xref: /netbsd-src/external/gpl3/gcc.old/dist/gcc/tree.c (revision 627f7eb200a4419d89b531d55fccd2ee3ffdcde0)
1 /* Language-independent node constructors for parse phase of GNU compiler.
2    Copyright (C) 1987-2018 Free Software Foundation, Inc.
3 
4 This file is part of GCC.
5 
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10 
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 for more details.
15 
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3.  If not see
18 <http://www.gnu.org/licenses/>.  */
19 
20 /* This file contains the low level primitives for operating on tree nodes,
21    including allocation, list operations, interning of identifiers,
22    construction of data type nodes and statement nodes,
23    and construction of type conversion nodes.  It also contains
24    tables index by tree code that describe how to take apart
25    nodes of that code.
26 
27    It is intended to be language-independent but can occasionally
28    calls language-dependent routines.  */
29 
30 #include "config.h"
31 #include "system.h"
32 #include "coretypes.h"
33 #include "backend.h"
34 #include "target.h"
35 #include "tree.h"
36 #include "gimple.h"
37 #include "tree-pass.h"
38 #include "ssa.h"
39 #include "cgraph.h"
40 #include "diagnostic.h"
41 #include "flags.h"
42 #include "alias.h"
43 #include "fold-const.h"
44 #include "stor-layout.h"
45 #include "calls.h"
46 #include "attribs.h"
47 #include "toplev.h" /* get_random_seed */
48 #include "output.h"
49 #include "common/common-target.h"
50 #include "langhooks.h"
51 #include "tree-inline.h"
52 #include "tree-iterator.h"
53 #include "internal-fn.h"
54 #include "gimple-iterator.h"
55 #include "gimplify.h"
56 #include "tree-dfa.h"
57 #include "params.h"
58 #include "langhooks-def.h"
59 #include "tree-diagnostic.h"
60 #include "except.h"
61 #include "builtins.h"
62 #include "print-tree.h"
63 #include "ipa-utils.h"
64 #include "selftest.h"
65 #include "stringpool.h"
66 #include "attribs.h"
67 #include "rtl.h"
68 #include "regs.h"
69 #include "tree-vector-builder.h"
70 
71 /* Tree code classes.  */
72 
73 #define DEFTREECODE(SYM, NAME, TYPE, LENGTH) TYPE,
74 #define END_OF_BASE_TREE_CODES tcc_exceptional,
75 
76 const enum tree_code_class tree_code_type[] = {
77 #include "all-tree.def"
78 };
79 
80 #undef DEFTREECODE
81 #undef END_OF_BASE_TREE_CODES
82 
83 /* Table indexed by tree code giving number of expression
84    operands beyond the fixed part of the node structure.
85    Not used for types or decls.  */
86 
87 #define DEFTREECODE(SYM, NAME, TYPE, LENGTH) LENGTH,
88 #define END_OF_BASE_TREE_CODES 0,
89 
90 const unsigned char tree_code_length[] = {
91 #include "all-tree.def"
92 };
93 
94 #undef DEFTREECODE
95 #undef END_OF_BASE_TREE_CODES
96 
97 /* Names of tree components.
98    Used for printing out the tree and error messages.  */
99 #define DEFTREECODE(SYM, NAME, TYPE, LEN) NAME,
100 #define END_OF_BASE_TREE_CODES "@dummy",
101 
102 static const char *const tree_code_name[] = {
103 #include "all-tree.def"
104 };
105 
106 #undef DEFTREECODE
107 #undef END_OF_BASE_TREE_CODES
108 
109 /* Each tree code class has an associated string representation.
110    These must correspond to the tree_code_class entries.  */
111 
112 const char *const tree_code_class_strings[] =
113 {
114   "exceptional",
115   "constant",
116   "type",
117   "declaration",
118   "reference",
119   "comparison",
120   "unary",
121   "binary",
122   "statement",
123   "vl_exp",
124   "expression"
125 };
126 
127 /* obstack.[ch] explicitly declined to prototype this.  */
128 extern int _obstack_allocated_p (struct obstack *h, void *obj);
129 
130 /* Statistics-gathering stuff.  */
131 
132 static uint64_t tree_code_counts[MAX_TREE_CODES];
133 uint64_t tree_node_counts[(int) all_kinds];
134 uint64_t tree_node_sizes[(int) all_kinds];
135 
136 /* Keep in sync with tree.h:enum tree_node_kind.  */
137 static const char * const tree_node_kind_names[] = {
138   "decls",
139   "types",
140   "blocks",
141   "stmts",
142   "refs",
143   "exprs",
144   "constants",
145   "identifiers",
146   "vecs",
147   "binfos",
148   "ssa names",
149   "constructors",
150   "random kinds",
151   "lang_decl kinds",
152   "lang_type kinds",
153   "omp clauses",
154 };
155 
156 /* Unique id for next decl created.  */
157 static GTY(()) int next_decl_uid;
158 /* Unique id for next type created.  */
159 static GTY(()) unsigned next_type_uid = 1;
160 /* Unique id for next debug decl created.  Use negative numbers,
161    to catch erroneous uses.  */
162 static GTY(()) int next_debug_decl_uid;
163 
164 /* Since we cannot rehash a type after it is in the table, we have to
165    keep the hash code.  */
166 
167 struct GTY((for_user)) type_hash {
168   unsigned long hash;
169   tree type;
170 };
171 
172 /* Initial size of the hash table (rounded to next prime).  */
173 #define TYPE_HASH_INITIAL_SIZE 1000
174 
175 struct type_cache_hasher : ggc_cache_ptr_hash<type_hash>
176 {
177   static hashval_t hash (type_hash *t) { return t->hash; }
178   static bool equal (type_hash *a, type_hash *b);
179 
180   static int
181   keep_cache_entry (type_hash *&t)
182   {
183     return ggc_marked_p (t->type);
184   }
185 };
186 
187 /* Now here is the hash table.  When recording a type, it is added to
188    the slot whose index is the hash code.  Note that the hash table is
189    used for several kinds of types (function types, array types and
190    array index range types, for now).  While all these live in the
191    same table, they are completely independent, and the hash code is
192    computed differently for each of these.  */
193 
194 static GTY ((cache)) hash_table<type_cache_hasher> *type_hash_table;
195 
196 /* Hash table and temporary node for larger integer const values.  */
197 static GTY (()) tree int_cst_node;
198 
199 struct int_cst_hasher : ggc_cache_ptr_hash<tree_node>
200 {
201   static hashval_t hash (tree t);
202   static bool equal (tree x, tree y);
203 };
204 
205 static GTY ((cache)) hash_table<int_cst_hasher> *int_cst_hash_table;
206 
207 /* Class and variable for making sure that there is a single POLY_INT_CST
208    for a given value.  */
209 struct poly_int_cst_hasher : ggc_cache_ptr_hash<tree_node>
210 {
211   typedef std::pair<tree, const poly_wide_int *> compare_type;
212   static hashval_t hash (tree t);
213   static bool equal (tree x, const compare_type &y);
214 };
215 
216 static GTY ((cache)) hash_table<poly_int_cst_hasher> *poly_int_cst_hash_table;
217 
218 /* Hash table for optimization flags and target option flags.  Use the same
219    hash table for both sets of options.  Nodes for building the current
220    optimization and target option nodes.  The assumption is most of the time
221    the options created will already be in the hash table, so we avoid
222    allocating and freeing up a node repeatably.  */
223 static GTY (()) tree cl_optimization_node;
224 static GTY (()) tree cl_target_option_node;
225 
226 struct cl_option_hasher : ggc_cache_ptr_hash<tree_node>
227 {
228   static hashval_t hash (tree t);
229   static bool equal (tree x, tree y);
230 };
231 
232 static GTY ((cache)) hash_table<cl_option_hasher> *cl_option_hash_table;
233 
234 /* General tree->tree mapping  structure for use in hash tables.  */
235 
236 
237 static GTY ((cache))
238      hash_table<tree_decl_map_cache_hasher> *debug_expr_for_decl;
239 
240 static GTY ((cache))
241      hash_table<tree_decl_map_cache_hasher> *value_expr_for_decl;
242 
243 struct tree_vec_map_cache_hasher : ggc_cache_ptr_hash<tree_vec_map>
244 {
245   static hashval_t hash (tree_vec_map *m) { return DECL_UID (m->base.from); }
246 
247   static bool
248   equal (tree_vec_map *a, tree_vec_map *b)
249   {
250     return a->base.from == b->base.from;
251   }
252 
253   static int
254   keep_cache_entry (tree_vec_map *&m)
255   {
256     return ggc_marked_p (m->base.from);
257   }
258 };
259 
260 static GTY ((cache))
261      hash_table<tree_vec_map_cache_hasher> *debug_args_for_decl;
262 
263 static void set_type_quals (tree, int);
264 static void print_type_hash_statistics (void);
265 static void print_debug_expr_statistics (void);
266 static void print_value_expr_statistics (void);
267 
268 tree global_trees[TI_MAX];
269 tree integer_types[itk_none];
270 
271 bool int_n_enabled_p[NUM_INT_N_ENTS];
272 struct int_n_trees_t int_n_trees [NUM_INT_N_ENTS];
273 
274 bool tree_contains_struct[MAX_TREE_CODES][64];
275 
276 /* Number of operands for each OpenMP clause.  */
277 unsigned const char omp_clause_num_ops[] =
278 {
279   0, /* OMP_CLAUSE_ERROR  */
280   1, /* OMP_CLAUSE_PRIVATE  */
281   1, /* OMP_CLAUSE_SHARED  */
282   1, /* OMP_CLAUSE_FIRSTPRIVATE  */
283   2, /* OMP_CLAUSE_LASTPRIVATE  */
284   5, /* OMP_CLAUSE_REDUCTION  */
285   1, /* OMP_CLAUSE_COPYIN  */
286   1, /* OMP_CLAUSE_COPYPRIVATE  */
287   3, /* OMP_CLAUSE_LINEAR  */
288   2, /* OMP_CLAUSE_ALIGNED  */
289   1, /* OMP_CLAUSE_DEPEND  */
290   1, /* OMP_CLAUSE_UNIFORM  */
291   1, /* OMP_CLAUSE_TO_DECLARE  */
292   1, /* OMP_CLAUSE_LINK  */
293   2, /* OMP_CLAUSE_FROM  */
294   2, /* OMP_CLAUSE_TO  */
295   2, /* OMP_CLAUSE_MAP  */
296   1, /* OMP_CLAUSE_USE_DEVICE_PTR  */
297   1, /* OMP_CLAUSE_IS_DEVICE_PTR  */
298   2, /* OMP_CLAUSE__CACHE_  */
299   2, /* OMP_CLAUSE_GANG  */
300   1, /* OMP_CLAUSE_ASYNC  */
301   1, /* OMP_CLAUSE_WAIT  */
302   0, /* OMP_CLAUSE_AUTO  */
303   0, /* OMP_CLAUSE_SEQ  */
304   1, /* OMP_CLAUSE__LOOPTEMP_  */
305   1, /* OMP_CLAUSE_IF  */
306   1, /* OMP_CLAUSE_NUM_THREADS  */
307   1, /* OMP_CLAUSE_SCHEDULE  */
308   0, /* OMP_CLAUSE_NOWAIT  */
309   1, /* OMP_CLAUSE_ORDERED  */
310   0, /* OMP_CLAUSE_DEFAULT  */
311   3, /* OMP_CLAUSE_COLLAPSE  */
312   0, /* OMP_CLAUSE_UNTIED   */
313   1, /* OMP_CLAUSE_FINAL  */
314   0, /* OMP_CLAUSE_MERGEABLE  */
315   1, /* OMP_CLAUSE_DEVICE  */
316   1, /* OMP_CLAUSE_DIST_SCHEDULE  */
317   0, /* OMP_CLAUSE_INBRANCH  */
318   0, /* OMP_CLAUSE_NOTINBRANCH  */
319   1, /* OMP_CLAUSE_NUM_TEAMS  */
320   1, /* OMP_CLAUSE_THREAD_LIMIT  */
321   0, /* OMP_CLAUSE_PROC_BIND  */
322   1, /* OMP_CLAUSE_SAFELEN  */
323   1, /* OMP_CLAUSE_SIMDLEN  */
324   0, /* OMP_CLAUSE_FOR  */
325   0, /* OMP_CLAUSE_PARALLEL  */
326   0, /* OMP_CLAUSE_SECTIONS  */
327   0, /* OMP_CLAUSE_TASKGROUP  */
328   1, /* OMP_CLAUSE_PRIORITY  */
329   1, /* OMP_CLAUSE_GRAINSIZE  */
330   1, /* OMP_CLAUSE_NUM_TASKS  */
331   0, /* OMP_CLAUSE_NOGROUP  */
332   0, /* OMP_CLAUSE_THREADS  */
333   0, /* OMP_CLAUSE_SIMD  */
334   1, /* OMP_CLAUSE_HINT  */
335   0, /* OMP_CLAUSE_DEFALTMAP  */
336   1, /* OMP_CLAUSE__SIMDUID_  */
337   0, /* OMP_CLAUSE__SIMT_  */
338   0, /* OMP_CLAUSE_INDEPENDENT  */
339   1, /* OMP_CLAUSE_WORKER  */
340   1, /* OMP_CLAUSE_VECTOR  */
341   1, /* OMP_CLAUSE_NUM_GANGS  */
342   1, /* OMP_CLAUSE_NUM_WORKERS  */
343   1, /* OMP_CLAUSE_VECTOR_LENGTH  */
344   3, /* OMP_CLAUSE_TILE  */
345   2, /* OMP_CLAUSE__GRIDDIM_  */
346 };
347 
348 const char * const omp_clause_code_name[] =
349 {
350   "error_clause",
351   "private",
352   "shared",
353   "firstprivate",
354   "lastprivate",
355   "reduction",
356   "copyin",
357   "copyprivate",
358   "linear",
359   "aligned",
360   "depend",
361   "uniform",
362   "to",
363   "link",
364   "from",
365   "to",
366   "map",
367   "use_device_ptr",
368   "is_device_ptr",
369   "_cache_",
370   "gang",
371   "async",
372   "wait",
373   "auto",
374   "seq",
375   "_looptemp_",
376   "if",
377   "num_threads",
378   "schedule",
379   "nowait",
380   "ordered",
381   "default",
382   "collapse",
383   "untied",
384   "final",
385   "mergeable",
386   "device",
387   "dist_schedule",
388   "inbranch",
389   "notinbranch",
390   "num_teams",
391   "thread_limit",
392   "proc_bind",
393   "safelen",
394   "simdlen",
395   "for",
396   "parallel",
397   "sections",
398   "taskgroup",
399   "priority",
400   "grainsize",
401   "num_tasks",
402   "nogroup",
403   "threads",
404   "simd",
405   "hint",
406   "defaultmap",
407   "_simduid_",
408   "_simt_",
409   "independent",
410   "worker",
411   "vector",
412   "num_gangs",
413   "num_workers",
414   "vector_length",
415   "tile",
416   "_griddim_"
417 };
418 
419 
420 /* Return the tree node structure used by tree code CODE.  */
421 
422 static inline enum tree_node_structure_enum
423 tree_node_structure_for_code (enum tree_code code)
424 {
425   switch (TREE_CODE_CLASS (code))
426     {
427     case tcc_declaration:
428       {
429 	switch (code)
430 	  {
431 	  case FIELD_DECL:
432 	    return TS_FIELD_DECL;
433 	  case PARM_DECL:
434 	    return TS_PARM_DECL;
435 	  case VAR_DECL:
436 	    return TS_VAR_DECL;
437 	  case LABEL_DECL:
438 	    return TS_LABEL_DECL;
439 	  case RESULT_DECL:
440 	    return TS_RESULT_DECL;
441 	  case DEBUG_EXPR_DECL:
442 	    return TS_DECL_WRTL;
443 	  case CONST_DECL:
444 	    return TS_CONST_DECL;
445 	  case TYPE_DECL:
446 	    return TS_TYPE_DECL;
447 	  case FUNCTION_DECL:
448 	    return TS_FUNCTION_DECL;
449 	  case TRANSLATION_UNIT_DECL:
450 	    return TS_TRANSLATION_UNIT_DECL;
451 	  default:
452 	    return TS_DECL_NON_COMMON;
453 	  }
454       }
455     case tcc_type:
456       return TS_TYPE_NON_COMMON;
457     case tcc_reference:
458     case tcc_comparison:
459     case tcc_unary:
460     case tcc_binary:
461     case tcc_expression:
462     case tcc_statement:
463     case tcc_vl_exp:
464       return TS_EXP;
465     default:  /* tcc_constant and tcc_exceptional */
466       break;
467     }
468   switch (code)
469     {
470       /* tcc_constant cases.  */
471     case VOID_CST:		return TS_TYPED;
472     case INTEGER_CST:		return TS_INT_CST;
473     case POLY_INT_CST:		return TS_POLY_INT_CST;
474     case REAL_CST:		return TS_REAL_CST;
475     case FIXED_CST:		return TS_FIXED_CST;
476     case COMPLEX_CST:		return TS_COMPLEX;
477     case VECTOR_CST:		return TS_VECTOR;
478     case STRING_CST:		return TS_STRING;
479       /* tcc_exceptional cases.  */
480     case ERROR_MARK:		return TS_COMMON;
481     case IDENTIFIER_NODE:	return TS_IDENTIFIER;
482     case TREE_LIST:		return TS_LIST;
483     case TREE_VEC:		return TS_VEC;
484     case SSA_NAME:		return TS_SSA_NAME;
485     case PLACEHOLDER_EXPR:	return TS_COMMON;
486     case STATEMENT_LIST:	return TS_STATEMENT_LIST;
487     case BLOCK:			return TS_BLOCK;
488     case CONSTRUCTOR:		return TS_CONSTRUCTOR;
489     case TREE_BINFO:		return TS_BINFO;
490     case OMP_CLAUSE:		return TS_OMP_CLAUSE;
491     case OPTIMIZATION_NODE:	return TS_OPTIMIZATION;
492     case TARGET_OPTION_NODE:	return TS_TARGET_OPTION;
493 
494     default:
495       gcc_unreachable ();
496     }
497 }
498 
499 
500 /* Initialize tree_contains_struct to describe the hierarchy of tree
501    nodes.  */
502 
503 static void
504 initialize_tree_contains_struct (void)
505 {
506   unsigned i;
507 
508   for (i = ERROR_MARK; i < LAST_AND_UNUSED_TREE_CODE; i++)
509     {
510       enum tree_code code;
511       enum tree_node_structure_enum ts_code;
512 
513       code = (enum tree_code) i;
514       ts_code = tree_node_structure_for_code (code);
515 
516       /* Mark the TS structure itself.  */
517       tree_contains_struct[code][ts_code] = 1;
518 
519       /* Mark all the structures that TS is derived from.  */
520       switch (ts_code)
521 	{
522 	case TS_TYPED:
523 	case TS_BLOCK:
524 	case TS_OPTIMIZATION:
525 	case TS_TARGET_OPTION:
526 	  MARK_TS_BASE (code);
527 	  break;
528 
529 	case TS_COMMON:
530 	case TS_INT_CST:
531 	case TS_POLY_INT_CST:
532 	case TS_REAL_CST:
533 	case TS_FIXED_CST:
534 	case TS_VECTOR:
535 	case TS_STRING:
536 	case TS_COMPLEX:
537 	case TS_SSA_NAME:
538 	case TS_CONSTRUCTOR:
539 	case TS_EXP:
540 	case TS_STATEMENT_LIST:
541 	  MARK_TS_TYPED (code);
542 	  break;
543 
544 	case TS_IDENTIFIER:
545 	case TS_DECL_MINIMAL:
546 	case TS_TYPE_COMMON:
547 	case TS_LIST:
548 	case TS_VEC:
549 	case TS_BINFO:
550 	case TS_OMP_CLAUSE:
551 	  MARK_TS_COMMON (code);
552 	  break;
553 
554 	case TS_TYPE_WITH_LANG_SPECIFIC:
555 	  MARK_TS_TYPE_COMMON (code);
556 	  break;
557 
558 	case TS_TYPE_NON_COMMON:
559 	  MARK_TS_TYPE_WITH_LANG_SPECIFIC (code);
560 	  break;
561 
562 	case TS_DECL_COMMON:
563 	  MARK_TS_DECL_MINIMAL (code);
564 	  break;
565 
566 	case TS_DECL_WRTL:
567 	case TS_CONST_DECL:
568 	  MARK_TS_DECL_COMMON (code);
569 	  break;
570 
571 	case TS_DECL_NON_COMMON:
572 	  MARK_TS_DECL_WITH_VIS (code);
573 	  break;
574 
575 	case TS_DECL_WITH_VIS:
576 	case TS_PARM_DECL:
577 	case TS_LABEL_DECL:
578 	case TS_RESULT_DECL:
579 	  MARK_TS_DECL_WRTL (code);
580 	  break;
581 
582 	case TS_FIELD_DECL:
583 	  MARK_TS_DECL_COMMON (code);
584 	  break;
585 
586 	case TS_VAR_DECL:
587 	  MARK_TS_DECL_WITH_VIS (code);
588 	  break;
589 
590 	case TS_TYPE_DECL:
591 	case TS_FUNCTION_DECL:
592 	  MARK_TS_DECL_NON_COMMON (code);
593 	  break;
594 
595 	case TS_TRANSLATION_UNIT_DECL:
596 	  MARK_TS_DECL_COMMON (code);
597 	  break;
598 
599 	default:
600 	  gcc_unreachable ();
601 	}
602     }
603 
604   /* Basic consistency checks for attributes used in fold.  */
605   gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_NON_COMMON]);
606   gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_NON_COMMON]);
607   gcc_assert (tree_contains_struct[CONST_DECL][TS_DECL_COMMON]);
608   gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_COMMON]);
609   gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_COMMON]);
610   gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_COMMON]);
611   gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_COMMON]);
612   gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_COMMON]);
613   gcc_assert (tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_COMMON]);
614   gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_COMMON]);
615   gcc_assert (tree_contains_struct[FIELD_DECL][TS_DECL_COMMON]);
616   gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_WRTL]);
617   gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_WRTL]);
618   gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_WRTL]);
619   gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_WRTL]);
620   gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_WRTL]);
621   gcc_assert (tree_contains_struct[CONST_DECL][TS_DECL_MINIMAL]);
622   gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_MINIMAL]);
623   gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_MINIMAL]);
624   gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_MINIMAL]);
625   gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_MINIMAL]);
626   gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_MINIMAL]);
627   gcc_assert (tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_MINIMAL]);
628   gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_MINIMAL]);
629   gcc_assert (tree_contains_struct[FIELD_DECL][TS_DECL_MINIMAL]);
630   gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_WITH_VIS]);
631   gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_WITH_VIS]);
632   gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_WITH_VIS]);
633   gcc_assert (tree_contains_struct[VAR_DECL][TS_VAR_DECL]);
634   gcc_assert (tree_contains_struct[FIELD_DECL][TS_FIELD_DECL]);
635   gcc_assert (tree_contains_struct[PARM_DECL][TS_PARM_DECL]);
636   gcc_assert (tree_contains_struct[LABEL_DECL][TS_LABEL_DECL]);
637   gcc_assert (tree_contains_struct[RESULT_DECL][TS_RESULT_DECL]);
638   gcc_assert (tree_contains_struct[CONST_DECL][TS_CONST_DECL]);
639   gcc_assert (tree_contains_struct[TYPE_DECL][TS_TYPE_DECL]);
640   gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_FUNCTION_DECL]);
641   gcc_assert (tree_contains_struct[IMPORTED_DECL][TS_DECL_MINIMAL]);
642   gcc_assert (tree_contains_struct[IMPORTED_DECL][TS_DECL_COMMON]);
643   gcc_assert (tree_contains_struct[NAMELIST_DECL][TS_DECL_MINIMAL]);
644   gcc_assert (tree_contains_struct[NAMELIST_DECL][TS_DECL_COMMON]);
645 }
646 
647 
648 /* Init tree.c.  */
649 
650 void
651 init_ttree (void)
652 {
653   /* Initialize the hash table of types.  */
654   type_hash_table
655     = hash_table<type_cache_hasher>::create_ggc (TYPE_HASH_INITIAL_SIZE);
656 
657   debug_expr_for_decl
658     = hash_table<tree_decl_map_cache_hasher>::create_ggc (512);
659 
660   value_expr_for_decl
661     = hash_table<tree_decl_map_cache_hasher>::create_ggc (512);
662 
663   int_cst_hash_table = hash_table<int_cst_hasher>::create_ggc (1024);
664 
665   poly_int_cst_hash_table = hash_table<poly_int_cst_hasher>::create_ggc (64);
666 
667   int_cst_node = make_int_cst (1, 1);
668 
669   cl_option_hash_table = hash_table<cl_option_hasher>::create_ggc (64);
670 
671   cl_optimization_node = make_node (OPTIMIZATION_NODE);
672   cl_target_option_node = make_node (TARGET_OPTION_NODE);
673 
674   /* Initialize the tree_contains_struct array.  */
675   initialize_tree_contains_struct ();
676   lang_hooks.init_ts ();
677 }
678 
679 
680 /* The name of the object as the assembler will see it (but before any
681    translations made by ASM_OUTPUT_LABELREF).  Often this is the same
682    as DECL_NAME.  It is an IDENTIFIER_NODE.  */
683 tree
684 decl_assembler_name (tree decl)
685 {
686   if (!DECL_ASSEMBLER_NAME_SET_P (decl))
687     lang_hooks.set_decl_assembler_name (decl);
688   return DECL_ASSEMBLER_NAME_RAW (decl);
689 }
690 
691 /* The DECL_ASSEMBLER_NAME_RAW of DECL is being explicitly set to NAME
692    (either of which may be NULL).  Inform the FE, if this changes the
693    name.  */
694 
695 void
696 overwrite_decl_assembler_name (tree decl, tree name)
697 {
698   if (DECL_ASSEMBLER_NAME_RAW (decl) != name)
699     lang_hooks.overwrite_decl_assembler_name (decl, name);
700 }
701 
702 /* When the target supports COMDAT groups, this indicates which group the
703    DECL is associated with.  This can be either an IDENTIFIER_NODE or a
704    decl, in which case its DECL_ASSEMBLER_NAME identifies the group.  */
705 tree
706 decl_comdat_group (const_tree node)
707 {
708   struct symtab_node *snode = symtab_node::get (node);
709   if (!snode)
710     return NULL;
711   return snode->get_comdat_group ();
712 }
713 
714 /* Likewise, but make sure it's been reduced to an IDENTIFIER_NODE.  */
715 tree
716 decl_comdat_group_id (const_tree node)
717 {
718   struct symtab_node *snode = symtab_node::get (node);
719   if (!snode)
720     return NULL;
721   return snode->get_comdat_group_id ();
722 }
723 
724 /* When the target supports named section, return its name as IDENTIFIER_NODE
725    or NULL if it is in no section.  */
726 const char *
727 decl_section_name (const_tree node)
728 {
729   struct symtab_node *snode = symtab_node::get (node);
730   if (!snode)
731     return NULL;
732   return snode->get_section ();
733 }
734 
735 /* Set section name of NODE to VALUE (that is expected to be
736    identifier node) */
737 void
738 set_decl_section_name (tree node, const char *value)
739 {
740   struct symtab_node *snode;
741 
742   if (value == NULL)
743     {
744       snode = symtab_node::get (node);
745       if (!snode)
746 	return;
747     }
748   else if (VAR_P (node))
749     snode = varpool_node::get_create (node);
750   else
751     snode = cgraph_node::get_create (node);
752   snode->set_section (value);
753 }
754 
755 /* Return TLS model of a variable NODE.  */
756 enum tls_model
757 decl_tls_model (const_tree node)
758 {
759   struct varpool_node *snode = varpool_node::get (node);
760   if (!snode)
761     return TLS_MODEL_NONE;
762   return snode->tls_model;
763 }
764 
765 /* Set TLS model of variable NODE to MODEL.  */
766 void
767 set_decl_tls_model (tree node, enum tls_model model)
768 {
769   struct varpool_node *vnode;
770 
771   if (model == TLS_MODEL_NONE)
772     {
773       vnode = varpool_node::get (node);
774       if (!vnode)
775 	return;
776     }
777   else
778     vnode = varpool_node::get_create (node);
779   vnode->tls_model = model;
780 }
781 
782 /* Compute the number of bytes occupied by a tree with code CODE.
783    This function cannot be used for nodes that have variable sizes,
784    including TREE_VEC, INTEGER_CST, STRING_CST, and CALL_EXPR.  */
785 size_t
786 tree_code_size (enum tree_code code)
787 {
788   switch (TREE_CODE_CLASS (code))
789     {
790     case tcc_declaration:  /* A decl node */
791       switch (code)
792 	{
793 	case FIELD_DECL:	return sizeof (tree_field_decl);
794 	case PARM_DECL:		return sizeof (tree_parm_decl);
795 	case VAR_DECL:		return sizeof (tree_var_decl);
796 	case LABEL_DECL:	return sizeof (tree_label_decl);
797 	case RESULT_DECL:	return sizeof (tree_result_decl);
798 	case CONST_DECL:	return sizeof (tree_const_decl);
799 	case TYPE_DECL:		return sizeof (tree_type_decl);
800 	case FUNCTION_DECL:	return sizeof (tree_function_decl);
801 	case DEBUG_EXPR_DECL:	return sizeof (tree_decl_with_rtl);
802 	case TRANSLATION_UNIT_DECL: return sizeof (tree_translation_unit_decl);
803 	case NAMESPACE_DECL:
804 	case IMPORTED_DECL:
805 	case NAMELIST_DECL:	return sizeof (tree_decl_non_common);
806 	default:
807 	  gcc_checking_assert (code >= NUM_TREE_CODES);
808 	  return lang_hooks.tree_size (code);
809 	}
810 
811     case tcc_type:  /* a type node */
812       switch (code)
813 	{
814 	case OFFSET_TYPE:
815 	case ENUMERAL_TYPE:
816 	case BOOLEAN_TYPE:
817 	case INTEGER_TYPE:
818 	case REAL_TYPE:
819 	case POINTER_TYPE:
820 	case REFERENCE_TYPE:
821 	case NULLPTR_TYPE:
822 	case FIXED_POINT_TYPE:
823 	case COMPLEX_TYPE:
824 	case VECTOR_TYPE:
825 	case ARRAY_TYPE:
826 	case RECORD_TYPE:
827 	case UNION_TYPE:
828 	case QUAL_UNION_TYPE:
829 	case VOID_TYPE:
830 	case POINTER_BOUNDS_TYPE:
831 	case FUNCTION_TYPE:
832 	case METHOD_TYPE:
833 	case LANG_TYPE:		return sizeof (tree_type_non_common);
834 	default:
835 	  gcc_checking_assert (code >= NUM_TREE_CODES);
836 	  return lang_hooks.tree_size (code);
837 	}
838 
839     case tcc_reference:   /* a reference */
840     case tcc_expression:  /* an expression */
841     case tcc_statement:   /* an expression with side effects */
842     case tcc_comparison:  /* a comparison expression */
843     case tcc_unary:       /* a unary arithmetic expression */
844     case tcc_binary:      /* a binary arithmetic expression */
845       return (sizeof (struct tree_exp)
846 	      + (TREE_CODE_LENGTH (code) - 1) * sizeof (tree));
847 
848     case tcc_constant:  /* a constant */
849       switch (code)
850 	{
851 	case VOID_CST:		return sizeof (tree_typed);
852 	case INTEGER_CST:	gcc_unreachable ();
853 	case POLY_INT_CST:	return sizeof (tree_poly_int_cst);
854 	case REAL_CST:		return sizeof (tree_real_cst);
855 	case FIXED_CST:		return sizeof (tree_fixed_cst);
856 	case COMPLEX_CST:	return sizeof (tree_complex);
857 	case VECTOR_CST:	gcc_unreachable ();
858 	case STRING_CST:	gcc_unreachable ();
859 	default:
860 	  gcc_checking_assert (code >= NUM_TREE_CODES);
861 	  return lang_hooks.tree_size (code);
862 	}
863 
864     case tcc_exceptional:  /* something random, like an identifier.  */
865       switch (code)
866 	{
867 	case IDENTIFIER_NODE:	return lang_hooks.identifier_size;
868 	case TREE_LIST:		return sizeof (tree_list);
869 
870 	case ERROR_MARK:
871 	case PLACEHOLDER_EXPR:	return sizeof (tree_common);
872 
873 	case TREE_VEC:		gcc_unreachable ();
874 	case OMP_CLAUSE:	gcc_unreachable ();
875 
876 	case SSA_NAME:		return sizeof (tree_ssa_name);
877 
878 	case STATEMENT_LIST:	return sizeof (tree_statement_list);
879 	case BLOCK:		return sizeof (struct tree_block);
880 	case CONSTRUCTOR:	return sizeof (tree_constructor);
881 	case OPTIMIZATION_NODE: return sizeof (tree_optimization_option);
882 	case TARGET_OPTION_NODE: return sizeof (tree_target_option);
883 
884 	default:
885 	  gcc_checking_assert (code >= NUM_TREE_CODES);
886 	  return lang_hooks.tree_size (code);
887 	}
888 
889     default:
890       gcc_unreachable ();
891     }
892 }
893 
894 /* Compute the number of bytes occupied by NODE.  This routine only
895    looks at TREE_CODE, except for those nodes that have variable sizes.  */
896 size_t
897 tree_size (const_tree node)
898 {
899   const enum tree_code code = TREE_CODE (node);
900   switch (code)
901     {
902     case INTEGER_CST:
903       return (sizeof (struct tree_int_cst)
904 	      + (TREE_INT_CST_EXT_NUNITS (node) - 1) * sizeof (HOST_WIDE_INT));
905 
906     case TREE_BINFO:
907       return (offsetof (struct tree_binfo, base_binfos)
908 	      + vec<tree, va_gc>
909 		  ::embedded_size (BINFO_N_BASE_BINFOS (node)));
910 
911     case TREE_VEC:
912       return (sizeof (struct tree_vec)
913 	      + (TREE_VEC_LENGTH (node) - 1) * sizeof (tree));
914 
915     case VECTOR_CST:
916       return (sizeof (struct tree_vector)
917 	      + (vector_cst_encoded_nelts (node) - 1) * sizeof (tree));
918 
919     case STRING_CST:
920       return TREE_STRING_LENGTH (node) + offsetof (struct tree_string, str) + 1;
921 
922     case OMP_CLAUSE:
923       return (sizeof (struct tree_omp_clause)
924 	      + (omp_clause_num_ops[OMP_CLAUSE_CODE (node)] - 1)
925 	        * sizeof (tree));
926 
927     default:
928       if (TREE_CODE_CLASS (code) == tcc_vl_exp)
929 	return (sizeof (struct tree_exp)
930 		+ (VL_EXP_OPERAND_LENGTH (node) - 1) * sizeof (tree));
931       else
932 	return tree_code_size (code);
933     }
934 }
935 
936 /* Return tree node kind based on tree CODE.  */
937 
938 static tree_node_kind
939 get_stats_node_kind (enum tree_code code)
940 {
941   enum tree_code_class type = TREE_CODE_CLASS (code);
942 
943   switch (type)
944     {
945     case tcc_declaration:  /* A decl node */
946       return d_kind;
947     case tcc_type:  /* a type node */
948       return t_kind;
949     case tcc_statement:  /* an expression with side effects */
950       return s_kind;
951     case tcc_reference:  /* a reference */
952       return r_kind;
953     case tcc_expression:  /* an expression */
954     case tcc_comparison:  /* a comparison expression */
955     case tcc_unary:  /* a unary arithmetic expression */
956     case tcc_binary:  /* a binary arithmetic expression */
957       return e_kind;
958     case tcc_constant:  /* a constant */
959       return c_kind;
960     case tcc_exceptional:  /* something random, like an identifier.  */
961       switch (code)
962 	{
963 	case IDENTIFIER_NODE:
964 	  return id_kind;
965 	case TREE_VEC:
966 	  return vec_kind;
967 	case TREE_BINFO:
968 	  return binfo_kind;
969 	case SSA_NAME:
970 	  return ssa_name_kind;
971 	case BLOCK:
972 	  return b_kind;
973 	case CONSTRUCTOR:
974 	  return constr_kind;
975 	case OMP_CLAUSE:
976 	  return omp_clause_kind;
977 	default:
978 	  return x_kind;
979 	}
980       break;
981     case tcc_vl_exp:
982       return e_kind;
983     default:
984       gcc_unreachable ();
985     }
986 }
987 
988 /* Record interesting allocation statistics for a tree node with CODE
989    and LENGTH.  */
990 
991 static void
992 record_node_allocation_statistics (enum tree_code code, size_t length)
993 {
994   if (!GATHER_STATISTICS)
995     return;
996 
997   tree_node_kind kind = get_stats_node_kind (code);
998 
999   tree_code_counts[(int) code]++;
1000   tree_node_counts[(int) kind]++;
1001   tree_node_sizes[(int) kind] += length;
1002 }
1003 
1004 /* Allocate and return a new UID from the DECL_UID namespace.  */
1005 
1006 int
1007 allocate_decl_uid (void)
1008 {
1009   return next_decl_uid++;
1010 }
1011 
1012 /* Return a newly allocated node of code CODE.  For decl and type
1013    nodes, some other fields are initialized.  The rest of the node is
1014    initialized to zero.  This function cannot be used for TREE_VEC,
1015    INTEGER_CST or OMP_CLAUSE nodes, which is enforced by asserts in
1016    tree_code_size.
1017 
1018    Achoo!  I got a code in the node.  */
1019 
1020 tree
1021 make_node (enum tree_code code MEM_STAT_DECL)
1022 {
1023   tree t;
1024   enum tree_code_class type = TREE_CODE_CLASS (code);
1025   size_t length = tree_code_size (code);
1026 
1027   record_node_allocation_statistics (code, length);
1028 
1029   t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);
1030   TREE_SET_CODE (t, code);
1031 
1032   switch (type)
1033     {
1034     case tcc_statement:
1035       if (code != DEBUG_BEGIN_STMT)
1036 	TREE_SIDE_EFFECTS (t) = 1;
1037       break;
1038 
1039     case tcc_declaration:
1040       if (CODE_CONTAINS_STRUCT (code, TS_DECL_COMMON))
1041 	{
1042 	  if (code == FUNCTION_DECL)
1043 	    {
1044 	      SET_DECL_ALIGN (t, FUNCTION_ALIGNMENT (FUNCTION_BOUNDARY));
1045 	      SET_DECL_MODE (t, FUNCTION_MODE);
1046 	    }
1047 	  else
1048 	    SET_DECL_ALIGN (t, 1);
1049 	}
1050       DECL_SOURCE_LOCATION (t) = input_location;
1051       if (TREE_CODE (t) == DEBUG_EXPR_DECL)
1052 	DECL_UID (t) = --next_debug_decl_uid;
1053       else
1054 	{
1055 	  DECL_UID (t) = allocate_decl_uid ();
1056 	  SET_DECL_PT_UID (t, -1);
1057 	}
1058       if (TREE_CODE (t) == LABEL_DECL)
1059 	LABEL_DECL_UID (t) = -1;
1060 
1061       break;
1062 
1063     case tcc_type:
1064       TYPE_UID (t) = next_type_uid++;
1065       SET_TYPE_ALIGN (t, BITS_PER_UNIT);
1066       TYPE_USER_ALIGN (t) = 0;
1067       TYPE_MAIN_VARIANT (t) = t;
1068       TYPE_CANONICAL (t) = t;
1069 
1070       /* Default to no attributes for type, but let target change that.  */
1071       TYPE_ATTRIBUTES (t) = NULL_TREE;
1072       targetm.set_default_type_attributes (t);
1073 
1074       /* We have not yet computed the alias set for this type.  */
1075       TYPE_ALIAS_SET (t) = -1;
1076       break;
1077 
1078     case tcc_constant:
1079       TREE_CONSTANT (t) = 1;
1080       break;
1081 
1082     case tcc_expression:
1083       switch (code)
1084 	{
1085 	case INIT_EXPR:
1086 	case MODIFY_EXPR:
1087 	case VA_ARG_EXPR:
1088 	case PREDECREMENT_EXPR:
1089 	case PREINCREMENT_EXPR:
1090 	case POSTDECREMENT_EXPR:
1091 	case POSTINCREMENT_EXPR:
1092 	  /* All of these have side-effects, no matter what their
1093 	     operands are.  */
1094 	  TREE_SIDE_EFFECTS (t) = 1;
1095 	  break;
1096 
1097 	default:
1098 	  break;
1099 	}
1100       break;
1101 
1102     case tcc_exceptional:
1103       switch (code)
1104         {
1105 	case TARGET_OPTION_NODE:
1106 	  TREE_TARGET_OPTION(t)
1107 			    = ggc_cleared_alloc<struct cl_target_option> ();
1108 	  break;
1109 
1110 	case OPTIMIZATION_NODE:
1111 	  TREE_OPTIMIZATION (t)
1112 			    = ggc_cleared_alloc<struct cl_optimization> ();
1113 	  break;
1114 
1115 	default:
1116 	  break;
1117 	}
1118       break;
1119 
1120     default:
1121       /* Other classes need no special treatment.  */
1122       break;
1123     }
1124 
1125   return t;
1126 }
1127 
1128 /* Free tree node.  */
1129 
1130 void
1131 free_node (tree node)
1132 {
1133   enum tree_code code = TREE_CODE (node);
1134   if (GATHER_STATISTICS)
1135     {
1136       enum tree_node_kind kind = get_stats_node_kind (code);
1137 
1138       gcc_checking_assert (tree_code_counts[(int) TREE_CODE (node)] != 0);
1139       gcc_checking_assert (tree_node_counts[(int) kind] != 0);
1140       gcc_checking_assert (tree_node_sizes[(int) kind] >= tree_size (node));
1141 
1142       tree_code_counts[(int) TREE_CODE (node)]--;
1143       tree_node_counts[(int) kind]--;
1144       tree_node_sizes[(int) kind] -= tree_size (node);
1145     }
1146   if (CODE_CONTAINS_STRUCT (code, TS_CONSTRUCTOR))
1147     vec_free (CONSTRUCTOR_ELTS (node));
1148   else if (code == BLOCK)
1149     vec_free (BLOCK_NONLOCALIZED_VARS (node));
1150   else if (code == TREE_BINFO)
1151     vec_free (BINFO_BASE_ACCESSES (node));
1152   ggc_free (node);
1153 }
1154 
1155 /* Return a new node with the same contents as NODE except that its
1156    TREE_CHAIN, if it has one, is zero and it has a fresh uid.  */
1157 
1158 tree
1159 copy_node (tree node MEM_STAT_DECL)
1160 {
1161   tree t;
1162   enum tree_code code = TREE_CODE (node);
1163   size_t length;
1164 
1165   gcc_assert (code != STATEMENT_LIST);
1166 
1167   length = tree_size (node);
1168   record_node_allocation_statistics (code, length);
1169   t = ggc_alloc_tree_node_stat (length PASS_MEM_STAT);
1170   memcpy (t, node, length);
1171 
1172   if (CODE_CONTAINS_STRUCT (code, TS_COMMON))
1173     TREE_CHAIN (t) = 0;
1174   TREE_ASM_WRITTEN (t) = 0;
1175   TREE_VISITED (t) = 0;
1176 
1177   if (TREE_CODE_CLASS (code) == tcc_declaration)
1178     {
1179       if (code == DEBUG_EXPR_DECL)
1180 	DECL_UID (t) = --next_debug_decl_uid;
1181       else
1182 	{
1183 	  DECL_UID (t) = allocate_decl_uid ();
1184 	  if (DECL_PT_UID_SET_P (node))
1185 	    SET_DECL_PT_UID (t, DECL_PT_UID (node));
1186 	}
1187       if ((TREE_CODE (node) == PARM_DECL || VAR_P (node))
1188 	  && DECL_HAS_VALUE_EXPR_P (node))
1189 	{
1190 	  SET_DECL_VALUE_EXPR (t, DECL_VALUE_EXPR (node));
1191 	  DECL_HAS_VALUE_EXPR_P (t) = 1;
1192 	}
1193       /* DECL_DEBUG_EXPR is copied explicitely by callers.  */
1194       if (VAR_P (node))
1195 	{
1196 	  DECL_HAS_DEBUG_EXPR_P (t) = 0;
1197 	  t->decl_with_vis.symtab_node = NULL;
1198 	}
1199       if (VAR_P (node) && DECL_HAS_INIT_PRIORITY_P (node))
1200 	{
1201 	  SET_DECL_INIT_PRIORITY (t, DECL_INIT_PRIORITY (node));
1202 	  DECL_HAS_INIT_PRIORITY_P (t) = 1;
1203 	}
1204       if (TREE_CODE (node) == FUNCTION_DECL)
1205 	{
1206 	  DECL_STRUCT_FUNCTION (t) = NULL;
1207 	  t->decl_with_vis.symtab_node = NULL;
1208 	}
1209     }
1210   else if (TREE_CODE_CLASS (code) == tcc_type)
1211     {
1212       TYPE_UID (t) = next_type_uid++;
1213       /* The following is so that the debug code for
1214 	 the copy is different from the original type.
1215 	 The two statements usually duplicate each other
1216 	 (because they clear fields of the same union),
1217 	 but the optimizer should catch that.  */
1218       TYPE_SYMTAB_ADDRESS (t) = 0;
1219       TYPE_SYMTAB_DIE (t) = 0;
1220 
1221       /* Do not copy the values cache.  */
1222       if (TYPE_CACHED_VALUES_P (t))
1223 	{
1224 	  TYPE_CACHED_VALUES_P (t) = 0;
1225 	  TYPE_CACHED_VALUES (t) = NULL_TREE;
1226 	}
1227     }
1228     else if (code == TARGET_OPTION_NODE)
1229       {
1230 	TREE_TARGET_OPTION (t) = ggc_alloc<struct cl_target_option>();
1231 	memcpy (TREE_TARGET_OPTION (t), TREE_TARGET_OPTION (node),
1232 		sizeof (struct cl_target_option));
1233       }
1234     else if (code == OPTIMIZATION_NODE)
1235       {
1236 	TREE_OPTIMIZATION (t) = ggc_alloc<struct cl_optimization>();
1237 	memcpy (TREE_OPTIMIZATION (t), TREE_OPTIMIZATION (node),
1238 		sizeof (struct cl_optimization));
1239       }
1240 
1241   return t;
1242 }
1243 
1244 /* Return a copy of a chain of nodes, chained through the TREE_CHAIN field.
1245    For example, this can copy a list made of TREE_LIST nodes.  */
1246 
1247 tree
1248 copy_list (tree list)
1249 {
1250   tree head;
1251   tree prev, next;
1252 
1253   if (list == 0)
1254     return 0;
1255 
1256   head = prev = copy_node (list);
1257   next = TREE_CHAIN (list);
1258   while (next)
1259     {
1260       TREE_CHAIN (prev) = copy_node (next);
1261       prev = TREE_CHAIN (prev);
1262       next = TREE_CHAIN (next);
1263     }
1264   return head;
1265 }
1266 
1267 
1268 /* Return the value that TREE_INT_CST_EXT_NUNITS should have for an
1269    INTEGER_CST with value CST and type TYPE.   */
1270 
1271 static unsigned int
1272 get_int_cst_ext_nunits (tree type, const wide_int &cst)
1273 {
1274   gcc_checking_assert (cst.get_precision () == TYPE_PRECISION (type));
1275   /* We need extra HWIs if CST is an unsigned integer with its
1276      upper bit set.  */
1277   if (TYPE_UNSIGNED (type) && wi::neg_p (cst))
1278     return cst.get_precision () / HOST_BITS_PER_WIDE_INT + 1;
1279   return cst.get_len ();
1280 }
1281 
1282 /* Return a new INTEGER_CST with value CST and type TYPE.  */
1283 
1284 static tree
1285 build_new_int_cst (tree type, const wide_int &cst)
1286 {
1287   unsigned int len = cst.get_len ();
1288   unsigned int ext_len = get_int_cst_ext_nunits (type, cst);
1289   tree nt = make_int_cst (len, ext_len);
1290 
1291   if (len < ext_len)
1292     {
1293       --ext_len;
1294       TREE_INT_CST_ELT (nt, ext_len)
1295 	= zext_hwi (-1, cst.get_precision () % HOST_BITS_PER_WIDE_INT);
1296       for (unsigned int i = len; i < ext_len; ++i)
1297 	TREE_INT_CST_ELT (nt, i) = -1;
1298     }
1299   else if (TYPE_UNSIGNED (type)
1300 	   && cst.get_precision () < len * HOST_BITS_PER_WIDE_INT)
1301     {
1302       len--;
1303       TREE_INT_CST_ELT (nt, len)
1304 	= zext_hwi (cst.elt (len),
1305 		    cst.get_precision () % HOST_BITS_PER_WIDE_INT);
1306     }
1307 
1308   for (unsigned int i = 0; i < len; i++)
1309     TREE_INT_CST_ELT (nt, i) = cst.elt (i);
1310   TREE_TYPE (nt) = type;
1311   return nt;
1312 }
1313 
1314 /* Return a new POLY_INT_CST with coefficients COEFFS and type TYPE.  */
1315 
1316 static tree
1317 build_new_poly_int_cst (tree type, tree (&coeffs)[NUM_POLY_INT_COEFFS]
1318 			CXX_MEM_STAT_INFO)
1319 {
1320   size_t length = sizeof (struct tree_poly_int_cst);
1321   record_node_allocation_statistics (POLY_INT_CST, length);
1322 
1323   tree t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);
1324 
1325   TREE_SET_CODE (t, POLY_INT_CST);
1326   TREE_CONSTANT (t) = 1;
1327   TREE_TYPE (t) = type;
1328   for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
1329     POLY_INT_CST_COEFF (t, i) = coeffs[i];
1330   return t;
1331 }
1332 
1333 /* Create a constant tree that contains CST sign-extended to TYPE.  */
1334 
1335 tree
1336 build_int_cst (tree type, poly_int64 cst)
1337 {
1338   /* Support legacy code.  */
1339   if (!type)
1340     type = integer_type_node;
1341 
1342   return wide_int_to_tree (type, wi::shwi (cst, TYPE_PRECISION (type)));
1343 }
1344 
1345 /* Create a constant tree that contains CST zero-extended to TYPE.  */
1346 
1347 tree
1348 build_int_cstu (tree type, poly_uint64 cst)
1349 {
1350   return wide_int_to_tree (type, wi::uhwi (cst, TYPE_PRECISION (type)));
1351 }
1352 
1353 /* Create a constant tree that contains CST sign-extended to TYPE.  */
1354 
1355 tree
1356 build_int_cst_type (tree type, poly_int64 cst)
1357 {
1358   gcc_assert (type);
1359   return wide_int_to_tree (type, wi::shwi (cst, TYPE_PRECISION (type)));
1360 }
1361 
1362 /* Constructs tree in type TYPE from with value given by CST.  Signedness
1363    of CST is assumed to be the same as the signedness of TYPE.  */
1364 
1365 tree
1366 double_int_to_tree (tree type, double_int cst)
1367 {
1368   return wide_int_to_tree (type, widest_int::from (cst, TYPE_SIGN (type)));
1369 }
1370 
1371 /* We force the wide_int CST to the range of the type TYPE by sign or
1372    zero extending it.  OVERFLOWABLE indicates if we are interested in
1373    overflow of the value, when >0 we are only interested in signed
1374    overflow, for <0 we are interested in any overflow.  OVERFLOWED
1375    indicates whether overflow has already occurred.  CONST_OVERFLOWED
1376    indicates whether constant overflow has already occurred.  We force
1377    T's value to be within range of T's type (by setting to 0 or 1 all
1378    the bits outside the type's range).  We set TREE_OVERFLOWED if,
1379         OVERFLOWED is nonzero,
1380         or OVERFLOWABLE is >0 and signed overflow occurs
1381         or OVERFLOWABLE is <0 and any overflow occurs
1382    We return a new tree node for the extended wide_int.  The node
1383    is shared if no overflow flags are set.  */
1384 
1385 
1386 tree
1387 force_fit_type (tree type, const poly_wide_int_ref &cst,
1388 		int overflowable, bool overflowed)
1389 {
1390   signop sign = TYPE_SIGN (type);
1391 
1392   /* If we need to set overflow flags, return a new unshared node.  */
1393   if (overflowed || !wi::fits_to_tree_p (cst, type))
1394     {
1395       if (overflowed
1396 	  || overflowable < 0
1397 	  || (overflowable > 0 && sign == SIGNED))
1398 	{
1399 	  poly_wide_int tmp = poly_wide_int::from (cst, TYPE_PRECISION (type),
1400 						   sign);
1401 	  tree t;
1402 	  if (tmp.is_constant ())
1403 	    t = build_new_int_cst (type, tmp.coeffs[0]);
1404 	  else
1405 	    {
1406 	      tree coeffs[NUM_POLY_INT_COEFFS];
1407 	      for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
1408 		{
1409 		  coeffs[i] = build_new_int_cst (type, tmp.coeffs[i]);
1410 		  TREE_OVERFLOW (coeffs[i]) = 1;
1411 		}
1412 	      t = build_new_poly_int_cst (type, coeffs);
1413 	    }
1414 	  TREE_OVERFLOW (t) = 1;
1415 	  return t;
1416 	}
1417     }
1418 
1419   /* Else build a shared node.  */
1420   return wide_int_to_tree (type, cst);
1421 }
1422 
1423 /* These are the hash table functions for the hash table of INTEGER_CST
1424    nodes of a sizetype.  */
1425 
1426 /* Return the hash code X, an INTEGER_CST.  */
1427 
1428 hashval_t
1429 int_cst_hasher::hash (tree x)
1430 {
1431   const_tree const t = x;
1432   hashval_t code = TYPE_UID (TREE_TYPE (t));
1433   int i;
1434 
1435   for (i = 0; i < TREE_INT_CST_NUNITS (t); i++)
1436     code = iterative_hash_host_wide_int (TREE_INT_CST_ELT(t, i), code);
1437 
1438   return code;
1439 }
1440 
1441 /* Return nonzero if the value represented by *X (an INTEGER_CST tree node)
1442    is the same as that given by *Y, which is the same.  */
1443 
1444 bool
1445 int_cst_hasher::equal (tree x, tree y)
1446 {
1447   const_tree const xt = x;
1448   const_tree const yt = y;
1449 
1450   if (TREE_TYPE (xt) != TREE_TYPE (yt)
1451       || TREE_INT_CST_NUNITS (xt) != TREE_INT_CST_NUNITS (yt)
1452       || TREE_INT_CST_EXT_NUNITS (xt) != TREE_INT_CST_EXT_NUNITS (yt))
1453     return false;
1454 
1455   for (int i = 0; i < TREE_INT_CST_NUNITS (xt); i++)
1456     if (TREE_INT_CST_ELT (xt, i) != TREE_INT_CST_ELT (yt, i))
1457       return false;
1458 
1459   return true;
1460 }
1461 
1462 /* Create an INT_CST node of TYPE and value CST.
1463    The returned node is always shared.  For small integers we use a
1464    per-type vector cache, for larger ones we use a single hash table.
1465    The value is extended from its precision according to the sign of
1466    the type to be a multiple of HOST_BITS_PER_WIDE_INT.  This defines
1467    the upper bits and ensures that hashing and value equality based
1468    upon the underlying HOST_WIDE_INTs works without masking.  */
1469 
1470 static tree
1471 wide_int_to_tree_1 (tree type, const wide_int_ref &pcst)
1472 {
1473   tree t;
1474   int ix = -1;
1475   int limit = 0;
1476 
1477   gcc_assert (type);
1478   unsigned int prec = TYPE_PRECISION (type);
1479   signop sgn = TYPE_SIGN (type);
1480 
1481   /* Verify that everything is canonical.  */
1482   int l = pcst.get_len ();
1483   if (l > 1)
1484     {
1485       if (pcst.elt (l - 1) == 0)
1486 	gcc_checking_assert (pcst.elt (l - 2) < 0);
1487       if (pcst.elt (l - 1) == HOST_WIDE_INT_M1)
1488 	gcc_checking_assert (pcst.elt (l - 2) >= 0);
1489     }
1490 
1491   wide_int cst = wide_int::from (pcst, prec, sgn);
1492   unsigned int ext_len = get_int_cst_ext_nunits (type, cst);
1493 
1494   if (ext_len == 1)
1495     {
1496       /* We just need to store a single HOST_WIDE_INT.  */
1497       HOST_WIDE_INT hwi;
1498       if (TYPE_UNSIGNED (type))
1499 	hwi = cst.to_uhwi ();
1500       else
1501 	hwi = cst.to_shwi ();
1502 
1503       switch (TREE_CODE (type))
1504 	{
1505 	case NULLPTR_TYPE:
1506 	  gcc_assert (hwi == 0);
1507 	  /* Fallthru.  */
1508 
1509 	case POINTER_TYPE:
1510 	case REFERENCE_TYPE:
1511 	case POINTER_BOUNDS_TYPE:
1512 	  /* Cache NULL pointer and zero bounds.  */
1513 	  if (hwi == 0)
1514 	    {
1515 	      limit = 1;
1516 	      ix = 0;
1517 	    }
1518 	  break;
1519 
1520 	case BOOLEAN_TYPE:
1521 	  /* Cache false or true.  */
1522 	  limit = 2;
1523 	  if (IN_RANGE (hwi, 0, 1))
1524 	    ix = hwi;
1525 	  break;
1526 
1527 	case INTEGER_TYPE:
1528 	case OFFSET_TYPE:
1529 	  if (TYPE_SIGN (type) == UNSIGNED)
1530 	    {
1531 	      /* Cache [0, N).  */
1532 	      limit = INTEGER_SHARE_LIMIT;
1533 	      if (IN_RANGE (hwi, 0, INTEGER_SHARE_LIMIT - 1))
1534 		ix = hwi;
1535 	    }
1536 	  else
1537 	    {
1538 	      /* Cache [-1, N).  */
1539 	      limit = INTEGER_SHARE_LIMIT + 1;
1540 	      if (IN_RANGE (hwi, -1, INTEGER_SHARE_LIMIT - 1))
1541 		ix = hwi + 1;
1542 	    }
1543 	  break;
1544 
1545 	case ENUMERAL_TYPE:
1546 	  break;
1547 
1548 	default:
1549 	  gcc_unreachable ();
1550 	}
1551 
1552       if (ix >= 0)
1553 	{
1554 	  /* Look for it in the type's vector of small shared ints.  */
1555 	  if (!TYPE_CACHED_VALUES_P (type))
1556 	    {
1557 	      TYPE_CACHED_VALUES_P (type) = 1;
1558 	      TYPE_CACHED_VALUES (type) = make_tree_vec (limit);
1559 	    }
1560 
1561 	  t = TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix);
1562 	  if (t)
1563 	    /* Make sure no one is clobbering the shared constant.  */
1564 	    gcc_checking_assert (TREE_TYPE (t) == type
1565 				 && TREE_INT_CST_NUNITS (t) == 1
1566 				 && TREE_INT_CST_OFFSET_NUNITS (t) == 1
1567 				 && TREE_INT_CST_EXT_NUNITS (t) == 1
1568 				 && TREE_INT_CST_ELT (t, 0) == hwi);
1569 	  else
1570 	    {
1571 	      /* Create a new shared int.  */
1572 	      t = build_new_int_cst (type, cst);
1573 	      TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix) = t;
1574 	    }
1575 	}
1576       else
1577 	{
1578 	  /* Use the cache of larger shared ints, using int_cst_node as
1579 	     a temporary.  */
1580 
1581 	  TREE_INT_CST_ELT (int_cst_node, 0) = hwi;
1582 	  TREE_TYPE (int_cst_node) = type;
1583 
1584 	  tree *slot = int_cst_hash_table->find_slot (int_cst_node, INSERT);
1585 	  t = *slot;
1586 	  if (!t)
1587 	    {
1588 	      /* Insert this one into the hash table.  */
1589 	      t = int_cst_node;
1590 	      *slot = t;
1591 	      /* Make a new node for next time round.  */
1592 	      int_cst_node = make_int_cst (1, 1);
1593 	    }
1594 	}
1595     }
1596   else
1597     {
1598       /* The value either hashes properly or we drop it on the floor
1599 	 for the gc to take care of.  There will not be enough of them
1600 	 to worry about.  */
1601 
1602       tree nt = build_new_int_cst (type, cst);
1603       tree *slot = int_cst_hash_table->find_slot (nt, INSERT);
1604       t = *slot;
1605       if (!t)
1606 	{
1607 	  /* Insert this one into the hash table.  */
1608 	  t = nt;
1609 	  *slot = t;
1610 	}
1611       else
1612 	ggc_free (nt);
1613     }
1614 
1615   return t;
1616 }
1617 
1618 hashval_t
1619 poly_int_cst_hasher::hash (tree t)
1620 {
1621   inchash::hash hstate;
1622 
1623   hstate.add_int (TYPE_UID (TREE_TYPE (t)));
1624   for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
1625     hstate.add_wide_int (wi::to_wide (POLY_INT_CST_COEFF (t, i)));
1626 
1627   return hstate.end ();
1628 }
1629 
1630 bool
1631 poly_int_cst_hasher::equal (tree x, const compare_type &y)
1632 {
1633   if (TREE_TYPE (x) != y.first)
1634     return false;
1635   for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
1636     if (wi::to_wide (POLY_INT_CST_COEFF (x, i)) != y.second->coeffs[i])
1637       return false;
1638   return true;
1639 }
1640 
1641 /* Build a POLY_INT_CST node with type TYPE and with the elements in VALUES.
1642    The elements must also have type TYPE.  */
1643 
1644 tree
1645 build_poly_int_cst (tree type, const poly_wide_int_ref &values)
1646 {
1647   unsigned int prec = TYPE_PRECISION (type);
1648   gcc_assert (prec <= values.coeffs[0].get_precision ());
1649   poly_wide_int c = poly_wide_int::from (values, prec, SIGNED);
1650 
1651   inchash::hash h;
1652   h.add_int (TYPE_UID (type));
1653   for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
1654     h.add_wide_int (c.coeffs[i]);
1655   poly_int_cst_hasher::compare_type comp (type, &c);
1656   tree *slot = poly_int_cst_hash_table->find_slot_with_hash (comp, h.end (),
1657 							     INSERT);
1658   if (*slot == NULL_TREE)
1659     {
1660       tree coeffs[NUM_POLY_INT_COEFFS];
1661       for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
1662 	coeffs[i] = wide_int_to_tree_1 (type, c.coeffs[i]);
1663       *slot = build_new_poly_int_cst (type, coeffs);
1664     }
1665   return *slot;
1666 }
1667 
1668 /* Create a constant tree with value VALUE in type TYPE.  */
1669 
1670 tree
1671 wide_int_to_tree (tree type, const poly_wide_int_ref &value)
1672 {
1673   if (value.is_constant ())
1674     return wide_int_to_tree_1 (type, value.coeffs[0]);
1675   return build_poly_int_cst (type, value);
1676 }
1677 
1678 void
1679 cache_integer_cst (tree t)
1680 {
1681   tree type = TREE_TYPE (t);
1682   int ix = -1;
1683   int limit = 0;
1684   int prec = TYPE_PRECISION (type);
1685 
1686   gcc_assert (!TREE_OVERFLOW (t));
1687 
1688   switch (TREE_CODE (type))
1689     {
1690     case NULLPTR_TYPE:
1691       gcc_assert (integer_zerop (t));
1692       /* Fallthru.  */
1693 
1694     case POINTER_TYPE:
1695     case REFERENCE_TYPE:
1696       /* Cache NULL pointer.  */
1697       if (integer_zerop (t))
1698 	{
1699 	  limit = 1;
1700 	  ix = 0;
1701 	}
1702       break;
1703 
1704     case BOOLEAN_TYPE:
1705       /* Cache false or true.  */
1706       limit = 2;
1707       if (wi::ltu_p (wi::to_wide (t), 2))
1708 	ix = TREE_INT_CST_ELT (t, 0);
1709       break;
1710 
1711     case INTEGER_TYPE:
1712     case OFFSET_TYPE:
1713       if (TYPE_UNSIGNED (type))
1714 	{
1715 	  /* Cache 0..N */
1716 	  limit = INTEGER_SHARE_LIMIT;
1717 
1718 	  /* This is a little hokie, but if the prec is smaller than
1719 	     what is necessary to hold INTEGER_SHARE_LIMIT, then the
1720 	     obvious test will not get the correct answer.  */
1721 	  if (prec < HOST_BITS_PER_WIDE_INT)
1722 	    {
1723 	      if (tree_to_uhwi (t) < (unsigned HOST_WIDE_INT) INTEGER_SHARE_LIMIT)
1724 		ix = tree_to_uhwi (t);
1725 	    }
1726 	  else if (wi::ltu_p (wi::to_wide (t), INTEGER_SHARE_LIMIT))
1727 	    ix = tree_to_uhwi (t);
1728 	}
1729       else
1730 	{
1731 	  /* Cache -1..N */
1732 	  limit = INTEGER_SHARE_LIMIT + 1;
1733 
1734 	  if (integer_minus_onep (t))
1735 	    ix = 0;
1736 	  else if (!wi::neg_p (wi::to_wide (t)))
1737 	    {
1738 	      if (prec < HOST_BITS_PER_WIDE_INT)
1739 		{
1740 		  if (tree_to_shwi (t) < INTEGER_SHARE_LIMIT)
1741 		    ix = tree_to_shwi (t) + 1;
1742 		}
1743 	      else if (wi::ltu_p (wi::to_wide (t), INTEGER_SHARE_LIMIT))
1744 		ix = tree_to_shwi (t) + 1;
1745 	    }
1746 	}
1747       break;
1748 
1749     case ENUMERAL_TYPE:
1750       break;
1751 
1752     default:
1753       gcc_unreachable ();
1754     }
1755 
1756   if (ix >= 0)
1757     {
1758       /* Look for it in the type's vector of small shared ints.  */
1759       if (!TYPE_CACHED_VALUES_P (type))
1760 	{
1761 	  TYPE_CACHED_VALUES_P (type) = 1;
1762 	  TYPE_CACHED_VALUES (type) = make_tree_vec (limit);
1763 	}
1764 
1765       gcc_assert (TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix) == NULL_TREE);
1766       TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix) = t;
1767     }
1768   else
1769     {
1770       /* Use the cache of larger shared ints.  */
1771       tree *slot = int_cst_hash_table->find_slot (t, INSERT);
1772       /* If there is already an entry for the number verify it's the
1773          same.  */
1774       if (*slot)
1775 	gcc_assert (wi::to_wide (tree (*slot)) == wi::to_wide (t));
1776       else
1777 	/* Otherwise insert this one into the hash table.  */
1778 	*slot = t;
1779     }
1780 }
1781 
1782 
1783 /* Builds an integer constant in TYPE such that lowest BITS bits are ones
1784    and the rest are zeros.  */
1785 
1786 tree
1787 build_low_bits_mask (tree type, unsigned bits)
1788 {
1789   gcc_assert (bits <= TYPE_PRECISION (type));
1790 
1791   return wide_int_to_tree (type, wi::mask (bits, false,
1792 					   TYPE_PRECISION (type)));
1793 }
1794 
1795 /* Checks that X is integer constant that can be expressed in (unsigned)
1796    HOST_WIDE_INT without loss of precision.  */
1797 
1798 bool
1799 cst_and_fits_in_hwi (const_tree x)
1800 {
1801   return (TREE_CODE (x) == INTEGER_CST
1802 	  && (tree_fits_shwi_p (x) || tree_fits_uhwi_p (x)));
1803 }
1804 
1805 /* Build a newly constructed VECTOR_CST with the given values of
1806    (VECTOR_CST_)LOG2_NPATTERNS and (VECTOR_CST_)NELTS_PER_PATTERN.  */
1807 
1808 tree
1809 make_vector (unsigned log2_npatterns,
1810 	     unsigned int nelts_per_pattern MEM_STAT_DECL)
1811 {
1812   gcc_assert (IN_RANGE (nelts_per_pattern, 1, 3));
1813   tree t;
1814   unsigned npatterns = 1 << log2_npatterns;
1815   unsigned encoded_nelts = npatterns * nelts_per_pattern;
1816   unsigned length = (sizeof (struct tree_vector)
1817 		     + (encoded_nelts - 1) * sizeof (tree));
1818 
1819   record_node_allocation_statistics (VECTOR_CST, length);
1820 
1821   t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);
1822 
1823   TREE_SET_CODE (t, VECTOR_CST);
1824   TREE_CONSTANT (t) = 1;
1825   VECTOR_CST_LOG2_NPATTERNS (t) = log2_npatterns;
1826   VECTOR_CST_NELTS_PER_PATTERN (t) = nelts_per_pattern;
1827 
1828   return t;
1829 }
1830 
1831 /* Return a new VECTOR_CST node whose type is TYPE and whose values
1832    are extracted from V, a vector of CONSTRUCTOR_ELT.  */
1833 
1834 tree
1835 build_vector_from_ctor (tree type, vec<constructor_elt, va_gc> *v)
1836 {
1837   unsigned HOST_WIDE_INT idx, nelts;
1838   tree value;
1839 
1840   /* We can't construct a VECTOR_CST for a variable number of elements.  */
1841   nelts = TYPE_VECTOR_SUBPARTS (type).to_constant ();
1842   tree_vector_builder vec (type, nelts, 1);
1843   FOR_EACH_CONSTRUCTOR_VALUE (v, idx, value)
1844     {
1845       if (TREE_CODE (value) == VECTOR_CST)
1846 	{
1847 	  /* If NELTS is constant then this must be too.  */
1848 	  unsigned int sub_nelts = VECTOR_CST_NELTS (value).to_constant ();
1849 	  for (unsigned i = 0; i < sub_nelts; ++i)
1850 	    vec.quick_push (VECTOR_CST_ELT (value, i));
1851 	}
1852       else
1853 	vec.quick_push (value);
1854     }
1855   while (vec.length () < nelts)
1856     vec.quick_push (build_zero_cst (TREE_TYPE (type)));
1857 
1858   return vec.build ();
1859 }
1860 
1861 /* Build a vector of type VECTYPE where all the elements are SCs.  */
1862 tree
1863 build_vector_from_val (tree vectype, tree sc)
1864 {
1865   unsigned HOST_WIDE_INT i, nunits;
1866 
1867   if (sc == error_mark_node)
1868     return sc;
1869 
1870   /* Verify that the vector type is suitable for SC.  Note that there
1871      is some inconsistency in the type-system with respect to restrict
1872      qualifications of pointers.  Vector types always have a main-variant
1873      element type and the qualification is applied to the vector-type.
