (DECL_EXPR_DECL (*tp)) == TYPE_DECL) 12405 { 12406 tree *type_p = &TREE_TYPE (DECL_EXPR_DECL (*tp)); 12407 if (TREE_CODE (*type_p) == ERROR_MARK) 12408 return NULL_TREE; 12409 12410 /* Call the function for the type. See if it returns anything or 12411 doesn't want us to continue. If we are to continue, walk both 12412 the normal fields and those for the declaration case. */ 12413 result = (*func) (type_p, &walk_subtrees, data); 12414 if (result || !walk_subtrees) 12415 return result; 12416 12417 /* But do not walk a pointed-to type since it may itself need to 12418 be walked in the declaration case if it isn't anonymous. */ 12419 if (!POINTER_TYPE_P (*type_p)) 12420 { 12421 result = walk_type_fields (*type_p, func, data, pset, lh); 12422 if (result) 12423 return result; 12424 } 12425 12426 /* If this is a record type, also walk the fields. */ 12427 if (RECORD_OR_UNION_TYPE_P (*type_p)) 12428 { 12429 tree field; 12430 12431 for (field = TYPE_FIELDS (*type_p); field; 12432 field = DECL_CHAIN (field)) 12433 { 12434 /* We'd like to look at the type of the field, but we can 12435 easily get infinite recursion. So assume it's pointed 12436 to elsewhere in the tree. Also, ignore things that 12437 aren't fields. */ 12438 if (TREE_CODE (field) != FIELD_DECL) 12439 continue; 12440 12441 WALK_SUBTREE (DECL_FIELD_OFFSET (field)); 12442 WALK_SUBTREE (DECL_SIZE (field)); 12443 WALK_SUBTREE (DECL_SIZE_UNIT (field)); 12444 if (TREE_CODE (*type_p) == QUAL_UNION_TYPE) 12445 WALK_SUBTREE (DECL_QUALIFIER (field)); 12446 } 12447 } 12448 12449 /* Same for scalar types. */ 12450 else if (TREE_CODE (*type_p) == BOOLEAN_TYPE 12451 || TREE_CODE (*type_p) == ENUMERAL_TYPE 12452 || TREE_CODE (*type_p) == INTEGER_TYPE 12453 || TREE_CODE (*type_p) == FIXED_POINT_TYPE 12454 || TREE_CODE (*type_p) == REAL_TYPE) 12455 { 12456 WALK_SUBTREE (TYPE_MIN_VALUE (*type_p)); 12457 WALK_SUBTREE (TYPE_MAX_VALUE (*type_p)); 12458 } 12459 12460 WALK_SUBTREE (TYPE_SIZE (*type_p)); 12461 WALK_SUBTREE_TAIL (TYPE_SIZE_UNIT (*type_p)); 12462 } 12463 /* FALLTHRU */ 12464 12465 default: 12466 if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code))) 12467 { 12468 int i, len; 12469 12470 /* Walk over all the sub-trees of this operand. */ 12471 len = TREE_OPERAND_LENGTH (*tp); 12472 12473 /* Go through the subtrees. We need to do this in forward order so 12474 that the scope of a FOR_EXPR is handled properly. */ 12475 if (len) 12476 { 12477 for (i = 0; i < len - 1; ++i) 12478 WALK_SUBTREE (TREE_OPERAND (*tp, i)); 12479 WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, len - 1)); 12480 } 12481 } 12482 /* If this is a type, walk the needed fields in the type. */ 12483 else if (TYPE_P (*tp)) 12484 return walk_type_fields (*tp, func, data, pset, lh); 12485 break; 12486 } 12487 12488 /* We didn't find what we were looking for. */ 12489 return NULL_TREE; 12490 12491 #undef WALK_SUBTREE_TAIL 12492 } 12493 #undef WALK_SUBTREE 12494 12495 /* Like walk_tree, but does not walk duplicate nodes more than once. */ 12496 12497 tree 12498 walk_tree_without_duplicates_1 (tree *tp, walk_tree_fn func, void *data, 12499 walk_tree_lh lh) 12500 { 12501 tree result; 12502 12503 hash_set<tree> pset; 12504 result = walk_tree_1 (tp, func, data, &pset, lh); 12505 return result; 12506 } 12507 12508 12509 tree 12510 tree_block (tree t) 12511 { 12512 const enum tree_code_class c = TREE_CODE_CLASS (TREE_CODE (t)); 12513 12514 if (IS_EXPR_CODE_CLASS (c)) 12515 return LOCATION_BLOCK (t->exp.locus); 12516 gcc_unreachable (); 12517 return NULL; 12518 } 12519 12520 void 12521 tree_set_block (tree t, tree b) 12522 { 12523 const enum tree_code_class c = TREE_CODE_CLASS (TREE_CODE (t)); 12524 12525 if (IS_EXPR_CODE_CLASS (c)) 12526 { 12527 t->exp.locus = set_block (t->exp.locus, b); 12528 } 12529 else 12530 gcc_unreachable (); 12531 } 12532 12533 /* Create a nameless artificial label and put it in the current 12534 function context. The label has a location of LOC. Returns the 12535 newly created label. */ 12536 12537 tree 12538 create_artificial_label (location_t loc) 12539 { 12540 tree lab = build_decl (loc, 12541 LABEL_DECL, NULL_TREE, void_type_node); 12542 12543 DECL_ARTIFICIAL (lab) = 1; 12544 DECL_IGNORED_P (lab) = 1; 12545 DECL_CONTEXT (lab) = current_function_decl; 12546 return lab; 12547 } 12548 12549 /* Given a tree, try to return a useful variable name that we can use 12550 to prefix a temporary that is being assigned the value of the tree. 12551 I.E. given <temp> = &A, return A. */ 12552 12553 const char * 12554 get_name (tree t) 12555 { 12556 tree stripped_decl; 12557 12558 stripped_decl = t; 12559 STRIP_NOPS (stripped_decl); 12560 if (DECL_P (stripped_decl) && DECL_NAME (stripped_decl)) 12561 return IDENTIFIER_POINTER (DECL_NAME (stripped_decl)); 12562 else if (TREE_CODE (stripped_decl) == SSA_NAME) 12563 { 12564 tree name = SSA_NAME_IDENTIFIER (stripped_decl); 12565 if (!name) 12566 return NULL; 12567 return IDENTIFIER_POINTER (name); 12568 } 12569 else 12570 { 12571 switch (TREE_CODE (stripped_decl)) 12572 { 12573 case ADDR_EXPR: 12574 return get_name (TREE_OPERAND (stripped_decl, 0)); 12575 default: 12576 return NULL; 12577 } 12578 } 12579 } 12580 12581 /* Return true if TYPE has a variable argument list. */ 12582 12583 bool 12584 stdarg_p (const_tree fntype) 12585 { 12586 function_args_iterator args_iter; 12587 tree n = NULL_TREE, t; 12588 12589 if (!fntype) 12590 return false; 12591 12592 FOREACH_FUNCTION_ARGS (fntype, t, args_iter) 12593 { 12594 n = t; 12595 } 12596 12597 return n != NULL_TREE && n != void_type_node; 12598 } 12599 12600 /* Return true if TYPE has a prototype. */ 12601 12602 bool 12603 prototype_p (const_tree fntype) 12604 { 12605 tree t; 12606 12607 gcc_assert (fntype != NULL_TREE); 12608 12609 t = TYPE_ARG_TYPES (fntype); 12610 return (t != NULL_TREE); 12611 } 12612 12613 /* If BLOCK is inlined from an __attribute__((__artificial__)) 12614 routine, return pointer to location from where it has been 12615 called. */ 12616 location_t * 12617 block_nonartificial_location (tree block) 12618 { 12619 location_t *ret = NULL; 12620 12621 while (block && TREE_CODE (block) == BLOCK 12622 && BLOCK_ABSTRACT_ORIGIN (block)) 12623 { 12624 tree ao = BLOCK_ABSTRACT_ORIGIN (block); 12625 if (TREE_CODE (ao) == FUNCTION_DECL) 12626 { 12627 /* If AO is an artificial inline, point RET to the 12628 call site locus at which it has been inlined and continue 12629 the loop, in case AO's caller is also an artificial 12630 inline. */ 12631 if (DECL_DECLARED_INLINE_P (ao) 12632 && lookup_attribute ("artificial", DECL_ATTRIBUTES (ao))) 12633 ret = &BLOCK_SOURCE_LOCATION (block); 12634 else 12635 break; 12636 } 12637 else if (TREE_CODE (ao) != BLOCK) 12638 break; 12639 12640 block = BLOCK_SUPERCONTEXT (block); 12641 } 12642 return ret; 12643 } 12644 12645 12646 /* If EXP is inlined from an __attribute__((__artificial__)) 12647 function, return the location of the original call expression. */ 12648 12649 location_t 12650 tree_nonartificial_location (tree exp) 12651 { 12652 location_t *loc = block_nonartificial_location (TREE_BLOCK (exp)); 12653 12654 if (loc) 12655 return *loc; 12656 else 12657 return EXPR_LOCATION (exp); 12658 } 12659 12660 12661 /* These are the hash table functions for the hash table of OPTIMIZATION_NODEq 12662 nodes. */ 12663 12664 /* Return the hash code X, an OPTIMIZATION_NODE or TARGET_OPTION code. */ 12665 12666 hashval_t 12667 cl_option_hasher::hash (tree x) 12668 { 12669 const_tree const t = x; 12670 const char *p; 12671 size_t i; 12672 size_t len = 0; 12673 hashval_t hash = 0; 12674 12675 if (TREE_CODE (t) == OPTIMIZATION_NODE) 12676 { 12677 p = (const char *)TREE_OPTIMIZATION (t); 12678 len = sizeof (struct cl_optimization); 12679 } 12680 12681 else if (TREE_CODE (t) == TARGET_OPTION_NODE) 12682 return cl_target_option_hash (TREE_TARGET_OPTION (t)); 12683 12684 else 12685 gcc_unreachable (); 12686 12687 /* assume most opt flags are just 0/1, some are 2-3, and a few might be 12688 something else. */ 12689 for (i = 0; i < len; i++) 12690 if (p[i]) 12691 hash = (hash << 4) ^ ((i << 2) | p[i]); 12692 12693 return hash; 12694 } 12695 12696 /* Return nonzero if the value represented by *X (an OPTIMIZATION or 12697 TARGET_OPTION tree node) is the same as that given by *Y, which is the 12698 same. */ 12699 12700 bool 12701 cl_option_hasher::equal (tree x, tree y) 12702 { 12703 const_tree const xt = x; 12704 const_tree const yt = y; 12705 12706 if (TREE_CODE (xt) != TREE_CODE (yt)) 12707 return 0; 12708 12709 if (TREE_CODE (xt) == OPTIMIZATION_NODE) 12710 return cl_optimization_option_eq (TREE_OPTIMIZATION (xt), 12711 TREE_OPTIMIZATION (yt)); 12712 else if (TREE_CODE (xt) == TARGET_OPTION_NODE) 12713 return cl_target_option_eq (TREE_TARGET_OPTION (xt), 12714 TREE_TARGET_OPTION (yt)); 12715 else 12716 gcc_unreachable (); 12717 } 12718 12719 /* Build an OPTIMIZATION_NODE based on the options in OPTS. */ 12720 12721 tree 12722 build_optimization_node (struct gcc_options *opts) 12723 { 12724 tree t; 12725 12726 /* Use the cache of optimization nodes. */ 12727 12728 cl_optimization_save (TREE_OPTIMIZATION (cl_optimization_node), 12729 opts); 12730 12731 tree *slot = cl_option_hash_table->find_slot (cl_optimization_node, INSERT); 12732 t = *slot; 12733 if (!t) 12734 { 12735 /* Insert this one into the hash table. */ 12736 t = cl_optimization_node; 12737 *slot = t; 12738 12739 /* Make a new node for next time round. */ 12740 cl_optimization_node = make_node (OPTIMIZATION_NODE); 12741 } 12742 12743 return t; 12744 } 12745 12746 /* Build a TARGET_OPTION_NODE based on the options in OPTS. */ 12747 12748 tree 12749 build_target_option_node (struct gcc_options *opts) 12750 { 12751 tree t; 12752 12753 /* Use the cache of optimization nodes. */ 12754 12755 cl_target_option_save (TREE_TARGET_OPTION (cl_target_option_node), 12756 opts); 12757 12758 tree *slot = cl_option_hash_table->find_slot (cl_target_option_node, INSERT); 12759 t = *slot; 12760 if (!t) 12761 { 12762 /* Insert this one into the hash table. */ 12763 t = cl_target_option_node; 12764 *slot = t; 12765 12766 /* Make a new node for next time round. */ 12767 cl_target_option_node = make_node (TARGET_OPTION_NODE); 12768 } 12769 12770 return t; 12771 } 12772 12773 /* Clear TREE_TARGET_GLOBALS of all TARGET_OPTION_NODE trees, 12774 so that they aren't saved during PCH writing. */ 12775 12776 void 12777 prepare_target_option_nodes_for_pch (void) 12778 { 12779 hash_table<cl_option_hasher>::iterator iter = cl_option_hash_table->begin (); 12780 for (; iter != cl_option_hash_table->end (); ++iter) 12781 if (TREE_CODE (*iter) == TARGET_OPTION_NODE) 12782 TREE_TARGET_GLOBALS (*iter) = NULL; 12783 } 12784 12785 /* Determine the "ultimate origin" of a block. */ 12786 12787 tree 12788 block_ultimate_origin (const_tree block) 12789 { 12790 tree origin = BLOCK_ABSTRACT_ORIGIN (block); 12791 12792 if (origin == NULL_TREE) 12793 return NULL_TREE; 12794 else 12795 { 12796 gcc_checking_assert ((DECL_P (origin) 12797 && DECL_ORIGIN (origin) == origin) 12798 || BLOCK_ORIGIN (origin) == origin); 12799 return origin; 12800 } 12801 } 12802 12803 /* Return true iff conversion from INNER_TYPE to OUTER_TYPE generates 12804 no instruction. */ 12805 12806 bool 12807 tree_nop_conversion_p (const_tree outer_type, const_tree inner_type) 12808 { 12809 /* Do not strip casts into or out of differing address spaces. */ 12810 if (POINTER_TYPE_P (outer_type) 12811 && TYPE_ADDR_SPACE (TREE_TYPE (outer_type)) != ADDR_SPACE_GENERIC) 12812 { 12813 if (!POINTER_TYPE_P (inner_type) 12814 || (TYPE_ADDR_SPACE (TREE_TYPE (outer_type)) 12815 != TYPE_ADDR_SPACE (TREE_TYPE (inner_type)))) 12816 return false; 12817 } 12818 else if (POINTER_TYPE_P (inner_type) 12819 && TYPE_ADDR_SPACE (TREE_TYPE (inner_type)) != ADDR_SPACE_GENERIC) 12820 { 12821 /* We already know that outer_type is not a pointer with 12822 a non-generic address space. */ 12823 return false; 12824 } 12825 12826 /* Use precision rather then machine mode when we can, which gives 12827 the correct answer even for submode (bit-field) types. */ 12828 if ((INTEGRAL_TYPE_P (outer_type) 12829 || POINTER_TYPE_P (outer_type) 12830 || TREE_CODE (outer_type) == OFFSET_TYPE) 12831 && (INTEGRAL_TYPE_P (inner_type) 12832 || POINTER_TYPE_P (inner_type) 12833 || TREE_CODE (inner_type) == OFFSET_TYPE)) 12834 return TYPE_PRECISION (outer_type) == TYPE_PRECISION (inner_type); 12835 12836 /* Otherwise fall back on comparing machine modes (e.g. for 12837 aggregate types, floats). */ 12838 return TYPE_MODE (outer_type) == TYPE_MODE (inner_type); 12839 } 12840 12841 /* Return true iff conversion in EXP generates no instruction. Mark 12842 it inline so that we fully inline into the stripping functions even 12843 though we have two uses of this function. */ 12844 12845 static inline bool 12846 tree_nop_conversion (const_tree exp) 12847 { 12848 tree outer_type, inner_type; 12849 12850 if (location_wrapper_p (exp)) 12851 return true; 12852 if (!CONVERT_EXPR_P (exp) 12853 && TREE_CODE (exp) != NON_LVALUE_EXPR) 12854 return false; 12855 12856 outer_type = TREE_TYPE (exp); 12857 inner_type = TREE_TYPE (TREE_OPERAND (exp, 0)); 12858 if (!inner_type || inner_type == error_mark_node) 12859 return false; 12860 12861 return tree_nop_conversion_p (outer_type, inner_type); 12862 } 12863 12864 /* Return true iff conversion in EXP generates no instruction. Don't 12865 consider conversions changing the signedness. */ 12866 12867 static bool 12868 tree_sign_nop_conversion (const_tree exp) 12869 { 12870 tree outer_type, inner_type; 12871 12872 if (!tree_nop_conversion (exp)) 12873 return false; 12874 12875 outer_type = TREE_TYPE (exp); 12876 inner_type = TREE_TYPE (TREE_OPERAND (exp, 0)); 12877 12878 return (TYPE_UNSIGNED (outer_type) == TYPE_UNSIGNED (inner_type) 12879 && POINTER_TYPE_P (outer_type) == POINTER_TYPE_P (inner_type)); 12880 } 12881 12882 /* Strip conversions from EXP according to tree_nop_conversion and 12883 return the resulting expression. */ 12884 12885 tree 12886 tree_strip_nop_conversions (tree exp) 12887 { 12888 while (tree_nop_conversion (exp)) 12889 exp = TREE_OPERAND (exp, 0); 12890 return exp; 12891 } 12892 12893 /* Strip conversions from EXP according to tree_sign_nop_conversion 12894 and return the resulting expression. */ 12895 12896 tree 12897 tree_strip_sign_nop_conversions (tree exp) 12898 { 12899 while (tree_sign_nop_conversion (exp)) 12900 exp = TREE_OPERAND (exp, 0); 12901 return exp; 12902 } 12903 12904 /* Avoid any floating point extensions from EXP. */ 12905 tree 12906 strip_float_extensions (tree exp) 12907 { 12908 tree sub, expt, subt; 12909 12910 /* For floating point constant look up the narrowest type that can hold 12911 it properly and handle it like (type)(narrowest_type)constant. 