1874      So TREE_TYPE (vector-type) does not return a properly qualified
1875      vector element-type.  */
1876   gcc_checking_assert (types_compatible_p (TYPE_MAIN_VARIANT (TREE_TYPE (sc)),
1877 					   TREE_TYPE (vectype)));
1878 
1879   if (CONSTANT_CLASS_P (sc))
1880     {
1881       tree_vector_builder v (vectype, 1, 1);
1882       v.quick_push (sc);
1883       return v.build ();
1884     }
1885   else if (!TYPE_VECTOR_SUBPARTS (vectype).is_constant (&nunits))
1886     return fold_build1 (VEC_DUPLICATE_EXPR, vectype, sc);
1887   else
1888     {
1889       vec<constructor_elt, va_gc> *v;
1890       vec_alloc (v, nunits);
1891       for (i = 0; i < nunits; ++i)
1892 	CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, sc);
1893       return build_constructor (vectype, v);
1894     }
1895 }
1896 
1897 /* Build a vector series of type TYPE in which element I has the value
1898    BASE + I * STEP.  The result is a constant if BASE and STEP are constant
1899    and a VEC_SERIES_EXPR otherwise.  */
1900 
1901 tree
1902 build_vec_series (tree type, tree base, tree step)
1903 {
1904   if (integer_zerop (step))
1905     return build_vector_from_val (type, base);
1906   if (TREE_CODE (base) == INTEGER_CST && TREE_CODE (step) == INTEGER_CST)
1907     {
1908       tree_vector_builder builder (type, 1, 3);
1909       tree elt1 = wide_int_to_tree (TREE_TYPE (base),
1910 				    wi::to_wide (base) + wi::to_wide (step));
1911       tree elt2 = wide_int_to_tree (TREE_TYPE (base),
1912 				    wi::to_wide (elt1) + wi::to_wide (step));
1913       builder.quick_push (base);
1914       builder.quick_push (elt1);
1915       builder.quick_push (elt2);
1916       return builder.build ();
1917     }
1918   return build2 (VEC_SERIES_EXPR, type, base, step);
1919 }
1920 
1921 /* Return a vector with the same number of units and number of bits
1922    as VEC_TYPE, but in which the elements are a linear series of unsigned
1923    integers { BASE, BASE + STEP, BASE + STEP * 2, ... }.  */
1924 
1925 tree
1926 build_index_vector (tree vec_type, poly_uint64 base, poly_uint64 step)
1927 {
1928   tree index_vec_type = vec_type;
1929   tree index_elt_type = TREE_TYPE (vec_type);
1930   poly_uint64 nunits = TYPE_VECTOR_SUBPARTS (vec_type);
1931   if (!INTEGRAL_TYPE_P (index_elt_type) || !TYPE_UNSIGNED (index_elt_type))
1932     {
1933       index_elt_type = build_nonstandard_integer_type
1934 	(GET_MODE_BITSIZE (SCALAR_TYPE_MODE (index_elt_type)), true);
1935       index_vec_type = build_vector_type (index_elt_type, nunits);
1936     }
1937 
1938   tree_vector_builder v (index_vec_type, 1, 3);
1939   for (unsigned int i = 0; i < 3; ++i)
1940     v.quick_push (build_int_cstu (index_elt_type, base + i * step));
1941   return v.build ();
1942 }
1943 
1944 /* Something has messed with the elements of CONSTRUCTOR C after it was built;
1945    calculate TREE_CONSTANT and TREE_SIDE_EFFECTS.  */
1946 
1947 void
1948 recompute_constructor_flags (tree c)
1949 {
1950   unsigned int i;
1951   tree val;
1952   bool constant_p = true;
1953   bool side_effects_p = false;
1954   vec<constructor_elt, va_gc> *vals = CONSTRUCTOR_ELTS (c);
1955 
1956   FOR_EACH_CONSTRUCTOR_VALUE (vals, i, val)
1957     {
1958       /* Mostly ctors will have elts that don't have side-effects, so
1959 	 the usual case is to scan all the elements.  Hence a single
1960 	 loop for both const and side effects, rather than one loop
1961 	 each (with early outs).  */
1962       if (!TREE_CONSTANT (val))
1963 	constant_p = false;
1964       if (TREE_SIDE_EFFECTS (val))
1965 	side_effects_p = true;
1966     }
1967 
1968   TREE_SIDE_EFFECTS (c) = side_effects_p;
1969   TREE_CONSTANT (c) = constant_p;
1970 }
1971 
1972 /* Make sure that TREE_CONSTANT and TREE_SIDE_EFFECTS are correct for
1973    CONSTRUCTOR C.  */
1974 
1975 void
1976 verify_constructor_flags (tree c)
1977 {
1978   unsigned int i;
1979   tree val;
1980   bool constant_p = TREE_CONSTANT (c);
1981   bool side_effects_p = TREE_SIDE_EFFECTS (c);
1982   vec<constructor_elt, va_gc> *vals = CONSTRUCTOR_ELTS (c);
1983 
1984   FOR_EACH_CONSTRUCTOR_VALUE (vals, i, val)
1985     {
1986       if (constant_p && !TREE_CONSTANT (val))
1987 	internal_error ("non-constant element in constant CONSTRUCTOR");
1988       if (!side_effects_p && TREE_SIDE_EFFECTS (val))
1989 	internal_error ("side-effects element in no-side-effects CONSTRUCTOR");
1990     }
1991 }
1992 
1993 /* Return a new CONSTRUCTOR node whose type is TYPE and whose values
1994    are in the vec pointed to by VALS.  */
1995 tree
1996 build_constructor (tree type, vec<constructor_elt, va_gc> *vals)
1997 {
1998   tree c = make_node (CONSTRUCTOR);
1999 
2000   TREE_TYPE (c) = type;
2001   CONSTRUCTOR_ELTS (c) = vals;
2002 
2003   recompute_constructor_flags (c);
2004 
2005   return c;
2006 }
2007 
2008 /* Build a CONSTRUCTOR node made of a single initializer, with the specified
2009    INDEX and VALUE.  */
2010 tree
2011 build_constructor_single (tree type, tree index, tree value)
2012 {
2013   vec<constructor_elt, va_gc> *v;
2014   constructor_elt elt = {index, value};
2015 
2016   vec_alloc (v, 1);
2017   v->quick_push (elt);
2018 
2019   return build_constructor (type, v);
2020 }
2021 
2022 
2023 /* Return a new CONSTRUCTOR node whose type is TYPE and whose values
2024    are in a list pointed to by VALS.  */
2025 tree
2026 build_constructor_from_list (tree type, tree vals)
2027 {
2028   tree t;
2029   vec<constructor_elt, va_gc> *v = NULL;
2030 
2031   if (vals)
2032     {
2033       vec_alloc (v, list_length (vals));
2034       for (t = vals; t; t = TREE_CHAIN (t))
2035 	CONSTRUCTOR_APPEND_ELT (v, TREE_PURPOSE (t), TREE_VALUE (t));
2036     }
2037 
2038   return build_constructor (type, v);
2039 }
2040 
2041 /* Return a new CONSTRUCTOR node whose type is TYPE.  NELTS is the number
2042    of elements, provided as index/value pairs.  */
2043 
2044 tree
2045 build_constructor_va (tree type, int nelts, ...)
2046 {
2047   vec<constructor_elt, va_gc> *v = NULL;
2048   va_list p;
2049 
2050   va_start (p, nelts);
2051   vec_alloc (v, nelts);
2052   while (nelts--)
2053     {
2054       tree index = va_arg (p, tree);
2055       tree value = va_arg (p, tree);
2056       CONSTRUCTOR_APPEND_ELT (v, index, value);
2057     }
2058   va_end (p);
2059   return build_constructor (type, v);
2060 }
2061 
2062 /* Return a new FIXED_CST node whose type is TYPE and value is F.  */
2063 
2064 tree
2065 build_fixed (tree type, FIXED_VALUE_TYPE f)
2066 {
2067   tree v;
2068   FIXED_VALUE_TYPE *fp;
2069 
2070   v = make_node (FIXED_CST);
2071   fp = ggc_alloc<fixed_value> ();
2072   memcpy (fp, &f, sizeof (FIXED_VALUE_TYPE));
2073 
2074   TREE_TYPE (v) = type;
2075   TREE_FIXED_CST_PTR (v) = fp;
2076   return v;
2077 }
2078 
2079 /* Return a new REAL_CST node whose type is TYPE and value is D.  */
2080 
2081 tree
2082 build_real (tree type, REAL_VALUE_TYPE d)
2083 {
2084   tree v;
2085   REAL_VALUE_TYPE *dp;
2086   int overflow = 0;
2087 
2088   /* ??? Used to check for overflow here via CHECK_FLOAT_TYPE.
2089      Consider doing it via real_convert now.  */
2090 
2091   v = make_node (REAL_CST);
2092   dp = ggc_alloc<real_value> ();
2093   memcpy (dp, &d, sizeof (REAL_VALUE_TYPE));
2094 
2095   TREE_TYPE (v) = type;
2096   TREE_REAL_CST_PTR (v) = dp;
2097   TREE_OVERFLOW (v) = overflow;
2098   return v;
2099 }
2100 
2101 /* Like build_real, but first truncate D to the type.  */
2102 
2103 tree
2104 build_real_truncate (tree type, REAL_VALUE_TYPE d)
2105 {
2106   return build_real (type, real_value_truncate (TYPE_MODE (type), d));
2107 }
2108 
2109 /* Return a new REAL_CST node whose type is TYPE
2110    and whose value is the integer value of the INTEGER_CST node I.  */
2111 
2112 REAL_VALUE_TYPE
2113 real_value_from_int_cst (const_tree type, const_tree i)
2114 {
2115   REAL_VALUE_TYPE d;
2116 
2117   /* Clear all bits of the real value type so that we can later do
2118      bitwise comparisons to see if two values are the same.  */
2119   memset (&d, 0, sizeof d);
2120 
2121   real_from_integer (&d, type ? TYPE_MODE (type) : VOIDmode, wi::to_wide (i),
2122 		     TYPE_SIGN (TREE_TYPE (i)));
2123   return d;
2124 }
2125 
2126 /* Given a tree representing an integer constant I, return a tree
2127    representing the same value as a floating-point constant of type TYPE.  */
2128 
2129 tree
2130 build_real_from_int_cst (tree type, const_tree i)
2131 {
2132   tree v;
2133   int overflow = TREE_OVERFLOW (i);
2134 
2135   v = build_real (type, real_value_from_int_cst (type, i));
2136 
2137   TREE_OVERFLOW (v) |= overflow;
2138   return v;
2139 }
2140 
2141 /* Return a newly constructed STRING_CST node whose value is
2142    the LEN characters at STR.
2143    Note that for a C string literal, LEN should include the trailing NUL.
2144    The TREE_TYPE is not initialized.  */
2145 
2146 tree
2147 build_string (int len, const char *str)
2148 {
2149   tree s;
2150   size_t length;
2151 
2152   /* Do not waste bytes provided by padding of struct tree_string.  */
2153   length = len + offsetof (struct tree_string, str) + 1;
2154 
2155   record_node_allocation_statistics (STRING_CST, length);
2156 
2157   s = (tree) ggc_internal_alloc (length);
2158 
2159   memset (s, 0, sizeof (struct tree_typed));
2160   TREE_SET_CODE (s, STRING_CST);
2161   TREE_CONSTANT (s) = 1;
2162   TREE_STRING_LENGTH (s) = len;
2163   memcpy (s->string.str, str, len);
2164   s->string.str[len] = '\0';
2165 
2166   return s;
2167 }
2168 
2169 /* Return a newly constructed COMPLEX_CST node whose value is
2170    specified by the real and imaginary parts REAL and IMAG.
2171    Both REAL and IMAG should be constant nodes.  TYPE, if specified,
2172    will be the type of the COMPLEX_CST; otherwise a new type will be made.  */
2173 
2174 tree
2175 build_complex (tree type, tree real, tree imag)
2176 {
2177   tree t = make_node (COMPLEX_CST);
2178 
2179   TREE_REALPART (t) = real;
2180   TREE_IMAGPART (t) = imag;
2181   TREE_TYPE (t) = type ? type : build_complex_type (TREE_TYPE (real));
2182   TREE_OVERFLOW (t) = TREE_OVERFLOW (real) | TREE_OVERFLOW (imag);
2183   return t;
2184 }
2185 
2186 /* Build a complex (inf +- 0i), such as for the result of cproj.
2187    TYPE is the complex tree type of the result.  If NEG is true, the
2188    imaginary zero is negative.  */
2189 
2190 tree
2191 build_complex_inf (tree type, bool neg)
2192 {
2193   REAL_VALUE_TYPE rinf, rzero = dconst0;
2194 
2195   real_inf (&rinf);
2196   rzero.sign = neg;
2197   return build_complex (type, build_real (TREE_TYPE (type), rinf),
2198 			build_real (TREE_TYPE (type), rzero));
2199 }
2200 
2201 /* Return the constant 1 in type TYPE.  If TYPE has several elements, each
2202    element is set to 1.  In particular, this is 1 + i for complex types.  */
2203 
2204 tree
2205 build_each_one_cst (tree type)
2206 {
2207   if (TREE_CODE (type) == COMPLEX_TYPE)
2208     {
2209       tree scalar = build_one_cst (TREE_TYPE (type));
2210       return build_complex (type, scalar, scalar);
2211     }
2212   else
2213     return build_one_cst (type);
2214 }
2215 
2216 /* Return a constant of arithmetic type TYPE which is the
2217    multiplicative identity of the set TYPE.  */
2218 
2219 tree
2220 build_one_cst (tree type)
2221 {
2222   switch (TREE_CODE (type))
2223     {
2224     case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
2225     case POINTER_TYPE: case REFERENCE_TYPE:
2226     case OFFSET_TYPE:
2227       return build_int_cst (type, 1);
2228 
2229     case REAL_TYPE:
2230       return build_real (type, dconst1);
2231 
2232     case FIXED_POINT_TYPE:
2233       /* We can only generate 1 for accum types.  */
2234       gcc_assert (ALL_SCALAR_ACCUM_MODE_P (TYPE_MODE (type)));
2235       return build_fixed (type, FCONST1 (TYPE_MODE (type)));
2236 
2237     case VECTOR_TYPE:
2238       {
2239 	tree scalar = build_one_cst (TREE_TYPE (type));
2240 
2241 	return build_vector_from_val (type, scalar);
2242       }
2243 
2244     case COMPLEX_TYPE:
2245       return build_complex (type,
2246 			    build_one_cst (TREE_TYPE (type)),
2247 			    build_zero_cst (TREE_TYPE (type)));
2248 
2249     default:
2250       gcc_unreachable ();
2251     }
2252 }
2253 
2254 /* Return an integer of type TYPE containing all 1's in as much precision as
2255    it contains, or a complex or vector whose subparts are such integers.  */
2256 
2257 tree
2258 build_all_ones_cst (tree type)
2259 {
2260   if (TREE_CODE (type) == COMPLEX_TYPE)
2261     {
2262       tree scalar = build_all_ones_cst (TREE_TYPE (type));
2263       return build_complex (type, scalar, scalar);
2264     }
2265   else
2266     return build_minus_one_cst (type);
2267 }
2268 
2269 /* Return a constant of arithmetic type TYPE which is the
2270    opposite of the multiplicative identity of the set TYPE.  */
2271 
2272 tree
2273 build_minus_one_cst (tree type)
2274 {
2275   switch (TREE_CODE (type))
2276     {
2277     case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
2278     case POINTER_TYPE: case REFERENCE_TYPE:
2279     case OFFSET_TYPE:
2280       return build_int_cst (type, -1);
2281 
2282     case REAL_TYPE:
2283       return build_real (type, dconstm1);
2284 
2285     case FIXED_POINT_TYPE:
2286       /* We can only generate 1 for accum types.  */
2287       gcc_assert (ALL_SCALAR_ACCUM_MODE_P (TYPE_MODE (type)));
2288       return build_fixed (type,
2289 			  fixed_from_double_int (double_int_minus_one,
2290 						 SCALAR_TYPE_MODE (type)));
2291 
2292     case VECTOR_TYPE:
2293       {
2294 	tree scalar = build_minus_one_cst (TREE_TYPE (type));
2295 
2296 	return build_vector_from_val (type, scalar);
2297       }
2298 
2299     case COMPLEX_TYPE:
2300       return build_complex (type,
2301 			    build_minus_one_cst (TREE_TYPE (type)),
2302 			    build_zero_cst (TREE_TYPE (type)));
2303 
2304     default:
2305       gcc_unreachable ();
2306     }
2307 }
2308 
2309 /* Build 0 constant of type TYPE.  This is used by constructor folding
2310    and thus the constant should be represented in memory by
2311    zero(es).  */
2312 
2313 tree
2314 build_zero_cst (tree type)
2315 {
2316   switch (TREE_CODE (type))
2317     {
2318     case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
2319     case POINTER_TYPE: case REFERENCE_TYPE:
2320     case OFFSET_TYPE: case NULLPTR_TYPE:
2321       return build_int_cst (type, 0);
2322 
2323     case REAL_TYPE:
2324       return build_real (type, dconst0);
2325 
2326     case FIXED_POINT_TYPE:
2327       return build_fixed (type, FCONST0 (TYPE_MODE (type)));
2328 
2329     case VECTOR_TYPE:
2330       {
2331 	tree scalar = build_zero_cst (TREE_TYPE (type));
2332 
2333 	return build_vector_from_val (type, scalar);
2334       }
2335 
2336     case COMPLEX_TYPE:
2337       {
2338 	tree zero = build_zero_cst (TREE_TYPE (type));
2339 
2340 	return build_complex (type, zero, zero);
2341       }
2342 
2343     default:
2344       if (!AGGREGATE_TYPE_P (type))
2345 	return fold_convert (type, integer_zero_node);
2346       return build_constructor (type, NULL);
2347     }
2348 }
2349 
2350 
2351 /* Build a BINFO with LEN language slots.  */
2352 
2353 tree
2354 make_tree_binfo (unsigned base_binfos MEM_STAT_DECL)
2355 {
2356   tree t;
2357   size_t length = (offsetof (struct tree_binfo, base_binfos)
2358 		   + vec<tree, va_gc>::embedded_size (base_binfos));
2359 
2360   record_node_allocation_statistics (TREE_BINFO, length);
2361 
2362   t = ggc_alloc_tree_node_stat (length PASS_MEM_STAT);
2363 
2364   memset (t, 0, offsetof (struct tree_binfo, base_binfos));
2365 
2366   TREE_SET_CODE (t, TREE_BINFO);
2367 
2368   BINFO_BASE_BINFOS (t)->embedded_init (base_binfos);
2369 
2370   return t;
2371 }
2372 
2373 /* Create a CASE_LABEL_EXPR tree node and return it.  */
2374 
2375 tree
2376 build_case_label (tree low_value, tree high_value, tree label_decl)
2377 {
2378   tree t = make_node (CASE_LABEL_EXPR);
2379 
2380   TREE_TYPE (t) = void_type_node;
2381   SET_EXPR_LOCATION (t, DECL_SOURCE_LOCATION (label_decl));
2382 
2383   CASE_LOW (t) = low_value;
2384   CASE_HIGH (t) = high_value;
2385   CASE_LABEL (t) = label_decl;
2386   CASE_CHAIN (t) = NULL_TREE;
2387 
2388   return t;
2389 }
2390 
2391 /* Build a newly constructed INTEGER_CST node.  LEN and EXT_LEN are the
2392    values of TREE_INT_CST_NUNITS and TREE_INT_CST_EXT_NUNITS respectively.
2393    The latter determines the length of the HOST_WIDE_INT vector.  */
2394 
2395 tree
2396 make_int_cst (int len, int ext_len MEM_STAT_DECL)
2397 {
2398   tree t;
2399   int length = ((ext_len - 1) * sizeof (HOST_WIDE_INT)
2400 		+ sizeof (struct tree_int_cst));
2401 
2402   gcc_assert (len);
2403   record_node_allocation_statistics (INTEGER_CST, length);
2404 
2405   t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);
2406 
2407   TREE_SET_CODE (t, INTEGER_CST);
2408   TREE_INT_CST_NUNITS (t) = len;
2409   TREE_INT_CST_EXT_NUNITS (t) = ext_len;
2410   /* to_offset can only be applied to trees that are offset_int-sized
2411      or smaller.  EXT_LEN is correct if it fits, otherwise the constant
2412      must be exactly the precision of offset_int and so LEN is correct.  */
2413   if (ext_len <= OFFSET_INT_ELTS)
2414     TREE_INT_CST_OFFSET_NUNITS (t) = ext_len;
2415   else
2416     TREE_INT_CST_OFFSET_NUNITS (t) = len;
2417 
2418   TREE_CONSTANT (t) = 1;
2419 
2420   return t;
2421 }
2422 
2423 /* Build a newly constructed TREE_VEC node of length LEN.  */
2424 
2425 tree
2426 make_tree_vec (int len MEM_STAT_DECL)
2427 {
2428   tree t;
2429   size_t length = (len - 1) * sizeof (tree) + sizeof (struct tree_vec);
2430 
2431   record_node_allocation_statistics (TREE_VEC, length);
2432 
2433   t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);
2434 
2435   TREE_SET_CODE (t, TREE_VEC);
2436   TREE_VEC_LENGTH (t) = len;
2437 
2438   return t;
2439 }
2440 
2441 /* Grow a TREE_VEC node to new length LEN.  */
2442 
2443 tree
2444 grow_tree_vec (tree v, int len MEM_STAT_DECL)
2445 {
2446   gcc_assert (TREE_CODE (v) == TREE_VEC);
2447 
2448   int oldlen = TREE_VEC_LENGTH (v);
2449   gcc_assert (len > oldlen);
2450 
2451   size_t oldlength = (oldlen - 1) * sizeof (tree) + sizeof (struct tree_vec);
2452   size_t length = (len - 1) * sizeof (tree) + sizeof (struct tree_vec);
2453 
2454   record_node_allocation_statistics (TREE_VEC, length - oldlength);
2455 
2456   v = (tree) ggc_realloc (v, length PASS_MEM_STAT);
2457 
2458   TREE_VEC_LENGTH (v) = len;
2459 
2460   return v;
2461 }
2462 
2463 /* Return 1 if EXPR is the constant zero, whether it is integral, float or
2464    fixed, and scalar, complex or vector.  */
2465 
2466 int
2467 zerop (const_tree expr)
2468 {
2469   return (integer_zerop (expr)
2470 	  || real_zerop (expr)
2471 	  || fixed_zerop (expr));
2472 }
2473 
2474 /* Return 1 if EXPR is the integer constant zero or a complex constant
2475    of zero.  */
2476 
2477 int
2478 integer_zerop (const_tree expr)
2479 {
2480   switch (TREE_CODE (expr))
2481     {
2482     case INTEGER_CST:
2483       return wi::to_wide (expr) == 0;
2484     case COMPLEX_CST:
2485       return (integer_zerop (TREE_REALPART (expr))
2486 	      && integer_zerop (TREE_IMAGPART (expr)));
2487     case VECTOR_CST:
2488       return (VECTOR_CST_NPATTERNS (expr) == 1
2489 	      && VECTOR_CST_DUPLICATE_P (expr)
2490 	      && integer_zerop (VECTOR_CST_ENCODED_ELT (expr, 0)));
2491     default:
2492       return false;
2493     }
2494 }
2495 
2496 /* Return 1 if EXPR is the integer constant one or the corresponding
2497    complex constant.  */
2498 
2499 int
2500 integer_onep (const_tree expr)
2501 {
2502   switch (TREE_CODE (expr))
2503     {
2504     case INTEGER_CST:
2505       return wi::eq_p (wi::to_widest (expr), 1);
2506     case COMPLEX_CST:
2507       return (integer_onep (TREE_REALPART (expr))
2508 	      && integer_zerop (TREE_IMAGPART (expr)));
2509     case VECTOR_CST:
2510       return (VECTOR_CST_NPATTERNS (expr) == 1
2511 	      && VECTOR_CST_DUPLICATE_P (expr)
2512 	      && integer_onep (VECTOR_CST_ENCODED_ELT (expr, 0)));
2513     default:
2514       return false;
2515     }
2516 }
2517 
2518 /* Return 1 if EXPR is the integer constant one.  For complex and vector,
2519    return 1 if every piece is the integer constant one.  */
2520 
2521 int
2522 integer_each_onep (const_tree expr)
2523 {
2524   if (TREE_CODE (expr) == COMPLEX_CST)
2525     return (integer_onep (TREE_REALPART (expr))
2526 	    && integer_onep (TREE_IMAGPART (expr)));
2527   else
2528     return integer_onep (expr);
2529 }
2530 
2531 /* Return 1 if EXPR is an integer containing all 1's in as much precision as
2532    it contains, or a complex or vector whose subparts are such integers.  */
2533 
2534 int
2535 integer_all_onesp (const_tree expr)
2536 {
2537   if (TREE_CODE (expr) == COMPLEX_CST
2538       && integer_all_onesp (TREE_REALPART (expr))
2539       && integer_all_onesp (TREE_IMAGPART (expr)))
2540     return 1;
2541 
2542   else if (TREE_CODE (expr) == VECTOR_CST)
2543     return (VECTOR_CST_NPATTERNS (expr) == 1
2544 	    && VECTOR_CST_DUPLICATE_P (expr)
2545 	    && integer_all_onesp (VECTOR_CST_ENCODED_ELT (expr, 0)));
2546 
2547   else if (TREE_CODE (expr) != INTEGER_CST)
2548     return 0;
2549 
2550   return (wi::max_value (TYPE_PRECISION (TREE_TYPE (expr)), UNSIGNED)
2551 	  == wi::to_wide (expr));
2552 }
2553 
2554 /* Return 1 if EXPR is the integer constant minus one.  */
2555 
2556 int
2557 integer_minus_onep (const_tree expr)
2558 {
2559   if (TREE_CODE (expr) == COMPLEX_CST)
2560     return (integer_all_onesp (TREE_REALPART (expr))
2561 	    && integer_zerop (TREE_IMAGPART (expr)));
2562   else
2563     return integer_all_onesp (expr);
2564 }
2565 
2566 /* Return 1 if EXPR is an integer constant that is a power of 2 (i.e., has only
2567    one bit on).  */
2568 
2569 int
2570 integer_pow2p (const_tree expr)
2571 {
2572   if (TREE_CODE (expr) == COMPLEX_CST
2573       && integer_pow2p (TREE_REALPART (expr))
2574       && integer_zerop (TREE_IMAGPART (expr)))
2575     return 1;
2576 
2577   if (TREE_CODE (expr) != INTEGER_CST)
2578     return 0;
2579 
2580   return wi::popcount (wi::to_wide (expr)) == 1;
2581 }
2582 
2583 /* Return 1 if EXPR is an integer constant other than zero or a
2584    complex constant other than zero.  */
2585 
2586 int
2587 integer_nonzerop (const_tree expr)
2588 {
2589   return ((TREE_CODE (expr) == INTEGER_CST
2590 	   && wi::to_wide (expr) != 0)
2591 	  || (TREE_CODE (expr) == COMPLEX_CST
2592 	      && (integer_nonzerop (TREE_REALPART (expr))
2593 		  || integer_nonzerop (TREE_IMAGPART (expr)))));
2594 }
2595 
2596 /* Return 1 if EXPR is the integer constant one.  For vector,
2597    return 1 if every piece is the integer constant minus one
2598    (representing the value TRUE).  */
2599 
2600 int
2601 integer_truep (const_tree expr)
2602 {
2603   if (TREE_CODE (expr) == VECTOR_CST)
2604     return integer_all_onesp (expr);
2605   return integer_onep (expr);
2606 }
2607 
2608 /* Return 1 if EXPR is the fixed-point constant zero.  */
2609 
2610 int
2611 fixed_zerop (const_tree expr)
2612 {
2613   return (TREE_CODE (expr) == FIXED_CST
2614 	  && TREE_FIXED_CST (expr).data.is_zero ());
2615 }
2616 
2617 /* Return the power of two represented by a tree node known to be a
2618    power of two.  */
2619 
2620 int
2621 tree_log2 (const_tree expr)
2622 {
2623   if (TREE_CODE (expr) == COMPLEX_CST)
2624     return tree_log2 (TREE_REALPART (expr));
2625 
2626   return wi::exact_log2 (wi::to_wide (expr));
2627 }
2628 
2629 /* Similar, but return the largest integer Y such that 2 ** Y is less
2630    than or equal to EXPR.  */
2631 
2632 int
2633 tree_floor_log2 (const_tree expr)
2634 {
2635   if (TREE_CODE (expr) == COMPLEX_CST)
2636     return tree_log2 (TREE_REALPART (expr));
2637 
2638   return wi::floor_log2 (wi::to_wide (expr));
2639 }
2640 
2641 /* Return number of known trailing zero bits in EXPR, or, if the value of
2642    EXPR is known to be zero, the precision of it's type.  */
2643 
2644 unsigned int
2645 tree_ctz (const_tree expr)
2646 {
2647   if (!INTEGRAL_TYPE_P (TREE_TYPE (expr))
2648       && !POINTER_TYPE_P (TREE_TYPE (expr)))
2649     return 0;
2650 
2651   unsigned int ret1, ret2, prec = TYPE_PRECISION (TREE_TYPE (expr));
2652   switch (TREE_CODE (expr))
2653     {
2654     case INTEGER_CST:
2655       ret1 = wi::ctz (wi::to_wide (expr));
2656       return MIN (ret1, prec);
2657     case SSA_NAME:
2658       ret1 = wi::ctz (get_nonzero_bits (expr));
2659       return MIN (ret1, prec);
2660     case PLUS_EXPR:
2661     case MINUS_EXPR:
2662     case BIT_IOR_EXPR:
2663     case BIT_XOR_EXPR:
2664     case MIN_EXPR:
2665     case MAX_EXPR:
2666       ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2667       if (ret1 == 0)
2668 	return ret1;
2669       ret2 = tree_ctz (TREE_OPERAND (expr, 1));
2670       return MIN (ret1, ret2);
2671     case POINTER_PLUS_EXPR:
2672       ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2673       ret2 = tree_ctz (TREE_OPERAND (expr, 1));
2674       /* Second operand is sizetype, which could be in theory
2675 	 wider than pointer's precision.  Make sure we never
2676 	 return more than prec.  */
2677       ret2 = MIN (ret2, prec);
2678       return MIN (ret1, ret2);
2679     case BIT_AND_EXPR:
2680       ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2681       ret2 = tree_ctz (TREE_OPERAND (expr, 1));
2682       return MAX (ret1, ret2);
2683     case MULT_EXPR:
2684       ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2685       ret2 = tree_ctz (TREE_OPERAND (expr, 1));
2686       return MIN (ret1 + ret2, prec);
2687     case LSHIFT_EXPR:
2688       ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2689       if (tree_fits_uhwi_p (TREE_OPERAND (expr, 1))
2690 	  && (tree_to_uhwi (TREE_OPERAND (expr, 1)) < prec))
2691 	{
2692 	  ret2 = tree_to_uhwi (TREE_OPERAND (expr, 1));
2693 	  return MIN (ret1 + ret2, prec);
2694 	}
2695       return ret1;
2696     case RSHIFT_EXPR:
2697       if (tree_fits_uhwi_p (TREE_OPERAND (expr, 1))
2698 	  && (tree_to_uhwi (TREE_OPERAND (expr, 1)) < prec))
2699 	{
2700 	  ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2701 	  ret2 = tree_to_uhwi (TREE_OPERAND (expr, 1));
2702 	  if (ret1 > ret2)
2703 	    return ret1 - ret2;
2704 	}
2705       return 0;
2706     case TRUNC_DIV_EXPR:
2707     case CEIL_DIV_EXPR:
2708     case FLOOR_DIV_EXPR:
2709     case ROUND_DIV_EXPR:
2710     case EXACT_DIV_EXPR:
2711       if (TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST
2712 	  && tree_int_cst_sgn (TREE_OPERAND (expr, 1)) == 1)
2713 	{
2714 	  int l = tree_log2 (TREE_OPERAND (expr, 1));
2715 	  if (l >= 0)
2716 	    {
2717 	      ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2718 	      ret2 = l;
2719 	      if (ret1 > ret2)
2720 		return ret1 - ret2;
2721 	    }
2722 	}
2723       return 0;
2724     CASE_CONVERT:
2725       ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2726       if (ret1 && ret1 == TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (expr, 0))))
2727 	ret1 = prec;
2728       return MIN (ret1, prec);
2729     case SAVE_EXPR:
2730       return tree_ctz (TREE_OPERAND (expr, 0));
2731     case COND_EXPR:
2732       ret1 = tree_ctz (TREE_OPERAND (expr, 1));
2733       if (ret1 == 0)
2734 	return 0;
2735       ret2 = tree_ctz (TREE_OPERAND (expr, 2));
2736       return MIN (ret1, ret2);
2737     case COMPOUND_EXPR:
2738       return tree_ctz (TREE_OPERAND (expr, 1));
2739     case ADDR_EXPR:
2740       ret1 = get_pointer_alignment (CONST_CAST_TREE (expr));
2741       if (ret1 > BITS_PER_UNIT)
2742 	{
2743 	  ret1 = ctz_hwi (ret1 / BITS_PER_UNIT);
2744 	  return MIN (ret1, prec);
2745 	}
2746       return 0;
2747     default:
2748       return 0;
2749     }
2750 }
2751 
2752 /* Return 1 if EXPR is the real constant zero.  Trailing zeroes matter for
2753    decimal float constants, so don't return 1 for them.  */
2754 
2755 int
2756 real_zerop (const_tree expr)
2757 {
2758   switch (TREE_CODE (expr))
2759     {
2760     case REAL_CST:
2761       return real_equal (&TREE_REAL_CST (expr), &dconst0)
2762 	     && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr))));
2763     case COMPLEX_CST:
2764       return real_zerop (TREE_REALPART (expr))
2765 	     && real_zerop (TREE_IMAGPART (expr));
2766     case VECTOR_CST:
2767       {
2768 	/* Don't simply check for a duplicate because the predicate
2769 	   accepts both +0.0 and -0.0.  */
2770 	unsigned count = vector_cst_encoded_nelts (expr);
2771 	for (unsigned int i = 0; i < count; ++i)
2772 	  if (!real_zerop (VECTOR_CST_ENCODED_ELT (expr, i)))
2773 	    return false;
2774 	return true;
2775       }
2776     default:
2777       return false;
2778     }
2779 }
2780 
2781 /* Return 1 if EXPR is the real constant one in real or complex form.
2782    Trailing zeroes matter for decimal float constants, so don't return
2783    1 for them.  */
2784 
2785 int
2786 real_onep (const_tree expr)
2787 {
2788   switch (TREE_CODE (expr))
2789     {
2790     case REAL_CST:
2791       return real_equal (&TREE_REAL_CST (expr), &dconst1)
2792 	     && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr))));
2793     case COMPLEX_CST:
2794       return real_onep (TREE_REALPART (expr))
2795 	     && real_zerop (TREE_IMAGPART (expr));
2796     case VECTOR_CST:
2797       return (VECTOR_CST_NPATTERNS (expr) == 1
2798 	      && VECTOR_CST_DUPLICATE_P (expr)
2799 	      && real_onep (VECTOR_CST_ENCODED_ELT (expr, 0)));
2800     default:
2801       return false;
2802     }
2803 }
2804 
2805 /* Return 1 if EXPR is the real constant minus one.  Trailing zeroes
2806    matter for decimal float constants, so don't return 1 for them.  */
2807 
2808 int
2809 real_minus_onep (const_tree expr)
2810 {
2811   switch (TREE_CODE (expr))
2812     {
2813     case REAL_CST:
2814       return real_equal (&TREE_REAL_CST (expr), &dconstm1)
2815 	     && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr))));
2816     case COMPLEX_CST:
2817       return real_minus_onep (TREE_REALPART (expr))
2818 	     && real_zerop (TREE_IMAGPART (expr));
2819     case VECTOR_CST:
2820       return (VECTOR_CST_NPATTERNS (expr) == 1
2821 	      && VECTOR_CST_DUPLICATE_P (expr)
2822 	      && real_minus_onep (VECTOR_CST_ENCODED_ELT (expr, 0)));
2823     default:
2824       return false;
2825     }
2826 }
2827 
2828 /* Nonzero if EXP is a constant or a cast of a constant.  */
2829 
2830 int
2831 really_constant_p (const_tree exp)
2832 {
2833   /* This is not quite the same as STRIP_NOPS.  It does more.  */
2834   while (CONVERT_EXPR_P (exp)
2835 	 || TREE_CODE (exp) == NON_LVALUE_EXPR)
2836     exp = TREE_OPERAND (exp, 0);
2837   return TREE_CONSTANT (exp);
2838 }
2839 
2840 /* Return true if T holds a polynomial pointer difference, storing it in
2841    *VALUE if so.  A true return means that T's precision is no greater
2842    than 64 bits, which is the largest address space we support, so *VALUE
2843    never loses precision.  However, the signedness of the result does
2844    not necessarily match the signedness of T: sometimes an unsigned type
2845    like sizetype is used to encode a value that is actually negative.  */
2846 
2847 bool
2848 ptrdiff_tree_p (const_tree t, poly_int64_pod *value)
2849 {
2850   if (!t)
2851     return false;
2852   if (TREE_CODE (t) == INTEGER_CST)
2853     {
2854       if (!cst_and_fits_in_hwi (t))
2855 	return false;
2856       *value = int_cst_value (t);
2857       return true;
2858     }
2859   if (POLY_INT_CST_P (t))
2860     {
2861       for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
2862 	if (!cst_and_fits_in_hwi (POLY_INT_CST_COEFF (t, i)))
2863 	  return false;
2864       for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
2865 	value->coeffs[i] = int_cst_value (POLY_INT_CST_COEFF (t, i));
2866       return true;
2867     }
2868   return false;
2869 }
2870 
2871 poly_int64
2872 tree_to_poly_int64 (const_tree t)
2873 {
2874   gcc_assert (tree_fits_poly_int64_p (t));
2875   if (POLY_INT_CST_P (t))
2876     return poly_int_cst_value (t).force_shwi ();
2877   return TREE_INT_CST_LOW (t);
2878 }
2879 
2880 poly_uint64
2881 tree_to_poly_uint64 (const_tree t)
2882 {
2883   gcc_assert (tree_fits_poly_uint64_p (t));
2884   if (POLY_INT_CST_P (t))
2885     return poly_int_cst_value (t).force_uhwi ();
2886   return TREE_INT_CST_LOW (t);
2887 }
2888 
2889 /* Return first list element whose TREE_VALUE is ELEM.
2890    Return 0 if ELEM is not in LIST.  */
2891 
2892 tree
2893 value_member (tree elem, tree list)
2894 {
2895   while (list)
2896     {
2897       if (elem == TREE_VALUE (list))
2898 	return list;
2899       list = TREE_CHAIN (list);
2900     }
2901   return NULL_TREE;
2902 }
2903 
2904 /* Return first list element whose TREE_PURPOSE is ELEM.
2905    Return 0 if ELEM is not in LIST.  */
2906 
2907 tree
2908 purpose_member (const_tree elem, tree list)
2909 {
2910   while (list)
2911     {
2912       if (elem == TREE_PURPOSE (list))
2913 	return list;
2914       list = TREE_CHAIN (list);
2915     }
2916   return NULL_TREE;
2917 }
2918 
2919 /* Return true if ELEM is in V.  */
2920 
2921 bool
2922 vec_member (const_tree elem, vec<tree, va_gc> *v)
2923 {
2924   unsigned ix;
2925   tree t;
2926   FOR_EACH_VEC_SAFE_ELT (v, ix, t)
2927     if (elem == t)
2928       return true;
2929   return false;
2930 }
2931 
2932 /* Returns element number IDX (zero-origin) of chain CHAIN, or
2933    NULL_TREE.  */
2934 
2935 tree
2936 chain_index (int idx, tree chain)
2937 {
2938   for (; chain && idx > 0; --idx)
2939     chain = TREE_CHAIN (chain);
2940   return chain;
2941 }
2942 
2943 /* Return nonzero if ELEM is part of the chain CHAIN.  */
2944 
2945 int
2946 chain_member (const_tree elem, const_tree chain)
2947 {
2948   while (chain)
2949     {
2950       if (elem == chain)
2951 	return 1;
2952       chain = DECL_CHAIN (chain);
2953     }
2954 
2955   return 0;
2956 }
2957 
2958 /* Return the length of a chain of nodes chained through TREE_CHAIN.
2959    We expect a null pointer to mark the end of the chain.
2960    This is the Lisp primitive `length'.  */
2961 
2962 int
2963 list_length (const_tree t)
2964 {
2965   const_tree p = t;
2966 #ifdef ENABLE_TREE_CHECKING
2967   const_tree q = t;
2968 #endif
2969   int len = 0;
2970 
2971   while (p)
2972     {
2973       p = TREE_CHAIN (p);
2974 #ifdef ENABLE_TREE_CHECKING
2975       if (len % 2)
2976 	q = TREE_CHAIN (q);
2977       gcc_assert (p != q);
2978 #endif
2979       len++;
2980     }
2981 
2982   return len;
2983 }
2984 
2985 /* Returns the first FIELD_DECL in the TYPE_FIELDS of the RECORD_TYPE or
2986    UNION_TYPE TYPE, or NULL_TREE if none.  */
2987 
2988 tree
2989 first_field (const_tree type)
2990 {
2991   tree t = TYPE_FIELDS (type);
2992   while (t && TREE_CODE (t) != FIELD_DECL)
2993     t = TREE_CHAIN (t);
2994   return t;
2995 }
2996 
2997 /* Concatenate two chains of nodes (chained through TREE_CHAIN)
2998    by modifying the last node in chain 1 to point to chain 2.
2999    This is the Lisp primitive `nconc'.  */
3000 
3001 tree
3002 chainon (tree op1, tree op2)
3003 {
3004   tree t1;
3005 
3006   if (!op1)
3007     return op2;
3008   if (!op2)
3009     return op1;
3010 
3011   for (t1 = op1; TREE_CHAIN (t1); t1 = TREE_CHAIN (t1))
3012     continue;
3013   TREE_CHAIN (t1) = op2;
3014 
3015 #ifdef ENABLE_TREE_CHECKING
3016   {
3017     tree t2;
3018     for (t2 = op2; t2; t2 = TREE_CHAIN (t2))
3019       gcc_assert (t2 != t1);
3020   }
3021 #endif
3022 
3023   return op1;
3024 }
3025 
3026 /* Return the last node in a chain of nodes (chained through TREE_CHAIN).  */
3027 
3028 tree
3029 tree_last (tree chain)
3030 {
3031   tree next;
3032   if (chain)
3033     while ((next = TREE_CHAIN (chain)))
3034       chain = next;
3035   return chain;
3036 }
3037 
3038 /* Reverse the order of elements in the chain T,
3039    and return the new head of the chain (old last element).  */
3040 
3041 tree
3042 nreverse (tree t)
3043 {
3044   tree prev = 0, decl, next;
3045   for (decl = t; decl; decl = next)
3046     {
3047       /* We shouldn't be using this function to reverse BLOCK chains; we
3048 	 have blocks_nreverse for that.  */
3049       gcc_checking_assert (TREE_CODE (decl) != BLOCK);
3050       next = TREE_CHAIN (decl);
3051       TREE_CHAIN (decl) = prev;
3052       prev = decl;
3053     }
3054   return prev;
3055 }
3056 
3057 /* Return a newly created TREE_LIST node whose
3058    purpose and value fields are PARM and VALUE.  */
3059 
3060 tree
3061 build_tree_list (tree parm, tree value MEM_STAT_DECL)
3062 {
3063   tree t = make_node (TREE_LIST PASS_MEM_STAT);
3064   TREE_PURPOSE (t) = parm;
3065   TREE_VALUE (t) = value;
3066   return t;
3067 }
3068 
3069 /* Build a chain of TREE_LIST nodes from a vector.  */
3070 
3071 tree
3072 build_tree_list_vec (const vec<tree, va_gc> *vec MEM_STAT_DECL)
3073 {
3074   tree ret = NULL_TREE;
3075   tree *pp = &ret;
3076   unsigned int i;
3077   tree t;
3078   FOR_EACH_VEC_SAFE_ELT (vec, i, t)
3079     {
3080       *pp = build_tree_list (NULL, t PASS_MEM_STAT);
3081       pp = &TREE_CHAIN (*pp);
3082     }
3083   return ret;
3084 }
3085 
3086 /* Return a newly created TREE_LIST node whose
3087    purpose and value fields are PURPOSE and VALUE
3088    and whose TREE_CHAIN is CHAIN.  */
3089 
3090 tree
3091 tree_cons (tree purpose, tree value, tree chain MEM_STAT_DECL)
3092 {
3093   tree node;
3094 
3095   node = ggc_alloc_tree_node_stat (sizeof (struct tree_list) PASS_MEM_STAT);
3096   memset (node, 0, sizeof (struct tree_common));
3097 
3098   record_node_allocation_statistics (TREE_LIST, sizeof (struct tree_list));
3099 
3100   TREE_SET_CODE (node, TREE_LIST);
3101   TREE_CHAIN (node) = chain;
3102   TREE_PURPOSE (node) = purpose;
3103   TREE_VALUE (node) = value;
3104   return node;
3105 }
3106 
3107 /* Return the values of the elements of a CONSTRUCTOR as a vector of
3108    trees.  */
3109 
3110 vec<tree, va_gc> *
3111 ctor_to_vec (tree ctor)
3112 {
3113   vec<tree, va_gc> *vec;
3114   vec_alloc (vec, CONSTRUCTOR_NELTS (ctor));
3115   unsigned int ix;
3116   tree val;
3117 
3118   FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (ctor), ix, val)
3119     vec->quick_push (val);
3120 
3121   return vec;
3122 }
3123 
3124 /* Return the size nominally occupied by an object of type TYPE
3125    when it resides in memory.  The value is measured in units of bytes,
3126    and its data type is that normally used for type sizes
3127    (which is the first type created by make_signed_type or
3128    make_unsigned_type).  */
3129 
3130 tree
3131 size_in_bytes_loc (location_t loc, const_tree type)
3132 {
3133   tree t;
3134 
3135   if (type == error_mark_node)
3136     return integer_zero_node;
3137 
3138   type = TYPE_MAIN_VARIANT (type);
3139   t = TYPE_SIZE_UNIT (type);
3140 
3141   if (t == 0)
3142     {
3143       lang_hooks.types.incomplete_type_error (loc, NULL_TREE, type);
3144       return size_zero_node;
3145     }
3146 
3147   return t;
3148 }
3149 
3150 /* Return the size of TYPE (in bytes) as a wide integer
3151    or return -1 if the size can vary or is larger than an integer.  */
3152 
3153 HOST_WIDE_INT
3154 int_size_in_bytes (const_tree type)
3155 {
3156   tree t;
3157 
3158   if (type == error_mark_node)
3159     return 0;
3160 
3161   type = TYPE_MAIN_VARIANT (type);
3162   t = TYPE_SIZE_UNIT (type);
3163 
3164   if (t && tree_fits_uhwi_p (t))
3165     return TREE_INT_CST_LOW (t);
3166   else
3167     return -1;
3168 }
3169 
3170 /* Return the maximum size of TYPE (in bytes) as a wide integer
3171    or return -1 if the size can vary or is larger than an integer.  */
3172 
3173 HOST_WIDE_INT
3174 max_int_size_in_bytes (const_tree type)
3175 {
3176   HOST_WIDE_INT size = -1;
3177   tree size_tree;
3178 
3179   /* If this is an array type, check for a possible MAX_SIZE attached.  */
3180 
3181   if (TREE_CODE (type) == ARRAY_TYPE)
3182     {
3183       size_tree = TYPE_ARRAY_MAX_SIZE (type);
3184 
3185       if (size_tree && tree_fits_uhwi_p (size_tree))
3186 	size = tree_to_uhwi (size_tree);
3187     }
3188 
3189   /* If we still haven't been able to get a size, see if the language
3190      can compute a maximum size.  */
3191 
3192   if (size == -1)
3193     {
3194       size_tree = lang_hooks.types.max_size (type);
3195 
3196       if (size_tree && tree_fits_uhwi_p (size_tree))
3197 	size = tree_to_uhwi (size_tree);
3198     }
3199 
3200   return size;
3201 }
3202 
3203 /* Return the bit position of FIELD, in bits from the start of the record.
3204    This is a tree of type bitsizetype.  */
3205 
3206 tree
3207 bit_position (const_tree field)
3208 {
3209   return bit_from_pos (DECL_FIELD_OFFSET (field),
3210 		       DECL_FIELD_BIT_OFFSET (field));
3211 }
3212 
3213 /* Return the byte position of FIELD, in bytes from the start of the record.
3214    This is a tree of type sizetype.  */
3215 
3216 tree
3217 byte_position (const_tree field)
3218 {
3219   return byte_from_pos (DECL_FIELD_OFFSET (field),
3220 			DECL_FIELD_BIT_OFFSET (field));
3221 }
3222 
3223 /* Likewise, but return as an integer.  It must be representable in
3224    that way (since it could be a signed value, we don't have the
3225    option of returning -1 like int_size_in_byte can.  */
3226 
3227 HOST_WIDE_INT
3228 int_byte_position (const_tree field)
3229 {
3230   return tree_to_shwi (byte_position (field));
3231 }
3232 
3233 /* Return the strictest alignment, in bits, that T is known to have.  */
3234 
3235 unsigned int
3236 expr_align (const_tree t)
3237 {
3238   unsigned int align0, align1;
3239 
3240   switch (TREE_CODE (t))
3241     {
3242     CASE_CONVERT:  case NON_LVALUE_EXPR:
3243       /* If we have conversions, we know that the alignment of the
3244 	 object must meet each of the alignments of the types.  */
3245       align0 = expr_align (TREE_OPERAND (t, 0));
3246       align1 = TYPE_ALIGN (TREE_TYPE (t));
3247       return MAX (align0, align1);
3248 
3249     case SAVE_EXPR:         case COMPOUND_EXPR:       case MODIFY_EXPR:
3250     case INIT_EXPR:         case TARGET_EXPR:         case WITH_CLEANUP_EXPR:
3251     case CLEANUP_POINT_EXPR:
3252       /* These don't change the alignment of an object.  */
3253       return expr_align (TREE_OPERAND (t, 0));
3254 
3255     case COND_EXPR:
3256       /* The best we can do is say that the alignment is the least aligned
3257 	 of the two arms.  */
3258       align0 = expr_align (TREE_OPERAND (t, 1));
3259       align1 = expr_align (TREE_OPERAND (t, 2));
3260       return MIN (align0, align1);
3261 
3262       /* FIXME: LABEL_DECL and CONST_DECL never have DECL_ALIGN set
3263 	 meaningfully, it's always 1.  */
3264     case LABEL_DECL:     case CONST_DECL:
3265     case VAR_DECL:       case PARM_DECL:   case RESULT_DECL:
3266     case FUNCTION_DECL:
3267       gcc_assert (DECL_ALIGN (t) != 0);
3268       return DECL_ALIGN (t);
3269 
3270     default:
3271       break;
3272     }
3273 
3274   /* Otherwise take the alignment from that of the type.  */
3275   return TYPE_ALIGN (TREE_TYPE (t));
3276 }
3277 
3278 /* Return, as a tree node, the number of elements for TYPE (which is an
3279    ARRAY_TYPE) minus one. This counts only elements of the top array.  */
3280 
3281 tree
3282 array_type_nelts (const_tree type)
3283 {
3284   tree index_type, min, max;
3285 
3286   /* If they did it with unspecified bounds, then we should have already
3287      given an error about it before we got here.  */
3288   if (! TYPE_DOMAIN (type))
3289     return error_mark_node;
3290 
3291   index_type = TYPE_DOMAIN (type);
3292   min = TYPE_MIN_VALUE (index_type);
3293   max = TYPE_MAX_VALUE (index_type);
3294 
3295   /* TYPE_MAX_VALUE may not be set if the array has unknown length.  */
3296   if (!max)
3297     return error_mark_node;
3298 
3299   return (integer_zerop (min)
3300 	  ? max
3301 	  : fold_build2 (MINUS_EXPR, TREE_TYPE (max), max, min));
3302 }
3303 
3304 /* If arg is static -- a reference to an object in static storage -- then
3305    return the object.  This is not the same as the C meaning of `static'.
3306    If arg isn't static, return NULL.  */
3307 
3308 tree
3309 staticp (tree arg)
3310 {
3311   switch (TREE_CODE (arg))
3312     {
3313     case FUNCTION_DECL:
3314       /* Nested functions are static, even though taking their address will
3315 	 involve a trampoline as we unnest the nested function and create
3316 	 the trampoline on the tree level.  */
3317       return arg;
3318 
3319     case VAR_DECL:
3320       return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
3321 	      && ! DECL_THREAD_LOCAL_P (arg)
3322 	      && ! DECL_DLLIMPORT_P (arg)
3323 	      ? arg : NULL);
3324 
3325     case CONST_DECL:
3326       return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
3327 	      ? arg : NULL);
3328 
3329     case CONSTRUCTOR:
3330       return TREE_STATIC (arg) ? arg : NULL;
3331 
3332     case LABEL_DECL:
3333     case STRING_CST:
3334       return arg;
3335 
3336     case COMPONENT_REF:
3337       /* If the thing being referenced is not a field, then it is
3338 	 something language specific.  */
3339       gcc_assert (TREE_CODE (TREE_OPERAND (arg, 1)) == FIELD_DECL);
3340 
3341       /* If we are referencing a bitfield, we can't evaluate an
3342 	 ADDR_EXPR at compile time and so it isn't a constant.  */
3343       if (DECL_BIT_FIELD (TREE_OPERAND (arg, 1)))
3344 	return NULL;
3345 
3346       return staticp (TREE_OPERAND (arg, 0));
3347 
3348     case BIT_FIELD_REF:
3349       return NULL;
3350 
3351     case INDIRECT_REF:
3352       return TREE_CONSTANT (TREE_OPERAND (arg, 0)) ? arg : NULL;
3353 
3354     case ARRAY_REF:
3355     case ARRAY_RANGE_REF:
3356       if (TREE_CODE (TYPE_SIZE (TREE_TYPE (arg))) == INTEGER_CST
3357 	  && TREE_CODE (TREE_OPERAND (arg, 1)) == INTEGER_CST)
3358 	return staticp (TREE_OPERAND (arg, 0));
3359       else
3360 	return NULL;
3361 
3362     case COMPOUND_LITERAL_EXPR:
3363       return TREE_STATIC (COMPOUND_LITERAL_EXPR_DECL (arg)) ? arg : NULL;
3364 
3365     default:
3366       return NULL;
3367     }
3368 }
3369 
3370 
3371 
3372 
3373 /* Return whether OP is a DECL whose address is function-invariant.  */
3374 
3375 bool
3376 decl_address_invariant_p (const_tree op)
3377 {
3378   /* The conditions below are slightly less strict than the one in
3379      staticp.  */
3380 
3381   switch (TREE_CODE (op))
3382     {
3383     case PARM_DECL:
3384     case RESULT_DECL:
3385     case LABEL_DECL:
3386     case FUNCTION_DECL:
3387       return true;
3388 
3389     case VAR_DECL:
3390       if ((TREE_STATIC (op) || DECL_EXTERNAL (op))
3391           || DECL_THREAD_LOCAL_P (op)
3392           || DECL_CONTEXT (op) == current_function_decl
3393           || decl_function_context (op) == current_function_decl)
3394         return true;
3395       break;
3396 
3397     case CONST_DECL:
3398       if ((TREE_STATIC (op) || DECL_EXTERNAL (op))
3399           || decl_function_context (op) == current_function_decl)
3400         return true;
3401       break;
3402 
3403     default:
3404       break;
3405     }
3406 
3407   return false;
3408 }
3409 
3410 /* Return whether OP is a DECL whose address is interprocedural-invariant.  */
3411 
3412 bool
3413 decl_address_ip_invariant_p (const_tree op)
3414 {
3415   /* The conditions below are slightly less strict than the one in
3416      staticp.  */
3417 
3418   switch (TREE_CODE (op))
3419     {
3420     case LABEL_DECL:
3421     case FUNCTION_DECL:
3422     case STRING_CST:
3423       return true;
3424 
3425     case VAR_DECL:
3426       if (((TREE_STATIC (op) || DECL_EXTERNAL (op))
3427            && !DECL_DLLIMPORT_P (op))
3428           || DECL_THREAD_LOCAL_P (op))
3429         return true;
3430       break;
3431 
3432     case CONST_DECL:
3433       if ((TREE_STATIC (op) || DECL_EXTERNAL (op)))
3434         return true;
3435       break;
3436 
3437     default:
3438       break;
3439     }
3440 
3441   return false;
3442 }
3443 
3444 
3445 /* Return true if T is function-invariant (internal function, does
3446    not handle arithmetic; that's handled in skip_simple_arithmetic and
3447    tree_invariant_p).  */
3448 
3449 static bool
3450 tree_invariant_p_1 (tree t)
3451 {
3452   tree op;
3453 
3454   if (TREE_CONSTANT (t)
3455       || (TREE_READONLY (t) && !TREE_SIDE_EFFECTS (t)))
3456     return true;
3457 
3458   switch (TREE_CODE (t))
3459     {
3460     case SAVE_EXPR:
3461       return true;
3462 
3463     case ADDR_EXPR:
3464       op = TREE_OPERAND (t, 0);
3465       while (handled_component_p (op))
3466 	{
3467 	  switch (TREE_CODE (op))
3468 	    {
3469 	    case ARRAY_REF:
3470 	    case ARRAY_RANGE_REF:
3471 	      if (!tree_invariant_p (TREE_OPERAND (op, 1))
3472 		  || TREE_OPERAND (op, 2) != NULL_TREE
3473 		  || TREE_OPERAND (op, 3) != NULL_TREE)
3474 		return false;
3475 	      break;
3476 
3477 	    case COMPONENT_REF:
3478 	      if (TREE_OPERAND (op, 2) != NULL_TREE)
3479 		return false;
3480 	      break;
3481 
3482 	    default:;
3483 	    }
3484 	  op = TREE_OPERAND (op, 0);
3485 	}
3486 
3487       return CONSTANT_CLASS_P (op) || decl_address_invariant_p (op);
3488 
3489     default:
3490       break;
3491     }
3492 
3493   return false;
3494 }
3495 
3496 /* Return true if T is function-invariant.  */
3497 
3498 bool
3499 tree_invariant_p (tree t)
3500 {
3501   tree inner = skip_simple_arithmetic (t);
3502   return tree_invariant_p_1 (inner);
3503 }
3504 
3505 /* Wrap a SAVE_EXPR around EXPR, if appropriate.
3506    Do this to any expression which may be used in more than one place,
3507    but must be evaluated only once.
3508 
3509    Normally, expand_expr would reevaluate the expression each time.
3510    Calling save_expr produces something that is evaluated and recorded
3511    the first time expand_expr is called on it.  Subsequent calls to
3512    expand_expr just reuse the recorded value.
3513 
3514    The call to expand_expr that generates code that actually computes
3515    the value is the first call *at compile time*.  Subsequent calls
3516    *at compile time* generate code to use the saved value.
3517    This produces correct result provided that *at run time* control
3518    always flows through the insns made by the first expand_expr
3519    before reaching the other places where the save_expr was evaluated.
3520    You, the caller of save_expr, must make sure this is so.
3521 
3522    Constants, and certain read-only nodes, are returned with no
3523    SAVE_EXPR because that is safe.  Expressions containing placeholders
3524    are not touched; see tree.def for an explanation of what these
3525    are used for.  */
3526 
3527 tree
3528 save_expr (tree expr)
3529 {
3530   tree inner;
3531 
3532   /* If the tree evaluates to a constant, then we don't want to hide that
3533      fact (i.e. this allows further folding, and direct checks for constants).
3534      However, a read-only object that has side effects cannot be bypassed.
3535      Since it is no problem to reevaluate literals, we just return the
3536      literal node.  */
3537   inner = skip_simple_arithmetic (expr);
3538   if (TREE_CODE (inner) == ERROR_MARK)
3539     return inner;
3540 
3541   if (tree_invariant_p_1 (inner))
3542     return expr;
3543 
3544   /* If INNER contains a PLACEHOLDER_EXPR, we must evaluate it each time, since
3545      it means that the size or offset of some field of an object depends on
3546      the value within another field.
3547 
3548      Note that it must not be the case that EXPR contains both a PLACEHOLDER_EXPR
3549      and some variable since it would then need to be both evaluated once and
3550      evaluated more than once.  Front-ends must assure this case cannot
3551      happen by surrounding any such subexpressions in their own SAVE_EXPR
3552      and forcing evaluation at the proper time.  */
3553   if (contains_placeholder_p (inner))
3554     return expr;
3555 
3556   expr = build1_loc (EXPR_LOCATION (expr), SAVE_EXPR, TREE_TYPE (expr), expr);
3557 
3558   /* This expression might be placed ahead of a jump to ensure that the
3559      value was computed on both sides of the jump.  So make sure it isn't
3560      eliminated as dead.  */
3561   TREE_SIDE_EFFECTS (expr) = 1;
3562   return expr;
3563 }
3564 
3565 /* Look inside EXPR into any simple arithmetic operations.  Return the
3566    outermost non-arithmetic or non-invariant node.  */
3567 
3568 tree
3569 skip_simple_arithmetic (tree expr)
3570 {
3571   /* We don't care about whether this can be used as an lvalue in this
3572      context.  */
3573   while (TREE_CODE (expr) == NON_LVALUE_EXPR)
3574     expr = TREE_OPERAND (expr, 0);
3575 
3576   /* If we have simple operations applied to a SAVE_EXPR or to a SAVE_EXPR and
3577      a constant, it will be more efficient to not make another SAVE_EXPR since
3578      it will allow better simplification and GCSE will be able to merge the
3579      computations if they actually occur.  */
3580   while (true)
3581     {
3582       if (UNARY_CLASS_P (expr))
3583 	expr = TREE_OPERAND (expr, 0);
3584       else if (BINARY_CLASS_P (expr))
3585 	{
3586 	  if (tree_invariant_p (TREE_OPERAND (expr, 1)))
3587 	    expr = TREE_OPERAND (expr, 0);
3588 	  else if (tree_invariant_p (TREE_OPERAND (expr, 0)))
3589 	    expr = TREE_OPERAND (expr, 1);
3590 	  else
3591 	    break;
3592 	}
3593       else
3594 	break;
3595     }
3596 
3597   return expr;
3598 }
3599 
3600 /* Look inside EXPR into simple arithmetic operations involving constants.
3601    Return the outermost non-arithmetic or non-constant node.  */
3602 
3603 tree
3604 skip_simple_constant_arithmetic (tree expr)
3605 {
3606   while (TREE_CODE (expr) == NON_LVALUE_EXPR)
3607     expr = TREE_OPERAND (expr, 0);
3608 
3609   while (true)
3610     {
3611       if (UNARY_CLASS_P (expr))
3612 	expr = TREE_OPERAND (expr, 0);
3613       else if (BINARY_CLASS_P (expr))
3614 	{
3615 	  if (TREE_CONSTANT (TREE_OPERAND (expr, 1)))
3616 	    expr = TREE_OPERAND (expr, 0);
3617 	  else if (TREE_CONSTANT (TREE_OPERAND (expr, 0)))
3618 	    expr = TREE_OPERAND (expr, 1);
3619 	  else
3620 	    break;
3621 	}
3622       else
3623 	break;
3624     }
3625 
3626   return expr;
3627 }
3628 
3629 /* Return which tree structure is used by T.  */
3630 
3631 enum tree_node_structure_enum
3632 tree_node_structure (const_tree t)
3633 {
3634   const enum tree_code code = TREE_CODE (t);
3635   return tree_node_structure_for_code (code);
3636 }
3637 
3638 /* Set various status flags when building a CALL_EXPR object T.  */
3639 
3640 static void
3641 process_call_operands (tree t)
3642 {
3643   bool side_effects = TREE_SIDE_EFFECTS (t);
3644   bool read_only = false;
3645   int i = call_expr_flags (t);
3646 
3647   /* Calls have side-effects, except those to const or pure functions.  */
3648   if ((i & ECF_LOOPING_CONST_OR_PURE) || !(i & (ECF_CONST | ECF_PURE)))
3649     side_effects = true;
3650   /* Propagate TREE_READONLY of arguments for const functions.  */
3651   if (i & ECF_CONST)
3652     read_only = true;
3653 
3654   if (!side_effects || read_only)
3655     for (i = 1; i < TREE_OPERAND_LENGTH (t); i++)
3656       {
3657 	tree op = TREE_OPERAND (t, i);
3658 	if (op && TREE_SIDE_EFFECTS (op))
3659 	  side_effects = true;
3660 	if (op && !TREE_READONLY (op) && !CONSTANT_CLASS_P (op))
3661 	  read_only = false;
3662       }
3663 
3664   TREE_SIDE_EFFECTS (t) = side_effects;
3665   TREE_READONLY (t) = read_only;
3666 }
3667 
3668 /* Return true if EXP contains a PLACEHOLDER_EXPR, i.e. if it represents a
3669    size or offset that depends on a field within a record.  */
3670 
3671 bool
3672 contains_placeholder_p (const_tree exp)
3673 {
3674   enum tree_code code;
3675 
3676   if (!exp)
3677     return 0;
3678 
3679   code = TREE_CODE (exp);
3680   if (code == PLACEHOLDER_EXPR)
3681     return 1;
3682 
3683   switch (TREE_CODE_CLASS (code))
3684     {
3685     case tcc_reference:
3686       /* Don't look at any PLACEHOLDER_EXPRs that might be in index or bit
3687 	 position computations since they will be converted into a
3688 	 WITH_RECORD_EXPR involving the reference, which will assume
3689 	 here will be valid.  */
3690       return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
3691 
3692     case tcc_exceptional:
3693       if (code == TREE_LIST)
3694 	return (CONTAINS_PLACEHOLDER_P (TREE_VALUE (exp))
3695 		|| CONTAINS_PLACEHOLDER_P (TREE_CHAIN (exp)));
3696       break;
3697 
3698     case tcc_unary:
3699     case tcc_binary:
3700     case tcc_comparison:
3701     case tcc_expression:
3702       switch (code)
3703 	{
3704 	case COMPOUND_EXPR:
3705 	  /* Ignoring the first operand isn't quite right, but works best.  */
3706 	  return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1));
3707 
3708 	case COND_EXPR:
3709 	  return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
3710 		  || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1))
3711 		  || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 2)));
3712 
3713 	case SAVE_EXPR:
3714 	  /* The save_expr function never wraps anything containing
3715 	     a PLACEHOLDER_EXPR. */
3716 	  return 0;
3717 
3718 	default:
3719 	  break;
3720 	}
3721 
3722       switch (TREE_CODE_LENGTH (code))
3723 	{
3724 	case 1:
3725 	  return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
3726 	case 2:
3727 	  return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
3728 		  || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1)));
3729 	default:
3730 	  return 0;
3731 	}
3732 
3733     case tcc_vl_exp:
3734       switch (code)
3735 	{
3736 	case CALL_EXPR:
3737 	  {
3738 	    const_tree arg;
3739 	    const_call_expr_arg_iterator iter;
3740 	    FOR_EACH_CONST_CALL_EXPR_ARG (arg, iter, exp)
3741 	      if (CONTAINS_PLACEHOLDER_P (arg))
3742 		return 1;
3743 	    return 0;
3744 	  }
3745 	default:
3746 	  return 0;
3747 	}
3748 
3749     default:
3750       return 0;
3751     }
3752   return 0;
3753 }
3754 
3755 /* Return true if any part of the structure of TYPE involves a PLACEHOLDER_EXPR
3756    directly.  This includes size, bounds, qualifiers (for QUAL_UNION_TYPE) and
3757    field positions.  */
3758 
3759 static bool
3760 type_contains_placeholder_1 (const_tree type)
3761 {
3762   /* If the size contains a placeholder or the parent type (component type in
3763      the case of arrays) type involves a placeholder, this type does.  */
3764   if (CONTAINS_PLACEHOLDER_P (TYPE_SIZE (type))
3765       || CONTAINS_PLACEHOLDER_P (TYPE_SIZE_UNIT (type))
3766       || (!POINTER_TYPE_P (type)
3767 	  && TREE_TYPE (type)
3768 	  && type_contains_placeholder_p (TREE_TYPE (type))))
3769     return true;
3770 
3771   /* Now do type-specific checks.  Note that the last part of the check above
3772      greatly limits what we have to do below.  */
3773   switch (TREE_CODE (type))
3774     {
3775     case VOID_TYPE:
3776     case POINTER_BOUNDS_TYPE:
3777     case COMPLEX_TYPE:
3778     case ENUMERAL_TYPE:
3779     case BOOLEAN_TYPE:
3780     case POINTER_TYPE:
3781     case OFFSET_TYPE:
3782     case REFERENCE_TYPE:
3783     case METHOD_TYPE:
3784     case FUNCTION_TYPE:
3785     case VECTOR_TYPE:
3786     case NULLPTR_TYPE:
3787       return false;
3788 
3789     case INTEGER_TYPE:
3790     case REAL_TYPE:
3791     case FIXED_POINT_TYPE:
3792       /* Here we just check the bounds.  */
3793       return (CONTAINS_PLACEHOLDER_P (TYPE_MIN_VALUE (type))
3794 	      || CONTAINS_PLACEHOLDER_P (TYPE_MAX_VALUE (type)));
3795 
3796     case ARRAY_TYPE:
3797       /* We have already checked the component type above, so just check
3798 	 the domain type.  Flexible array members have a null domain.  */
3799       return TYPE_DOMAIN (type) ?
3800 	type_contains_placeholder_p (TYPE_DOMAIN (type)) : false;
3801 
3802     case RECORD_TYPE:
3803     case UNION_TYPE:
3804     case QUAL_UNION_TYPE:
3805       {
3806 	tree field;
3807 
3808 	for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
3809 	  if (TREE_CODE (field) == FIELD_DECL
3810 	      && (CONTAINS_PLACEHOLDER_P (DECL_FIELD_OFFSET (field))
3811 		  || (TREE_CODE (type) == QUAL_UNION_TYPE
3812 		      && CONTAINS_PLACEHOLDER_P (DECL_QUALIFIER (field)))
3813 		  || type_contains_placeholder_p (TREE_TYPE (field))))
3814 	    return true;
3815 
3816 	return false;
3817       }
3818 
3819     default:
3820       gcc_unreachable ();
3821     }
3822 }
3823 
3824 /* Wrapper around above function used to cache its result.  */
3825 
3826 bool
3827 type_contains_placeholder_p (tree type)
3828 {
3829   bool result;
3830 
3831   /* If the contains_placeholder_bits field has been initialized,
3832      then we know the answer.  */
3833   if (TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) > 0)
3834     return TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) - 1;
3835 
3836   /* Indicate that we've seen this type node, and the answer is false.