12912 This way we can optimize for instance a=a*2.0 where "a" is float 12913 but 2.0 is double constant. */ 12914 if (TREE_CODE (exp) == REAL_CST && !DECIMAL_FLOAT_TYPE_P (TREE_TYPE (exp))) 12915 { 12916 REAL_VALUE_TYPE orig; 12917 tree type = NULL; 12918 12919 orig = TREE_REAL_CST (exp); 12920 if (TYPE_PRECISION (TREE_TYPE (exp)) > TYPE_PRECISION (float_type_node) 12921 && exact_real_truncate (TYPE_MODE (float_type_node), &orig)) 12922 type = float_type_node; 12923 else if (TYPE_PRECISION (TREE_TYPE (exp)) 12924 > TYPE_PRECISION (double_type_node) 12925 && exact_real_truncate (TYPE_MODE (double_type_node), &orig)) 12926 type = double_type_node; 12927 if (type) 12928 return build_real_truncate (type, orig); 12929 } 12930 12931 if (!CONVERT_EXPR_P (exp)) 12932 return exp; 12933 12934 sub = TREE_OPERAND (exp, 0); 12935 subt = TREE_TYPE (sub); 12936 expt = TREE_TYPE (exp); 12937 12938 if (!FLOAT_TYPE_P (subt)) 12939 return exp; 12940 12941 if (DECIMAL_FLOAT_TYPE_P (expt) != DECIMAL_FLOAT_TYPE_P (subt)) 12942 return exp; 12943 12944 if (TYPE_PRECISION (subt) > TYPE_PRECISION (expt)) 12945 return exp; 12946 12947 return strip_float_extensions (sub); 12948 } 12949 12950 /* Strip out all handled components that produce invariant 12951 offsets. */ 12952 12953 const_tree 12954 strip_invariant_refs (const_tree op) 12955 { 12956 while (handled_component_p (op)) 12957 { 12958 switch (TREE_CODE (op)) 12959 { 12960 case ARRAY_REF: 12961 case ARRAY_RANGE_REF: 12962 if (!is_gimple_constant (TREE_OPERAND (op, 1)) 12963 || TREE_OPERAND (op, 2) != NULL_TREE 12964 || TREE_OPERAND (op, 3) != NULL_TREE) 12965 return NULL; 12966 break; 12967 12968 case COMPONENT_REF: 12969 if (TREE_OPERAND (op, 2) != NULL_TREE) 12970 return NULL; 12971 break; 12972 12973 default:; 12974 } 12975 op = TREE_OPERAND (op, 0); 12976 } 12977 12978 return op; 12979 } 12980 12981 static GTY(()) tree gcc_eh_personality_decl; 12982 12983 /* Return the GCC personality function decl. */ 12984 12985 tree 12986 lhd_gcc_personality (void) 12987 { 12988 if (!gcc_eh_personality_decl) 12989 gcc_eh_personality_decl = build_personality_function ("gcc"); 12990 return gcc_eh_personality_decl; 12991 } 12992 12993 /* TARGET is a call target of GIMPLE call statement 12994 (obtained by gimple_call_fn). Return true if it is 12995 OBJ_TYPE_REF representing an virtual call of C++ method. 12996 (As opposed to OBJ_TYPE_REF representing objc calls 12997 through a cast where middle-end devirtualization machinery 12998 can't apply.) */ 12999 13000 bool 13001 virtual_method_call_p (const_tree target) 13002 { 13003 if (TREE_CODE (target) != OBJ_TYPE_REF) 13004 return false; 13005 tree t = TREE_TYPE (target); 13006 gcc_checking_assert (TREE_CODE (t) == POINTER_TYPE); 13007 t = TREE_TYPE (t); 13008 if (TREE_CODE (t) == FUNCTION_TYPE) 13009 return false; 13010 gcc_checking_assert (TREE_CODE (t) == METHOD_TYPE); 13011 /* If we do not have BINFO associated, it means that type was built 13012 without devirtualization enabled. Do not consider this a virtual 13013 call. */ 13014 if (!TYPE_BINFO (obj_type_ref_class (target))) 13015 return false; 13016 return true; 13017 } 13018 13019 /* Lookup sub-BINFO of BINFO of TYPE at offset POS. */ 13020 13021 static tree 13022 lookup_binfo_at_offset (tree binfo, tree type, HOST_WIDE_INT pos) 13023 { 13024 unsigned int i; 13025 tree base_binfo, b; 13026 13027 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++) 13028 if (pos == tree_to_shwi (BINFO_OFFSET (base_binfo)) 13029 && types_same_for_odr (TREE_TYPE (base_binfo), type)) 13030 return base_binfo; 13031 else if ((b = lookup_binfo_at_offset (base_binfo, type, pos)) != NULL) 13032 return b; 13033 return NULL; 13034 } 13035 13036 /* Try to find a base info of BINFO that would have its field decl at offset 13037 OFFSET within the BINFO type and which is of EXPECTED_TYPE. If it can be 13038 found, return, otherwise return NULL_TREE. */ 13039 13040 tree 13041 get_binfo_at_offset (tree binfo, poly_int64 offset, tree expected_type) 13042 { 13043 tree type = BINFO_TYPE (binfo); 13044 13045 while (true) 13046 { 13047 HOST_WIDE_INT pos, size; 13048 tree fld; 13049 int i; 13050 13051 if (types_same_for_odr (type, expected_type)) 13052 return binfo; 13053 if (maybe_lt (offset, 0)) 13054 return NULL_TREE; 13055 13056 for (fld = TYPE_FIELDS (type); fld; fld = DECL_CHAIN (fld)) 13057 { 13058 if (TREE_CODE (fld) != FIELD_DECL || !DECL_ARTIFICIAL (fld)) 13059 continue; 13060 13061 pos = int_bit_position (fld); 13062 size = tree_to_uhwi (DECL_SIZE (fld)); 13063 if (known_in_range_p (offset, pos, size)) 13064 break; 13065 } 13066 if (!fld || TREE_CODE (TREE_TYPE (fld)) != RECORD_TYPE) 13067 return NULL_TREE; 13068 13069 /* Offset 0 indicates the primary base, whose vtable contents are 13070 represented in the binfo for the derived class. */ 13071 else if (maybe_ne (offset, 0)) 13072 { 13073 tree found_binfo = NULL, base_binfo; 13074 /* Offsets in BINFO are in bytes relative to the whole structure 13075 while POS is in bits relative to the containing field. */ 13076 int binfo_offset = (tree_to_shwi (BINFO_OFFSET (binfo)) + pos 13077 / BITS_PER_UNIT); 13078 13079 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++) 13080 if (tree_to_shwi (BINFO_OFFSET (base_binfo)) == binfo_offset 13081 && types_same_for_odr (TREE_TYPE (base_binfo), TREE_TYPE (fld))) 13082 { 13083 found_binfo = base_binfo; 13084 break; 13085 } 13086 if (found_binfo) 13087 binfo = found_binfo; 13088 else 13089 binfo = lookup_binfo_at_offset (binfo, TREE_TYPE (fld), 13090 binfo_offset); 13091 } 13092 13093 type = TREE_TYPE (fld); 13094 offset -= pos; 13095 } 13096 } 13097 13098 /* Returns true if X is a typedef decl. */ 13099 13100 bool 13101 is_typedef_decl (const_tree x) 13102 { 13103 return (x && TREE_CODE (x) == TYPE_DECL 13104 && DECL_ORIGINAL_TYPE (x) != NULL_TREE); 13105 } 13106 13107 /* Returns true iff TYPE is a type variant created for a typedef. */ 13108 13109 bool 13110 typedef_variant_p (const_tree type) 13111 { 13112 return is_typedef_decl (TYPE_NAME (type)); 13113 } 13114 13115 /* A class to handle converting a string that might contain 13116 control characters, (eg newline, form-feed, etc), into one 13117 in which contains escape sequences instead. */ 13118 13119 class escaped_string 13120 { 13121 public: 13122 escaped_string () { m_owned = false; m_str = NULL; }; 13123 ~escaped_string () { if (m_owned) free (m_str); } 13124 operator const char *() const { return (const char *) m_str; } 13125 void escape (const char *); 13126 private: 13127 char *m_str; 13128 bool m_owned; 13129 }; 13130 13131 /* PR 84195: Replace control characters in "unescaped" with their 13132 escaped equivalents. Allow newlines if -fmessage-length has 13133 been set to a non-zero value. This is done here, rather than 13134 where the attribute is recorded as the message length can 13135 change between these two locations. */ 13136 13137 void 13138 escaped_string::escape (const char *unescaped) 13139 { 13140 char *escaped; 13141 size_t i, new_i, len; 13142 13143 if (m_owned) 13144 free (m_str); 13145 13146 m_str = const_cast<char *> (unescaped); 13147 m_owned = false; 13148 13149 if (unescaped == NULL || *unescaped == 0) 13150 return; 13151 13152 len = strlen (unescaped); 13153 escaped = NULL; 13154 new_i = 0; 13155 13156 for (i = 0; i < len; i++) 13157 { 13158 char c = unescaped[i]; 13159 13160 if (!ISCNTRL (c)) 13161 { 13162 if (escaped) 13163 escaped[new_i++] = c; 13164 continue; 13165 } 13166 13167 if (c != '\n' || !pp_is_wrapping_line (global_dc->printer)) 13168 { 13169 if (escaped == NULL) 13170 { 13171 /* We only allocate space for a new string if we 13172 actually encounter a control character that 13173 needs replacing. */ 13174 escaped = (char *) xmalloc (len * 2 + 1); 13175 strncpy (escaped, unescaped, i); 13176 new_i = i; 13177 } 13178 13179 escaped[new_i++] = '\\'; 13180 13181 switch (c) 13182 { 13183 case '\a': escaped[new_i++] = 'a'; break; 13184 case '\b': escaped[new_i++] = 'b'; break; 13185 case '\f': escaped[new_i++] = 'f'; break; 13186 case '\n': escaped[new_i++] = 'n'; break; 13187 case '\r': escaped[new_i++] = 'r'; break; 13188 case '\t': escaped[new_i++] = 't'; break; 13189 case '\v': escaped[new_i++] = 'v'; break; 13190 default: escaped[new_i++] = '?'; break; 13191 } 13192 } 13193 else if (escaped) 13194 escaped[new_i++] = c; 13195 } 13196 13197 if (escaped) 13198 { 13199 escaped[new_i] = 0; 13200 m_str = escaped; 13201 m_owned = true; 13202 } 13203 } 13204 13205 /* Warn about a use of an identifier which was marked deprecated. Returns 13206 whether a warning was given. */ 13207 13208 bool 13209 warn_deprecated_use (tree node, tree attr) 13210 { 13211 escaped_string msg; 13212 13213 if (node == 0 || !warn_deprecated_decl) 13214 return false; 13215 13216 if (!attr) 13217 { 13218 if (DECL_P (node)) 13219 attr = DECL_ATTRIBUTES (node); 13220 else if (TYPE_P (node)) 13221 { 13222 tree decl = TYPE_STUB_DECL (node); 13223 if (decl) 13224 attr = lookup_attribute ("deprecated", 13225 TYPE_ATTRIBUTES (TREE_TYPE (decl))); 13226 } 13227 } 13228 13229 if (attr) 13230 attr = lookup_attribute ("deprecated", attr); 13231 13232 if (attr) 13233 msg.escape (TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr)))); 13234 13235 bool w = false; 13236 if (DECL_P (node)) 13237 { 13238 auto_diagnostic_group d; 13239 if (msg) 13240 w = warning (OPT_Wdeprecated_declarations, 13241 "%qD is deprecated: %s", node, (const char *) msg); 13242 else 13243 w = warning (OPT_Wdeprecated_declarations, 13244 "%qD is deprecated", node); 13245 if (w) 13246 inform (DECL_SOURCE_LOCATION (node), "declared here"); 13247 } 13248 else if (TYPE_P (node)) 13249 { 13250 tree what = NULL_TREE; 13251 tree decl = TYPE_STUB_DECL (node); 13252 13253 if (TYPE_NAME (node)) 13254 { 13255 if (TREE_CODE (TYPE_NAME (node)) == IDENTIFIER_NODE) 13256 what = TYPE_NAME (node); 13257 else if (TREE_CODE (TYPE_NAME (node)) == TYPE_DECL 13258 && DECL_NAME (TYPE_NAME (node))) 13259 what = DECL_NAME (TYPE_NAME (node)); 13260 } 13261 13262 auto_diagnostic_group d; 13263 if (what) 13264 { 13265 if (msg) 13266 w = warning (OPT_Wdeprecated_declarations, 13267 "%qE is deprecated: %s", what, (const char *) msg); 13268 else 13269 w = warning (OPT_Wdeprecated_declarations, 13270 "%qE is deprecated", what); 13271 } 13272 else 13273 { 13274 if (msg) 13275 w = warning (OPT_Wdeprecated_declarations, 13276 "type is deprecated: %s", (const char *) msg); 13277 else 13278 w = warning (OPT_Wdeprecated_declarations, 13279 "type is deprecated"); 13280 } 13281 13282 if (w && decl) 13283 inform (DECL_SOURCE_LOCATION (decl), "declared here"); 13284 } 13285 13286 return w; 13287 } 13288 13289 /* Return true if REF has a COMPONENT_REF with a bit-field field declaration 13290 somewhere in it. */ 13291 13292 bool 13293 contains_bitfld_component_ref_p (const_tree ref) 13294 { 13295 while (handled_component_p (ref)) 13296 { 13297 if (TREE_CODE (ref) == COMPONENT_REF 13298 && DECL_BIT_FIELD (TREE_OPERAND (ref, 1))) 13299 return true; 13300 ref = TREE_OPERAND (ref, 0); 13301 } 13302 13303 return false; 13304 } 13305 13306 /* Try to determine whether a TRY_CATCH expression can fall through. 13307 This is a subroutine of block_may_fallthru. */ 13308 13309 static bool 13310 try_catch_may_fallthru (const_tree stmt) 13311 { 13312 tree_stmt_iterator i; 13313 13314 /* If the TRY block can fall through, the whole TRY_CATCH can 13315 fall through. */ 13316 if (block_may_fallthru (TREE_OPERAND (stmt, 0))) 13317 return true; 13318 13319 i = tsi_start (TREE_OPERAND (stmt, 1)); 13320 switch (TREE_CODE (tsi_stmt (i))) 13321 { 13322 case CATCH_EXPR: 13323 /* We expect to see a sequence of CATCH_EXPR trees, each with a 13324 catch expression and a body. The whole TRY_CATCH may fall 13325 through iff any of the catch bodies falls through. */ 13326 for (; !tsi_end_p (i); tsi_next (&i)) 13327 { 13328 if (block_may_fallthru (CATCH_BODY (tsi_stmt (i)))) 13329 return true; 13330 } 13331 return false; 13332 13333 case EH_FILTER_EXPR: 13334 /* The exception filter expression only matters if there is an 13335 exception. If the exception does not match EH_FILTER_TYPES, 13336 we will execute EH_FILTER_FAILURE, and we will fall through 13337 if that falls through. If the exception does match 13338 EH_FILTER_TYPES, the stack unwinder will continue up the 13339 stack, so we will not fall through. We don't know whether we 13340 will throw an exception which matches EH_FILTER_TYPES or not, 13341 so we just ignore EH_FILTER_TYPES and assume that we might 13342 throw an exception which doesn't match. */ 13343 return block_may_fallthru (EH_FILTER_FAILURE (tsi_stmt (i))); 13344 13345 default: 13346 /* This case represents statements to be executed when an 13347 exception occurs. Those statements are implicitly followed 13348 by a RESX statement to resume execution after the exception. 13349 So in this case the TRY_CATCH never falls through. */ 13350 return false; 13351 } 13352 } 13353 13354 /* Try to determine if we can fall out of the bottom of BLOCK. This guess 13355 need not be 100% accurate; simply be conservative and return true if we 13356 don't know. This is used only to avoid stupidly generating extra code. 13357 If we're wrong, we'll just delete the extra code later. */ 13358 13359 bool 13360 block_may_fallthru (const_tree block) 13361 { 13362 /* This CONST_CAST is okay because expr_last returns its argument 13363 unmodified and we assign it to a const_tree. */ 13364 const_tree stmt = expr_last (CONST_CAST_TREE (block)); 13365 13366 switch (stmt ? TREE_CODE (stmt) : ERROR_MARK) 13367 { 13368 case GOTO_EXPR: 13369 case RETURN_EXPR: 13370 /* Easy cases. If the last statement of the block implies 13371 control transfer, then we can't fall through. */ 13372 return false; 13373 13374 case SWITCH_EXPR: 13375 /* If there is a default: label or case labels cover all possible 13376 SWITCH_COND values, then the SWITCH_EXPR will transfer control 13377 to some case label in all cases and all we care is whether the 13378 SWITCH_BODY falls through. */ 13379 if (SWITCH_ALL_CASES_P (stmt)) 13380 return block_may_fallthru (SWITCH_BODY (stmt)); 13381 return true; 13382 13383 case COND_EXPR: 13384 if (block_may_fallthru (COND_EXPR_THEN (stmt))) 13385 return true; 13386 return block_may_fallthru (COND_EXPR_ELSE (stmt)); 13387 13388 case BIND_EXPR: 13389 return block_may_fallthru (BIND_EXPR_BODY (stmt)); 13390 13391 case TRY_CATCH_EXPR: 13392 return try_catch_may_fallthru (stmt); 13393 13394 case TRY_FINALLY_EXPR: 13395 /* The finally clause is always executed after the try clause, 13396 so if it does not fall through, then the try-finally will not 13397 fall through. Otherwise, if the try clause does not fall 13398 through, then when the finally clause falls through it will 13399 resume execution wherever the try clause was going. So the 13400 whole try-finally will only fall through if both the try 13401 clause and the finally clause fall through. */ 13402 return (block_may_fallthru (TREE_OPERAND (stmt, 0)) 13403 && block_may_fallthru (TREE_OPERAND (stmt, 1))); 13404 13405 case MODIFY_EXPR: 13406 if (TREE_CODE (TREE_OPERAND (stmt, 1)) == CALL_EXPR) 13407 stmt = TREE_OPERAND (stmt, 1); 13408 else 13409 return true; 13410 /* FALLTHRU */ 13411 13412 case CALL_EXPR: 13413 /* Functions that do not return do not fall through. */ 13414 return (call_expr_flags (stmt) & ECF_NORETURN) == 0; 13415 13416 case CLEANUP_POINT_EXPR: 13417 return block_may_fallthru (TREE_OPERAND (stmt, 0)); 13418 13419 case TARGET_EXPR: 13420 return block_may_fallthru (TREE_OPERAND (stmt, 1)); 13421 13422 case ERROR_MARK: 13423 return true; 13424 13425 default: 13426 return lang_hooks.block_may_fallthru (stmt); 13427 } 13428 } 13429 13430 /* True if we are using EH to handle cleanups. */ 13431 static bool using_eh_for_cleanups_flag = false; 13432 13433 /* This routine is called from front ends to indicate eh should be used for 13434 cleanups. */ 13435 void 13436 using_eh_for_cleanups (void) 13437 { 13438 using_eh_for_cleanups_flag = true; 13439 } 13440 13441 /* Query whether EH is used for cleanups. */ 13442 bool 13443 using_eh_for_cleanups_p (void) 13444 { 13445 return using_eh_for_cleanups_flag; 13446 } 13447 13448 /* Wrapper for tree_code_name to ensure that tree code is valid */ 13449 const char * 13450 get_tree_code_name (enum tree_code code) 13451 { 13452 const char *invalid = "<invalid tree code>"; 13453 13454 if (code >= MAX_TREE_CODES) 13455 return invalid; 13456 13457 return tree_code_name[code]; 13458 } 13459 13460 /* Drops the TREE_OVERFLOW flag from T. */ 13461 13462 tree 13463 drop_tree_overflow (tree t) 13464 { 13465 gcc_checking_assert (TREE_OVERFLOW (t)); 13466 13467 /* For tree codes with a sharing machinery re-build the result. */ 13468 if (poly_int_tree_p (t)) 13469 return wide_int_to_tree (TREE_TYPE (t), wi::to_poly_wide (t)); 13470 13471 /* For VECTOR_CST, remove the overflow bits from the encoded elements 13472 and canonicalize the result. */ 13473 if (TREE_CODE (t) == VECTOR_CST) 13474 { 13475 tree_vector_builder builder; 13476 builder.new_unary_operation (TREE_TYPE (t), t, true); 13477 unsigned int count = builder.encoded_nelts (); 13478 for (unsigned int i = 0; i < count; ++i) 13479 { 13480 tree elt = VECTOR_CST_ELT (t, i); 13481 if (TREE_OVERFLOW (elt)) 13482 elt = drop_tree_overflow (elt); 13483 builder.quick_push (elt); 13484 } 13485 return builder.build (); 13486 } 13487 13488 /* Otherwise, as all tcc_constants are possibly shared, copy the node 13489 and drop the flag. */ 13490 t = copy_node (t); 13491 TREE_OVERFLOW (t) = 0; 13492 13493 /* For constants that contain nested constants, drop the flag 13494 from those as well. */ 13495 if (TREE_CODE (t) == COMPLEX_CST) 13496 { 13497 if (TREE_OVERFLOW (TREE_REALPART (t))) 13498 TREE_REALPART (t) = drop_tree_overflow (TREE_REALPART (t)); 13499 if (TREE_OVERFLOW (TREE_IMAGPART (t))) 13500 TREE_IMAGPART (t) = drop_tree_overflow (TREE_IMAGPART (t)); 13501 } 13502 13503 return t; 13504 } 13505 13506 /* Given a memory reference expression T, return its base address. 13507 The base address of a memory reference expression is the main 13508 object being referenced. For instance, the base address for 13509 'array[i].fld[j]' is 'array'. You can think of this as stripping 13510 away the offset part from a memory address. 13511 13512 This function calls handled_component_p to strip away all the inner 13513 parts of the memory reference until it reaches the base object. */ 13514 13515 tree 13516 get_base_address (tree t) 13517 { 13518 while (handled_component_p (t)) 13519 t = TREE_OPERAND (t, 0); 13520 13521 if ((TREE_CODE (t) == MEM_REF 13522 || TREE_CODE (t) == TARGET_MEM_REF) 13523 && TREE_CODE (TREE_OPERAND (t, 0)) == ADDR_EXPR) 13524 t = TREE_OPERAND (TREE_OPERAND (t, 0), 0); 13525 13526 /* ??? Either the alias oracle or all callers need to properly deal 13527 with WITH_SIZE_EXPRs before we can look through those. */ 13528 if (TREE_CODE (t) == WITH_SIZE_EXPR) 13529 return NULL_TREE; 13530 13531 return t; 13532 } 13533 13534 /* Return a tree of sizetype representing the size, in bytes, of the element 13535 of EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */ 13536 13537 tree 13538 array_ref_element_size (tree exp) 13539 { 13540 tree aligned_size = TREE_OPERAND (exp, 3); 13541 tree elmt_type = TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0))); 13542 location_t loc = EXPR_LOCATION (exp); 13543 13544 /* If a size was specified in the ARRAY_REF, it's the size measured 13545 in alignment units of the element type. So multiply by that value. */ 13546 if (aligned_size) 13547 { 13548 /* ??? tree_ssa_useless_type_conversion will eliminate casts to 13549 sizetype from another type of the same width and signedness. */ 13550 if (TREE_TYPE (aligned_size) != sizetype) 13551 aligned_size = fold_convert_loc (loc, sizetype, aligned_size); 13552 return size_binop_loc (loc, MULT_EXPR, aligned_size, 13553 size_int (TYPE_ALIGN_UNIT (elmt_type))); 13554 } 13555 13556 /* Otherwise, take the size from that of the element type. Substitute 13557 any PLACEHOLDER_EXPR that we have. */ 13558 else 13559 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_SIZE_UNIT (elmt_type), exp); 13560 } 13561 13562 /* Return a tree representing the lower bound of the array mentioned in 13563 EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */ 13564 13565 tree 13566 array_ref_low_bound (tree exp) 13567 { 13568 tree domain_type = TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp, 0))); 13569 13570 /* If a lower bound is specified in EXP, use it. */ 13571 if (TREE_OPERAND (exp, 2)) 13572 return TREE_OPERAND (exp, 2); 13573 13574 /* Otherwise, if there is a domain type and it has a lower bound, use it, 13575 substituting for a PLACEHOLDER_EXPR as needed. */ 13576 if (domain_type && TYPE_MIN_VALUE (domain_type)) 13577 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MIN_VALUE (domain_type), exp); 13578 13579 /* Otherwise, return a zero of the appropriate type. */ 13580 return build_int_cst (TREE_TYPE (TREE_OPERAND (exp, 1)), 0); 13581 } 13582 13583 /* Return a tree representing the upper bound of the array mentioned in 13584 EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */ 13585 13586 tree 13587 array_ref_up_bound (tree exp) 13588 { 13589 tree domain_type = TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp, 0))); 13590 13591 /* If there is a domain type and it has an upper bound, use it, substituting 13592 for a PLACEHOLDER_EXPR as needed. */ 13593 if (domain_type && TYPE_MAX_VALUE (domain_type)) 13594 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MAX_VALUE (domain_type), exp); 13595 13596 /* Otherwise fail. */ 13597 return NULL_TREE; 13598 } 13599 13600 /* Returns true if REF is an array reference or a component reference 13601 to an array at the end of a structure. 13602 If this is the case, the array may be allocated larger 13603 than its upper bound implies. */ 13604 13605 bool 13606 array_at_struct_end_p (tree ref) 13607 { 13608 tree atype; 13609 13610 if (TREE_CODE (ref) == ARRAY_REF 13611 || TREE_CODE (ref) == ARRAY_RANGE_REF) 13612 { 13613 atype = TREE_TYPE (TREE_OPERAND (ref, 0)); 13614 ref = TREE_OPERAND (ref, 0); 13615 } 13616 else if (TREE_CODE (ref) == COMPONENT_REF 13617 && TREE_CODE (TREE_TYPE (TREE_OPERAND (ref, 1))) == ARRAY_TYPE) 13618 atype = TREE_TYPE (TREE_OPERAND (ref, 1)); 13619 else 13620 return false; 13621 13622 if (TREE_CODE (ref) == STRING_CST) 13623 return false; 13624 13625 tree ref_to_array = ref; 13626 while (handled_component_p (ref)) 13627 { 13628 /* If the reference chain contains a component reference to a 13629 non-union type and there follows another field the reference 13630 is not at the end of a structure. */ 13631 if (TREE_CODE (ref) == COMPONENT_REF) 13632 { 13633 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (ref, 0))) == RECORD_TYPE) 13634 { 13635 tree nextf = DECL_CHAIN (TREE_OPERAND (ref, 1)); 13636 while (nextf && TREE_CODE (nextf) != FIELD_DECL) 13637 nextf = DECL_CHAIN (nextf); 13638 if (nextf) 13639 return false; 13640 } 13641 } 13642 /* If we have a multi-dimensional array we do not consider 13643 a non-innermost dimension as flex array if the whole 13644 multi-dimensional array is at struct end. 13645 Same for an array of aggregates with a trailing array 13646 member. */ 13647 else if (TREE_CODE (ref) == ARRAY_REF) 13648 return false; 13649 else if (TREE_CODE (ref) == ARRAY_RANGE_REF) 13650 ; 13651 /* If we view an underlying object as sth else then what we 13652 gathered up to now is what we have to rely on. */ 13653 else if (TREE_CODE (ref) == VIEW_CONVERT_EXPR) 13654 break; 13655 else 13656 gcc_unreachable (); 13657 13658 ref = TREE_OPERAND (ref, 0); 13659 } 13660 13661 /* The array now is at struct end. Treat flexible arrays as 13662 always subject to extend, even into just padding constrained by 13663 an underlying decl. */ 13664 if (! TYPE_SIZE (atype) 13665 || ! TYPE_DOMAIN (atype) 13666 || ! TYPE_MAX_VALUE (TYPE_DOMAIN (atype))) 13667 return true; 13668 13669 if (TREE_CODE (ref) == MEM_REF 13670 && TREE_CODE (TREE_OPERAND (ref, 0)) == ADDR_EXPR) 13671 ref = TREE_OPERAND (TREE_OPERAND (ref, 0), 0); 13672 13673 /* If the reference is based on a declared entity, the size of the array 13674 is constrained by its given domain. (Do not trust commons PR/69368). */ 13675 if (DECL_P (ref) 13676 && !(flag_unconstrained_commons 13677 && VAR_P (ref) && DECL_COMMON (ref)) 13678 && DECL_SIZE_UNIT (ref) 13679 && TREE_CODE (DECL_SIZE_UNIT (ref)) == INTEGER_CST) 13680 { 13681 /* Check whether the array domain covers all of the available 13682 padding. */ 13683 poly_int64 offset; 13684 if (TREE_CODE (TYPE_SIZE_UNIT (TREE_TYPE (atype))) != INTEGER_CST 13685 || TREE_CODE (TYPE_MAX_VALUE (TYPE_DOMAIN (atype))) != INTEGER_CST 13686 || TREE_CODE (TYPE_MIN_VALUE (TYPE_DOMAIN (atype))) != INTEGER_CST) 13687 return true; 13688 if (! get_addr_base_and_unit_offset (ref_to_array, &offset)) 13689 return true; 13690 13691 /* If at least one extra element fits it is a flexarray. */ 13692 if (known_le ((wi::to_offset (TYPE_MAX_VALUE (TYPE_DOMAIN (atype))) 13693 - wi::to_offset (TYPE_MIN_VALUE (TYPE_DOMAIN (atype))) 13694 + 2) 13695 * wi::to_offset (TYPE_SIZE_UNIT (TREE_TYPE (atype))), 13696 wi::to_offset (DECL_SIZE_UNIT (ref)) - offset)) 13697 return true; 13698 13699 return false; 13700 } 13701 13702 return true; 13703 } 13704 13705 /* Return a tree representing the offset, in bytes, of the field referenced 13706 by EXP. This does not include any offset in DECL_FIELD_BIT_OFFSET. */ 13707 13708 tree 13709 component_ref_field_offset (tree exp) 13710 { 13711 tree aligned_offset = TREE_OPERAND (exp, 2); 13712 tree field = TREE_OPERAND (exp, 1); 13713 location_t loc = EXPR_LOCATION (exp); 13714 13715 /* If an offset was specified in the COMPONENT_REF, it's the offset measured 13716 in units of DECL_OFFSET_ALIGN / BITS_PER_UNIT. So multiply by that 13717 value. */ 13718 if (aligned_offset) 13719 { 13720 /* ??? tree_ssa_useless_type_conversion will eliminate casts to 13721 sizetype from another type of the same width and signedness. */ 13722 if (TREE_TYPE (aligned_offset) != sizetype) 13723 aligned_offset = fold_convert_loc (loc, sizetype, aligned_offset); 13724 return size_binop_loc (loc, MULT_EXPR, aligned_offset, 13725 size_int (DECL_OFFSET_ALIGN (field) 13726 / BITS_PER_UNIT)); 13727 } 13728 13729 /* Otherwise, take the offset from that of the field. Substitute 13730 any PLACEHOLDER_EXPR that we have. */ 13731 else 13732 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (DECL_FIELD_OFFSET (field), exp); 13733 } 13734 13735 /* Return the machine mode of T. For vectors, returns the mode of the 13736 inner type. The main use case is to feed the result to HONOR_NANS, 13737 avoiding the BLKmode that a direct TYPE_MODE (T) might return. */ 13738 13739 machine_mode 13740 element_mode (const_tree t) 13741 { 13742 if (!TYPE_P (t)) 13743 t = TREE_TYPE (t); 13744 if (VECTOR_TYPE_P (t) || TREE_CODE (t) == COMPLEX_TYPE) 13745 t = TREE_TYPE (t); 13746 return TYPE_MODE (t); 13747 } 13748 13749 /* Vector types need to re-check the target flags each time we report 13750 the machine mode. We need to do this because attribute target can 13751 change the result of vector_mode_supported_p and have_regs_of_mode 13752 on a per-function basis. Thus the TYPE_MODE of a VECTOR_TYPE can 13753 change on a per-function basis. */ 13754 /* ??? Possibly a better solution is to run through all the types 13755 referenced by a function and re-compute the TYPE_MODE once, rather 13756 than make the TYPE_MODE macro call a function. */ 13757 13758 machine_mode 13759 vector_type_mode (const_tree t) 13760 { 13761 machine_mode mode; 13762 13763 gcc_assert (TREE_CODE (t) == VECTOR_TYPE); 13764 13765 mode = t->type_common.mode; 13766 if (VECTOR_MODE_P (mode) 13767 && (!targetm.vector_mode_supported_p (mode) 13768 || !have_regs_of_mode[mode])) 13769 { 13770 scalar_int_mode innermode; 13771 13772 /* For integers, try mapping it to a same-sized scalar mode. */ 13773 if (is_int_mode (TREE_TYPE (t)->type_common.mode, &innermode)) 13774 { 13775 poly_int64 size = (TYPE_VECTOR_SUBPARTS (t) 13776 * GET_MODE_BITSIZE (innermode)); 13777 scalar_int_mode mode; 13778 if (int_mode_for_size (size, 0).exists (&mode) 13779 && have_regs_of_mode[mode]) 13780 return mode; 13781 } 13782 13783 return BLKmode; 13784 } 13785 13786 return mode; 13787 } 13788 13789 /* Verify that basic properties of T match TV and thus T can be a variant of 13790 TV. TV should be the more specified variant (i.e. the main variant). */ 13791 13792 static bool 13793 verify_type_variant (const_tree t, tree tv) 13794 { 13795 /* Type variant can differ by: 13796 13797 - TYPE_QUALS: TYPE_READONLY, TYPE_VOLATILE, TYPE_ATOMIC, TYPE_RESTRICT, 13798 ENCODE_QUAL_ADDR_SPACE. 