3837      This is what we want to return if we run into recursion via fields.  */
3838   TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) = 1;
3839 
3840   /* Compute the real value.  */
3841   result = type_contains_placeholder_1 (type);
3842 
3843   /* Store the real value.  */
3844   TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) = result + 1;
3845 
3846   return result;
3847 }
3848 
3849 /* Push tree EXP onto vector QUEUE if it is not already present.  */
3850 
3851 static void
3852 push_without_duplicates (tree exp, vec<tree> *queue)
3853 {
3854   unsigned int i;
3855   tree iter;
3856 
3857   FOR_EACH_VEC_ELT (*queue, i, iter)
3858     if (simple_cst_equal (iter, exp) == 1)
3859       break;
3860 
3861   if (!iter)
3862     queue->safe_push (exp);
3863 }
3864 
3865 /* Given a tree EXP, find all occurrences of references to fields
3866    in a PLACEHOLDER_EXPR and place them in vector REFS without
3867    duplicates.  Also record VAR_DECLs and CONST_DECLs.  Note that
3868    we assume here that EXP contains only arithmetic expressions
3869    or CALL_EXPRs with PLACEHOLDER_EXPRs occurring only in their
3870    argument list.  */
3871 
3872 void
3873 find_placeholder_in_expr (tree exp, vec<tree> *refs)
3874 {
3875   enum tree_code code = TREE_CODE (exp);
3876   tree inner;
3877   int i;
3878 
3879   /* We handle TREE_LIST and COMPONENT_REF separately.  */
3880   if (code == TREE_LIST)
3881     {
3882       FIND_PLACEHOLDER_IN_EXPR (TREE_CHAIN (exp), refs);
3883       FIND_PLACEHOLDER_IN_EXPR (TREE_VALUE (exp), refs);
3884     }
3885   else if (code == COMPONENT_REF)
3886     {
3887       for (inner = TREE_OPERAND (exp, 0);
3888 	   REFERENCE_CLASS_P (inner);
3889 	   inner = TREE_OPERAND (inner, 0))
3890 	;
3891 
3892       if (TREE_CODE (inner) == PLACEHOLDER_EXPR)
3893 	push_without_duplicates (exp, refs);
3894       else
3895 	FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), refs);
3896    }
3897   else
3898     switch (TREE_CODE_CLASS (code))
3899       {
3900       case tcc_constant:
3901 	break;
3902 
3903       case tcc_declaration:
3904 	/* Variables allocated to static storage can stay.  */
3905         if (!TREE_STATIC (exp))
3906 	  push_without_duplicates (exp, refs);
3907 	break;
3908 
3909       case tcc_expression:
3910 	/* This is the pattern built in ada/make_aligning_type.  */
3911 	if (code == ADDR_EXPR
3912 	    && TREE_CODE (TREE_OPERAND (exp, 0)) == PLACEHOLDER_EXPR)
3913 	  {
3914 	    push_without_duplicates (exp, refs);
3915 	    break;
3916 	  }
3917 
3918         /* Fall through.  */
3919 
3920       case tcc_exceptional:
3921       case tcc_unary:
3922       case tcc_binary:
3923       case tcc_comparison:
3924       case tcc_reference:
3925 	for (i = 0; i < TREE_CODE_LENGTH (code); i++)
3926 	  FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, i), refs);
3927 	break;
3928 
3929       case tcc_vl_exp:
3930 	for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++)
3931 	  FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, i), refs);
3932 	break;
3933 
3934       default:
3935 	gcc_unreachable ();
3936       }
3937 }
3938 
3939 /* Given a tree EXP, a FIELD_DECL F, and a replacement value R,
3940    return a tree with all occurrences of references to F in a
3941    PLACEHOLDER_EXPR replaced by R.  Also handle VAR_DECLs and
3942    CONST_DECLs.  Note that we assume here that EXP contains only
3943    arithmetic expressions or CALL_EXPRs with PLACEHOLDER_EXPRs
3944    occurring only in their argument list.  */
3945 
3946 tree
3947 substitute_in_expr (tree exp, tree f, tree r)
3948 {
3949   enum tree_code code = TREE_CODE (exp);
3950   tree op0, op1, op2, op3;
3951   tree new_tree;
3952 
3953   /* We handle TREE_LIST and COMPONENT_REF separately.  */
3954   if (code == TREE_LIST)
3955     {
3956       op0 = SUBSTITUTE_IN_EXPR (TREE_CHAIN (exp), f, r);
3957       op1 = SUBSTITUTE_IN_EXPR (TREE_VALUE (exp), f, r);
3958       if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
3959 	return exp;
3960 
3961       return tree_cons (TREE_PURPOSE (exp), op1, op0);
3962     }
3963   else if (code == COMPONENT_REF)
3964     {
3965       tree inner;
3966 
3967       /* If this expression is getting a value from a PLACEHOLDER_EXPR
3968 	 and it is the right field, replace it with R.  */
3969       for (inner = TREE_OPERAND (exp, 0);
3970 	   REFERENCE_CLASS_P (inner);
3971 	   inner = TREE_OPERAND (inner, 0))
3972 	;
3973 
3974       /* The field.  */
3975       op1 = TREE_OPERAND (exp, 1);
3976 
3977       if (TREE_CODE (inner) == PLACEHOLDER_EXPR && op1 == f)
3978 	return r;
3979 
3980       /* If this expression hasn't been completed let, leave it alone.  */
3981       if (TREE_CODE (inner) == PLACEHOLDER_EXPR && !TREE_TYPE (inner))
3982 	return exp;
3983 
3984       op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
3985       if (op0 == TREE_OPERAND (exp, 0))
3986 	return exp;
3987 
3988       new_tree
3989 	= fold_build3 (COMPONENT_REF, TREE_TYPE (exp), op0, op1, NULL_TREE);
3990    }
3991   else
3992     switch (TREE_CODE_CLASS (code))
3993       {
3994       case tcc_constant:
3995 	return exp;
3996 
3997       case tcc_declaration:
3998 	if (exp == f)
3999 	  return r;
4000 	else
4001 	  return exp;
4002 
4003       case tcc_expression:
4004 	if (exp == f)
4005 	  return r;
4006 
4007         /* Fall through.  */
4008 
4009       case tcc_exceptional:
4010       case tcc_unary:
4011       case tcc_binary:
4012       case tcc_comparison:
4013       case tcc_reference:
4014 	switch (TREE_CODE_LENGTH (code))
4015 	  {
4016 	  case 0:
4017 	    return exp;
4018 
4019 	  case 1:
4020 	    op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
4021 	    if (op0 == TREE_OPERAND (exp, 0))
4022 	      return exp;
4023 
4024 	    new_tree = fold_build1 (code, TREE_TYPE (exp), op0);
4025 	    break;
4026 
4027 	  case 2:
4028 	    op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
4029 	    op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
4030 
4031 	    if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
4032 	      return exp;
4033 
4034 	    new_tree = fold_build2 (code, TREE_TYPE (exp), op0, op1);
4035 	    break;
4036 
4037 	  case 3:
4038 	    op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
4039 	    op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
4040 	    op2 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 2), f, r);
4041 
4042 	    if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
4043 		&& op2 == TREE_OPERAND (exp, 2))
4044 	      return exp;
4045 
4046 	    new_tree = fold_build3 (code, TREE_TYPE (exp), op0, op1, op2);
4047 	    break;
4048 
4049 	  case 4:
4050 	    op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
4051 	    op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
4052 	    op2 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 2), f, r);
4053 	    op3 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 3), f, r);
4054 
4055 	    if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
4056 		&& op2 == TREE_OPERAND (exp, 2)
4057 		&& op3 == TREE_OPERAND (exp, 3))
4058 	      return exp;
4059 
4060 	    new_tree
4061 	      = fold (build4 (code, TREE_TYPE (exp), op0, op1, op2, op3));
4062 	    break;
4063 
4064 	  default:
4065 	    gcc_unreachable ();
4066 	  }
4067 	break;
4068 
4069       case tcc_vl_exp:
4070 	{
4071 	  int i;
4072 
4073 	  new_tree = NULL_TREE;
4074 
4075 	  /* If we are trying to replace F with a constant or with another
4076 	     instance of one of the arguments of the call, inline back
4077 	     functions which do nothing else than computing a value from
4078 	     the arguments they are passed.  This makes it possible to
4079 	     fold partially or entirely the replacement expression.  */
4080 	  if (code == CALL_EXPR)
4081 	    {
4082 	      bool maybe_inline = false;
4083 	      if (CONSTANT_CLASS_P (r))
4084 		maybe_inline = true;
4085 	      else
4086 		for (i = 3; i < TREE_OPERAND_LENGTH (exp); i++)
4087 		  if (operand_equal_p (TREE_OPERAND (exp, i), r, 0))
4088 		    {
4089 		      maybe_inline = true;
4090 		      break;
4091 		    }
4092 	      if (maybe_inline)
4093 		{
4094 		  tree t = maybe_inline_call_in_expr (exp);
4095 		  if (t)
4096 		    return SUBSTITUTE_IN_EXPR (t, f, r);
4097 		}
4098 	    }
4099 
4100 	  for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++)
4101 	    {
4102 	      tree op = TREE_OPERAND (exp, i);
4103 	      tree new_op = SUBSTITUTE_IN_EXPR (op, f, r);
4104 	      if (new_op != op)
4105 		{
4106 		  if (!new_tree)
4107 		    new_tree = copy_node (exp);
4108 		  TREE_OPERAND (new_tree, i) = new_op;
4109 		}
4110 	    }
4111 
4112 	  if (new_tree)
4113 	    {
4114 	      new_tree = fold (new_tree);
4115 	      if (TREE_CODE (new_tree) == CALL_EXPR)
4116 		process_call_operands (new_tree);
4117 	    }
4118 	  else
4119 	    return exp;
4120 	}
4121 	break;
4122 
4123       default:
4124 	gcc_unreachable ();
4125       }
4126 
4127   TREE_READONLY (new_tree) |= TREE_READONLY (exp);
4128 
4129   if (code == INDIRECT_REF || code == ARRAY_REF || code == ARRAY_RANGE_REF)
4130     TREE_THIS_NOTRAP (new_tree) |= TREE_THIS_NOTRAP (exp);
4131 
4132   return new_tree;
4133 }
4134 
4135 /* Similar, but look for a PLACEHOLDER_EXPR in EXP and find a replacement
4136    for it within OBJ, a tree that is an object or a chain of references.  */
4137 
4138 tree
4139 substitute_placeholder_in_expr (tree exp, tree obj)
4140 {
4141   enum tree_code code = TREE_CODE (exp);
4142   tree op0, op1, op2, op3;
4143   tree new_tree;
4144 
4145   /* If this is a PLACEHOLDER_EXPR, see if we find a corresponding type
4146      in the chain of OBJ.  */
4147   if (code == PLACEHOLDER_EXPR)
4148     {
4149       tree need_type = TYPE_MAIN_VARIANT (TREE_TYPE (exp));
4150       tree elt;
4151 
4152       for (elt = obj; elt != 0;
4153 	   elt = ((TREE_CODE (elt) == COMPOUND_EXPR
4154 		   || TREE_CODE (elt) == COND_EXPR)
4155 		  ? TREE_OPERAND (elt, 1)
4156 		  : (REFERENCE_CLASS_P (elt)
4157 		     || UNARY_CLASS_P (elt)
4158 		     || BINARY_CLASS_P (elt)
4159 		     || VL_EXP_CLASS_P (elt)
4160 		     || EXPRESSION_CLASS_P (elt))
4161 		  ? TREE_OPERAND (elt, 0) : 0))
4162 	if (TYPE_MAIN_VARIANT (TREE_TYPE (elt)) == need_type)
4163 	  return elt;
4164 
4165       for (elt = obj; elt != 0;
4166 	   elt = ((TREE_CODE (elt) == COMPOUND_EXPR
4167 		   || TREE_CODE (elt) == COND_EXPR)
4168 		  ? TREE_OPERAND (elt, 1)
4169 		  : (REFERENCE_CLASS_P (elt)
4170 		     || UNARY_CLASS_P (elt)
4171 		     || BINARY_CLASS_P (elt)
4172 		     || VL_EXP_CLASS_P (elt)
4173 		     || EXPRESSION_CLASS_P (elt))
4174 		  ? TREE_OPERAND (elt, 0) : 0))
4175 	if (POINTER_TYPE_P (TREE_TYPE (elt))
4176 	    && (TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (elt)))
4177 		== need_type))
4178 	  return fold_build1 (INDIRECT_REF, need_type, elt);
4179 
4180       /* If we didn't find it, return the original PLACEHOLDER_EXPR.  If it
4181 	 survives until RTL generation, there will be an error.  */
4182       return exp;
4183     }
4184 
4185   /* TREE_LIST is special because we need to look at TREE_VALUE
4186      and TREE_CHAIN, not TREE_OPERANDS.  */
4187   else if (code == TREE_LIST)
4188     {
4189       op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_CHAIN (exp), obj);
4190       op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_VALUE (exp), obj);
4191       if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
4192 	return exp;
4193 
4194       return tree_cons (TREE_PURPOSE (exp), op1, op0);
4195     }
4196   else
4197     switch (TREE_CODE_CLASS (code))
4198       {
4199       case tcc_constant:
4200       case tcc_declaration:
4201 	return exp;
4202 
4203       case tcc_exceptional:
4204       case tcc_unary:
4205       case tcc_binary:
4206       case tcc_comparison:
4207       case tcc_expression:
4208       case tcc_reference:
4209       case tcc_statement:
4210 	switch (TREE_CODE_LENGTH (code))
4211 	  {
4212 	  case 0:
4213 	    return exp;
4214 
4215 	  case 1:
4216 	    op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
4217 	    if (op0 == TREE_OPERAND (exp, 0))
4218 	      return exp;
4219 
4220 	    new_tree = fold_build1 (code, TREE_TYPE (exp), op0);
4221 	    break;
4222 
4223 	  case 2:
4224 	    op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
4225 	    op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
4226 
4227 	    if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
4228 	      return exp;
4229 
4230 	    new_tree = fold_build2 (code, TREE_TYPE (exp), op0, op1);
4231 	    break;
4232 
4233 	  case 3:
4234 	    op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
4235 	    op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
4236 	    op2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 2), obj);
4237 
4238 	    if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
4239 		&& op2 == TREE_OPERAND (exp, 2))
4240 	      return exp;
4241 
4242 	    new_tree = fold_build3 (code, TREE_TYPE (exp), op0, op1, op2);
4243 	    break;
4244 
4245 	  case 4:
4246 	    op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
4247 	    op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
4248 	    op2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 2), obj);
4249 	    op3 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 3), obj);
4250 
4251 	    if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
4252 		&& op2 == TREE_OPERAND (exp, 2)
4253 		&& op3 == TREE_OPERAND (exp, 3))
4254 	      return exp;
4255 
4256 	    new_tree
4257 	      = fold (build4 (code, TREE_TYPE (exp), op0, op1, op2, op3));
4258 	    break;
4259 
4260 	  default:
4261 	    gcc_unreachable ();
4262 	  }
4263 	break;
4264 
4265       case tcc_vl_exp:
4266 	{
4267 	  int i;
4268 
4269 	  new_tree = NULL_TREE;
4270 
4271 	  for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++)
4272 	    {
4273 	      tree op = TREE_OPERAND (exp, i);
4274 	      tree new_op = SUBSTITUTE_PLACEHOLDER_IN_EXPR (op, obj);
4275 	      if (new_op != op)
4276 		{
4277 		  if (!new_tree)
4278 		    new_tree = copy_node (exp);
4279 		  TREE_OPERAND (new_tree, i) = new_op;
4280 		}
4281 	    }
4282 
4283 	  if (new_tree)
4284 	    {
4285 	      new_tree = fold (new_tree);
4286 	      if (TREE_CODE (new_tree) == CALL_EXPR)
4287 		process_call_operands (new_tree);
4288 	    }
4289 	  else
4290 	    return exp;
4291 	}
4292 	break;
4293 
4294       default:
4295 	gcc_unreachable ();
4296       }
4297 
4298   TREE_READONLY (new_tree) |= TREE_READONLY (exp);
4299 
4300   if (code == INDIRECT_REF || code == ARRAY_REF || code == ARRAY_RANGE_REF)
4301     TREE_THIS_NOTRAP (new_tree) |= TREE_THIS_NOTRAP (exp);
4302 
4303   return new_tree;
4304 }
4305 
4306 
4307 /* Subroutine of stabilize_reference; this is called for subtrees of
4308    references.  Any expression with side-effects must be put in a SAVE_EXPR
4309    to ensure that it is only evaluated once.
4310 
4311    We don't put SAVE_EXPR nodes around everything, because assigning very
4312    simple expressions to temporaries causes us to miss good opportunities
4313    for optimizations.  Among other things, the opportunity to fold in the
4314    addition of a constant into an addressing mode often gets lost, e.g.
4315    "y[i+1] += x;".  In general, we take the approach that we should not make
4316    an assignment unless we are forced into it - i.e., that any non-side effect
4317    operator should be allowed, and that cse should take care of coalescing
4318    multiple utterances of the same expression should that prove fruitful.  */
4319 
4320 static tree
4321 stabilize_reference_1 (tree e)
4322 {
4323   tree result;
4324   enum tree_code code = TREE_CODE (e);
4325 
4326   /* We cannot ignore const expressions because it might be a reference
4327      to a const array but whose index contains side-effects.  But we can
4328      ignore things that are actual constant or that already have been
4329      handled by this function.  */
4330 
4331   if (tree_invariant_p (e))
4332     return e;
4333 
4334   switch (TREE_CODE_CLASS (code))
4335     {
4336     case tcc_exceptional:
4337       /* Always wrap STATEMENT_LIST into SAVE_EXPR, even if it doesn't
4338 	 have side-effects.  */
4339       if (code == STATEMENT_LIST)
4340 	return save_expr (e);
4341       /* FALLTHRU */
4342     case tcc_type:
4343     case tcc_declaration:
4344     case tcc_comparison:
4345     case tcc_statement:
4346     case tcc_expression:
4347     case tcc_reference:
4348     case tcc_vl_exp:
4349       /* If the expression has side-effects, then encase it in a SAVE_EXPR
4350 	 so that it will only be evaluated once.  */
4351       /* The reference (r) and comparison (<) classes could be handled as
4352 	 below, but it is generally faster to only evaluate them once.  */
4353       if (TREE_SIDE_EFFECTS (e))
4354 	return save_expr (e);
4355       return e;
4356 
4357     case tcc_constant:
4358       /* Constants need no processing.  In fact, we should never reach
4359 	 here.  */
4360       return e;
4361 
4362     case tcc_binary:
4363       /* Division is slow and tends to be compiled with jumps,
4364 	 especially the division by powers of 2 that is often
4365 	 found inside of an array reference.  So do it just once.  */
4366       if (code == TRUNC_DIV_EXPR || code == TRUNC_MOD_EXPR
4367 	  || code == FLOOR_DIV_EXPR || code == FLOOR_MOD_EXPR
4368 	  || code == CEIL_DIV_EXPR || code == CEIL_MOD_EXPR
4369 	  || code == ROUND_DIV_EXPR || code == ROUND_MOD_EXPR)
4370 	return save_expr (e);
4371       /* Recursively stabilize each operand.  */
4372       result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)),
4373 			 stabilize_reference_1 (TREE_OPERAND (e, 1)));
4374       break;
4375 
4376     case tcc_unary:
4377       /* Recursively stabilize each operand.  */
4378       result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)));
4379       break;
4380 
4381     default:
4382       gcc_unreachable ();
4383     }
4384 
4385   TREE_TYPE (result) = TREE_TYPE (e);
4386   TREE_READONLY (result) = TREE_READONLY (e);
4387   TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (e);
4388   TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (e);
4389 
4390   return result;
4391 }
4392 
4393 /* Stabilize a reference so that we can use it any number of times
4394    without causing its operands to be evaluated more than once.
4395    Returns the stabilized reference.  This works by means of save_expr,
4396    so see the caveats in the comments about save_expr.
4397 
4398    Also allows conversion expressions whose operands are references.
4399    Any other kind of expression is returned unchanged.  */
4400 
4401 tree
4402 stabilize_reference (tree ref)
4403 {
4404   tree result;
4405   enum tree_code code = TREE_CODE (ref);
4406 
4407   switch (code)
4408     {
4409     case VAR_DECL:
4410     case PARM_DECL:
4411     case RESULT_DECL:
4412       /* No action is needed in this case.  */
4413       return ref;
4414 
4415     CASE_CONVERT:
4416     case FLOAT_EXPR:
4417     case FIX_TRUNC_EXPR:
4418       result = build_nt (code, stabilize_reference (TREE_OPERAND (ref, 0)));
4419       break;
4420 
4421     case INDIRECT_REF:
4422       result = build_nt (INDIRECT_REF,
4423 			 stabilize_reference_1 (TREE_OPERAND (ref, 0)));
4424       break;
4425 
4426     case COMPONENT_REF:
4427       result = build_nt (COMPONENT_REF,
4428 			 stabilize_reference (TREE_OPERAND (ref, 0)),
4429 			 TREE_OPERAND (ref, 1), NULL_TREE);
4430       break;
4431 
4432     case BIT_FIELD_REF:
4433       result = build_nt (BIT_FIELD_REF,
4434 			 stabilize_reference (TREE_OPERAND (ref, 0)),
4435 			 TREE_OPERAND (ref, 1), TREE_OPERAND (ref, 2));
4436       REF_REVERSE_STORAGE_ORDER (result) = REF_REVERSE_STORAGE_ORDER (ref);
4437       break;
4438 
4439     case ARRAY_REF:
4440       result = build_nt (ARRAY_REF,
4441 			 stabilize_reference (TREE_OPERAND (ref, 0)),
4442 			 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
4443 			 TREE_OPERAND (ref, 2), TREE_OPERAND (ref, 3));
4444       break;
4445 
4446     case ARRAY_RANGE_REF:
4447       result = build_nt (ARRAY_RANGE_REF,
4448 			 stabilize_reference (TREE_OPERAND (ref, 0)),
4449 			 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
4450 			 TREE_OPERAND (ref, 2), TREE_OPERAND (ref, 3));
4451       break;
4452 
4453     case COMPOUND_EXPR:
4454       /* We cannot wrap the first expression in a SAVE_EXPR, as then
4455 	 it wouldn't be ignored.  This matters when dealing with
4456 	 volatiles.  */
4457       return stabilize_reference_1 (ref);
4458 
4459       /* If arg isn't a kind of lvalue we recognize, make no change.
4460 	 Caller should recognize the error for an invalid lvalue.  */
4461     default:
4462       return ref;
4463 
4464     case ERROR_MARK:
4465       return error_mark_node;
4466     }
4467 
4468   TREE_TYPE (result) = TREE_TYPE (ref);
4469   TREE_READONLY (result) = TREE_READONLY (ref);
4470   TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (ref);
4471   TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (ref);
4472 
4473   return result;
4474 }
4475 
4476 /* Low-level constructors for expressions.  */
4477 
4478 /* A helper function for build1 and constant folders.  Set TREE_CONSTANT,
4479    and TREE_SIDE_EFFECTS for an ADDR_EXPR.  */
4480 
4481 void
4482 recompute_tree_invariant_for_addr_expr (tree t)
4483 {
4484   tree node;
4485   bool tc = true, se = false;
4486 
4487   gcc_assert (TREE_CODE (t) == ADDR_EXPR);
4488 
4489   /* We started out assuming this address is both invariant and constant, but
4490      does not have side effects.  Now go down any handled components and see if
4491      any of them involve offsets that are either non-constant or non-invariant.
4492      Also check for side-effects.
4493 
4494      ??? Note that this code makes no attempt to deal with the case where
4495      taking the address of something causes a copy due to misalignment.  */
4496 
4497 #define UPDATE_FLAGS(NODE)  \
4498 do { tree _node = (NODE); \
4499      if (_node && !TREE_CONSTANT (_node)) tc = false; \
4500      if (_node && TREE_SIDE_EFFECTS (_node)) se = true; } while (0)
4501 
4502   for (node = TREE_OPERAND (t, 0); handled_component_p (node);
4503        node = TREE_OPERAND (node, 0))
4504     {
4505       /* If the first operand doesn't have an ARRAY_TYPE, this is a bogus
4506 	 array reference (probably made temporarily by the G++ front end),
4507 	 so ignore all the operands.  */
4508       if ((TREE_CODE (node) == ARRAY_REF
4509 	   || TREE_CODE (node) == ARRAY_RANGE_REF)
4510 	  && TREE_CODE (TREE_TYPE (TREE_OPERAND (node, 0))) == ARRAY_TYPE)
4511 	{
4512 	  UPDATE_FLAGS (TREE_OPERAND (node, 1));
4513 	  if (TREE_OPERAND (node, 2))
4514 	    UPDATE_FLAGS (TREE_OPERAND (node, 2));
4515 	  if (TREE_OPERAND (node, 3))
4516 	    UPDATE_FLAGS (TREE_OPERAND (node, 3));
4517 	}
4518       /* Likewise, just because this is a COMPONENT_REF doesn't mean we have a
4519 	 FIELD_DECL, apparently.  The G++ front end can put something else
4520 	 there, at least temporarily.  */
4521       else if (TREE_CODE (node) == COMPONENT_REF
4522 	       && TREE_CODE (TREE_OPERAND (node, 1)) == FIELD_DECL)
4523 	{
4524 	  if (TREE_OPERAND (node, 2))
4525 	    UPDATE_FLAGS (TREE_OPERAND (node, 2));
4526 	}
4527     }
4528 
4529   node = lang_hooks.expr_to_decl (node, &tc, &se);
4530 
4531   /* Now see what's inside.  If it's an INDIRECT_REF, copy our properties from
4532      the address, since &(*a)->b is a form of addition.  If it's a constant, the
4533      address is constant too.  If it's a decl, its address is constant if the
4534      decl is static.  Everything else is not constant and, furthermore,
4535      taking the address of a volatile variable is not volatile.  */
4536   if (TREE_CODE (node) == INDIRECT_REF
4537       || TREE_CODE (node) == MEM_REF)
4538     UPDATE_FLAGS (TREE_OPERAND (node, 0));
4539   else if (CONSTANT_CLASS_P (node))
4540     ;
4541   else if (DECL_P (node))
4542     tc &= (staticp (node) != NULL_TREE);
4543   else
4544     {
4545       tc = false;
4546       se |= TREE_SIDE_EFFECTS (node);
4547     }
4548 
4549 
4550   TREE_CONSTANT (t) = tc;
4551   TREE_SIDE_EFFECTS (t) = se;
4552 #undef UPDATE_FLAGS
4553 }
4554 
4555 /* Build an expression of code CODE, data type TYPE, and operands as
4556    specified.  Expressions and reference nodes can be created this way.
4557    Constants, decls, types and misc nodes cannot be.
4558 
4559    We define 5 non-variadic functions, from 0 to 4 arguments.  This is
4560    enough for all extant tree codes.  */
4561 
4562 tree
4563 build0 (enum tree_code code, tree tt MEM_STAT_DECL)
4564 {
4565   tree t;
4566 
4567   gcc_assert (TREE_CODE_LENGTH (code) == 0);
4568 
4569   t = make_node (code PASS_MEM_STAT);
4570   TREE_TYPE (t) = tt;
4571 
4572   return t;
4573 }
4574 
4575 tree
4576 build1 (enum tree_code code, tree type, tree node MEM_STAT_DECL)
4577 {
4578   int length = sizeof (struct tree_exp);
4579   tree t;
4580 
4581   record_node_allocation_statistics (code, length);
4582 
4583   gcc_assert (TREE_CODE_LENGTH (code) == 1);
4584 
4585   t = ggc_alloc_tree_node_stat (length PASS_MEM_STAT);
4586 
4587   memset (t, 0, sizeof (struct tree_common));
4588 
4589   TREE_SET_CODE (t, code);
4590 
4591   TREE_TYPE (t) = type;
4592   SET_EXPR_LOCATION (t, UNKNOWN_LOCATION);
4593   TREE_OPERAND (t, 0) = node;
4594   if (node && !TYPE_P (node))
4595     {
4596       TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (node);
4597       TREE_READONLY (t) = TREE_READONLY (node);
4598     }
4599 
4600   if (TREE_CODE_CLASS (code) == tcc_statement)
4601     {
4602       if (code != DEBUG_BEGIN_STMT)
4603 	TREE_SIDE_EFFECTS (t) = 1;
4604     }
4605   else switch (code)
4606     {
4607     case VA_ARG_EXPR:
4608       /* All of these have side-effects, no matter what their
4609 	 operands are.  */
4610       TREE_SIDE_EFFECTS (t) = 1;
4611       TREE_READONLY (t) = 0;
4612       break;
4613 
4614     case INDIRECT_REF:
4615       /* Whether a dereference is readonly has nothing to do with whether
4616 	 its operand is readonly.  */
4617       TREE_READONLY (t) = 0;
4618       break;
4619 
4620     case ADDR_EXPR:
4621       if (node)
4622 	recompute_tree_invariant_for_addr_expr (t);
4623       break;
4624 
4625     default:
4626       if ((TREE_CODE_CLASS (code) == tcc_unary || code == VIEW_CONVERT_EXPR)
4627 	  && node && !TYPE_P (node)
4628 	  && TREE_CONSTANT (node))
4629 	TREE_CONSTANT (t) = 1;
4630       if (TREE_CODE_CLASS (code) == tcc_reference
4631 	  && node && TREE_THIS_VOLATILE (node))
4632 	TREE_THIS_VOLATILE (t) = 1;
4633       break;
4634     }
4635 
4636   return t;
4637 }
4638 
4639 #define PROCESS_ARG(N)				\
4640   do {						\
4641     TREE_OPERAND (t, N) = arg##N;		\
4642     if (arg##N &&!TYPE_P (arg##N))		\
4643       {						\
4644         if (TREE_SIDE_EFFECTS (arg##N))		\
4645 	  side_effects = 1;			\
4646         if (!TREE_READONLY (arg##N)		\
4647 	    && !CONSTANT_CLASS_P (arg##N))	\
4648 	  (void) (read_only = 0);		\
4649         if (!TREE_CONSTANT (arg##N))		\
4650 	  (void) (constant = 0);		\
4651       }						\
4652   } while (0)
4653 
4654 tree
4655 build2 (enum tree_code code, tree tt, tree arg0, tree arg1 MEM_STAT_DECL)
4656 {
4657   bool constant, read_only, side_effects, div_by_zero;
4658   tree t;
4659 
4660   gcc_assert (TREE_CODE_LENGTH (code) == 2);
4661 
4662   if ((code == MINUS_EXPR || code == PLUS_EXPR || code == MULT_EXPR)
4663       && arg0 && arg1 && tt && POINTER_TYPE_P (tt)
4664       /* When sizetype precision doesn't match that of pointers
4665          we need to be able to build explicit extensions or truncations
4666 	 of the offset argument.  */
4667       && TYPE_PRECISION (sizetype) == TYPE_PRECISION (tt))
4668     gcc_assert (TREE_CODE (arg0) == INTEGER_CST
4669 		&& TREE_CODE (arg1) == INTEGER_CST);
4670 
4671   if (code == POINTER_PLUS_EXPR && arg0 && arg1 && tt)
4672     gcc_assert (POINTER_TYPE_P (tt) && POINTER_TYPE_P (TREE_TYPE (arg0))
4673 		&& ptrofftype_p (TREE_TYPE (arg1)));
4674 
4675   t = make_node (code PASS_MEM_STAT);
4676   TREE_TYPE (t) = tt;
4677 
4678   /* Below, we automatically set TREE_SIDE_EFFECTS and TREE_READONLY for the
4679      result based on those same flags for the arguments.  But if the
4680      arguments aren't really even `tree' expressions, we shouldn't be trying
4681      to do this.  */
4682 
4683   /* Expressions without side effects may be constant if their
4684      arguments are as well.  */
4685   constant = (TREE_CODE_CLASS (code) == tcc_comparison
4686 	      || TREE_CODE_CLASS (code) == tcc_binary);
4687   read_only = 1;
4688   side_effects = TREE_SIDE_EFFECTS (t);
4689 
4690   switch (code)
4691     {
4692     case TRUNC_DIV_EXPR:
4693     case CEIL_DIV_EXPR:
4694     case FLOOR_DIV_EXPR:
4695     case ROUND_DIV_EXPR:
4696     case EXACT_DIV_EXPR:
4697     case CEIL_MOD_EXPR:
4698     case FLOOR_MOD_EXPR:
4699     case ROUND_MOD_EXPR:
4700     case TRUNC_MOD_EXPR:
4701       div_by_zero = integer_zerop (arg1);
4702       break;
4703     default:
4704       div_by_zero = false;
4705     }
4706 
4707   PROCESS_ARG (0);
4708   PROCESS_ARG (1);
4709 
4710   TREE_SIDE_EFFECTS (t) = side_effects;
4711   if (code == MEM_REF)
4712     {
4713       if (arg0 && TREE_CODE (arg0) == ADDR_EXPR)
4714 	{
4715 	  tree o = TREE_OPERAND (arg0, 0);
4716 	  TREE_READONLY (t) = TREE_READONLY (o);
4717 	  TREE_THIS_VOLATILE (t) = TREE_THIS_VOLATILE (o);
4718 	}
4719     }
4720   else
4721     {
4722       TREE_READONLY (t) = read_only;
4723       /* Don't mark X / 0 as constant.  */
4724       TREE_CONSTANT (t) = constant && !div_by_zero;
4725       TREE_THIS_VOLATILE (t)
4726 	= (TREE_CODE_CLASS (code) == tcc_reference
4727 	   && arg0 && TREE_THIS_VOLATILE (arg0));
4728     }
4729 
4730   return t;
4731 }
4732 
4733 
4734 tree
4735 build3 (enum tree_code code, tree tt, tree arg0, tree arg1,
4736 	tree arg2 MEM_STAT_DECL)
4737 {
4738   bool constant, read_only, side_effects;
4739   tree t;
4740 
4741   gcc_assert (TREE_CODE_LENGTH (code) == 3);
4742   gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
4743 
4744   t = make_node (code PASS_MEM_STAT);
4745   TREE_TYPE (t) = tt;
4746 
4747   read_only = 1;
4748 
4749   /* As a special exception, if COND_EXPR has NULL branches, we
4750      assume that it is a gimple statement and always consider
4751      it to have side effects.  */
4752   if (code == COND_EXPR
4753       && tt == void_type_node
4754       && arg1 == NULL_TREE
4755       && arg2 == NULL_TREE)
4756     side_effects = true;
4757   else
4758     side_effects = TREE_SIDE_EFFECTS (t);
4759 
4760   PROCESS_ARG (0);
4761   PROCESS_ARG (1);
4762   PROCESS_ARG (2);
4763 
4764   if (code == COND_EXPR)
4765     TREE_READONLY (t) = read_only;
4766 
4767   TREE_SIDE_EFFECTS (t) = side_effects;
4768   TREE_THIS_VOLATILE (t)
4769     = (TREE_CODE_CLASS (code) == tcc_reference
4770        && arg0 && TREE_THIS_VOLATILE (arg0));
4771 
4772   return t;
4773 }
4774 
4775 tree
4776 build4 (enum tree_code code, tree tt, tree arg0, tree arg1,
4777 	tree arg2, tree arg3 MEM_STAT_DECL)
4778 {
4779   bool constant, read_only, side_effects;
4780   tree t;
4781 
4782   gcc_assert (TREE_CODE_LENGTH (code) == 4);
4783 
4784   t = make_node (code PASS_MEM_STAT);
4785   TREE_TYPE (t) = tt;
4786 
4787   side_effects = TREE_SIDE_EFFECTS (t);
4788 
4789   PROCESS_ARG (0);
4790   PROCESS_ARG (1);
4791   PROCESS_ARG (2);
4792   PROCESS_ARG (3);
4793 
4794   TREE_SIDE_EFFECTS (t) = side_effects;
4795   TREE_THIS_VOLATILE (t)
4796     = (TREE_CODE_CLASS (code) == tcc_reference
4797        && arg0 && TREE_THIS_VOLATILE (arg0));
4798 
4799   return t;
4800 }
4801 
4802 tree
4803 build5 (enum tree_code code, tree tt, tree arg0, tree arg1,
4804 	tree arg2, tree arg3, tree arg4 MEM_STAT_DECL)
4805 {
4806   bool constant, read_only, side_effects;
4807   tree t;
4808 
4809   gcc_assert (TREE_CODE_LENGTH (code) == 5);
4810 
4811   t = make_node (code PASS_MEM_STAT);
4812   TREE_TYPE (t) = tt;
4813 
4814   side_effects = TREE_SIDE_EFFECTS (t);
4815 
4816   PROCESS_ARG (0);
4817   PROCESS_ARG (1);
4818   PROCESS_ARG (2);
4819   PROCESS_ARG (3);
4820   PROCESS_ARG (4);
4821 
4822   TREE_SIDE_EFFECTS (t) = side_effects;
4823   if (code == TARGET_MEM_REF)
4824     {
4825       if (arg0 && TREE_CODE (arg0) == ADDR_EXPR)
4826 	{
4827 	  tree o = TREE_OPERAND (arg0, 0);
4828 	  TREE_READONLY (t) = TREE_READONLY (o);
4829 	  TREE_THIS_VOLATILE (t) = TREE_THIS_VOLATILE (o);
4830 	}
4831     }
4832   else
4833     TREE_THIS_VOLATILE (t)
4834       = (TREE_CODE_CLASS (code) == tcc_reference
4835 	 && arg0 && TREE_THIS_VOLATILE (arg0));
4836 
4837   return t;
4838 }
4839 
4840 /* Build a simple MEM_REF tree with the sematics of a plain INDIRECT_REF
4841    on the pointer PTR.  */
4842 
4843 tree
4844 build_simple_mem_ref_loc (location_t loc, tree ptr)
4845 {
4846   poly_int64 offset = 0;
4847   tree ptype = TREE_TYPE (ptr);
4848   tree tem;
4849   /* For convenience allow addresses that collapse to a simple base
4850      and offset.  */
4851   if (TREE_CODE (ptr) == ADDR_EXPR
4852       && (handled_component_p (TREE_OPERAND (ptr, 0))
4853 	  || TREE_CODE (TREE_OPERAND (ptr, 0)) == MEM_REF))
4854     {
4855       ptr = get_addr_base_and_unit_offset (TREE_OPERAND (ptr, 0), &offset);
4856       gcc_assert (ptr);
4857       if (TREE_CODE (ptr) == MEM_REF)
4858 	{
4859 	  offset += mem_ref_offset (ptr).force_shwi ();
4860 	  ptr = TREE_OPERAND (ptr, 0);
4861 	}
4862       else
4863 	ptr = build_fold_addr_expr (ptr);
4864       gcc_assert (is_gimple_reg (ptr) || is_gimple_min_invariant (ptr));
4865     }
4866   tem = build2 (MEM_REF, TREE_TYPE (ptype),
4867 		ptr, build_int_cst (ptype, offset));
4868   SET_EXPR_LOCATION (tem, loc);
4869   return tem;
4870 }
4871 
4872 /* Return the constant offset of a MEM_REF or TARGET_MEM_REF tree T.  */
4873 
4874 poly_offset_int
4875 mem_ref_offset (const_tree t)
4876 {
4877   return poly_offset_int::from (wi::to_poly_wide (TREE_OPERAND (t, 1)),
4878 				SIGNED);
4879 }
4880 
4881 /* Return an invariant ADDR_EXPR of type TYPE taking the address of BASE
4882    offsetted by OFFSET units.  */
4883 
4884 tree
4885 build_invariant_address (tree type, tree base, poly_int64 offset)
4886 {
4887   tree ref = fold_build2 (MEM_REF, TREE_TYPE (type),
4888 			  build_fold_addr_expr (base),
4889 			  build_int_cst (ptr_type_node, offset));
4890   tree addr = build1 (ADDR_EXPR, type, ref);
4891   recompute_tree_invariant_for_addr_expr (addr);
4892   return addr;
4893 }
4894 
4895 /* Similar except don't specify the TREE_TYPE
4896    and leave the TREE_SIDE_EFFECTS as 0.
4897    It is permissible for arguments to be null,
4898    or even garbage if their values do not matter.  */
4899 
4900 tree
4901 build_nt (enum tree_code code, ...)
4902 {
4903   tree t;
4904   int length;
4905   int i;
4906   va_list p;
4907 
4908   gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
4909 
4910   va_start (p, code);
4911 
4912   t = make_node (code);
4913   length = TREE_CODE_LENGTH (code);
4914 
4915   for (i = 0; i < length; i++)
4916     TREE_OPERAND (t, i) = va_arg (p, tree);
4917 
4918   va_end (p);
4919   return t;
4920 }
4921 
4922 /* Similar to build_nt, but for creating a CALL_EXPR object with a
4923    tree vec.  */
4924 
4925 tree
4926 build_nt_call_vec (tree fn, vec<tree, va_gc> *args)
4927 {
4928   tree ret, t;
4929   unsigned int ix;
4930 
4931   ret = build_vl_exp (CALL_EXPR, vec_safe_length (args) + 3);
4932   CALL_EXPR_FN (ret) = fn;
4933   CALL_EXPR_STATIC_CHAIN (ret) = NULL_TREE;
4934   FOR_EACH_VEC_SAFE_ELT (args, ix, t)
4935     CALL_EXPR_ARG (ret, ix) = t;
4936   return ret;
4937 }
4938 
4939 /* Create a DECL_... node of code CODE, name NAME and data type TYPE.
4940    We do NOT enter this node in any sort of symbol table.
4941 
4942    LOC is the location of the decl.
4943 
4944    layout_decl is used to set up the decl's storage layout.
4945    Other slots are initialized to 0 or null pointers.  */
4946 
4947 tree
4948 build_decl (location_t loc, enum tree_code code, tree name,
4949     		 tree type MEM_STAT_DECL)
4950 {
4951   tree t;
4952 
4953   t = make_node (code PASS_MEM_STAT);
4954   DECL_SOURCE_LOCATION (t) = loc;
4955 
4956 /*  if (type == error_mark_node)
4957     type = integer_type_node; */
4958 /* That is not done, deliberately, so that having error_mark_node
4959    as the type can suppress useless errors in the use of this variable.  */
4960 
4961   DECL_NAME (t) = name;
4962   TREE_TYPE (t) = type;
4963 
4964   if (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL)
4965     layout_decl (t, 0);
4966 
4967   return t;
4968 }
4969 
4970 /* Builds and returns function declaration with NAME and TYPE.  */
4971 
4972 tree
4973 build_fn_decl (const char *name, tree type)
4974 {
4975   tree id = get_identifier (name);
4976   tree decl = build_decl (input_location, FUNCTION_DECL, id, type);
4977 
4978   DECL_EXTERNAL (decl) = 1;
4979   TREE_PUBLIC (decl) = 1;
4980   DECL_ARTIFICIAL (decl) = 1;
4981   TREE_NOTHROW (decl) = 1;
4982 
4983   return decl;
4984 }
4985 
4986 vec<tree, va_gc> *all_translation_units;
4987 
4988 /* Builds a new translation-unit decl with name NAME, queues it in the
4989    global list of translation-unit decls and returns it.   */
4990 
4991 tree
4992 build_translation_unit_decl (tree name)
4993 {
4994   tree tu = build_decl (UNKNOWN_LOCATION, TRANSLATION_UNIT_DECL,
4995 			name, NULL_TREE);
4996   TRANSLATION_UNIT_LANGUAGE (tu) = lang_hooks.name;
4997   vec_safe_push (all_translation_units, tu);
4998   return tu;
4999 }
5000 
5001 
5002 /* BLOCK nodes are used to represent the structure of binding contours
5003    and declarations, once those contours have been exited and their contents
5004    compiled.  This information is used for outputting debugging info.  */
5005 
5006 tree
5007 build_block (tree vars, tree subblocks, tree supercontext, tree chain)
5008 {
5009   tree block = make_node (BLOCK);
5010 
5011   BLOCK_VARS (block) = vars;
5012   BLOCK_SUBBLOCKS (block) = subblocks;
5013   BLOCK_SUPERCONTEXT (block) = supercontext;
5014   BLOCK_CHAIN (block) = chain;
5015   return block;
5016 }
5017 
5018 
5019 /* Like SET_EXPR_LOCATION, but make sure the tree can have a location.
5020 
5021    LOC is the location to use in tree T.  */
5022 
5023 void
5024 protected_set_expr_location (tree t, location_t loc)
5025 {
5026   if (CAN_HAVE_LOCATION_P (t))
5027     SET_EXPR_LOCATION (t, loc);
5028 }
5029 
5030 /* Reset the expression *EXPR_P, a size or position.
5031 
5032    ??? We could reset all non-constant sizes or positions.  But it's cheap
5033    enough to not do so and refrain from adding workarounds to dwarf2out.c.
5034 
5035    We need to reset self-referential sizes or positions because they cannot
5036    be gimplified and thus can contain a CALL_EXPR after the gimplification
5037    is finished, which will run afoul of LTO streaming.  And they need to be
5038    reset to something essentially dummy but not constant, so as to preserve
5039    the properties of the object they are attached to.  */
5040 
5041 static inline void
5042 free_lang_data_in_one_sizepos (tree *expr_p)
5043 {
5044   tree expr = *expr_p;
5045   if (CONTAINS_PLACEHOLDER_P (expr))
5046     *expr_p = build0 (PLACEHOLDER_EXPR, TREE_TYPE (expr));
5047 }
5048 
5049 
5050 /* Reset all the fields in a binfo node BINFO.  We only keep
5051    BINFO_VTABLE, which is used by gimple_fold_obj_type_ref.  */
5052 
5053 static void
5054 free_lang_data_in_binfo (tree binfo)
5055 {
5056   unsigned i;
5057   tree t;
5058 
5059   gcc_assert (TREE_CODE (binfo) == TREE_BINFO);
5060 
5061   BINFO_VIRTUALS (binfo) = NULL_TREE;
5062   BINFO_BASE_ACCESSES (binfo) = NULL;
5063   BINFO_INHERITANCE_CHAIN (binfo) = NULL_TREE;
5064   BINFO_SUBVTT_INDEX (binfo) = NULL_TREE;
5065 
5066   FOR_EACH_VEC_ELT (*BINFO_BASE_BINFOS (binfo), i, t)
5067     free_lang_data_in_binfo (t);
5068 }
5069 
5070 
5071 /* Reset all language specific information still present in TYPE.  */
5072 
5073 static void
5074 free_lang_data_in_type (tree type)
5075 {
5076   gcc_assert (TYPE_P (type));
5077 
5078   /* Give the FE a chance to remove its own data first.  */
5079   lang_hooks.free_lang_data (type);
5080 
5081   TREE_LANG_FLAG_0 (type) = 0;
5082   TREE_LANG_FLAG_1 (type) = 0;
5083   TREE_LANG_FLAG_2 (type) = 0;
5084   TREE_LANG_FLAG_3 (type) = 0;
5085   TREE_LANG_FLAG_4 (type) = 0;
5086   TREE_LANG_FLAG_5 (type) = 0;
5087   TREE_LANG_FLAG_6 (type) = 0;
5088 
5089   if (TREE_CODE (type) == FUNCTION_TYPE)
5090     {
5091       /* Remove the const and volatile qualifiers from arguments.  The
5092 	 C++ front end removes them, but the C front end does not,
5093 	 leading to false ODR violation errors when merging two
5094 	 instances of the same function signature compiled by
5095 	 different front ends.  */
5096       for (tree p = TYPE_ARG_TYPES (type); p; p = TREE_CHAIN (p))
5097 	{
5098 	  tree arg_type = TREE_VALUE (p);
5099 
5100 	  if (TYPE_READONLY (arg_type) || TYPE_VOLATILE (arg_type))
5101 	    {
5102 	      int quals = TYPE_QUALS (arg_type)
5103 			  & ~TYPE_QUAL_CONST
5104 			  & ~TYPE_QUAL_VOLATILE;
5105 	      TREE_VALUE (p) = build_qualified_type (arg_type, quals);
5106 	      free_lang_data_in_type (TREE_VALUE (p));
5107 	    }
5108 	  /* C++ FE uses TREE_PURPOSE to store initial values.  */
5109 	  TREE_PURPOSE (p) = NULL;
5110 	}
5111     }
5112   else if (TREE_CODE (type) == METHOD_TYPE)
5113     for (tree p = TYPE_ARG_TYPES (type); p; p = TREE_CHAIN (p))
5114       /* C++ FE uses TREE_PURPOSE to store initial values.  */
5115       TREE_PURPOSE (p) = NULL;
5116   else if (RECORD_OR_UNION_TYPE_P (type))
5117     {
5118       /* Remove members that are not FIELD_DECLs from the field list
5119 	 of an aggregate.  These occur in C++.  */
5120       for (tree *prev = &TYPE_FIELDS (type), member; (member = *prev);)
5121 	if (TREE_CODE (member) == FIELD_DECL)
5122 	  prev = &DECL_CHAIN (member);
5123 	else
5124 	  *prev = DECL_CHAIN (member);
5125 
5126       /* FIXME: C FE uses TYPE_VFIELD to record C_TYPE_INCOMPLETE_VARS
5127  	 and danagle the pointer from time to time.  */
5128       if (TYPE_VFIELD (type) && TREE_CODE (TYPE_VFIELD (type)) != FIELD_DECL)
5129         TYPE_VFIELD (type) = NULL_TREE;
5130 
5131       if (TYPE_BINFO (type))
5132 	{
5133 	  free_lang_data_in_binfo (TYPE_BINFO (type));
5134 	  /* We need to preserve link to bases and virtual table for all
5135 	     polymorphic types to make devirtualization machinery working.  */
5136 	  if (!BINFO_VTABLE (TYPE_BINFO (type)))
5137 	    TYPE_BINFO (type) = NULL;
5138 	}
5139     }
5140   else if (INTEGRAL_TYPE_P (type)
5141 	   || SCALAR_FLOAT_TYPE_P (type)
5142 	   || FIXED_POINT_TYPE_P (type))
5143     {
5144       free_lang_data_in_one_sizepos (&TYPE_MIN_VALUE (type));
5145       free_lang_data_in_one_sizepos (&TYPE_MAX_VALUE (type));
5146     }
5147 
5148   TYPE_LANG_SLOT_1 (type) = NULL_TREE;
5149 
5150   free_lang_data_in_one_sizepos (&TYPE_SIZE (type));
5151   free_lang_data_in_one_sizepos (&TYPE_SIZE_UNIT (type));
5152 
5153   if (TYPE_CONTEXT (type)
5154       && TREE_CODE (TYPE_CONTEXT (type)) == BLOCK)
5155     {
5156       tree ctx = TYPE_CONTEXT (type);
5157       do
5158 	{
5159 	  ctx = BLOCK_SUPERCONTEXT (ctx);
5160 	}
5161       while (ctx && TREE_CODE (ctx) == BLOCK);
5162       TYPE_CONTEXT (type) = ctx;
5163     }
5164 
5165   /* Drop TYPE_DECLs in TYPE_NAME in favor of the identifier in the
5166      TYPE_DECL if the type doesn't have linkage.  */
5167   if (! type_with_linkage_p (type))
5168     TYPE_NAME (type) = TYPE_IDENTIFIER (type);
5169 }
5170 
5171 
5172 /* Return true if DECL may need an assembler name to be set.  */
5173 
5174 static inline bool
5175 need_assembler_name_p (tree decl)
5176 {
5177   /* We use DECL_ASSEMBLER_NAME to hold mangled type names for One Definition
5178      Rule merging.  This makes type_odr_p to return true on those types during
5179      LTO and by comparing the mangled name, we can say what types are intended
5180      to be equivalent across compilation unit.
5181 
5182      We do not store names of type_in_anonymous_namespace_p.
5183 
5184      Record, union and enumeration type have linkage that allows use
5185      to check type_in_anonymous_namespace_p. We do not mangle compound types
5186      that always can be compared structurally.
5187 
5188      Similarly for builtin types, we compare properties of their main variant.
5189      A special case are integer types where mangling do make differences
5190      between char/signed char/unsigned char etc.  Storing name for these makes
5191      e.g.  -fno-signed-char/-fsigned-char mismatches to be handled well.
5192      See cp/mangle.c:write_builtin_type for details.  */
5193 
5194   if (flag_lto_odr_type_mering
5195       && TREE_CODE (decl) == TYPE_DECL
5196       && DECL_NAME (decl)
5197       && decl == TYPE_NAME (TREE_TYPE (decl))
5198       && TYPE_MAIN_VARIANT (TREE_TYPE (decl)) == TREE_TYPE (decl)
5199       && !TYPE_ARTIFICIAL (TREE_TYPE (decl))
5200       && (type_with_linkage_p (TREE_TYPE (decl))
5201 	  || TREE_CODE (TREE_TYPE (decl)) == INTEGER_TYPE)
5202       && !variably_modified_type_p (TREE_TYPE (decl), NULL_TREE))
5203     return !DECL_ASSEMBLER_NAME_SET_P (decl);
5204   /* Only FUNCTION_DECLs and VAR_DECLs are considered.  */
5205   if (!VAR_OR_FUNCTION_DECL_P (decl))
5206     return false;
5207 
5208   /* If DECL already has its assembler name set, it does not need a
5209      new one.  */
5210   if (!HAS_DECL_ASSEMBLER_NAME_P (decl)
5211       || DECL_ASSEMBLER_NAME_SET_P (decl))
5212     return false;
5213 
5214   /* Abstract decls do not need an assembler name.  */
5215   if (DECL_ABSTRACT_P (decl))
5216     return false;
5217 
5218   /* For VAR_DECLs, only static, public and external symbols need an
5219      assembler name.  */
5220   if (VAR_P (decl)
5221       && !TREE_STATIC (decl)
5222       && !TREE_PUBLIC (decl)
5223       && !DECL_EXTERNAL (decl))
5224     return false;
5225 
5226   if (TREE_CODE (decl) == FUNCTION_DECL)
5227     {
5228       /* Do not set assembler name on builtins.  Allow RTL expansion to
5229 	 decide whether to expand inline or via a regular call.  */
5230       if (DECL_BUILT_IN (decl)
5231 	  && DECL_BUILT_IN_CLASS (decl) != BUILT_IN_FRONTEND)
5232 	return false;
5233 
5234       /* Functions represented in the callgraph need an assembler name.  */
5235       if (cgraph_node::get (decl) != NULL)
5236 	return true;
5237 
5238       /* Unused and not public functions don't need an assembler name.  */
5239       if (!TREE_USED (decl) && !TREE_PUBLIC (decl))
5240 	return false;
5241     }
5242 
5243   return true;
5244 }
5245 
5246 
5247 /* Reset all language specific information still present in symbol
5248    DECL.  */
5249 
5250 static void
5251 free_lang_data_in_decl (tree decl)
5252 {
5253   gcc_assert (DECL_P (decl));
5254 
5255   /* Give the FE a chance to remove its own data first.  */
5256   lang_hooks.free_lang_data (decl);
5257 
5258   TREE_LANG_FLAG_0 (decl) = 0;
5259   TREE_LANG_FLAG_1 (decl) = 0;
5260   TREE_LANG_FLAG_2 (decl) = 0;
5261   TREE_LANG_FLAG_3 (decl) = 0;
5262   TREE_LANG_FLAG_4 (decl) = 0;
5263   TREE_LANG_FLAG_5 (decl) = 0;
5264   TREE_LANG_FLAG_6 (decl) = 0;
5265 
5266   free_lang_data_in_one_sizepos (&DECL_SIZE (decl));
5267   free_lang_data_in_one_sizepos (&DECL_SIZE_UNIT (decl));
5268   if (TREE_CODE (decl) == FIELD_DECL)
5269     {
5270       free_lang_data_in_one_sizepos (&DECL_FIELD_OFFSET (decl));
5271       if (TREE_CODE (DECL_CONTEXT (decl)) == QUAL_UNION_TYPE)
5272 	DECL_QUALIFIER (decl) = NULL_TREE;
5273     }
5274 
5275  if (TREE_CODE (decl) == FUNCTION_DECL)
5276     {
5277       struct cgraph_node *node;
5278       if (!(node = cgraph_node::get (decl))
5279 	  || (!node->definition && !node->clones))
5280 	{
5281 	  if (node)
5282 	    node->release_body ();
5283 	  else
5284 	    {
5285 	      release_function_body (decl);
5286 	      DECL_ARGUMENTS (decl) = NULL;
5287 	      DECL_RESULT (decl) = NULL;
5288 	      DECL_INITIAL (decl) = error_mark_node;
5289 	    }
5290 	}
5291       if (gimple_has_body_p (decl) || (node && node->thunk.thunk_p))
5292 	{
5293 	  tree t;
5294 
5295 	  /* If DECL has a gimple body, then the context for its
5296 	     arguments must be DECL.  Otherwise, it doesn't really
5297 	     matter, as we will not be emitting any code for DECL.  In
5298 	     general, there may be other instances of DECL created by
5299 	     the front end and since PARM_DECLs are generally shared,
5300 	     their DECL_CONTEXT changes as the replicas of DECL are
5301 	     created.  The only time where DECL_CONTEXT is important
5302 	     is for the FUNCTION_DECLs that have a gimple body (since
5303 	     the PARM_DECL will be used in the function's body).  */
5304 	  for (t = DECL_ARGUMENTS (decl); t; t = TREE_CHAIN (t))
5305 	    DECL_CONTEXT (t) = decl;
5306 	  if (!DECL_FUNCTION_SPECIFIC_TARGET (decl))
5307 	    DECL_FUNCTION_SPECIFIC_TARGET (decl)
5308 	      = target_option_default_node;
5309 	  if (!DECL_FUNCTION_SPECIFIC_OPTIMIZATION (decl))
5310 	    DECL_FUNCTION_SPECIFIC_OPTIMIZATION (decl)
5311 	      = optimization_default_node;
5312 	}
5313 
5314       /* DECL_SAVED_TREE holds the GENERIC representation for DECL.
5315 	 At this point, it is not needed anymore.  */
5316       DECL_SAVED_TREE (decl) = NULL_TREE;
5317 
5318       /* Clear the abstract origin if it refers to a method.
5319          Otherwise dwarf2out.c will ICE as we splice functions out of
5320          TYPE_FIELDS and thus the origin will not be output
5321          correctly.  */
5322       if (DECL_ABSTRACT_ORIGIN (decl)
5323 	  && DECL_CONTEXT (DECL_ABSTRACT_ORIGIN (decl))
5324 	  && RECORD_OR_UNION_TYPE_P
5325 	       (DECL_CONTEXT (DECL_ABSTRACT_ORIGIN (decl))))
5326 	DECL_ABSTRACT_ORIGIN (decl) = NULL_TREE;
5327 
5328       /* Sometimes the C++ frontend doesn't manage to transform a temporary
5329          DECL_VINDEX referring to itself into a vtable slot number as it
5330 	 should.  Happens with functions that are copied and then forgotten
5331 	 about.  Just clear it, it won't matter anymore.  */
5332       if (DECL_VINDEX (decl) && !tree_fits_shwi_p (DECL_VINDEX (decl)))
5333 	DECL_VINDEX (decl) = NULL_TREE;
5334     }
5335   else if (VAR_P (decl))
5336     {
5337       if ((DECL_EXTERNAL (decl)
5338 	   && (!TREE_STATIC (decl) || !TREE_READONLY (decl)))
5339 	  || (decl_function_context (decl) && !TREE_STATIC (decl)))
5340 	DECL_INITIAL (decl) = NULL_TREE;
5341     }
5342   else if (TREE_CODE (decl) == TYPE_DECL)
5343     {
5344       DECL_VISIBILITY (decl) = VISIBILITY_DEFAULT;
5345       DECL_VISIBILITY_SPECIFIED (decl) = 0;
5346       DECL_INITIAL (decl) = NULL_TREE;
5347     }
5348   else if (TREE_CODE (decl) == FIELD_DECL)
5349     DECL_INITIAL (decl) = NULL_TREE;
5350   else if (TREE_CODE (decl) == TRANSLATION_UNIT_DECL
5351            && DECL_INITIAL (decl)
5352            && TREE_CODE (DECL_INITIAL (decl)) == BLOCK)
5353     {
5354       /* Strip builtins from the translation-unit BLOCK.  We still have targets
5355 	 without builtin_decl_explicit support and also builtins are shared
5356 	 nodes and thus we can't use TREE_CHAIN in multiple lists.  */
5357       tree *nextp = &BLOCK_VARS (DECL_INITIAL (decl));
5358       while (*nextp)
5359         {
5360           tree var = *nextp;
5361           if (TREE_CODE (var) == FUNCTION_DECL
5362               && DECL_BUILT_IN (var))
5363 	    *nextp = TREE_CHAIN (var);
5364 	  else
5365 	    nextp = &TREE_CHAIN (var);
5366         }
5367     }
5368 }
5369 
5370 
5371 /* Data used when collecting DECLs and TYPEs for language data removal.  */
5372 
5373 struct free_lang_data_d
5374 {
5375   free_lang_data_d () : decls (100), types (100) {}
5376 
5377   /* Worklist to avoid excessive recursion.  */
5378   auto_vec<tree> worklist;
5379 
5380   /* Set of traversed objects.  Used to avoid duplicate visits.  */
5381   hash_set<tree> pset;
5382 
5383   /* Array of symbols to process with free_lang_data_in_decl.  */
5384   auto_vec<tree> decls;
5385 
5386   /* Array of types to process with free_lang_data_in_type.  */
5387   auto_vec<tree> types;
5388 };
5389 
5390 
5391 /* Add type or decl T to one of the list of tree nodes that need their
5392    language data removed.  The lists are held inside FLD.  */
5393 
5394 static void
5395 add_tree_to_fld_list (tree t, struct free_lang_data_d *fld)
5396 {
5397   if (DECL_P (t))
5398     fld->decls.safe_push (t);
5399   else if (TYPE_P (t))
5400     fld->types.safe_push (t);
5401   else
5402     gcc_unreachable ();
5403 }
5404 
5405 /* Push tree node T into FLD->WORKLIST.  */
5406 
5407 static inline void
5408 fld_worklist_push (tree t, struct free_lang_data_d *fld)
5409 {
5410   if (t && !is_lang_specific (t) && !fld->pset.contains (t))
5411     fld->worklist.safe_push ((t));
5412 }
5413 
5414 
5415 /* Operand callback helper for free_lang_data_in_node.  *TP is the
5416    subtree operand being considered.  */
5417 
5418 static tree
5419 find_decls_types_r (tree *tp, int *ws, void *data)
5420 {
5421   tree t = *tp;
5422   struct free_lang_data_d *fld = (struct free_lang_data_d *) data;
5423 
5424   if (TREE_CODE (t) == TREE_LIST)
5425     return NULL_TREE;
5426 
5427   /* Language specific nodes will be removed, so there is no need
5428      to gather anything under them.  */
5429   if (is_lang_specific (t))
5430     {
5431       *ws = 0;
5432       return NULL_TREE;
5433     }
5434 
5435   if (DECL_P (t))
5436     {
5437       /* Note that walk_tree does not traverse every possible field in
5438 	 decls, so we have to do our own traversals here.  */
5439       add_tree_to_fld_list (t, fld);
5440 
5441       fld_worklist_push (DECL_NAME (t), fld);
5442       fld_worklist_push (DECL_CONTEXT (t), fld);
5443       fld_worklist_push (DECL_SIZE (t), fld);
5444       fld_worklist_push (DECL_SIZE_UNIT (t), fld);
5445 
5446       /* We are going to remove everything under DECL_INITIAL for
5447 	 TYPE_DECLs.  No point walking them.  */
5448       if (TREE_CODE (t) != TYPE_DECL)
5449 	fld_worklist_push (DECL_INITIAL (t), fld);
5450 
5451       fld_worklist_push (DECL_ATTRIBUTES (t), fld);
5452       fld_worklist_push (DECL_ABSTRACT_ORIGIN (t), fld);
5453 
5454       if (TREE_CODE (t) == FUNCTION_DECL)
5455 	{
5456 	  fld_worklist_push (DECL_ARGUMENTS (t), fld);
5457 	  fld_worklist_push (DECL_RESULT (t), fld);
5458 	}
5459       else if (TREE_CODE (t) == TYPE_DECL)
5460 	{
5461 	  fld_worklist_push (DECL_ORIGINAL_TYPE (t), fld);
5462 	}
5463       else if (TREE_CODE (t) == FIELD_DECL)
5464 	{
5465 	  fld_worklist_push (DECL_FIELD_OFFSET (t), fld);
5466 	  fld_worklist_push (DECL_BIT_FIELD_TYPE (t), fld);
5467 	  fld_worklist_push (DECL_FIELD_BIT_OFFSET (t), fld);
5468 	  fld_worklist_push (DECL_FCONTEXT (t), fld);
5469 	}
5470 
5471       if ((VAR_P (t) || TREE_CODE (t) == PARM_DECL)
5472 	  && DECL_HAS_VALUE_EXPR_P (t))
5473 	fld_worklist_push (DECL_VALUE_EXPR (t), fld);
5474 
5475       if (TREE_CODE (t) != FIELD_DECL
5476 	  && TREE_CODE (t) != TYPE_DECL)
5477 	fld_worklist_push (TREE_CHAIN (t), fld);
5478       *ws = 0;
5479     }
5480   else if (TYPE_P (t))
5481     {
5482       /* Note that walk_tree does not traverse every possible field in
5483 	 types, so we have to do our own traversals here.  */
5484       add_tree_to_fld_list (t, fld);
5485 
5486       if (!RECORD_OR_UNION_TYPE_P (t))
5487 	fld_worklist_push (TYPE_CACHED_VALUES (t), fld);
5488       fld_worklist_push (TYPE_SIZE (t), fld);
5489       fld_worklist_push (TYPE_SIZE_UNIT (t), fld);
5490       fld_worklist_push (TYPE_ATTRIBUTES (t), fld);
5491       fld_worklist_push (TYPE_POINTER_TO (t), fld);
5492       fld_worklist_push (TYPE_REFERENCE_TO (t), fld);
5493       fld_worklist_push (TYPE_NAME (t), fld);
5494       /* Do not walk TYPE_NEXT_PTR_TO or TYPE_NEXT_REF_TO.  We do not stream
5495 	 them and thus do not and want not to reach unused pointer types
5496 	 this way.  */
5497       if (!POINTER_TYPE_P (t))
5498 	fld_worklist_push (TYPE_MIN_VALUE_RAW (t), fld);
5499       /* TYPE_MAX_VALUE_RAW is TYPE_BINFO for record types.  */
5500       if (!RECORD_OR_UNION_TYPE_P (t))
5501 	fld_worklist_push (TYPE_MAX_VALUE_RAW (t), fld);
5502       fld_worklist_push (TYPE_MAIN_VARIANT (t), fld);
5503       /* Do not walk TYPE_NEXT_VARIANT.  We do not stream it and thus
5504          do not and want not to reach unused variants this way.  */
5505       if (TYPE_CONTEXT (t))
5506 	{
5507 	  tree ctx = TYPE_CONTEXT (t);
5508 	  /* We adjust BLOCK TYPE_CONTEXTs to the innermost non-BLOCK one.
5509 	     So push that instead.  */
5510 	  while (ctx && TREE_CODE (ctx) == BLOCK)
5511 	    ctx = BLOCK_SUPERCONTEXT (ctx);
5512 	  fld_worklist_push (ctx, fld);
5513 	}
5514       /* Do not walk TYPE_CANONICAL.  We do not stream it and thus do not
5515 	 and want not to reach unused types this way.  */
5516 
5517       if (RECORD_OR_UNION_TYPE_P (t) && TYPE_BINFO (t))
5518 	{
5519 	  unsigned i;
5520 	  tree tem;
5521 	  FOR_EACH_VEC_ELT (*BINFO_BASE_BINFOS (TYPE_BINFO (t)), i, tem)
5522 	    fld_worklist_push (TREE_TYPE (tem), fld);
5523 	  fld_worklist_push (BINFO_TYPE (TYPE_BINFO (t)), fld);
5524 	  fld_worklist_push (BINFO_VTABLE (TYPE_BINFO (t)), fld);
5525 	}
5526       if (RECORD_OR_UNION_TYPE_P (t))
5527 	{
5528 	  tree tem;
5529 	  /* Push all TYPE_FIELDS - there can be interleaving interesting
5530 	     and non-interesting things.  */
5531 	  tem = TYPE_FIELDS (t);
5532 	  while (tem)
5533 	    {
5534 	      if (TREE_CODE (tem) == FIELD_DECL
5535 		  || (TREE_CODE (tem) == TYPE_DECL
5536 		      && !DECL_IGNORED_P (tem)
5537 		      && debug_info_level > DINFO_LEVEL_TERSE
5538 		      && !is_redundant_typedef (tem)))
5539 		fld_worklist_push (tem, fld);
5540 	      tem = TREE_CHAIN (tem);
5541 	    }
5542 	}
5543       if (FUNC_OR_METHOD_TYPE_P (t))
5544 	fld_worklist_push (TYPE_METHOD_BASETYPE (t), fld);
5545 
5546       fld_worklist_push (TYPE_STUB_DECL (t), fld);
5547       *ws = 0;
5548     }
5549   else if (TREE_CODE (t) == BLOCK)
5550     {
5551       tree tem;
5552       for (tem = BLOCK_VARS (t); tem; tem = TREE_CHAIN (tem))
5553 	fld_worklist_push (tem, fld);
5554       for (tem = BLOCK_SUBBLOCKS (t); tem; tem = BLOCK_CHAIN (tem))
5555 	fld_worklist_push (tem, fld);
5556       fld_worklist_push (BLOCK_ABSTRACT_ORIGIN (t), fld);
5557     }
5558 
5559   if (TREE_CODE (t) != IDENTIFIER_NODE
5560       && CODE_CONTAINS_STRUCT (TREE_CODE (t), TS_TYPED))
5561     fld_worklist_push (TREE_TYPE (t), fld);
5562 
5563   return NULL_TREE;
5564 }
5565 
5566 
5567 /* Find decls and types in T.  */
5568 
5569 static void
5570 find_decls_types (tree t, struct free_lang_data_d *fld)
5571 {
5572   while (1)
5573     {
5574       if (!fld->pset.contains (t))
5575 	walk_tree (&t, find_decls_types_r, fld, &fld->pset);
5576       if (fld->worklist.is_empty ())
5577 	break;
5578       t = fld->worklist.pop ();
5579     }
5580 }
5581 
5582 /* Translate all the types in LIST with the corresponding runtime
5583    types.  */
5584 
5585 static tree
5586 get_eh_types_for_runtime (tree list)
5587 {
5588   tree head, prev;
5589 
5590   if (list == NULL_TREE)
5591     return NULL_TREE;
5592 
5593   head = build_tree_list (0, lookup_type_for_runtime (TREE_VALUE (list)));
5594   prev = head;
5595   list = TREE_CHAIN (list);
5596   while (list)
5597     {
5598       tree n = build_tree_list (0, lookup_type_for_runtime (TREE_VALUE (list)));
5599       TREE_CHAIN (prev) = n;
5600       prev = TREE_CHAIN (prev);
5601       list = TREE_CHAIN (list);
5602     }
5603 
5604   return head;
5605 }
5606 
5607 
5608 /* Find decls and types referenced in EH region R and store them in
5609    FLD->DECLS and FLD->TYPES.  */
5610 
5611 static void
5612 find_decls_types_in_eh_region (eh_region r, struct free_lang_data_d *fld)
5613 {
5614   switch (r->type)
5615     {
5616     case ERT_CLEANUP:
5617       break;
5618 
5619     case ERT_TRY:
5620       {
5621 	eh_catch c;
5622 
5623 	/* The types referenced in each catch must first be changed to the
5624 	   EH types used at runtime.  This removes references to FE types
5625 	   in the region.  */
5626 	for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
5627 	  {
5628 	    c->type_list = get_eh_types_for_runtime (c->type_list);
5629 	    walk_tree (&c->type_list, find_decls_types_r, fld, &fld->pset);
5630 	  }
5631       }
5632       break;
5633 
5634     case ERT_ALLOWED_EXCEPTIONS:
5635       r->u.allowed.type_list
5636 	= get_eh_types_for_runtime (r->u.allowed.type_list);
5637       walk_tree (&r->u.allowed.type_list, find_decls_types_r, fld, &fld->pset);
5638       break;
5639 
5640     case ERT_MUST_NOT_THROW:
5641       walk_tree (&r->u.must_not_throw.failure_decl,
5642 		 find_decls_types_r, fld, &fld->pset);
5643       break;
5644     }
5645 }
5646 
5647 
5648 /* Find decls and types referenced in cgraph node N and store them in
5649    FLD->DECLS and FLD->TYPES.  Unlike pass_referenced_vars, this will
5650    look for *every* kind of DECL and TYPE node reachable from N,
5651    including those embedded inside types and decls (i.e,, TYPE_DECLs,
5652    NAMESPACE_DECLs, etc).  */
5653 
5654 static void
5655 find_decls_types_in_node (struct cgraph_node *n, struct free_lang_data_d *fld)
5656 {
5657   basic_block bb;
5658   struct function *fn;
5659   unsigned ix;
5660   tree t;
5661 
5662   find_decls_types (n->decl, fld);
5663 
5664   if (!gimple_has_body_p (n->decl))
5665     return;
5666 
5667   gcc_assert (current_function_decl == NULL_TREE && cfun == NULL);
5668 
5669   fn = DECL_STRUCT_FUNCTION (n->decl);
5670 
5671   /* Traverse locals. */
5672   FOR_EACH_LOCAL_DECL (fn, ix, t)
5673     find_decls_types (t, fld);
5674 
5675   /* Traverse EH regions in FN.  */
5676   {
5677     eh_region r;
5678     FOR_ALL_EH_REGION_FN (r, fn)
5679       find_decls_types_in_eh_region (r, fld);
5680   }
5681 
5682   /* Traverse every statement in FN.  */
5683   FOR_EACH_BB_FN (bb, fn)
5684     {
5685       gphi_iterator psi;
5686       gimple_stmt_iterator si;
5687       unsigned i;
5688 
5689       for (psi = gsi_start_phis (bb); !gsi_end_p (psi); gsi_next (&psi))
5690 	{
5691 	  gphi *phi = psi.phi ();
5692 
5693 	  for (i = 0; i < gimple_phi_num_args (phi); i++)
5694 	    {
5695 	      tree *arg_p = gimple_phi_arg_def_ptr (phi, i);
5696 	      find_decls_types (*arg_p, fld);
5697 	    }
5698 	}
5699 
5700       for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
5701 	{
5702 	  gimple *stmt = gsi_stmt (si);
5703 
5704 	  if (is_gimple_call (stmt))
5705 	    find_decls_types (gimple_call_fntype (stmt), fld);
5706 
5707 	  for (i = 0; i < gimple_num_ops (stmt); i++)
5708 	    {
5709 	      tree arg = gimple_op (stmt, i);
5710 	      find_decls_types (arg, fld);
5711 	    }
5712 	}
5713     }
5714 }
5715 
5716 
5717 /* Find decls and types referenced in varpool node N and store them in
5718    FLD->DECLS and FLD->TYPES.  Unlike pass_referenced_vars, this will
5719    look for *every* kind of DECL and TYPE node reachable from N,
5720    including those embedded inside types and decls (i.e,, TYPE_DECLs,
5721    NAMESPACE_DECLs, etc).  */
5722 
5723 static void
5724 find_decls_types_in_var (varpool_node *v, struct free_lang_data_d *fld)
5725 {
5726   find_decls_types (v->decl, fld);
5727 }
5728 
5729 /* If T needs an assembler name, have one created for it.  */
5730 
5731 void
5732 assign_assembler_name_if_needed (tree t)
5733 {
5734   if (need_assembler_name_p (t))
5735     {
5736       /* When setting DECL_ASSEMBLER_NAME, the C++ mangler may emit
5737 	 diagnostics that use input_location to show locus
5738 	 information.  The problem here is that, at this point,
5739 	 input_location is generally anchored to the end of the file
5740 	 (since the parser is long gone), so we don't have a good
5741 	 position to pin it to.
5742 
5743 	 To alleviate this problem, this uses the location of T's
5744 	 declaration.  Examples of this are
5745 	 testsuite/g++.dg/template/cond2.C and
5746 	 testsuite/g++.dg/template/pr35240.C.  */
5747       location_t saved_location = input_location;
5748       input_location = DECL_SOURCE_LOCATION (t);
5749 
5750       decl_assembler_name (t);
5751 
5752       input_location = saved_location;
5753     }
5754 }
5755 
5756 
5757 /* Free language specific information for every operand and expression
5758    in every node of the call graph.  This process operates in three stages:
5759 
5760    1- Every callgraph node and varpool node is traversed looking for
5761       decls and types embedded in them.  This is a more exhaustive
5762       search than that done by find_referenced_vars, because it will
5763       also collect individual fields, decls embedded in types, etc.
5764 
5765    2- All the decls found are sent to free_lang_data_in_decl.
5766 
5767    3- All the types found are sent to free_lang_data_in_type.
5768 
5769    The ordering between decls and types is important because
5770    free_lang_data_in_decl sets assembler names, which includes
5771    mangling.  So types cannot be freed up until assembler names have
5772    been set up.  */
5773 
5774 static void
5775 free_lang_data_in_cgraph (void)
5776 {
5777   struct cgraph_node *n;
5778   varpool_node *v;
5779   struct free_lang_data_d fld;
5780   tree t;
5781   unsigned i;
5782   alias_pair *p;
5783 
5784   /* Find decls and types in the body of every function in the callgraph.  */
5785   FOR_EACH_FUNCTION (n)
5786     find_decls_types_in_node (n, &fld);
5787 
5788   FOR_EACH_VEC_SAFE_ELT (alias_pairs, i, p)
5789     find_decls_types (p->decl, &fld);
5790 
5791   /* Find decls and types in every varpool symbol.  */
5792   FOR_EACH_VARIABLE (v)
5793     find_decls_types_in_var (v, &fld);
5794 
5795   /* Set the assembler name on every decl found.  We need to do this
5796      now because free_lang_data_in_decl will invalidate data needed
5797      for mangling.  This breaks mangling on interdependent decls.  */
5798   FOR_EACH_VEC_ELT (fld.decls, i, t)
5799     assign_assembler_name_if_needed (t);
5800 
5801   /* Traverse every decl found freeing its language data.  */
5802   FOR_EACH_VEC_ELT (fld.decls, i, t)
5803     free_lang_data_in_decl (t);
5804 
5805   /* Traverse every type found freeing its language data.  */
5806   FOR_EACH_VEC_ELT (fld.types, i, t)
5807     free_lang_data_in_type (t);
5808   if (flag_checking)
5809     {
5810       FOR_EACH_VEC_ELT (fld.types, i, t)
5811 	verify_type (t);
5812     }
5813 }
5814 
5815 
5816 /* Free resources that are used by FE but are not needed once they are done. */
5817 
5818 static unsigned
5819 free_lang_data (void)
5820 {
5821   unsigned i;
5822 
5823   /* If we are the LTO frontend we have freed lang-specific data already.  */
5824   if (in_lto_p
5825       || (!flag_generate_lto && !flag_generate_offload))
5826     {
5827       /* Rebuild type inheritance graph even when not doing LTO to get
5828 	 consistent profile data.  */
5829       rebuild_type_inheritance_graph ();
5830       return 0;
5831     }
5832 
5833   /* Provide a dummy TRANSLATION_UNIT_DECL if the FE failed to provide one.  */
5834   if (vec_safe_is_empty (all_translation_units))
5835     build_translation_unit_decl (NULL_TREE);
5836 
5837   /* Allocate and assign alias sets to the standard integer types
5838      while the slots are still in the way the frontends generated them.  */
5839   for (i = 0; i < itk_none; ++i)
5840     if (integer_types[i])
5841       TYPE_ALIAS_SET (integer_types[i]) = get_alias_set (integer_types[i]);
5842 
5843   /* Traverse the IL resetting language specific information for
5844      operands, expressions, etc.  */
5845   free_lang_data_in_cgraph ();
5846 
5847   /* Create gimple variants for common types.  */
5848   for (unsigned i = 0;
5849        i < sizeof (builtin_structptr_types) / sizeof (builtin_structptr_type);
5850        ++i)
5851     builtin_structptr_types[i].node = builtin_structptr_types[i].base;
5852 
5853   /* Reset some langhooks.  Do not reset types_compatible_p, it may
5854      still be used indirectly via the get_alias_set langhook.  */
5855   lang_hooks.dwarf_name = lhd_dwarf_name;
5856   lang_hooks.decl_printable_name = gimple_decl_printable_name;
5857   lang_hooks.gimplify_expr = lhd_gimplify_expr;
5858 
5859   /* We do not want the default decl_assembler_name implementation,
5860      rather if we have fixed everything we want a wrapper around it
5861      asserting that all non-local symbols already got their assembler
5862      name and only produce assembler names for local symbols.  Or rather
5863      make sure we never call decl_assembler_name on local symbols and
5864      devise a separate, middle-end private scheme for it.  */
5865 
5866   /* Reset diagnostic machinery.  */
5867   tree_diagnostics_defaults (global_dc);
5868 
5869   rebuild_type_inheritance_graph ();
5870 
5871   return 0;
5872 }
5873 
5874 
5875 namespace {
5876 
5877 const pass_data pass_data_ipa_free_lang_data =
5878 {
5879   SIMPLE_IPA_PASS, /* type */
5880   "*free_lang_data", /* name */
5881   OPTGROUP_NONE, /* optinfo_flags */
5882   TV_IPA_FREE_LANG_DATA, /* tv_id */
5883   0, /* properties_required */
5884   0, /* properties_provided */
5885   0, /* properties_destroyed */
5886   0, /* todo_flags_start */
5887   0, /* todo_flags_finish */
5888 };
5889 
5890 class pass_ipa_free_lang_data : public simple_ipa_opt_pass
5891 {
5892 public:
5893   pass_ipa_free_lang_data (gcc::context *ctxt)
5894     : simple_ipa_opt_pass (pass_data_ipa_free_lang_data, ctxt)
5895   {}
5896 
5897   /* opt_pass methods: */
5898   virtual unsigned int execute (function *) { return free_lang_data (); }
5899 
5900 }; // class pass_ipa_free_lang_data
5901 
5902 } // anon namespace
5903 
5904 simple_ipa_opt_pass *
5905 make_pass_ipa_free_lang_data (gcc::context *ctxt)
5906 {
5907   return new pass_ipa_free_lang_data (ctxt);
5908 }
5909 
5910 /* Set the type qualifiers for TYPE to TYPE_QUALS, which is a bitmask
5911    of the various TYPE_QUAL values.  */
5912 
5913 static void
5914 set_type_quals (tree type, int type_quals)
5915 {
5916   TYPE_READONLY (type) = (type_quals & TYPE_QUAL_CONST) != 0;
5917   TYPE_VOLATILE (type) = (type_quals & TYPE_QUAL_VOLATILE) != 0;
5918   TYPE_RESTRICT (type) = (type_quals & TYPE_QUAL_RESTRICT) != 0;
5919   TYPE_ATOMIC (type) = (type_quals & TYPE_QUAL_ATOMIC) != 0;
5920   TYPE_ADDR_SPACE (type) = DECODE_QUAL_ADDR_SPACE (type_quals);
5921 }
5922 
5923 /* Returns true iff CAND and BASE have equivalent language-specific
5924    qualifiers.  */
5925 
5926 bool
5927 check_lang_type (const_tree cand, const_tree base)
5928 {
5929   if (lang_hooks.types.type_hash_eq == NULL)
5930     return true;
5931   /* type_hash_eq currently only applies to these types.  */
5932   if (TREE_CODE (cand) != FUNCTION_TYPE
5933       && TREE_CODE (cand) != METHOD_TYPE)
5934     return true;
5935   return lang_hooks.types.type_hash_eq (cand, base);
5936 }
5937 
5938 /* Returns true iff unqualified CAND and BASE are equivalent.  */
5939 
5940 bool
5941 check_base_type (const_tree cand, const_tree base)
5942 {
5943   return (TYPE_NAME (cand) == TYPE_NAME (base)
5944 	  /* Apparently this is needed for Objective-C.  */
5945 	  && TYPE_CONTEXT (cand) == TYPE_CONTEXT (base)
5946 	  /* Check alignment.  */
5947 	  && TYPE_ALIGN (cand) == TYPE_ALIGN (base)
5948 	  && attribute_list_equal (TYPE_ATTRIBUTES (cand),
5949 				   TYPE_ATTRIBUTES (base)));
5950 }
5951 
5952 /* Returns true iff CAND is equivalent to BASE with TYPE_QUALS.  */
5953 
5954 bool
5955 check_qualified_type (const_tree cand, const_tree base, int type_quals)
5956 {
5957   return (TYPE_QUALS (cand) == type_quals
5958 	  && check_base_type (cand, base)
5959 	  && check_lang_type (cand, base));
5960 }
5961 
5962 /* Returns true iff CAND is equivalent to BASE with ALIGN.  */
5963 
5964 static bool
5965 check_aligned_type (const_tree cand, const_tree base, unsigned int align)
5966 {
5967   return (TYPE_QUALS (cand) == TYPE_QUALS (base)
5968 	  && TYPE_NAME (cand) == TYPE_NAME (base)
5969 	  /* Apparently this is needed for Objective-C.  */
5970 	  && TYPE_CONTEXT (cand) == TYPE_CONTEXT (base)
5971 	  /* Check alignment.  */
5972 	  && TYPE_ALIGN (cand) == align
5973 	  && attribute_list_equal (TYPE_ATTRIBUTES (cand),
5974 				   TYPE_ATTRIBUTES (base))
5975 	  && check_lang_type (cand, base));
5976 }
5977 
5978 /* This function checks to see if TYPE matches the size one of the built-in
5979    atomic types, and returns that core atomic type.  */
5980 
5981 static tree
5982 find_atomic_core_type (tree type)
5983 {
5984   tree base_atomic_type;
5985 
5986   /* Only handle complete types.  */
5987   if (!tree_fits_uhwi_p (TYPE_SIZE (type)))
5988     return NULL_TREE;
5989 
5990   switch (tree_to_uhwi (TYPE_SIZE (type)))
5991     {
5992     case 8:
5993       base_atomic_type = atomicQI_type_node;
5994       break;
5995 
5996     case 16:
5997       base_atomic_type = atomicHI_type_node;
5998       break;
5999 
6000     case 32:
6001       base_atomic_type = atomicSI_type_node;
6002       break;
6003 
6004     case 64:
6005       base_atomic_type = atomicDI_type_node;
6006       break;
6007 
6008     case 128:
6009       base_atomic_type = atomicTI_type_node;
6010       break;
6011 
6012     default:
6013       base_atomic_type = NULL_TREE;
6014     }
6015 
6016   return base_atomic_type;
6017 }
6018 
6019 /* Return a version of the TYPE, qualified as indicated by the
6020    TYPE_QUALS, if one exists.  If no qualified version exists yet,
6021    return NULL_TREE.  */
6022 
6023 tree
6024 get_qualified_type (tree type, int type_quals)
6025 {
6026   tree t;
6027 
6028   if (TYPE_QUALS (type) == type_quals)
6029     return type;
6030 
6031   /* Search the chain of variants to see if there is already one there just
6032      like the one we need to have.  If so, use that existing one.  We must
6033      preserve the TYPE_NAME, since there is code that depends on this.  */
6034   for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
6035     if (check_qualified_type (t, type, type_quals))
6036       return t;
6037 
6038   return NULL_TREE;
6039 }
6040 
6041 /* Like get_qualified_type, but creates the type if it does not
6042    exist.  This function never returns NULL_TREE.  */
6043 
6044 tree
6045 build_qualified_type (tree type, int type_quals MEM_STAT_DECL)
6046 {
6047   tree t;
6048 
6049   /* See if we already have the appropriate qualified variant.  */
6050   t = get_qualified_type (type, type_quals);
6051 
6052   /* If not, build it.  */
6053   if (!t)
6054     {
6055       t = build_variant_type_copy (type PASS_MEM_STAT);
6056       set_type_quals (t, type_quals);
6057 
6058       if (((type_quals & TYPE_QUAL_ATOMIC) == TYPE_QUAL_ATOMIC))
6059 	{
6060 	  /* See if this object can map to a basic atomic type.  */
6061 	  tree atomic_type = find_atomic_core_type (type);
6062 	  if (atomic_type)
6063 	    {
6064 	      /* Ensure the alignment of this type is compatible with
6065 		 the required alignment of the atomic type.  */
6066 	      if (TYPE_ALIGN (atomic_type) > TYPE_ALIGN (t))
6067 		SET_TYPE_ALIGN (t, TYPE_ALIGN (atomic_type));
6068 	    }
6069 	}
6070 
6071       if (TYPE_STRUCTURAL_EQUALITY_P (type))
6072 	/* Propagate structural equality. */
6073 	SET_TYPE_STRUCTURAL_EQUALITY (t);
6074       else if (TYPE_CANONICAL (type) != type)
6075 	/* Build the underlying canonical type, since it is different
6076 	   from TYPE. */
6077 	{
6078 	  tree c = build_qualified_type (TYPE_CANONICAL (type), type_quals);
6079 	  TYPE_CANONICAL (t) = TYPE_CANONICAL (c);
6080 	}
6081       else
6082 	/* T is its own canonical type. */
6083 	TYPE_CANONICAL (t) = t;
6084 
6085     }
6086 
6087   return t;
6088 }
6089 
6090 /* Create a variant of type T with alignment ALIGN.  */
6091 
6092 tree
6093 build_aligned_type (tree type, unsigned int align)
6094 {
6095   tree t;
6096 
6097   if (TYPE_PACKED (type)
6098       || TYPE_ALIGN (type) == align)
6099     return type;
6100 
6101   for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
6102     if (check_aligned_type (t, type, align))
6103       return t;
6104 
6105   t = build_variant_type_copy (type);
6106   SET_TYPE_ALIGN (t, align);
6107   TYPE_USER_ALIGN (t) = 1;
6108 
6109   return t;
6110 }
6111 
6112 /* Create a new distinct copy of TYPE.  The new type is made its own
6113    MAIN_VARIANT. If TYPE requires structural equality checks, the
6114    resulting type requires structural equality checks; otherwise, its
6115    TYPE_CANONICAL points to itself. */
6116 
6117 tree
6118 build_distinct_type_copy (tree type MEM_STAT_DECL)
6119 {
6120   tree t = copy_node (type PASS_MEM_STAT);
6121 
6122   TYPE_POINTER_TO (t) = 0;
6123   TYPE_REFERENCE_TO (t) = 0;
6124 
6125   /* Set the canonical type either to a new equivalence class, or
6126      propagate the need for structural equality checks. */
6127   if (TYPE_STRUCTURAL_EQUALITY_P (type))
6128     SET_TYPE_STRUCTURAL_EQUALITY (t);
6129   else
6130     TYPE_CANONICAL (t) = t;
6131 
6132   /* Make it its own variant.  */
6133   TYPE_MAIN_VARIANT (t) = t;
6134   TYPE_NEXT_VARIANT (t) = 0;
6135 
6136   /* Note that it is now possible for TYPE_MIN_VALUE to be a value
6137      whose TREE_TYPE is not t.  This can also happen in the Ada
6138      frontend when using subtypes.  */
6139 
6140   return t;
6141 }
6142 
6143 /* Create a new variant of TYPE, equivalent but distinct.  This is so
6144    the caller can modify it. TYPE_CANONICAL for the return type will
6145    be equivalent to TYPE_CANONICAL of TYPE, indicating that the types
6146    are considered equal by the language itself (or that both types
6147    require structural equality checks). */
6148 
6149 tree
6150 build_variant_type_copy (tree type MEM_STAT_DECL)
6151 {
6152   tree t, m = TYPE_MAIN_VARIANT (type);
6153 
6154   t = build_distinct_type_copy (type PASS_MEM_STAT);
6155 
6156   /* Since we're building a variant, assume that it is a non-semantic
6157      variant. This also propagates TYPE_STRUCTURAL_EQUALITY_P. */
6158   TYPE_CANONICAL (t) = TYPE_CANONICAL (type);
6159   /* Type variants have no alias set defined.  */
6160   TYPE_ALIAS_SET (t) = -1;
6161 
6162   /* Add the new type to the chain of variants of TYPE.  */
6163   TYPE_NEXT_VARIANT (t) = TYPE_NEXT_VARIANT (m);
6164   TYPE_NEXT_VARIANT (m) = t;
6165   TYPE_MAIN_VARIANT (t) = m;
6166 
6167   return t;
6168 }
6169 
6170 /* Return true if the from tree in both tree maps are equal.  */
6171 
6172 int
6173 tree_map_base_eq (const void *va, const void *vb)
6174 {
6175   const struct tree_map_base  *const a = (const struct tree_map_base *) va,
6176     *const b = (const struct tree_map_base *) vb;
6177   return (a->from == b->from);
6178 }
6179 
6180 /* Hash a from tree in a tree_base_map.  */
6181 
6182 unsigned int
6183 tree_map_base_hash (const void *item)
6184 {
6185   return htab_hash_pointer (((const struct tree_map_base *)item)->from);
6186 }
6187 
6188 /* Return true if this tree map structure is marked for garbage collection
6189    purposes.  We simply return true if the from tree is marked, so that this
6190    structure goes away when the from tree goes away.  */
6191 
6192 int
6193 tree_map_base_marked_p (const void *p)
6194 {
6195   return ggc_marked_p (((const struct tree_map_base *) p)->from);
6196 }
6197 
6198 /* Hash a from tree in a tree_map.  */
6199 
6200 unsigned int
6201 tree_map_hash (const void *item)
6202 {
6203   return (((const struct tree_map *) item)->hash);
6204 }
6205 
6206 /* Hash a from tree in a tree_decl_map.  */
6207 
6208 unsigned int
6209 tree_decl_map_hash (const void *item)
6210 {
6211   return DECL_UID (((const struct tree_decl_map *) item)->base.from);
6212 }
6213 
6214 /* Return the initialization priority for DECL.  */
6215 
6216 priority_type
6217 decl_init_priority_lookup (tree decl)
6218 {
6219   symtab_node *snode = symtab_node::get (decl);
6220 
6221   if (!snode)
6222     return DEFAULT_INIT_PRIORITY;
6223   return
6224     snode->get_init_priority ();
6225 }
6226 
6227 /* Return the finalization priority for DECL.  */
6228 
6229 priority_type
6230 decl_fini_priority_lookup (tree decl)
6231 {
6232   cgraph_node *node = cgraph_node::get (decl);
6233 
6234   if (!node)
6235     return DEFAULT_INIT_PRIORITY;
6236   return
6237     node->get_fini_priority ();
6238 }
6239 
6240 /* Set the initialization priority for DECL to PRIORITY.  */
6241 
6242 void
6243 decl_init_priority_insert (tree decl, priority_type priority)
6244 {
6245   struct symtab_node *snode;
6246 
6247   if (priority == DEFAULT_INIT_PRIORITY)
6248     {
6249       snode = symtab_node::get (decl);
6250       if (!snode)
6251 	return;
6252     }
6253   else if (VAR_P (decl))
6254     snode = varpool_node::get_create (decl);
6255   else
6256     snode = cgraph_node::get_create (decl);
6257   snode->set_init_priority (priority);
6258 }
6259 
6260 /* Set the finalization priority for DECL to PRIORITY.  */
6261 
6262 void
6263 decl_fini_priority_insert (tree decl, priority_type priority)
6264 {
6265   struct cgraph_node *node;
6266 
6267   if (priority == DEFAULT_INIT_PRIORITY)
6268     {
6269       node = cgraph_node::get (decl);
6270       if (!node)
6271 	return;
6272     }
6273   else
6274     node = cgraph_node::get_create (decl);
6275   node->set_fini_priority (priority);
6276 }
6277 
6278 /* Print out the statistics for the DECL_DEBUG_EXPR hash table.  */
6279 
6280 static void
6281 print_debug_expr_statistics (void)
6282 {
6283   fprintf (stderr, "DECL_DEBUG_EXPR  hash: size %ld, %ld elements, %f collisions\n",
6284 	   (long) debug_expr_for_decl->size (),
6285 	   (long) debug_expr_for_decl->elements (),
6286 	   debug_expr_for_decl->collisions ());
6287 }
6288 
6289 /* Print out the statistics for the DECL_VALUE_EXPR hash table.  */
6290 
6291 static void
6292 print_value_expr_statistics (void)
6293 {
6294   fprintf (stderr, "DECL_VALUE_EXPR  hash: size %ld, %ld elements, %f collisions\n",
6295 	   (long) value_expr_for_decl->size (),
6296 	   (long) value_expr_for_decl->elements (),
6297 	   value_expr_for_decl->collisions ());
6298 }
6299 
6300 /* Lookup a debug expression for FROM, and return it if we find one.  */
6301 
6302 tree
6303 decl_debug_expr_lookup (tree from)
6304 {
6305   struct tree_decl_map *h, in;
6306   in.base.from = from;
6307 
6308   h = debug_expr_for_decl->find_with_hash (&in, DECL_UID (from));
6309   if (h)
6310     return h->to;
6311   return NULL_TREE;
6312 }
6313 
6314 /* Insert a mapping FROM->TO in the debug expression hashtable.  */
6315 
6316 void
6317 decl_debug_expr_insert (tree from, tree to)
6318 {
6319   struct tree_decl_map *h;
6320 
6321   h = ggc_alloc<tree_decl_map> ();
6322   h->base.from = from;
6323   h->to = to;
6324   *debug_expr_for_decl->find_slot_with_hash (h, DECL_UID (from), INSERT) = h;
6325 }
6326 
6327 /* Lookup a value expression for FROM, and return it if we find one.  */
6328 
6329 tree
6330 decl_value_expr_lookup (tree from)
6331 {
6332   struct tree_decl_map *h, in;
6333   in.base.from = from;
6334 
6335   h = value_expr_for_decl->find_with_hash (&in, DECL_UID (from));
6336   if (h)
6337     return h->to;
6338   return NULL_TREE;
6339 }
6340 
6341 /* Insert a mapping FROM->TO in the value expression hashtable.  */
6342 
6343 void
6344 decl_value_expr_insert (tree from, tree to)
6345 {
6346   struct tree_decl_map *h;
6347 
6348   h = ggc_alloc<tree_decl_map> ();
6349   h->base.from = from;
6350   h->to = to;
6351   *value_expr_for_decl->find_slot_with_hash (h, DECL_UID (from), INSERT) = h;
6352 }
6353 
6354 /* Lookup a vector of debug arguments for FROM, and return it if we
6355    find one.  */
6356 
6357 vec<tree, va_gc> **
6358 decl_debug_args_lookup (tree from)
6359 {
6360   struct tree_vec_map *h, in;
6361 
6362   if (!DECL_HAS_DEBUG_ARGS_P (from))
6363     return NULL;
6364   gcc_checking_assert (debug_args_for_decl != NULL);
6365   in.base.from = from;
6366   h = debug_args_for_decl->find_with_hash (&in, DECL_UID (from));
6367   if (h)
6368     return &h->to;
6369   return NULL;
6370 }
6371 
6372 /* Insert a mapping FROM->empty vector of debug arguments in the value
6373    expression hashtable.  */
6374 
6375 vec<tree, va_gc> **
6376 decl_debug_args_insert (tree from)
6377 {
6378   struct tree_vec_map *h;
6379   tree_vec_map **loc;
6380 
6381   if (DECL_HAS_DEBUG_ARGS_P (from))
6382     return decl_debug_args_lookup (from);
6383   if (debug_args_for_decl == NULL)
6384     debug_args_for_decl = hash_table<tree_vec_map_cache_hasher>::create_ggc (64);
6385   h = ggc_alloc<tree_vec_map> ();
6386   h->base.from = from;
6387   h->to = NULL;
6388   loc = debug_args_for_decl->find_slot_with_hash (h, DECL_UID (from), INSERT);
6389   *loc = h;
6390   DECL_HAS_DEBUG_ARGS_P (from) = 1;
6391   return &h->to;
6392 }
6393 
6394 /* Hashing of types so that we don't make duplicates.
6395    The entry point is `type_hash_canon'.  */
6396 
6397 /* Generate the default hash code for TYPE.  This is designed for
6398    speed, rather than maximum entropy.  */
6399 
6400 hashval_t
6401 type_hash_canon_hash (tree type)
6402 {
6403   inchash::hash hstate;
6404 
6405   hstate.add_int (TREE_CODE (type));
6406 
6407   if (TREE_TYPE (type))
6408     hstate.add_object (TYPE_HASH (TREE_TYPE (type)));
6409 
6410   for (tree t = TYPE_ATTRIBUTES (type); t; t = TREE_CHAIN (t))
6411     /* Just the identifier is adequate to distinguish.  */
6412     hstate.add_object (IDENTIFIER_HASH_VALUE (get_attribute_name (t)));
6413 
6414   switch (TREE_CODE (type))
6415     {
6416     case METHOD_TYPE:
6417       hstate.add_object (TYPE_HASH (TYPE_METHOD_BASETYPE (type)));
6418       /* FALLTHROUGH. */
6419     case FUNCTION_TYPE:
6420       for (tree t = TYPE_ARG_TYPES (type); t; t = TREE_CHAIN (t))
6421 	if (TREE_VALUE (t) != error_mark_node)
6422 	  hstate.add_object (TYPE_HASH (TREE_VALUE (t)));
6423       break;
6424 
6425     case OFFSET_TYPE:
6426       hstate.add_object (TYPE_HASH (TYPE_OFFSET_BASETYPE (type)));
6427       break;
6428 
6429     case ARRAY_TYPE:
6430       {
6431 	if (TYPE_DOMAIN (type))
6432 	  hstate.add_object (TYPE_HASH (TYPE_DOMAIN (type)));
6433 	if (!AGGREGATE_TYPE_P (TREE_TYPE (type)))
6434 	  {
6435 	    unsigned typeless = TYPE_TYPELESS_STORAGE (type);
6436 	    hstate.add_object (typeless);
6437 	  }
6438       }
6439       break;
6440 
6441     case INTEGER_TYPE:
6442       {
6443 	tree t = TYPE_MAX_VALUE (type);
6444 	if (!t)
6445 	  t = TYPE_MIN_VALUE (type);
6446 	for (int i = 0; i < TREE_INT_CST_NUNITS (t); i++)
6447 	  hstate.add_object (TREE_INT_CST_ELT (t, i));
6448 	break;
6449       }
6450 
6451     case REAL_TYPE:
6452     case FIXED_POINT_TYPE:
6453       {
6454 	unsigned prec = TYPE_PRECISION (type);
6455 	hstate.add_object (prec);
6456 	break;
6457       }
6458 
6459     case VECTOR_TYPE:
6460       hstate.add_poly_int (TYPE_VECTOR_SUBPARTS (type));
6461       break;
6462 
6463     default:
6464       break;
6465     }
6466 
6467   return hstate.end ();
6468 }
6469 
6470 /* These are the Hashtable callback functions.  */
6471 
6472 /* Returns true iff the types are equivalent.  */
6473 
6474 bool
6475 type_cache_hasher::equal (type_hash *a, type_hash *b)
6476 {
6477   /* First test the things that are the same for all types.  */
6478   if (a->hash != b->hash
6479       || TREE_CODE (a->type) != TREE_CODE (b->type)
6480       || TREE_TYPE (a->type) != TREE_TYPE (b->type)
6481       || !attribute_list_equal (TYPE_ATTRIBUTES (a->type),
6482 				 TYPE_ATTRIBUTES (b->type))
6483       || (TREE_CODE (a->type) != COMPLEX_TYPE
6484           && TYPE_NAME (a->type) != TYPE_NAME (b->type)))
6485     return 0;
6486 
6487   /* Be careful about comparing arrays before and after the element type
6488      has been completed; don't compare TYPE_ALIGN unless both types are
6489      complete.  */
6490   if (COMPLETE_TYPE_P (a->type) && COMPLETE_TYPE_P (b->type)
6491       && (TYPE_ALIGN (a->type) != TYPE_ALIGN (b->type)
6492 	  || TYPE_MODE (a->type) != TYPE_MODE (b->type)))
6493     return 0;
6494 
6495   switch (TREE_CODE (a->type))
6496     {
6497     case VOID_TYPE:
6498     case COMPLEX_TYPE:
6499     case POINTER_TYPE:
6500     case REFERENCE_TYPE:
6501     case NULLPTR_TYPE:
6502       return 1;
6503 
6504     case VECTOR_TYPE:
6505       return known_eq (TYPE_VECTOR_SUBPARTS (a->type),
6506 		       TYPE_VECTOR_SUBPARTS (b->type));
6507 
6508     case ENUMERAL_TYPE:
6509       if (TYPE_VALUES (a->type) != TYPE_VALUES (b->type)
6510 	  && !(TYPE_VALUES (a->type)
6511 	       && TREE_CODE (TYPE_VALUES (a->type)) == TREE_LIST
6512 	       && TYPE_VALUES (b->type)
6513 	       && TREE_CODE (TYPE_VALUES (b->type)) == TREE_LIST
6514 	       && type_list_equal (TYPE_VALUES (a->type),
6515 				   TYPE_VALUES (b->type))))
6516 	return 0;
6517 
6518       /* fall through */
6519 
6520     case INTEGER_TYPE:
6521     case REAL_TYPE:
6522     case BOOLEAN_TYPE:
6523       if (TYPE_PRECISION (a->type) != TYPE_PRECISION (b->type))
6524 	return false;
6525       return ((TYPE_MAX_VALUE (a->type) == TYPE_MAX_VALUE (b->type)
6526 	       || tree_int_cst_equal (TYPE_MAX_VALUE (a->type),
6527 				      TYPE_MAX_VALUE (b->type)))
6528 	      && (TYPE_MIN_VALUE (a->type) == TYPE_MIN_VALUE (b->type)
6529 		  || tree_int_cst_equal (TYPE_MIN_VALUE (a->type),
6530 					 TYPE_MIN_VALUE (b->type))));
6531 
6532     case FIXED_POINT_TYPE:
6533       return TYPE_SATURATING (a->type) == TYPE_SATURATING (b->type);
6534 
6535     case OFFSET_TYPE:
6536       return TYPE_OFFSET_BASETYPE (a->type) == TYPE_OFFSET_BASETYPE (b->type);
6537 
6538     case METHOD_TYPE:
6539       if (TYPE_METHOD_BASETYPE (a->type) == TYPE_METHOD_BASETYPE (b->type)
6540 	  && (TYPE_ARG_TYPES (a->type) == TYPE_ARG_TYPES (b->type)
6541 	      || (TYPE_ARG_TYPES (a->type)
6542 		  && TREE_CODE (TYPE_ARG_TYPES (a->type)) == TREE_LIST
6543 		  && TYPE_ARG_TYPES (b->type)
6544 		  && TREE_CODE (TYPE_ARG_TYPES (b->type)) == TREE_LIST
6545 		  && type_list_equal (TYPE_ARG_TYPES (a->type),
6546 				      TYPE_ARG_TYPES (b->type)))))
6547         break;
6548       return 0;
6549     case ARRAY_TYPE:
6550       /* Don't compare TYPE_TYPELESS_STORAGE flag on aggregates,
6551 	 where the flag should be inherited from the element type
6552 	 and can change after ARRAY_TYPEs are created; on non-aggregates
6553 	 compare it and hash it, scalars will never have that flag set
6554 	 and we need to differentiate between arrays created by different
6555 	 front-ends or middle-end created arrays.  */
6556       return (TYPE_DOMAIN (a->type) == TYPE_DOMAIN (b->type)
6557 	      && (AGGREGATE_TYPE_P (TREE_TYPE (a->type))
6558 		  || (TYPE_TYPELESS_STORAGE (a->type)
6559 		      == TYPE_TYPELESS_STORAGE (b->type))));
6560 
6561     case RECORD_TYPE:
6562     case UNION_TYPE:
6563     case QUAL_UNION_TYPE:
6564       return (TYPE_FIELDS (a->type) == TYPE_FIELDS (b->type)
6565 	      || (TYPE_FIELDS (a->type)
6566 		  && TREE_CODE (TYPE_FIELDS (a->type)) == TREE_LIST
6567 		  && TYPE_FIELDS (b->type)
6568 		  && TREE_CODE (TYPE_FIELDS (b->type)) == TREE_LIST
6569 		  && type_list_equal (TYPE_FIELDS (a->type),
6570 				      TYPE_FIELDS (b->type))));
6571 
6572     case FUNCTION_TYPE:
6573       if (TYPE_ARG_TYPES (a->type) == TYPE_ARG_TYPES (b->type)
6574 	  || (TYPE_ARG_TYPES (a->type)
6575 	      && TREE_CODE (TYPE_ARG_TYPES (a->type)) == TREE_LIST
6576 	      && TYPE_ARG_TYPES (b->type)
6577 	      && TREE_CODE (TYPE_ARG_TYPES (b->type)) == TREE_LIST
6578 	      && type_list_equal (TYPE_ARG_TYPES (a->type),
6579 				  TYPE_ARG_TYPES (b->type))))
6580 	break;
6581       return 0;
6582 
6583     default:
6584       return 0;
6585     }
6586 
6587   if (lang_hooks.types.type_hash_eq != NULL)
6588     return lang_hooks.types.type_hash_eq (a->type, b->type);
6589 
6590   return 1;
6591 }
6592 
6593 /* Given TYPE, and HASHCODE its hash code, return the canonical
6594    object for an identical type if one already exists.
6595    Otherwise, return TYPE, and record it as the canonical object.
6596 
6597    To use this function, first create a type of the sort you want.
6598    Then compute its hash code from the fields of the type that
6599    make it different from other similar types.
6600    Then call this function and use the value.  */
6601 
6602 tree
6603 type_hash_canon (unsigned int hashcode, tree type)
6604 {
6605   type_hash in;
6606   type_hash **loc;
6607 
6608   /* The hash table only contains main variants, so ensure that's what we're
6609      being passed.  */
6610   gcc_assert (TYPE_MAIN_VARIANT (type) == type);
6611 
6612   /* The TYPE_ALIGN field of a type is set by layout_type(), so we
6613      must call that routine before comparing TYPE_ALIGNs.  */
6614   layout_type (type);
6615 
6616   in.hash = hashcode;
6617   in.type = type;
6618 
6619   loc = type_hash_table->find_slot_with_hash (&in, hashcode, INSERT);
6620   if (*loc)
6621     {
6622       tree t1 = ((type_hash *) *loc)->type;
6623       gcc_assert (TYPE_MAIN_VARIANT (t1) == t1
6624 		  && t1 != type);
6625       if (TYPE_UID (type) + 1 == next_type_uid)
6626 	--next_type_uid;
6627       /* Free also min/max values and the cache for integer
6628 	 types.  This can't be done in free_node, as LTO frees
6629 	 those on its own.  */
6630       if (TREE_CODE (type) == INTEGER_TYPE)
6631 	{
6632 	  if (TYPE_MIN_VALUE (type)
6633 	      && TREE_TYPE (TYPE_MIN_VALUE (type)) == type)
6634 	    {
6635 	      /* Zero is always in TYPE_CACHED_VALUES.  */
6636 	      if (! TYPE_UNSIGNED (type))
6637 		int_cst_hash_table->remove_elt (TYPE_MIN_VALUE (type));
6638 	      ggc_free (TYPE_MIN_VALUE (type));
6639 	    }
6640 	  if (TYPE_MAX_VALUE (type)
6641 	      && TREE_TYPE (TYPE_MAX_VALUE (type)) == type)
6642 	    {
6643 	      int_cst_hash_table->remove_elt (TYPE_MAX_VALUE (type));
6644 	      ggc_free (TYPE_MAX_VALUE (type));
6645 	    }
6646 	  if (TYPE_CACHED_VALUES_P (type))
6647 	    ggc_free (TYPE_CACHED_VALUES (type));
6648 	}
6649       free_node (type);
6650       return t1;
6651     }
6652   else
6653     {
6654       struct type_hash *h;
6655 
6656       h = ggc_alloc<type_hash> ();
6657       h->hash = hashcode;
6658       h->type = type;
6659       *loc = h;
6660 
6661       return type;
6662     }
6663 }
6664 
6665 static void
6666 print_type_hash_statistics (void)
6667 {
6668   fprintf (stderr, "Type hash: size %ld, %ld elements, %f collisions\n",
6669 	   (long) type_hash_table->size (),
6670 	   (long) type_hash_table->elements (),
6671 	   type_hash_table->collisions ());
6672 }
6673 
6674 /* Given two lists of types
6675    (chains of TREE_LIST nodes with types in the TREE_VALUE slots)
6676    return 1 if the lists contain the same types in the same order.
6677    Also, the TREE_PURPOSEs must match.  */
6678 
6679 int
6680 type_list_equal (const_tree l1, const_tree l2)
6681 {
6682   const_tree t1, t2;
6683 
6684   for (t1 = l1, t2 = l2; t1 && t2; t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2))
6685     if (TREE_VALUE (t1) != TREE_VALUE (t2)
6686 	|| (TREE_PURPOSE (t1) != TREE_PURPOSE (t2)
6687 	    && ! (1 == simple_cst_equal (TREE_PURPOSE (t1), TREE_PURPOSE (t2))
6688 		  && (TREE_TYPE (TREE_PURPOSE (t1))
6689 		      == TREE_TYPE (TREE_PURPOSE (t2))))))
6690       return 0;
6691 
6692   return t1 == t2;
6693 }
6694 
6695 /* Returns the number of arguments to the FUNCTION_TYPE or METHOD_TYPE
6696    given by TYPE.  If the argument list accepts variable arguments,
6697    then this function counts only the ordinary arguments.  */
6698 
6699 int
6700 type_num_arguments (const_tree type)
6701 {
6702   int i = 0;
6703   tree t;
6704 
6705   for (t = TYPE_ARG_TYPES (type); t; t = TREE_CHAIN (t))
6706     /* If the function does not take a variable number of arguments,
6707        the last element in the list will have type `void'.  */
6708     if (VOID_TYPE_P (TREE_VALUE (t)))
6709       break;
6710     else
6711       ++i;
6712 
6713   return i;
6714 }
6715 
6716 /* Nonzero if integer constants T1 and T2
6717    represent the same constant value.  */
6718 
6719 int
6720 tree_int_cst_equal (const_tree t1, const_tree t2)
6721 {
6722   if (t1 == t2)
6723     return 1;
6724 
6725   if (t1 == 0 || t2 == 0)
6726     return 0;
6727 
6728   if (TREE_CODE (t1) == INTEGER_CST
6729       && TREE_CODE (t2) == INTEGER_CST
6730       && wi::to_widest (t1) == wi::to_widest (t2))
6731     return 1;
6732 
6733   return 0;
6734 }
6735 
6736 /* Return true if T is an INTEGER_CST whose numerical value (extended
6737    according to TYPE_UNSIGNED) fits in a signed HOST_WIDE_INT.  */
6738 
6739 bool
6740 tree_fits_shwi_p (const_tree t)
6741 {
6742   return (t != NULL_TREE
6743 	  && TREE_CODE (t) == INTEGER_CST
6744 	  && wi::fits_shwi_p (wi::to_widest (t)));
6745 }
6746 
6747 /* Return true if T is an INTEGER_CST or POLY_INT_CST whose numerical
6748    value (extended according to TYPE_UNSIGNED) fits in a poly_int64.  */
6749 
6750 bool
6751 tree_fits_poly_int64_p (const_tree t)
6752 {
6753   if (t == NULL_TREE)
6754     return false;
6755   if (POLY_INT_CST_P (t))
6756     {
6757       for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; i++)
6758 	if (!wi::fits_shwi_p (wi::to_wide (POLY_INT_CST_COEFF (t, i))))
6759 	  return false;
6760       return true;
6761     }
6762   return (TREE_CODE (t) == INTEGER_CST
6763 	  && wi::fits_shwi_p (wi::to_widest (t)));
6764 }
6765 
6766 /* Return true if T is an INTEGER_CST whose numerical value (extended
6767    according to TYPE_UNSIGNED) fits in an unsigned HOST_WIDE_INT.  */
6768 
6769 bool
6770 tree_fits_uhwi_p (const_tree t)
6771 {
6772   return (t != NULL_TREE
6773 	  && TREE_CODE (t) == INTEGER_CST
6774 	  && wi::fits_uhwi_p (wi::to_widest (t)));
6775 }
6776 
6777 /* Return true if T is an INTEGER_CST or POLY_INT_CST whose numerical
6778    value (extended according to TYPE_UNSIGNED) fits in a poly_uint64.  */
6779 
6780 bool
6781 tree_fits_poly_uint64_p (const_tree t)
6782 {
6783   if (t == NULL_TREE)
6784     return false;
6785   if (POLY_INT_CST_P (t))
6786     {
6787       for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; i++)
6788 	if (!wi::fits_uhwi_p (wi::to_widest (POLY_INT_CST_COEFF (t, i))))
6789 	  return false;
6790       return true;
6791     }
6792   return (TREE_CODE (t) == INTEGER_CST
6793 	  && wi::fits_uhwi_p (wi::to_widest (t)));
6794 }
6795 
6796 /* T is an INTEGER_CST whose numerical value (extended according to
6797    TYPE_UNSIGNED) fits in a signed HOST_WIDE_INT.  Return that
6798    HOST_WIDE_INT.  */
6799 
6800 HOST_WIDE_INT
6801 tree_to_shwi (const_tree t)
6802 {
6803   gcc_assert (tree_fits_shwi_p (t));
6804   return TREE_INT_CST_LOW (t);
6805 }
6806 
6807 /* T is an INTEGER_CST whose numerical value (extended according to
6808    TYPE_UNSIGNED) fits in an unsigned HOST_WIDE_INT.  Return that
6809    HOST_WIDE_INT.  */
6810 
6811 unsigned HOST_WIDE_INT
6812 tree_to_uhwi (const_tree t)
6813 {
6814   gcc_assert (tree_fits_uhwi_p (t));
6815   return TREE_INT_CST_LOW (t);
6816 }
6817 
6818 /* Return the most significant (sign) bit of T.  */
6819 
6820 int
6821 tree_int_cst_sign_bit (const_tree t)
6822 {
6823   unsigned bitno = TYPE_PRECISION (TREE_TYPE (t)) - 1;
6824 
6825   return wi::extract_uhwi (wi::to_wide (t), bitno, 1);
6826 }
6827 
6828 /* Return an indication of the sign of the integer constant T.
6829    The return value is -1 if T < 0, 0 if T == 0, and 1 if T > 0.
6830    Note that -1 will never be returned if T's type is unsigned.  */
6831 
6832 int
6833 tree_int_cst_sgn (const_tree t)
6834 {
6835   if (wi::to_wide (t) == 0)
6836     return 0;
6837   else if (TYPE_UNSIGNED (TREE_TYPE (t)))
6838     return 1;
6839   else if (wi::neg_p (wi::to_wide (t)))
6840     return -1;
6841   else
6842     return 1;
6843 }
6844 
6845 /* Return the minimum number of bits needed to represent VALUE in a
6846    signed or unsigned type, UNSIGNEDP says which.  */
6847 
6848 unsigned int
6849 tree_int_cst_min_precision (tree value, signop sgn)
6850 {
6851   /* If the value is negative, compute its negative minus 1.  The latter
6852      adjustment is because the absolute value of the largest negative value
6853      is one larger than the largest positive value.  This is equivalent to
6854      a bit-wise negation, so use that operation instead.  */
6855 
6856   if (tree_int_cst_sgn (value) < 0)
6857     value = fold_build1 (BIT_NOT_EXPR, TREE_TYPE (value), value);
6858 
6859   /* Return the number of bits needed, taking into account the fact
6860      that we need one more bit for a signed than unsigned type.
6861      If value is 0 or -1, the minimum precision is 1 no matter
6862      whether unsignedp is true or false.  */
6863 
6864   if (integer_zerop (value))
6865     return 1;
6866   else
6867     return tree_floor_log2 (value) + 1 + (sgn == SIGNED ? 1 : 0) ;
6868 }
6869 
6870 /* Return truthvalue of whether T1 is the same tree structure as T2.
6871    Return 1 if they are the same.
6872    Return 0 if they are understandably different.
6873    Return -1 if either contains tree structure not understood by
6874    this function.  */
6875 
6876 int
6877 simple_cst_equal (const_tree t1, const_tree t2)
6878 {
6879   enum tree_code code1, code2;
6880   int cmp;
6881   int i;
6882 
6883   if (t1 == t2)
6884     return 1;
6885   if (t1 == 0 || t2 == 0)
6886     return 0;
6887 
6888   code1 = TREE_CODE (t1);
6889   code2 = TREE_CODE (t2);
6890 
6891   if (CONVERT_EXPR_CODE_P (code1) || code1 == NON_LVALUE_EXPR)
6892     {
6893       if (CONVERT_EXPR_CODE_P (code2)
6894 	  || code2 == NON_LVALUE_EXPR)
6895 	return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
6896       else
6897 	return simple_cst_equal (TREE_OPERAND (t1, 0), t2);
6898     }
6899 
6900   else if (CONVERT_EXPR_CODE_P (code2)
6901 	   || code2 == NON_LVALUE_EXPR)
6902     return simple_cst_equal (t1, TREE_OPERAND (t2, 0));
6903 
6904   if (code1 != code2)
6905     return 0;
6906 
6907   switch (code1)
6908     {
6909     case INTEGER_CST:
6910       return wi::to_widest (t1) == wi::to_widest (t2);
6911 
6912     case REAL_CST:
6913       return real_identical (&TREE_REAL_CST (t1), &TREE_REAL_CST (t2));
6914 
6915     case FIXED_CST:
6916       return FIXED_VALUES_IDENTICAL (TREE_FIXED_CST (t1), TREE_FIXED_CST (t2));
6917 
6918     case STRING_CST:
6919       return (TREE_STRING_LENGTH (t1) == TREE_STRING_LENGTH (t2)
6920 	      && ! memcmp (TREE_STRING_POINTER (t1), TREE_STRING_POINTER (t2),
6921 			 TREE_STRING_LENGTH (t1)));
6922 
6923     case CONSTRUCTOR:
6924       {
6925 	unsigned HOST_WIDE_INT idx;
6926 	vec<constructor_elt, va_gc> *v1 = CONSTRUCTOR_ELTS (t1);
6927 	vec<constructor_elt, va_gc> *v2 = CONSTRUCTOR_ELTS (t2);
6928 
6929 	if (vec_safe_length (v1) != vec_safe_length (v2))
6930 	  return false;
6931 
6932         for (idx = 0; idx < vec_safe_length (v1); ++idx)
6933 	  /* ??? Should we handle also fields here? */
6934 	  if (!simple_cst_equal ((*v1)[idx].value, (*v2)[idx].value))
6935 	    return false;
6936 	return true;
6937       }
6938 
6939     case SAVE_EXPR:
6940       return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
6941 
6942     case CALL_EXPR:
6943       cmp = simple_cst_equal (CALL_EXPR_FN (t1), CALL_EXPR_FN (t2));
6944       if (cmp <= 0)
6945 	return cmp;
6946       if (call_expr_nargs (t1) != call_expr_nargs (t2))
6947 	return 0;
6948       {
6949 	const_tree arg1, arg2;
6950 	const_call_expr_arg_iterator iter1, iter2;
6951 	for (arg1 = first_const_call_expr_arg (t1, &iter1),
6952 	       arg2 = first_const_call_expr_arg (t2, &iter2);
6953 	     arg1 && arg2;
6954 	     arg1 = next_const_call_expr_arg (&iter1),
6955 	       arg2 = next_const_call_expr_arg (&iter2))
6956 	  {
6957 	    cmp = simple_cst_equal (arg1, arg2);
6958 	    if (cmp <= 0)
6959 	      return cmp;
6960 	  }
6961 	return arg1 == arg2;
6962       }
6963 
6964     case TARGET_EXPR:
6965       /* Special case: if either target is an unallocated VAR_DECL,
6966 	 it means that it's going to be unified with whatever the
6967 	 TARGET_EXPR is really supposed to initialize, so treat it
6968 	 as being equivalent to anything.  */
6969       if ((TREE_CODE (TREE_OPERAND (t1, 0)) == VAR_DECL
6970 	   && DECL_NAME (TREE_OPERAND (t1, 0)) == NULL_TREE
6971 	   && !DECL_RTL_SET_P (TREE_OPERAND (t1, 0)))
6972 	  || (TREE_CODE (TREE_OPERAND (t2, 0)) == VAR_DECL
6973 	      && DECL_NAME (TREE_OPERAND (t2, 0)) == NULL_TREE
6974 	      && !DECL_RTL_SET_P (TREE_OPERAND (t2, 0))))
6975 	cmp = 1;
6976       else
6977 	cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
6978 
6979       if (cmp <= 0)
6980 	return cmp;
6981 
6982       return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
6983 
6984     case WITH_CLEANUP_EXPR:
6985       cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
6986       if (cmp <= 0)
6987 	return cmp;
6988 
6989       return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t1, 1));
6990 
6991     case COMPONENT_REF:
6992       if (TREE_OPERAND (t1, 1) == TREE_OPERAND (t2, 1))
6993 	return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
6994 
6995       return 0;
6996 
6997     case VAR_DECL:
6998     case PARM_DECL:
6999     case CONST_DECL:
7000     case FUNCTION_DECL:
7001       return 0;
7002 
7003     default:
7004       if (POLY_INT_CST_P (t1))
7005 	/* A false return means maybe_ne rather than known_ne.  */
7006 	return known_eq (poly_widest_int::from (poly_int_cst_value (t1),
7007 						TYPE_SIGN (TREE_TYPE (t1))),
7008 			 poly_widest_int::from (poly_int_cst_value (t2),
7009 						TYPE_SIGN (TREE_TYPE (t2))));
7010       break;
7011     }
7012 
7013   /* This general rule works for most tree codes.  All exceptions should be
7014      handled above.  If this is a language-specific tree code, we can't
7015      trust what might be in the operand, so say we don't know
7016      the situation.  */
7017   if ((int) code1 >= (int) LAST_AND_UNUSED_TREE_CODE)
7018     return -1;
7019 
7020   switch (TREE_CODE_CLASS (code1))
7021     {
7022     case tcc_unary:
7023     case tcc_binary:
7024     case tcc_comparison:
7025     case tcc_expression:
7026     case tcc_reference:
7027     case tcc_statement:
7028       cmp = 1;
7029       for (i = 0; i < TREE_CODE_LENGTH (code1); i++)
7030 	{
7031 	  cmp = simple_cst_equal (TREE_OPERAND (t1, i), TREE_OPERAND (t2, i));
7032 	  if (cmp <= 0)
7033 	    return cmp;
7034 	}
7035 
7036       return cmp;
7037 
7038     default:
7039       return -1;
7040     }
7041 }
7042 
7043 /* Compare the value of T, an INTEGER_CST, with U, an unsigned integer value.
7044    Return -1, 0, or 1 if the value of T is less than, equal to, or greater
7045    than U, respectively.  */
7046 
7047 int
7048 compare_tree_int (const_tree t, unsigned HOST_WIDE_INT u)
7049 {
7050   if (tree_int_cst_sgn (t) < 0)
7051     return -1;
7052   else if (!tree_fits_uhwi_p (t))
7053     return 1;
7054   else if (TREE_INT_CST_LOW (t) == u)
7055     return 0;
7056   else if (TREE_INT_CST_LOW (t) < u)
7057     return -1;
7058   else
7059     return 1;
7060 }
7061 
7062 /* Return true if SIZE represents a constant size that is in bounds of
7063    what the middle-end and the backend accepts (covering not more than
7064    half of the address-space).  */
7065 
7066 bool
7067 valid_constant_size_p (const_tree size)
7068 {
7069   if (POLY_INT_CST_P (size))
7070     {
7071       if (TREE_OVERFLOW (size))
7072 	return false;
7073       for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
7074 	if (!valid_constant_size_p (POLY_INT_CST_COEFF (size, i)))
7075 	  return false;
7076       return true;
7077     }
7078   if (! tree_fits_uhwi_p (size)
7079       || TREE_OVERFLOW (size)
7080       || tree_int_cst_sign_bit (size) != 0)
7081     return false;
7082   return true;
7083 }
7084 
7085 /* Return the precision of the type, or for a complex or vector type the
7086    precision of the type of its elements.  */
7087 
7088 unsigned int
7089 element_precision (const_tree type)
7090 {
7091   if (!TYPE_P (type))
7092     type = TREE_TYPE (type);
7093   enum tree_code code = TREE_CODE (type);
7094   if (code == COMPLEX_TYPE || code == VECTOR_TYPE)
7095     type = TREE_TYPE (type);
7096 
7097   return TYPE_PRECISION (type);
7098 }
7099 
7100 /* Return true if CODE represents an associative tree code.  Otherwise
7101    return false.  */
7102 bool
7103 associative_tree_code (enum tree_code code)
7104 {
7105   switch (code)
7106     {
7107     case BIT_IOR_EXPR:
7108     case BIT_AND_EXPR:
7109     case BIT_XOR_EXPR:
7110     case PLUS_EXPR:
7111     case MULT_EXPR:
7112     case MIN_EXPR:
7113     case MAX_EXPR:
7114       return true;
7115 
7116     default:
7117       break;
7118     }
7119   return false;
7120 }
7121 
7122 /* Return true if CODE represents a commutative tree code.  Otherwise
7123    return false.  */
7124 bool
7125 commutative_tree_code (enum tree_code code)
7126 {
7127   switch (code)
7128     {
7129     case PLUS_EXPR:
7130     case MULT_EXPR:
7131     case MULT_HIGHPART_EXPR:
7132     case MIN_EXPR:
7133     case MAX_EXPR:
7134     case BIT_IOR_EXPR:
7135     case BIT_XOR_EXPR:
7136     case BIT_AND_EXPR:
7137     case NE_EXPR:
7138     case EQ_EXPR:
7139     case UNORDERED_EXPR:
7140     case ORDERED_EXPR:
7141     case UNEQ_EXPR:
7142     case LTGT_EXPR:
7143     case TRUTH_AND_EXPR:
7144     case TRUTH_XOR_EXPR:
7145     case TRUTH_OR_EXPR:
7146     case WIDEN_MULT_EXPR:
7147     case VEC_WIDEN_MULT_HI_EXPR:
7148     case VEC_WIDEN_MULT_LO_EXPR:
7149     case VEC_WIDEN_MULT_EVEN_EXPR:
7150     case VEC_WIDEN_MULT_ODD_EXPR:
7151       return true;
7152 
7153     default:
7154       break;
7155     }
7156   return false;
7157 }
7158 
7159 /* Return true if CODE represents a ternary tree code for which the
7160    first two operands are commutative.  Otherwise return false.  */
7161 bool
7162 commutative_ternary_tree_code (enum tree_code code)
7163 {
7164   switch (code)
7165     {
7166     case WIDEN_MULT_PLUS_EXPR:
7167     case WIDEN_MULT_MINUS_EXPR:
7168     case DOT_PROD_EXPR:
7169     case FMA_EXPR:
7170       return true;
7171 
7172     default:
7173       break;
7174     }
7175   return false;
7176 }
7177 
7178 /* Returns true if CODE can overflow.  */
7179 
7180 bool
7181 operation_can_overflow (enum tree_code code)
7182 {
7183   switch (code)
7184     {
7185     case PLUS_EXPR:
7186     case MINUS_EXPR:
7187     case MULT_EXPR:
7188     case LSHIFT_EXPR:
7189       /* Can overflow in various ways.  */
7190       return true;
7191     case TRUNC_DIV_EXPR:
7192     case EXACT_DIV_EXPR:
7193     case FLOOR_DIV_EXPR:
7194     case CEIL_DIV_EXPR:
7195       /* For INT_MIN / -1.  */
7196       return true;
7197     case NEGATE_EXPR:
7198     case ABS_EXPR:
7199       /* For -INT_MIN.  */
7200       return true;
7201     default:
7202       /* These operators cannot overflow.  */
7203       return false;
7204     }
7205 }
7206 
7207 /* Returns true if CODE operating on operands of type TYPE doesn't overflow, or
7208    ftrapv doesn't generate trapping insns for CODE.  */
7209 
7210 bool
7211 operation_no_trapping_overflow (tree type, enum tree_code code)
7212 {
7213   gcc_checking_assert (ANY_INTEGRAL_TYPE_P (type));
7214 
7215   /* We don't generate instructions that trap on overflow for complex or vector
7216      types.  */
7217   if (!INTEGRAL_TYPE_P (type))
7218     return true;
7219 
7220   if (!TYPE_OVERFLOW_TRAPS (type))
7221     return true;
7222 
7223   switch (code)
7224     {
7225     case PLUS_EXPR:
7226     case MINUS_EXPR:
7227     case MULT_EXPR:
7228     case NEGATE_EXPR:
7229     case ABS_EXPR:
7230       /* These operators can overflow, and -ftrapv generates trapping code for
7231 	 these.  */
7232       return false;
7233     case TRUNC_DIV_EXPR:
7234     case EXACT_DIV_EXPR:
7235     case FLOOR_DIV_EXPR:
7236     case CEIL_DIV_EXPR:
7237     case LSHIFT_EXPR:
7238       /* These operators can overflow, but -ftrapv does not generate trapping
7239 	 code for these.  */
7240       return true;
7241     default:
7242       /* These operators cannot overflow.  */
7243       return true;
7244     }
7245 }
7246 
7247 namespace inchash
7248 {
7249 
7250 /* Generate a hash value for an expression.  This can be used iteratively
7251    by passing a previous result as the HSTATE argument.
7252 
7253    This function is intended to produce the same hash for expressions which
7254    would compare equal using operand_equal_p.  */
7255 void
7256 add_expr (const_tree t, inchash::hash &hstate, unsigned int flags)
7257 {
7258   int i;
7259   enum tree_code code;
7260   enum tree_code_class tclass;
7261 
7262   if (t == NULL_TREE || t == error_mark_node)
7263     {
7264       hstate.merge_hash (0);
7265       return;
7266     }
7267 
7268   if (!(flags & OEP_ADDRESS_OF))
7269     STRIP_NOPS (t);
7270 
7271   code = TREE_CODE (t);
7272 
7273   switch (code)
7274     {
7275     /* Alas, constants aren't shared, so we can't rely on pointer
7276        identity.  */
7277     case VOID_CST:
7278       hstate.merge_hash (0);
7279       return;
7280     case INTEGER_CST:
7281       gcc_checking_assert (!(flags & OEP_ADDRESS_OF));
7282       for (i = 0; i < TREE_INT_CST_EXT_NUNITS (t); i++)
7283 	hstate.add_hwi (TREE_INT_CST_ELT (t, i));
7284       return;
7285     case REAL_CST:
7286       {
7287 	unsigned int val2;
7288 	if (!HONOR_SIGNED_ZEROS (t) && real_zerop (t))
7289 	  val2 = rvc_zero;
7290 	else
7291 	  val2 = real_hash (TREE_REAL_CST_PTR (t));
7292 	hstate.merge_hash (val2);
7293 	return;
7294       }
7295     case FIXED_CST:
7296       {
7297 	unsigned int val2 = fixed_hash (TREE_FIXED_CST_PTR (t));
7298 	hstate.merge_hash (val2);
7299 	return;
7300       }
7301     case STRING_CST:
7302       hstate.add ((const void *) TREE_STRING_POINTER (t),
7303 		  TREE_STRING_LENGTH (t));
7304       return;
7305     case COMPLEX_CST:
7306       inchash::add_expr (TREE_REALPART (t), hstate, flags);
7307       inchash::add_expr (TREE_IMAGPART (t), hstate, flags);
7308       return;
7309     case VECTOR_CST:
7310       {
7311 	hstate.add_int (VECTOR_CST_NPATTERNS (t));
7312 	hstate.add_int (VECTOR_CST_NELTS_PER_PATTERN (t));
7313 	unsigned int count = vector_cst_encoded_nelts (t);
7314 	for (unsigned int i = 0; i < count; ++i)
7315 	  inchash::add_expr (VECTOR_CST_ENCODED_ELT (t, i), hstate, flags);
7316 	return;
7317       }
7318     case SSA_NAME:
7319       /* We can just compare by pointer.  */
7320       hstate.add_hwi (SSA_NAME_VERSION (t));
7321       return;
7322     case PLACEHOLDER_EXPR:
7323       /* The node itself doesn't matter.  */
7324       return;
7325     case BLOCK:
7326     case OMP_CLAUSE:
7327       /* Ignore.  */
7328       return;
7329     case TREE_LIST:
7330       /* A list of expressions, for a CALL_EXPR or as the elements of a
7331 	 VECTOR_CST.  */
7332       for (; t; t = TREE_CHAIN (t))
7333 	inchash::add_expr (TREE_VALUE (t), hstate, flags);
7334       return;
7335     case CONSTRUCTOR:
7336       {
7337 	unsigned HOST_WIDE_INT idx;
7338 	tree field, value;
7339 	flags &= ~OEP_ADDRESS_OF;
7340 	FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (t), idx, field, value)
7341 	  {
7342 	    inchash::add_expr (field, hstate, flags);
7343 	    inchash::add_expr (value, hstate, flags);
7344 	  }
7345 	return;
7346       }
7347     case STATEMENT_LIST:
7348       {
7349 	tree_stmt_iterator i;
7350 	for (i = tsi_start (CONST_CAST_TREE (t));
7351 	     !tsi_end_p (i); tsi_next (&i))
7352 	  inchash::add_expr (tsi_stmt (i), hstate, flags);
7353 	return;
7354       }
7355     case TREE_VEC:
7356       for (i = 0; i < TREE_VEC_LENGTH (t); ++i)
7357 	inchash::add_expr (TREE_VEC_ELT (t, i), hstate, flags);
7358       return;
7359     case IDENTIFIER_NODE:
7360       hstate.add_object (IDENTIFIER_HASH_VALUE (t));
7361       return;
7362     case FUNCTION_DECL:
7363       /* When referring to a built-in FUNCTION_DECL, use the __builtin__ form.
7364 	 Otherwise nodes that compare equal according to operand_equal_p might
7365 	 get different hash codes.  However, don't do this for machine specific
7366 	 or front end builtins, since the function code is overloaded in those
7367 	 cases.  */
7368       if (DECL_BUILT_IN_CLASS (t) == BUILT_IN_NORMAL
7369 	  && builtin_decl_explicit_p (DECL_FUNCTION_CODE (t)))
7370 	{
7371 	  t = builtin_decl_explicit (DECL_FUNCTION_CODE (t));
7372 	  code = TREE_CODE (t);
7373 	}
7374       /* FALL THROUGH */
7375     default:
7376       if (POLY_INT_CST_P (t))
7377 	{
7378 	  for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
7379 	    hstate.add_wide_int (wi::to_wide (POLY_INT_CST_COEFF (t, i)));
7380 	  return;
7381 	}
7382       tclass = TREE_CODE_CLASS (code);
7383 
7384       if (tclass == tcc_declaration)
7385 	{
7386 	  /* DECL's have a unique ID */
7387 	  hstate.add_hwi (DECL_UID (t));
7388 	}
7389       else if (tclass == tcc_comparison && !commutative_tree_code (code))
7390 	{
7391 	  /* For comparisons that can be swapped, use the lower
7392 	     tree code.  */
7393 	  enum tree_code ccode = swap_tree_comparison (code);
7394 	  if (code < ccode)
7395 	    ccode = code;
7396 	  hstate.add_object (ccode);
7397 	  inchash::add_expr (TREE_OPERAND (t, ccode != code), hstate, flags);
7398 	  inchash::add_expr (TREE_OPERAND (t, ccode == code), hstate, flags);
7399 	}
7400       else if (CONVERT_EXPR_CODE_P (code))
7401 	{
7402 	  /* NOP_EXPR and CONVERT_EXPR are considered equal by
7403 	     operand_equal_p.  */
7404 	  enum tree_code ccode = NOP_EXPR;
7405 	  hstate.add_object (ccode);
7406 
7407 	  /* Don't hash the type, that can lead to having nodes which
7408 	     compare equal according to operand_equal_p, but which
7409 	     have different hash codes.  Make sure to include signedness
7410 	     in the hash computation.  */
7411 	  hstate.add_int (TYPE_UNSIGNED (TREE_TYPE (t)));
7412 	  inchash::add_expr (TREE_OPERAND (t, 0), hstate, flags);
7413 	}
7414       /* For OEP_ADDRESS_OF, hash MEM_EXPR[&decl, 0] the same as decl.  */
7415       else if (code == MEM_REF
7416 	       && (flags & OEP_ADDRESS_OF) != 0
7417 	       && TREE_CODE (TREE_OPERAND (t, 0)) == ADDR_EXPR
7418 	       && DECL_P (TREE_OPERAND (TREE_OPERAND (t, 0), 0))
7419 	       && integer_zerop (TREE_OPERAND (t, 1)))
7420 	inchash::add_expr (TREE_OPERAND (TREE_OPERAND (t, 0), 0),
7421 			   hstate, flags);
7422       /* Don't ICE on FE specific trees, or their arguments etc.
7423 	 during operand_equal_p hash verification.  */
7424       else if (!IS_EXPR_CODE_CLASS (tclass))
7425 	gcc_assert (flags & OEP_HASH_CHECK);
7426       else
7427 	{
7428 	  unsigned int sflags = flags;
7429 
7430 	  hstate.add_object (code);
7431 
7432 	  switch (code)
7433 	    {
7434 	    case ADDR_EXPR:
7435 	      gcc_checking_assert (!(flags & OEP_ADDRESS_OF));
7436 	      flags |= OEP_ADDRESS_OF;
7437 	      sflags = flags;
7438 	      break;
7439 
7440 	    case INDIRECT_REF:
7441 	    case MEM_REF:
7442 	    case TARGET_MEM_REF:
7443 	      flags &= ~OEP_ADDRESS_OF;
7444 	      sflags = flags;
7445 	      break;
7446 
7447 	    case ARRAY_REF:
7448 	    case ARRAY_RANGE_REF:
7449 	    case COMPONENT_REF:
7450 	    case BIT_FIELD_REF:
7451 	      sflags &= ~OEP_ADDRESS_OF;
7452 	      break;
7453 
7454 	    case COND_EXPR:
7455 	      flags &= ~OEP_ADDRESS_OF;
7456 	      break;
7457 
7458 	    case FMA_EXPR:
7459 	    case WIDEN_MULT_PLUS_EXPR:
7460 	    case WIDEN_MULT_MINUS_EXPR:
7461 	      {
7462 		/* The multiplication operands are commutative.  */
7463 		inchash::hash one, two;
7464 		inchash::add_expr (TREE_OPERAND (t, 0), one, flags);
7465 		inchash::add_expr (TREE_OPERAND (t, 1), two, flags);
7466 		hstate.add_commutative (one, two);
7467 		inchash::add_expr (TREE_OPERAND (t, 2), two, flags);
7468 		return;
7469 	      }
7470 
7471 	    case CALL_EXPR:
7472 	      if (CALL_EXPR_FN (t) == NULL_TREE)
7473 		hstate.add_int (CALL_EXPR_IFN (t));
7474 	      break;
7475 
7476 	    case TARGET_EXPR:
7477 	      /* For TARGET_EXPR, just hash on the TARGET_EXPR_SLOT.