13799 - main variant may be TYPE_COMPLETE_P and variant types !TYPE_COMPLETE_P 13800 in this case some values may not be set in the variant types 13801 (see TYPE_COMPLETE_P checks). 13802 - it is possible to have TYPE_ARTIFICIAL variant of non-artifical type 13803 - by TYPE_NAME and attributes (i.e. when variant originate by typedef) 13804 - TYPE_CANONICAL (TYPE_ALIAS_SET is the same among variants) 13805 - by the alignment: TYPE_ALIGN and TYPE_USER_ALIGN 13806 - during LTO by TYPE_CONTEXT if type is TYPE_FILE_SCOPE_P 13807 this is necessary to make it possible to merge types form different TUs 13808 - arrays, pointers and references may have TREE_TYPE that is a variant 13809 of TREE_TYPE of their main variants. 13810 - aggregates may have new TYPE_FIELDS list that list variants of 13811 the main variant TYPE_FIELDS. 13812 - vector types may differ by TYPE_VECTOR_OPAQUE 13813 */ 13814 13815 /* Convenience macro for matching individual fields. */ 13816 #define verify_variant_match(flag) \ 13817 do { \ 13818 if (flag (tv) != flag (t)) \ 13819 { \ 13820 error ("type variant differs by %s", #flag); \ 13821 debug_tree (tv); \ 13822 return false; \ 13823 } \ 13824 } while (false) 13825 13826 /* tree_base checks. */ 13827 13828 verify_variant_match (TREE_CODE); 13829 /* FIXME: Ada builds non-artificial variants of artificial types. */ 13830 if (TYPE_ARTIFICIAL (tv) && 0) 13831 verify_variant_match (TYPE_ARTIFICIAL); 13832 if (POINTER_TYPE_P (tv)) 13833 verify_variant_match (TYPE_REF_CAN_ALIAS_ALL); 13834 /* FIXME: TYPE_SIZES_GIMPLIFIED may differs for Ada build. */ 13835 verify_variant_match (TYPE_UNSIGNED); 13836 verify_variant_match (TYPE_PACKED); 13837 if (TREE_CODE (t) == REFERENCE_TYPE) 13838 verify_variant_match (TYPE_REF_IS_RVALUE); 13839 if (AGGREGATE_TYPE_P (t)) 13840 verify_variant_match (TYPE_REVERSE_STORAGE_ORDER); 13841 else 13842 verify_variant_match (TYPE_SATURATING); 13843 /* FIXME: This check trigger during libstdc++ build. */ 13844 if (RECORD_OR_UNION_TYPE_P (t) && COMPLETE_TYPE_P (t) && 0) 13845 verify_variant_match (TYPE_FINAL_P); 13846 13847 /* tree_type_common checks. */ 13848 13849 if (COMPLETE_TYPE_P (t)) 13850 { 13851 verify_variant_match (TYPE_MODE); 13852 if (TREE_CODE (TYPE_SIZE (t)) != PLACEHOLDER_EXPR 13853 && TREE_CODE (TYPE_SIZE (tv)) != PLACEHOLDER_EXPR) 13854 verify_variant_match (TYPE_SIZE); 13855 if (TREE_CODE (TYPE_SIZE_UNIT (t)) != PLACEHOLDER_EXPR 13856 && TREE_CODE (TYPE_SIZE_UNIT (tv)) != PLACEHOLDER_EXPR 13857 && TYPE_SIZE_UNIT (t) != TYPE_SIZE_UNIT (tv)) 13858 { 13859 gcc_assert (!operand_equal_p (TYPE_SIZE_UNIT (t), 13860 TYPE_SIZE_UNIT (tv), 0)); 13861 error ("type variant has different TYPE_SIZE_UNIT"); 13862 debug_tree (tv); 13863 error ("type variant%'s TYPE_SIZE_UNIT"); 13864 debug_tree (TYPE_SIZE_UNIT (tv)); 13865 error ("type%'s TYPE_SIZE_UNIT"); 13866 debug_tree (TYPE_SIZE_UNIT (t)); 13867 return false; 13868 } 13869 verify_variant_match (TYPE_NEEDS_CONSTRUCTING); 13870 } 13871 verify_variant_match (TYPE_PRECISION); 13872 if (RECORD_OR_UNION_TYPE_P (t)) 13873 verify_variant_match (TYPE_TRANSPARENT_AGGR); 13874 else if (TREE_CODE (t) == ARRAY_TYPE) 13875 verify_variant_match (TYPE_NONALIASED_COMPONENT); 13876 /* During LTO we merge variant lists from diferent translation units 13877 that may differ BY TYPE_CONTEXT that in turn may point 13878 to TRANSLATION_UNIT_DECL. 13879 Ada also builds variants of types with different TYPE_CONTEXT. */ 13880 if ((!in_lto_p || !TYPE_FILE_SCOPE_P (t)) && 0) 13881 verify_variant_match (TYPE_CONTEXT); 13882 verify_variant_match (TYPE_STRING_FLAG); 13883 if (TYPE_ALIAS_SET_KNOWN_P (t)) 13884 { 13885 error ("type variant with TYPE_ALIAS_SET_KNOWN_P"); 13886 debug_tree (tv); 13887 return false; 13888 } 13889 13890 /* tree_type_non_common checks. */ 13891 13892 /* FIXME: C FE uses TYPE_VFIELD to record C_TYPE_INCOMPLETE_VARS 13893 and dangle the pointer from time to time. */ 13894 if (RECORD_OR_UNION_TYPE_P (t) && TYPE_VFIELD (t) != TYPE_VFIELD (tv) 13895 && (in_lto_p || !TYPE_VFIELD (tv) 13896 || TREE_CODE (TYPE_VFIELD (tv)) != TREE_LIST)) 13897 { 13898 error ("type variant has different TYPE_VFIELD"); 13899 debug_tree (tv); 13900 return false; 13901 } 13902 if ((TREE_CODE (t) == ENUMERAL_TYPE && COMPLETE_TYPE_P (t)) 13903 || TREE_CODE (t) == INTEGER_TYPE 13904 || TREE_CODE (t) == BOOLEAN_TYPE 13905 || TREE_CODE (t) == REAL_TYPE 13906 || TREE_CODE (t) == FIXED_POINT_TYPE) 13907 { 13908 verify_variant_match (TYPE_MAX_VALUE); 13909 verify_variant_match (TYPE_MIN_VALUE); 13910 } 13911 if (TREE_CODE (t) == METHOD_TYPE) 13912 verify_variant_match (TYPE_METHOD_BASETYPE); 13913 if (TREE_CODE (t) == OFFSET_TYPE) 13914 verify_variant_match (TYPE_OFFSET_BASETYPE); 13915 if (TREE_CODE (t) == ARRAY_TYPE) 13916 verify_variant_match (TYPE_ARRAY_MAX_SIZE); 13917 /* FIXME: Be lax and allow TYPE_BINFO to be missing in variant types 13918 or even type's main variant. This is needed to make bootstrap pass 13919 and the bug seems new in GCC 5. 13920 C++ FE should be updated to make this consistent and we should check 13921 that TYPE_BINFO is always NULL for !COMPLETE_TYPE_P and otherwise there 13922 is a match with main variant. 13923 13924 Also disable the check for Java for now because of parser hack that builds 13925 first an dummy BINFO and then sometimes replace it by real BINFO in some 13926 of the copies. */ 13927 if (RECORD_OR_UNION_TYPE_P (t) && TYPE_BINFO (t) && TYPE_BINFO (tv) 13928 && TYPE_BINFO (t) != TYPE_BINFO (tv) 13929 /* FIXME: Java sometimes keep dump TYPE_BINFOs on variant types. 13930 Since there is no cheap way to tell C++/Java type w/o LTO, do checking 13931 at LTO time only. */ 13932 && (in_lto_p && odr_type_p (t))) 13933 { 13934 error ("type variant has different TYPE_BINFO"); 13935 debug_tree (tv); 13936 error ("type variant%'s TYPE_BINFO"); 13937 debug_tree (TYPE_BINFO (tv)); 13938 error ("type%'s TYPE_BINFO"); 13939 debug_tree (TYPE_BINFO (t)); 13940 return false; 13941 } 13942 13943 /* Check various uses of TYPE_VALUES_RAW. */ 13944 if (TREE_CODE (t) == ENUMERAL_TYPE 13945 && TYPE_VALUES (t)) 13946 verify_variant_match (TYPE_VALUES); 13947 else if (TREE_CODE (t) == ARRAY_TYPE) 13948 verify_variant_match (TYPE_DOMAIN); 13949 /* Permit incomplete variants of complete type. While FEs may complete 13950 all variants, this does not happen for C++ templates in all cases. */ 13951 else if (RECORD_OR_UNION_TYPE_P (t) 13952 && COMPLETE_TYPE_P (t) 13953 && TYPE_FIELDS (t) != TYPE_FIELDS (tv)) 13954 { 13955 tree f1, f2; 13956 13957 /* Fortran builds qualified variants as new records with items of 13958 qualified type. Verify that they looks same. */ 13959 for (f1 = TYPE_FIELDS (t), f2 = TYPE_FIELDS (tv); 13960 f1 && f2; 13961 f1 = TREE_CHAIN (f1), f2 = TREE_CHAIN (f2)) 13962 if (TREE_CODE (f1) != FIELD_DECL || TREE_CODE (f2) != FIELD_DECL 13963 || (TYPE_MAIN_VARIANT (TREE_TYPE (f1)) 13964 != TYPE_MAIN_VARIANT (TREE_TYPE (f2)) 13965 /* FIXME: gfc_nonrestricted_type builds all types as variants 13966 with exception of pointer types. It deeply copies the type 13967 which means that we may end up with a variant type 13968 referring non-variant pointer. We may change it to 13969 produce types as variants, too, like 13970 objc_get_protocol_qualified_type does. */ 13971 && !POINTER_TYPE_P (TREE_TYPE (f1))) 13972 || DECL_FIELD_OFFSET (f1) != DECL_FIELD_OFFSET (f2) 13973 || DECL_FIELD_BIT_OFFSET (f1) != DECL_FIELD_BIT_OFFSET (f2)) 13974 break; 13975 if (f1 || f2) 13976 { 13977 error ("type variant has different TYPE_FIELDS"); 13978 debug_tree (tv); 13979 error ("first mismatch is field"); 13980 debug_tree (f1); 13981 error ("and field"); 13982 debug_tree (f2); 13983 return false; 13984 } 13985 } 13986 else if ((TREE_CODE (t) == FUNCTION_TYPE || TREE_CODE (t) == METHOD_TYPE)) 13987 verify_variant_match (TYPE_ARG_TYPES); 13988 /* For C++ the qualified variant of array type is really an array type 13989 of qualified TREE_TYPE. 13990 objc builds variants of pointer where pointer to type is a variant, too 13991 in objc_get_protocol_qualified_type. */ 13992 if (TREE_TYPE (t) != TREE_TYPE (tv) 13993 && ((TREE_CODE (t) != ARRAY_TYPE 13994 && !POINTER_TYPE_P (t)) 13995 || TYPE_MAIN_VARIANT (TREE_TYPE (t)) 13996 != TYPE_MAIN_VARIANT (TREE_TYPE (tv)))) 13997 { 13998 error ("type variant has different TREE_TYPE"); 13999 debug_tree (tv); 14000 error ("type variant%'s TREE_TYPE"); 14001 debug_tree (TREE_TYPE (tv)); 14002 error ("type%'s TREE_TYPE"); 14003 debug_tree (TREE_TYPE (t)); 14004 return false; 14005 } 14006 if (type_with_alias_set_p (t) 14007 && !gimple_canonical_types_compatible_p (t, tv, false)) 14008 { 14009 error ("type is not compatible with its variant"); 14010 debug_tree (tv); 14011 error ("type variant%'s TREE_TYPE"); 14012 debug_tree (TREE_TYPE (tv)); 14013 error ("type%'s TREE_TYPE"); 14014 debug_tree (TREE_TYPE (t)); 14015 return false; 14016 } 14017 return true; 14018 #undef verify_variant_match 14019 } 14020 14021 14022 /* The TYPE_CANONICAL merging machinery. It should closely resemble 14023 the middle-end types_compatible_p function. It needs to avoid 14024 claiming types are different for types that should be treated 14025 the same with respect to TBAA. Canonical types are also used 14026 for IL consistency checks via the useless_type_conversion_p 14027 predicate which does not handle all type kinds itself but falls 14028 back to pointer-comparison of TYPE_CANONICAL for aggregates 14029 for example. */ 14030 14031 /* Return true if TYPE_UNSIGNED of TYPE should be ignored for canonical 14032 type calculation because we need to allow inter-operability between signed 14033 and unsigned variants. */ 14034 14035 bool 14036 type_with_interoperable_signedness (const_tree type) 14037 { 14038 /* Fortran standard require C_SIGNED_CHAR to be interoperable with both 14039 signed char and unsigned char. Similarly fortran FE builds 14040 C_SIZE_T as signed type, while C defines it unsigned. */ 14041 14042 return tree_code_for_canonical_type_merging (TREE_CODE (type)) 14043 == INTEGER_TYPE 14044 && (TYPE_PRECISION (type) == TYPE_PRECISION (signed_char_type_node) 14045 || TYPE_PRECISION (type) == TYPE_PRECISION (size_type_node)); 14046 } 14047 14048 /* Return true iff T1 and T2 are structurally identical for what 14049 TBAA is concerned. 14050 This function is used both by lto.c canonical type merging and by the 14051 verifier. If TRUST_TYPE_CANONICAL we do not look into structure of types 14052 that have TYPE_CANONICAL defined and assume them equivalent. This is useful 14053 only for LTO because only in these cases TYPE_CANONICAL equivalence 14054 correspond to one defined by gimple_canonical_types_compatible_p. */ 14055 14056 bool 14057 gimple_canonical_types_compatible_p (const_tree t1, const_tree t2, 14058 bool trust_type_canonical) 14059 { 14060 /* Type variants should be same as the main variant. When not doing sanity 14061 checking to verify this fact, go to main variants and save some work. */ 14062 if (trust_type_canonical) 14063 { 14064 t1 = TYPE_MAIN_VARIANT (t1); 14065 t2 = TYPE_MAIN_VARIANT (t2); 14066 } 14067 14068 /* Check first for the obvious case of pointer identity. */ 14069 if (t1 == t2) 14070 return true; 14071 14072 /* Check that we have two types to compare. */ 14073 if (t1 == NULL_TREE || t2 == NULL_TREE) 14074 return false; 14075 14076 /* We consider complete types always compatible with incomplete type. 14077 This does not make sense for canonical type calculation and thus we 14078 need to ensure that we are never called on it. 14079 14080 FIXME: For more correctness the function probably should have three modes 14081 1) mode assuming that types are complete mathcing their structure 14082 2) mode allowing incomplete types but producing equivalence classes 14083 and thus ignoring all info from complete types 14084 3) mode allowing incomplete types to match complete but checking 14085 compatibility between complete types. 14086 14087 1 and 2 can be used for canonical type calculation. 