7478 		 Usually different TARGET_EXPRs just should use
7479 		 different temporaries in their slots.  */
7480 	      inchash::add_expr (TARGET_EXPR_SLOT (t), hstate, flags);
7481 	      return;
7482 
7483 	    default:
7484 	      break;
7485 	    }
7486 
7487 	  /* Don't hash the type, that can lead to having nodes which
7488 	     compare equal according to operand_equal_p, but which
7489 	     have different hash codes.  */
7490 	  if (code == NON_LVALUE_EXPR)
7491 	    {
7492 	      /* Make sure to include signness in the hash computation.  */
7493 	      hstate.add_int (TYPE_UNSIGNED (TREE_TYPE (t)));
7494 	      inchash::add_expr (TREE_OPERAND (t, 0), hstate, flags);
7495 	    }
7496 
7497 	  else if (commutative_tree_code (code))
7498 	    {
7499 	      /* It's a commutative expression.  We want to hash it the same
7500 		 however it appears.  We do this by first hashing both operands
7501 		 and then rehashing based on the order of their independent
7502 		 hashes.  */
7503 	      inchash::hash one, two;
7504 	      inchash::add_expr (TREE_OPERAND (t, 0), one, flags);
7505 	      inchash::add_expr (TREE_OPERAND (t, 1), two, flags);
7506 	      hstate.add_commutative (one, two);
7507 	    }
7508 	  else
7509 	    for (i = TREE_OPERAND_LENGTH (t) - 1; i >= 0; --i)
7510 	      inchash::add_expr (TREE_OPERAND (t, i), hstate,
7511 				 i == 0 ? flags : sflags);
7512 	}
7513       return;
7514     }
7515 }
7516 
7517 }
7518 
7519 /* Constructors for pointer, array and function types.
7520    (RECORD_TYPE, UNION_TYPE and ENUMERAL_TYPE nodes are
7521    constructed by language-dependent code, not here.)  */
7522 
7523 /* Construct, lay out and return the type of pointers to TO_TYPE with
7524    mode MODE.  If CAN_ALIAS_ALL is TRUE, indicate this type can
7525    reference all of memory. If such a type has already been
7526    constructed, reuse it.  */
7527 
7528 tree
7529 build_pointer_type_for_mode (tree to_type, machine_mode mode,
7530 			     bool can_alias_all)
7531 {
7532   tree t;
7533   bool could_alias = can_alias_all;
7534 
7535   if (to_type == error_mark_node)
7536     return error_mark_node;
7537 
7538   /* If the pointed-to type has the may_alias attribute set, force
7539      a TYPE_REF_CAN_ALIAS_ALL pointer to be generated.  */
7540   if (lookup_attribute ("may_alias", TYPE_ATTRIBUTES (to_type)))
7541     can_alias_all = true;
7542 
7543   /* In some cases, languages will have things that aren't a POINTER_TYPE
7544      (such as a RECORD_TYPE for fat pointers in Ada) as TYPE_POINTER_TO.
7545      In that case, return that type without regard to the rest of our
7546      operands.
7547 
7548      ??? This is a kludge, but consistent with the way this function has
7549      always operated and there doesn't seem to be a good way to avoid this
7550      at the moment.  */
7551   if (TYPE_POINTER_TO (to_type) != 0
7552       && TREE_CODE (TYPE_POINTER_TO (to_type)) != POINTER_TYPE)
7553     return TYPE_POINTER_TO (to_type);
7554 
7555   /* First, if we already have a type for pointers to TO_TYPE and it's
7556      the proper mode, use it.  */
7557   for (t = TYPE_POINTER_TO (to_type); t; t = TYPE_NEXT_PTR_TO (t))
7558     if (TYPE_MODE (t) == mode && TYPE_REF_CAN_ALIAS_ALL (t) == can_alias_all)
7559       return t;
7560 
7561   t = make_node (POINTER_TYPE);
7562 
7563   TREE_TYPE (t) = to_type;
7564   SET_TYPE_MODE (t, mode);
7565   TYPE_REF_CAN_ALIAS_ALL (t) = can_alias_all;
7566   TYPE_NEXT_PTR_TO (t) = TYPE_POINTER_TO (to_type);
7567   TYPE_POINTER_TO (to_type) = t;
7568 
7569   /* During LTO we do not set TYPE_CANONICAL of pointers and references.  */
7570   if (TYPE_STRUCTURAL_EQUALITY_P (to_type) || in_lto_p)
7571     SET_TYPE_STRUCTURAL_EQUALITY (t);
7572   else if (TYPE_CANONICAL (to_type) != to_type || could_alias)
7573     TYPE_CANONICAL (t)
7574       = build_pointer_type_for_mode (TYPE_CANONICAL (to_type),
7575 				     mode, false);
7576 
7577   /* Lay out the type.  This function has many callers that are concerned
7578      with expression-construction, and this simplifies them all.  */
7579   layout_type (t);
7580 
7581   return t;
7582 }
7583 
7584 /* By default build pointers in ptr_mode.  */
7585 
7586 tree
7587 build_pointer_type (tree to_type)
7588 {
7589   addr_space_t as = to_type == error_mark_node? ADDR_SPACE_GENERIC
7590 					      : TYPE_ADDR_SPACE (to_type);
7591   machine_mode pointer_mode = targetm.addr_space.pointer_mode (as);
7592   return build_pointer_type_for_mode (to_type, pointer_mode, false);
7593 }
7594 
7595 /* Same as build_pointer_type_for_mode, but for REFERENCE_TYPE.  */
7596 
7597 tree
7598 build_reference_type_for_mode (tree to_type, machine_mode mode,
7599 			       bool can_alias_all)
7600 {
7601   tree t;
7602   bool could_alias = can_alias_all;
7603 
7604   if (to_type == error_mark_node)
7605     return error_mark_node;
7606 
7607   /* If the pointed-to type has the may_alias attribute set, force
7608      a TYPE_REF_CAN_ALIAS_ALL pointer to be generated.  */
7609   if (lookup_attribute ("may_alias", TYPE_ATTRIBUTES (to_type)))
7610     can_alias_all = true;
7611 
7612   /* In some cases, languages will have things that aren't a REFERENCE_TYPE
7613      (such as a RECORD_TYPE for fat pointers in Ada) as TYPE_REFERENCE_TO.
7614      In that case, return that type without regard to the rest of our
7615      operands.
7616 
7617      ??? This is a kludge, but consistent with the way this function has
7618      always operated and there doesn't seem to be a good way to avoid this
7619      at the moment.  */
7620   if (TYPE_REFERENCE_TO (to_type) != 0
7621       && TREE_CODE (TYPE_REFERENCE_TO (to_type)) != REFERENCE_TYPE)
7622     return TYPE_REFERENCE_TO (to_type);
7623 
7624   /* First, if we already have a type for pointers to TO_TYPE and it's
7625      the proper mode, use it.  */
7626   for (t = TYPE_REFERENCE_TO (to_type); t; t = TYPE_NEXT_REF_TO (t))
7627     if (TYPE_MODE (t) == mode && TYPE_REF_CAN_ALIAS_ALL (t) == can_alias_all)
7628       return t;
7629 
7630   t = make_node (REFERENCE_TYPE);
7631 
7632   TREE_TYPE (t) = to_type;
7633   SET_TYPE_MODE (t, mode);
7634   TYPE_REF_CAN_ALIAS_ALL (t) = can_alias_all;
7635   TYPE_NEXT_REF_TO (t) = TYPE_REFERENCE_TO (to_type);
7636   TYPE_REFERENCE_TO (to_type) = t;
7637 
7638   /* During LTO we do not set TYPE_CANONICAL of pointers and references.  */
7639   if (TYPE_STRUCTURAL_EQUALITY_P (to_type) || in_lto_p)
7640     SET_TYPE_STRUCTURAL_EQUALITY (t);
7641   else if (TYPE_CANONICAL (to_type) != to_type || could_alias)
7642     TYPE_CANONICAL (t)
7643       = build_reference_type_for_mode (TYPE_CANONICAL (to_type),
7644 				       mode, false);
7645 
7646   layout_type (t);
7647 
7648   return t;
7649 }
7650 
7651 
7652 /* Build the node for the type of references-to-TO_TYPE by default
7653    in ptr_mode.  */
7654 
7655 tree
7656 build_reference_type (tree to_type)
7657 {
7658   addr_space_t as = to_type == error_mark_node? ADDR_SPACE_GENERIC
7659 					      : TYPE_ADDR_SPACE (to_type);
7660   machine_mode pointer_mode = targetm.addr_space.pointer_mode (as);
7661   return build_reference_type_for_mode (to_type, pointer_mode, false);
7662 }
7663 
7664 #define MAX_INT_CACHED_PREC \
7665   (HOST_BITS_PER_WIDE_INT > 64 ? HOST_BITS_PER_WIDE_INT : 64)
7666 static GTY(()) tree nonstandard_integer_type_cache[2 * MAX_INT_CACHED_PREC + 2];
7667 
7668 /* Builds a signed or unsigned integer type of precision PRECISION.
7669    Used for C bitfields whose precision does not match that of
7670    built-in target types.  */
7671 tree
7672 build_nonstandard_integer_type (unsigned HOST_WIDE_INT precision,
7673 				int unsignedp)
7674 {
7675   tree itype, ret;
7676 
7677   if (unsignedp)
7678     unsignedp = MAX_INT_CACHED_PREC + 1;
7679 
7680   if (precision <= MAX_INT_CACHED_PREC)
7681     {
7682       itype = nonstandard_integer_type_cache[precision + unsignedp];
7683       if (itype)
7684 	return itype;
7685     }
7686 
7687   itype = make_node (INTEGER_TYPE);
7688   TYPE_PRECISION (itype) = precision;
7689 
7690   if (unsignedp)
7691     fixup_unsigned_type (itype);
7692   else
7693     fixup_signed_type (itype);
7694 
7695   ret = itype;
7696 
7697   inchash::hash hstate;
7698   inchash::add_expr (TYPE_MAX_VALUE (itype), hstate);
7699   ret = type_hash_canon (hstate.end (), itype);
7700   if (precision <= MAX_INT_CACHED_PREC)
7701     nonstandard_integer_type_cache[precision + unsignedp] = ret;
7702 
7703   return ret;
7704 }
7705 
7706 #define MAX_BOOL_CACHED_PREC \
7707   (HOST_BITS_PER_WIDE_INT > 64 ? HOST_BITS_PER_WIDE_INT : 64)
7708 static GTY(()) tree nonstandard_boolean_type_cache[MAX_BOOL_CACHED_PREC + 1];
7709 
7710 /* Builds a boolean type of precision PRECISION.
7711    Used for boolean vectors to choose proper vector element size.  */
7712 tree
7713 build_nonstandard_boolean_type (unsigned HOST_WIDE_INT precision)
7714 {
7715   tree type;
7716 
7717   if (precision <= MAX_BOOL_CACHED_PREC)
7718     {
7719       type = nonstandard_boolean_type_cache[precision];
7720       if (type)
7721 	return type;
7722     }
7723 
7724   type = make_node (BOOLEAN_TYPE);
7725   TYPE_PRECISION (type) = precision;
7726   fixup_signed_type (type);
7727 
7728   if (precision <= MAX_INT_CACHED_PREC)
7729     nonstandard_boolean_type_cache[precision] = type;
7730 
7731   return type;
7732 }
7733 
7734 /* Create a range of some discrete type TYPE (an INTEGER_TYPE, ENUMERAL_TYPE
7735    or BOOLEAN_TYPE) with low bound LOWVAL and high bound HIGHVAL.  If SHARED
7736    is true, reuse such a type that has already been constructed.  */
7737 
7738 static tree
7739 build_range_type_1 (tree type, tree lowval, tree highval, bool shared)
7740 {
7741   tree itype = make_node (INTEGER_TYPE);
7742 
7743   TREE_TYPE (itype) = type;
7744 
7745   TYPE_MIN_VALUE (itype) = fold_convert (type, lowval);
7746   TYPE_MAX_VALUE (itype) = highval ? fold_convert (type, highval) : NULL;
7747 
7748   TYPE_PRECISION (itype) = TYPE_PRECISION (type);
7749   SET_TYPE_MODE (itype, TYPE_MODE (type));
7750   TYPE_SIZE (itype) = TYPE_SIZE (type);
7751   TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (type);
7752   SET_TYPE_ALIGN (itype, TYPE_ALIGN (type));
7753   TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (type);
7754   SET_TYPE_WARN_IF_NOT_ALIGN (itype, TYPE_WARN_IF_NOT_ALIGN (type));
7755 
7756   if (!shared)
7757     return itype;
7758 
7759   if ((TYPE_MIN_VALUE (itype)
7760        && TREE_CODE (TYPE_MIN_VALUE (itype)) != INTEGER_CST)
7761       || (TYPE_MAX_VALUE (itype)
7762 	  && TREE_CODE (TYPE_MAX_VALUE (itype)) != INTEGER_CST))
7763     {
7764       /* Since we cannot reliably merge this type, we need to compare it using
7765 	 structural equality checks.  */
7766       SET_TYPE_STRUCTURAL_EQUALITY (itype);
7767       return itype;
7768     }
7769 
7770   hashval_t hash = type_hash_canon_hash (itype);
7771   itype = type_hash_canon (hash, itype);
7772 
7773   return itype;
7774 }
7775 
7776 /* Wrapper around build_range_type_1 with SHARED set to true.  */
7777 
7778 tree
7779 build_range_type (tree type, tree lowval, tree highval)
7780 {
7781   return build_range_type_1 (type, lowval, highval, true);
7782 }
7783 
7784 /* Wrapper around build_range_type_1 with SHARED set to false.  */
7785 
7786 tree
7787 build_nonshared_range_type (tree type, tree lowval, tree highval)
7788 {
7789   return build_range_type_1 (type, lowval, highval, false);
7790 }
7791 
7792 /* Create a type of integers to be the TYPE_DOMAIN of an ARRAY_TYPE.
7793    MAXVAL should be the maximum value in the domain
7794    (one less than the length of the array).
7795 
7796    The maximum value that MAXVAL can have is INT_MAX for a HOST_WIDE_INT.
7797    We don't enforce this limit, that is up to caller (e.g. language front end).
7798    The limit exists because the result is a signed type and we don't handle
7799    sizes that use more than one HOST_WIDE_INT.  */
7800 
7801 tree
7802 build_index_type (tree maxval)
7803 {
7804   return build_range_type (sizetype, size_zero_node, maxval);
7805 }
7806 
7807 /* Return true if the debug information for TYPE, a subtype, should be emitted
7808    as a subrange type.  If so, set LOWVAL to the low bound and HIGHVAL to the
7809    high bound, respectively.  Sometimes doing so unnecessarily obfuscates the
7810    debug info and doesn't reflect the source code.  */
7811 
7812 bool
7813 subrange_type_for_debug_p (const_tree type, tree *lowval, tree *highval)
7814 {
7815   tree base_type = TREE_TYPE (type), low, high;
7816 
7817   /* Subrange types have a base type which is an integral type.  */
7818   if (!INTEGRAL_TYPE_P (base_type))
7819     return false;
7820 
7821   /* Get the real bounds of the subtype.  */
7822   if (lang_hooks.types.get_subrange_bounds)
7823     lang_hooks.types.get_subrange_bounds (type, &low, &high);
7824   else
7825     {
7826       low = TYPE_MIN_VALUE (type);
7827       high = TYPE_MAX_VALUE (type);
7828     }
7829 
7830   /* If the type and its base type have the same representation and the same
7831      name, then the type is not a subrange but a copy of the base type.  */
7832   if ((TREE_CODE (base_type) == INTEGER_TYPE
7833        || TREE_CODE (base_type) == BOOLEAN_TYPE)
7834       && int_size_in_bytes (type) == int_size_in_bytes (base_type)
7835       && tree_int_cst_equal (low, TYPE_MIN_VALUE (base_type))
7836       && tree_int_cst_equal (high, TYPE_MAX_VALUE (base_type))
7837       && TYPE_IDENTIFIER (type) == TYPE_IDENTIFIER (base_type))
7838     return false;
7839 
7840   if (lowval)
7841     *lowval = low;
7842   if (highval)
7843     *highval = high;
7844   return true;
7845 }
7846 
7847 /* Construct, lay out and return the type of arrays of elements with ELT_TYPE
7848    and number of elements specified by the range of values of INDEX_TYPE.
7849    If TYPELESS_STORAGE is true, TYPE_TYPELESS_STORAGE flag is set on the type.
7850    If SHARED is true, reuse such a type that has already been constructed.  */
7851 
7852 static tree
7853 build_array_type_1 (tree elt_type, tree index_type, bool typeless_storage,
7854 		    bool shared)
7855 {
7856   tree t;
7857 
7858   if (TREE_CODE (elt_type) == FUNCTION_TYPE)
7859     {
7860       error ("arrays of functions are not meaningful");
7861       elt_type = integer_type_node;
7862     }
7863 
7864   t = make_node (ARRAY_TYPE);
7865   TREE_TYPE (t) = elt_type;
7866   TYPE_DOMAIN (t) = index_type;
7867   TYPE_ADDR_SPACE (t) = TYPE_ADDR_SPACE (elt_type);
7868   TYPE_TYPELESS_STORAGE (t) = typeless_storage;
7869   layout_type (t);
7870 
7871   /* If the element type is incomplete at this point we get marked for
7872      structural equality.  Do not record these types in the canonical
7873      type hashtable.  */
7874   if (TYPE_STRUCTURAL_EQUALITY_P (t))
7875     return t;
7876 
7877   if (shared)
7878     {
7879       hashval_t hash = type_hash_canon_hash (t);
7880       t = type_hash_canon (hash, t);
7881     }
7882 
7883   if (TYPE_CANONICAL (t) == t)
7884     {
7885       if (TYPE_STRUCTURAL_EQUALITY_P (elt_type)
7886 	  || (index_type && TYPE_STRUCTURAL_EQUALITY_P (index_type))
7887 	  || in_lto_p)
7888 	SET_TYPE_STRUCTURAL_EQUALITY (t);
7889       else if (TYPE_CANONICAL (elt_type) != elt_type
7890 	       || (index_type && TYPE_CANONICAL (index_type) != index_type))
7891 	TYPE_CANONICAL (t)
7892 	  = build_array_type_1 (TYPE_CANONICAL (elt_type),
7893 				index_type
7894 				? TYPE_CANONICAL (index_type) : NULL_TREE,
7895 				typeless_storage, shared);
7896     }
7897 
7898   return t;
7899 }
7900 
7901 /* Wrapper around build_array_type_1 with SHARED set to true.  */
7902 
7903 tree
7904 build_array_type (tree elt_type, tree index_type, bool typeless_storage)
7905 {
7906   return build_array_type_1 (elt_type, index_type, typeless_storage, true);
7907 }
7908 
7909 /* Wrapper around build_array_type_1 with SHARED set to false.  */
7910 
7911 tree
7912 build_nonshared_array_type (tree elt_type, tree index_type)
7913 {
7914   return build_array_type_1 (elt_type, index_type, false, false);
7915 }
7916 
7917 /* Return a representation of ELT_TYPE[NELTS], using indices of type
7918    sizetype.  */
7919 
7920 tree
7921 build_array_type_nelts (tree elt_type, poly_uint64 nelts)
7922 {
7923   return build_array_type (elt_type, build_index_type (size_int (nelts - 1)));
7924 }
7925 
7926 /* Recursively examines the array elements of TYPE, until a non-array
7927    element type is found.  */
7928 
7929 tree
7930 strip_array_types (tree type)
7931 {
7932   while (TREE_CODE (type) == ARRAY_TYPE)
7933     type = TREE_TYPE (type);
7934 
7935   return type;
7936 }
7937 
7938 /* Computes the canonical argument types from the argument type list
7939    ARGTYPES.
7940 
7941    Upon return, *ANY_STRUCTURAL_P will be true iff either it was true
7942    on entry to this function, or if any of the ARGTYPES are
7943    structural.
7944 
7945    Upon return, *ANY_NONCANONICAL_P will be true iff either it was
7946    true on entry to this function, or if any of the ARGTYPES are
7947    non-canonical.
7948 
7949    Returns a canonical argument list, which may be ARGTYPES when the
7950    canonical argument list is unneeded (i.e., *ANY_STRUCTURAL_P is
7951    true) or would not differ from ARGTYPES.  */
7952 
7953 static tree
7954 maybe_canonicalize_argtypes (tree argtypes,
7955 			     bool *any_structural_p,
7956 			     bool *any_noncanonical_p)
7957 {
7958   tree arg;
7959   bool any_noncanonical_argtypes_p = false;
7960 
7961   for (arg = argtypes; arg && !(*any_structural_p); arg = TREE_CHAIN (arg))
7962     {
7963       if (!TREE_VALUE (arg) || TREE_VALUE (arg) == error_mark_node)
7964 	/* Fail gracefully by stating that the type is structural.  */
7965 	*any_structural_p = true;
7966       else if (TYPE_STRUCTURAL_EQUALITY_P (TREE_VALUE (arg)))
7967 	*any_structural_p = true;
7968       else if (TYPE_CANONICAL (TREE_VALUE (arg)) != TREE_VALUE (arg)
7969 	       || TREE_PURPOSE (arg))
7970 	/* If the argument has a default argument, we consider it
7971 	   non-canonical even though the type itself is canonical.
7972 	   That way, different variants of function and method types
7973 	   with default arguments will all point to the variant with
7974 	   no defaults as their canonical type.  */
7975         any_noncanonical_argtypes_p = true;
7976     }
7977 
7978   if (*any_structural_p)
7979     return argtypes;
7980 
7981   if (any_noncanonical_argtypes_p)
7982     {
7983       /* Build the canonical list of argument types.  */
7984       tree canon_argtypes = NULL_TREE;
7985       bool is_void = false;
7986 
7987       for (arg = argtypes; arg; arg = TREE_CHAIN (arg))
7988         {
7989           if (arg == void_list_node)
7990             is_void = true;
7991           else
7992             canon_argtypes = tree_cons (NULL_TREE,
7993                                         TYPE_CANONICAL (TREE_VALUE (arg)),
7994                                         canon_argtypes);
7995         }
7996 
7997       canon_argtypes = nreverse (canon_argtypes);
7998       if (is_void)
7999         canon_argtypes = chainon (canon_argtypes, void_list_node);
8000 
8001       /* There is a non-canonical type.  */
8002       *any_noncanonical_p = true;
8003       return canon_argtypes;
8004     }
8005 
8006   /* The canonical argument types are the same as ARGTYPES.  */
8007   return argtypes;
8008 }
8009 
8010 /* Construct, lay out and return
8011    the type of functions returning type VALUE_TYPE
8012    given arguments of types ARG_TYPES.
8013    ARG_TYPES is a chain of TREE_LIST nodes whose TREE_VALUEs
8014    are data type nodes for the arguments of the function.
8015    If such a type has already been constructed, reuse it.  */
8016 
8017 tree
8018 build_function_type (tree value_type, tree arg_types)
8019 {
8020   tree t;
8021   inchash::hash hstate;
8022   bool any_structural_p, any_noncanonical_p;
8023   tree canon_argtypes;
8024 
8025   gcc_assert (arg_types != error_mark_node);
8026 
8027   if (TREE_CODE (value_type) == FUNCTION_TYPE)
8028     {
8029       error ("function return type cannot be function");
8030       value_type = integer_type_node;
8031     }
8032 
8033   /* Make a node of the sort we want.  */
8034   t = make_node (FUNCTION_TYPE);
8035   TREE_TYPE (t) = value_type;
8036   TYPE_ARG_TYPES (t) = arg_types;
8037 
8038   /* If we already have such a type, use the old one.  */
8039   hashval_t hash = type_hash_canon_hash (t);
8040   t = type_hash_canon (hash, t);
8041 
8042   /* Set up the canonical type. */
8043   any_structural_p   = TYPE_STRUCTURAL_EQUALITY_P (value_type);
8044   any_noncanonical_p = TYPE_CANONICAL (value_type) != value_type;
8045   canon_argtypes = maybe_canonicalize_argtypes (arg_types,
8046 						&any_structural_p,
8047 						&any_noncanonical_p);
8048   if (any_structural_p)
8049     SET_TYPE_STRUCTURAL_EQUALITY (t);
8050   else if (any_noncanonical_p)
8051     TYPE_CANONICAL (t) = build_function_type (TYPE_CANONICAL (value_type),
8052 					      canon_argtypes);
8053 
8054   if (!COMPLETE_TYPE_P (t))
8055     layout_type (t);
8056   return t;
8057 }
8058 
8059 /* Build a function type.  The RETURN_TYPE is the type returned by the
8060    function.  If VAARGS is set, no void_type_node is appended to the
8061    list.  ARGP must be always be terminated be a NULL_TREE.  */
8062 
8063 static tree
8064 build_function_type_list_1 (bool vaargs, tree return_type, va_list argp)
8065 {
8066   tree t, args, last;
8067 
8068   t = va_arg (argp, tree);
8069   for (args = NULL_TREE; t != NULL_TREE; t = va_arg (argp, tree))
8070     args = tree_cons (NULL_TREE, t, args);
8071 
8072   if (vaargs)
8073     {
8074       last = args;
8075       if (args != NULL_TREE)
8076 	args = nreverse (args);
8077       gcc_assert (last != void_list_node);
8078     }
8079   else if (args == NULL_TREE)
8080     args = void_list_node;
8081   else
8082     {
8083       last = args;
8084       args = nreverse (args);
8085       TREE_CHAIN (last) = void_list_node;
8086     }
8087   args = build_function_type (return_type, args);
8088 
8089   return args;
8090 }
8091 
8092 /* Build a function type.  The RETURN_TYPE is the type returned by the
8093    function.  If additional arguments are provided, they are
8094    additional argument types.  The list of argument types must always
8095    be terminated by NULL_TREE.  */
8096 
8097 tree
8098 build_function_type_list (tree return_type, ...)
8099 {
8100   tree args;
8101   va_list p;
8102 
8103   va_start (p, return_type);
8104   args = build_function_type_list_1 (false, return_type, p);
8105   va_end (p);
8106   return args;
8107 }
8108 
8109 /* Build a variable argument function type.  The RETURN_TYPE is the
8110    type returned by the function.  If additional arguments are provided,
8111    they are additional argument types.  The list of argument types must
8112    always be terminated by NULL_TREE.  */
8113 
8114 tree
8115 build_varargs_function_type_list (tree return_type, ...)
8116 {
8117   tree args;
8118   va_list p;
8119 
8120   va_start (p, return_type);
8121   args = build_function_type_list_1 (true, return_type, p);
8122   va_end (p);
8123 
8124   return args;
8125 }
8126 
8127 /* Build a function type.  RETURN_TYPE is the type returned by the
8128    function; VAARGS indicates whether the function takes varargs.  The
8129    function takes N named arguments, the types of which are provided in
8130    ARG_TYPES.  */
8131 
8132 static tree
8133 build_function_type_array_1 (bool vaargs, tree return_type, int n,
8134 			     tree *arg_types)
8135 {
8136   int i;
8137   tree t = vaargs ? NULL_TREE : void_list_node;
8138 
8139   for (i = n - 1; i >= 0; i--)
8140     t = tree_cons (NULL_TREE, arg_types[i], t);
8141 
8142   return build_function_type (return_type, t);
8143 }
8144 
8145 /* Build a function type.  RETURN_TYPE is the type returned by the
8146    function.  The function takes N named arguments, the types of which
8147    are provided in ARG_TYPES.  */
8148 
8149 tree
8150 build_function_type_array (tree return_type, int n, tree *arg_types)
8151 {
8152   return build_function_type_array_1 (false, return_type, n, arg_types);
8153 }
8154 
8155 /* Build a variable argument function type.  RETURN_TYPE is the type
8156    returned by the function.  The function takes N named arguments, the
8157    types of which are provided in ARG_TYPES.  */
8158 
8159 tree
8160 build_varargs_function_type_array (tree return_type, int n, tree *arg_types)
8161 {
8162   return build_function_type_array_1 (true, return_type, n, arg_types);
8163 }
8164 
8165 /* Build a METHOD_TYPE for a member of BASETYPE.  The RETTYPE (a TYPE)
8166    and ARGTYPES (a TREE_LIST) are the return type and arguments types
8167    for the method.  An implicit additional parameter (of type
8168    pointer-to-BASETYPE) is added to the ARGTYPES.  */
8169 
8170 tree
8171 build_method_type_directly (tree basetype,
8172 			    tree rettype,
8173 			    tree argtypes)
8174 {
8175   tree t;
8176   tree ptype;
8177   bool any_structural_p, any_noncanonical_p;
8178   tree canon_argtypes;
8179 
8180   /* Make a node of the sort we want.  */
8181   t = make_node (METHOD_TYPE);
8182 
8183   TYPE_METHOD_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
8184   TREE_TYPE (t) = rettype;
8185   ptype = build_pointer_type (basetype);
8186 
8187   /* The actual arglist for this function includes a "hidden" argument
8188      which is "this".  Put it into the list of argument types.  */
8189   argtypes = tree_cons (NULL_TREE, ptype, argtypes);
8190   TYPE_ARG_TYPES (t) = argtypes;
8191 
8192   /* If we already have such a type, use the old one.  */
8193   hashval_t hash = type_hash_canon_hash (t);
8194   t = type_hash_canon (hash, t);
8195 
8196   /* Set up the canonical type. */
8197   any_structural_p
8198     = (TYPE_STRUCTURAL_EQUALITY_P (basetype)
8199        || TYPE_STRUCTURAL_EQUALITY_P (rettype));
8200   any_noncanonical_p
8201     = (TYPE_CANONICAL (basetype) != basetype
8202        || TYPE_CANONICAL (rettype) != rettype);
8203   canon_argtypes = maybe_canonicalize_argtypes (TREE_CHAIN (argtypes),
8204 						&any_structural_p,
8205 						&any_noncanonical_p);
8206   if (any_structural_p)
8207     SET_TYPE_STRUCTURAL_EQUALITY (t);
8208   else if (any_noncanonical_p)
8209     TYPE_CANONICAL (t)
8210       = build_method_type_directly (TYPE_CANONICAL (basetype),
8211 				    TYPE_CANONICAL (rettype),
8212 				    canon_argtypes);
8213   if (!COMPLETE_TYPE_P (t))
8214     layout_type (t);
8215 
8216   return t;
8217 }
8218 
8219 /* Construct, lay out and return the type of methods belonging to class
8220    BASETYPE and whose arguments and values are described by TYPE.
8221    If that type exists already, reuse it.
8222    TYPE must be a FUNCTION_TYPE node.  */
8223 
8224 tree
8225 build_method_type (tree basetype, tree type)
8226 {
8227   gcc_assert (TREE_CODE (type) == FUNCTION_TYPE);
8228 
8229   return build_method_type_directly (basetype,
8230 				     TREE_TYPE (type),
8231 				     TYPE_ARG_TYPES (type));
8232 }
8233 
8234 /* Construct, lay out and return the type of offsets to a value
8235    of type TYPE, within an object of type BASETYPE.
8236    If a suitable offset type exists already, reuse it.  */
8237 
8238 tree
8239 build_offset_type (tree basetype, tree type)
8240 {
8241   tree t;
8242 
8243   /* Make a node of the sort we want.  */
8244   t = make_node (OFFSET_TYPE);
8245 
8246   TYPE_OFFSET_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
8247   TREE_TYPE (t) = type;
8248 
8249   /* If we already have such a type, use the old one.  */
8250   hashval_t hash = type_hash_canon_hash (t);
8251   t = type_hash_canon (hash, t);
8252 
8253   if (!COMPLETE_TYPE_P (t))
8254     layout_type (t);
8255 
8256   if (TYPE_CANONICAL (t) == t)
8257     {
8258       if (TYPE_STRUCTURAL_EQUALITY_P (basetype)
8259 	  || TYPE_STRUCTURAL_EQUALITY_P (type))
8260 	SET_TYPE_STRUCTURAL_EQUALITY (t);
8261       else if (TYPE_CANONICAL (TYPE_MAIN_VARIANT (basetype)) != basetype
8262 	       || TYPE_CANONICAL (type) != type)
8263 	TYPE_CANONICAL (t)
8264 	  = build_offset_type (TYPE_CANONICAL (TYPE_MAIN_VARIANT (basetype)),
8265 			       TYPE_CANONICAL (type));
8266     }
8267 
8268   return t;
8269 }
8270 
8271 /* Create a complex type whose components are COMPONENT_TYPE.
8272 
8273    If NAMED is true, the type is given a TYPE_NAME.  We do not always
8274    do so because this creates a DECL node and thus make the DECL_UIDs
8275    dependent on the type canonicalization hashtable, which is GC-ed,
8276    so the DECL_UIDs would not be stable wrt garbage collection.  */
8277 
8278 tree
8279 build_complex_type (tree component_type, bool named)
8280 {
8281   gcc_assert (INTEGRAL_TYPE_P (component_type)
8282 	      || SCALAR_FLOAT_TYPE_P (component_type)
8283 	      || FIXED_POINT_TYPE_P (component_type));
8284 
8285   /* Make a node of the sort we want.  */
8286   tree probe = make_node (COMPLEX_TYPE);
8287 
8288   TREE_TYPE (probe) = TYPE_MAIN_VARIANT (component_type);
8289 
8290   /* If we already have such a type, use the old one.  */
8291   hashval_t hash = type_hash_canon_hash (probe);
8292   tree t = type_hash_canon (hash, probe);
8293 
8294   if (t == probe)
8295     {
8296       /* We created a new type.  The hash insertion will have laid
8297 	 out the type.  We need to check the canonicalization and
8298 	 maybe set the name.  */
8299       gcc_checking_assert (COMPLETE_TYPE_P (t)
8300 			   && !TYPE_NAME (t)
8301 			   && TYPE_CANONICAL (t) == t);
8302 
8303       if (TYPE_STRUCTURAL_EQUALITY_P (TREE_TYPE (t)))
8304 	SET_TYPE_STRUCTURAL_EQUALITY (t);
8305       else if (TYPE_CANONICAL (TREE_TYPE (t)) != TREE_TYPE (t))
8306 	TYPE_CANONICAL (t)
8307 	  = build_complex_type (TYPE_CANONICAL (TREE_TYPE (t)), named);
8308 
8309       /* We need to create a name, since complex is a fundamental type.  */
8310       if (named)
8311 	{
8312 	  const char *name = NULL;
8313 
8314 	  if (TREE_TYPE (t) == char_type_node)
8315 	    name = "complex char";
8316 	  else if (TREE_TYPE (t) == signed_char_type_node)
8317 	    name = "complex signed char";
8318 	  else if (TREE_TYPE (t) == unsigned_char_type_node)
8319 	    name = "complex unsigned char";
8320 	  else if (TREE_TYPE (t) == short_integer_type_node)
8321 	    name = "complex short int";
8322 	  else if (TREE_TYPE (t) == short_unsigned_type_node)
8323 	    name = "complex short unsigned int";
8324 	  else if (TREE_TYPE (t) == integer_type_node)
8325 	    name = "complex int";
8326 	  else if (TREE_TYPE (t) == unsigned_type_node)
8327 	    name = "complex unsigned int";
8328 	  else if (TREE_TYPE (t) == long_integer_type_node)
8329 	    name = "complex long int";
8330 	  else if (TREE_TYPE (t) == long_unsigned_type_node)
8331 	    name = "complex long unsigned int";
8332 	  else if (TREE_TYPE (t) == long_long_integer_type_node)
8333 	    name = "complex long long int";
8334 	  else if (TREE_TYPE (t) == long_long_unsigned_type_node)
8335 	    name = "complex long long unsigned int";
8336 
8337 	  if (name != NULL)
8338 	    TYPE_NAME (t) = build_decl (UNKNOWN_LOCATION, TYPE_DECL,
8339 					get_identifier (name), t);
8340 	}
8341     }
8342 
8343   return build_qualified_type (t, TYPE_QUALS (component_type));
8344 }
8345 
8346 /* If TYPE is a real or complex floating-point type and the target
8347    does not directly support arithmetic on TYPE then return the wider
8348    type to be used for arithmetic on TYPE.  Otherwise, return
8349    NULL_TREE.  */
8350 
8351 tree
8352 excess_precision_type (tree type)
8353 {
8354   /* The target can give two different responses to the question of
8355      which excess precision mode it would like depending on whether we
8356      are in -fexcess-precision=standard or -fexcess-precision=fast.  */
8357 
8358   enum excess_precision_type requested_type
8359     = (flag_excess_precision == EXCESS_PRECISION_FAST
8360        ? EXCESS_PRECISION_TYPE_FAST
8361        : EXCESS_PRECISION_TYPE_STANDARD);
8362 
8363   enum flt_eval_method target_flt_eval_method
8364     = targetm.c.excess_precision (requested_type);
8365 
8366   /* The target should not ask for unpredictable float evaluation (though
8367      it might advertise that implicitly the evaluation is unpredictable,
8368      but we don't care about that here, it will have been reported
8369      elsewhere).  If it does ask for unpredictable evaluation, we have
8370      nothing to do here.  */
8371   gcc_assert (target_flt_eval_method != FLT_EVAL_METHOD_UNPREDICTABLE);
8372 
8373   /* Nothing to do.  The target has asked for all types we know about
8374      to be computed with their native precision and range.  */
8375   if (target_flt_eval_method == FLT_EVAL_METHOD_PROMOTE_TO_FLOAT16)
8376     return NULL_TREE;
8377 
8378   /* The target will promote this type in a target-dependent way, so excess
8379      precision ought to leave it alone.  */
8380   if (targetm.promoted_type (type) != NULL_TREE)
8381     return NULL_TREE;
8382 
8383   machine_mode float16_type_mode = (float16_type_node
8384 				    ? TYPE_MODE (float16_type_node)
8385 				    : VOIDmode);
8386   machine_mode float_type_mode = TYPE_MODE (float_type_node);
8387   machine_mode double_type_mode = TYPE_MODE (double_type_node);
8388 
8389   switch (TREE_CODE (type))
8390     {
8391     case REAL_TYPE:
8392       {
8393 	machine_mode type_mode = TYPE_MODE (type);
8394 	switch (target_flt_eval_method)
8395 	  {
8396 	  case FLT_EVAL_METHOD_PROMOTE_TO_FLOAT:
8397 	    if (type_mode == float16_type_mode)
8398 	      return float_type_node;
8399 	    break;
8400 	  case FLT_EVAL_METHOD_PROMOTE_TO_DOUBLE:
8401 	    if (type_mode == float16_type_mode
8402 		|| type_mode == float_type_mode)
8403 	      return double_type_node;
8404 	    break;
8405 	  case FLT_EVAL_METHOD_PROMOTE_TO_LONG_DOUBLE:
8406 	    if (type_mode == float16_type_mode
8407 		|| type_mode == float_type_mode
8408 		|| type_mode == double_type_mode)
8409 	      return long_double_type_node;
8410 	    break;
8411 	  default:
8412 	    gcc_unreachable ();
8413 	  }
8414 	break;
8415       }
8416     case COMPLEX_TYPE:
8417       {
8418 	if (TREE_CODE (TREE_TYPE (type)) != REAL_TYPE)
8419 	  return NULL_TREE;
8420 	machine_mode type_mode = TYPE_MODE (TREE_TYPE (type));
8421 	switch (target_flt_eval_method)
8422 	  {
8423 	  case FLT_EVAL_METHOD_PROMOTE_TO_FLOAT:
8424 	    if (type_mode == float16_type_mode)
8425 	      return complex_float_type_node;
8426 	    break;
8427 	  case FLT_EVAL_METHOD_PROMOTE_TO_DOUBLE:
8428 	    if (type_mode == float16_type_mode
8429 		|| type_mode == float_type_mode)
8430 	      return complex_double_type_node;
8431 	    break;
8432 	  case FLT_EVAL_METHOD_PROMOTE_TO_LONG_DOUBLE:
8433 	    if (type_mode == float16_type_mode
8434 		|| type_mode == float_type_mode
8435 		|| type_mode == double_type_mode)
8436 	      return complex_long_double_type_node;
8437 	    break;
8438 	  default:
8439 	    gcc_unreachable ();
8440 	  }
8441 	break;
8442       }
8443     default:
8444       break;
8445     }
8446 
8447   return NULL_TREE;
8448 }
8449 
8450 /* Return OP, stripped of any conversions to wider types as much as is safe.
8451    Converting the value back to OP's type makes a value equivalent to OP.
8452 
8453    If FOR_TYPE is nonzero, we return a value which, if converted to
8454    type FOR_TYPE, would be equivalent to converting OP to type FOR_TYPE.
8455 
8456    OP must have integer, real or enumeral type.  Pointers are not allowed!
8457 
8458    There are some cases where the obvious value we could return
8459    would regenerate to OP if converted to OP's type,
8460    but would not extend like OP to wider types.
8461    If FOR_TYPE indicates such extension is contemplated, we eschew such values.
8462    For example, if OP is (unsigned short)(signed char)-1,
8463    we avoid returning (signed char)-1 if FOR_TYPE is int,
8464    even though extending that to an unsigned short would regenerate OP,
8465    since the result of extending (signed char)-1 to (int)
8466    is different from (int) OP.  */
8467 
8468 tree
8469 get_unwidened (tree op, tree for_type)
8470 {
8471   /* Set UNS initially if converting OP to FOR_TYPE is a zero-extension.  */
8472   tree type = TREE_TYPE (op);
8473   unsigned final_prec
8474     = TYPE_PRECISION (for_type != 0 ? for_type : type);
8475   int uns
8476     = (for_type != 0 && for_type != type
8477        && final_prec > TYPE_PRECISION (type)
8478        && TYPE_UNSIGNED (type));
8479   tree win = op;
8480 
8481   while (CONVERT_EXPR_P (op))
8482     {
8483       int bitschange;
8484 
8485       /* TYPE_PRECISION on vector types has different meaning
8486 	 (TYPE_VECTOR_SUBPARTS) and casts from vectors are view conversions,
8487 	 so avoid them here.  */
8488       if (TREE_CODE (TREE_TYPE (TREE_OPERAND (op, 0))) == VECTOR_TYPE)
8489 	break;
8490 
8491       bitschange = TYPE_PRECISION (TREE_TYPE (op))
8492 		   - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0)));
8493 
8494       /* Truncations are many-one so cannot be removed.
8495 	 Unless we are later going to truncate down even farther.  */
8496       if (bitschange < 0
8497 	  && final_prec > TYPE_PRECISION (TREE_TYPE (op)))
8498 	break;
8499 
8500       /* See what's inside this conversion.  If we decide to strip it,
8501 	 we will set WIN.  */
8502       op = TREE_OPERAND (op, 0);
8503 
8504       /* If we have not stripped any zero-extensions (uns is 0),
8505 	 we can strip any kind of extension.
8506 	 If we have previously stripped a zero-extension,
8507 	 only zero-extensions can safely be stripped.
8508 	 Any extension can be stripped if the bits it would produce
8509 	 are all going to be discarded later by truncating to FOR_TYPE.  */
8510 
8511       if (bitschange > 0)
8512 	{
8513 	  if (! uns || final_prec <= TYPE_PRECISION (TREE_TYPE (op)))
8514 	    win = op;
8515 	  /* TYPE_UNSIGNED says whether this is a zero-extension.
8516 	     Let's avoid computing it if it does not affect WIN
8517 	     and if UNS will not be needed again.  */
8518 	  if ((uns
8519 	       || CONVERT_EXPR_P (op))
8520 	      && TYPE_UNSIGNED (TREE_TYPE (op)))
8521 	    {
8522 	      uns = 1;
8523 	      win = op;
8524 	    }
8525 	}
8526     }
8527 
8528   /* If we finally reach a constant see if it fits in sth smaller and
8529      in that case convert it.  */
8530   if (TREE_CODE (win) == INTEGER_CST)
8531     {
8532       tree wtype = TREE_TYPE (win);
8533       unsigned prec = wi::min_precision (wi::to_wide (win), TYPE_SIGN (wtype));
8534       if (for_type)
8535 	prec = MAX (prec, final_prec);
8536       if (prec < TYPE_PRECISION (wtype))
8537 	{
8538 	  tree t = lang_hooks.types.type_for_size (prec, TYPE_UNSIGNED (wtype));
8539 	  if (t && TYPE_PRECISION (t) < TYPE_PRECISION (wtype))
8540 	    win = fold_convert (t, win);
8541 	}
8542     }
8543 
8544   return win;
8545 }
8546 
8547 /* Return OP or a simpler expression for a narrower value
8548    which can be sign-extended or zero-extended to give back OP.
8549    Store in *UNSIGNEDP_PTR either 1 if the value should be zero-extended
8550    or 0 if the value should be sign-extended.  */
8551 
8552 tree
8553 get_narrower (tree op, int *unsignedp_ptr)
8554 {
8555   int uns = 0;
8556   int first = 1;
8557   tree win = op;
8558   bool integral_p = INTEGRAL_TYPE_P (TREE_TYPE (op));
8559 
8560   while (TREE_CODE (op) == NOP_EXPR)
8561     {
8562       int bitschange
8563 	= (TYPE_PRECISION (TREE_TYPE (op))
8564 	   - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0))));
8565 
8566       /* Truncations are many-one so cannot be removed.  */
8567       if (bitschange < 0)
8568 	break;
8569 
8570       /* See what's inside this conversion.  If we decide to strip it,
8571 	 we will set WIN.  */
8572 
8573       if (bitschange > 0)
8574 	{
8575 	  op = TREE_OPERAND (op, 0);
8576 	  /* An extension: the outermost one can be stripped,
8577 	     but remember whether it is zero or sign extension.  */
8578 	  if (first)
8579 	    uns = TYPE_UNSIGNED (TREE_TYPE (op));
8580 	  /* Otherwise, if a sign extension has been stripped,
8581 	     only sign extensions can now be stripped;
8582 	     if a zero extension has been stripped, only zero-extensions.  */
8583 	  else if (uns != TYPE_UNSIGNED (TREE_TYPE (op)))
8584 	    break;
8585 	  first = 0;
8586 	}
8587       else /* bitschange == 0 */
8588 	{
8589 	  /* A change in nominal type can always be stripped, but we must
8590 	     preserve the unsignedness.  */
8591 	  if (first)
8592 	    uns = TYPE_UNSIGNED (TREE_TYPE (op));
8593 	  first = 0;
8594 	  op = TREE_OPERAND (op, 0);
8595 	  /* Keep trying to narrow, but don't assign op to win if it
8596 	     would turn an integral type into something else.  */
8597 	  if (INTEGRAL_TYPE_P (TREE_TYPE (op)) != integral_p)
8598 	    continue;
8599 	}
8600 
8601       win = op;
8602     }
8603 
8604   if (TREE_CODE (op) == COMPONENT_REF
8605       /* Since type_for_size always gives an integer type.  */
8606       && TREE_CODE (TREE_TYPE (op)) != REAL_TYPE
8607       && TREE_CODE (TREE_TYPE (op)) != FIXED_POINT_TYPE
8608       /* Ensure field is laid out already.  */
8609       && DECL_SIZE (TREE_OPERAND (op, 1)) != 0
8610       && tree_fits_uhwi_p (DECL_SIZE (TREE_OPERAND (op, 1))))
8611     {
8612       unsigned HOST_WIDE_INT innerprec
8613 	= tree_to_uhwi (DECL_SIZE (TREE_OPERAND (op, 1)));
8614       int unsignedp = (DECL_UNSIGNED (TREE_OPERAND (op, 1))
8615 		       || TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (op, 1))));
8616       tree type = lang_hooks.types.type_for_size (innerprec, unsignedp);
8617 
8618       /* We can get this structure field in a narrower type that fits it,
8619 	 but the resulting extension to its nominal type (a fullword type)
8620 	 must satisfy the same conditions as for other extensions.
8621 
8622 	 Do this only for fields that are aligned (not bit-fields),
8623 	 because when bit-field insns will be used there is no
8624 	 advantage in doing this.  */
8625 
8626       if (innerprec < TYPE_PRECISION (TREE_TYPE (op))
8627 	  && ! DECL_BIT_FIELD (TREE_OPERAND (op, 1))
8628 	  && (first || uns == DECL_UNSIGNED (TREE_OPERAND (op, 1)))
8629 	  && type != 0)
8630 	{
8631 	  if (first)
8632 	    uns = DECL_UNSIGNED (TREE_OPERAND (op, 1));
8633 	  win = fold_convert (type, op);
8634 	}
8635     }
8636 
8637   *unsignedp_ptr = uns;
8638   return win;
8639 }
8640 
8641 /* Return true if integer constant C has a value that is permissible
8642    for TYPE, an integral type.  */
8643 
8644 bool
8645 int_fits_type_p (const_tree c, const_tree type)
8646 {
8647   tree type_low_bound, type_high_bound;
8648   bool ok_for_low_bound, ok_for_high_bound;
8649   signop sgn_c = TYPE_SIGN (TREE_TYPE (c));
8650 
8651   /* Non-standard boolean types can have arbitrary precision but various
8652      transformations assume that they can only take values 0 and +/-1.  */
8653   if (TREE_CODE (type) == BOOLEAN_TYPE)
8654     return wi::fits_to_boolean_p (wi::to_wide (c), type);
8655 
8656 retry:
8657   type_low_bound = TYPE_MIN_VALUE (type);
8658   type_high_bound = TYPE_MAX_VALUE (type);
8659 
8660   /* If at least one bound of the type is a constant integer, we can check
8661      ourselves and maybe make a decision. If no such decision is possible, but
8662      this type is a subtype, try checking against that.  Otherwise, use
8663      fits_to_tree_p, which checks against the precision.
8664 
8665      Compute the status for each possibly constant bound, and return if we see
8666      one does not match. Use ok_for_xxx_bound for this purpose, assigning -1
8667      for "unknown if constant fits", 0 for "constant known *not* to fit" and 1
8668      for "constant known to fit".  */
8669 
8670   /* Check if c >= type_low_bound.  */
8671   if (type_low_bound && TREE_CODE (type_low_bound) == INTEGER_CST)
8672     {
8673       if (tree_int_cst_lt (c, type_low_bound))
8674 	return false;
8675       ok_for_low_bound = true;
8676     }
8677   else
8678     ok_for_low_bound = false;
8679 
8680   /* Check if c <= type_high_bound.  */
8681   if (type_high_bound && TREE_CODE (type_high_bound) == INTEGER_CST)
8682     {
8683       if (tree_int_cst_lt (type_high_bound, c))
8684 	return false;
8685       ok_for_high_bound = true;
8686     }
8687   else
8688     ok_for_high_bound = false;
8689 
8690   /* If the constant fits both bounds, the result is known.  */
8691   if (ok_for_low_bound && ok_for_high_bound)
8692     return true;
8693 
8694   /* Perform some generic filtering which may allow making a decision
8695      even if the bounds are not constant.  First, negative integers
8696      never fit in unsigned types, */
8697   if (TYPE_UNSIGNED (type) && sgn_c == SIGNED && wi::neg_p (wi::to_wide (c)))
8698     return false;
8699 
8700   /* Second, narrower types always fit in wider ones.  */
8701   if (TYPE_PRECISION (type) > TYPE_PRECISION (TREE_TYPE (c)))
8702     return true;
8703 
8704   /* Third, unsigned integers with top bit set never fit signed types.  */
8705   if (!TYPE_UNSIGNED (type) && sgn_c == UNSIGNED)
8706     {
8707       int prec = GET_MODE_PRECISION (SCALAR_INT_TYPE_MODE (TREE_TYPE (c))) - 1;
8708       if (prec < TYPE_PRECISION (TREE_TYPE (c)))
8709 	{
8710 	  /* When a tree_cst is converted to a wide-int, the precision
8711 	     is taken from the type.  However, if the precision of the
8712 	     mode underneath the type is smaller than that, it is
8713 	     possible that the value will not fit.  The test below
8714 	     fails if any bit is set between the sign bit of the
8715 	     underlying mode and the top bit of the type.  */
8716 	  if (wi::zext (wi::to_wide (c), prec - 1) != wi::to_wide (c))
8717 	    return false;
8718 	}
8719       else if (wi::neg_p (wi::to_wide (c)))
8720 	return false;
8721     }
8722 
8723   /* If we haven't been able to decide at this point, there nothing more we
8724      can check ourselves here.  Look at the base type if we have one and it
8725      has the same precision.  */
8726   if (TREE_CODE (type) == INTEGER_TYPE
8727       && TREE_TYPE (type) != 0
8728       && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (type)))
8729     {
8730       type = TREE_TYPE (type);
8731       goto retry;
8732     }
8733 
8734   /* Or to fits_to_tree_p, if nothing else.  */
8735   return wi::fits_to_tree_p (wi::to_wide (c), type);
8736 }
8737 
8738 /* Stores bounds of an integer TYPE in MIN and MAX.  If TYPE has non-constant
8739    bounds or is a POINTER_TYPE, the maximum and/or minimum values that can be
8740    represented (assuming two's-complement arithmetic) within the bit
8741    precision of the type are returned instead.  */
8742 
8743 void
8744 get_type_static_bounds (const_tree type, mpz_t min, mpz_t max)
8745 {
8746   if (!POINTER_TYPE_P (type) && TYPE_MIN_VALUE (type)
8747       && TREE_CODE (TYPE_MIN_VALUE (type)) == INTEGER_CST)
8748     wi::to_mpz (wi::to_wide (TYPE_MIN_VALUE (type)), min, TYPE_SIGN (type));
8749   else
8750     {
8751       if (TYPE_UNSIGNED (type))
8752 	mpz_set_ui (min, 0);
8753       else
8754 	{
8755 	  wide_int mn = wi::min_value (TYPE_PRECISION (type), SIGNED);
8756 	  wi::to_mpz (mn, min, SIGNED);
8757 	}
8758     }
8759 
8760   if (!POINTER_TYPE_P (type) && TYPE_MAX_VALUE (type)
8761       && TREE_CODE (TYPE_MAX_VALUE (type)) == INTEGER_CST)
8762     wi::to_mpz (wi::to_wide (TYPE_MAX_VALUE (type)), max, TYPE_SIGN (type));
8763   else
8764     {
8765       wide_int mn = wi::max_value (TYPE_PRECISION (type), TYPE_SIGN (type));
8766       wi::to_mpz (mn, max, TYPE_SIGN (type));
8767     }
8768 }
8769 
8770 /* Return true if VAR is an automatic variable defined in function FN.  */
8771 
8772 bool
8773 auto_var_in_fn_p (const_tree var, const_tree fn)
8774 {
8775   return (DECL_P (var) && DECL_CONTEXT (var) == fn
8776 	  && ((((VAR_P (var) && ! DECL_EXTERNAL (var))
8777 		|| TREE_CODE (var) == PARM_DECL)
8778 	       && ! TREE_STATIC (var))
8779 	      || TREE_CODE (var) == LABEL_DECL
8780 	      || TREE_CODE (var) == RESULT_DECL));
8781 }
8782 
8783 /* Subprogram of following function.  Called by walk_tree.
8784 
8785    Return *TP if it is an automatic variable or parameter of the
8786    function passed in as DATA.  */
8787 
8788 static tree
8789 find_var_from_fn (tree *tp, int *walk_subtrees, void *data)
8790 {
8791   tree fn = (tree) data;
8792 
8793   if (TYPE_P (*tp))
8794     *walk_subtrees = 0;
8795 
8796   else if (DECL_P (*tp)
8797 	   && auto_var_in_fn_p (*tp, fn))
8798     return *tp;
8799 
8800   return NULL_TREE;
8801 }
8802 
8803 /* Returns true if T is, contains, or refers to a type with variable
8804    size.  For METHOD_TYPEs and FUNCTION_TYPEs we exclude the
8805    arguments, but not the return type.  If FN is nonzero, only return
8806    true if a modifier of the type or position of FN is a variable or
8807    parameter inside FN.
8808 
8809    This concept is more general than that of C99 'variably modified types':
8810    in C99, a struct type is never variably modified because a VLA may not
8811    appear as a structure member.  However, in GNU C code like:
8812 
8813      struct S { int i[f()]; };
8814 
8815    is valid, and other languages may define similar constructs.  */
8816 
8817 bool
8818 variably_modified_type_p (tree type, tree fn)
8819 {
8820   tree t;
8821 
8822 /* Test if T is either variable (if FN is zero) or an expression containing
8823    a variable in FN.  If TYPE isn't gimplified, return true also if
8824    gimplify_one_sizepos would gimplify the expression into a local
8825    variable.  */
8826 #define RETURN_TRUE_IF_VAR(T)						\
8827   do { tree _t = (T);							\
8828     if (_t != NULL_TREE							\
8829 	&& _t != error_mark_node					\
8830 	&& !CONSTANT_CLASS_P (_t)					\
8831 	&& TREE_CODE (_t) != PLACEHOLDER_EXPR				\
8832 	&& (!fn								\
8833 	    || (!TYPE_SIZES_GIMPLIFIED (type)				\
8834 		&& (TREE_CODE (_t) != VAR_DECL				\
8835 		    && !CONTAINS_PLACEHOLDER_P (_t)))			\
8836 	    || walk_tree (&_t, find_var_from_fn, fn, NULL)))		\
8837       return true;  } while (0)
8838 
8839   if (type == error_mark_node)
8840     return false;
8841 
8842   /* If TYPE itself has variable size, it is variably modified.  */
8843   RETURN_TRUE_IF_VAR (TYPE_SIZE (type));
8844   RETURN_TRUE_IF_VAR (TYPE_SIZE_UNIT (type));
8845 
8846   switch (TREE_CODE (type))
8847     {
8848     case POINTER_TYPE:
8849     case REFERENCE_TYPE:
8850     case VECTOR_TYPE:
8851       /* Ada can have pointer types refering to themselves indirectly.  */
8852       if (TREE_VISITED (type))
8853 	return false;
8854       TREE_VISITED (type) = true;
8855       if (variably_modified_type_p (TREE_TYPE (type), fn))
8856 	{
8857 	  TREE_VISITED (type) = false;
8858 	  return true;
8859 	}
8860       TREE_VISITED (type) = false;
8861       break;
8862 
8863     case FUNCTION_TYPE:
8864     case METHOD_TYPE:
8865       /* If TYPE is a function type, it is variably modified if the
8866 	 return type is variably modified.  */
8867       if (variably_modified_type_p (TREE_TYPE (type), fn))
8868 	  return true;
8869       break;
8870 
8871     case INTEGER_TYPE:
8872     case REAL_TYPE:
8873     case FIXED_POINT_TYPE:
8874     case ENUMERAL_TYPE:
8875     case BOOLEAN_TYPE:
8876       /* Scalar types are variably modified if their end points
8877 	 aren't constant.  */
8878       RETURN_TRUE_IF_VAR (TYPE_MIN_VALUE (type));
8879       RETURN_TRUE_IF_VAR (TYPE_MAX_VALUE (type));
8880       break;
8881 
8882     case RECORD_TYPE:
8883     case UNION_TYPE:
8884     case QUAL_UNION_TYPE:
8885       /* We can't see if any of the fields are variably-modified by the
8886 	 definition we normally use, since that would produce infinite
8887 	 recursion via pointers.  */
8888       /* This is variably modified if some field's type is.  */
8889       for (t = TYPE_FIELDS (type); t; t = DECL_CHAIN (t))
8890 	if (TREE_CODE (t) == FIELD_DECL)
8891 	  {
8892 	    RETURN_TRUE_IF_VAR (DECL_FIELD_OFFSET (t));
8893 	    RETURN_TRUE_IF_VAR (DECL_SIZE (t));
8894 	    RETURN_TRUE_IF_VAR (DECL_SIZE_UNIT (t));
8895 
8896 	    if (TREE_CODE (type) == QUAL_UNION_TYPE)
8897 	      RETURN_TRUE_IF_VAR (DECL_QUALIFIER (t));
8898 	  }
8899       break;
8900 
8901     case ARRAY_TYPE:
8902       /* Do not call ourselves to avoid infinite recursion.  This is
8903 	 variably modified if the element type is.  */
8904       RETURN_TRUE_IF_VAR (TYPE_SIZE (TREE_TYPE (type)));
8905       RETURN_TRUE_IF_VAR (TYPE_SIZE_UNIT (TREE_TYPE (type)));
8906       break;
8907 
8908     default:
8909       break;
8910     }
8911 
8912   /* The current language may have other cases to check, but in general,
8913      all other types are not variably modified.  */
8914   return lang_hooks.tree_inlining.var_mod_type_p (type, fn);
8915 
8916 #undef RETURN_TRUE_IF_VAR
8917 }
8918 
8919 /* Given a DECL or TYPE, return the scope in which it was declared, or
8920    NULL_TREE if there is no containing scope.  */
8921 
8922 tree
8923 get_containing_scope (const_tree t)
8924 {
8925   return (TYPE_P (t) ? TYPE_CONTEXT (t) : DECL_CONTEXT (t));
8926 }
8927 
8928 /* Returns the ultimate TRANSLATION_UNIT_DECL context of DECL or NULL.  */
8929 
8930 const_tree
8931 get_ultimate_context (const_tree decl)
8932 {
8933   while (decl && TREE_CODE (decl) != TRANSLATION_UNIT_DECL)
8934     {
8935       if (TREE_CODE (decl) == BLOCK)
8936 	decl = BLOCK_SUPERCONTEXT (decl);
8937       else
8938 	decl = get_containing_scope (decl);
8939     }
8940   return decl;
8941 }
8942 
8943 /* Return the innermost context enclosing DECL that is
8944    a FUNCTION_DECL, or zero if none.  */
8945 
8946 tree
8947 decl_function_context (const_tree decl)
8948 {
8949   tree context;
8950 
8951   if (TREE_CODE (decl) == ERROR_MARK)
8952     return 0;
8953 
8954   /* C++ virtual functions use DECL_CONTEXT for the class of the vtable
8955      where we look up the function at runtime.  Such functions always take
8956      a first argument of type 'pointer to real context'.
8957 
8958      C++ should really be fixed to use DECL_CONTEXT for the real context,
8959      and use something else for the "virtual context".  */
8960   else if (TREE_CODE (decl) == FUNCTION_DECL && DECL_VINDEX (decl))
8961     context
8962       = TYPE_MAIN_VARIANT
8963 	(TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
8964   else
8965     context = DECL_CONTEXT (decl);
8966 
8967   while (context && TREE_CODE (context) != FUNCTION_DECL)
8968     {
8969       if (TREE_CODE (context) == BLOCK)
8970 	context = BLOCK_SUPERCONTEXT (context);
8971       else
8972 	context = get_containing_scope (context);
8973     }
8974 
8975   return context;
8976 }
8977 
8978 /* Return the innermost context enclosing DECL that is
8979    a RECORD_TYPE, UNION_TYPE or QUAL_UNION_TYPE, or zero if none.
8980    TYPE_DECLs and FUNCTION_DECLs are transparent to this function.  */
8981 
8982 tree
8983 decl_type_context (const_tree decl)
8984 {
8985   tree context = DECL_CONTEXT (decl);
8986 
8987   while (context)
8988     switch (TREE_CODE (context))
8989       {
8990       case NAMESPACE_DECL:
8991       case TRANSLATION_UNIT_DECL:
8992 	return NULL_TREE;
8993 
8994       case RECORD_TYPE:
8995       case UNION_TYPE:
8996       case QUAL_UNION_TYPE:
8997 	return context;
8998 
8999       case TYPE_DECL:
9000       case FUNCTION_DECL:
9001 	context = DECL_CONTEXT (context);
9002 	break;
9003 
9004       case BLOCK:
9005 	context = BLOCK_SUPERCONTEXT (context);
9006 	break;
9007 
9008       default:
9009 	gcc_unreachable ();
9010       }
9011 
9012   return NULL_TREE;
9013 }
9014 
9015 /* CALL is a CALL_EXPR.  Return the declaration for the function
9016    called, or NULL_TREE if the called function cannot be
9017    determined.  */
9018 
9019 tree
9020 get_callee_fndecl (const_tree call)
9021 {
9022   tree addr;
9023 
9024   if (call == error_mark_node)
9025     return error_mark_node;
9026 
9027   /* It's invalid to call this function with anything but a
9028      CALL_EXPR.  */
9029   gcc_assert (TREE_CODE (call) == CALL_EXPR);
9030 
9031   /* The first operand to the CALL is the address of the function
9032      called.  */
9033   addr = CALL_EXPR_FN (call);
9034 
9035   /* If there is no function, return early.  */
9036   if (addr == NULL_TREE)
9037     return NULL_TREE;
9038 
9039   STRIP_NOPS (addr);
9040 
9041   /* If this is a readonly function pointer, extract its initial value.  */
9042   if (DECL_P (addr) && TREE_CODE (addr) != FUNCTION_DECL
9043       && TREE_READONLY (addr) && ! TREE_THIS_VOLATILE (addr)
9044       && DECL_INITIAL (addr))
9045     addr = DECL_INITIAL (addr);
9046 
9047   /* If the address is just `&f' for some function `f', then we know
9048      that `f' is being called.  */
9049   if (TREE_CODE (addr) == ADDR_EXPR
9050       && TREE_CODE (TREE_OPERAND (addr, 0)) == FUNCTION_DECL)
9051     return TREE_OPERAND (addr, 0);
9052 
9053   /* We couldn't figure out what was being called.  */
9054   return NULL_TREE;
9055 }
9056 
9057 /* If CALL_EXPR CALL calls a normal built-in function or an internal function,
9058    return the associated function code, otherwise return CFN_LAST.  */
9059 
9060 combined_fn
9061 get_call_combined_fn (const_tree call)
9062 {
9063   /* It's invalid to call this function with anything but a CALL_EXPR.  */
9064   gcc_assert (TREE_CODE (call) == CALL_EXPR);
9065 
9066   if (!CALL_EXPR_FN (call))
9067     return as_combined_fn (CALL_EXPR_IFN (call));
9068 
9069   tree fndecl = get_callee_fndecl (call);
9070   if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
9071     return as_combined_fn (DECL_FUNCTION_CODE (fndecl));
9072 
9073   return CFN_LAST;
9074 }
9075 
9076 #define TREE_MEM_USAGE_SPACES 40
9077 
9078 /* Print debugging information about tree nodes generated during the compile,
9079    and any language-specific information.  */
9080 
9081 void
9082 dump_tree_statistics (void)
9083 {
9084   if (GATHER_STATISTICS)
9085     {
9086       int i;
9087       uint64_t total_nodes, total_bytes;
9088       fprintf (stderr, "\nKind                   Nodes      Bytes\n");
9089       mem_usage::print_dash_line (TREE_MEM_USAGE_SPACES);
9090       total_nodes = total_bytes = 0;
9091       for (i = 0; i < (int) all_kinds; i++)
9092 	{
9093 	  fprintf (stderr, "%-20s %7" PRIu64 " %10" PRIu64 "\n",
9094 		   tree_node_kind_names[i], tree_node_counts[i],
9095 		   tree_node_sizes[i]);
9096 	  total_nodes += tree_node_counts[i];
9097 	  total_bytes += tree_node_sizes[i];
9098 	}
9099       mem_usage::print_dash_line (TREE_MEM_USAGE_SPACES);
9100       fprintf (stderr, "%-20s %7" PRIu64 " %10" PRIu64 "\n", "Total",
9101 	       total_nodes, total_bytes);
9102       mem_usage::print_dash_line (TREE_MEM_USAGE_SPACES);
9103       fprintf (stderr, "Code                   Nodes\n");
9104       mem_usage::print_dash_line (TREE_MEM_USAGE_SPACES);
9105       for (i = 0; i < (int) MAX_TREE_CODES; i++)
9106 	fprintf (stderr, "%-32s %7" PRIu64 "\n",
9107 		 get_tree_code_name ((enum tree_code) i), tree_code_counts[i]);
9108       mem_usage::print_dash_line (TREE_MEM_USAGE_SPACES);
9109       fprintf (stderr, "\n");
9110       ssanames_print_statistics ();
9111       fprintf (stderr, "\n");
9112       phinodes_print_statistics ();
9113       fprintf (stderr, "\n");
9114     }
9115   else
9116     fprintf (stderr, "(No per-node statistics)\n");
9117 
9118   print_type_hash_statistics ();
9119   print_debug_expr_statistics ();
9120   print_value_expr_statistics ();
9121   lang_hooks.print_statistics ();
9122 }
9123 
9124 #define FILE_FUNCTION_FORMAT "_GLOBAL__%s_%s"
9125 
9126 /* Generate a crc32 of the low BYTES bytes of VALUE.  */
9127 
9128 unsigned
9129 crc32_unsigned_n (unsigned chksum, unsigned value, unsigned bytes)
9130 {
9131   /* This relies on the raw feedback's top 4 bits being zero.  */
9132 #define FEEDBACK(X) ((X) * 0x04c11db7)
9133 #define SYNDROME(X) (FEEDBACK ((X) & 1) ^ FEEDBACK ((X) & 2) \
9134 		     ^ FEEDBACK ((X) & 4) ^ FEEDBACK ((X) & 8))
9135   static const unsigned syndromes[16] =
9136     {
9137       SYNDROME(0x0), SYNDROME(0x1), SYNDROME(0x2), SYNDROME(0x3),
9138       SYNDROME(0x4), SYNDROME(0x5), SYNDROME(0x6), SYNDROME(0x7),
9139       SYNDROME(0x8), SYNDROME(0x9), SYNDROME(0xa), SYNDROME(0xb),
9140       SYNDROME(0xc), SYNDROME(0xd), SYNDROME(0xe), SYNDROME(0xf),
9141     };
9142 #undef FEEDBACK
9143 #undef SYNDROME
9144 
9145   value <<= (32 - bytes * 8);
9146   for (unsigned ix = bytes * 2; ix--; value <<= 4)
9147     {
9148       unsigned feedback = syndromes[((value ^ chksum) >> 28) & 0xf];
9149 
9150       chksum = (chksum << 4) ^ feedback;
9151     }
9152 
9153   return chksum;
9154 }
9155 
9156 /* Generate a crc32 of a string.  */
9157 
9158 unsigned
9159 crc32_string (unsigned chksum, const char *string)
9160 {
9161   do
9162     chksum = crc32_byte (chksum, *string);
9163   while (*string++);
9164   return chksum;
9165 }
9166 
9167 /* P is a string that will be used in a symbol.  Mask out any characters
9168    that are not valid in that context.  */
9169 
9170 void
9171 clean_symbol_name (char *p)
9172 {
9173   for (; *p; p++)
9174     if (! (ISALNUM (*p)
9175 #ifndef NO_DOLLAR_IN_LABEL	/* this for `$'; unlikely, but... -- kr */
9176 	    || *p == '$'
9177 #endif
9178 #ifndef NO_DOT_IN_LABEL		/* this for `.'; unlikely, but...  */
9179 	    || *p == '.'
9180 #endif
9181 	   ))
9182       *p = '_';
9183 }
9184 
9185 /* For anonymous aggregate types, we need some sort of name to
9186    hold on to.  In practice, this should not appear, but it should
9187    not be harmful if it does.  */
9188 bool
9189 anon_aggrname_p(const_tree id_node)
9190 {
9191 #ifndef NO_DOT_IN_LABEL
9192  return (IDENTIFIER_POINTER (id_node)[0] == '.'
9193 	 && IDENTIFIER_POINTER (id_node)[1] == '_');
9194 #else /* NO_DOT_IN_LABEL */
9195 #ifndef NO_DOLLAR_IN_LABEL
9196   return (IDENTIFIER_POINTER (id_node)[0] == '$' \
9197 	  && IDENTIFIER_POINTER (id_node)[1] == '_');
9198 #else /* NO_DOLLAR_IN_LABEL */
9199 #define ANON_AGGRNAME_PREFIX "__anon_"
9200   return (!strncmp (IDENTIFIER_POINTER (id_node), ANON_AGGRNAME_PREFIX,
9201 		    sizeof (ANON_AGGRNAME_PREFIX) - 1));
9202 #endif	/* NO_DOLLAR_IN_LABEL */
9203 #endif	/* NO_DOT_IN_LABEL */
9204 }
9205 
9206 /* Return a format for an anonymous aggregate name.  */
9207 const char *
9208 anon_aggrname_format()
9209 {
9210 #ifndef NO_DOT_IN_LABEL
9211  return "._%d";
9212 #else /* NO_DOT_IN_LABEL */
9213 #ifndef NO_DOLLAR_IN_LABEL
9214   return "$_%d";
9215 #else /* NO_DOLLAR_IN_LABEL */
9216   return "__anon_%d";
9217 #endif	/* NO_DOLLAR_IN_LABEL */
9218 #endif	/* NO_DOT_IN_LABEL */
9219 }
9220 
9221 /* Generate a name for a special-purpose function.
9222    The generated name may need to be unique across the whole link.
9223    Changes to this function may also require corresponding changes to
9224    xstrdup_mask_random.
9225    TYPE is some string to identify the purpose of this function to the
9226    linker or collect2; it must start with an uppercase letter,
9227    one of:
9228    I - for constructors
9229    D - for destructors
9230    N - for C++ anonymous namespaces
9231    F - for DWARF unwind frame information.  */
9232 
9233 tree
9234 get_file_function_name (const char *type)
9235 {
9236   char *buf;
9237   const char *p;
9238   char *q;
9239 
9240   /* If we already have a name we know to be unique, just use that.  */
9241   if (first_global_object_name)
9242     p = q = ASTRDUP (first_global_object_name);
9243   /* If the target is handling the constructors/destructors, they
9244      will be local to this file and the name is only necessary for
9245      debugging purposes.
9246      We also assign sub_I and sub_D sufixes to constructors called from
9247      the global static constructors.  These are always local.  */
9248   else if (((type[0] == 'I' || type[0] == 'D') && targetm.have_ctors_dtors)
9249 	   || (strncmp (type, "sub_", 4) == 0
9250 	       && (type[4] == 'I' || type[4] == 'D')))
9251     {
9252       const char *file = main_input_filename;
9253       if (! file)
9254 	file = LOCATION_FILE (input_location);
9255       /* Just use the file's basename, because the full pathname
9256 	 might be quite long.  */
9257       p = q = ASTRDUP (lbasename (file));
9258     }
9259   else
9260     {
9261       /* Otherwise, the name must be unique across the entire link.
9262 	 We don't have anything that we know to be unique to this translation
9263 	 unit, so use what we do have and throw in some randomness.  */
9264       unsigned len;
9265       const char *name = weak_global_object_name;
9266       const char *file = main_input_filename;
9267 
9268       if (! name)
9269 	name = "";
9270       if (! file)
9271 	file = LOCATION_FILE (input_location);
9272 
9273       len = strlen (file);
9274       q = (char *) alloca (9 + 19 + len + 1);
9275       memcpy (q, file, len + 1);
9276 
9277       snprintf (q + len, 9 + 19 + 1, "_%08X_" HOST_WIDE_INT_PRINT_HEX,
9278 		crc32_string (0, name), get_random_seed (false));
9279 
9280       p = q;
9281     }
9282 
9283   clean_symbol_name (q);
9284   buf = (char *) alloca (sizeof (FILE_FUNCTION_FORMAT) + strlen (p)
9285 			 + strlen (type));
9286 
9287   /* Set up the name of the file-level functions we may need.
9288      Use a global object (which is already required to be unique over
9289      the program) rather than the file name (which imposes extra
9290      constraints).  */
9291   sprintf (buf, FILE_FUNCTION_FORMAT, type, p);
9292 
9293   return get_identifier (buf);
9294 }
9295 
9296 #if defined ENABLE_TREE_CHECKING && (GCC_VERSION >= 2007)
9297 
9298 /* Complain that the tree code of NODE does not match the expected 0
9299    terminated list of trailing codes. The trailing code list can be
9300    empty, for a more vague error message.  FILE, LINE, and FUNCTION
9301    are of the caller.  */
9302 
9303 void
9304 tree_check_failed (const_tree node, const char *file,
9305 		   int line, const char *function, ...)
9306 {
9307   va_list args;
9308   const char *buffer;
9309   unsigned length = 0;
9310   enum tree_code code;
9311 
9312   va_start (args, function);
9313   while ((code = (enum tree_code) va_arg (args, int)))
9314     length += 4 + strlen (get_tree_code_name (code));
9315   va_end (args);
9316   if (length)
9317     {
9318       char *tmp;
9319       va_start (args, function);
9320       length += strlen ("expected ");
9321       buffer = tmp = (char *) alloca (length);
9322       length = 0;
9323       while ((code = (enum tree_code) va_arg (args, int)))
9324 	{
9325 	  const char *prefix = length ? " or " : "expected ";
9326 
9327 	  strcpy (tmp + length, prefix);
9328 	  length += strlen (prefix);
9329 	  strcpy (tmp + length, get_tree_code_name (code));
9330 	  length += strlen (get_tree_code_name (code));
9331 	}
9332       va_end (args);
9333     }
9334   else
9335     buffer = "unexpected node";
9336 
9337   internal_error ("tree check: %s, have %s in %s, at %s:%d",
9338 		  buffer, get_tree_code_name (TREE_CODE (node)),
9339 		  function, trim_filename (file), line);
9340 }
9341 
9342 /* Complain that the tree code of NODE does match the expected 0
9343    terminated list of trailing codes. FILE, LINE, and FUNCTION are of
9344    the caller.  */
9345 
9346 void
9347 tree_not_check_failed (const_tree node, const char *file,
9348 		       int line, const char *function, ...)
9349 {
9350   va_list args;
9351   char *buffer;
9352   unsigned length = 0;
9353   enum tree_code code;
9354 
9355   va_start (args, function);
9356   while ((code = (enum tree_code) va_arg (args, int)))
9357     length += 4 + strlen (get_tree_code_name (code));
9358   va_end (args);
9359   va_start (args, function);
9360   buffer = (char *) alloca (length);
9361   length = 0;
9362   while ((code = (enum tree_code) va_arg (args, int)))
9363     {
9364       if (length)
9365 	{
9366 	  strcpy (buffer + length, " or ");
9367 	  length += 4;
9368 	}
9369       strcpy (buffer + length, get_tree_code_name (code));
9370       length += strlen (get_tree_code_name (code));
9371     }
9372   va_end (args);
9373 
9374   internal_error ("tree check: expected none of %s, have %s in %s, at %s:%d",
9375 		  buffer, get_tree_code_name (TREE_CODE (node)),
9376 		  function, trim_filename (file), line);
9377 }
9378 
9379 /* Similar to tree_check_failed, except that we check for a class of tree
9380    code, given in CL.  */
9381 
9382 void
9383 tree_class_check_failed (const_tree node, const enum tree_code_class cl,
9384 			 const char *file, int line, const char *function)
9385 {
9386   internal_error
9387     ("tree check: expected class %qs, have %qs (%s) in %s, at %s:%d",
9388      TREE_CODE_CLASS_STRING (cl),
9389      TREE_CODE_CLASS_STRING (TREE_CODE_CLASS (TREE_CODE (node))),
9390      get_tree_code_name (TREE_CODE (node)), function, trim_filename (file), line);
9391 }
9392 
9393 /* Similar to tree_check_failed, except that instead of specifying a
9394    dozen codes, use the knowledge that they're all sequential.  */
9395 
9396 void
9397 tree_range_check_failed (const_tree node, const char *file, int line,
9398 			 const char *function, enum tree_code c1,
9399 			 enum tree_code c2)
9400 {
9401   char *buffer;
9402   unsigned length = 0;
9403   unsigned int c;
9404 
9405   for (c = c1; c <= c2; ++c)
9406     length += 4 + strlen (get_tree_code_name ((enum tree_code) c));
9407 
9408   length += strlen ("expected ");
9409   buffer = (char *) alloca (length);
9410   length = 0;
9411 
9412   for (c = c1; c <= c2; ++c)
9413     {
9414       const char *prefix = length ? " or " : "expected ";
9415 
9416       strcpy (buffer + length, prefix);
9417       length += strlen (prefix);
9418       strcpy (buffer + length, get_tree_code_name ((enum tree_code) c));
9419       length += strlen (get_tree_code_name ((enum tree_code) c));
9420     }
9421 
9422   internal_error ("tree check: %s, have %s in %s, at %s:%d",
9423 		  buffer, get_tree_code_name (TREE_CODE (node)),
9424 		  function, trim_filename (file), line);
9425 }
9426 
9427 
9428 /* Similar to tree_check_failed, except that we check that a tree does
9429    not have the specified code, given in CL.  */
9430 
9431 void
9432 tree_not_class_check_failed (const_tree node, const enum tree_code_class cl,
9433 			     const char *file, int line, const char *function)
9434 {
9435   internal_error
9436     ("tree check: did not expect class %qs, have %qs (%s) in %s, at %s:%d",
9437      TREE_CODE_CLASS_STRING (cl),
9438      TREE_CODE_CLASS_STRING (TREE_CODE_CLASS (TREE_CODE (node))),
9439      get_tree_code_name (TREE_CODE (node)), function, trim_filename (file), line);
9440 }
9441 
9442 
9443 /* Similar to tree_check_failed but applied to OMP_CLAUSE codes.  */
9444 
9445 void
9446 omp_clause_check_failed (const_tree node, const char *file, int line,
9447                          const char *function, enum omp_clause_code code)
9448 {
9449   internal_error ("tree check: expected omp_clause %s, have %s in %s, at %s:%d",
9450 		  omp_clause_code_name[code], get_tree_code_name (TREE_CODE (node)),
9451 		  function, trim_filename (file), line);
9452 }
9453 
9454 
9455 /* Similar to tree_range_check_failed but applied to OMP_CLAUSE codes.  */
9456 
9457 void
9458 omp_clause_range_check_failed (const_tree node, const char *file, int line,
9459 			       const char *function, enum omp_clause_code c1,
9460 			       enum omp_clause_code c2)
9461 {
9462   char *buffer;
9463   unsigned length = 0;
9464   unsigned int c;
9465 
9466   for (c = c1; c <= c2; ++c)
9467     length += 4 + strlen (omp_clause_code_name[c]);
9468 
9469   length += strlen ("expected ");
9470   buffer = (char *) alloca (length);
9471   length = 0;
9472 
9473   for (c = c1; c <= c2; ++c)
9474     {
9475       const char *prefix = length ? " or " : "expected ";
9476 
9477       strcpy (buffer + length, prefix);
9478       length += strlen (prefix);
9479       strcpy (buffer + length, omp_clause_code_name[c]);
9480       length += strlen (omp_clause_code_name[c]);
9481     }
9482 
9483   internal_error ("tree check: %s, have %s in %s, at %s:%d",
9484 		  buffer, omp_clause_code_name[TREE_CODE (node)],
9485 		  function, trim_filename (file), line);
9486 }
9487 
9488 
9489 #undef DEFTREESTRUCT
9490 #define DEFTREESTRUCT(VAL, NAME) NAME,
9491 
9492 static const char *ts_enum_names[] = {
9493 #include "treestruct.def"
9494 };
9495 #undef DEFTREESTRUCT
9496 
9497 #define TS_ENUM_NAME(EN) (ts_enum_names[(EN)])
9498 
9499 /* Similar to tree_class_check_failed, except that we check for
9500    whether CODE contains the tree structure identified by EN.  */
9501 
9502 void
9503 tree_contains_struct_check_failed (const_tree node,
9504 				   const enum tree_node_structure_enum en,
9505 				   const char *file, int line,
9506 				   const char *function)
9507 {
9508   internal_error
9509     ("tree check: expected tree that contains %qs structure, have %qs in %s, at %s:%d",
9510      TS_ENUM_NAME (en),
9511      get_tree_code_name (TREE_CODE (node)), function, trim_filename (file), line);
9512 }
9513 
9514 
9515 /* Similar to above, except that the check is for the bounds of a TREE_VEC's
9516    (dynamically sized) vector.  */
9517 
9518 void
9519 tree_int_cst_elt_check_failed (int idx, int len, const char *file, int line,
9520 			       const char *function)
9521 {
9522   internal_error
9523     ("tree check: accessed elt %d of tree_int_cst with %d elts in %s, at %s:%d",
9524      idx + 1, len, function, trim_filename (file), line);
9525 }
9526 
9527 /* Similar to above, except that the check is for the bounds of a TREE_VEC's
9528    (dynamically sized) vector.  */
9529 
9530 void
9531 tree_vec_elt_check_failed (int idx, int len, const char *file, int line,
9532 			   const char *function)
9533 {
9534   internal_error
9535     ("tree check: accessed elt %d of tree_vec with %d elts in %s, at %s:%d",
9536      idx + 1, len, function, trim_filename (file), line);
9537 }
9538 
9539 /* Similar to above, except that the check is for the bounds of the operand
9540    vector of an expression node EXP.  */
9541 
9542 void
9543 tree_operand_check_failed (int idx, const_tree exp, const char *file,
9544 			   int line, const char *function)
9545 {
9546   enum tree_code code = TREE_CODE (exp);
9547   internal_error
9548     ("tree check: accessed operand %d of %s with %d operands in %s, at %s:%d",
9549      idx + 1, get_tree_code_name (code), TREE_OPERAND_LENGTH (exp),
9550      function, trim_filename (file), line);
9551 }
9552 
9553 /* Similar to above, except that the check is for the number of
9554    operands of an OMP_CLAUSE node.  */
9555 
9556 void
9557 omp_clause_operand_check_failed (int idx, const_tree t, const char *file,
9558 			         int line, const char *function)
9559 {
9560   internal_error
9561     ("tree check: accessed operand %d of omp_clause %s with %d operands "
9562      "in %s, at %s:%d", idx + 1, omp_clause_code_name[OMP_CLAUSE_CODE (t)],
9563      omp_clause_num_ops [OMP_CLAUSE_CODE (t)], function,
9564      trim_filename (file), line);
9565 }
9566 #endif /* ENABLE_TREE_CHECKING */
9567 
9568 /* Create a new vector type node holding NUNITS units of type INNERTYPE,
9569    and mapped to the machine mode MODE.  Initialize its fields and build
9570    the information necessary for debugging output.  */
9571 
9572 static tree
9573 make_vector_type (tree innertype, poly_int64 nunits, machine_mode mode)
9574 {
9575   tree t;
9576   tree mv_innertype = TYPE_MAIN_VARIANT (innertype);
9577 
9578   t = make_node (VECTOR_TYPE);
9579   TREE_TYPE (t) = mv_innertype;
9580   SET_TYPE_VECTOR_SUBPARTS (t, nunits);
9581   SET_TYPE_MODE (t, mode);
9582 
9583   if (TYPE_STRUCTURAL_EQUALITY_P (mv_innertype) || in_lto_p)
9584     SET_TYPE_STRUCTURAL_EQUALITY (t);
9585   else if ((TYPE_CANONICAL (mv_innertype) != innertype
9586 	    || mode != VOIDmode)
9587 	   && !VECTOR_BOOLEAN_TYPE_P (t))
9588     TYPE_CANONICAL (t)
9589       = make_vector_type (TYPE_CANONICAL (mv_innertype), nunits, VOIDmode);
9590 
9591   layout_type (t);
9592 
9593   hashval_t hash = type_hash_canon_hash (t);
9594   t = type_hash_canon (hash, t);
9595 
9596   /* We have built a main variant, based on the main variant of the
9597      inner type. Use it to build the variant we return.  */
9598   if ((TYPE_ATTRIBUTES (innertype) || TYPE_QUALS (innertype))
9599       && TREE_TYPE (t) != innertype)
9600     return build_type_attribute_qual_variant (t,
9601 					      TYPE_ATTRIBUTES (innertype),
9602 					      TYPE_QUALS (innertype));
9603 
9604   return t;
9605 }
9606 
9607 static tree
9608 make_or_reuse_type (unsigned size, int unsignedp)
9609 {
9610   int i;
9611 
9612   if (size == INT_TYPE_SIZE)
9613     return unsignedp ? unsigned_type_node : integer_type_node;
9614   if (size == CHAR_TYPE_SIZE)
9615     return unsignedp ? unsigned_char_type_node : signed_char_type_node;
9616   if (size == SHORT_TYPE_SIZE)
9617     return unsignedp ? short_unsigned_type_node : short_integer_type_node;
9618   if (size == LONG_TYPE_SIZE)
9619     return unsignedp ? long_unsigned_type_node : long_integer_type_node;
9620   if (size == LONG_LONG_TYPE_SIZE)
9621     return (unsignedp ? long_long_unsigned_type_node
9622             : long_long_integer_type_node);
9623 
9624   for (i = 0; i < NUM_INT_N_ENTS; i ++)
9625     if (size == int_n_data[i].bitsize
9626 	&& int_n_enabled_p[i])
9627       return (unsignedp ? int_n_trees[i].unsigned_type
9628 	      : int_n_trees[i].signed_type);
9629 
9630   if (unsignedp)
9631     return make_unsigned_type (size);
9632   else
9633     return make_signed_type (size);
9634 }
9635 
9636 /* Create or reuse a fract type by SIZE, UNSIGNEDP, and SATP.  */
9637 
9638 static tree
9639 make_or_reuse_fract_type (unsigned size, int unsignedp, int satp)
9640 {
9641   if (satp)
9642     {
9643       if (size == SHORT_FRACT_TYPE_SIZE)
9644 	return unsignedp ? sat_unsigned_short_fract_type_node
9645 			 : sat_short_fract_type_node;
9646       if (size == FRACT_TYPE_SIZE)
9647 	return unsignedp ? sat_unsigned_fract_type_node : sat_fract_type_node;
9648       if (size == LONG_FRACT_TYPE_SIZE)
9649 	return unsignedp ? sat_unsigned_long_fract_type_node
9650 			 : sat_long_fract_type_node;
9651       if (size == LONG_LONG_FRACT_TYPE_SIZE)
9652 	return unsignedp ? sat_unsigned_long_long_fract_type_node
9653 			 : sat_long_long_fract_type_node;
9654     }
9655   else
9656     {
9657       if (size == SHORT_FRACT_TYPE_SIZE)
9658 	return unsignedp ? unsigned_short_fract_type_node
9659 			 : short_fract_type_node;
9660       if (size == FRACT_TYPE_SIZE)
9661 	return unsignedp ? unsigned_fract_type_node : fract_type_node;
9662       if (size == LONG_FRACT_TYPE_SIZE)
9663 	return unsignedp ? unsigned_long_fract_type_node
9664 			 : long_fract_type_node;
9665       if (size == LONG_LONG_FRACT_TYPE_SIZE)
9666 	return unsignedp ? unsigned_long_long_fract_type_node
9667 			 : long_long_fract_type_node;
9668     }
9669 
9670   return make_fract_type (size, unsignedp, satp);
9671 }
9672 
9673 /* Create or reuse an accum type by SIZE, UNSIGNEDP, and SATP.  */
9674 
9675 static tree
9676 make_or_reuse_accum_type (unsigned size, int unsignedp, int satp)
9677 {
9678   if (satp)
9679     {
9680       if (size == SHORT_ACCUM_TYPE_SIZE)
9681 	return unsignedp ? sat_unsigned_short_accum_type_node
9682 			 : sat_short_accum_type_node;
9683       if (size == ACCUM_TYPE_SIZE)
9684 	return unsignedp ? sat_unsigned_accum_type_node : sat_accum_type_node;
9685       if (size == LONG_ACCUM_TYPE_SIZE)
9686 	return unsignedp ? sat_unsigned_long_accum_type_node
9687 			 : sat_long_accum_type_node;
9688       if (size == LONG_LONG_ACCUM_TYPE_SIZE)
9689 	return unsignedp ? sat_unsigned_long_long_accum_type_node
9690 			 : sat_long_long_accum_type_node;
9691     }
9692   else
9693     {
9694       if (size == SHORT_ACCUM_TYPE_SIZE)
9695 	return unsignedp ? unsigned_short_accum_type_node
9696 			 : short_accum_type_node;
9697       if (size == ACCUM_TYPE_SIZE)
9698 	return unsignedp ? unsigned_accum_type_node : accum_type_node;
9699       if (size == LONG_ACCUM_TYPE_SIZE)
9700 	return unsignedp ? unsigned_long_accum_type_node
9701 			 : long_accum_type_node;
9702       if (size == LONG_LONG_ACCUM_TYPE_SIZE)
9703 	return unsignedp ? unsigned_long_long_accum_type_node
9704 			 : long_long_accum_type_node;
9705     }
9706 
9707   return make_accum_type (size, unsignedp, satp);
9708 }
9709 
9710 
9711 /* Create an atomic variant node for TYPE.  This routine is called
9712    during initialization of data types to create the 5 basic atomic
9713    types. The generic build_variant_type function requires these to
9714    already be set up in order to function properly, so cannot be
9715    called from there.  If ALIGN is non-zero, then ensure alignment is
9716    overridden to this value.  */
9717 
9718 static tree
9719 build_atomic_base (tree type, unsigned int align)
9720 {
9721   tree t;
9722 
9723   /* Make sure its not already registered.  */
9724   if ((t = get_qualified_type (type, TYPE_QUAL_ATOMIC)))
9725     return t;
9726 
9727   t = build_variant_type_copy (type);
9728   set_type_quals (t, TYPE_QUAL_ATOMIC);
9729 
9730   if (align)
9731     SET_TYPE_ALIGN (t, align);
9732 
9733   return t;
9734 }
9735 
9736 /* Information about the _FloatN and _FloatNx types.  This must be in
9737    the same order as the corresponding TI_* enum values.  */
9738 const floatn_type_info floatn_nx_types[NUM_FLOATN_NX_TYPES] =
9739   {
9740     { 16, false },
9741     { 32, false },
9742     { 64, false },
9743     { 128, false },
9744     { 32, true },
9745     { 64, true },
9746     { 128, true },
9747   };
9748 
9749 
9750 /* Create nodes for all integer types (and error_mark_node) using the sizes
9751    of C datatypes.  SIGNED_CHAR specifies whether char is signed.  */
9752 
9753 void
9754 build_common_tree_nodes (bool signed_char)
9755 {
9756   int i;
9757 
9758   error_mark_node = make_node (ERROR_MARK);
9759   TREE_TYPE (error_mark_node) = error_mark_node;
9760 
9761   initialize_sizetypes ();
9762 
9763   /* Define both `signed char' and `unsigned char'.  */
9764   signed_char_type_node = make_signed_type (CHAR_TYPE_SIZE);
9765   TYPE_STRING_FLAG (signed_char_type_node) = 1;
9766   unsigned_char_type_node = make_unsigned_type (CHAR_TYPE_SIZE);
9767   TYPE_STRING_FLAG (unsigned_char_type_node) = 1;
9768 
9769   /* Define `char', which is like either `signed char' or `unsigned char'
9770      but not the same as either.  */
9771   char_type_node
9772     = (signed_char
9773        ? make_signed_type (CHAR_TYPE_SIZE)
9774        : make_unsigned_type (CHAR_TYPE_SIZE));
9775   TYPE_STRING_FLAG (char_type_node) = 1;
9776 
9777   short_integer_type_node = make_signed_type (SHORT_TYPE_SIZE);
9778   short_unsigned_type_node = make_unsigned_type (SHORT_TYPE_SIZE);
9779   integer_type_node = make_signed_type (INT_TYPE_SIZE);
9780   unsigned_type_node = make_unsigned_type (INT_TYPE_SIZE);
9781   long_integer_type_node = make_signed_type (LONG_TYPE_SIZE);
9782   long_unsigned_type_node = make_unsigned_type (LONG_TYPE_SIZE);
9783   long_long_integer_type_node = make_signed_type (LONG_LONG_TYPE_SIZE);
9784   long_long_unsigned_type_node = make_unsigned_type (LONG_LONG_TYPE_SIZE);
9785 
9786   for (i = 0; i < NUM_INT_N_ENTS; i ++)
9787     {
9788       int_n_trees[i].signed_type = make_signed_type (int_n_data[i].bitsize);
9789       int_n_trees[i].unsigned_type = make_unsigned_type (int_n_data[i].bitsize);
9790       TYPE_SIZE (int_n_trees[i].signed_type) = bitsize_int (int_n_data[i].bitsize);
9791       TYPE_SIZE (int_n_trees[i].unsigned_type) = bitsize_int (int_n_data[i].bitsize);
9792 
9793       if (int_n_enabled_p[i])
9794 	{
9795 	  integer_types[itk_intN_0 + i * 2] = int_n_trees[i].signed_type;
9796 	  integer_types[itk_unsigned_intN_0 + i * 2] = int_n_trees[i].unsigned_type;
9797 	}
9798     }
9799 
9800   /* Define a boolean type.  This type only represents boolean values but
9801      may be larger than char depending on the value of BOOL_TYPE_SIZE.  */
9802   boolean_type_node = make_unsigned_type (BOOL_TYPE_SIZE);
9803   TREE_SET_CODE (boolean_type_node, BOOLEAN_TYPE);
9804   TYPE_PRECISION (boolean_type_node) = 1;
9805   TYPE_MAX_VALUE (boolean_type_node) = build_int_cst (boolean_type_node, 1);
9806 
9807   /* Define what type to use for size_t.  */
9808   if (strcmp (SIZE_TYPE, "unsigned int") == 0)
9809     size_type_node = unsigned_type_node;
9810   else if (strcmp (SIZE_TYPE, "long unsigned int") == 0)
9811     size_type_node = long_unsigned_type_node;
9812   else if (strcmp (SIZE_TYPE, "long long unsigned int") == 0)
9813     size_type_node = long_long_unsigned_type_node;
9814   else if (strcmp (SIZE_TYPE, "short unsigned int") == 0)
9815     size_type_node = short_unsigned_type_node;
9816   else
9817     {
9818       int i;
9819 
9820       size_type_node = NULL_TREE;
9821       for (i = 0; i < NUM_INT_N_ENTS; i++)
9822 	if (int_n_enabled_p[i])
9823 	  {
9824 	    char name[50];
9825 	    sprintf (name, "__int%d unsigned", int_n_data[i].bitsize);
9826 
9827 	    if (strcmp (name, SIZE_TYPE) == 0)
9828 	      {
9829 		size_type_node = int_n_trees[i].unsigned_type;
9830 	      }
9831 	  }
9832       if (size_type_node == NULL_TREE)
9833 	gcc_unreachable ();
9834     }
9835 
9836   /* Define what type to use for ptrdiff_t.  */
9837   if (strcmp (PTRDIFF_TYPE, "int") == 0)
9838     ptrdiff_type_node = integer_type_node;
9839   else if (strcmp (PTRDIFF_TYPE, "long int") == 0)
9840     ptrdiff_type_node = long_integer_type_node;
9841   else if (strcmp (PTRDIFF_TYPE, "long long int") == 0)
9842     ptrdiff_type_node = long_long_integer_type_node;
9843   else if (strcmp (PTRDIFF_TYPE, "short int") == 0)
9844     ptrdiff_type_node = short_integer_type_node;
9845   else
9846     {
9847       ptrdiff_type_node = NULL_TREE;
9848       for (int i = 0; i < NUM_INT_N_ENTS; i++)
9849 	if (int_n_enabled_p[i])
9850 	  {
9851 	    char name[50];
9852 	    sprintf (name, "__int%d", int_n_data[i].bitsize);
9853 	    if (strcmp (name, PTRDIFF_TYPE) == 0)
9854 	      ptrdiff_type_node = int_n_trees[i].signed_type;
9855 	  }
9856       if (ptrdiff_type_node == NULL_TREE)
9857 	gcc_unreachable ();
9858     }
9859 
9860   /* Fill in the rest of the sized types.  Reuse existing type nodes
9861      when possible.  */
9862   intQI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (QImode), 0);
9863   intHI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (HImode), 0);
9864   intSI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (SImode), 0);
9865   intDI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (DImode), 0);
9866   intTI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (TImode), 0);
9867 
9868   unsigned_intQI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (QImode), 1);
9869   unsigned_intHI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (HImode), 1);
9870   unsigned_intSI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (SImode), 1);
9871   unsigned_intDI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (DImode), 1);
9872   unsigned_intTI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (TImode), 1);
9873 
9874   /* Don't call build_qualified type for atomics.  That routine does
9875      special processing for atomics, and until they are initialized
9876      it's better not to make that call.
9877 
9878      Check to see if there is a target override for atomic types.  */
9879 
9880   atomicQI_type_node = build_atomic_base (unsigned_intQI_type_node,
9881 					targetm.atomic_align_for_mode (QImode));
9882   atomicHI_type_node = build_atomic_base (unsigned_intHI_type_node,
9883 					targetm.atomic_align_for_mode (HImode));
9884   atomicSI_type_node = build_atomic_base (unsigned_intSI_type_node,
9885 					targetm.atomic_align_for_mode (SImode));
9886   atomicDI_type_node = build_atomic_base (unsigned_intDI_type_node,
9887 					targetm.atomic_align_for_mode (DImode));
9888   atomicTI_type_node = build_atomic_base (unsigned_intTI_type_node,
9889 					targetm.atomic_align_for_mode (TImode));
9890 
9891   access_public_node = get_identifier ("public");
9892   access_protected_node = get_identifier ("protected");
9893   access_private_node = get_identifier ("private");
9894 
9895   /* Define these next since types below may used them.  */
9896   integer_zero_node = build_int_cst (integer_type_node, 0);
9897   integer_one_node = build_int_cst (integer_type_node, 1);
9898   integer_three_node = build_int_cst (integer_type_node, 3);
9899   integer_minus_one_node = build_int_cst (integer_type_node, -1);
9900 
9901   size_zero_node = size_int (0);
9902   size_one_node = size_int (1);
9903   bitsize_zero_node = bitsize_int (0);
9904   bitsize_one_node = bitsize_int (1);
9905   bitsize_unit_node = bitsize_int (BITS_PER_UNIT);
9906 
9907   boolean_false_node = TYPE_MIN_VALUE (boolean_type_node);
9908   boolean_true_node = TYPE_MAX_VALUE (boolean_type_node);
9909 
9910   void_type_node = make_node (VOID_TYPE);
9911   layout_type (void_type_node);
9912 
9913   pointer_bounds_type_node = targetm.chkp_bound_type ();
9914 
9915   /* We are not going to have real types in C with less than byte alignment,
9916      so we might as well not have any types that claim to have it.  */
9917   SET_TYPE_ALIGN (void_type_node, BITS_PER_UNIT);
9918   TYPE_USER_ALIGN (void_type_node) = 0;
9919 
9920   void_node = make_node (VOID_CST);
9921   TREE_TYPE (void_node) = void_type_node;
9922 
9923   null_pointer_node = build_int_cst (build_pointer_type (void_type_node), 0);
9924   layout_type (TREE_TYPE (null_pointer_node));
9925 
9926   ptr_type_node = build_pointer_type (void_type_node);
9927   const_ptr_type_node
9928     = build_pointer_type (build_type_variant (void_type_node, 1, 0));
9929   for (unsigned i = 0;
9930        i < sizeof (builtin_structptr_types) / sizeof (builtin_structptr_type);
9931        ++i)
9932     builtin_structptr_types[i].node = builtin_structptr_types[i].base;
9933 
9934   pointer_sized_int_node = build_nonstandard_integer_type (POINTER_SIZE, 1);
9935 
9936   float_type_node = make_node (REAL_TYPE);
9937   TYPE_PRECISION (float_type_node) = FLOAT_TYPE_SIZE;
9938   layout_type (float_type_node);
9939 
9940   double_type_node = make_node (REAL_TYPE);
9941   TYPE_PRECISION (double_type_node) = DOUBLE_TYPE_SIZE;
9942   layout_type (double_type_node);
9943 
9944   long_double_type_node = make_node (REAL_TYPE);
9945   TYPE_PRECISION (long_double_type_node) = LONG_DOUBLE_TYPE_SIZE;
9946   layout_type (long_double_type_node);
9947 
9948   for (i = 0; i < NUM_FLOATN_NX_TYPES; i++)
9949     {
9950       int n = floatn_nx_types[i].n;
9951       bool extended = floatn_nx_types[i].extended;
9952       scalar_float_mode mode;
9953       if (!targetm.floatn_mode (n, extended).exists (&mode))
9954 	continue;
9955       int precision = GET_MODE_PRECISION (mode);
9956       /* Work around the rs6000 KFmode having precision 113 not
9957 	 128.  */
9958       const struct real_format *fmt = REAL_MODE_FORMAT (mode);
9959       gcc_assert (fmt->b == 2 && fmt->emin + fmt->emax == 3);
9960       int min_precision = fmt->p + ceil_log2 (fmt->emax - fmt->emin);
9961       if (!extended)
9962 	gcc_assert (min_precision == n);
9963       if (precision < min_precision)
9964 	precision = min_precision;
9965       FLOATN_NX_TYPE_NODE (i) = make_node (REAL_TYPE);
9966       TYPE_PRECISION (FLOATN_NX_TYPE_NODE (i)) = precision;
9967       layout_type (FLOATN_NX_TYPE_NODE (i));
9968       SET_TYPE_MODE (FLOATN_NX_TYPE_NODE (i), mode);
9969     }
9970 
9971   float_ptr_type_node = build_pointer_type (float_type_node);
9972   double_ptr_type_node = build_pointer_type (double_type_node);
9973   long_double_ptr_type_node = build_pointer_type (long_double_type_node);
9974   integer_ptr_type_node = build_pointer_type (integer_type_node);
9975 
9976   /* Fixed size integer types.  */
9977   uint16_type_node = make_or_reuse_type (16, 1);
9978   uint32_type_node = make_or_reuse_type (32, 1);
9979   uint64_type_node = make_or_reuse_type (64, 1);
9980 
9981   /* Decimal float types. */
9982   dfloat32_type_node = make_node (REAL_TYPE);
9983   TYPE_PRECISION (dfloat32_type_node) = DECIMAL32_TYPE_SIZE;
9984   SET_TYPE_MODE (dfloat32_type_node, SDmode);
9985   layout_type (dfloat32_type_node);
9986   dfloat32_ptr_type_node = build_pointer_type (dfloat32_type_node);
9987 
9988   dfloat64_type_node = make_node (REAL_TYPE);
9989   TYPE_PRECISION (dfloat64_type_node) = DECIMAL64_TYPE_SIZE;
9990   SET_TYPE_MODE (dfloat64_type_node, DDmode);
9991   layout_type (dfloat64_type_node);
9992   dfloat64_ptr_type_node = build_pointer_type (dfloat64_type_node);
9993 
9994   dfloat128_type_node = make_node (REAL_TYPE);
9995   TYPE_PRECISION (dfloat128_type_node) = DECIMAL128_TYPE_SIZE;
9996   SET_TYPE_MODE (dfloat128_type_node, TDmode);
9997   layout_type (dfloat128_type_node);
9998   dfloat128_ptr_type_node = build_pointer_type (dfloat128_type_node);
9999 
10000   complex_integer_type_node = build_complex_type (integer_type_node, true);
10001   complex_float_type_node = build_complex_type (float_type_node, true);
10002   complex_double_type_node = build_complex_type (double_type_node, true);
10003   complex_long_double_type_node = build_complex_type (long_double_type_node,
10004 						      true);
10005 
10006   for (i = 0; i < NUM_FLOATN_NX_TYPES; i++)
10007     {
10008       if (FLOATN_NX_TYPE_NODE (i) != NULL_TREE)
10009 	COMPLEX_FLOATN_NX_TYPE_NODE (i)
10010 	  = build_complex_type (FLOATN_NX_TYPE_NODE (i));
10011     }
10012 
10013 /* Make fixed-point nodes based on sat/non-sat and signed/unsigned.  */
10014 #define MAKE_FIXED_TYPE_NODE(KIND,SIZE) \
10015   sat_ ## KIND ## _type_node = \
10016     make_sat_signed_ ## KIND ## _type (SIZE); \
10017   sat_unsigned_ ## KIND ## _type_node = \
10018     make_sat_unsigned_ ## KIND ## _type (SIZE); \
10019   KIND ## _type_node = make_signed_ ## KIND ## _type (SIZE); \
10020   unsigned_ ## KIND ## _type_node = \
10021     make_unsigned_ ## KIND ## _type (SIZE);
10022 
10023 #define MAKE_FIXED_TYPE_NODE_WIDTH(KIND,WIDTH,SIZE) \
10024   sat_ ## WIDTH ## KIND ## _type_node = \
10025     make_sat_signed_ ## KIND ## _type (SIZE); \
10026   sat_unsigned_ ## WIDTH ## KIND ## _type_node = \
10027     make_sat_unsigned_ ## KIND ## _type (SIZE); \
10028   WIDTH ## KIND ## _type_node = make_signed_ ## KIND ## _type (SIZE); \
10029   unsigned_ ## WIDTH ## KIND ## _type_node = \
10030     make_unsigned_ ## KIND ## _type (SIZE);
10031 
10032 /* Make fixed-point type nodes based on four different widths.  */
10033 #define MAKE_FIXED_TYPE_NODE_FAMILY(N1,N2) \
10034   MAKE_FIXED_TYPE_NODE_WIDTH (N1, short_, SHORT_ ## N2 ## _TYPE_SIZE) \
10035   MAKE_FIXED_TYPE_NODE (N1, N2 ## _TYPE_SIZE) \
10036   MAKE_FIXED_TYPE_NODE_WIDTH (N1, long_, LONG_ ## N2 ## _TYPE_SIZE) \
10037   MAKE_FIXED_TYPE_NODE_WIDTH (N1, long_long_, LONG_LONG_ ## N2 ## _TYPE_SIZE)
10038 
10039 /* Make fixed-point mode nodes based on sat/non-sat and signed/unsigned.  */
10040 #define MAKE_FIXED_MODE_NODE(KIND,NAME,MODE) \
10041   NAME ## _type_node = \
10042     make_or_reuse_signed_ ## KIND ## _type (GET_MODE_BITSIZE (MODE ## mode)); \
10043   u ## NAME ## _type_node = \
10044     make_or_reuse_unsigned_ ## KIND ## _type \
10045       (GET_MODE_BITSIZE (U ## MODE ## mode)); \
10046   sat_ ## NAME ## _type_node = \
10047     make_or_reuse_sat_signed_ ## KIND ## _type \
10048       (GET_MODE_BITSIZE (MODE ## mode)); \
10049   sat_u ## NAME ## _type_node = \
10050     make_or_reuse_sat_unsigned_ ## KIND ## _type \
10051       (GET_MODE_BITSIZE (U ## MODE ## mode));
10052 
10053   /* Fixed-point type and mode nodes.  */
10054   MAKE_FIXED_TYPE_NODE_FAMILY (fract, FRACT)
10055   MAKE_FIXED_TYPE_NODE_FAMILY (accum, ACCUM)
10056   MAKE_FIXED_MODE_NODE (fract, qq, QQ)
10057   MAKE_FIXED_MODE_NODE (fract, hq, HQ)
10058   MAKE_FIXED_MODE_NODE (fract, sq, SQ)
10059   MAKE_FIXED_MODE_NODE (fract, dq, DQ)
10060   MAKE_FIXED_MODE_NODE (fract, tq, TQ)
10061   MAKE_FIXED_MODE_NODE (accum, ha, HA)
10062   MAKE_FIXED_MODE_NODE (accum, sa, SA)
10063   MAKE_FIXED_MODE_NODE (accum, da, DA)
10064   MAKE_FIXED_MODE_NODE (accum, ta, TA)
10065 
10066   {
10067     tree t = targetm.build_builtin_va_list ();
10068 
10069     /* Many back-ends define record types without setting TYPE_NAME.
10070        If we copied the record type here, we'd keep the original
10071        record type without a name.  This breaks name mangling.  So,
10072        don't copy record types and let c_common_nodes_and_builtins()
10073        declare the type to be __builtin_va_list.  */
10074     if (TREE_CODE (t) != RECORD_TYPE)
10075       t = build_variant_type_copy (t);
10076 
10077     va_list_type_node = t;
10078   }
10079 }
10080 
10081 /* Modify DECL for given flags.
10082    TM_PURE attribute is set only on types, so the function will modify
10083    DECL's type when ECF_TM_PURE is used.  */
10084 
10085 void
10086 set_call_expr_flags (tree decl, int flags)
10087 {
10088   if (flags & ECF_NOTHROW)
10089     TREE_NOTHROW (decl) = 1;
10090   if (flags & ECF_CONST)
10091     TREE_READONLY (decl) = 1;
10092   if (flags & ECF_PURE)
10093     DECL_PURE_P (decl) = 1;
10094   if (flags & ECF_LOOPING_CONST_OR_PURE)
10095     DECL_LOOPING_CONST_OR_PURE_P (decl) = 1;
10096   if (flags & ECF_NOVOPS)
10097     DECL_IS_NOVOPS (decl) = 1;
10098   if (flags & ECF_NORETURN)
10099     TREE_THIS_VOLATILE (decl) = 1;
10100   if (flags & ECF_MALLOC)
10101     DECL_IS_MALLOC (decl) = 1;
10102   if (flags & ECF_RETURNS_TWICE)
10103     DECL_IS_RETURNS_TWICE (decl) = 1;
10104   if (flags & ECF_LEAF)
10105     DECL_ATTRIBUTES (decl) = tree_cons (get_identifier ("leaf"),
10106 					NULL, DECL_ATTRIBUTES (decl));
10107   if (flags & ECF_COLD)
10108     DECL_ATTRIBUTES (decl) = tree_cons (get_identifier ("cold"),
10109 					NULL, DECL_ATTRIBUTES (decl));
10110   if (flags & ECF_RET1)
10111     DECL_ATTRIBUTES (decl)
10112       = tree_cons (get_identifier ("fn spec"),
10113 		   build_tree_list (NULL_TREE, build_string (1, "1")),
10114 		   DECL_ATTRIBUTES (decl));
10115   if ((flags & ECF_TM_PURE) && flag_tm)
10116     apply_tm_attr (decl, get_identifier ("transaction_pure"));
10117   /* Looping const or pure is implied by noreturn.
10118      There is currently no way to declare looping const or looping pure alone.  */
10119   gcc_assert (!(flags & ECF_LOOPING_CONST_OR_PURE)
10120 	      || ((flags & ECF_NORETURN) && (flags & (ECF_CONST | ECF_PURE))));
10121 }
10122 
10123 
10124 /* A subroutine of build_common_builtin_nodes.  Define a builtin function.  */
10125 
10126 static void
10127 local_define_builtin (const char *name, tree type, enum built_in_function code,
10128                       const char *library_name, int ecf_flags)
10129 {
10130   tree decl;
10131 
10132   decl = add_builtin_function (name, type, code, BUILT_IN_NORMAL,
10133 			       library_name, NULL_TREE);
10134   set_call_expr_flags (decl, ecf_flags);
10135 
10136   set_builtin_decl (code, decl, true);
10137 }
10138 
10139 /* Call this function after instantiating all builtins that the language
10140    front end cares about.  This will build the rest of the builtins
10141    and internal functions that are relied upon by the tree optimizers and
10142    the middle-end.  */
10143 
10144 void
10145 build_common_builtin_nodes (void)
10146 {
10147   tree tmp, ftype;
10148   int ecf_flags;
10149 
10150   if (!builtin_decl_explicit_p (BUILT_IN_UNREACHABLE)
10151       || !builtin_decl_explicit_p (BUILT_IN_ABORT))
10152     {
10153       ftype = build_function_type (void_type_node, void_list_node);
10154       if (!builtin_decl_explicit_p (BUILT_IN_UNREACHABLE))
10155 	local_define_builtin ("__builtin_unreachable", ftype,
10156 			      BUILT_IN_UNREACHABLE,
10157 			      "__builtin_unreachable",
10158 			      ECF_NOTHROW | ECF_LEAF | ECF_NORETURN
10159 			      | ECF_CONST | ECF_COLD);
10160       if (!builtin_decl_explicit_p (BUILT_IN_ABORT))
10161 	local_define_builtin ("__builtin_abort", ftype, BUILT_IN_ABORT,
10162 			      "abort",
10163 			      ECF_LEAF | ECF_NORETURN | ECF_CONST | ECF_COLD);
10164     }
10165 
10166   if (!builtin_decl_explicit_p (BUILT_IN_MEMCPY)
10167       || !builtin_decl_explicit_p (BUILT_IN_MEMMOVE))
10168     {
10169       ftype = build_function_type_list (ptr_type_node,
10170 					ptr_type_node, const_ptr_type_node,
10171 					size_type_node, NULL_TREE);
10172 
10173       if (!builtin_decl_explicit_p (BUILT_IN_MEMCPY))
10174 	local_define_builtin ("__builtin_memcpy", ftype, BUILT_IN_MEMCPY,
10175 			      "memcpy", ECF_NOTHROW | ECF_LEAF | ECF_RET1);
10176       if (!builtin_decl_explicit_p (BUILT_IN_MEMMOVE))
10177 	local_define_builtin ("__builtin_memmove", ftype, BUILT_IN_MEMMOVE,
10178 			      "memmove", ECF_NOTHROW | ECF_LEAF | ECF_RET1);
10179     }
10180 
10181   if (!builtin_decl_explicit_p (BUILT_IN_MEMCMP))
10182     {
10183       ftype = build_function_type_list (integer_type_node, const_ptr_type_node,
10184 					const_ptr_type_node, size_type_node,
10185 					NULL_TREE);
10186       local_define_builtin ("__builtin_memcmp", ftype, BUILT_IN_MEMCMP,
10187 			    "memcmp", ECF_PURE | ECF_NOTHROW | ECF_LEAF);
10188     }
10189 
10190   if (!builtin_decl_explicit_p (BUILT_IN_MEMSET))
10191     {
10192       ftype = build_function_type_list (ptr_type_node,
10193 					ptr_type_node, integer_type_node,
10194 					size_type_node, NULL_TREE);
10195       local_define_builtin ("__builtin_memset", ftype, BUILT_IN_MEMSET,
10196 			    "memset", ECF_NOTHROW | ECF_LEAF | ECF_RET1);
10197     }
10198 
10199   /* If we're checking the stack, `alloca' can throw.  */
10200   const int alloca_flags
10201     = ECF_MALLOC | ECF_LEAF | (flag_stack_check ? 0 : ECF_NOTHROW);
10202 
10203   if (!builtin_decl_explicit_p (BUILT_IN_ALLOCA))
10204     {
10205       ftype = build_function_type_list (ptr_type_node,
10206 					size_type_node, NULL_TREE);
10207       local_define_builtin ("__builtin_alloca", ftype, BUILT_IN_ALLOCA,
10208 			    "alloca", alloca_flags);
10209     }
10210 
10211   ftype = build_function_type_list (ptr_type_node, size_type_node,
10212 				    size_type_node, NULL_TREE);
10213   local_define_builtin ("__builtin_alloca_with_align", ftype,
10214 			BUILT_IN_ALLOCA_WITH_ALIGN,
10215 			"__builtin_alloca_with_align",
10216 			alloca_flags);
10217 
10218   ftype = build_function_type_list (ptr_type_node, size_type_node,
10219 				    size_type_node, size_type_node, NULL_TREE);
10220   local_define_builtin ("__builtin_alloca_with_align_and_max", ftype,
10221 			BUILT_IN_ALLOCA_WITH_ALIGN_AND_MAX,
10222 			"__builtin_alloca_with_align_and_max",
10223 			alloca_flags);
10224 
10225   ftype = build_function_type_list (void_type_node,
10226 				    ptr_type_node, ptr_type_node,
10227 				    ptr_type_node, NULL_TREE);
10228   local_define_builtin ("__builtin_init_trampoline", ftype,
10229 			BUILT_IN_INIT_TRAMPOLINE,
10230 			"__builtin_init_trampoline", ECF_NOTHROW | ECF_LEAF);
10231   local_define_builtin ("__builtin_init_heap_trampoline", ftype,
10232 			BUILT_IN_INIT_HEAP_TRAMPOLINE,
10233 			"__builtin_init_heap_trampoline",
10234 			ECF_NOTHROW | ECF_LEAF);
10235   local_define_builtin ("__builtin_init_descriptor", ftype,
10236 			BUILT_IN_INIT_DESCRIPTOR,
10237 			"__builtin_init_descriptor", ECF_NOTHROW | ECF_LEAF);
10238 
10239   ftype = build_function_type_list (ptr_type_node, ptr_type_node, NULL_TREE);
10240   local_define_builtin ("__builtin_adjust_trampoline", ftype,
10241 			BUILT_IN_ADJUST_TRAMPOLINE,
10242 			"__builtin_adjust_trampoline",
10243 			ECF_CONST | ECF_NOTHROW);
10244   local_define_builtin ("__builtin_adjust_descriptor", ftype,
10245 			BUILT_IN_ADJUST_DESCRIPTOR,
10246 			"__builtin_adjust_descriptor",
10247 			ECF_CONST | ECF_NOTHROW);
10248 
10249   ftype = build_function_type_list (void_type_node,
10250 				    ptr_type_node, ptr_type_node, NULL_TREE);
10251   local_define_builtin ("__builtin_nonlocal_goto", ftype,
10252 			BUILT_IN_NONLOCAL_GOTO,
10253 			"__builtin_nonlocal_goto",
10254 			ECF_NORETURN | ECF_NOTHROW);
10255 
10256   ftype = build_function_type_list (void_type_node,
10257 				    ptr_type_node, ptr_type_node, NULL_TREE);
10258   local_define_builtin ("__builtin_setjmp_setup", ftype,
10259 			BUILT_IN_SETJMP_SETUP,
10260 			"__builtin_setjmp_setup", ECF_NOTHROW);
10261 
10262   ftype = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
10263   local_define_builtin ("__builtin_setjmp_receiver", ftype,
10264 			BUILT_IN_SETJMP_RECEIVER,
10265 			"__builtin_setjmp_receiver", ECF_NOTHROW | ECF_LEAF);
10266 
10267   ftype = build_function_type_list (ptr_type_node, NULL_TREE);
10268   local_define_builtin ("__builtin_stack_save", ftype, BUILT_IN_STACK_SAVE,
10269 			"__builtin_stack_save", ECF_NOTHROW | ECF_LEAF);
10270 
10271   ftype = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
10272   local_define_builtin ("__builtin_stack_restore", ftype,
10273 			BUILT_IN_STACK_RESTORE,
10274 			"__builtin_stack_restore", ECF_NOTHROW | ECF_LEAF);
10275 
10276   ftype = build_function_type_list (integer_type_node, const_ptr_type_node,
10277 				    const_ptr_type_node, size_type_node,
10278 				    NULL_TREE);
10279   local_define_builtin ("__builtin_memcmp_eq", ftype, BUILT_IN_MEMCMP_EQ,
10280 			"__builtin_memcmp_eq",
10281 			ECF_PURE | ECF_NOTHROW | ECF_LEAF);
10282 
10283   /* If there's a possibility that we might use the ARM EABI, build the
10284     alternate __cxa_end_cleanup node used to resume from C++.  */
10285   if (targetm.arm_eabi_unwinder)
10286     {
10287       ftype = build_function_type_list (void_type_node, NULL_TREE);
10288       local_define_builtin ("__builtin_cxa_end_cleanup", ftype,
10289 			    BUILT_IN_CXA_END_CLEANUP,
10290 			    "__cxa_end_cleanup", ECF_NORETURN | ECF_LEAF);
10291     }
10292 
10293   ftype = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
10294   local_define_builtin ("__builtin_unwind_resume", ftype,
10295 			BUILT_IN_UNWIND_RESUME,
10296 			((targetm_common.except_unwind_info (&global_options)
10297 			  == UI_SJLJ)
10298 			 ? "_Unwind_SjLj_Resume" : "_Unwind_Resume"),
10299 			ECF_NORETURN);
10300 
10301   if (builtin_decl_explicit (BUILT_IN_RETURN_ADDRESS) == NULL_TREE)
10302     {
10303       ftype = build_function_type_list (ptr_type_node, integer_type_node,
10304 					NULL_TREE);
10305       local_define_builtin ("__builtin_return_address", ftype,
10306 			    BUILT_IN_RETURN_ADDRESS,
10307 			    "__builtin_return_address",
10308 			    ECF_NOTHROW);
10309     }
10310 
10311   if (!builtin_decl_explicit_p (BUILT_IN_PROFILE_FUNC_ENTER)
10312       || !builtin_decl_explicit_p (BUILT_IN_PROFILE_FUNC_EXIT))
10313     {
10314       ftype = build_function_type_list (void_type_node, ptr_type_node,
10315 					ptr_type_node, NULL_TREE);
10316       if (!builtin_decl_explicit_p (BUILT_IN_PROFILE_FUNC_ENTER))
10317 	local_define_builtin ("__cyg_profile_func_enter", ftype,
10318 			      BUILT_IN_PROFILE_FUNC_ENTER,
10319 			      "__cyg_profile_func_enter", 0);
10320       if (!builtin_decl_explicit_p (BUILT_IN_PROFILE_FUNC_EXIT))
10321 	local_define_builtin ("__cyg_profile_func_exit", ftype,
10322 			      BUILT_IN_PROFILE_FUNC_EXIT,
10323 			      "__cyg_profile_func_exit", 0);
10324     }
10325 
10326   /* The exception object and filter values from the runtime.  The argument
10327      must be zero before exception lowering, i.e. from the front end.  After
10328      exception lowering, it will be the region number for the exception
10329      landing pad.  These functions are PURE instead of CONST to prevent
10330      them from being hoisted past the exception edge that will initialize
10331      its value in the landing pad.  */
10332   ftype = build_function_type_list (ptr_type_node,
10333 				    integer_type_node, NULL_TREE);
10334   ecf_flags = ECF_PURE | ECF_NOTHROW | ECF_LEAF;
10335   /* Only use TM_PURE if we have TM language support.  */
10336   if (builtin_decl_explicit_p (BUILT_IN_TM_LOAD_1))
10337     ecf_flags |= ECF_TM_PURE;
10338   local_define_builtin ("__builtin_eh_pointer", ftype, BUILT_IN_EH_POINTER,
10339 			"__builtin_eh_pointer", ecf_flags);
10340 
10341   tmp = lang_hooks.types.type_for_mode (targetm.eh_return_filter_mode (), 0);
10342   ftype = build_function_type_list (tmp, integer_type_node, NULL_TREE);
10343   local_define_builtin ("__builtin_eh_filter", ftype, BUILT_IN_EH_FILTER,
10344 			"__builtin_eh_filter", ECF_PURE | ECF_NOTHROW | ECF_LEAF);
10345 
10346   ftype = build_function_type_list (void_type_node,
10347 				    integer_type_node, integer_type_node,
10348 				    NULL_TREE);
10349   local_define_builtin ("__builtin_eh_copy_values", ftype,
10350 			BUILT_IN_EH_COPY_VALUES,
10351 			"__builtin_eh_copy_values", ECF_NOTHROW);
10352 
10353   /* Complex multiplication and division.  These are handled as builtins
10354      rather than optabs because emit_library_call_value doesn't support
10355      complex.  Further, we can do slightly better with folding these
10356      beasties if the real and complex parts of the arguments are separate.  */
10357   {
10358     int mode;
10359 
10360     for (mode = MIN_MODE_COMPLEX_FLOAT; mode <= MAX_MODE_COMPLEX_FLOAT; ++mode)
10361       {
10362 	char mode_name_buf[4], *q;
10363 	const char *p;
10364 	enum built_in_function mcode, dcode;
10365 	tree type, inner_type;
10366 	const char *prefix = "__";
10367 
10368 	if (targetm.libfunc_gnu_prefix)
10369 	  prefix = "__gnu_";
10370 
10371 	type = lang_hooks.types.type_for_mode ((machine_mode) mode, 0);
10372 	if (type == NULL)
10373 	  continue;
10374 	inner_type = TREE_TYPE (type);
10375 
10376 	ftype = build_function_type_list (type, inner_type, inner_type,
10377 					  inner_type, inner_type, NULL_TREE);
10378 
10379         mcode = ((enum built_in_function)
10380 		 (BUILT_IN_COMPLEX_MUL_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
10381         dcode = ((enum built_in_function)
10382 		 (BUILT_IN_COMPLEX_DIV_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
10383 
10384         for (p = GET_MODE_NAME (mode), q = mode_name_buf; *p; p++, q++)
10385 	  *q = TOLOWER (*p);
10386 	*q = '\0';
10387 
10388 	built_in_names[mcode] = concat (prefix, "mul", mode_name_buf, "3",
10389 					NULL);
10390         local_define_builtin (built_in_names[mcode], ftype, mcode,
10391 			      built_in_names[mcode],
10392 			      ECF_CONST | ECF_NOTHROW | ECF_LEAF);
10393 
10394 	built_in_names[dcode] = concat (prefix, "div", mode_name_buf, "3",
10395 					NULL);
10396         local_define_builtin (built_in_names[dcode], ftype, dcode,
10397 			      built_in_names[dcode],
10398 			      ECF_CONST | ECF_NOTHROW | ECF_LEAF);
10399       }
10400   }
10401 
10402   init_internal_fns ();
10403 }
10404 
10405 /* HACK.  GROSS.  This is absolutely disgusting.  I wish there was a
10406    better way.
10407 
10408    If we requested a pointer to a vector, build up the pointers that
10409    we stripped off while looking for the inner type.  Similarly for
10410    return values from functions.
10411 
10412    The argument TYPE is the top of the chain, and BOTTOM is the
10413    new type which we will point to.  */
10414 
10415 tree
10416 reconstruct_complex_type (tree type, tree bottom)
10417 {
10418   tree inner, outer;
10419 
10420   if (TREE_CODE (type) == POINTER_TYPE)
10421     {
10422       inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
10423       outer = build_pointer_type_for_mode (inner, TYPE_MODE (type),
10424 					   TYPE_REF_CAN_ALIAS_ALL (type));
10425     }
10426   else if (TREE_CODE (type) == REFERENCE_TYPE)
10427     {
10428       inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
10429       outer = build_reference_type_for_mode (inner, TYPE_MODE (type),
10430 					     TYPE_REF_CAN_ALIAS_ALL (type));
10431     }
10432   else if (TREE_CODE (type) == ARRAY_TYPE)
10433     {
10434       inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
10435       outer = build_array_type (inner, TYPE_DOMAIN (type));
10436     }
10437   else if (TREE_CODE (type) == FUNCTION_TYPE)
10438     {
10439       inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
10440       outer = build_function_type (inner, TYPE_ARG_TYPES (type));
10441     }
10442   else if (TREE_CODE (type) == METHOD_TYPE)
10443     {
10444       inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
10445       /* The build_method_type_directly() routine prepends 'this' to argument list,
10446          so we must compensate by getting rid of it.  */
10447       outer
10448 	= build_method_type_directly
10449 	    (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (type))),
10450 	     inner,
10451 	     TREE_CHAIN (TYPE_ARG_TYPES (type)));
10452     }
10453   else if (TREE_CODE (type) == OFFSET_TYPE)
10454     {
10455       inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
10456       outer = build_offset_type (TYPE_OFFSET_BASETYPE (type), inner);
10457     }
10458   else
10459     return bottom;
10460 
10461   return build_type_attribute_qual_variant (outer, TYPE_ATTRIBUTES (type),
10462 					    TYPE_QUALS (type));
10463 }
10464 
10465 /* Returns a vector tree node given a mode (integer, vector, or BLKmode) and
10466    the inner type.  */
10467 tree
10468 build_vector_type_for_mode (tree innertype, machine_mode mode)
10469 {
10470   poly_int64 nunits;
10471   unsigned int bitsize;
10472 
10473   switch (GET_MODE_CLASS (mode))
10474     {
10475     case MODE_VECTOR_BOOL:
10476     case MODE_VECTOR_INT:
10477     case MODE_VECTOR_FLOAT:
10478     case MODE_VECTOR_FRACT:
10479     case MODE_VECTOR_UFRACT:
10480     case MODE_VECTOR_ACCUM:
10481     case MODE_VECTOR_UACCUM:
10482       nunits = GET_MODE_NUNITS (mode);
10483       break;
10484 
10485     case MODE_INT:
10486       /* Check that there are no leftover bits.  */
10487       bitsize = GET_MODE_BITSIZE (as_a <scalar_int_mode> (mode));
10488       gcc_assert (bitsize % TREE_INT_CST_LOW (TYPE_SIZE (innertype)) == 0);
10489       nunits = bitsize / TREE_INT_CST_LOW (TYPE_SIZE (innertype));
10490       break;
10491 
10492     default:
10493       gcc_unreachable ();
10494     }
10495 
10496   return make_vector_type (innertype, nunits, mode);
10497 }
10498 
10499 /* Similarly, but takes the inner type and number of units, which must be
10500    a power of two.  */
10501 
10502 tree
10503 build_vector_type (tree innertype, poly_int64 nunits)
10504 {
10505   return make_vector_type (innertype, nunits, VOIDmode);
10506 }
10507 
10508 /* Build truth vector with specified length and number of units.  */
10509 
10510 tree
10511 build_truth_vector_type (poly_uint64 nunits, poly_uint64 vector_size)
10512 {
10513   machine_mode mask_mode
10514     = targetm.vectorize.get_mask_mode (nunits, vector_size).else_blk ();
10515 
10516   poly_uint64 vsize;
10517   if (mask_mode == BLKmode)
10518     vsize = vector_size * BITS_PER_UNIT;
10519   else
10520     vsize = GET_MODE_BITSIZE (mask_mode);
10521 
10522   unsigned HOST_WIDE_INT esize = vector_element_size (vsize, nunits);
10523 
10524   tree bool_type = build_nonstandard_boolean_type (esize);
10525 
10526   return make_vector_type (bool_type, nunits, mask_mode);
10527 }
10528 
10529 /* Returns a vector type corresponding to a comparison of VECTYPE.  */
10530 
10531 tree
10532 build_same_sized_truth_vector_type (tree vectype)
10533 {
10534   if (VECTOR_BOOLEAN_TYPE_P (vectype))
10535     return vectype;
10536 
10537   poly_uint64 size = GET_MODE_SIZE (TYPE_MODE (vectype));
10538 
10539   if (known_eq (size, 0U))
10540     size = tree_to_uhwi (TYPE_SIZE_UNIT (vectype));
10541 
10542   return build_truth_vector_type (TYPE_VECTOR_SUBPARTS (vectype), size);
10543 }
10544 
10545 /* Similarly, but builds a variant type with TYPE_VECTOR_OPAQUE set.  */
10546 
10547 tree
10548 build_opaque_vector_type (tree innertype, poly_int64 nunits)
10549 {
10550   tree t = make_vector_type (innertype, nunits, VOIDmode);
10551   tree cand;
10552   /* We always build the non-opaque variant before the opaque one,
10553      so if it already exists, it is TYPE_NEXT_VARIANT of this one.  */
10554   cand = TYPE_NEXT_VARIANT (t);
10555   if (cand
10556       && TYPE_VECTOR_OPAQUE (cand)
10557       && check_qualified_type (cand, t, TYPE_QUALS (t)))
10558     return cand;
10559   /* Othewise build a variant type and make sure to queue it after
10560      the non-opaque type.  */
10561   cand = build_distinct_type_copy (t);
10562   TYPE_VECTOR_OPAQUE (cand) = true;
10563   TYPE_CANONICAL (cand) = TYPE_CANONICAL (t);
10564   TYPE_NEXT_VARIANT (cand) = TYPE_NEXT_VARIANT (t);
10565   TYPE_NEXT_VARIANT (t) = cand;
10566   TYPE_MAIN_VARIANT (cand) = TYPE_MAIN_VARIANT (t);
10567   return cand;
10568 }
10569 
10570 /* Return the value of element I of VECTOR_CST T as a wide_int.  */
10571 
10572 wide_int
10573 vector_cst_int_elt (const_tree t, unsigned int i)
10574 {
10575   /* First handle elements that are directly encoded.  */
10576   unsigned int encoded_nelts = vector_cst_encoded_nelts (t);
10577   if (i < encoded_nelts)
10578     return wi::to_wide (VECTOR_CST_ENCODED_ELT (t, i));
10579 
10580   /* Identify the pattern that contains element I and work out the index of
10581      the last encoded element for that pattern.  */
10582   unsigned int npatterns = VECTOR_CST_NPATTERNS (t);
10583   unsigned int pattern = i % npatterns;
10584   unsigned int count = i / npatterns;
10585   unsigned int final_i = encoded_nelts - npatterns + pattern;
10586 
10587   /* If there are no steps, the final encoded value is the right one.  */
10588   if (!VECTOR_CST_STEPPED_P (t))
10589     return wi::to_wide (VECTOR_CST_ENCODED_ELT (t, final_i));
10590 
10591   /* Otherwise work out the value from the last two encoded elements.  */
10592   tree v1 = VECTOR_CST_ENCODED_ELT (t, final_i - npatterns);
10593   tree v2 = VECTOR_CST_ENCODED_ELT (t, final_i);
10594   wide_int diff = wi::to_wide (v2) - wi::to_wide (v1);
10595   return wi::to_wide (v2) + (count - 2) * diff;
10596 }
10597 
10598 /* Return the value of element I of VECTOR_CST T.  */
10599 
10600 tree
10601 vector_cst_elt (const_tree t, unsigned int i)
10602 {
10603   /* First handle elements that are directly encoded.  */
10604   unsigned int encoded_nelts = vector_cst_encoded_nelts (t);
10605   if (i < encoded_nelts)
10606     return VECTOR_CST_ENCODED_ELT (t, i);
10607 
10608   /* If there are no steps, the final encoded value is the right one.  */
10609   if (!VECTOR_CST_STEPPED_P (t))
10610     {
10611       /* Identify the pattern that contains element I and work out the index of
10612 	 the last encoded element for that pattern.  */
10613       unsigned int npatterns = VECTOR_CST_NPATTERNS (t);
10614       unsigned int pattern = i % npatterns;
10615       unsigned int final_i = encoded_nelts - npatterns + pattern;
10616       return VECTOR_CST_ENCODED_ELT (t, final_i);
10617     }
10618 
10619   /* Otherwise work out the value from the last two encoded elements.  */
10620   return wide_int_to_tree (TREE_TYPE (TREE_TYPE (t)),
10621 			   vector_cst_int_elt (t, i));
10622 }
10623 
10624 /* Given an initializer INIT, return TRUE if INIT is zero or some
10625    aggregate of zeros.  Otherwise return FALSE.  */
10626 bool
10627 initializer_zerop (const_tree init)
10628 {
10629   tree elt;
10630 
10631   STRIP_NOPS (init);
10632 
10633   switch (TREE_CODE (init))
10634     {
10635     case INTEGER_CST:
10636       return integer_zerop (init);
10637 
10638     case REAL_CST:
10639       /* ??? Note that this is not correct for C4X float formats.  There,
10640 	 a bit pattern of all zeros is 1.0; 0.0 is encoded with the most
10641 	 negative exponent.  */
10642       return real_zerop (init)
10643 	&& ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (init));
10644 
10645     case FIXED_CST:
10646       return fixed_zerop (init);
10647 
10648     case COMPLEX_CST:
10649       return integer_zerop (init)
10650 	|| (real_zerop (init)
10651 	    && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_REALPART (init)))
10652 	    && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_IMAGPART (init))));
10653 
10654     case VECTOR_CST:
10655       return (VECTOR_CST_NPATTERNS (init) == 1
10656 	      && VECTOR_CST_DUPLICATE_P (init)
10657 	      && initializer_zerop (VECTOR_CST_ENCODED_ELT (init, 0)));
10658 
10659     case CONSTRUCTOR:
10660       {
10661 	unsigned HOST_WIDE_INT idx;
10662 
10663 	if (TREE_CLOBBER_P (init))
10664 	  return false;
10665 	FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (init), idx, elt)
10666 	  if (!initializer_zerop (elt))
10667 	    return false;
10668 	return true;
10669       }
10670 
10671     case STRING_CST:
10672       {
10673 	int i;
10674 
10675 	/* We need to loop through all elements to handle cases like
10676 	   "\0" and "\0foobar".  */
10677 	for (i = 0; i < TREE_STRING_LENGTH (init); ++i)
10678 	  if (TREE_STRING_POINTER (init)[i] != '\0')
10679 	    return false;
10680 
10681 	return true;
10682       }
10683 
10684     default:
10685       return false;
10686     }
10687 }
10688 
10689 /* Check if vector VEC consists of all the equal elements and
10690    that the number of elements corresponds to the type of VEC.