3 is the real 14088 definition of type compatibility that can be used i.e. for warnings during 14089 declaration merging. */ 14090 14091 gcc_assert (!trust_type_canonical 14092 || (type_with_alias_set_p (t1) && type_with_alias_set_p (t2))); 14093 /* If the types have been previously registered and found equal 14094 they still are. */ 14095 14096 if (TYPE_CANONICAL (t1) && TYPE_CANONICAL (t2) 14097 && trust_type_canonical) 14098 { 14099 /* Do not use TYPE_CANONICAL of pointer types. For LTO streamed types 14100 they are always NULL, but they are set to non-NULL for types 14101 constructed by build_pointer_type and variants. In this case the 14102 TYPE_CANONICAL is more fine grained than the equivalnce we test (where 14103 all pointers are considered equal. Be sure to not return false 14104 negatives. */ 14105 gcc_checking_assert (canonical_type_used_p (t1) 14106 && canonical_type_used_p (t2)); 14107 return TYPE_CANONICAL (t1) == TYPE_CANONICAL (t2); 14108 } 14109 14110 /* Can't be the same type if the types don't have the same code. */ 14111 enum tree_code code = tree_code_for_canonical_type_merging (TREE_CODE (t1)); 14112 if (code != tree_code_for_canonical_type_merging (TREE_CODE (t2))) 14113 return false; 14114 14115 /* Qualifiers do not matter for canonical type comparison purposes. */ 14116 14117 /* Void types and nullptr types are always the same. */ 14118 if (TREE_CODE (t1) == VOID_TYPE 14119 || TREE_CODE (t1) == NULLPTR_TYPE) 14120 return true; 14121 14122 /* Can't be the same type if they have different mode. */ 14123 if (TYPE_MODE (t1) != TYPE_MODE (t2)) 14124 return false; 14125 14126 /* Non-aggregate types can be handled cheaply. */ 14127 if (INTEGRAL_TYPE_P (t1) 14128 || SCALAR_FLOAT_TYPE_P (t1) 14129 || FIXED_POINT_TYPE_P (t1) 14130 || TREE_CODE (t1) == VECTOR_TYPE 14131 || TREE_CODE (t1) == COMPLEX_TYPE 14132 || TREE_CODE (t1) == OFFSET_TYPE 14133 || POINTER_TYPE_P (t1)) 14134 { 14135 /* Can't be the same type if they have different recision. */ 14136 if (TYPE_PRECISION (t1) != TYPE_PRECISION (t2)) 14137 return false; 14138 14139 /* In some cases the signed and unsigned types are required to be 14140 inter-operable. */ 14141 if (TYPE_UNSIGNED (t1) != TYPE_UNSIGNED (t2) 14142 && !type_with_interoperable_signedness (t1)) 14143 return false; 14144 14145 /* Fortran's C_SIGNED_CHAR is !TYPE_STRING_FLAG but needs to be 14146 interoperable with "signed char". Unless all frontends are revisited 14147 to agree on these types, we must ignore the flag completely. */ 14148 14149 /* Fortran standard define C_PTR type that is compatible with every 14150 C pointer. For this reason we need to glob all pointers into one. 14151 Still pointers in different address spaces are not compatible. */ 14152 if (POINTER_TYPE_P (t1)) 14153 { 14154 if (TYPE_ADDR_SPACE (TREE_TYPE (t1)) 14155 != TYPE_ADDR_SPACE (TREE_TYPE (t2))) 14156 return false; 14157 } 14158 14159 /* Tail-recurse to components. */ 14160 if (TREE_CODE (t1) == VECTOR_TYPE 14161 || TREE_CODE (t1) == COMPLEX_TYPE) 14162 return gimple_canonical_types_compatible_p (TREE_TYPE (t1), 14163 TREE_TYPE (t2), 14164 trust_type_canonical); 14165 14166 return true; 14167 } 14168 14169 /* Do type-specific comparisons. */ 14170 switch (TREE_CODE (t1)) 14171 { 14172 case ARRAY_TYPE: 14173 /* Array types are the same if the element types are the same and 14174 the number of elements are the same. */ 14175 if (!gimple_canonical_types_compatible_p (TREE_TYPE (t1), TREE_TYPE (t2), 14176 trust_type_canonical) 14177 || TYPE_STRING_FLAG (t1) != TYPE_STRING_FLAG (t2) 14178 || TYPE_REVERSE_STORAGE_ORDER (t1) != TYPE_REVERSE_STORAGE_ORDER (t2) 14179 || TYPE_NONALIASED_COMPONENT (t1) != TYPE_NONALIASED_COMPONENT (t2)) 14180 return false; 14181 else 14182 { 14183 tree i1 = TYPE_DOMAIN (t1); 14184 tree i2 = TYPE_DOMAIN (t2); 14185 14186 /* For an incomplete external array, the type domain can be 14187 NULL_TREE. Check this condition also. */ 14188 if (i1 == NULL_TREE && i2 == NULL_TREE) 14189 return true; 14190 else if (i1 == NULL_TREE || i2 == NULL_TREE) 14191 return false; 14192 else 14193 { 14194 tree min1 = TYPE_MIN_VALUE (i1); 14195 tree min2 = TYPE_MIN_VALUE (i2); 14196 tree max1 = TYPE_MAX_VALUE (i1); 14197 tree max2 = TYPE_MAX_VALUE (i2); 14198 14199 /* The minimum/maximum values have to be the same. */ 14200 if ((min1 == min2 14201 || (min1 && min2 14202 && ((TREE_CODE (min1) == PLACEHOLDER_EXPR 14203 && TREE_CODE (min2) == PLACEHOLDER_EXPR) 14204 || operand_equal_p (min1, min2, 0)))) 14205 && (max1 == max2 14206 || (max1 && max2 14207 && ((TREE_CODE (max1) == PLACEHOLDER_EXPR 14208 && TREE_CODE (max2) == PLACEHOLDER_EXPR) 14209 || operand_equal_p (max1, max2, 0))))) 14210 return true; 14211 else 14212 return false; 14213 } 14214 } 14215 14216 case METHOD_TYPE: 14217 case FUNCTION_TYPE: 14218 /* Function types are the same if the return type and arguments types 14219 are the same. */ 14220 if (!gimple_canonical_types_compatible_p (TREE_TYPE (t1), TREE_TYPE (t2), 14221 trust_type_canonical)) 14222 return false; 14223 14224 if (TYPE_ARG_TYPES (t1) == TYPE_ARG_TYPES (t2)) 14225 return true; 14226 else 14227 { 14228 tree parms1, parms2; 14229 14230 for (parms1 = TYPE_ARG_TYPES (t1), parms2 = TYPE_ARG_TYPES (t2); 14231 parms1 && parms2; 14232 parms1 = TREE_CHAIN (parms1), parms2 = TREE_CHAIN (parms2)) 14233 { 14234 if (!gimple_canonical_types_compatible_p 14235 (TREE_VALUE (parms1), TREE_VALUE (parms2), 14236 trust_type_canonical)) 14237 return false; 14238 } 14239 14240 if (parms1 || parms2) 14241 return false; 14242 14243 return true; 14244 } 14245 14246 case RECORD_TYPE: 14247 case UNION_TYPE: 14248 case QUAL_UNION_TYPE: 14249 { 14250 tree f1, f2; 14251 14252 /* Don't try to compare variants of an incomplete type, before 14253 TYPE_FIELDS has been copied around. */ 14254 if (!COMPLETE_TYPE_P (t1) && !COMPLETE_TYPE_P (t2)) 14255 return true; 14256 14257 14258 if (TYPE_REVERSE_STORAGE_ORDER (t1) != TYPE_REVERSE_STORAGE_ORDER (t2)) 14259 return false; 14260 14261 /* For aggregate types, all the fields must be the same. */ 14262 for (f1 = TYPE_FIELDS (t1), f2 = TYPE_FIELDS (t2); 14263 f1 || f2; 14264 f1 = TREE_CHAIN (f1), f2 = TREE_CHAIN (f2)) 14265 { 14266 /* Skip non-fields and zero-sized fields. */ 14267 while (f1 && (TREE_CODE (f1) != FIELD_DECL 14268 || (DECL_SIZE (f1) 14269 && integer_zerop (DECL_SIZE (f1))))) 14270 f1 = TREE_CHAIN (f1); 14271 while (f2 && (TREE_CODE (f2) != FIELD_DECL 14272 || (DECL_SIZE (f2) 14273 && integer_zerop (DECL_SIZE (f2))))) 14274 f2 = TREE_CHAIN (f2); 14275 if (!f1 || !f2) 14276 break; 14277 /* The fields must have the same name, offset and type. */ 14278 if (DECL_NONADDRESSABLE_P (f1) != DECL_NONADDRESSABLE_P (f2) 14279 || !gimple_compare_field_offset (f1, f2) 14280 || !gimple_canonical_types_compatible_p 14281 (TREE_TYPE (f1), TREE_TYPE (f2), 14282 trust_type_canonical)) 14283 return false; 14284 } 14285 14286 /* If one aggregate has more fields than the other, they 14287 are not the same. */ 14288 if (f1 || f2) 14289 return false; 14290 14291 return true; 14292 } 14293 14294 default: 14295 /* Consider all types with language specific trees in them mutually 14296 compatible. This is executed only from verify_type and false 14297 positives can be tolerated. */ 14298 gcc_assert (!in_lto_p); 14299 return true; 14300 } 14301 } 14302 14303 /* Verify type T. */ 14304 14305 void 14306 verify_type (const_tree t) 14307 { 14308 bool error_found = false; 14309 tree mv = TYPE_MAIN_VARIANT (t); 14310 if (!mv) 14311 { 14312 error ("Main variant is not defined"); 14313 error_found = true; 14314 } 14315 else if (mv != TYPE_MAIN_VARIANT (mv)) 14316 { 14317 error ("TYPE_MAIN_VARIANT has different TYPE_MAIN_VARIANT"); 14318 debug_tree (mv); 14319 error_found = true; 14320 } 14321 else if (t != mv && !verify_type_variant (t, mv)) 14322 error_found = true; 14323 14324 tree ct = TYPE_CANONICAL (t); 14325 if (!ct) 14326 ; 14327 else if (TYPE_CANONICAL (t) != ct) 14328 { 14329 error ("TYPE_CANONICAL has different TYPE_CANONICAL"); 14330 debug_tree (ct); 14331 error_found = true; 14332 } 14333 /* Method and function types cannot be used to address memory and thus 14334 TYPE_CANONICAL really matters only for determining useless conversions. 14335 14336 FIXME: C++ FE produce declarations of builtin functions that are not 14337 compatible with main variants. */ 14338 else if (TREE_CODE (t) == FUNCTION_TYPE) 14339 ; 14340 else if (t != ct 14341 /* FIXME: gimple_canonical_types_compatible_p cannot compare types 14342 with variably sized arrays because their sizes possibly 14343 gimplified to different variables. */ 14344 && !variably_modified_type_p (ct, NULL) 14345 && !gimple_canonical_types_compatible_p (t, ct, false) 14346 && COMPLETE_TYPE_P (t)) 14347 { 14348 error ("TYPE_CANONICAL is not compatible"); 14349 debug_tree (ct); 14350 error_found = true; 14351 } 14352 14353 if (COMPLETE_TYPE_P (t) && TYPE_CANONICAL (t) 14354 && TYPE_MODE (t) != TYPE_MODE (TYPE_CANONICAL (t))) 14355 { 14356 error ("TYPE_MODE of TYPE_CANONICAL is not compatible"); 14357 debug_tree (ct); 14358 error_found = true; 14359 } 14360 if (TYPE_MAIN_VARIANT (t) == t && ct && TYPE_MAIN_VARIANT (ct) != ct) 14361 { 14362 error ("TYPE_CANONICAL of main variant is not main variant"); 14363 debug_tree (ct); 14364 debug_tree (TYPE_MAIN_VARIANT (ct)); 14365 error_found = true; 14366 } 14367 14368 14369 /* Check various uses of TYPE_MIN_VALUE_RAW. */ 14370 if (RECORD_OR_UNION_TYPE_P (t)) 14371 { 14372 /* FIXME: C FE uses TYPE_VFIELD to record C_TYPE_INCOMPLETE_VARS 14373 and danagle the pointer from time to time. */ 14374 if (TYPE_VFIELD (t) 14375 && TREE_CODE (TYPE_VFIELD (t)) != FIELD_DECL 14376 && TREE_CODE (TYPE_VFIELD (t)) != TREE_LIST) 14377 { 14378 error ("TYPE_VFIELD is not FIELD_DECL nor TREE_LIST"); 14379 debug_tree (TYPE_VFIELD (t)); 14380 error_found = true; 14381 } 14382 } 14383 else if (TREE_CODE (t) == POINTER_TYPE) 14384 { 14385 if (TYPE_NEXT_PTR_TO (t) 14386 && TREE_CODE (TYPE_NEXT_PTR_TO (t)) != POINTER_TYPE) 14387 { 14388 error ("TYPE_NEXT_PTR_TO is not POINTER_TYPE"); 14389 debug_tree (TYPE_NEXT_PTR_TO (t)); 14390 error_found = true; 14391 } 14392 } 14393 else if (TREE_CODE (t) == REFERENCE_TYPE) 14394 { 14395 if (TYPE_NEXT_REF_TO (t) 14396 && TREE_CODE (TYPE_NEXT_REF_TO (t)) != REFERENCE_TYPE) 14397 { 14398 error ("TYPE_NEXT_REF_TO is not REFERENCE_TYPE"); 14399 debug_tree (TYPE_NEXT_REF_TO (t)); 14400 error_found = true; 14401 } 14402 } 14403 else if (INTEGRAL_TYPE_P (t) || TREE_CODE (t) == REAL_TYPE 14404 || TREE_CODE (t) == FIXED_POINT_TYPE) 14405 { 14406 /* FIXME: The following check should pass: 14407 useless_type_conversion_p (const_cast <tree> (t), 14408 TREE_TYPE (TYPE_MIN_VALUE (t)) 14409 but does not for C sizetypes in LTO. */ 14410 } 14411 14412 /* Check various uses of TYPE_MAXVAL_RAW. */ 14413 if (RECORD_OR_UNION_TYPE_P (t)) 14414 { 14415 if (!TYPE_BINFO (t)) 14416 ; 14417 else if (TREE_CODE (TYPE_BINFO (t)) != TREE_BINFO) 14418 { 14419 error ("TYPE_BINFO is not TREE_BINFO"); 14420 debug_tree (TYPE_BINFO (t)); 14421 error_found = true; 14422 } 14423 else if (TREE_TYPE (TYPE_BINFO (t)) != TYPE_MAIN_VARIANT (t)) 14424 { 14425 error ("TYPE_BINFO type is not TYPE_MAIN_VARIANT"); 14426 debug_tree (TREE_TYPE (TYPE_BINFO (t))); 14427 error_found = true; 14428 } 14429 } 14430 else if (TREE_CODE (t) == FUNCTION_TYPE || TREE_CODE (t) == METHOD_TYPE) 14431 { 14432 if (TYPE_METHOD_BASETYPE (t) 14433 && TREE_CODE (TYPE_METHOD_BASETYPE (t)) != RECORD_TYPE 14434 && TREE_CODE (TYPE_METHOD_BASETYPE (t)) != UNION_TYPE) 14435 { 14436 error ("TYPE_METHOD_BASETYPE is not record nor union"); 14437 debug_tree (TYPE_METHOD_BASETYPE (t)); 14438 error_found = true; 14439 } 14440 } 14441 else if (TREE_CODE (t) == OFFSET_TYPE) 14442 { 14443 if (TYPE_OFFSET_BASETYPE (t) 14444 && TREE_CODE (TYPE_OFFSET_BASETYPE (t)) != RECORD_TYPE 14445 && TREE_CODE (TYPE_OFFSET_BASETYPE (t)) != UNION_TYPE) 14446 { 14447 error ("TYPE_OFFSET_BASETYPE is not record nor union"); 14448 debug_tree (TYPE_OFFSET_BASETYPE (t)); 14449 error_found = true; 14450 } 14451 } 14452 else if (INTEGRAL_TYPE_P (t) || TREE_CODE (t) == REAL_TYPE 14453 || TREE_CODE (t) == FIXED_POINT_TYPE) 14454 { 14455 /* FIXME: The following check should pass: 14456 useless_type_conversion_p (const_cast <tree> (t), 14457 TREE_TYPE (TYPE_MAX_VALUE (t)) 14458 but does not for C sizetypes in LTO. */ 14459 } 14460 else if (TREE_CODE (t) == ARRAY_TYPE) 14461 { 14462 if (TYPE_ARRAY_MAX_SIZE (t) 14463 && TREE_CODE (TYPE_ARRAY_MAX_SIZE (t)) != INTEGER_CST) 14464 { 14465 error ("TYPE_ARRAY_MAX_SIZE not INTEGER_CST"); 14466 debug_tree (TYPE_ARRAY_MAX_SIZE (t)); 14467 error_found = true; 14468 } 14469 } 14470 else if (TYPE_MAX_VALUE_RAW (t)) 14471 { 14472 error ("TYPE_MAX_VALUE_RAW non-NULL"); 14473 debug_tree (TYPE_MAX_VALUE_RAW (t)); 14474 error_found = true; 14475 } 14476 14477 if (TYPE_LANG_SLOT_1 (t) && in_lto_p) 14478 { 14479 error ("TYPE_LANG_SLOT_1 (binfo) field is non-NULL"); 14480 debug_tree (TYPE_LANG_SLOT_1 (t)); 14481 error_found = true; 14482 } 14483 14484 /* Check various uses of TYPE_VALUES_RAW. */ 14485 if (TREE_CODE (t) == ENUMERAL_TYPE) 14486 for (tree l = TYPE_VALUES (t); l; l = TREE_CHAIN (l)) 14487 { 14488 tree value = TREE_VALUE (l); 14489 tree name = TREE_PURPOSE (l); 14490 14491 /* C FE porduce INTEGER_CST of INTEGER_TYPE, while C++ FE uses 14492 CONST_DECL of ENUMERAL TYPE. */ 14493 if (TREE_CODE (value) != INTEGER_CST && TREE_CODE (value) != CONST_DECL) 14494 { 14495 error ("Enum value is not CONST_DECL or INTEGER_CST"); 14496 debug_tree (value); 14497 debug_tree (name); 14498 error_found = true; 14499 } 14500 if (TREE_CODE (TREE_TYPE (value)) != INTEGER_TYPE 14501 && !useless_type_conversion_p (const_cast <tree> (t), TREE_TYPE (value))) 14502 { 14503 error ("Enum value type is not INTEGER_TYPE nor convertible to the enum"); 14504 debug_tree (value); 14505 debug_tree (name); 14506 error_found = true; 14507 } 14508 if (TREE_CODE (name) != IDENTIFIER_NODE) 14509 { 14510 error ("Enum value name is not IDENTIFIER_NODE"); 14511 debug_tree (value); 14512 debug_tree (name); 14513 error_found = true; 14514 } 14515 } 14516 else if (TREE_CODE (t) == ARRAY_TYPE) 14517 { 14518 if (TYPE_DOMAIN (t) && TREE_CODE (TYPE_DOMAIN (t)) != INTEGER_TYPE) 14519 { 14520 error ("Array TYPE_DOMAIN is not integer type"); 14521 debug_tree (TYPE_DOMAIN (t)); 14522 error_found = true; 14523 } 14524 } 14525 else if (RECORD_OR_UNION_TYPE_P (t)) 14526 { 14527 if (TYPE_FIELDS (t) && !COMPLETE_TYPE_P (t) && in_lto_p) 14528 { 14529 error ("TYPE_FIELDS defined in incomplete type"); 14530 error_found = true; 14531 } 14532 for (tree fld = TYPE_FIELDS (t); fld; fld = TREE_CHAIN (fld)) 14533 { 14534 /* TODO: verify properties of decls. */ 14535 if (TREE_CODE (fld) == FIELD_DECL) 14536 ; 14537 else if (TREE_CODE (fld) == TYPE_DECL) 14538 ; 14539 else if (TREE_CODE (fld) == CONST_DECL) 14540 ; 14541 else if (VAR_P (fld)) 14542 ; 14543 else if (TREE_CODE (fld) == TEMPLATE_DECL) 14544 ; 14545 else if (TREE_CODE (fld) == USING_DECL) 14546 ; 14547 else if (TREE_CODE (fld) == FUNCTION_DECL) 14548 ; 14549 else 14550 { 14551 error ("Wrong tree in TYPE_FIELDS list"); 14552 debug_tree (fld); 14553 error_found = true; 14554 } 14555 } 14556 } 14557 else if (TREE_CODE (t) == INTEGER_TYPE 14558 || TREE_CODE (t) == BOOLEAN_TYPE 14559 || TREE_CODE (t) == OFFSET_TYPE 14560 || TREE_CODE (t) == REFERENCE_TYPE 14561 || TREE_CODE (t) == NULLPTR_TYPE 14562 || TREE_CODE (t) == POINTER_TYPE) 14563 { 14564 if (TYPE_CACHED_VALUES_P (t) != (TYPE_CACHED_VALUES (t) != NULL)) 14565 { 14566 error ("TYPE_CACHED_VALUES_P is %i while TYPE_CACHED_VALUES is %p", 14567 TYPE_CACHED_VALUES_P (t), (void *)TYPE_CACHED_VALUES (t)); 14568 error_found = true; 14569 } 14570 else if (TYPE_CACHED_VALUES_P (t) && TREE_CODE (TYPE_CACHED_VALUES (t)) != TREE_VEC) 14571 { 14572 error ("TYPE_CACHED_VALUES is not TREE_VEC"); 14573 debug_tree (TYPE_CACHED_VALUES (t)); 14574 error_found = true; 14575 } 14576 /* Verify just enough of cache to ensure that no one copied it to new type. 14577 All copying should go by copy_node that should clear it. */ 14578 else if (TYPE_CACHED_VALUES_P (t)) 14579 { 14580 int i; 14581 for (i = 0; i < TREE_VEC_LENGTH (TYPE_CACHED_VALUES (t)); i++) 14582 if (TREE_VEC_ELT (TYPE_CACHED_VALUES (t), i) 14583 && TREE_TYPE (TREE_VEC_ELT (TYPE_CACHED_VALUES (t), i)) != t) 14584 { 14585 error ("wrong TYPE_CACHED_VALUES entry"); 14586 debug_tree (TREE_VEC_ELT (TYPE_CACHED_VALUES (t), i)); 14587 error_found = true; 14588 break; 14589 } 14590 } 14591 } 14592 else if (TREE_CODE (t) == FUNCTION_TYPE || TREE_CODE (t) == METHOD_TYPE) 14593 for (tree l = TYPE_ARG_TYPES (t); l; l = TREE_CHAIN (l)) 14594 { 14595 /* C++ FE uses TREE_PURPOSE to store initial values. */ 14596 if (TREE_PURPOSE (l) && in_lto_p) 14597 { 14598 error ("TREE_PURPOSE is non-NULL in TYPE_ARG_TYPES list"); 14599 debug_tree (l); 14600 error_found = true; 14601 } 14602 if (!TYPE_P (TREE_VALUE (l))) 14603 { 14604 error ("Wrong entry in TYPE_ARG_TYPES list"); 14605 debug_tree (l); 14606 error_found = true; 14607 } 14608 } 14609 else if (!is_lang_specific (t) && TYPE_VALUES_RAW (t)) 14610 { 14611 error ("TYPE_VALUES_RAW field is non-NULL"); 14612 debug_tree (TYPE_VALUES_RAW (t)); 14613 error_found = true; 14614 } 14615 if (TREE_CODE (t) != INTEGER_TYPE 14616 && TREE_CODE (t) != BOOLEAN_TYPE 14617 && TREE_CODE (t) != OFFSET_TYPE 14618 && TREE_CODE (t) != REFERENCE_TYPE 14619 && TREE_CODE (t) != NULLPTR_TYPE 14620 && TREE_CODE (t) != POINTER_TYPE 14621 && TYPE_CACHED_VALUES_P (t)) 14622 { 14623 error ("TYPE_CACHED_VALUES_P is set while it should not"); 14624 error_found = true; 14625 } 14626 if (TYPE_STRING_FLAG (t) 14627 && TREE_CODE (t) != ARRAY_TYPE && TREE_CODE (t) != INTEGER_TYPE) 14628 { 14629 error ("TYPE_STRING_FLAG is set on wrong type code"); 14630 error_found = true; 14631 } 14632 14633 /* ipa-devirt makes an assumption that TYPE_METHOD_BASETYPE is always 14634 TYPE_MAIN_VARIANT and it would be odd to add methods only to variatns 14635 of a type. */ 14636 if (TREE_CODE (t) == METHOD_TYPE 14637 && TYPE_MAIN_VARIANT (TYPE_METHOD_BASETYPE (t)) != TYPE_METHOD_BASETYPE (t)) 14638 { 14639 error ("TYPE_METHOD_BASETYPE is not main variant"); 14640 error_found = true; 14641 } 14642 14643 if (error_found) 14644 { 14645 debug_tree (const_cast <tree> (t)); 14646 internal_error ("verify_type failed"); 14647 } 14648 } 14649 14650 14651 /* Return 1 if ARG interpreted as signed in its precision is known to be 14652 always positive or 2 if ARG is known to be always negative, or 3 if 14653 ARG may be positive or negative. */ 14654 14655 int 14656 get_range_pos_neg (tree arg) 14657 { 14658 if (arg == error_mark_node) 14659 return 3; 14660 14661 int prec = TYPE_PRECISION (TREE_TYPE (arg)); 14662 int cnt = 0; 14663 if (TREE_CODE (arg) == INTEGER_CST) 14664 { 14665 wide_int w = wi::sext (wi::to_wide (arg), prec); 14666 if (wi::neg_p (w)) 14667 return 2; 14668 else 14669 return 1; 14670 } 14671 while (CONVERT_EXPR_P (arg) 14672 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (arg, 0))) 14673 && TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (arg, 0))) <= prec) 14674 { 14675 arg = TREE_OPERAND (arg, 0); 14676 /* Narrower value zero extended into wider type 14677 will always result in positive values. */ 14678 if (TYPE_UNSIGNED (TREE_TYPE (arg)) 14679 && TYPE_PRECISION (TREE_TYPE (arg)) < prec) 14680 return 1; 14681 prec = TYPE_PRECISION (TREE_TYPE (arg)); 14682 if (++cnt > 30) 14683 return 3; 14684 } 14685 14686 if (TREE_CODE (arg) != SSA_NAME) 14687 return 3; 14688 wide_int arg_min, arg_max; 14689 while (get_range_info (arg, &arg_min, &arg_max) != VR_RANGE) 14690 { 14691 gimple *g = SSA_NAME_DEF_STMT (arg); 14692 if (is_gimple_assign (g) 14693 && CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (g))) 14694 { 14695 tree t = gimple_assign_rhs1 (g); 14696 if (INTEGRAL_TYPE_P (TREE_TYPE (t)) 14697 && TYPE_PRECISION (TREE_TYPE (t)) <= prec) 14698 { 14699 if (TYPE_UNSIGNED (TREE_TYPE (t)) 14700 && TYPE_PRECISION (TREE_TYPE (t)) < prec) 14701 return 1; 14702 prec = TYPE_PRECISION (TREE_TYPE (t)); 14703 arg = t; 14704 if (++cnt > 30) 14705 return 3; 14706 continue; 14707 } 14708 } 14709 return 3; 14710 } 14711 if (TYPE_UNSIGNED (TREE_TYPE (arg))) 14712 { 14713 /* For unsigned values, the "positive" range comes 14714 below the "negative" range. */ 14715 if (!wi::neg_p (wi::sext (arg_max, prec), SIGNED)) 14716 return 1; 14717 if (wi::neg_p (wi::sext (arg_min, prec), SIGNED)) 14718 return 2; 14719 } 14720 else 14721 { 14722 if (!wi::neg_p (wi::sext (arg_min, prec), SIGNED)) 14723 return 1; 14724 if (wi::neg_p (wi::sext (arg_max, prec), SIGNED)) 14725 return 2; 14726 } 14727 return 3; 14728 } 14729 14730 14731 14732 14733 /* Return true if ARG is marked with the nonnull attribute in the 14734 current function signature. */ 14735 14736 bool 14737 nonnull_arg_p (const_tree arg) 14738 { 14739 tree t, attrs, fntype; 14740 unsigned HOST_WIDE_INT arg_num; 14741 14742 gcc_assert (TREE_CODE (arg) == PARM_DECL 14743 && (POINTER_TYPE_P (TREE_TYPE (arg)) 14744 || TREE_CODE (TREE_TYPE (arg)) == OFFSET_TYPE)); 14745 14746 /* The static chain decl is always non null. */ 14747 if (arg == cfun->static_chain_decl) 14748 return true; 14749 14750 /* THIS argument of method is always non-NULL. */ 14751 if (TREE_CODE (TREE_TYPE (cfun->decl)) == METHOD_TYPE 14752 && arg == DECL_ARGUMENTS (cfun->decl) 14753 && flag_delete_null_pointer_checks) 14754 return true; 14755 14756 /* Values passed by reference are always non-NULL. */ 14757 if (TREE_CODE (TREE_TYPE (arg)) == REFERENCE_TYPE 14758 && flag_delete_null_pointer_checks) 14759 return true; 14760 14761 fntype = TREE_TYPE (cfun->decl); 14762 for (attrs = TYPE_ATTRIBUTES (fntype); attrs; attrs = TREE_CHAIN (attrs)) 14763 { 14764 attrs = lookup_attribute ("nonnull", attrs); 14765 14766 /* If "nonnull" wasn't specified, we know nothing about the argument. */ 14767 if (attrs == NULL_TREE) 14768 return false; 14769 14770 /* If "nonnull" applies to all the arguments, then ARG is non-null. */ 14771 if (TREE_VALUE (attrs) == NULL_TREE) 14772 return true; 14773 14774 /* Get the position number for ARG in the function signature. */ 14775 for (arg_num = 1, t = DECL_ARGUMENTS (cfun->decl); 14776 t; 14777 t = DECL_CHAIN (t), arg_num++) 14778 { 14779 if (t == arg) 14780 break; 14781 } 14782 14783 gcc_assert (t == arg); 14784 14785 /* Now see if ARG_NUM is mentioned in the nonnull list. */ 14786 for (t = TREE_VALUE (attrs); t; t = TREE_CHAIN (t)) 14787 { 14788 if (compare_tree_int (TREE_VALUE (t), arg_num) == 0) 14789 return true; 14790 } 14791 } 14792 14793 return false; 14794 } 14795 14796 /* Combine LOC and BLOCK to a combined adhoc loc, retaining any range 14797 information. */ 14798 14799 location_t 14800 set_block (location_t loc, tree block) 14801 { 14802 location_t pure_loc = get_pure_location (loc); 14803 source_range src_range = get_range_from_loc (line_table, loc); 14804 return COMBINE_LOCATION_DATA (line_table, pure_loc, src_range, block); 14805 } 14806 14807 location_t 14808 set_source_range (tree expr, location_t start, location_t finish) 14809 { 14810 source_range src_range; 14811 src_range.m_start = start; 14812 src_range.m_finish = finish; 14813 return set_source_range (expr, src_range); 14814 } 14815 14816 location_t 14817 set_source_range (tree expr, source_range src_range) 14818 { 14819 if (!EXPR_P (expr)) 14820 return UNKNOWN_LOCATION; 14821 14822 location_t pure_loc = get_pure_location (EXPR_LOCATION (expr)); 14823 location_t adhoc = COMBINE_LOCATION_DATA (line_table, 14824 pure_loc, 14825 src_range, 14826 NULL); 14827 SET_EXPR_LOCATION (expr, adhoc); 14828 return adhoc; 14829 } 14830 14831 /* Return EXPR, potentially wrapped with a node expression LOC, 14832 if !CAN_HAVE_LOCATION_P (expr). 14833 14834 NON_LVALUE_EXPR is used for wrapping constants, apart from STRING_CST. 14835 VIEW_CONVERT_EXPR is used for wrapping non-constants and STRING_CST. 14836 14837 Wrapper nodes can be identified using location_wrapper_p. */ 14838 14839 tree 14840 maybe_wrap_with_location (tree expr, location_t loc) 14841 { 14842 if (expr == NULL) 14843 return NULL; 14844 if (loc == UNKNOWN_LOCATION) 14845 return expr; 14846 if (CAN_HAVE_LOCATION_P (expr)) 14847 return expr; 14848 /* We should only be adding wrappers for constants and for decls, 14849 or for some exceptional tree nodes (e.g. BASELINK in the C++ FE). */ 14850 gcc_assert (CONSTANT_CLASS_P (expr) 14851 || DECL_P (expr) 14852 || EXCEPTIONAL_CLASS_P (expr)); 14853 14854 /* For now, don't add wrappers to exceptional tree nodes, to minimize 14855 any impact of the wrapper nodes. */ 14856 if (EXCEPTIONAL_CLASS_P (expr)) 14857 return expr; 14858 14859 /* If any auto_suppress_location_wrappers are active, don't create 14860 wrappers. */ 14861 if (suppress_location_wrappers > 0) 14862 return expr; 14863 14864 tree_code code 14865 = (((CONSTANT_CLASS_P (expr) && TREE_CODE (expr) != STRING_CST) 14866 || (TREE_CODE (expr) == CONST_DECL && !TREE_STATIC (expr))) 14867 ? NON_LVALUE_EXPR : VIEW_CONVERT_EXPR); 14868 tree wrapper = build1_loc (loc, code, TREE_TYPE (expr), expr); 14869 /* Mark this node as being a wrapper. */ 14870 EXPR_LOCATION_WRAPPER_P (wrapper) = 1; 14871 return wrapper; 14872 } 14873 14874 int suppress_location_wrappers; 14875 14876 /* Return the name of combined function FN, for debugging purposes. */ 14877 14878 const char * 14879 combined_fn_name (combined_fn fn) 14880 { 14881 if (builtin_fn_p (fn)) 14882 { 14883 tree fndecl = builtin_decl_explicit (as_builtin_fn (fn)); 14884 return IDENTIFIER_POINTER (DECL_NAME (fndecl)); 14885 } 14886 else 14887 return internal_fn_name (as_internal_fn (fn)); 14888 } 14889 14890 /* Return a bitmap with a bit set corresponding to each argument in 14891 a function call type FNTYPE declared with attribute nonnull, 14892 or null if none of the function's argument are nonnull. The caller 14893 must free the bitmap. */ 14894 14895 bitmap 14896 get_nonnull_args (const_tree fntype) 14897 { 14898 if (fntype == NULL_TREE) 14899 return NULL; 14900 14901 tree attrs = TYPE_ATTRIBUTES (fntype); 14902 if (!attrs) 14903 return NULL; 14904 14905 bitmap argmap = NULL; 14906 14907 /* A function declaration can specify multiple attribute nonnull, 14908 each with zero or more arguments. The loop below creates a bitmap 14909 representing a union of all the arguments. An empty (but non-null) 14910 bitmap means that all arguments have been declaraed nonnull. */ 14911 for ( ; attrs; attrs = TREE_CHAIN (attrs)) 14912 { 14913 attrs = lookup_attribute ("nonnull", attrs); 14914 if (!attrs) 14915 break; 14916 14917 if (!argmap) 14918 argmap = BITMAP_ALLOC (NULL); 14919 14920 if (!TREE_VALUE (attrs)) 14921 { 14922 /* Clear the bitmap in case a previous attribute nonnull 14923 set it and this one overrides it for all arguments. */ 14924 bitmap_clear (argmap); 14925 return argmap; 14926 } 14927 14928 /* Iterate over the indices of the format arguments declared nonnull 14929 and set a bit for each. */ 14930 for (tree idx = TREE_VALUE (attrs); idx; idx = TREE_CHAIN (idx)) 14931 { 14932 unsigned int val = TREE_INT_CST_LOW (TREE_VALUE (idx)) - 1; 14933 bitmap_set_bit (argmap, val); 14934 } 14935 } 14936 14937 return argmap; 14938 } 14939 14940 /* Returns true if TYPE is a type where it and all of its subobjects 14941 (recursively) are of structure, union, or array type. */ 14942 14943 static bool 14944 default_is_empty_type (tree type) 14945 { 14946 if (RECORD_OR_UNION_TYPE_P (type)) 14947 { 14948 for (tree field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field)) 14949 if (TREE_CODE (field) == FIELD_DECL 14950 && !DECL_PADDING_P (field) 14951 && !default_is_empty_type (TREE_TYPE (field))) 14952 return false; 14953 return true; 14954 } 14955 else if (TREE_CODE (type) == ARRAY_TYPE) 14956 return (integer_minus_onep (array_type_nelts (type)) 14957 || TYPE_DOMAIN (type) == NULL_TREE 14958 || default_is_empty_type (TREE_TYPE (type))); 14959 return false; 14960 } 14961 14962 /* Implement TARGET_EMPTY_RECORD_P. Return true if TYPE is an empty type 14963 that shouldn't be passed via stack. */ 14964 14965 bool 14966 default_is_empty_record (const_tree type) 14967 { 14968 if (!abi_version_at_least (12)) 14969 return false; 14970 14971 if (type == error_mark_node) 14972 return false; 14973 14974 if (TREE_ADDRESSABLE (type)) 14975 return false; 14976 14977 return default_is_empty_type (TYPE_MAIN_VARIANT (type)); 14978 } 14979 14980 /* Determine whether TYPE is a structure with a flexible array member, 14981 or a union containing such a structure (possibly recursively). */ 14982 14983 bool 14984 flexible_array_type_p (const_tree type) 14985 { 14986 tree x, last; 14987 switch (TREE_CODE (type)) 14988 { 14989 case RECORD_TYPE: 14990 last = NULL_TREE; 14991 for (x = TYPE_FIELDS (type); x != NULL_TREE; x = DECL_CHAIN (x)) 14992 if (TREE_CODE (x) == FIELD_DECL) 14993 last = x; 14994 if (last == NULL_TREE) 14995 return false; 14996 if (TREE_CODE (TREE_TYPE (last)) == ARRAY_TYPE 14997 && TYPE_SIZE (TREE_TYPE (last)) == NULL_TREE 14998 && TYPE_DOMAIN (TREE_TYPE (last)) != NULL_TREE 14999 && TYPE_MAX_VALUE (TYPE_DOMAIN (TREE_TYPE (last))) == NULL_TREE) 15000 return true; 15001 return false; 15002 case UNION_TYPE: 15003 for (x = TYPE_FIELDS (type); x != NULL_TREE; x = DECL_CHAIN (x)) 15004 { 15005 if (TREE_CODE (x) == FIELD_DECL 15006 && flexible_array_type_p (TREE_TYPE (x))) 15007 return true; 15008 } 15009 return false; 15010 default: 15011 return false; 15012 } 15013 } 15014 15015 /* Like int_size_in_bytes, but handle empty records specially. */ 15016 15017 HOST_WIDE_INT 15018 arg_int_size_in_bytes (const_tree type) 15019 { 15020 return TYPE_EMPTY_P (type) ? 0 : int_size_in_bytes (type); 15021 } 15022 15023 /* Like size_in_bytes, but handle empty records specially. */ 15024 15025 tree 15026 arg_size_in_bytes (const_tree type) 15027 { 15028 return TYPE_EMPTY_P (type) ? size_zero_node : size_in_bytes (type); 15029 } 15030 15031 /* Return true if an expression with CODE has to have the same result type as 15032 its first operand. */ 15033 15034 bool 15035 expr_type_first_operand_type_p (tree_code code) 15036 { 15037 switch (code) 15038 { 15039 case NEGATE_EXPR: 15040 case ABS_EXPR: 15041 case BIT_NOT_EXPR: 15042 case PAREN_EXPR: 15043 case CONJ_EXPR: 15044 15045 case PLUS_EXPR: 15046 case MINUS_EXPR: 15047 case MULT_EXPR: 15048 case TRUNC_DIV_EXPR: 15049 case CEIL_DIV_EXPR: 15050 case FLOOR_DIV_EXPR: 15051 case ROUND_DIV_EXPR: 15052 case TRUNC_MOD_EXPR: 15053 case CEIL_MOD_EXPR: 15054 case FLOOR_MOD_EXPR: 15055 case ROUND_MOD_EXPR: 15056 case RDIV_EXPR: 15057 case EXACT_DIV_EXPR: 15058 case MIN_EXPR: 15059 case MAX_EXPR: 15060 case BIT_IOR_EXPR: 15061 case BIT_XOR_EXPR: 15062 case BIT_AND_EXPR: 15063 15064 case LSHIFT_EXPR: 15065 case RSHIFT_EXPR: 15066 case LROTATE_EXPR: 15067 case RROTATE_EXPR: 15068 return true; 15069 15070 default: 15071 return false; 15072 } 15073 } 15074 15075 /* Return a typenode for the "standard" C type with a given name. */ 15076 tree 15077 get_typenode_from_name (const char *name) 15078 { 15079 if (name == NULL || *name == '\0') 15080 return NULL_TREE; 15081 15082 if (strcmp (name, "char") == 0) 15083 return char_type_node; 15084 if (strcmp (name, "unsigned char") == 0) 15085 return unsigned_char_type_node; 15086 if (strcmp (name, "signed char") == 0) 15087 return signed_char_type_node; 15088 15089 if (strcmp (name, "short int") == 0) 15090 return short_integer_type_node; 15091 if (strcmp (name, "short unsigned int") == 0) 15092 return short_unsigned_type_node; 15093 15094 if (strcmp (name, "int") == 0) 15095 return integer_type_node; 15096 if (strcmp (name, "unsigned int") == 0) 15097 return unsigned_type_node; 15098 15099 if (strcmp (name, "long int") == 0) 15100 return long_integer_type_node; 15101 if (strcmp (name, "long unsigned int") == 0) 15102 return long_unsigned_type_node; 15103 15104 if (strcmp (name, "long long int") == 0) 15105 return long_long_integer_type_node; 15106 if (strcmp (name, "long long unsigned int") == 0) 15107 return long_long_unsigned_type_node; 15108 15109 gcc_unreachable (); 15110 } 15111 15112 /* List of pointer types used to declare builtins before we have seen their 15113 real declaration. 15114 15115 Keep the size up to date in tree.h ! */ 15116 const builtin_structptr_type builtin_structptr_types[6] = 15117 { 15118 { fileptr_type_node, ptr_type_node, "FILE" }, 15119 { const_tm_ptr_type_node, const_ptr_type_node, "tm" }, 15120 { fenv_t_ptr_type_node, ptr_type_node, "fenv_t" }, 15121 { const_fenv_t_ptr_type_node, const_ptr_type_node, "fenv_t" }, 15122 { fexcept_t_ptr_type_node, ptr_type_node, "fexcept_t" }, 15123 { const_fexcept_t_ptr_type_node, const_ptr_type_node, "fexcept_t" } 15124 }; 15125 15126 /* Return the maximum object size. */ 15127 15128 tree 15129 max_object_size (void) 15130 { 15131 /* To do: Make this a configurable parameter. */ 15132 return TYPE_MAX_VALUE (ptrdiff_type_node); 15133 } 15134 15135 #if CHECKING_P 15136 15137 namespace selftest { 15138 15139 /* Selftests for tree. */ 15140 15141 /* Verify that integer constants are sane. */ 15142 15143 static void 15144 test_integer_constants () 15145 { 15146 ASSERT_TRUE (integer_type_node != NULL); 15147 ASSERT_TRUE (build_int_cst (integer_type_node, 0) != NULL); 15148 15149 tree type = integer_type_node; 15150 15151 tree zero = build_zero_cst (type); 15152 ASSERT_EQ (INTEGER_CST, TREE_CODE (zero)); 15153 ASSERT_EQ (type, TREE_TYPE (zero)); 15154 15155 tree one = build_int_cst (type, 1); 15156 ASSERT_EQ (INTEGER_CST, TREE_CODE (one)); 15157 ASSERT_EQ (type, TREE_TYPE (zero)); 15158 } 15159 15160 /* Verify identifiers. */ 15161 15162 static void 15163 test_identifiers () 15164 { 15165 tree identifier = get_identifier ("foo"); 15166 ASSERT_EQ (3, IDENTIFIER_LENGTH (identifier)); 15167 ASSERT_STREQ ("foo", IDENTIFIER_POINTER (identifier)); 15168 } 15169 15170 /* Verify LABEL_DECL. */ 15171 15172 static void 15173 test_labels () 15174 { 15175 tree identifier = get_identifier ("err"); 15176 tree label_decl = build_decl (UNKNOWN_LOCATION, LABEL_DECL, 15177 identifier, void_type_node); 15178 ASSERT_EQ (-1, LABEL_DECL_UID (label_decl)); 15179 ASSERT_FALSE (FORCED_LABEL (label_decl)); 15180 } 15181 15182 /* Return a new VECTOR_CST node whose type is TYPE and whose values 15183 are given by VALS. */ 15184 15185 static tree 15186 build_vector (tree type, vec<tree> vals MEM_STAT_DECL) 15187 { 15188 gcc_assert (known_eq (vals.length (), TYPE_VECTOR_SUBPARTS (type))); 15189 tree_vector_builder builder (type, vals.length (), 1); 15190 builder.splice (vals); 15191 return builder.build (); 15192 } 15193 15194 /* Check that VECTOR_CST ACTUAL contains the elements in EXPECTED. */ 15195 15196 static void 15197 check_vector_cst (vec<tree> expected, tree actual) 15198 { 15199 ASSERT_KNOWN_EQ (expected.length (), 15200 TYPE_VECTOR_SUBPARTS (TREE_TYPE (actual))); 15201 for (unsigned int i = 0; i < expected.length (); ++i) 15202 ASSERT_EQ (wi::to_wide (expected[i]), 15203 wi::to_wide (vector_cst_elt (actual, i))); 15204 } 15205 15206 /* Check that VECTOR_CST ACTUAL contains NPATTERNS duplicated elements, 15207 and that its elements match EXPECTED. */ 15208 15209 static void 15210 check_vector_cst_duplicate (vec<tree> expected, tree actual, 15211 unsigned int npatterns) 15212 { 15213 ASSERT_EQ (npatterns, VECTOR_CST_NPATTERNS (actual)); 15214 ASSERT_EQ (1, VECTOR_CST_NELTS_PER_PATTERN (actual)); 15215 ASSERT_EQ (npatterns, vector_cst_encoded_nelts (actual)); 15216 ASSERT_TRUE (VECTOR_CST_DUPLICATE_P (actual)); 15217 ASSERT_FALSE (VECTOR_CST_STEPPED_P (actual)); 15218 check_vector_cst (expected, actual); 15219 } 15220 15221 /* Check that VECTOR_CST ACTUAL contains NPATTERNS foreground elements 15222 and NPATTERNS background elements, and that its elements match 15223 EXPECTED. */ 15224 15225 static void 15226 check_vector_cst_fill (vec<tree> expected, tree actual, 15227 unsigned int npatterns) 15228 { 15229 ASSERT_EQ (npatterns, VECTOR_CST_NPATTERNS (actual)); 15230 ASSERT_EQ (2, VECTOR_CST_NELTS_PER_PATTERN (actual)); 15231 ASSERT_EQ (2 * npatterns, vector_cst_encoded_nelts (actual)); 15232 ASSERT_FALSE (VECTOR_CST_DUPLICATE_P (actual)); 15233 ASSERT_FALSE (VECTOR_CST_STEPPED_P (actual)); 15234 check_vector_cst (expected, actual); 15235 } 15236 15237 /* Check that VECTOR_CST ACTUAL contains NPATTERNS stepped patterns, 15238 and that its elements match EXPECTED. */ 15239 15240 static void 15241 check_vector_cst_stepped (vec<tree> expected, tree actual, 15242 unsigned int npatterns) 15243 { 15244 ASSERT_EQ (npatterns, VECTOR_CST_NPATTERNS (actual)); 15245 ASSERT_EQ (3, VECTOR_CST_NELTS_PER_PATTERN (actual)); 15246 ASSERT_EQ (3 * npatterns, vector_cst_encoded_nelts (actual)); 15247 ASSERT_FALSE (VECTOR_CST_DUPLICATE_P (actual)); 15248 ASSERT_TRUE (VECTOR_CST_STEPPED_P (actual)); 15249 check_vector_cst (expected, actual); 15250 } 15251 15252 /* Test the creation of VECTOR_CSTs. */ 15253 15254 static void 15255 test_vector_cst_patterns (ALONE_CXX_MEM_STAT_INFO) 15256 { 15257 auto_vec<tree, 8> elements (8); 15258 elements.quick_grow (8); 15259 tree element_type = build_nonstandard_integer_type (16, true); 15260 tree vector_type = build_vector_type (element_type, 8); 15261 15262 /* Test a simple linear series with a base of 0 and a step of 1: 15263 { 0, 1, 2, 3, 4, 5, 6, 7 }. */ 15264 for (unsigned int i = 0; i < 8; ++i) 15265 elements[i] = build_int_cst (element_type, i); 15266 tree vector = build_vector (vector_type, elements PASS_MEM_STAT); 15267 check_vector_cst_stepped (elements, vector, 1); 15268 15269 /* Try the same with the first element replaced by 100: 15270 { 100, 1, 2, 3, 4, 5, 6, 7 }. */ 15271 elements[0] = build_int_cst (element_type, 100); 15272 vector = build_vector (vector_type, elements PASS_MEM_STAT); 15273 check_vector_cst_stepped (elements, vector, 1); 15274 15275 /* Try a series that wraps around. 15276 { 100, 65531, 65532, 65533, 65534, 65535, 0, 1 }. */ 15277 for (unsigned int i = 1; i < 8; ++i) 15278 elements[i] = build_int_cst (element_type, (65530 + i) & 0xffff); 15279 vector = build_vector (vector_type, elements PASS_MEM_STAT); 15280 check_vector_cst_stepped (elements, vector, 1); 15281 15282 /* Try a downward series: 15283 { 100, 79, 78, 77, 76, 75, 75, 73 }. */ 15284 for (unsigned int i = 1; i < 8; ++i) 15285 elements[i] = build_int_cst (element_type, 80 - i); 15286 vector = build_vector (vector_type, elements PASS_MEM_STAT); 15287 check_vector_cst_stepped (elements, vector, 1); 15288 15289 /* Try two interleaved series with different bases and steps: 15290 { 100, 53, 66, 206, 62, 212, 58, 218 }. */ 15291 elements[1] = build_int_cst (element_type, 53); 15292 for (unsigned int i = 2; i < 8; i += 2) 15293 { 15294 elements[i] = build_int_cst (element_type, 70 - i * 2); 15295 elements[i + 1] = build_int_cst (element_type, 200 + i * 3); 15296 } 15297 vector = build_vector (vector_type, elements PASS_MEM_STAT); 15298 check_vector_cst_stepped (elements, vector, 2); 15299 15300 /* Try a duplicated value: 15301 { 100, 100, 100, 100, 100, 100, 100, 100 }. */ 15302 for (unsigned int i = 1; i < 8; ++i) 15303 elements[i] = elements[0]; 15304 vector = build_vector (vector_type, elements PASS_MEM_STAT); 15305 check_vector_cst_duplicate (elements, vector, 1); 15306 15307 /* Try an interleaved duplicated value: 15308 { 100, 55, 100, 55, 100, 55, 100, 55 }. */ 15309 elements[1] = build_int_cst (element_type, 55); 15310 for (unsigned int i = 2; i < 8; ++i) 15311 elements[i] = elements[i - 2]; 15312 vector = build_vector (vector_type, elements PASS_MEM_STAT); 15313 check_vector_cst_duplicate (elements, vector, 2); 15314 15315 /* Try a duplicated value with 2 exceptions 15316 { 41, 97, 100, 55, 100, 55, 100, 55 }. */ 15317 elements[0] = build_int_cst (element_type, 41); 15318 elements[1] = build_int_cst (element_type, 97); 15319 vector = build_vector (vector_type, elements PASS_MEM_STAT); 15320 check_vector_cst_fill (elements, vector, 2); 15321 15322 /* Try with and without a step 15323 { 41, 97, 100, 21, 100, 35, 100, 49 }. */ 15324 for (unsigned int i = 3; i < 8; i += 2) 15325 elements[i] = build_int_cst (element_type, i * 7); 15326 vector = build_vector (vector_type, elements PASS_MEM_STAT); 15327 check_vector_cst_stepped (elements, vector, 2); 15328 15329 /* Try a fully-general constant: 15330 { 41, 97, 100, 21, 100, 9990, 100, 49 }. */ 15331 elements[5] = build_int_cst (element_type, 9990); 15332 vector = build_vector (vector_type, elements PASS_MEM_STAT); 15333 check_vector_cst_fill (elements, vector, 4); 15334 } 15335 15336 /* Verify that STRIP_NOPS (NODE) is EXPECTED. 15337 Helper function for test_location_wrappers, to deal with STRIP_NOPS 15338 modifying its argument in-place. */ 15339 15340 static void 15341 check_strip_nops (tree node, tree expected) 15342 { 15343 STRIP_NOPS (node); 15344 ASSERT_EQ (expected, node); 15345 } 15346 15347 /* Verify location wrappers. */ 15348 15349 static void 15350 test_location_wrappers () 15351 { 15352 location_t loc = BUILTINS_LOCATION; 15353 15354 ASSERT_EQ (NULL_TREE, maybe_wrap_with_location (NULL_TREE, loc)); 15355 15356 /* Wrapping a constant. */ 15357 tree int_cst = build_int_cst (integer_type_node, 42); 15358 ASSERT_FALSE (CAN_HAVE_LOCATION_P (int_cst)); 15359 ASSERT_FALSE (location_wrapper_p (int_cst)); 15360 15361 tree wrapped_int_cst = maybe_wrap_with_location (int_cst, loc); 15362 ASSERT_TRUE (location_wrapper_p (wrapped_int_cst)); 15363 ASSERT_EQ (loc, EXPR_LOCATION (wrapped_int_cst)); 15364 ASSERT_EQ (int_cst, tree_strip_any_location_wrapper (wrapped_int_cst)); 15365 15366 /* We shouldn't add wrapper nodes for UNKNOWN_LOCATION. */ 15367 ASSERT_EQ (int_cst, maybe_wrap_with_location (int_cst, UNKNOWN_LOCATION)); 15368 15369 /* We shouldn't add wrapper nodes for nodes that CAN_HAVE_LOCATION_P. */ 15370 tree cast = build1 (NOP_EXPR, char_type_node, int_cst); 15371 ASSERT_TRUE (CAN_HAVE_LOCATION_P (cast)); 15372 ASSERT_EQ (cast, maybe_wrap_with_location (cast, loc)); 15373 15374 /* Wrapping a STRING_CST. */ 15375 tree string_cst = build_string (4, "foo"); 15376 ASSERT_FALSE (CAN_HAVE_LOCATION_P (string_cst)); 15377 ASSERT_FALSE (location_wrapper_p (string_cst)); 15378 15379 tree wrapped_string_cst = maybe_wrap_with_location (string_cst, loc); 15380 ASSERT_TRUE (location_wrapper_p (wrapped_string_cst)); 15381 ASSERT_EQ (VIEW_CONVERT_EXPR, TREE_CODE (wrapped_string_cst)); 15382 ASSERT_EQ (loc, EXPR_LOCATION (wrapped_string_cst)); 15383 ASSERT_EQ (string_cst, tree_strip_any_location_wrapper (wrapped_string_cst)); 15384 15385 15386 /* Wrapping a variable. */ 15387 tree int_var = build_decl (UNKNOWN_LOCATION, VAR_DECL, 15388 get_identifier ("some_int_var"), 15389 integer_type_node); 15390 ASSERT_FALSE (CAN_HAVE_LOCATION_P (int_var)); 15391 ASSERT_FALSE (location_wrapper_p (int_var)); 15392 15393 tree wrapped_int_var = maybe_wrap_with_location (int_var, loc); 15394 ASSERT_TRUE (location_wrapper_p (wrapped_int_var)); 15395 ASSERT_EQ (loc, EXPR_LOCATION (wrapped_int_var)); 15396 ASSERT_EQ (int_var, tree_strip_any_location_wrapper (wrapped_int_var)); 15397 15398 /* Verify that "reinterpret_cast<int>(some_int_var)" is not a location 15399 wrapper. */ 15400 tree r_cast = build1 (NON_LVALUE_EXPR, integer_type_node, int_var); 15401 ASSERT_FALSE (location_wrapper_p (r_cast)); 15402 ASSERT_EQ (r_cast, tree_strip_any_location_wrapper (r_cast)); 15403 15404 /* Verify that STRIP_NOPS removes wrappers. */ 15405 check_strip_nops (wrapped_int_cst, int_cst); 15406 check_strip_nops (wrapped_string_cst, string_cst); 15407 check_strip_nops (wrapped_int_var, int_var); 15408 } 15409 15410 /* Test various tree predicates. Verify that location wrappers don't 15411 affect the results. */ 15412 15413 static void 15414 test_predicates () 15415 { 15416 /* Build various constants and wrappers around them. */ 15417 15418 location_t loc = BUILTINS_LOCATION; 15419 15420 tree i_0 = build_int_cst (integer_type_node, 0); 15421 tree wr_i_0 = maybe_wrap_with_location (i_0, loc); 15422 15423 tree i_1 = build_int_cst (integer_type_node, 1); 15424 tree wr_i_1 = maybe_wrap_with_location (i_1, loc); 15425 15426 tree i_m1 = build_int_cst (integer_type_node, -1); 15427 tree wr_i_m1 = maybe_wrap_with_location (i_m1, loc); 15428 15429 tree f_0 = build_real_from_int_cst (float_type_node, i_0); 15430 tree wr_f_0 = maybe_wrap_with_location (f_0, loc); 15431 tree f_1 = build_real_from_int_cst (float_type_node, i_1); 15432 tree wr_f_1 = maybe_wrap_with_location (f_1, loc); 15433 tree f_m1 = build_real_from_int_cst (float_type_node, i_m1); 15434 tree wr_f_m1 = maybe_wrap_with_location (f_m1, loc); 15435 15436 tree c_i_0 = build_complex (NULL_TREE, i_0, i_0); 15437 tree c_i_1 = build_complex (NULL_TREE, i_1, i_0); 15438 tree c_i_m1 = build_complex (NULL_TREE, i_m1, i_0); 15439 15440 tree c_f_0 = build_complex (NULL_TREE, f_0, f_0); 15441 tree c_f_1 = build_complex (NULL_TREE, f_1, f_0); 15442 tree c_f_m1 = build_complex (NULL_TREE, f_m1, f_0); 15443 15444 /* TODO: vector constants. */ 15445 15446 /* Test integer_onep. */ 15447 ASSERT_FALSE (integer_onep (i_0)); 15448 ASSERT_FALSE (integer_onep (wr_i_0)); 15449 ASSERT_TRUE (integer_onep (i_1)); 15450 ASSERT_TRUE (integer_onep (wr_i_1)); 15451 ASSERT_FALSE (integer_onep (i_m1)); 15452 ASSERT_FALSE (integer_onep (wr_i_m1)); 15453 ASSERT_FALSE (integer_onep (f_0)); 15454 ASSERT_FALSE (integer_onep (wr_f_0)); 15455 ASSERT_FALSE (integer_onep (f_1)); 15456 ASSERT_FALSE (integer_onep (wr_f_1)); 15457 ASSERT_FALSE (integer_onep (f_m1)); 15458 ASSERT_FALSE (integer_onep (wr_f_m1)); 15459 ASSERT_FALSE (integer_onep (c_i_0)); 15460 ASSERT_TRUE (integer_onep (c_i_1)); 15461 ASSERT_FALSE (integer_onep (c_i_m1)); 15462 ASSERT_FALSE (integer_onep (c_f_0)); 15463 ASSERT_FALSE (integer_onep (c_f_1)); 15464 ASSERT_FALSE (integer_onep (c_f_m1)); 15465 15466 /* Test integer_zerop. */ 15467 ASSERT_TRUE (integer_zerop (i_0)); 15468 ASSERT_TRUE (integer_zerop (wr_i_0)); 15469 ASSERT_FALSE (integer_zerop (i_1)); 15470 ASSERT_FALSE (integer_zerop (wr_i_1)); 15471 ASSERT_FALSE (integer_zerop (i_m1)); 15472 ASSERT_FALSE (integer_zerop (wr_i_m1)); 15473 ASSERT_FALSE (integer_zerop (f_0)); 15474 ASSERT_FALSE (integer_zerop (wr_f_0)); 15475 ASSERT_FALSE (integer_zerop (f_1)); 15476 ASSERT_FALSE (integer_zerop (wr_f_1)); 15477 ASSERT_FALSE (integer_zerop (f_m1)); 15478 ASSERT_FALSE (integer_zerop (wr_f_m1)); 15479 ASSERT_TRUE (integer_zerop (c_i_0)); 15480 ASSERT_FALSE (integer_zerop (c_i_1)); 15481 ASSERT_FALSE (integer_zerop (c_i_m1)); 15482 ASSERT_FALSE (integer_zerop (c_f_0)); 15483 ASSERT_FALSE (integer_zerop (c_f_1)); 15484 ASSERT_FALSE (integer_zerop (c_f_m1)); 15485 15486 /* Test integer_all_onesp. */ 15487 ASSERT_FALSE (integer_all_onesp (i_0)); 15488 ASSERT_FALSE (integer_all_onesp (wr_i_0)); 15489 ASSERT_FALSE (integer_all_onesp (i_1)); 15490 ASSERT_FALSE (integer_all_onesp (wr_i_1)); 15491 ASSERT_TRUE (integer_all_onesp (i_m1)); 15492 ASSERT_TRUE (integer_all_onesp (wr_i_m1)); 15493 ASSERT_FALSE (integer_all_onesp (f_0)); 15494 ASSERT_FALSE (integer_all_onesp (wr_f_0)); 15495 ASSERT_FALSE (integer_all_onesp (f_1)); 15496 ASSERT_FALSE (integer_all_onesp (wr_f_1)); 15497 ASSERT_FALSE (integer_all_onesp (f_m1)); 15498 ASSERT_FALSE (integer_all_onesp (wr_f_m1)); 15499 ASSERT_FALSE (integer_all_onesp (c_i_0)); 15500 ASSERT_FALSE (integer_all_onesp (c_i_1)); 15501 ASSERT_FALSE (integer_all_onesp (c_i_m1)); 15502 ASSERT_FALSE (integer_all_onesp (c_f_0)); 15503 ASSERT_FALSE (integer_all_onesp (c_f_1)); 15504 ASSERT_FALSE (integer_all_onesp (c_f_m1)); 15505 15506 /* Test integer_minus_onep. */ 15507 ASSERT_FALSE (integer_minus_onep (i_0)); 15508 ASSERT_FALSE (integer_minus_onep (wr_i_0)); 15509 ASSERT_FALSE (integer_minus_onep (i_1)); 15510 ASSERT_FALSE (integer_minus_onep (wr_i_1)); 15511 ASSERT_TRUE (integer_minus_onep (i_m1)); 15512 ASSERT_TRUE (integer_minus_onep (wr_i_m1)); 15513 ASSERT_FALSE (integer_minus_onep (f_0)); 15514 ASSERT_FALSE (integer_minus_onep (wr_f_0)); 15515 ASSERT_FALSE (integer_minus_onep (f_1)); 15516 ASSERT_FALSE (integer_minus_onep (wr_f_1)); 15517 ASSERT_FALSE (integer_minus_onep (f_m1)); 15518 ASSERT_FALSE (integer_minus_onep (wr_f_m1)); 15519 ASSERT_FALSE (integer_minus_onep (c_i_0)); 15520 ASSERT_FALSE (integer_minus_onep (c_i_1)); 15521 ASSERT_TRUE (integer_minus_onep (c_i_m1)); 15522 ASSERT_FALSE (integer_minus_onep (c_f_0)); 15523 ASSERT_FALSE (integer_minus_onep (c_f_1)); 15524 ASSERT_FALSE (integer_minus_onep (c_f_m1)); 15525 15526 /* Test integer_each_onep. */ 15527 ASSERT_FALSE (integer_each_onep (i_0)); 15528 ASSERT_FALSE (integer_each_onep (wr_i_0)); 15529 ASSERT_TRUE (integer_each_onep (i_1)); 15530 ASSERT_TRUE (integer_each_onep (wr_i_1)); 15531 ASSERT_FALSE (integer_each_onep (i_m1)); 15532 ASSERT_FALSE (integer_each_onep (wr_i_m1)); 15533 ASSERT_FALSE (integer_each_onep (f_0)); 15534 ASSERT_FALSE (integer_each_onep (wr_f_0)); 15535 ASSERT_FALSE (integer_each_onep (f_1)); 15536 ASSERT_FALSE (integer_each_onep (wr_f_1)); 15537 ASSERT_FALSE (integer_each_onep (f_m1)); 15538 ASSERT_FALSE (integer_each_onep (wr_f_m1)); 15539 ASSERT_FALSE (integer_each_onep (c_i_0)); 15540 ASSERT_FALSE (integer_each_onep (c_i_1)); 15541 ASSERT_FALSE (integer_each_onep (c_i_m1)); 15542 ASSERT_FALSE (integer_each_onep (c_f_0)); 15543 ASSERT_FALSE (integer_each_onep (c_f_1)); 15544 ASSERT_FALSE (integer_each_onep (c_f_m1)); 15545 15546 /* Test integer_truep. */ 15547 ASSERT_FALSE (integer_truep (i_0)); 15548 ASSERT_FALSE (integer_truep (wr_i_0)); 15549 ASSERT_TRUE (integer_truep (i_1)); 15550 ASSERT_TRUE (integer_truep (wr_i_1)); 15551 ASSERT_FALSE (integer_truep (i_m1)); 15552 ASSERT_FALSE (integer_truep (wr_i_m1)); 15553 ASSERT_FALSE (integer_truep (f_0)); 15554 ASSERT_FALSE (integer_truep (wr_f_0)); 15555 ASSERT_FALSE (integer_truep (f_1)); 15556 ASSERT_FALSE (integer_truep (wr_f_1)); 15557 ASSERT_FALSE (integer_truep (f_m1)); 15558 ASSERT_FALSE (integer_truep (wr_f_m1)); 15559 ASSERT_FALSE (integer_truep (c_i_0)); 15560 ASSERT_TRUE (integer_truep (c_i_1)); 15561 ASSERT_FALSE (integer_truep (c_i_m1)); 15562 ASSERT_FALSE (integer_truep (c_f_0)); 15563 ASSERT_FALSE (integer_truep (c_f_1)); 15564 ASSERT_FALSE (integer_truep (c_f_m1)); 15565 15566 /* Test integer_nonzerop. */ 15567 ASSERT_FALSE (integer_nonzerop (i_0)); 15568 ASSERT_FALSE (integer_nonzerop (wr_i_0)); 15569 ASSERT_TRUE (integer_nonzerop (i_1)); 15570 ASSERT_TRUE (integer_nonzerop (wr_i_1)); 15571 ASSERT_TRUE (integer_nonzerop (i_m1)); 15572 ASSERT_TRUE (integer_nonzerop (wr_i_m1)); 15573 ASSERT_FALSE (integer_nonzerop (f_0)); 15574 ASSERT_FALSE (integer_nonzerop (wr_f_0)); 15575 ASSERT_FALSE (integer_nonzerop (f_1)); 15576 ASSERT_FALSE (integer_nonzerop (wr_f_1)); 15577 ASSERT_FALSE (integer_nonzerop (f_m1)); 15578 ASSERT_FALSE (integer_nonzerop (wr_f_m1)); 15579 ASSERT_FALSE (integer_nonzerop (c_i_0)); 15580 ASSERT_TRUE (integer_nonzerop (c_i_1)); 15581 ASSERT_TRUE (integer_nonzerop (c_i_m1)); 15582 ASSERT_FALSE (integer_nonzerop (c_f_0)); 15583 ASSERT_FALSE (integer_nonzerop (c_f_1)); 15584 ASSERT_FALSE (integer_nonzerop (c_f_m1)); 15585 15586 /* Test real_zerop. */ 15587 ASSERT_FALSE (real_zerop (i_0)); 15588 ASSERT_FALSE (real_zerop (wr_i_0)); 15589 ASSERT_FALSE (real_zerop (i_1)); 15590 ASSERT_FALSE (real_zerop (wr_i_1)); 15591 ASSERT_FALSE (real_zerop (i_m1)); 15592 ASSERT_FALSE (real_zerop (wr_i_m1)); 15593 ASSERT_TRUE (real_zerop (f_0)); 15594 ASSERT_TRUE (real_zerop (wr_f_0)); 15595 ASSERT_FALSE (real_zerop (f_1)); 15596 ASSERT_FALSE (real_zerop (wr_f_1)); 15597 ASSERT_FALSE (real_zerop (f_m1)); 15598 ASSERT_FALSE (real_zerop (wr_f_m1)); 15599 ASSERT_FALSE (real_zerop (c_i_0)); 15600 ASSERT_FALSE (real_zerop (c_i_1)); 15601 ASSERT_FALSE (real_zerop (c_i_m1)); 15602 ASSERT_TRUE (real_zerop (c_f_0)); 15603 ASSERT_FALSE (real_zerop (c_f_1)); 15604 ASSERT_FALSE (real_zerop (c_f_m1)); 15605 15606 /* Test real_onep. */ 15607 ASSERT_FALSE (real_onep (i_0)); 15608 ASSERT_FALSE (real_onep (wr_i_0)); 15609 ASSERT_FALSE (real_onep (i_1)); 15610 ASSERT_FALSE (real_onep (wr_i_1)); 15611 ASSERT_FALSE (real_onep (i_m1)); 15612 ASSERT_FALSE (real_onep (wr_i_m1)); 15613 ASSERT_FALSE (real_onep (f_0)); 15614 ASSERT_FALSE (real_onep (wr_f_0)); 15615 ASSERT_TRUE (real_onep (f_1)); 15616 ASSERT_TRUE (real_onep (wr_f_1)); 15617 ASSERT_FALSE (real_onep (f_m1)); 15618 ASSERT_FALSE (real_onep (wr_f_m1)); 15619 ASSERT_FALSE (real_onep (c_i_0)); 15620 ASSERT_FALSE (real_onep (c_i_1)); 15621 ASSERT_FALSE (real_onep (c_i_m1)); 15622 ASSERT_FALSE (real_onep (c_f_0)); 15623 ASSERT_TRUE (real_onep (c_f_1)); 15624 ASSERT_FALSE (real_onep (c_f_m1)); 15625 15626 /* Test real_minus_onep. */ 15627 ASSERT_FALSE (real_minus_onep (i_0)); 15628 ASSERT_FALSE (real_minus_onep (wr_i_0)); 15629 ASSERT_FALSE (real_minus_onep (i_1)); 15630 ASSERT_FALSE (real_minus_onep (wr_i_1)); 15631 ASSERT_FALSE (real_minus_onep (i_m1)); 15632 ASSERT_FALSE (real_minus_onep (wr_i_m1)); 15633 ASSERT_FALSE (real_minus_onep (f_0)); 15634 ASSERT_FALSE (real_minus_onep (wr_f_0)); 15635 ASSERT_FALSE (real_minus_onep (f_1)); 15636 ASSERT_FALSE (real_minus_onep (wr_f_1)); 15637 ASSERT_TRUE (real_minus_onep (f_m1)); 15638 ASSERT_TRUE (real_minus_onep (wr_f_m1)); 15639 ASSERT_FALSE (real_minus_onep (c_i_0)); 15640 ASSERT_FALSE (real_minus_onep (c_i_1)); 15641 ASSERT_FALSE (real_minus_onep (c_i_m1)); 15642 ASSERT_FALSE (real_minus_onep (c_f_0)); 15643 ASSERT_FALSE (real_minus_onep (c_f_1)); 15644 ASSERT_TRUE (real_minus_onep (c_f_m1)); 15645 15646 /* Test zerop. */ 15647 ASSERT_TRUE (zerop (i_0)); 15648 ASSERT_TRUE (zerop (wr_i_0)); 15649 ASSERT_FALSE (zerop (i_1)); 15650 ASSERT_FALSE (zerop (wr_i_1)); 15651 ASSERT_FALSE (zerop (i_m1)); 15652 ASSERT_FALSE (zerop (wr_i_m1)); 15653 ASSERT_TRUE (zerop (f_0)); 15654 ASSERT_TRUE (zerop (wr_f_0)); 15655 ASSERT_FALSE (zerop (f_1)); 15656 ASSERT_FALSE (zerop (wr_f_1)); 15657 ASSERT_FALSE (zerop (f_m1)); 15658 ASSERT_FALSE (zerop (wr_f_m1)); 15659 ASSERT_TRUE (zerop (c_i_0)); 15660 ASSERT_FALSE (zerop (c_i_1)); 15661 ASSERT_FALSE (zerop (c_i_m1)); 15662 ASSERT_TRUE (zerop (c_f_0)); 15663 ASSERT_FALSE (zerop (c_f_1)); 15664 ASSERT_FALSE (zerop (c_f_m1)); 15665 15666 /* Test tree_expr_nonnegative_p. */ 15667 ASSERT_TRUE (tree_expr_nonnegative_p (i_0)); 15668 ASSERT_TRUE (tree_expr_nonnegative_p (wr_i_0)); 15669 ASSERT_TRUE (tree_expr_nonnegative_p (i_1)); 15670 ASSERT_TRUE (tree_expr_nonnegative_p (wr_i_1)); 15671 ASSERT_FALSE (tree_expr_nonnegative_p (i_m1)); 15672 ASSERT_FALSE (tree_expr_nonnegative_p (wr_i_m1)); 15673 ASSERT_TRUE (tree_expr_nonnegative_p (f_0)); 15674 ASSERT_TRUE (tree_expr_nonnegative_p (wr_f_0)); 15675 ASSERT_TRUE (tree_expr_nonnegative_p (f_1)); 15676 ASSERT_TRUE (tree_expr_nonnegative_p (wr_f_1)); 15677 ASSERT_FALSE (tree_expr_nonnegative_p (f_m1)); 15678 ASSERT_FALSE (tree_expr_nonnegative_p (wr_f_m1)); 15679 ASSERT_FALSE (tree_expr_nonnegative_p (c_i_0)); 15680 ASSERT_FALSE (tree_expr_nonnegative_p (c_i_1)); 15681 ASSERT_FALSE (tree_expr_nonnegative_p (c_i_m1)); 15682 ASSERT_FALSE (tree_expr_nonnegative_p (c_f_0)); 15683 ASSERT_FALSE (tree_expr_nonnegative_p (c_f_1)); 15684 ASSERT_FALSE (tree_expr_nonnegative_p (c_f_m1)); 15685 15686 /* Test tree_expr_nonzero_p. */ 15687 ASSERT_FALSE (tree_expr_nonzero_p (i_0)); 15688 ASSERT_FALSE (tree_expr_nonzero_p (wr_i_0)); 15689 ASSERT_TRUE (tree_expr_nonzero_p (i_1)); 15690 ASSERT_TRUE (tree_expr_nonzero_p (wr_i_1)); 15691 ASSERT_TRUE (tree_expr_nonzero_p (i_m1)); 15692 ASSERT_TRUE (tree_expr_nonzero_p (wr_i_m1)); 15693 15694 /* Test integer_valued_real_p. */ 15695 ASSERT_FALSE (integer_valued_real_p (i_0)); 15696 ASSERT_TRUE (integer_valued_real_p (f_0)); 15697 ASSERT_TRUE (integer_valued_real_p (wr_f_0)); 15698 ASSERT_TRUE (integer_valued_real_p (f_1)); 15699 ASSERT_TRUE (integer_valued_real_p (wr_f_1)); 15700 15701 /* Test integer_pow2p. */ 15702 ASSERT_FALSE (integer_pow2p (i_0)); 15703 ASSERT_TRUE (integer_pow2p (i_1)); 15704 ASSERT_TRUE (integer_pow2p (wr_i_1)); 15705 15706 /* Test uniform_integer_cst_p. */ 15707 ASSERT_TRUE (uniform_integer_cst_p (i_0)); 15708 ASSERT_TRUE (uniform_integer_cst_p (wr_i_0)); 15709 ASSERT_TRUE (uniform_integer_cst_p (i_1)); 15710 ASSERT_TRUE (uniform_integer_cst_p (wr_i_1)); 15711 ASSERT_TRUE (uniform_integer_cst_p (i_m1)); 15712 ASSERT_TRUE (uniform_integer_cst_p (wr_i_m1)); 15713 ASSERT_FALSE (uniform_integer_cst_p (f_0)); 15714 ASSERT_FALSE (uniform_integer_cst_p (wr_f_0)); 15715 ASSERT_FALSE (uniform_integer_cst_p (f_1)); 15716 ASSERT_FALSE (uniform_integer_cst_p (wr_f_1)); 15717 ASSERT_FALSE (uniform_integer_cst_p (f_m1)); 15718 ASSERT_FALSE (uniform_integer_cst_p (wr_f_m1)); 15719 ASSERT_FALSE (uniform_integer_cst_p (c_i_0)); 15720 ASSERT_FALSE (uniform_integer_cst_p (c_i_1)); 15721 ASSERT_FALSE (uniform_integer_cst_p (c_i_m1)); 15722 ASSERT_FALSE (uniform_integer_cst_p (c_f_0)); 15723 ASSERT_FALSE (uniform_integer_cst_p (c_f_1)); 15724 ASSERT_FALSE (uniform_integer_cst_p (c_f_m1)); 15725 } 15726 15727 /* Check that string escaping works correctly. */ 15728 15729 static void 15730 test_escaped_strings (void) 15731 { 15732 int saved_cutoff; 15733 escaped_string msg; 15734 15735 msg.escape (NULL); 15736 /* ASSERT_STREQ does not accept NULL as a valid test 15737 result, so we have to use ASSERT_EQ instead. */ 15738 ASSERT_EQ (NULL, (const char *) msg); 15739 15740 msg.escape (""); 15741 ASSERT_STREQ ("", (const char *) msg); 15742 15743 msg.escape ("foobar"); 15744 ASSERT_STREQ ("foobar", (const char *) msg); 15745 15746 /* Ensure that we have -fmessage-length set to 0. */ 15747 saved_cutoff = pp_line_cutoff (global_dc->printer); 15748 pp_line_cutoff (global_dc->printer) = 0; 15749 15750 msg.escape ("foo\nbar"); 15751 ASSERT_STREQ ("foo\\nbar", (const char *) msg); 15752 15753 msg.escape ("\a\b\f\n\r\t\v"); 15754 ASSERT_STREQ ("\\a\\b\\f\\n\\r\\t\\v", (const char *) msg); 15755 15756 /* Now repeat the tests with -fmessage-length set to 5. */ 15757 pp_line_cutoff (global_dc->printer) = 5; 15758 15759 /* Note that the newline is not translated into an escape. */ 15760 msg.escape ("foo\nbar"); 15761 ASSERT_STREQ ("foo\nbar", (const char *) msg); 15762 15763 msg.escape ("\a\b\f\n\r\t\v"); 15764 ASSERT_STREQ ("\\a\\b\\f\n\\r\\t\\v", (const char *) msg); 15765 15766 /* Restore the original message length setting. */ 15767 pp_line_cutoff (global_dc->printer) = saved_cutoff; 15768 } 15769 15770 /* Run all of the selftests within this file. */ 15771 15772 void 15773 tree_c_tests () 15774 { 15775 test_integer_constants (); 15776 test_identifiers (); 15777 test_labels (); 15778 test_vector_cst_patterns (); 15779 test_location_wrappers (); 15780 test_predicates (); 15781 test_escaped_strings (); 15782 } 15783 15784 } // namespace selftest 15785 15786 #endif /* CHECKING_P */ 15787 15788 #include "gt-tree.h" 15789