10691    The function returns first element of the vector
10692    or NULL_TREE if the vector is not uniform.  */
10693 tree
10694 uniform_vector_p (const_tree vec)
10695 {
10696   tree first, t;
10697   unsigned HOST_WIDE_INT i, nelts;
10698 
10699   if (vec == NULL_TREE)
10700     return NULL_TREE;
10701 
10702   gcc_assert (VECTOR_TYPE_P (TREE_TYPE (vec)));
10703 
10704   if (TREE_CODE (vec) == VEC_DUPLICATE_EXPR)
10705     return TREE_OPERAND (vec, 0);
10706 
10707   else if (TREE_CODE (vec) == VECTOR_CST)
10708     {
10709       if (VECTOR_CST_NPATTERNS (vec) == 1 && VECTOR_CST_DUPLICATE_P (vec))
10710 	return VECTOR_CST_ENCODED_ELT (vec, 0);
10711       return NULL_TREE;
10712     }
10713 
10714   else if (TREE_CODE (vec) == CONSTRUCTOR
10715 	   && TYPE_VECTOR_SUBPARTS (TREE_TYPE (vec)).is_constant (&nelts))
10716     {
10717       first = error_mark_node;
10718 
10719       FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (vec), i, t)
10720         {
10721           if (i == 0)
10722             {
10723               first = t;
10724               continue;
10725             }
10726 	  if (!operand_equal_p (first, t, 0))
10727 	    return NULL_TREE;
10728         }
10729       if (i != nelts)
10730 	return NULL_TREE;
10731 
10732       return first;
10733     }
10734 
10735   return NULL_TREE;
10736 }
10737 
10738 /* Build an empty statement at location LOC.  */
10739 
10740 tree
10741 build_empty_stmt (location_t loc)
10742 {
10743   tree t = build1 (NOP_EXPR, void_type_node, size_zero_node);
10744   SET_EXPR_LOCATION (t, loc);
10745   return t;
10746 }
10747 
10748 
10749 /* Build an OpenMP clause with code CODE.  LOC is the location of the
10750    clause.  */
10751 
10752 tree
10753 build_omp_clause (location_t loc, enum omp_clause_code code)
10754 {
10755   tree t;
10756   int size, length;
10757 
10758   length = omp_clause_num_ops[code];
10759   size = (sizeof (struct tree_omp_clause) + (length - 1) * sizeof (tree));
10760 
10761   record_node_allocation_statistics (OMP_CLAUSE, size);
10762 
10763   t = (tree) ggc_internal_alloc (size);
10764   memset (t, 0, size);
10765   TREE_SET_CODE (t, OMP_CLAUSE);
10766   OMP_CLAUSE_SET_CODE (t, code);
10767   OMP_CLAUSE_LOCATION (t) = loc;
10768 
10769   return t;
10770 }
10771 
10772 /* Build a tcc_vl_exp object with code CODE and room for LEN operands.  LEN
10773    includes the implicit operand count in TREE_OPERAND 0, and so must be >= 1.
10774    Except for the CODE and operand count field, other storage for the
10775    object is initialized to zeros.  */
10776 
10777 tree
10778 build_vl_exp (enum tree_code code, int len MEM_STAT_DECL)
10779 {
10780   tree t;
10781   int length = (len - 1) * sizeof (tree) + sizeof (struct tree_exp);
10782 
10783   gcc_assert (TREE_CODE_CLASS (code) == tcc_vl_exp);
10784   gcc_assert (len >= 1);
10785 
10786   record_node_allocation_statistics (code, length);
10787 
10788   t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);
10789 
10790   TREE_SET_CODE (t, code);
10791 
10792   /* Can't use TREE_OPERAND to store the length because if checking is
10793      enabled, it will try to check the length before we store it.  :-P  */
10794   t->exp.operands[0] = build_int_cst (sizetype, len);
10795 
10796   return t;
10797 }
10798 
10799 /* Helper function for build_call_* functions; build a CALL_EXPR with
10800    indicated RETURN_TYPE, FN, and NARGS, but do not initialize any of
10801    the argument slots.  */
10802 
10803 static tree
10804 build_call_1 (tree return_type, tree fn, int nargs)
10805 {
10806   tree t;
10807 
10808   t = build_vl_exp (CALL_EXPR, nargs + 3);
10809   TREE_TYPE (t) = return_type;
10810   CALL_EXPR_FN (t) = fn;
10811   CALL_EXPR_STATIC_CHAIN (t) = NULL;
10812 
10813   return t;
10814 }
10815 
10816 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
10817    FN and a null static chain slot.  NARGS is the number of call arguments
10818    which are specified as "..." arguments.  */
10819 
10820 tree
10821 build_call_nary (tree return_type, tree fn, int nargs, ...)
10822 {
10823   tree ret;
10824   va_list args;
10825   va_start (args, nargs);
10826   ret = build_call_valist (return_type, fn, nargs, args);
10827   va_end (args);
10828   return ret;
10829 }
10830 
10831 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
10832    FN and a null static chain slot.  NARGS is the number of call arguments
10833    which are specified as a va_list ARGS.  */
10834 
10835 tree
10836 build_call_valist (tree return_type, tree fn, int nargs, va_list args)
10837 {
10838   tree t;
10839   int i;
10840 
10841   t = build_call_1 (return_type, fn, nargs);
10842   for (i = 0; i < nargs; i++)
10843     CALL_EXPR_ARG (t, i) = va_arg (args, tree);
10844   process_call_operands (t);
10845   return t;
10846 }
10847 
10848 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
10849    FN and a null static chain slot.  NARGS is the number of call arguments
10850    which are specified as a tree array ARGS.  */
10851 
10852 tree
10853 build_call_array_loc (location_t loc, tree return_type, tree fn,
10854 		      int nargs, const tree *args)
10855 {
10856   tree t;
10857   int i;
10858 
10859   t = build_call_1 (return_type, fn, nargs);
10860   for (i = 0; i < nargs; i++)
10861     CALL_EXPR_ARG (t, i) = args[i];
10862   process_call_operands (t);
10863   SET_EXPR_LOCATION (t, loc);
10864   return t;
10865 }
10866 
10867 /* Like build_call_array, but takes a vec.  */
10868 
10869 tree
10870 build_call_vec (tree return_type, tree fn, vec<tree, va_gc> *args)
10871 {
10872   tree ret, t;
10873   unsigned int ix;
10874 
10875   ret = build_call_1 (return_type, fn, vec_safe_length (args));
10876   FOR_EACH_VEC_SAFE_ELT (args, ix, t)
10877     CALL_EXPR_ARG (ret, ix) = t;
10878   process_call_operands (ret);
10879   return ret;
10880 }
10881 
10882 /* Conveniently construct a function call expression.  FNDECL names the
10883    function to be called and N arguments are passed in the array
10884    ARGARRAY.  */
10885 
10886 tree
10887 build_call_expr_loc_array (location_t loc, tree fndecl, int n, tree *argarray)
10888 {
10889   tree fntype = TREE_TYPE (fndecl);
10890   tree fn = build1 (ADDR_EXPR, build_pointer_type (fntype), fndecl);
10891 
10892   return fold_build_call_array_loc (loc, TREE_TYPE (fntype), fn, n, argarray);
10893 }
10894 
10895 /* Conveniently construct a function call expression.  FNDECL names the
10896    function to be called and the arguments are passed in the vector
10897    VEC.  */
10898 
10899 tree
10900 build_call_expr_loc_vec (location_t loc, tree fndecl, vec<tree, va_gc> *vec)
10901 {
10902   return build_call_expr_loc_array (loc, fndecl, vec_safe_length (vec),
10903 				    vec_safe_address (vec));
10904 }
10905 
10906 
10907 /* Conveniently construct a function call expression.  FNDECL names the
10908    function to be called, N is the number of arguments, and the "..."
10909    parameters are the argument expressions.  */
10910 
10911 tree
10912 build_call_expr_loc (location_t loc, tree fndecl, int n, ...)
10913 {
10914   va_list ap;
10915   tree *argarray = XALLOCAVEC (tree, n);
10916   int i;
10917 
10918   va_start (ap, n);
10919   for (i = 0; i < n; i++)
10920     argarray[i] = va_arg (ap, tree);
10921   va_end (ap);
10922   return build_call_expr_loc_array (loc, fndecl, n, argarray);
10923 }
10924 
10925 /* Like build_call_expr_loc (UNKNOWN_LOCATION, ...).  Duplicated because
10926    varargs macros aren't supported by all bootstrap compilers.  */
10927 
10928 tree
10929 build_call_expr (tree fndecl, int n, ...)
10930 {
10931   va_list ap;
10932   tree *argarray = XALLOCAVEC (tree, n);
10933   int i;
10934 
10935   va_start (ap, n);
10936   for (i = 0; i < n; i++)
10937     argarray[i] = va_arg (ap, tree);
10938   va_end (ap);
10939   return build_call_expr_loc_array (UNKNOWN_LOCATION, fndecl, n, argarray);
10940 }
10941 
10942 /* Build an internal call to IFN, with arguments ARGS[0:N-1] and with return
10943    type TYPE.  This is just like CALL_EXPR, except its CALL_EXPR_FN is NULL.
10944    It will get gimplified later into an ordinary internal function.  */
10945 
10946 tree
10947 build_call_expr_internal_loc_array (location_t loc, internal_fn ifn,
10948 				    tree type, int n, const tree *args)
10949 {
10950   tree t = build_call_1 (type, NULL_TREE, n);
10951   for (int i = 0; i < n; ++i)
10952     CALL_EXPR_ARG (t, i) = args[i];
10953   SET_EXPR_LOCATION (t, loc);
10954   CALL_EXPR_IFN (t) = ifn;
10955   return t;
10956 }
10957 
10958 /* Build internal call expression.  This is just like CALL_EXPR, except
10959    its CALL_EXPR_FN is NULL.  It will get gimplified later into ordinary
10960    internal function.  */
10961 
10962 tree
10963 build_call_expr_internal_loc (location_t loc, enum internal_fn ifn,
10964 			      tree type, int n, ...)
10965 {
10966   va_list ap;
10967   tree *argarray = XALLOCAVEC (tree, n);
10968   int i;
10969 
10970   va_start (ap, n);
10971   for (i = 0; i < n; i++)
10972     argarray[i] = va_arg (ap, tree);
10973   va_end (ap);
10974   return build_call_expr_internal_loc_array (loc, ifn, type, n, argarray);
10975 }
10976 
10977 /* Return a function call to FN, if the target is guaranteed to support it,
10978    or null otherwise.
10979 
10980    N is the number of arguments, passed in the "...", and TYPE is the
10981    type of the return value.  */
10982 
10983 tree
10984 maybe_build_call_expr_loc (location_t loc, combined_fn fn, tree type,
10985 			   int n, ...)
10986 {
10987   va_list ap;
10988   tree *argarray = XALLOCAVEC (tree, n);
10989   int i;
10990 
10991   va_start (ap, n);
10992   for (i = 0; i < n; i++)
10993     argarray[i] = va_arg (ap, tree);
10994   va_end (ap);
10995   if (internal_fn_p (fn))
10996     {
10997       internal_fn ifn = as_internal_fn (fn);
10998       if (direct_internal_fn_p (ifn))
10999 	{
11000 	  tree_pair types = direct_internal_fn_types (ifn, type, argarray);
11001 	  if (!direct_internal_fn_supported_p (ifn, types,
11002 					       OPTIMIZE_FOR_BOTH))
11003 	    return NULL_TREE;
11004 	}
11005       return build_call_expr_internal_loc_array (loc, ifn, type, n, argarray);
11006     }
11007   else
11008     {
11009       tree fndecl = builtin_decl_implicit (as_builtin_fn (fn));
11010       if (!fndecl)
11011 	return NULL_TREE;
11012       return build_call_expr_loc_array (loc, fndecl, n, argarray);
11013     }
11014 }
11015 
11016 /* Return a function call to the appropriate builtin alloca variant.
11017 
11018    SIZE is the size to be allocated.  ALIGN, if non-zero, is the requested
11019    alignment of the allocated area.  MAX_SIZE, if non-negative, is an upper
11020    bound for SIZE in case it is not a fixed value.  */
11021 
11022 tree
11023 build_alloca_call_expr (tree size, unsigned int align, HOST_WIDE_INT max_size)
11024 {
11025   if (max_size >= 0)
11026     {
11027       tree t = builtin_decl_explicit (BUILT_IN_ALLOCA_WITH_ALIGN_AND_MAX);
11028       return
11029 	build_call_expr (t, 3, size, size_int (align), size_int (max_size));
11030     }
11031   else if (align > 0)
11032     {
11033       tree t = builtin_decl_explicit (BUILT_IN_ALLOCA_WITH_ALIGN);
11034       return build_call_expr (t, 2, size, size_int (align));
11035     }
11036   else
11037     {
11038       tree t = builtin_decl_explicit (BUILT_IN_ALLOCA);
11039       return build_call_expr (t, 1, size);
11040     }
11041 }
11042 
11043 /* Create a new constant string literal and return a char* pointer to it.
11044    The STRING_CST value is the LEN characters at STR.  */
11045 tree
11046 build_string_literal (int len, const char *str)
11047 {
11048   tree t, elem, index, type;
11049 
11050   t = build_string (len, str);
11051   elem = build_type_variant (char_type_node, 1, 0);
11052   index = build_index_type (size_int (len - 1));
11053   type = build_array_type (elem, index);
11054   TREE_TYPE (t) = type;
11055   TREE_CONSTANT (t) = 1;
11056   TREE_READONLY (t) = 1;
11057   TREE_STATIC (t) = 1;
11058 
11059   type = build_pointer_type (elem);
11060   t = build1 (ADDR_EXPR, type,
11061 	      build4 (ARRAY_REF, elem,
11062 		      t, integer_zero_node, NULL_TREE, NULL_TREE));
11063   return t;
11064 }
11065 
11066 
11067 
11068 /* Return true if T (assumed to be a DECL) must be assigned a memory
11069    location.  */
11070 
11071 bool
11072 needs_to_live_in_memory (const_tree t)
11073 {
11074   return (TREE_ADDRESSABLE (t)
11075 	  || is_global_var (t)
11076 	  || (TREE_CODE (t) == RESULT_DECL
11077 	      && !DECL_BY_REFERENCE (t)
11078 	      && aggregate_value_p (t, current_function_decl)));
11079 }
11080 
11081 /* Return value of a constant X and sign-extend it.  */
11082 
11083 HOST_WIDE_INT
11084 int_cst_value (const_tree x)
11085 {
11086   unsigned bits = TYPE_PRECISION (TREE_TYPE (x));
11087   unsigned HOST_WIDE_INT val = TREE_INT_CST_LOW (x);
11088 
11089   /* Make sure the sign-extended value will fit in a HOST_WIDE_INT.  */
11090   gcc_assert (cst_and_fits_in_hwi (x));
11091 
11092   if (bits < HOST_BITS_PER_WIDE_INT)
11093     {
11094       bool negative = ((val >> (bits - 1)) & 1) != 0;
11095       if (negative)
11096 	val |= HOST_WIDE_INT_M1U << (bits - 1) << 1;
11097       else
11098 	val &= ~(HOST_WIDE_INT_M1U << (bits - 1) << 1);
11099     }
11100 
11101   return val;
11102 }
11103 
11104 /* If TYPE is an integral or pointer type, return an integer type with
11105    the same precision which is unsigned iff UNSIGNEDP is true, or itself
11106    if TYPE is already an integer type of signedness UNSIGNEDP.  */
11107 
11108 tree
11109 signed_or_unsigned_type_for (int unsignedp, tree type)
11110 {
11111   if (TREE_CODE (type) == INTEGER_TYPE && TYPE_UNSIGNED (type) == unsignedp)
11112     return type;
11113 
11114   if (TREE_CODE (type) == VECTOR_TYPE)
11115     {
11116       tree inner = TREE_TYPE (type);
11117       tree inner2 = signed_or_unsigned_type_for (unsignedp, inner);
11118       if (!inner2)
11119 	return NULL_TREE;
11120       if (inner == inner2)
11121 	return type;
11122       return build_vector_type (inner2, TYPE_VECTOR_SUBPARTS (type));
11123     }
11124 
11125   if (!INTEGRAL_TYPE_P (type)
11126       && !POINTER_TYPE_P (type)
11127       && TREE_CODE (type) != OFFSET_TYPE)
11128     return NULL_TREE;
11129 
11130   return build_nonstandard_integer_type (TYPE_PRECISION (type), unsignedp);
11131 }
11132 
11133 /* If TYPE is an integral or pointer type, return an integer type with
11134    the same precision which is unsigned, or itself if TYPE is already an
11135    unsigned integer type.  */
11136 
11137 tree
11138 unsigned_type_for (tree type)
11139 {
11140   return signed_or_unsigned_type_for (1, type);
11141 }
11142 
11143 /* If TYPE is an integral or pointer type, return an integer type with
11144    the same precision which is signed, or itself if TYPE is already a
11145    signed integer type.  */
11146 
11147 tree
11148 signed_type_for (tree type)
11149 {
11150   return signed_or_unsigned_type_for (0, type);
11151 }
11152 
11153 /* If TYPE is a vector type, return a signed integer vector type with the
11154    same width and number of subparts. Otherwise return boolean_type_node.  */
11155 
11156 tree
11157 truth_type_for (tree type)
11158 {
11159   if (TREE_CODE (type) == VECTOR_TYPE)
11160     {
11161       if (VECTOR_BOOLEAN_TYPE_P (type))
11162 	return type;
11163       return build_truth_vector_type (TYPE_VECTOR_SUBPARTS (type),
11164 				      GET_MODE_SIZE (TYPE_MODE (type)));
11165     }
11166   else
11167     return boolean_type_node;
11168 }
11169 
11170 /* Returns the largest value obtainable by casting something in INNER type to
11171    OUTER type.  */
11172 
11173 tree
11174 upper_bound_in_type (tree outer, tree inner)
11175 {
11176   unsigned int det = 0;
11177   unsigned oprec = TYPE_PRECISION (outer);
11178   unsigned iprec = TYPE_PRECISION (inner);
11179   unsigned prec;
11180 
11181   /* Compute a unique number for every combination.  */
11182   det |= (oprec > iprec) ? 4 : 0;
11183   det |= TYPE_UNSIGNED (outer) ? 2 : 0;
11184   det |= TYPE_UNSIGNED (inner) ? 1 : 0;
11185 
11186   /* Determine the exponent to use.  */
11187   switch (det)
11188     {
11189     case 0:
11190     case 1:
11191       /* oprec <= iprec, outer: signed, inner: don't care.  */
11192       prec = oprec - 1;
11193       break;
11194     case 2:
11195     case 3:
11196       /* oprec <= iprec, outer: unsigned, inner: don't care.  */
11197       prec = oprec;
11198       break;
11199     case 4:
11200       /* oprec > iprec, outer: signed, inner: signed.  */
11201       prec = iprec - 1;
11202       break;
11203     case 5:
11204       /* oprec > iprec, outer: signed, inner: unsigned.  */
11205       prec = iprec;
11206       break;
11207     case 6:
11208       /* oprec > iprec, outer: unsigned, inner: signed.  */
11209       prec = oprec;
11210       break;
11211     case 7:
11212       /* oprec > iprec, outer: unsigned, inner: unsigned.  */
11213       prec = iprec;
11214       break;
11215     default:
11216       gcc_unreachable ();
11217     }
11218 
11219   return wide_int_to_tree (outer,
11220 			   wi::mask (prec, false, TYPE_PRECISION (outer)));
11221 }
11222 
11223 /* Returns the smallest value obtainable by casting something in INNER type to
11224    OUTER type.  */
11225 
11226 tree
11227 lower_bound_in_type (tree outer, tree inner)
11228 {
11229   unsigned oprec = TYPE_PRECISION (outer);
11230   unsigned iprec = TYPE_PRECISION (inner);
11231 
11232   /* If OUTER type is unsigned, we can definitely cast 0 to OUTER type
11233      and obtain 0.  */
11234   if (TYPE_UNSIGNED (outer)
11235       /* If we are widening something of an unsigned type, OUTER type
11236 	 contains all values of INNER type.  In particular, both INNER
11237 	 and OUTER types have zero in common.  */
11238       || (oprec > iprec && TYPE_UNSIGNED (inner)))
11239     return build_int_cst (outer, 0);
11240   else
11241     {
11242       /* If we are widening a signed type to another signed type, we
11243 	 want to obtain -2^^(iprec-1).  If we are keeping the
11244 	 precision or narrowing to a signed type, we want to obtain
11245 	 -2^(oprec-1).  */
11246       unsigned prec = oprec > iprec ? iprec : oprec;
11247       return wide_int_to_tree (outer,
11248 			       wi::mask (prec - 1, true,
11249 					 TYPE_PRECISION (outer)));
11250     }
11251 }
11252 
11253 /* Return nonzero if two operands that are suitable for PHI nodes are
11254    necessarily equal.  Specifically, both ARG0 and ARG1 must be either
11255    SSA_NAME or invariant.  Note that this is strictly an optimization.
11256    That is, callers of this function can directly call operand_equal_p
11257    and get the same result, only slower.  */
11258 
11259 int
11260 operand_equal_for_phi_arg_p (const_tree arg0, const_tree arg1)
11261 {
11262   if (arg0 == arg1)
11263     return 1;
11264   if (TREE_CODE (arg0) == SSA_NAME || TREE_CODE (arg1) == SSA_NAME)
11265     return 0;
11266   return operand_equal_p (arg0, arg1, 0);
11267 }
11268 
11269 /* Returns number of zeros at the end of binary representation of X.  */
11270 
11271 tree
11272 num_ending_zeros (const_tree x)
11273 {
11274   return build_int_cst (TREE_TYPE (x), wi::ctz (wi::to_wide (x)));
11275 }
11276 
11277 
11278 #define WALK_SUBTREE(NODE)				\
11279   do							\
11280     {							\
11281       result = walk_tree_1 (&(NODE), func, data, pset, lh);	\
11282       if (result)					\
11283 	return result;					\
11284     }							\
11285   while (0)
11286 
11287 /* This is a subroutine of walk_tree that walks field of TYPE that are to
11288    be walked whenever a type is seen in the tree.  Rest of operands and return
11289    value are as for walk_tree.  */
11290 
11291 static tree
11292 walk_type_fields (tree type, walk_tree_fn func, void *data,
11293 		  hash_set<tree> *pset, walk_tree_lh lh)
11294 {
11295   tree result = NULL_TREE;
11296 
11297   switch (TREE_CODE (type))
11298     {
11299     case POINTER_TYPE:
11300     case REFERENCE_TYPE:
11301     case VECTOR_TYPE:
11302       /* We have to worry about mutually recursive pointers.  These can't
11303 	 be written in C.  They can in Ada.  It's pathological, but
11304 	 there's an ACATS test (c38102a) that checks it.  Deal with this
11305 	 by checking if we're pointing to another pointer, that one
11306 	 points to another pointer, that one does too, and we have no htab.
11307 	 If so, get a hash table.  We check three levels deep to avoid
11308 	 the cost of the hash table if we don't need one.  */
11309       if (POINTER_TYPE_P (TREE_TYPE (type))
11310 	  && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (type)))
11311 	  && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (TREE_TYPE (type))))
11312 	  && !pset)
11313 	{
11314 	  result = walk_tree_without_duplicates (&TREE_TYPE (type),
11315 						 func, data);
11316 	  if (result)
11317 	    return result;
11318 
11319 	  break;
11320 	}
11321 
11322       /* fall through */
11323 
11324     case COMPLEX_TYPE:
11325       WALK_SUBTREE (TREE_TYPE (type));
11326       break;
11327 
11328     case METHOD_TYPE:
11329       WALK_SUBTREE (TYPE_METHOD_BASETYPE (type));
11330 
11331       /* Fall through.  */
11332 
11333     case FUNCTION_TYPE:
11334       WALK_SUBTREE (TREE_TYPE (type));
11335       {
11336 	tree arg;
11337 
11338 	/* We never want to walk into default arguments.  */
11339 	for (arg = TYPE_ARG_TYPES (type); arg; arg = TREE_CHAIN (arg))
11340 	  WALK_SUBTREE (TREE_VALUE (arg));
11341       }
11342       break;
11343 
11344     case ARRAY_TYPE:
11345       /* Don't follow this nodes's type if a pointer for fear that
11346 	 we'll have infinite recursion.  If we have a PSET, then we
11347 	 need not fear.  */
11348       if (pset
11349 	  || (!POINTER_TYPE_P (TREE_TYPE (type))
11350 	      && TREE_CODE (TREE_TYPE (type)) != OFFSET_TYPE))
11351 	WALK_SUBTREE (TREE_TYPE (type));
11352       WALK_SUBTREE (TYPE_DOMAIN (type));
11353       break;
11354 
11355     case OFFSET_TYPE:
11356       WALK_SUBTREE (TREE_TYPE (type));
11357       WALK_SUBTREE (TYPE_OFFSET_BASETYPE (type));
11358       break;
11359 
11360     default:
11361       break;
11362     }
11363 
11364   return NULL_TREE;
11365 }
11366 
11367 /* Apply FUNC to all the sub-trees of TP in a pre-order traversal.  FUNC is
11368    called with the DATA and the address of each sub-tree.  If FUNC returns a
11369    non-NULL value, the traversal is stopped, and the value returned by FUNC
11370    is returned.  If PSET is non-NULL it is used to record the nodes visited,
11371    and to avoid visiting a node more than once.  */
11372 
11373 tree
11374 walk_tree_1 (tree *tp, walk_tree_fn func, void *data,
11375 	     hash_set<tree> *pset, walk_tree_lh lh)
11376 {
11377   enum tree_code code;
11378   int walk_subtrees;
11379   tree result;
11380 
11381 #define WALK_SUBTREE_TAIL(NODE)				\
11382   do							\
11383     {							\
11384        tp = & (NODE);					\
11385        goto tail_recurse;				\
11386     }							\
11387   while (0)
11388 
11389  tail_recurse:
11390   /* Skip empty subtrees.  */
11391   if (!*tp)
11392     return NULL_TREE;
11393 
11394   /* Don't walk the same tree twice, if the user has requested
11395      that we avoid doing so.  */
11396   if (pset && pset->add (*tp))
11397     return NULL_TREE;
11398 
11399   /* Call the function.  */
11400   walk_subtrees = 1;
11401   result = (*func) (tp, &walk_subtrees, data);
11402 
11403   /* If we found something, return it.  */
11404   if (result)
11405     return result;
11406 
11407   code = TREE_CODE (*tp);
11408 
11409   /* Even if we didn't, FUNC may have decided that there was nothing
11410      interesting below this point in the tree.  */
11411   if (!walk_subtrees)
11412     {
11413       /* But we still need to check our siblings.  */
11414       if (code == TREE_LIST)
11415 	WALK_SUBTREE_TAIL (TREE_CHAIN (*tp));
11416       else if (code == OMP_CLAUSE)
11417 	WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
11418       else
11419 	return NULL_TREE;
11420     }
11421 
11422   if (lh)
11423     {
11424       result = (*lh) (tp, &walk_subtrees, func, data, pset);
11425       if (result || !walk_subtrees)
11426         return result;
11427     }
11428 
11429   switch (code)
11430     {
11431     case ERROR_MARK:
11432     case IDENTIFIER_NODE:
11433     case INTEGER_CST:
11434     case REAL_CST:
11435     case FIXED_CST:
11436     case VECTOR_CST:
11437     case STRING_CST:
11438     case BLOCK:
11439     case PLACEHOLDER_EXPR:
11440     case SSA_NAME:
11441     case FIELD_DECL:
11442     case RESULT_DECL:
11443       /* None of these have subtrees other than those already walked
11444 	 above.  */
11445       break;
11446 
11447     case TREE_LIST:
11448       WALK_SUBTREE (TREE_VALUE (*tp));
11449       WALK_SUBTREE_TAIL (TREE_CHAIN (*tp));
11450       break;
11451 
11452     case TREE_VEC:
11453       {
11454 	int len = TREE_VEC_LENGTH (*tp);
11455 
11456 	if (len == 0)
11457 	  break;
11458 
11459 	/* Walk all elements but the first.  */
11460 	while (--len)
11461 	  WALK_SUBTREE (TREE_VEC_ELT (*tp, len));
11462 
11463 	/* Now walk the first one as a tail call.  */
11464 	WALK_SUBTREE_TAIL (TREE_VEC_ELT (*tp, 0));
11465       }
11466 
11467     case COMPLEX_CST:
11468       WALK_SUBTREE (TREE_REALPART (*tp));
11469       WALK_SUBTREE_TAIL (TREE_IMAGPART (*tp));
11470 
11471     case CONSTRUCTOR:
11472       {
11473 	unsigned HOST_WIDE_INT idx;
11474 	constructor_elt *ce;
11475 
11476 	for (idx = 0; vec_safe_iterate (CONSTRUCTOR_ELTS (*tp), idx, &ce);
11477 	     idx++)
11478 	  WALK_SUBTREE (ce->value);
11479       }
11480       break;
11481 
11482     case SAVE_EXPR:
11483       WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, 0));
11484 
11485     case BIND_EXPR:
11486       {
11487 	tree decl;
11488 	for (decl = BIND_EXPR_VARS (*tp); decl; decl = DECL_CHAIN (decl))
11489 	  {
11490 	    /* Walk the DECL_INITIAL and DECL_SIZE.  We don't want to walk
11491 	       into declarations that are just mentioned, rather than
11492 	       declared; they don't really belong to this part of the tree.
11493 	       And, we can see cycles: the initializer for a declaration
11494 	       can refer to the declaration itself.  */
11495 	    WALK_SUBTREE (DECL_INITIAL (decl));
11496 	    WALK_SUBTREE (DECL_SIZE (decl));
11497 	    WALK_SUBTREE (DECL_SIZE_UNIT (decl));
11498 	  }
11499 	WALK_SUBTREE_TAIL (BIND_EXPR_BODY (*tp));
11500       }
11501 
11502     case STATEMENT_LIST:
11503       {
11504 	tree_stmt_iterator i;
11505 	for (i = tsi_start (*tp); !tsi_end_p (i); tsi_next (&i))
11506 	  WALK_SUBTREE (*tsi_stmt_ptr (i));
11507       }
11508       break;
11509 
11510     case OMP_CLAUSE:
11511       switch (OMP_CLAUSE_CODE (*tp))
11512 	{
11513 	case OMP_CLAUSE_GANG:
11514 	case OMP_CLAUSE__GRIDDIM_:
11515 	  WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, 1));
11516 	  /* FALLTHRU */
11517 
11518 	case OMP_CLAUSE_ASYNC:
11519 	case OMP_CLAUSE_WAIT:
11520 	case OMP_CLAUSE_WORKER:
11521 	case OMP_CLAUSE_VECTOR:
11522 	case OMP_CLAUSE_NUM_GANGS:
11523 	case OMP_CLAUSE_NUM_WORKERS:
11524 	case OMP_CLAUSE_VECTOR_LENGTH:
11525 	case OMP_CLAUSE_PRIVATE:
11526 	case OMP_CLAUSE_SHARED:
11527 	case OMP_CLAUSE_FIRSTPRIVATE:
11528 	case OMP_CLAUSE_COPYIN:
11529 	case OMP_CLAUSE_COPYPRIVATE:
11530 	case OMP_CLAUSE_FINAL:
11531 	case OMP_CLAUSE_IF:
11532 	case OMP_CLAUSE_NUM_THREADS:
11533 	case OMP_CLAUSE_SCHEDULE:
11534 	case OMP_CLAUSE_UNIFORM:
11535 	case OMP_CLAUSE_DEPEND:
11536 	case OMP_CLAUSE_NUM_TEAMS:
11537 	case OMP_CLAUSE_THREAD_LIMIT:
11538 	case OMP_CLAUSE_DEVICE:
11539 	case OMP_CLAUSE_DIST_SCHEDULE:
11540 	case OMP_CLAUSE_SAFELEN:
11541 	case OMP_CLAUSE_SIMDLEN:
11542 	case OMP_CLAUSE_ORDERED:
11543 	case OMP_CLAUSE_PRIORITY:
11544 	case OMP_CLAUSE_GRAINSIZE:
11545 	case OMP_CLAUSE_NUM_TASKS:
11546 	case OMP_CLAUSE_HINT:
11547 	case OMP_CLAUSE_TO_DECLARE:
11548 	case OMP_CLAUSE_LINK:
11549 	case OMP_CLAUSE_USE_DEVICE_PTR:
11550 	case OMP_CLAUSE_IS_DEVICE_PTR:
11551 	case OMP_CLAUSE__LOOPTEMP_:
11552 	case OMP_CLAUSE__SIMDUID_:
11553 	  WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, 0));
11554 	  /* FALLTHRU */
11555 
11556 	case OMP_CLAUSE_INDEPENDENT:
11557 	case OMP_CLAUSE_NOWAIT:
11558 	case OMP_CLAUSE_DEFAULT:
11559 	case OMP_CLAUSE_UNTIED:
11560 	case OMP_CLAUSE_MERGEABLE:
11561 	case OMP_CLAUSE_PROC_BIND:
11562 	case OMP_CLAUSE_INBRANCH:
11563 	case OMP_CLAUSE_NOTINBRANCH:
11564 	case OMP_CLAUSE_FOR:
11565 	case OMP_CLAUSE_PARALLEL:
11566 	case OMP_CLAUSE_SECTIONS:
11567 	case OMP_CLAUSE_TASKGROUP:
11568 	case OMP_CLAUSE_NOGROUP:
11569 	case OMP_CLAUSE_THREADS:
11570 	case OMP_CLAUSE_SIMD:
11571 	case OMP_CLAUSE_DEFAULTMAP:
11572 	case OMP_CLAUSE_AUTO:
11573 	case OMP_CLAUSE_SEQ:
11574 	case OMP_CLAUSE_TILE:
11575 	case OMP_CLAUSE__SIMT_:
11576 	  WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
11577 
11578 	case OMP_CLAUSE_LASTPRIVATE:
11579 	  WALK_SUBTREE (OMP_CLAUSE_DECL (*tp));
11580 	  WALK_SUBTREE (OMP_CLAUSE_LASTPRIVATE_STMT (*tp));
11581 	  WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
11582 
11583 	case OMP_CLAUSE_COLLAPSE:
11584 	  {
11585 	    int i;
11586 	    for (i = 0; i < 3; i++)
11587 	      WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, i));
11588 	    WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
11589 	  }
11590 
11591 	case OMP_CLAUSE_LINEAR:
11592 	  WALK_SUBTREE (OMP_CLAUSE_DECL (*tp));
11593 	  WALK_SUBTREE (OMP_CLAUSE_LINEAR_STEP (*tp));
11594 	  WALK_SUBTREE (OMP_CLAUSE_LINEAR_STMT (*tp));
11595 	  WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
11596 
11597 	case OMP_CLAUSE_ALIGNED:
11598 	case OMP_CLAUSE_FROM:
11599 	case OMP_CLAUSE_TO:
11600 	case OMP_CLAUSE_MAP:
11601 	case OMP_CLAUSE__CACHE_:
11602 	  WALK_SUBTREE (OMP_CLAUSE_DECL (*tp));
11603 	  WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, 1));
11604 	  WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
11605 
11606 	case OMP_CLAUSE_REDUCTION:
11607 	  {
11608 	    int i;
11609 	    for (i = 0; i < 5; i++)
11610 	      WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, i));
11611 	    WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
11612 	  }
11613 
11614 	default:
11615 	  gcc_unreachable ();
11616 	}
11617       break;
11618 
11619     case TARGET_EXPR:
11620       {
11621 	int i, len;
11622 
11623 	/* TARGET_EXPRs are peculiar: operands 1 and 3 can be the same.
11624 	   But, we only want to walk once.  */
11625 	len = (TREE_OPERAND (*tp, 3) == TREE_OPERAND (*tp, 1)) ? 2 : 3;
11626 	for (i = 0; i < len; ++i)
11627 	  WALK_SUBTREE (TREE_OPERAND (*tp, i));
11628 	WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, len));
11629       }
11630 
11631     case DECL_EXPR:
11632       /* If this is a TYPE_DECL, walk into the fields of the type that it's
11633 	 defining.  We only want to walk into these fields of a type in this
11634 	 case and not in the general case of a mere reference to the type.
11635 
11636 	 The criterion is as follows: if the field can be an expression, it
11637 	 must be walked only here.  This should be in keeping with the fields
11638 	 that are directly gimplified in gimplify_type_sizes in order for the
11639 	 mark/copy-if-shared/unmark machinery of the gimplifier to work with
11640 	 variable-sized types.
11641 
11642 	 Note that DECLs get walked as part of processing the BIND_EXPR.  */
11643       if (TREE_CODE (DECL_EXPR_DECL (*tp)) == TYPE_DECL)
11644 	{
11645 	  tree *type_p = &TREE_TYPE (DECL_EXPR_DECL (*tp));
11646 	  if (TREE_CODE (*type_p) == ERROR_MARK)
11647 	    return NULL_TREE;
11648 
11649 	  /* Call the function for the type.  See if it returns anything or
11650 	     doesn't want us to continue.  If we are to continue, walk both
11651 	     the normal fields and those for the declaration case.  */
11652 	  result = (*func) (type_p, &walk_subtrees, data);
11653 	  if (result || !walk_subtrees)
11654 	    return result;
11655 
11656 	  /* But do not walk a pointed-to type since it may itself need to
11657 	     be walked in the declaration case if it isn't anonymous.  */
11658 	  if (!POINTER_TYPE_P (*type_p))
11659 	    {
11660 	      result = walk_type_fields (*type_p, func, data, pset, lh);
11661 	      if (result)
11662 		return result;
11663 	    }
11664 
11665 	  /* If this is a record type, also walk the fields.  */
11666 	  if (RECORD_OR_UNION_TYPE_P (*type_p))
11667 	    {
11668 	      tree field;
11669 
11670 	      for (field = TYPE_FIELDS (*type_p); field;
11671 		   field = DECL_CHAIN (field))
11672 		{
11673 		  /* We'd like to look at the type of the field, but we can
11674 		     easily get infinite recursion.  So assume it's pointed
11675 		     to elsewhere in the tree.  Also, ignore things that
11676 		     aren't fields.  */
11677 		  if (TREE_CODE (field) != FIELD_DECL)
11678 		    continue;
11679 
11680 		  WALK_SUBTREE (DECL_FIELD_OFFSET (field));
11681 		  WALK_SUBTREE (DECL_SIZE (field));
11682 		  WALK_SUBTREE (DECL_SIZE_UNIT (field));
11683 		  if (TREE_CODE (*type_p) == QUAL_UNION_TYPE)
11684 		    WALK_SUBTREE (DECL_QUALIFIER (field));
11685 		}
11686 	    }
11687 
11688 	  /* Same for scalar types.  */
11689 	  else if (TREE_CODE (*type_p) == BOOLEAN_TYPE
11690 		   || TREE_CODE (*type_p) == ENUMERAL_TYPE
11691 		   || TREE_CODE (*type_p) == INTEGER_TYPE
11692 		   || TREE_CODE (*type_p) == FIXED_POINT_TYPE
11693 		   || TREE_CODE (*type_p) == REAL_TYPE)
11694 	    {
11695 	      WALK_SUBTREE (TYPE_MIN_VALUE (*type_p));
11696 	      WALK_SUBTREE (TYPE_MAX_VALUE (*type_p));
11697 	    }
11698 
11699 	  WALK_SUBTREE (TYPE_SIZE (*type_p));
11700 	  WALK_SUBTREE_TAIL (TYPE_SIZE_UNIT (*type_p));
11701 	}
11702       /* FALLTHRU */
11703 
11704     default:
11705       if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code)))
11706 	{
11707 	  int i, len;
11708 
11709 	  /* Walk over all the sub-trees of this operand.  */
11710 	  len = TREE_OPERAND_LENGTH (*tp);
11711 
11712 	  /* Go through the subtrees.  We need to do this in forward order so
11713 	     that the scope of a FOR_EXPR is handled properly.  */
11714 	  if (len)
11715 	    {
11716 	      for (i = 0; i < len - 1; ++i)
11717 		WALK_SUBTREE (TREE_OPERAND (*tp, i));
11718 	      WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, len - 1));
11719 	    }
11720 	}
11721       /* If this is a type, walk the needed fields in the type.  */
11722       else if (TYPE_P (*tp))
11723 	return walk_type_fields (*tp, func, data, pset, lh);
11724       break;
11725     }
11726 
11727   /* We didn't find what we were looking for.  */
11728   return NULL_TREE;
11729 
11730 #undef WALK_SUBTREE_TAIL
11731 }
11732 #undef WALK_SUBTREE
11733 
11734 /* Like walk_tree, but does not walk duplicate nodes more than once.  */
11735 
11736 tree
11737 walk_tree_without_duplicates_1 (tree *tp, walk_tree_fn func, void *data,
11738 				walk_tree_lh lh)
11739 {
11740   tree result;
11741 
11742   hash_set<tree> pset;
11743   result = walk_tree_1 (tp, func, data, &pset, lh);
11744   return result;
11745 }
11746 
11747 
11748 tree
11749 tree_block (tree t)
11750 {
11751   const enum tree_code_class c = TREE_CODE_CLASS (TREE_CODE (t));
11752 
11753   if (IS_EXPR_CODE_CLASS (c))
11754     return LOCATION_BLOCK (t->exp.locus);
11755   gcc_unreachable ();
11756   return NULL;
11757 }
11758 
11759 void
11760 tree_set_block (tree t, tree b)
11761 {
11762   const enum tree_code_class c = TREE_CODE_CLASS (TREE_CODE (t));
11763 
11764   if (IS_EXPR_CODE_CLASS (c))
11765     {
11766       t->exp.locus = set_block (t->exp.locus, b);
11767     }
11768   else
11769     gcc_unreachable ();
11770 }
11771 
11772 /* Create a nameless artificial label and put it in the current
11773    function context.  The label has a location of LOC.  Returns the
11774    newly created label.  */
11775 
11776 tree
11777 create_artificial_label (location_t loc)
11778 {
11779   tree lab = build_decl (loc,
11780       			 LABEL_DECL, NULL_TREE, void_type_node);
11781 
11782   DECL_ARTIFICIAL (lab) = 1;
11783   DECL_IGNORED_P (lab) = 1;
11784   DECL_CONTEXT (lab) = current_function_decl;
11785   return lab;
11786 }
11787 
11788 /*  Given a tree, try to return a useful variable name that we can use
11789     to prefix a temporary that is being assigned the value of the tree.
11790     I.E. given  <temp> = &A, return A.  */
11791 
11792 const char *
11793 get_name (tree t)
11794 {
11795   tree stripped_decl;
11796 
11797   stripped_decl = t;
11798   STRIP_NOPS (stripped_decl);
11799   if (DECL_P (stripped_decl) && DECL_NAME (stripped_decl))
11800     return IDENTIFIER_POINTER (DECL_NAME (stripped_decl));
11801   else if (TREE_CODE (stripped_decl) == SSA_NAME)
11802     {
11803       tree name = SSA_NAME_IDENTIFIER (stripped_decl);
11804       if (!name)
11805 	return NULL;
11806       return IDENTIFIER_POINTER (name);
11807     }
11808   else
11809     {
11810       switch (TREE_CODE (stripped_decl))
11811 	{
11812 	case ADDR_EXPR:
11813 	  return get_name (TREE_OPERAND (stripped_decl, 0));
11814 	default:
11815 	  return NULL;
11816 	}
11817     }
11818 }
11819 
11820 /* Return true if TYPE has a variable argument list.  */
11821 
11822 bool
11823 stdarg_p (const_tree fntype)
11824 {
11825   function_args_iterator args_iter;
11826   tree n = NULL_TREE, t;
11827 
11828   if (!fntype)
11829     return false;
11830 
11831   FOREACH_FUNCTION_ARGS (fntype, t, args_iter)
11832     {
11833       n = t;
11834     }
11835 
11836   return n != NULL_TREE && n != void_type_node;
11837 }
11838 
11839 /* Return true if TYPE has a prototype.  */
11840 
11841 bool
11842 prototype_p (const_tree fntype)
11843 {
11844   tree t;
11845 
11846   gcc_assert (fntype != NULL_TREE);
11847 
11848   t = TYPE_ARG_TYPES (fntype);
11849   return (t != NULL_TREE);
11850 }
11851 
11852 /* If BLOCK is inlined from an __attribute__((__artificial__))
11853    routine, return pointer to location from where it has been
11854    called.  */
11855 location_t *
11856 block_nonartificial_location (tree block)
11857 {
11858   location_t *ret = NULL;
11859 
11860   while (block && TREE_CODE (block) == BLOCK
11861 	 && BLOCK_ABSTRACT_ORIGIN (block))
11862     {
11863       tree ao = BLOCK_ABSTRACT_ORIGIN (block);
11864 
11865       while (TREE_CODE (ao) == BLOCK
11866 	     && BLOCK_ABSTRACT_ORIGIN (ao)
11867 	     && BLOCK_ABSTRACT_ORIGIN (ao) != ao)
11868 	ao = BLOCK_ABSTRACT_ORIGIN (ao);
11869 
11870       if (TREE_CODE (ao) == FUNCTION_DECL)
11871 	{
11872 	  /* If AO is an artificial inline, point RET to the
11873 	     call site locus at which it has been inlined and continue
11874 	     the loop, in case AO's caller is also an artificial
11875 	     inline.  */
11876 	  if (DECL_DECLARED_INLINE_P (ao)
11877 	      && lookup_attribute ("artificial", DECL_ATTRIBUTES (ao)))
11878 	    ret = &BLOCK_SOURCE_LOCATION (block);
11879 	  else
11880 	    break;
11881 	}
11882       else if (TREE_CODE (ao) != BLOCK)
11883 	break;
11884 
11885       block = BLOCK_SUPERCONTEXT (block);
11886     }
11887   return ret;
11888 }
11889 
11890 
11891 /* If EXP is inlined from an __attribute__((__artificial__))
11892    function, return the location of the original call expression.  */
11893 
11894 location_t
11895 tree_nonartificial_location (tree exp)
11896 {
11897   location_t *loc = block_nonartificial_location (TREE_BLOCK (exp));
11898 
11899   if (loc)
11900     return *loc;
11901   else
11902     return EXPR_LOCATION (exp);
11903 }
11904 
11905 
11906 /* These are the hash table functions for the hash table of OPTIMIZATION_NODEq
11907    nodes.  */
11908 
11909 /* Return the hash code X, an OPTIMIZATION_NODE or TARGET_OPTION code.  */
11910 
11911 hashval_t
11912 cl_option_hasher::hash (tree x)
11913 {
11914   const_tree const t = x;
11915   const char *p;
11916   size_t i;
11917   size_t len = 0;
11918   hashval_t hash = 0;
11919 
11920   if (TREE_CODE (t) == OPTIMIZATION_NODE)
11921     {
11922       p = (const char *)TREE_OPTIMIZATION (t);
11923       len = sizeof (struct cl_optimization);
11924     }
11925 
11926   else if (TREE_CODE (t) == TARGET_OPTION_NODE)
11927     return cl_target_option_hash (TREE_TARGET_OPTION (t));
11928 
11929   else
11930     gcc_unreachable ();
11931 
11932   /* assume most opt flags are just 0/1, some are 2-3, and a few might be
11933      something else.  */
11934   for (i = 0; i < len; i++)
11935     if (p[i])
11936       hash = (hash << 4) ^ ((i << 2) | p[i]);
11937 
11938   return hash;
11939 }
11940 
11941 /* Return nonzero if the value represented by *X (an OPTIMIZATION or
11942    TARGET_OPTION tree node) is the same as that given by *Y, which is the
11943    same.  */
11944 
11945 bool
11946 cl_option_hasher::equal (tree x, tree y)
11947 {
11948   const_tree const xt = x;
11949   const_tree const yt = y;
11950   const char *xp;
11951   const char *yp;
11952   size_t len;
11953 
11954   if (TREE_CODE (xt) != TREE_CODE (yt))
11955     return 0;
11956 
11957   if (TREE_CODE (xt) == OPTIMIZATION_NODE)
11958     {
11959       xp = (const char *)TREE_OPTIMIZATION (xt);
11960       yp = (const char *)TREE_OPTIMIZATION (yt);
11961       len = sizeof (struct cl_optimization);
11962     }
11963 
11964   else if (TREE_CODE (xt) == TARGET_OPTION_NODE)
11965     {
11966       return cl_target_option_eq (TREE_TARGET_OPTION (xt),
11967 				  TREE_TARGET_OPTION (yt));
11968     }
11969 
11970   else
11971     gcc_unreachable ();
11972 
11973   return (memcmp (xp, yp, len) == 0);
11974 }
11975 
11976 /* Build an OPTIMIZATION_NODE based on the options in OPTS.  */
11977 
11978 tree
11979 build_optimization_node (struct gcc_options *opts)
11980 {
11981   tree t;
11982 
11983   /* Use the cache of optimization nodes.  */
11984 
11985   cl_optimization_save (TREE_OPTIMIZATION (cl_optimization_node),
11986 			opts);
11987 
11988   tree *slot = cl_option_hash_table->find_slot (cl_optimization_node, INSERT);
11989   t = *slot;
11990   if (!t)
11991     {
11992       /* Insert this one into the hash table.  */
11993       t = cl_optimization_node;
11994       *slot = t;
11995 
11996       /* Make a new node for next time round.  */
11997       cl_optimization_node = make_node (OPTIMIZATION_NODE);
11998     }
11999 
12000   return t;
12001 }
12002 
12003 /* Build a TARGET_OPTION_NODE based on the options in OPTS.  */
12004 
12005 tree
12006 build_target_option_node (struct gcc_options *opts)
12007 {
12008   tree t;
12009 
12010   /* Use the cache of optimization nodes.  */
12011 
12012   cl_target_option_save (TREE_TARGET_OPTION (cl_target_option_node),
12013 			 opts);
12014 
12015   tree *slot = cl_option_hash_table->find_slot (cl_target_option_node, INSERT);
12016   t = *slot;
12017   if (!t)
12018     {
12019       /* Insert this one into the hash table.  */
12020       t = cl_target_option_node;
12021       *slot = t;
12022 
12023       /* Make a new node for next time round.  */
12024       cl_target_option_node = make_node (TARGET_OPTION_NODE);
12025     }
12026 
12027   return t;
12028 }
12029 
12030 /* Clear TREE_TARGET_GLOBALS of all TARGET_OPTION_NODE trees,
12031    so that they aren't saved during PCH writing.  */
12032 
12033 void
12034 prepare_target_option_nodes_for_pch (void)
12035 {
12036   hash_table<cl_option_hasher>::iterator iter = cl_option_hash_table->begin ();
12037   for (; iter != cl_option_hash_table->end (); ++iter)
12038     if (TREE_CODE (*iter) == TARGET_OPTION_NODE)
12039       TREE_TARGET_GLOBALS (*iter) = NULL;
12040 }
12041 
12042 /* Determine the "ultimate origin" of a block.  The block may be an inlined
12043    instance of an inlined instance of a block which is local to an inline
12044    function, so we have to trace all of the way back through the origin chain
12045    to find out what sort of node actually served as the original seed for the
12046    given block.  */
12047 
12048 tree
12049 block_ultimate_origin (const_tree block)
12050 {
12051   tree immediate_origin = BLOCK_ABSTRACT_ORIGIN (block);
12052 
12053   /* BLOCK_ABSTRACT_ORIGIN can point to itself; ignore that if
12054      we're trying to output the abstract instance of this function.  */
12055   if (BLOCK_ABSTRACT (block) && immediate_origin == block)
12056     return NULL_TREE;
12057 
12058   if (immediate_origin == NULL_TREE)
12059     return NULL_TREE;
12060   else
12061     {
12062       tree ret_val;
12063       tree lookahead = immediate_origin;
12064 
12065       do
12066 	{
12067 	  ret_val = lookahead;
12068 	  lookahead = (TREE_CODE (ret_val) == BLOCK
12069 		       ? BLOCK_ABSTRACT_ORIGIN (ret_val) : NULL);
12070 	}
12071       while (lookahead != NULL && lookahead != ret_val);
12072 
12073       /* The block's abstract origin chain may not be the *ultimate* origin of
12074 	 the block. It could lead to a DECL that has an abstract origin set.
12075 	 If so, we want that DECL's abstract origin (which is what DECL_ORIGIN
12076 	 will give us if it has one).  Note that DECL's abstract origins are
12077 	 supposed to be the most distant ancestor (or so decl_ultimate_origin
12078 	 claims), so we don't need to loop following the DECL origins.  */
12079       if (DECL_P (ret_val))
12080 	return DECL_ORIGIN (ret_val);
12081 
12082       return ret_val;
12083     }
12084 }
12085 
12086 /* Return true iff conversion from INNER_TYPE to OUTER_TYPE generates
12087    no instruction.  */
12088 
12089 bool
12090 tree_nop_conversion_p (const_tree outer_type, const_tree inner_type)
12091 {
12092   /* Do not strip casts into or out of differing address spaces.  */
12093   if (POINTER_TYPE_P (outer_type)
12094       && TYPE_ADDR_SPACE (TREE_TYPE (outer_type)) != ADDR_SPACE_GENERIC)
12095     {
12096       if (!POINTER_TYPE_P (inner_type)
12097 	  || (TYPE_ADDR_SPACE (TREE_TYPE (outer_type))
12098 	      != TYPE_ADDR_SPACE (TREE_TYPE (inner_type))))
12099 	return false;
12100     }
12101   else if (POINTER_TYPE_P (inner_type)
12102 	   && TYPE_ADDR_SPACE (TREE_TYPE (inner_type)) != ADDR_SPACE_GENERIC)
12103     {
12104       /* We already know that outer_type is not a pointer with
12105 	 a non-generic address space.  */
12106       return false;
12107     }
12108 
12109   /* Use precision rather then machine mode when we can, which gives
12110      the correct answer even for submode (bit-field) types.  */
12111   if ((INTEGRAL_TYPE_P (outer_type)
12112        || POINTER_TYPE_P (outer_type)
12113        || TREE_CODE (outer_type) == OFFSET_TYPE)
12114       && (INTEGRAL_TYPE_P (inner_type)
12115 	  || POINTER_TYPE_P (inner_type)
12116 	  || TREE_CODE (inner_type) == OFFSET_TYPE))
12117     return TYPE_PRECISION (outer_type) == TYPE_PRECISION (inner_type);
12118 
12119   /* Otherwise fall back on comparing machine modes (e.g. for
12120      aggregate types, floats).  */
12121   return TYPE_MODE (outer_type) == TYPE_MODE (inner_type);
12122 }
12123 
12124 /* Return true iff conversion in EXP generates no instruction.  Mark
12125    it inline so that we fully inline into the stripping functions even
12126    though we have two uses of this function.  */
12127 
12128 static inline bool
12129 tree_nop_conversion (const_tree exp)
12130 {
12131   tree outer_type, inner_type;
12132 
12133   if (location_wrapper_p (exp))
12134     return true;
12135   if (!CONVERT_EXPR_P (exp)
12136       && TREE_CODE (exp) != NON_LVALUE_EXPR)
12137     return false;
12138   if (TREE_OPERAND (exp, 0) == error_mark_node)
12139     return false;
12140 
12141   outer_type = TREE_TYPE (exp);
12142   inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
12143 
12144   if (!inner_type)
12145     return false;
12146 
12147   return tree_nop_conversion_p (outer_type, inner_type);
12148 }
12149 
12150 /* Return true iff conversion in EXP generates no instruction.  Don't
12151    consider conversions changing the signedness.  */
12152 
12153 static bool
12154 tree_sign_nop_conversion (const_tree exp)
12155 {
12156   tree outer_type, inner_type;
12157 
12158   if (!tree_nop_conversion (exp))
12159     return false;
12160 
12161   outer_type = TREE_TYPE (exp);
12162   inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
12163 
12164   return (TYPE_UNSIGNED (outer_type) == TYPE_UNSIGNED (inner_type)
12165 	  && POINTER_TYPE_P (outer_type) == POINTER_TYPE_P (inner_type));
12166 }
12167 
12168 /* Strip conversions from EXP according to tree_nop_conversion and
12169    return the resulting expression.  */
12170 
12171 tree
12172 tree_strip_nop_conversions (tree exp)
12173 {
12174   while (tree_nop_conversion (exp))
12175     exp = TREE_OPERAND (exp, 0);
12176   return exp;
12177 }
12178 
12179 /* Strip conversions from EXP according to tree_sign_nop_conversion
12180    and return the resulting expression.  */
12181 
12182 tree
12183 tree_strip_sign_nop_conversions (tree exp)
12184 {
12185   while (tree_sign_nop_conversion (exp))
12186     exp = TREE_OPERAND (exp, 0);
12187   return exp;
12188 }
12189 
12190 /* Avoid any floating point extensions from EXP.  */
12191 tree
12192 strip_float_extensions (tree exp)
12193 {
12194   tree sub, expt, subt;
12195 
12196   /*  For floating point constant look up the narrowest type that can hold
12197       it properly and handle it like (type)(narrowest_type)constant.
12198       This way we can optimize for instance a=a*2.0 where "a" is float
12199       but 2.0 is double constant.  */
12200   if (TREE_CODE (exp) == REAL_CST && !DECIMAL_FLOAT_TYPE_P (TREE_TYPE (exp)))
12201     {
12202       REAL_VALUE_TYPE orig;
12203       tree type = NULL;
12204 
12205       orig = TREE_REAL_CST (exp);
12206       if (TYPE_PRECISION (TREE_TYPE (exp)) > TYPE_PRECISION (float_type_node)
12207 	  && exact_real_truncate (TYPE_MODE (float_type_node), &orig))
12208 	type = float_type_node;
12209       else if (TYPE_PRECISION (TREE_TYPE (exp))
12210 	       > TYPE_PRECISION (double_type_node)
12211 	       && exact_real_truncate (TYPE_MODE (double_type_node), &orig))
12212 	type = double_type_node;
12213       if (type)
12214 	return build_real_truncate (type, orig);
12215     }
12216 
12217   if (!CONVERT_EXPR_P (exp))
12218     return exp;
12219 
12220   sub = TREE_OPERAND (exp, 0);
12221   subt = TREE_TYPE (sub);
12222   expt = TREE_TYPE (exp);
12223 
12224   if (!FLOAT_TYPE_P (subt))
12225     return exp;
12226 
12227   if (DECIMAL_FLOAT_TYPE_P (expt) != DECIMAL_FLOAT_TYPE_P (subt))
12228     return exp;
12229 
12230   if (TYPE_PRECISION (subt) > TYPE_PRECISION (expt))
12231     return exp;
12232 
12233   return strip_float_extensions (sub);
12234 }
12235 
12236 /* Strip out all handled components that produce invariant
12237    offsets.  */
12238 
12239 const_tree
12240 strip_invariant_refs (const_tree op)
12241 {
12242   while (handled_component_p (op))
12243     {
12244       switch (TREE_CODE (op))
12245 	{
12246 	case ARRAY_REF:
12247 	case ARRAY_RANGE_REF:
12248 	  if (!is_gimple_constant (TREE_OPERAND (op, 1))
12249 	      || TREE_OPERAND (op, 2) != NULL_TREE
12250 	      || TREE_OPERAND (op, 3) != NULL_TREE)
12251 	    return NULL;
12252 	  break;
12253 
12254 	case COMPONENT_REF:
12255 	  if (TREE_OPERAND (op, 2) != NULL_TREE)
12256 	    return NULL;
12257 	  break;
12258 
12259 	default:;
12260 	}
12261       op = TREE_OPERAND (op, 0);
12262     }
12263 
12264   return op;
12265 }
12266 
12267 static GTY(()) tree gcc_eh_personality_decl;
12268 
12269 /* Return the GCC personality function decl.  */
12270 
12271 tree
12272 lhd_gcc_personality (void)
12273 {
12274   if (!gcc_eh_personality_decl)
12275     gcc_eh_personality_decl = build_personality_function ("gcc");
12276   return gcc_eh_personality_decl;
12277 }
12278 
12279 /* TARGET is a call target of GIMPLE call statement
12280    (obtained by gimple_call_fn).  Return true if it is
12281    OBJ_TYPE_REF representing an virtual call of C++ method.
12282    (As opposed to OBJ_TYPE_REF representing objc calls
12283    through a cast where middle-end devirtualization machinery
12284    can't apply.) */
12285 
12286 bool
12287 virtual_method_call_p (const_tree target)
12288 {
12289   if (TREE_CODE (target) != OBJ_TYPE_REF)
12290     return false;
12291   tree t = TREE_TYPE (target);
12292   gcc_checking_assert (TREE_CODE (t) == POINTER_TYPE);
12293   t = TREE_TYPE (t);
12294   if (TREE_CODE (t) == FUNCTION_TYPE)
12295     return false;
12296   gcc_checking_assert (TREE_CODE (t) == METHOD_TYPE);
12297   /* If we do not have BINFO associated, it means that type was built
12298      without devirtualization enabled.  Do not consider this a virtual
12299      call.  */
12300   if (!TYPE_BINFO (obj_type_ref_class (target)))
12301     return false;
12302   return true;
12303 }
12304 
12305 /* REF is OBJ_TYPE_REF, return the class the ref corresponds to.  */
12306 
12307 tree
12308 obj_type_ref_class (const_tree ref)
12309 {
12310   gcc_checking_assert (TREE_CODE (ref) == OBJ_TYPE_REF);
12311   ref = TREE_TYPE (ref);
12312   gcc_checking_assert (TREE_CODE (ref) == POINTER_TYPE);
12313   ref = TREE_TYPE (ref);
12314   /* We look for type THIS points to.  ObjC also builds
12315      OBJ_TYPE_REF with non-method calls, Their first parameter
12316      ID however also corresponds to class type. */
12317   gcc_checking_assert (TREE_CODE (ref) == METHOD_TYPE
12318 		       || TREE_CODE (ref) == FUNCTION_TYPE);
12319   ref = TREE_VALUE (TYPE_ARG_TYPES (ref));
12320   gcc_checking_assert (TREE_CODE (ref) == POINTER_TYPE);
12321   return TREE_TYPE (ref);
12322 }
12323 
12324 /* Lookup sub-BINFO of BINFO of TYPE at offset POS.  */
12325 
12326 static tree
12327 lookup_binfo_at_offset (tree binfo, tree type, HOST_WIDE_INT pos)
12328 {
12329   unsigned int i;
12330   tree base_binfo, b;
12331 
12332   for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
12333     if (pos == tree_to_shwi (BINFO_OFFSET (base_binfo))
12334 	&& types_same_for_odr (TREE_TYPE (base_binfo), type))
12335       return base_binfo;
12336     else if ((b = lookup_binfo_at_offset (base_binfo, type, pos)) != NULL)
12337       return b;
12338   return NULL;
12339 }
12340 
12341 /* Try to find a base info of BINFO that would have its field decl at offset
12342    OFFSET within the BINFO type and which is of EXPECTED_TYPE.  If it can be
12343    found, return, otherwise return NULL_TREE.  */
12344 
12345 tree
12346 get_binfo_at_offset (tree binfo, poly_int64 offset, tree expected_type)
12347 {
12348   tree type = BINFO_TYPE (binfo);
12349 
12350   while (true)
12351     {
12352       HOST_WIDE_INT pos, size;
12353       tree fld;
12354       int i;
12355 
12356       if (types_same_for_odr (type, expected_type))
12357 	  return binfo;
12358       if (maybe_lt (offset, 0))
12359 	return NULL_TREE;
12360 
12361       for (fld = TYPE_FIELDS (type); fld; fld = DECL_CHAIN (fld))
12362 	{
12363 	  if (TREE_CODE (fld) != FIELD_DECL || !DECL_ARTIFICIAL (fld))
12364 	    continue;
12365 
12366 	  pos = int_bit_position (fld);
12367 	  size = tree_to_uhwi (DECL_SIZE (fld));
12368 	  if (known_in_range_p (offset, pos, size))
12369 	    break;
12370 	}
12371       if (!fld || TREE_CODE (TREE_TYPE (fld)) != RECORD_TYPE)
12372 	return NULL_TREE;
12373 
12374       /* Offset 0 indicates the primary base, whose vtable contents are
12375 	 represented in the binfo for the derived class.  */
12376       else if (maybe_ne (offset, 0))
12377 	{
12378 	  tree found_binfo = NULL, base_binfo;
12379 	  /* Offsets in BINFO are in bytes relative to the whole structure
12380 	     while POS is in bits relative to the containing field.  */
12381 	  int binfo_offset = (tree_to_shwi (BINFO_OFFSET (binfo)) + pos
12382 			     / BITS_PER_UNIT);
12383 
12384 	  for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
12385 	    if (tree_to_shwi (BINFO_OFFSET (base_binfo)) == binfo_offset
12386 		&& types_same_for_odr (TREE_TYPE (base_binfo), TREE_TYPE (fld)))
12387 	      {
12388 		found_binfo = base_binfo;
12389 		break;
12390 	      }
12391 	  if (found_binfo)
12392 	    binfo = found_binfo;
12393 	  else
12394 	    binfo = lookup_binfo_at_offset (binfo, TREE_TYPE (fld),
12395 					    binfo_offset);
12396 	 }
12397 
12398       type = TREE_TYPE (fld);
12399       offset -= pos;
12400     }
12401 }
12402 
12403 /* Returns true if X is a typedef decl.  */
12404 
12405 bool
12406 is_typedef_decl (const_tree x)
12407 {
12408   return (x && TREE_CODE (x) == TYPE_DECL
12409           && DECL_ORIGINAL_TYPE (x) != NULL_TREE);
12410 }
12411 
12412 /* Returns true iff TYPE is a type variant created for a typedef. */
12413 
12414 bool
12415 typedef_variant_p (const_tree type)
12416 {
12417   return is_typedef_decl (TYPE_NAME (type));
12418 }
12419 
12420 /* Warn about a use of an identifier which was marked deprecated.  */
12421 void
12422 warn_deprecated_use (tree node, tree attr)
12423 {
12424   const char *msg;
12425 
12426   if (node == 0 || !warn_deprecated_decl)
12427     return;
12428 
12429   if (!attr)
12430     {
12431       if (DECL_P (node))
12432 	attr = DECL_ATTRIBUTES (node);
12433       else if (TYPE_P (node))
12434 	{
12435 	  tree decl = TYPE_STUB_DECL (node);
12436 	  if (decl)
12437 	    attr = lookup_attribute ("deprecated",
12438 				     TYPE_ATTRIBUTES (TREE_TYPE (decl)));
12439 	}
12440     }
12441 
12442   if (attr)
12443     attr = lookup_attribute ("deprecated", attr);
12444 
12445   if (attr)
12446     msg = TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr)));
12447   else
12448     msg = NULL;
12449 
12450   bool w;
12451   if (DECL_P (node))
12452     {
12453       if (msg)
12454 	w = warning (OPT_Wdeprecated_declarations,
12455 		     "%qD is deprecated: %s", node, msg);
12456       else
12457 	w = warning (OPT_Wdeprecated_declarations,
12458 		     "%qD is deprecated", node);
12459       if (w)
12460 	inform (DECL_SOURCE_LOCATION (node), "declared here");
12461     }
12462   else if (TYPE_P (node))
12463     {
12464       tree what = NULL_TREE;
12465       tree decl = TYPE_STUB_DECL (node);
12466 
12467       if (TYPE_NAME (node))
12468 	{
12469 	  if (TREE_CODE (TYPE_NAME (node)) == IDENTIFIER_NODE)
12470 	    what = TYPE_NAME (node);
12471 	  else if (TREE_CODE (TYPE_NAME (node)) == TYPE_DECL
12472 		   && DECL_NAME (TYPE_NAME (node)))
12473 	    what = DECL_NAME (TYPE_NAME (node));
12474 	}
12475 
12476       if (decl)
12477 	{
12478 	  if (what)
12479 	    {
12480 	      if (msg)
12481 		w = warning (OPT_Wdeprecated_declarations,
12482 			     "%qE is deprecated: %s", what, msg);
12483 	      else
12484 		w = warning (OPT_Wdeprecated_declarations,
12485 			     "%qE is deprecated", what);
12486 	    }
12487 	  else
12488 	    {
12489 	      if (msg)
12490 		w = warning (OPT_Wdeprecated_declarations,
12491 			     "type is deprecated: %s", msg);
12492 	      else
12493 		w = warning (OPT_Wdeprecated_declarations,
12494 			     "type is deprecated");
12495 	    }
12496 	  if (w)
12497 	    inform (DECL_SOURCE_LOCATION (decl), "declared here");
12498 	}
12499       else
12500 	{
12501 	  if (what)
12502 	    {
12503 	      if (msg)
12504 		warning (OPT_Wdeprecated_declarations, "%qE is deprecated: %s",
12505 			 what, msg);
12506 	      else
12507 		warning (OPT_Wdeprecated_declarations, "%qE is deprecated", what);
12508 	    }
12509 	  else
12510 	    {
12511 	      if (msg)
12512 		warning (OPT_Wdeprecated_declarations, "type is deprecated: %s",
12513 			 msg);
12514 	      else
12515 		warning (OPT_Wdeprecated_declarations, "type is deprecated");
12516 	    }
12517 	}
12518     }
12519 }
12520 
12521 /* Return true if REF has a COMPONENT_REF with a bit-field field declaration
12522    somewhere in it.  */
12523 
12524 bool
12525 contains_bitfld_component_ref_p (const_tree ref)
12526 {
12527   while (handled_component_p (ref))
12528     {
12529       if (TREE_CODE (ref) == COMPONENT_REF
12530           && DECL_BIT_FIELD (TREE_OPERAND (ref, 1)))
12531         return true;
12532       ref = TREE_OPERAND (ref, 0);
12533     }
12534 
12535   return false;
12536 }
12537 
12538 /* Try to determine whether a TRY_CATCH expression can fall through.
12539    This is a subroutine of block_may_fallthru.  */
12540 
12541 static bool
12542 try_catch_may_fallthru (const_tree stmt)
12543 {
12544   tree_stmt_iterator i;
12545 
12546   /* If the TRY block can fall through, the whole TRY_CATCH can
12547      fall through.  */
12548   if (block_may_fallthru (TREE_OPERAND (stmt, 0)))
12549     return true;
12550 
12551   i = tsi_start (TREE_OPERAND (stmt, 1));
12552   switch (TREE_CODE (tsi_stmt (i)))
12553     {
12554     case CATCH_EXPR:
12555       /* We expect to see a sequence of CATCH_EXPR trees, each with a
12556 	 catch expression and a body.  The whole TRY_CATCH may fall
12557 	 through iff any of the catch bodies falls through.  */
12558       for (; !tsi_end_p (i); tsi_next (&i))
12559 	{
12560 	  if (block_may_fallthru (CATCH_BODY (tsi_stmt (i))))
12561 	    return true;
12562 	}
12563       return false;
12564 
12565     case EH_FILTER_EXPR:
12566       /* The exception filter expression only matters if there is an
12567 	 exception.  If the exception does not match EH_FILTER_TYPES,
12568 	 we will execute EH_FILTER_FAILURE, and we will fall through
12569 	 if that falls through.  If the exception does match
12570 	 EH_FILTER_TYPES, the stack unwinder will continue up the
12571 	 stack, so we will not fall through.  We don't know whether we
12572 	 will throw an exception which matches EH_FILTER_TYPES or not,
12573 	 so we just ignore EH_FILTER_TYPES and assume that we might
12574 	 throw an exception which doesn't match.  */
12575       return block_may_fallthru (EH_FILTER_FAILURE (tsi_stmt (i)));
12576 
12577     default:
12578       /* This case represents statements to be executed when an
12579 	 exception occurs.  Those statements are implicitly followed
12580 	 by a RESX statement to resume execution after the exception.
12581 	 So in this case the TRY_CATCH never falls through.  */
12582       return false;
12583     }
12584 }
12585 
12586 /* Try to determine if we can fall out of the bottom of BLOCK.  This guess
12587    need not be 100% accurate; simply be conservative and return true if we
12588    don't know.  This is used only to avoid stupidly generating extra code.
12589    If we're wrong, we'll just delete the extra code later.  */
12590 
12591 bool
12592 block_may_fallthru (const_tree block)
12593 {
12594   /* This CONST_CAST is okay because expr_last returns its argument
12595      unmodified and we assign it to a const_tree.  */
12596   const_tree stmt = expr_last (CONST_CAST_TREE (block));
12597 
12598   switch (stmt ? TREE_CODE (stmt) : ERROR_MARK)
12599     {
12600     case GOTO_EXPR:
12601     case RETURN_EXPR:
12602       /* Easy cases.  If the last statement of the block implies
12603 	 control transfer, then we can't fall through.  */
12604       return false;
12605 
12606     case SWITCH_EXPR:
12607       /* If there is a default: label or case labels cover all possible
12608 	 SWITCH_COND values, then the SWITCH_EXPR will transfer control
12609 	 to some case label in all cases and all we care is whether the
12610 	 SWITCH_BODY falls through.  */
12611       if (SWITCH_ALL_CASES_P (stmt))
12612 	return block_may_fallthru (SWITCH_BODY (stmt));
12613       return true;
12614 
12615     case COND_EXPR:
12616       if (block_may_fallthru (COND_EXPR_THEN (stmt)))
12617 	return true;
12618       return block_may_fallthru (COND_EXPR_ELSE (stmt));
12619 
12620     case BIND_EXPR:
12621       return block_may_fallthru (BIND_EXPR_BODY (stmt));
12622 
12623     case TRY_CATCH_EXPR:
12624       return try_catch_may_fallthru (stmt);
12625 
12626     case TRY_FINALLY_EXPR:
12627       /* The finally clause is always executed after the try clause,
12628 	 so if it does not fall through, then the try-finally will not
12629 	 fall through.  Otherwise, if the try clause does not fall
12630 	 through, then when the finally clause falls through it will
12631 	 resume execution wherever the try clause was going.  So the
12632 	 whole try-finally will only fall through if both the try
12633 	 clause and the finally clause fall through.  */
12634       return (block_may_fallthru (TREE_OPERAND (stmt, 0))
12635 	      && block_may_fallthru (TREE_OPERAND (stmt, 1)));
12636 
12637     case MODIFY_EXPR:
12638       if (TREE_CODE (TREE_OPERAND (stmt, 1)) == CALL_EXPR)
12639 	stmt = TREE_OPERAND (stmt, 1);
12640       else
12641 	return true;
12642       /* FALLTHRU */
12643 
12644     case CALL_EXPR:
12645       /* Functions that do not return do not fall through.  */
12646       return (call_expr_flags (stmt) & ECF_NORETURN) == 0;
12647 
12648     case CLEANUP_POINT_EXPR:
12649       return block_may_fallthru (TREE_OPERAND (stmt, 0));
12650 
12651     case TARGET_EXPR:
12652       return block_may_fallthru (TREE_OPERAND (stmt, 1));
12653 
12654     case ERROR_MARK:
12655       return true;
12656 
12657     default:
12658       return lang_hooks.block_may_fallthru (stmt);
12659     }
12660 }
12661 
12662 /* True if we are using EH to handle cleanups.  */
12663 static bool using_eh_for_cleanups_flag = false;
12664 
12665 /* This routine is called from front ends to indicate eh should be used for
12666    cleanups.  */
12667 void
12668 using_eh_for_cleanups (void)
12669 {
12670   using_eh_for_cleanups_flag = true;
12671 }
12672 
12673 /* Query whether EH is used for cleanups.  */
12674 bool
12675 using_eh_for_cleanups_p (void)
12676 {
12677   return using_eh_for_cleanups_flag;
12678 }
12679 
12680 /* Wrapper for tree_code_name to ensure that tree code is valid */
12681 const char *
12682 get_tree_code_name (enum tree_code code)
12683 {
12684   const char *invalid = "<invalid tree code>";
12685 
12686   if (code >= MAX_TREE_CODES)
12687     return invalid;
12688 
12689   return tree_code_name[code];
12690 }
12691 
12692 /* Drops the TREE_OVERFLOW flag from T.  */
12693 
12694 tree
12695 drop_tree_overflow (tree t)
12696 {
12697   gcc_checking_assert (TREE_OVERFLOW (t));
12698 
12699   /* For tree codes with a sharing machinery re-build the result.  */
12700   if (poly_int_tree_p (t))
12701     return wide_int_to_tree (TREE_TYPE (t), wi::to_poly_wide (t));
12702 
12703   /* For VECTOR_CST, remove the overflow bits from the encoded elements
12704      and canonicalize the result.  */
12705   if (TREE_CODE (t) == VECTOR_CST)
12706     {
12707       tree_vector_builder builder;
12708       builder.new_unary_operation (TREE_TYPE (t), t, true);
12709       unsigned int count = builder.encoded_nelts ();
12710       for (unsigned int i = 0; i < count; ++i)
12711 	{
12712 	  tree elt = VECTOR_CST_ELT (t, i);
12713 	  if (TREE_OVERFLOW (elt))
12714 	    elt = drop_tree_overflow (elt);
12715 	  builder.quick_push (elt);
12716 	}
12717       return builder.build ();
12718     }
12719 
12720   /* Otherwise, as all tcc_constants are possibly shared, copy the node
12721      and drop the flag.  */
12722   t = copy_node (t);
12723   TREE_OVERFLOW (t) = 0;
12724 
12725   /* For constants that contain nested constants, drop the flag
12726      from those as well.  */
12727   if (TREE_CODE (t) == COMPLEX_CST)
12728     {
12729       if (TREE_OVERFLOW (TREE_REALPART (t)))
12730 	TREE_REALPART (t) = drop_tree_overflow (TREE_REALPART (t));
12731       if (TREE_OVERFLOW (TREE_IMAGPART (t)))
12732 	TREE_IMAGPART (t) = drop_tree_overflow (TREE_IMAGPART (t));
12733     }
12734 
12735   return t;
12736 }
12737 
12738 /* Given a memory reference expression T, return its base address.
12739    The base address of a memory reference expression is the main
12740    object being referenced.  For instance, the base address for
12741    'array[i].fld[j]' is 'array'.  You can think of this as stripping
12742    away the offset part from a memory address.
12743 
12744    This function calls handled_component_p to strip away all the inner
12745    parts of the memory reference until it reaches the base object.  */
12746 
12747 tree
12748 get_base_address (tree t)
12749 {
12750   while (handled_component_p (t))
12751     t = TREE_OPERAND (t, 0);
12752 
12753   if ((TREE_CODE (t) == MEM_REF
12754        || TREE_CODE (t) == TARGET_MEM_REF)
12755       && TREE_CODE (TREE_OPERAND (t, 0)) == ADDR_EXPR)
12756     t = TREE_OPERAND (TREE_OPERAND (t, 0), 0);
12757 
12758   /* ???  Either the alias oracle or all callers need to properly deal
12759      with WITH_SIZE_EXPRs before we can look through those.  */
12760   if (TREE_CODE (t) == WITH_SIZE_EXPR)
12761     return NULL_TREE;
12762 
12763   return t;
12764 }
12765 
12766 /* Return a tree of sizetype representing the size, in bytes, of the element
12767    of EXP, an ARRAY_REF or an ARRAY_RANGE_REF.  */
12768 
12769 tree
12770 array_ref_element_size (tree exp)
12771 {
12772   tree aligned_size = TREE_OPERAND (exp, 3);
12773   tree elmt_type = TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0)));
12774   location_t loc = EXPR_LOCATION (exp);
12775 
12776   /* If a size was specified in the ARRAY_REF, it's the size measured
12777      in alignment units of the element type.  So multiply by that value.  */
12778   if (aligned_size)
12779     {
12780       /* ??? tree_ssa_useless_type_conversion will eliminate casts to
12781 	 sizetype from another type of the same width and signedness.  */
12782       if (TREE_TYPE (aligned_size) != sizetype)
12783 	aligned_size = fold_convert_loc (loc, sizetype, aligned_size);
12784       return size_binop_loc (loc, MULT_EXPR, aligned_size,
12785 			     size_int (TYPE_ALIGN_UNIT (elmt_type)));
12786     }
12787 
12788   /* Otherwise, take the size from that of the element type.  Substitute
12789      any PLACEHOLDER_EXPR that we have.  */
12790   else
12791     return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_SIZE_UNIT (elmt_type), exp);
12792 }
12793 
12794 /* Return a tree representing the lower bound of the array mentioned in
12795    EXP, an ARRAY_REF or an ARRAY_RANGE_REF.  */
12796 
12797 tree
12798 array_ref_low_bound (tree exp)
12799 {
12800   tree domain_type = TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp, 0)));
12801 
12802   /* If a lower bound is specified in EXP, use it.  */
12803   if (TREE_OPERAND (exp, 2))
12804     return TREE_OPERAND (exp, 2);
12805 
12806   /* Otherwise, if there is a domain type and it has a lower bound, use it,
12807      substituting for a PLACEHOLDER_EXPR as needed.  */
12808   if (domain_type && TYPE_MIN_VALUE (domain_type))
12809     return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MIN_VALUE (domain_type), exp);
12810 
12811   /* Otherwise, return a zero of the appropriate type.  */
12812   return build_int_cst (TREE_TYPE (TREE_OPERAND (exp, 1)), 0);
12813 }
12814 
12815 /* Return a tree representing the upper bound of the array mentioned in
12816    EXP, an ARRAY_REF or an ARRAY_RANGE_REF.  */
12817 
12818 tree
12819 array_ref_up_bound (tree exp)
12820 {
12821   tree domain_type = TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp, 0)));
12822 
12823   /* If there is a domain type and it has an upper bound, use it, substituting
12824      for a PLACEHOLDER_EXPR as needed.  */
12825   if (domain_type && TYPE_MAX_VALUE (domain_type))
12826     return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MAX_VALUE (domain_type), exp);
12827 
12828   /* Otherwise fail.  */
12829   return NULL_TREE;
12830 }
12831 
12832 /* Returns true if REF is an array reference or a component reference
12833    to an array at the end of a structure.
12834    If this is the case, the array may be allocated larger
12835    than its upper bound implies.  */
12836 
12837 bool
12838 array_at_struct_end_p (tree ref)
12839 {
12840   tree atype;
12841 
12842   if (TREE_CODE (ref) == ARRAY_REF
12843       || TREE_CODE (ref) == ARRAY_RANGE_REF)
12844     {
12845       atype = TREE_TYPE (TREE_OPERAND (ref, 0));
12846       ref = TREE_OPERAND (ref, 0);
12847     }
12848   else if (TREE_CODE (ref) == COMPONENT_REF
12849 	   && TREE_CODE (TREE_TYPE (TREE_OPERAND (ref, 1))) == ARRAY_TYPE)
12850     atype = TREE_TYPE (TREE_OPERAND (ref, 1));
12851   else
12852     return false;
12853 
12854   if (TREE_CODE (ref) == STRING_CST)
12855     return false;
12856 
12857   tree ref_to_array = ref;
12858   while (handled_component_p (ref))
12859     {
12860       /* If the reference chain contains a component reference to a
12861          non-union type and there follows another field the reference
12862 	 is not at the end of a structure.  */
12863       if (TREE_CODE (ref) == COMPONENT_REF)
12864 	{
12865 	  if (TREE_CODE (TREE_TYPE (TREE_OPERAND (ref, 0))) == RECORD_TYPE)
12866 	    {
12867 	      tree nextf = DECL_CHAIN (TREE_OPERAND (ref, 1));
12868 	      while (nextf && TREE_CODE (nextf) != FIELD_DECL)
12869 		nextf = DECL_CHAIN (nextf);
12870 	      if (nextf)
12871 		return false;
12872 	    }
12873 	}
12874       /* If we have a multi-dimensional array we do not consider
12875          a non-innermost dimension as flex array if the whole
12876 	 multi-dimensional array is at struct end.
12877 	 Same for an array of aggregates with a trailing array
12878 	 member.  */
12879       else if (TREE_CODE (ref) == ARRAY_REF)
12880 	return false;
12881       else if (TREE_CODE (ref) == ARRAY_RANGE_REF)
12882 	;
12883       /* If we view an underlying object as sth else then what we
12884          gathered up to now is what we have to rely on.  */
12885       else if (TREE_CODE (ref) == VIEW_CONVERT_EXPR)
12886 	break;
12887       else
12888 	gcc_unreachable ();
12889 
12890       ref = TREE_OPERAND (ref, 0);
12891     }
12892 
12893   /* The array now is at struct end.  Treat flexible arrays as
12894      always subject to extend, even into just padding constrained by
12895      an underlying decl.  */
12896   if (! TYPE_SIZE (atype)
12897       || ! TYPE_DOMAIN (atype)
12898       || ! TYPE_MAX_VALUE (TYPE_DOMAIN (atype)))
12899     return true;
12900 
12901   if (TREE_CODE (ref) == MEM_REF
12902       && TREE_CODE (TREE_OPERAND (ref, 0)) == ADDR_EXPR)
12903     ref = TREE_OPERAND (TREE_OPERAND (ref, 0), 0);
12904 
12905   /* If the reference is based on a declared entity, the size of the array
12906      is constrained by its given domain.  (Do not trust commons PR/69368).  */
12907   if (DECL_P (ref)
12908       && !(flag_unconstrained_commons
12909 	   && VAR_P (ref) && DECL_COMMON (ref))
12910       && DECL_SIZE_UNIT (ref)
12911       && TREE_CODE (DECL_SIZE_UNIT (ref)) == INTEGER_CST)
12912     {
12913       /* Check whether the array domain covers all of the available
12914          padding.  */
12915       poly_int64 offset;
12916       if (TREE_CODE (TYPE_SIZE_UNIT (TREE_TYPE (atype))) != INTEGER_CST
12917 	  || TREE_CODE (TYPE_MAX_VALUE (TYPE_DOMAIN (atype))) != INTEGER_CST
12918           || TREE_CODE (TYPE_MIN_VALUE (TYPE_DOMAIN (atype))) != INTEGER_CST)
12919 	return true;
12920       if (! get_addr_base_and_unit_offset (ref_to_array, &offset))
12921 	return true;
12922 
12923       /* If at least one extra element fits it is a flexarray.  */
12924       if (known_le ((wi::to_offset (TYPE_MAX_VALUE (TYPE_DOMAIN (atype)))
12925 		     - wi::to_offset (TYPE_MIN_VALUE (TYPE_DOMAIN (atype)))
12926 		     + 2)
12927 		    * wi::to_offset (TYPE_SIZE_UNIT (TREE_TYPE (atype))),
12928 		    wi::to_offset (DECL_SIZE_UNIT (ref)) - offset))
12929 	return true;
12930 
12931       return false;
12932     }
12933 
12934   return true;
12935 }
12936 
12937 /* Return a tree representing the offset, in bytes, of the field referenced
12938    by EXP.  This does not include any offset in DECL_FIELD_BIT_OFFSET.  */
12939 
12940 tree
12941 component_ref_field_offset (tree exp)
12942 {
12943   tree aligned_offset = TREE_OPERAND (exp, 2);
12944   tree field = TREE_OPERAND (exp, 1);
12945   location_t loc = EXPR_LOCATION (exp);
12946 
12947   /* If an offset was specified in the COMPONENT_REF, it's the offset measured
12948      in units of DECL_OFFSET_ALIGN / BITS_PER_UNIT.  So multiply by that
12949      value.  */
12950   if (aligned_offset)
12951     {
12952       /* ??? tree_ssa_useless_type_conversion will eliminate casts to
12953 	 sizetype from another type of the same width and signedness.  */
12954       if (TREE_TYPE (aligned_offset) != sizetype)
12955 	aligned_offset = fold_convert_loc (loc, sizetype, aligned_offset);
12956       return size_binop_loc (loc, MULT_EXPR, aligned_offset,
12957 			     size_int (DECL_OFFSET_ALIGN (field)
12958 				       / BITS_PER_UNIT));
12959     }
12960 
12961   /* Otherwise, take the offset from that of the field.  Substitute
12962      any PLACEHOLDER_EXPR that we have.  */
12963   else
12964     return SUBSTITUTE_PLACEHOLDER_IN_EXPR (DECL_FIELD_OFFSET (field), exp);
12965 }
12966 
12967 /* Return the machine mode of T.  For vectors, returns the mode of the
12968    inner type.  The main use case is to feed the result to HONOR_NANS,
12969    avoiding the BLKmode that a direct TYPE_MODE (T) might return.  */
12970 
12971 machine_mode
12972 element_mode (const_tree t)
12973 {
12974   if (!TYPE_P (t))
12975     t = TREE_TYPE (t);
12976   if (VECTOR_TYPE_P (t) || TREE_CODE (t) == COMPLEX_TYPE)
12977     t = TREE_TYPE (t);
12978   return TYPE_MODE (t);
12979 }
12980 
12981 /* Vector types need to re-check the target flags each time we report
12982    the machine mode.  We need to do this because attribute target can
12983    change the result of vector_mode_supported_p and have_regs_of_mode
12984    on a per-function basis.  Thus the TYPE_MODE of a VECTOR_TYPE can
12985    change on a per-function basis.  */
12986 /* ??? Possibly a better solution is to run through all the types
12987    referenced by a function and re-compute the TYPE_MODE once, rather
12988    than make the TYPE_MODE macro call a function.  */
12989 
12990 machine_mode
12991 vector_type_mode (const_tree t)
12992 {
12993   machine_mode mode;
12994 
12995   gcc_assert (TREE_CODE (t) == VECTOR_TYPE);
12996 
12997   mode = t->type_common.mode;
12998   if (VECTOR_MODE_P (mode)
12999       && (!targetm.vector_mode_supported_p (mode)
13000 	  || !have_regs_of_mode[mode]))
13001     {
13002       scalar_int_mode innermode;
13003 
13004       /* For integers, try mapping it to a same-sized scalar mode.  */
13005       if (is_int_mode (TREE_TYPE (t)->type_common.mode, &innermode))
13006 	{
13007 	  poly_int64 size = (TYPE_VECTOR_SUBPARTS (t)
13008 			     * GET_MODE_BITSIZE (innermode));
13009 	  scalar_int_mode mode;
13010 	  if (int_mode_for_size (size, 0).exists (&mode)
13011 	      && have_regs_of_mode[mode])
13012 	    return mode;
13013 	}
13014 
13015       return BLKmode;
13016     }
13017 
13018   return mode;
13019 }
13020 
13021 /* Verify that basic properties of T match TV and thus T can be a variant of
13022    TV.  TV should be the more specified variant (i.e. the main variant).  */
13023 
13024 static bool
13025 verify_type_variant (const_tree t, tree tv)
13026 {
13027   /* Type variant can differ by:
13028 
13029      - TYPE_QUALS: TYPE_READONLY, TYPE_VOLATILE, TYPE_ATOMIC, TYPE_RESTRICT,
13030                    ENCODE_QUAL_ADDR_SPACE.
13031      - main variant may be TYPE_COMPLETE_P and variant types !TYPE_COMPLETE_P
13032        in this case some values may not be set in the variant types
13033        (see TYPE_COMPLETE_P checks).
13034      - it is possible to have TYPE_ARTIFICIAL variant of non-artifical type
13035      - by TYPE_NAME and attributes (i.e. when variant originate by typedef)
13036      - TYPE_CANONICAL (TYPE_ALIAS_SET is the same among variants)
13037      - by the alignment: TYPE_ALIGN and TYPE_USER_ALIGN
13038      - during LTO by TYPE_CONTEXT if type is TYPE_FILE_SCOPE_P
13039        this is necessary to make it possible to merge types form different TUs
13040      - arrays, pointers and references may have TREE_TYPE that is a variant
13041        of TREE_TYPE of their main variants.
13042      - aggregates may have new TYPE_FIELDS list that list variants of
13043        the main variant TYPE_FIELDS.
13044      - vector types may differ by TYPE_VECTOR_OPAQUE
13045    */
13046 
13047   /* Convenience macro for matching individual fields.  */
13048 #define verify_variant_match(flag)					    \
13049   do {									    \
13050     if (flag (tv) != flag (t))						    \
13051       {									    \
13052 	error ("type variant differs by %s", #flag);			    \
13053 	debug_tree (tv);						    \
13054 	return false;							    \
13055       }									    \
13056   } while (false)
13057 
13058   /* tree_base checks.  */
13059 
13060   verify_variant_match (TREE_CODE);
13061   /* FIXME: Ada builds non-artificial variants of artificial types.  */
13062   if (TYPE_ARTIFICIAL (tv) && 0)
13063     verify_variant_match (TYPE_ARTIFICIAL);
13064   if (POINTER_TYPE_P (tv))
13065     verify_variant_match (TYPE_REF_CAN_ALIAS_ALL);
13066   /* FIXME: TYPE_SIZES_GIMPLIFIED may differs for Ada build.  */
13067   verify_variant_match (TYPE_UNSIGNED);
13068   verify_variant_match (TYPE_PACKED);
13069   if (TREE_CODE (t) == REFERENCE_TYPE)
13070     verify_variant_match (TYPE_REF_IS_RVALUE);
13071   if (AGGREGATE_TYPE_P (t))
13072     verify_variant_match (TYPE_REVERSE_STORAGE_ORDER);
13073   else
13074     verify_variant_match (TYPE_SATURATING);
13075   /* FIXME: This check trigger during libstdc++ build.  */
13076   if (RECORD_OR_UNION_TYPE_P (t) && COMPLETE_TYPE_P (t) && 0)
13077     verify_variant_match (TYPE_FINAL_P);
13078 
13079   /* tree_type_common checks.  */
13080 
13081   if (COMPLETE_TYPE_P (t))
13082     {
13083       verify_variant_match (TYPE_MODE);
13084       if (TREE_CODE (TYPE_SIZE (t)) != PLACEHOLDER_EXPR
13085 	  && TREE_CODE (TYPE_SIZE (tv)) != PLACEHOLDER_EXPR)
13086 	verify_variant_match (TYPE_SIZE);
13087       if (TREE_CODE (TYPE_SIZE_UNIT (t)) != PLACEHOLDER_EXPR
13088 	  && TREE_CODE (TYPE_SIZE_UNIT (tv)) != PLACEHOLDER_EXPR
13089 	  && TYPE_SIZE_UNIT (t) != TYPE_SIZE_UNIT (tv))
13090 	{
13091 	  gcc_assert (!operand_equal_p (TYPE_SIZE_UNIT (t),
13092 					TYPE_SIZE_UNIT (tv), 0));
13093 	  error ("type variant has different TYPE_SIZE_UNIT");
13094 	  debug_tree (tv);
13095 	  error ("type variant's TYPE_SIZE_UNIT");
13096 	  debug_tree (TYPE_SIZE_UNIT (tv));
13097 	  error ("type's TYPE_SIZE_UNIT");
13098 	  debug_tree (TYPE_SIZE_UNIT (t));
13099 	  return false;
13100 	}
13101     }
13102   verify_variant_match (TYPE_PRECISION);
13103   verify_variant_match (TYPE_NEEDS_CONSTRUCTING);
13104   if (RECORD_OR_UNION_TYPE_P (t))
13105     verify_variant_match (TYPE_TRANSPARENT_AGGR);
13106   else if (TREE_CODE (t) == ARRAY_TYPE)
13107     verify_variant_match (TYPE_NONALIASED_COMPONENT);
13108   /* During LTO we merge variant lists from diferent translation units
13109      that may differ BY TYPE_CONTEXT that in turn may point
13110      to TRANSLATION_UNIT_DECL.
13111      Ada also builds variants of types with different TYPE_CONTEXT.   */
13112   if ((!in_lto_p || !TYPE_FILE_SCOPE_P (t)) && 0)
13113     verify_variant_match (TYPE_CONTEXT);
13114   verify_variant_match (TYPE_STRING_FLAG);
13115   if (TYPE_ALIAS_SET_KNOWN_P (t))
13116     {
13117       error ("type variant with TYPE_ALIAS_SET_KNOWN_P");
13118       debug_tree (tv);
13119       return false;
13120     }
13121 
13122   /* tree_type_non_common checks.  */
13123 
13124   /* FIXME: C FE uses TYPE_VFIELD to record C_TYPE_INCOMPLETE_VARS
13125      and dangle the pointer from time to time.  */
13126   if (RECORD_OR_UNION_TYPE_P (t) && TYPE_VFIELD (t) != TYPE_VFIELD (tv)
13127       && (in_lto_p || !TYPE_VFIELD (tv)
13128 	  || TREE_CODE (TYPE_VFIELD (tv)) != TREE_LIST))
13129     {
13130       error ("type variant has different TYPE_VFIELD");
13131       debug_tree (tv);
13132       return false;
13133     }
13134   if ((TREE_CODE (t) == ENUMERAL_TYPE && COMPLETE_TYPE_P (t))
13135        || TREE_CODE (t) == INTEGER_TYPE
13136        || TREE_CODE (t) == BOOLEAN_TYPE
13137        || TREE_CODE (t) == REAL_TYPE
13138        || TREE_CODE (t) == FIXED_POINT_TYPE)
13139     {
13140       verify_variant_match (TYPE_MAX_VALUE);
13141       verify_variant_match (TYPE_MIN_VALUE);
13142     }
13143   if (TREE_CODE (t) == METHOD_TYPE)
13144     verify_variant_match (TYPE_METHOD_BASETYPE);
13145   if (TREE_CODE (t) == OFFSET_TYPE)
13146     verify_variant_match (TYPE_OFFSET_BASETYPE);
13147   if (TREE_CODE (t) == ARRAY_TYPE)
13148     verify_variant_match (TYPE_ARRAY_MAX_SIZE);
13149   /* FIXME: Be lax and allow TYPE_BINFO to be missing in variant types
13150      or even type's main variant.  This is needed to make bootstrap pass
13151      and the bug seems new in GCC 5.
13152      C++ FE should be updated to make this consistent and we should check
13153      that TYPE_BINFO is always NULL for !COMPLETE_TYPE_P and otherwise there
13154      is a match with main variant.
13155 
13156      Also disable the check for Java for now because of parser hack that builds
13157      first an dummy BINFO and then sometimes replace it by real BINFO in some
13158      of the copies.  */
13159   if (RECORD_OR_UNION_TYPE_P (t) && TYPE_BINFO (t) && TYPE_BINFO (tv)
13160       && TYPE_BINFO (t) != TYPE_BINFO (tv)
13161       /* FIXME: Java sometimes keep dump TYPE_BINFOs on variant types.
13162 	 Since there is no cheap way to tell C++/Java type w/o LTO, do checking
13163 	 at LTO time only.  */
13164       && (in_lto_p && odr_type_p (t)))
13165     {
13166       error ("type variant has different TYPE_BINFO");
13167       debug_tree (tv);
13168       error ("type variant's TYPE_BINFO");
13169       debug_tree (TYPE_BINFO (tv));
13170       error ("type's TYPE_BINFO");
13171       debug_tree (TYPE_BINFO (t));
13172       return false;
13173     }
13174 
13175   /* Check various uses of TYPE_VALUES_RAW.  */
13176   if (TREE_CODE (t) == ENUMERAL_TYPE)
13177     verify_variant_match (TYPE_VALUES);
13178   else if (TREE_CODE (t) == ARRAY_TYPE)
13179     verify_variant_match (TYPE_DOMAIN);
13180   /* Permit incomplete variants of complete type.  While FEs may complete
13181      all variants, this does not happen for C++ templates in all cases.  */
13182   else if (RECORD_OR_UNION_TYPE_P (t)
13183 	   && COMPLETE_TYPE_P (t)
13184 	   && TYPE_FIELDS (t) != TYPE_FIELDS (tv))
13185     {
13186       tree f1, f2;
13187 
13188       /* Fortran builds qualified variants as new records with items of
13189 	 qualified type. Verify that they looks same.  */
13190       for (f1 = TYPE_FIELDS (t), f2 = TYPE_FIELDS (tv);
13191 	   f1 && f2;
13192 	   f1 = TREE_CHAIN (f1), f2 = TREE_CHAIN (f2))
13193 	if (TREE_CODE (f1) != FIELD_DECL || TREE_CODE (f2) != FIELD_DECL
13194 	    || (TYPE_MAIN_VARIANT (TREE_TYPE (f1))
13195 		 != TYPE_MAIN_VARIANT (TREE_TYPE (f2))
13196 		/* FIXME: gfc_nonrestricted_type builds all types as variants
13197 		   with exception of pointer types.  It deeply copies the type
13198 		   which means that we may end up with a variant type
13199 		   referring non-variant pointer.  We may change it to
13200 		   produce types as variants, too, like
13201 		   objc_get_protocol_qualified_type does.  */
13202 		&& !POINTER_TYPE_P (TREE_TYPE (f1)))
13203 	    || DECL_FIELD_OFFSET (f1) != DECL_FIELD_OFFSET (f2)
13204 	    || DECL_FIELD_BIT_OFFSET (f1) != DECL_FIELD_BIT_OFFSET (f2))
13205 	  break;
13206       if (f1 || f2)
13207 	{
13208 	  error ("type variant has different TYPE_FIELDS");
13209 	  debug_tree (tv);
13210 	  error ("first mismatch is field");
13211 	  debug_tree (f1);
13212 	  error ("and field");
13213 	  debug_tree (f2);
13214           return false;
13215 	}
13216     }
13217   else if ((TREE_CODE (t) == FUNCTION_TYPE || TREE_CODE (t) == METHOD_TYPE))
13218     verify_variant_match (TYPE_ARG_TYPES);
13219   /* For C++ the qualified variant of array type is really an array type
13220      of qualified TREE_TYPE.
13221      objc builds variants of pointer where pointer to type is a variant, too
13222      in objc_get_protocol_qualified_type.  */
13223   if (TREE_TYPE (t) != TREE_TYPE (tv)
13224       && ((TREE_CODE (t) != ARRAY_TYPE
13225 	   && !POINTER_TYPE_P (t))
13226 	  || TYPE_MAIN_VARIANT (TREE_TYPE (t))
13227 	     != TYPE_MAIN_VARIANT (TREE_TYPE (tv))))
13228     {
13229       error ("type variant has different TREE_TYPE");
13230       debug_tree (tv);
13231       error ("type variant's TREE_TYPE");
13232       debug_tree (TREE_TYPE (tv));
13233       error ("type's TREE_TYPE");
13234       debug_tree (TREE_TYPE (t));
13235       return false;
13236     }
13237   if (type_with_alias_set_p (t)
13238       && !gimple_canonical_types_compatible_p (t, tv, false))
13239     {
13240       error ("type is not compatible with its variant");
13241       debug_tree (tv);
13242       error ("type variant's TREE_TYPE");
13243       debug_tree (TREE_TYPE (tv));
13244       error ("type's TREE_TYPE");
13245       debug_tree (TREE_TYPE (t));
13246       return false;
13247     }
13248   return true;
13249 #undef verify_variant_match
13250 }
13251 
13252 
13253 /* The TYPE_CANONICAL merging machinery.  It should closely resemble
13254    the middle-end types_compatible_p function.  It needs to avoid
13255    claiming types are different for types that should be treated
13256    the same with respect to TBAA.  Canonical types are also used
13257    for IL consistency checks via the useless_type_conversion_p
13258    predicate which does not handle all type kinds itself but falls
13259    back to pointer-comparison of TYPE_CANONICAL for aggregates
13260    for example.  */
13261 
13262 /* Return true if TYPE_UNSIGNED of TYPE should be ignored for canonical
13263    type calculation because we need to allow inter-operability between signed
13264    and unsigned variants.  */
13265 
13266 bool
13267 type_with_interoperable_signedness (const_tree type)
13268 {
13269   /* Fortran standard require C_SIGNED_CHAR to be interoperable with both
13270      signed char and unsigned char.  Similarly fortran FE builds
13271      C_SIZE_T as signed type, while C defines it unsigned.  */
13272 
13273   return tree_code_for_canonical_type_merging (TREE_CODE (type))
13274 	   == INTEGER_TYPE
13275          && (TYPE_PRECISION (type) == TYPE_PRECISION (signed_char_type_node)
13276 	     || TYPE_PRECISION (type) == TYPE_PRECISION (size_type_node));
13277 }
13278 
13279 /* Return true iff T1 and T2 are structurally identical for what
13280    TBAA is concerned.
13281    This function is used both by lto.c canonical type merging and by the
13282    verifier.  If TRUST_TYPE_CANONICAL we do not look into structure of types
13283    that have TYPE_CANONICAL defined and assume them equivalent.  This is useful
13284    only for LTO because only in these cases TYPE_CANONICAL equivalence
13285    correspond to one defined by gimple_canonical_types_compatible_p.  */
13286 
13287 bool
13288 gimple_canonical_types_compatible_p (const_tree t1, const_tree t2,
13289 				     bool trust_type_canonical)
13290 {
13291   /* Type variants should be same as the main variant.  When not doing sanity
13292      checking to verify this fact, go to main variants and save some work.  */
13293   if (trust_type_canonical)
13294     {
13295       t1 = TYPE_MAIN_VARIANT (t1);
13296       t2 = TYPE_MAIN_VARIANT (t2);
13297     }
13298 
13299   /* Check first for the obvious case of pointer identity.  */
13300   if (t1 == t2)
13301     return true;
13302 
13303   /* Check that we have two types to compare.  */
13304   if (t1 == NULL_TREE || t2 == NULL_TREE)
13305     return false;
13306 
13307   /* We consider complete types always compatible with incomplete type.
13308      This does not make sense for canonical type calculation and thus we
13309      need to ensure that we are never called on it.
13310 
13311      FIXME: For more correctness the function probably should have three modes
13312 	1) mode assuming that types are complete mathcing their structure
13313 	2) mode allowing incomplete types but producing equivalence classes
13314 	   and thus ignoring all info from complete types
13315 	3) mode allowing incomplete types to match complete but checking
13316 	   compatibility between complete types.
13317 
13318      1 and 2 can be used for canonical type calculation. 3 is the real
13319      definition of type compatibility that can be used i.e. for warnings during
13320      declaration merging.  */
13321 
13322   gcc_assert (!trust_type_canonical
13323 	      || (type_with_alias_set_p (t1) && type_with_alias_set_p (t2)));
13324   /* If the types have been previously registered and found equal
13325      they still are.  */
13326 
13327   if (TYPE_CANONICAL (t1) && TYPE_CANONICAL (t2)
13328       && trust_type_canonical)
13329     {
13330       /* Do not use TYPE_CANONICAL of pointer types.  For LTO streamed types
13331 	 they are always NULL, but they are set to non-NULL for types
13332 	 constructed by build_pointer_type and variants.  In this case the
13333 	 TYPE_CANONICAL is more fine grained than the equivalnce we test (where
13334 	 all pointers are considered equal.  Be sure to not return false
13335 	 negatives.  */
13336       gcc_checking_assert (canonical_type_used_p (t1)
13337 			   && canonical_type_used_p (t2));
13338       return TYPE_CANONICAL (t1) == TYPE_CANONICAL (t2);
13339     }
13340 
13341   /* Can't be the same type if the types don't have the same code.  */
13342   enum tree_code code = tree_code_for_canonical_type_merging (TREE_CODE (t1));
13343   if (code != tree_code_for_canonical_type_merging (TREE_CODE (t2)))
13344     return false;
13345 
13346   /* Qualifiers do not matter for canonical type comparison purposes.  */
13347 
13348   /* Void types and nullptr types are always the same.  */
13349   if (TREE_CODE (t1) == VOID_TYPE
13350       || TREE_CODE (t1) == NULLPTR_TYPE)
13351     return true;
13352 
13353   /* Can't be the same type if they have different mode.  */
13354   if (TYPE_MODE (t1) != TYPE_MODE (t2))
13355     return false;
13356 
13357   /* Non-aggregate types can be handled cheaply.  */
13358   if (INTEGRAL_TYPE_P (t1)
13359       || SCALAR_FLOAT_TYPE_P (t1)
13360       || FIXED_POINT_TYPE_P (t1)
13361       || TREE_CODE (t1) == VECTOR_TYPE
13362       || TREE_CODE (t1) == COMPLEX_TYPE
13363       || TREE_CODE (t1) == OFFSET_TYPE
13364       || POINTER_TYPE_P (t1))
13365     {
13366       /* Can't be the same type if they have different recision.  */
13367       if (TYPE_PRECISION (t1) != TYPE_PRECISION (t2))
13368 	return false;
13369 
13370       /* In some cases the signed and unsigned types are required to be
13371 	 inter-operable.  */
13372       if (TYPE_UNSIGNED (t1) != TYPE_UNSIGNED (t2)
13373 	  && !type_with_interoperable_signedness (t1))
13374 	return false;
13375 
13376       /* Fortran's C_SIGNED_CHAR is !TYPE_STRING_FLAG but needs to be
13377 	 interoperable with "signed char".  Unless all frontends are revisited
13378 	 to agree on these types, we must ignore the flag completely.  */
13379 
13380       /* Fortran standard define C_PTR type that is compatible with every
13381  	 C pointer.  For this reason we need to glob all pointers into one.
13382 	 Still pointers in different address spaces are not compatible.  */
13383       if (POINTER_TYPE_P (t1))
13384 	{
13385 	  if (TYPE_ADDR_SPACE (TREE_TYPE (t1))
13386 	      != TYPE_ADDR_SPACE (TREE_TYPE (t2)))
13387 	    return false;
13388 	}
13389 
13390       /* Tail-recurse to components.  */
13391       if (TREE_CODE (t1) == VECTOR_TYPE
13392 	  || TREE_CODE (t1) == COMPLEX_TYPE)
13393 	return gimple_canonical_types_compatible_p (TREE_TYPE (t1),
13394 						    TREE_TYPE (t2),
13395 						    trust_type_canonical);
13396 
13397       return true;
13398     }
13399 
13400   /* Do type-specific comparisons.  */
13401   switch (TREE_CODE (t1))
13402     {
13403     case ARRAY_TYPE:
13404       /* Array types are the same if the element types are the same and
13405 	 the number of elements are the same.  */
13406       if (!gimple_canonical_types_compatible_p (TREE_TYPE (t1), TREE_TYPE (t2),
13407 						trust_type_canonical)
13408 	  || TYPE_STRING_FLAG (t1) != TYPE_STRING_FLAG (t2)
13409 	  || TYPE_REVERSE_STORAGE_ORDER (t1) != TYPE_REVERSE_STORAGE_ORDER (t2)
13410 	  || TYPE_NONALIASED_COMPONENT (t1) != TYPE_NONALIASED_COMPONENT (t2))
13411 	return false;
13412       else
13413 	{
13414 	  tree i1 = TYPE_DOMAIN (t1);
13415 	  tree i2 = TYPE_DOMAIN (t2);
13416 
13417 	  /* For an incomplete external array, the type domain can be
13418  	     NULL_TREE.  Check this condition also.  */
13419 	  if (i1 == NULL_TREE && i2 == NULL_TREE)
13420 	    return true;
13421 	  else if (i1 == NULL_TREE || i2 == NULL_TREE)
13422 	    return false;
13423 	  else
13424 	    {
13425 	      tree min1 = TYPE_MIN_VALUE (i1);
13426 	      tree min2 = TYPE_MIN_VALUE (i2);
13427 	      tree max1 = TYPE_MAX_VALUE (i1);
13428 	      tree max2 = TYPE_MAX_VALUE (i2);
13429 
13430 	      /* The minimum/maximum values have to be the same.  */
13431 	      if ((min1 == min2
13432 		   || (min1 && min2
13433 		       && ((TREE_CODE (min1) == PLACEHOLDER_EXPR
13434 			    && TREE_CODE (min2) == PLACEHOLDER_EXPR)
13435 		           || operand_equal_p (min1, min2, 0))))
13436 		  && (max1 == max2
13437 		      || (max1 && max2
13438 			  && ((TREE_CODE (max1) == PLACEHOLDER_EXPR
13439 			       && TREE_CODE (max2) == PLACEHOLDER_EXPR)
13440 			      || operand_equal_p (max1, max2, 0)))))
13441 		return true;
13442 	      else
13443 		return false;
13444 	    }
13445 	}
13446 
13447     case METHOD_TYPE:
13448     case FUNCTION_TYPE:
13449       /* Function types are the same if the return type and arguments types
13450 	 are the same.  */
13451       if (!gimple_canonical_types_compatible_p (TREE_TYPE (t1), TREE_TYPE (t2),
13452 						trust_type_canonical))
13453 	return false;
13454 
13455       if (TYPE_ARG_TYPES (t1) == TYPE_ARG_TYPES (t2))
13456 	return true;
13457       else
13458 	{
13459 	  tree parms1, parms2;
13460 
13461 	  for (parms1 = TYPE_ARG_TYPES (t1), parms2 = TYPE_ARG_TYPES (t2);
13462 	       parms1 && parms2;
13463 	       parms1 = TREE_CHAIN (parms1), parms2 = TREE_CHAIN (parms2))
13464 	    {
13465 	      if (!gimple_canonical_types_compatible_p
13466 		     (TREE_VALUE (parms1), TREE_VALUE (parms2),
13467 		      trust_type_canonical))
13468 		return false;
13469 	    }
13470 
13471 	  if (parms1 || parms2)
13472 	    return false;
13473 
13474 	  return true;
13475 	}
13476 
13477     case RECORD_TYPE:
13478     case UNION_TYPE:
13479     case QUAL_UNION_TYPE:
13480       {
13481 	tree f1, f2;
13482 
13483 	/* Don't try to compare variants of an incomplete type, before
13484 	   TYPE_FIELDS has been copied around.  */
13485 	if (!COMPLETE_TYPE_P (t1) && !COMPLETE_TYPE_P (t2))
13486 	  return true;
13487 
13488 
13489 	if (TYPE_REVERSE_STORAGE_ORDER (t1) != TYPE_REVERSE_STORAGE_ORDER (t2))
13490 	  return false;
13491 
13492 	/* For aggregate types, all the fields must be the same.  */
13493 	for (f1 = TYPE_FIELDS (t1), f2 = TYPE_FIELDS (t2);
13494 	     f1 || f2;
13495 	     f1 = TREE_CHAIN (f1), f2 = TREE_CHAIN (f2))
13496 	  {
13497 	    /* Skip non-fields and zero-sized fields.  */
13498 	    while (f1 && (TREE_CODE (f1) != FIELD_DECL
13499 			  || (DECL_SIZE (f1)
13500 			      && integer_zerop (DECL_SIZE (f1)))))
13501 	      f1 = TREE_CHAIN (f1);
13502 	    while (f2 && (TREE_CODE (f2) != FIELD_DECL
13503 			  || (DECL_SIZE (f2)
13504 			      && integer_zerop (DECL_SIZE (f2)))))
13505 	      f2 = TREE_CHAIN (f2);
13506 	    if (!f1 || !f2)
13507 	      break;
13508 	    /* The fields must have the same name, offset and type.  */
13509 	    if (DECL_NONADDRESSABLE_P (f1) != DECL_NONADDRESSABLE_P (f2)
13510 		|| !gimple_compare_field_offset (f1, f2)
13511 		|| !gimple_canonical_types_compatible_p
13512 		      (TREE_TYPE (f1), TREE_TYPE (f2),
13513 		       trust_type_canonical))
13514 	      return false;
13515 	  }
13516 
13517 	/* If one aggregate has more fields than the other, they
13518 	   are not the same.  */
13519 	if (f1 || f2)
13520 	  return false;
13521 
13522 	return true;
13523       }
13524 
13525     default:
13526       /* Consider all types with language specific trees in them mutually
13527 	 compatible.  This is executed only from verify_type and false
13528          positives can be tolerated.  */
13529       gcc_assert (!in_lto_p);
13530       return true;
13531     }
13532 }
13533 
13534 /* Verify type T.  */
13535 
13536 void
13537 verify_type (const_tree t)
13538 {
13539   bool error_found = false;
13540   tree mv = TYPE_MAIN_VARIANT (t);
13541   if (!mv)
13542     {
13543       error ("Main variant is not defined");
13544       error_found = true;
13545     }
13546   else if (mv != TYPE_MAIN_VARIANT (mv))
13547     {
13548       error ("TYPE_MAIN_VARIANT has different TYPE_MAIN_VARIANT");
13549       debug_tree (mv);
13550       error_found = true;
13551     }
13552   else if (t != mv && !verify_type_variant (t, mv))
13553     error_found = true;
13554 
13555   tree ct = TYPE_CANONICAL (t);
13556   if (!ct)
13557     ;
13558   else if (TYPE_CANONICAL (t) != ct)
13559     {
13560       error ("TYPE_CANONICAL has different TYPE_CANONICAL");
13561       debug_tree (ct);
13562       error_found = true;
13563     }
13564   /* Method and function types can not be used to address memory and thus
13565      TYPE_CANONICAL really matters only for determining useless conversions.
13566 
13567      FIXME: C++ FE produce declarations of builtin functions that are not
13568      compatible with main variants.  */
13569   else if (TREE_CODE (t) == FUNCTION_TYPE)
13570     ;
13571   else if (t != ct
13572 	   /* FIXME: gimple_canonical_types_compatible_p can not compare types
13573 	      with variably sized arrays because their sizes possibly
13574 	      gimplified to different variables.  */
13575 	   && !variably_modified_type_p (ct, NULL)
13576 	   && !gimple_canonical_types_compatible_p (t, ct, false))
13577     {
13578       error ("TYPE_CANONICAL is not compatible");
13579       debug_tree (ct);
13580       error_found = true;
13581     }
13582 
13583   if (COMPLETE_TYPE_P (t) && TYPE_CANONICAL (t)
13584       && TYPE_MODE (t) != TYPE_MODE (TYPE_CANONICAL (t)))
13585     {
13586       error ("TYPE_MODE of TYPE_CANONICAL is not compatible");
13587       debug_tree (ct);
13588       error_found = true;
13589     }
13590   if (TYPE_MAIN_VARIANT (t) == t && ct && TYPE_MAIN_VARIANT (ct) != ct)
13591    {
13592       error ("TYPE_CANONICAL of main variant is not main variant");
13593       debug_tree (ct);
13594       debug_tree (TYPE_MAIN_VARIANT (ct));
13595       error_found = true;
13596    }
13597 
13598 
13599   /* Check various uses of TYPE_MIN_VALUE_RAW.  */
13600   if (RECORD_OR_UNION_TYPE_P (t))
13601     {
13602       /* FIXME: C FE uses TYPE_VFIELD to record C_TYPE_INCOMPLETE_VARS
13603 	 and danagle the pointer from time to time.  */
13604       if (TYPE_VFIELD (t)
13605 	  && TREE_CODE (TYPE_VFIELD (t)) != FIELD_DECL
13606 	  && TREE_CODE (TYPE_VFIELD (t)) != TREE_LIST)
13607 	{
13608 	  error ("TYPE_VFIELD is not FIELD_DECL nor TREE_LIST");
13609 	  debug_tree (TYPE_VFIELD (t));
13610 	  error_found = true;
13611 	}
13612     }
13613   else if (TREE_CODE (t) == POINTER_TYPE)
13614     {
13615       if (TYPE_NEXT_PTR_TO (t)
13616 	  && TREE_CODE (TYPE_NEXT_PTR_TO (t)) != POINTER_TYPE)
13617 	{
13618 	  error ("TYPE_NEXT_PTR_TO is not POINTER_TYPE");
13619 	  debug_tree (TYPE_NEXT_PTR_TO (t));
13620 	  error_found = true;
13621 	}
13622     }
13623   else if (TREE_CODE (t) == REFERENCE_TYPE)
13624     {
13625       if (TYPE_NEXT_REF_TO (t)
13626 	  && TREE_CODE (TYPE_NEXT_REF_TO (t)) != REFERENCE_TYPE)
13627 	{
13628 	  error ("TYPE_NEXT_REF_TO is not REFERENCE_TYPE");
13629 	  debug_tree (TYPE_NEXT_REF_TO (t));
13630 	  error_found = true;
13631 	}
13632     }
13633   else if (INTEGRAL_TYPE_P (t) || TREE_CODE (t) == REAL_TYPE
13634 	   || TREE_CODE (t) == FIXED_POINT_TYPE)
13635     {
13636       /* FIXME: The following check should pass:
13637 	  useless_type_conversion_p (const_cast <tree> (t),
13638 				     TREE_TYPE (TYPE_MIN_VALUE (t))
13639 	 but does not for C sizetypes in LTO.  */
13640     }
13641 
13642   /* Check various uses of TYPE_MAXVAL_RAW.  */
13643   if (RECORD_OR_UNION_TYPE_P (t))
13644     {
13645       if (!TYPE_BINFO (t))
13646 	;
13647       else if (TREE_CODE (TYPE_BINFO (t)) != TREE_BINFO)
13648 	{
13649 	  error ("TYPE_BINFO is not TREE_BINFO");
13650 	  debug_tree (TYPE_BINFO (t));
13651 	  error_found = true;
13652 	}
13653       else if (TREE_TYPE (TYPE_BINFO (t)) != TYPE_MAIN_VARIANT (t))
13654 	{
13655 	  error ("TYPE_BINFO type is not TYPE_MAIN_VARIANT");
13656 	  debug_tree (TREE_TYPE (TYPE_BINFO (t)));
13657 	  error_found = true;
13658 	}
13659     }
13660   else if (TREE_CODE (t) == FUNCTION_TYPE || TREE_CODE (t) == METHOD_TYPE)
13661     {
13662       if (TYPE_METHOD_BASETYPE (t)
13663 	  && TREE_CODE (TYPE_METHOD_BASETYPE (t)) != RECORD_TYPE
13664 	  && TREE_CODE (TYPE_METHOD_BASETYPE (t)) != UNION_TYPE)
13665 	{
13666 	  error ("TYPE_METHOD_BASETYPE is not record nor union");
13667 	  debug_tree (TYPE_METHOD_BASETYPE (t));
13668 	  error_found = true;
13669 	}
13670     }
13671   else if (TREE_CODE (t) == OFFSET_TYPE)
13672     {
13673       if (TYPE_OFFSET_BASETYPE (t)
13674 	  && TREE_CODE (TYPE_OFFSET_BASETYPE (t)) != RECORD_TYPE
13675 	  && TREE_CODE (TYPE_OFFSET_BASETYPE (t)) != UNION_TYPE)
13676 	{
13677 	  error ("TYPE_OFFSET_BASETYPE is not record nor union");
13678 	  debug_tree (TYPE_OFFSET_BASETYPE (t));
13679 	  error_found = true;
13680 	}
13681     }
13682   else if (INTEGRAL_TYPE_P (t) || TREE_CODE (t) == REAL_TYPE
13683 	   || TREE_CODE (t) == FIXED_POINT_TYPE)
13684     {
13685       /* FIXME: The following check should pass:
13686 	  useless_type_conversion_p (const_cast <tree> (t),
13687 				     TREE_TYPE (TYPE_MAX_VALUE (t))
13688 	 but does not for C sizetypes in LTO.  */
13689     }
13690   else if (TREE_CODE (t) == ARRAY_TYPE)
13691     {
13692       if (TYPE_ARRAY_MAX_SIZE (t)
13693 	  && TREE_CODE (TYPE_ARRAY_MAX_SIZE (t)) != INTEGER_CST)
13694         {
13695 	  error ("TYPE_ARRAY_MAX_SIZE not INTEGER_CST");
13696 	  debug_tree (TYPE_ARRAY_MAX_SIZE (t));
13697 	  error_found = true;
13698         }
13699     }
13700   else if (TYPE_MAX_VALUE_RAW (t))
13701     {
13702       error ("TYPE_MAX_VALUE_RAW non-NULL");
13703       debug_tree (TYPE_MAX_VALUE_RAW (t));
13704       error_found = true;
13705     }
13706 
13707   if (TYPE_LANG_SLOT_1 (t) && in_lto_p)
13708     {
13709       error ("TYPE_LANG_SLOT_1 (binfo) field is non-NULL");
13710       debug_tree (TYPE_LANG_SLOT_1 (t));
13711       error_found = true;
13712     }
13713 
13714   /* Check various uses of TYPE_VALUES_RAW.  */
13715   if (TREE_CODE (t) == ENUMERAL_TYPE)
13716     for (tree l = TYPE_VALUES (t); l; l = TREE_CHAIN (l))
13717       {
13718 	tree value = TREE_VALUE (l);
13719 	tree name = TREE_PURPOSE (l);
13720 
13721 	/* C FE porduce INTEGER_CST of INTEGER_TYPE, while C++ FE uses
13722  	   CONST_DECL of ENUMERAL TYPE.  */
13723 	if (TREE_CODE (value) != INTEGER_CST && TREE_CODE (value) != CONST_DECL)
13724 	  {
13725 	    error ("Enum value is not CONST_DECL or INTEGER_CST");
13726 	    debug_tree (value);
13727 	    debug_tree (name);
13728 	    error_found = true;
13729 	  }
13730 	if (TREE_CODE (TREE_TYPE (value)) != INTEGER_TYPE
13731 	    && !useless_type_conversion_p (const_cast <tree> (t), TREE_TYPE (value)))
13732 	  {
13733 	    error ("Enum value type is not INTEGER_TYPE nor convertible to the enum");
13734 	    debug_tree (value);
13735 	    debug_tree (name);
13736 	    error_found = true;
13737 	  }
13738 	if (TREE_CODE (name) != IDENTIFIER_NODE)
13739 	  {
13740 	    error ("Enum value name is not IDENTIFIER_NODE");
13741 	    debug_tree (value);
13742 	    debug_tree (name);
13743 	    error_found = true;
13744 	  }
13745       }
13746   else if (TREE_CODE (t) == ARRAY_TYPE)
13747     {
13748       if (TYPE_DOMAIN (t) && TREE_CODE (TYPE_DOMAIN (t)) != INTEGER_TYPE)
13749 	{
13750 	  error ("Array TYPE_DOMAIN is not integer type");
13751 	  debug_tree (TYPE_DOMAIN (t));
13752 	  error_found = true;
13753 	}
13754     }
13755   else if (RECORD_OR_UNION_TYPE_P (t))
13756     {
13757       if (TYPE_FIELDS (t) && !COMPLETE_TYPE_P (t) && in_lto_p)
13758 	{
13759 	  error ("TYPE_FIELDS defined in incomplete type");
13760 	  error_found = true;
13761 	}
13762       for (tree fld = TYPE_FIELDS (t); fld; fld = TREE_CHAIN (fld))
13763 	{
13764 	  /* TODO: verify properties of decls.  */
13765 	  if (TREE_CODE (fld) == FIELD_DECL)
13766 	    ;
13767 	  else if (TREE_CODE (fld) == TYPE_DECL)
13768 	    ;
13769 	  else if (TREE_CODE (fld) == CONST_DECL)
13770 	    ;
13771 	  else if (VAR_P (fld))
13772 	    ;
13773 	  else if (TREE_CODE (fld) == TEMPLATE_DECL)
13774 	    ;
13775 	  else if (TREE_CODE (fld) == USING_DECL)
13776 	    ;
13777 	  else if (TREE_CODE (fld) == FUNCTION_DECL)
13778 	    ;
13779 	  else
13780 	    {
13781 	      error ("Wrong tree in TYPE_FIELDS list");
13782 	      debug_tree (fld);
13783 	      error_found = true;
13784 	    }
13785 	}
13786     }
13787   else if (TREE_CODE (t) == INTEGER_TYPE
13788 	   || TREE_CODE (t) == BOOLEAN_TYPE
13789 	   || TREE_CODE (t) == OFFSET_TYPE
13790 	   || TREE_CODE (t) == REFERENCE_TYPE
13791 	   || TREE_CODE (t) == NULLPTR_TYPE
13792 	   || TREE_CODE (t) == POINTER_TYPE)
13793     {
13794       if (TYPE_CACHED_VALUES_P (t) != (TYPE_CACHED_VALUES (t) != NULL))
13795 	{
13796 	  error ("TYPE_CACHED_VALUES_P is %i while TYPE_CACHED_VALUES is %p",
13797 		 TYPE_CACHED_VALUES_P (t), (void *)TYPE_CACHED_VALUES (t));
13798 	  error_found = true;
13799 	}
13800       else if (TYPE_CACHED_VALUES_P (t) && TREE_CODE (TYPE_CACHED_VALUES (t)) != TREE_VEC)
13801 	{
13802 	  error ("TYPE_CACHED_VALUES is not TREE_VEC");
13803 	  debug_tree (TYPE_CACHED_VALUES (t));
13804 	  error_found = true;
13805 	}
13806       /* Verify just enough of cache to ensure that no one copied it to new type.
13807  	 All copying should go by copy_node that should clear it.  */
13808       else if (TYPE_CACHED_VALUES_P (t))
13809 	{
13810 	  int i;
13811 	  for (i = 0; i < TREE_VEC_LENGTH (TYPE_CACHED_VALUES (t)); i++)
13812 	    if (TREE_VEC_ELT (TYPE_CACHED_VALUES (t), i)
13813 		&& TREE_TYPE (TREE_VEC_ELT (TYPE_CACHED_VALUES (t), i)) != t)
13814 	      {
13815 		error ("wrong TYPE_CACHED_VALUES entry");
13816 		debug_tree (TREE_VEC_ELT (TYPE_CACHED_VALUES (t), i));
13817 		error_found = true;
13818 		break;
13819 	      }
13820 	}
13821     }
13822   else if (TREE_CODE (t) == FUNCTION_TYPE || TREE_CODE (t) == METHOD_TYPE)
13823     for (tree l = TYPE_ARG_TYPES (t); l; l = TREE_CHAIN (l))
13824       {
13825 	/* C++ FE uses TREE_PURPOSE to store initial values.  */
13826 	if (TREE_PURPOSE (l) && in_lto_p)
13827 	  {
13828 	    error ("TREE_PURPOSE is non-NULL in TYPE_ARG_TYPES list");
13829 	    debug_tree (l);
13830 	    error_found = true;
13831 	  }
13832 	if (!TYPE_P (TREE_VALUE (l)))
13833 	  {
13834 	    error ("Wrong entry in TYPE_ARG_TYPES list");
13835 	    debug_tree (l);
13836 	    error_found = true;
13837 	  }
13838       }
13839   else if (!is_lang_specific (t) && TYPE_VALUES_RAW (t))
13840     {
13841       error ("TYPE_VALUES_RAW field is non-NULL");
13842       debug_tree (TYPE_VALUES_RAW (t));
13843       error_found = true;
13844     }
13845   if (TREE_CODE (t) != INTEGER_TYPE
13846       && TREE_CODE (t) != BOOLEAN_TYPE
13847       && TREE_CODE (t) != OFFSET_TYPE
13848       && TREE_CODE (t) != REFERENCE_TYPE
13849       && TREE_CODE (t) != NULLPTR_TYPE
13850       && TREE_CODE (t) != POINTER_TYPE
13851       && TYPE_CACHED_VALUES_P (t))
13852     {
13853       error ("TYPE_CACHED_VALUES_P is set while it should not");
13854       error_found = true;
13855     }
13856   if (TYPE_STRING_FLAG (t)
13857       && TREE_CODE (t) != ARRAY_TYPE && TREE_CODE (t) != INTEGER_TYPE)
13858     {
13859       error ("TYPE_STRING_FLAG is set on wrong type code");
13860       error_found = true;
13861     }
13862 
13863   /* ipa-devirt makes an assumption that TYPE_METHOD_BASETYPE is always
13864      TYPE_MAIN_VARIANT and it would be odd to add methods only to variatns
13865      of a type. */
13866   if (TREE_CODE (t) == METHOD_TYPE
13867       && TYPE_MAIN_VARIANT (TYPE_METHOD_BASETYPE (t)) != TYPE_METHOD_BASETYPE (t))
13868     {
13869 	error ("TYPE_METHOD_BASETYPE is not main variant");
13870 	error_found = true;
13871     }
13872 
13873   if (error_found)
13874     {
13875       debug_tree (const_cast <tree> (t));
13876       internal_error ("verify_type failed");
13877     }
13878 }
13879 
13880 
13881 /* Return 1 if ARG interpreted as signed in its precision is known to be
13882    always positive or 2 if ARG is known to be always negative, or 3 if
13883    ARG may be positive or negative.  */
13884 
13885 int
13886 get_range_pos_neg (tree arg)
13887 {
13888   if (arg == error_mark_node)
13889     return 3;
13890 
13891   int prec = TYPE_PRECISION (TREE_TYPE (arg));
13892   int cnt = 0;
13893   if (TREE_CODE (arg) == INTEGER_CST)
13894     {
13895       wide_int w = wi::sext (wi::to_wide (arg), prec);
13896       if (wi::neg_p (w))
13897 	return 2;
13898       else
13899 	return 1;
13900     }
13901   while (CONVERT_EXPR_P (arg)
13902 	 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (arg, 0)))
13903 	 && TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (arg, 0))) <= prec)
13904     {
13905       arg = TREE_OPERAND (arg, 0);
13906       /* Narrower value zero extended into wider type
13907 	 will always result in positive values.  */
13908       if (TYPE_UNSIGNED (TREE_TYPE (arg))
13909 	  && TYPE_PRECISION (TREE_TYPE (arg)) < prec)
13910 	return 1;
13911       prec = TYPE_PRECISION (TREE_TYPE (arg));
13912       if (++cnt > 30)
13913 	return 3;
13914     }
13915 
13916   if (TREE_CODE (arg) != SSA_NAME)
13917     return 3;
13918   wide_int arg_min, arg_max;
13919   while (get_range_info (arg, &arg_min, &arg_max) != VR_RANGE)
13920     {
13921       gimple *g = SSA_NAME_DEF_STMT (arg);
13922       if (is_gimple_assign (g)
13923 	  && CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (g)))
13924 	{
13925 	  tree t = gimple_assign_rhs1 (g);
13926 	  if (INTEGRAL_TYPE_P (TREE_TYPE (t))
13927 	      && TYPE_PRECISION (TREE_TYPE (t)) <= prec)
13928 	    {
13929 	      if (TYPE_UNSIGNED (TREE_TYPE (t))
13930 		  && TYPE_PRECISION (TREE_TYPE (t)) < prec)
13931 		return 1;
13932 	      prec = TYPE_PRECISION (TREE_TYPE (t));
13933 	      arg = t;
13934 	      if (++cnt > 30)
13935 		return 3;
13936 	      continue;
13937 	    }
13938 	}
13939       return 3;
13940     }
13941   if (TYPE_UNSIGNED (TREE_TYPE (arg)))
13942     {
13943       /* For unsigned values, the "positive" range comes
13944 	 below the "negative" range.  */
13945       if (!wi::neg_p (wi::sext (arg_max, prec), SIGNED))
13946 	return 1;
13947       if (wi::neg_p (wi::sext (arg_min, prec), SIGNED))
13948 	return 2;
13949     }
13950   else
13951     {
13952       if (!wi::neg_p (wi::sext (arg_min, prec), SIGNED))
13953 	return 1;
13954       if (wi::neg_p (wi::sext (arg_max, prec), SIGNED))
13955 	return 2;
13956     }
13957   return 3;
13958 }
13959 
13960 
13961 
13962 
13963 /* Return true if ARG is marked with the nonnull attribute in the
13964    current function signature.  */
13965 
13966 bool
13967 nonnull_arg_p (const_tree arg)
13968 {
13969   tree t, attrs, fntype;
13970   unsigned HOST_WIDE_INT arg_num;
13971 
13972   gcc_assert (TREE_CODE (arg) == PARM_DECL
13973 	      && (POINTER_TYPE_P (TREE_TYPE (arg))
13974 		  || TREE_CODE (TREE_TYPE (arg)) == OFFSET_TYPE));
13975 
13976   /* The static chain decl is always non null.  */
13977   if (arg == cfun->static_chain_decl)
13978     return true;
13979 
13980   /* THIS argument of method is always non-NULL.  */
13981   if (TREE_CODE (TREE_TYPE (cfun->decl)) == METHOD_TYPE
13982       && arg == DECL_ARGUMENTS (cfun->decl)
13983       && flag_delete_null_pointer_checks)
13984     return true;
13985 
13986   /* Values passed by reference are always non-NULL.  */
13987   if (TREE_CODE (TREE_TYPE (arg)) == REFERENCE_TYPE
13988       && flag_delete_null_pointer_checks)
13989     return true;
13990 
13991   fntype = TREE_TYPE (cfun->decl);
13992   for (attrs = TYPE_ATTRIBUTES (fntype); attrs; attrs = TREE_CHAIN (attrs))
13993     {
13994       attrs = lookup_attribute ("nonnull", attrs);
13995 
13996       /* If "nonnull" wasn't specified, we know nothing about the argument.  */
13997       if (attrs == NULL_TREE)
13998 	return false;
13999 
14000       /* If "nonnull" applies to all the arguments, then ARG is non-null.  */
14001       if (TREE_VALUE (attrs) == NULL_TREE)
14002 	return true;
14003 
14004       /* Get the position number for ARG in the function signature.  */
14005       for (arg_num = 1, t = DECL_ARGUMENTS (cfun->decl);
14006 	   t;
14007 	   t = DECL_CHAIN (t), arg_num++)
14008 	{
14009 	  if (t == arg)
14010 	    break;
14011 	}
14012 
14013       gcc_assert (t == arg);
14014 
14015       /* Now see if ARG_NUM is mentioned in the nonnull list.  */
14016       for (t = TREE_VALUE (attrs); t; t = TREE_CHAIN (t))
14017 	{
14018 	  if (compare_tree_int (TREE_VALUE (t), arg_num) == 0)
14019 	    return true;
14020 	}
14021     }
14022 
14023   return false;
14024 }
14025 
14026 /* Combine LOC and BLOCK to a combined adhoc loc, retaining any range
14027    information.  */
14028 
14029 location_t
14030 set_block (location_t loc, tree block)
14031 {
14032   location_t pure_loc = get_pure_location (loc);
14033   source_range src_range = get_range_from_loc (line_table, loc);
14034   return COMBINE_LOCATION_DATA (line_table, pure_loc, src_range, block);
14035 }
14036 
14037 location_t
14038 set_source_range (tree expr, location_t start, location_t finish)
14039 {
14040   source_range src_range;
14041   src_range.m_start = start;
14042   src_range.m_finish = finish;
14043   return set_source_range (expr, src_range);
14044 }
14045 
14046 location_t
14047 set_source_range (tree expr, source_range src_range)
14048 {
14049   if (!EXPR_P (expr))
14050     return UNKNOWN_LOCATION;
14051 
14052   location_t pure_loc = get_pure_location (EXPR_LOCATION (expr));
14053   location_t adhoc = COMBINE_LOCATION_DATA (line_table,
14054 					    pure_loc,
14055 					    src_range,
14056 					    NULL);
14057   SET_EXPR_LOCATION (expr, adhoc);
14058   return adhoc;
14059 }
14060 
14061 /* Return EXPR, potentially wrapped with a node expression LOC,
14062    if !CAN_HAVE_LOCATION_P (expr).
14063 
14064    NON_LVALUE_EXPR is used for wrapping constants, apart from STRING_CST.
14065    VIEW_CONVERT_EXPR is used for wrapping non-constants and STRING_CST.
14066 
14067    Wrapper nodes can be identified using location_wrapper_p.  */
14068 
14069 tree
14070 maybe_wrap_with_location (tree expr, location_t loc)
14071 {
14072   if (expr == NULL)
14073     return NULL;
14074   if (loc == UNKNOWN_LOCATION)
14075     return expr;
14076   if (CAN_HAVE_LOCATION_P (expr))
14077     return expr;
14078   /* We should only be adding wrappers for constants and for decls,
14079      or for some exceptional tree nodes (e.g. BASELINK in the C++ FE).  */
14080   gcc_assert (CONSTANT_CLASS_P (expr)
14081 	      || DECL_P (expr)
14082 	      || EXCEPTIONAL_CLASS_P (expr));
14083 
14084   /* For now, don't add wrappers to exceptional tree nodes, to minimize
14085      any impact of the wrapper nodes.  */
14086   if (EXCEPTIONAL_CLASS_P (expr))
14087     return expr;
14088 
14089   tree_code code
14090     = (((CONSTANT_CLASS_P (expr) && TREE_CODE (expr) != STRING_CST)
14091 	|| (TREE_CODE (expr) == CONST_DECL && !TREE_STATIC (expr)))
14092        ? NON_LVALUE_EXPR : VIEW_CONVERT_EXPR);
14093   tree wrapper = build1_loc (loc, code, TREE_TYPE (expr), expr);
14094   /* Mark this node as being a wrapper.  */
14095   EXPR_LOCATION_WRAPPER_P (wrapper) = 1;
14096   return wrapper;
14097 }
14098 
14099 /* Return the name of combined function FN, for debugging purposes.  */
14100 
14101 const char *
14102 combined_fn_name (combined_fn fn)
14103 {
14104   if (builtin_fn_p (fn))
14105     {
14106       tree fndecl = builtin_decl_explicit (as_builtin_fn (fn));
14107       return IDENTIFIER_POINTER (DECL_NAME (fndecl));
14108     }
14109   else
14110     return internal_fn_name (as_internal_fn (fn));
14111 }
14112 
14113 /* Return a bitmap with a bit set corresponding to each argument in
14114    a function call type FNTYPE declared with attribute nonnull,
14115    or null if none of the function's argument are nonnull.  The caller
14116    must free the bitmap.  */
14117 
14118 bitmap
14119 get_nonnull_args (const_tree fntype)
14120 {
14121   if (fntype == NULL_TREE)
14122     return NULL;
14123 
14124   tree attrs = TYPE_ATTRIBUTES (fntype);
14125   if (!attrs)
14126     return NULL;
14127 
14128   bitmap argmap = NULL;
14129 
14130   /* A function declaration can specify multiple attribute nonnull,
14131      each with zero or more arguments.  The loop below creates a bitmap
14132      representing a union of all the arguments.  An empty (but non-null)
14133      bitmap means that all arguments have been declaraed nonnull.  */
14134   for ( ; attrs; attrs = TREE_CHAIN (attrs))
14135     {
14136       attrs = lookup_attribute ("nonnull", attrs);
14137       if (!attrs)
14138 	break;
14139 
14140       if (!argmap)
14141 	argmap = BITMAP_ALLOC (NULL);
14142 
14143       if (!TREE_VALUE (attrs))
14144 	{
14145 	  /* Clear the bitmap in case a previous attribute nonnull
14146 	     set it and this one overrides it for all arguments.  */
14147 	  bitmap_clear (argmap);
14148 	  return argmap;
14149 	}
14150 
14151       /* Iterate over the indices of the format arguments declared nonnull
14152 	 and set a bit for each.  */
14153       for (tree idx = TREE_VALUE (attrs); idx; idx = TREE_CHAIN (idx))
14154 	{
14155 	  unsigned int val = TREE_INT_CST_LOW (TREE_VALUE (idx)) - 1;
14156 	  bitmap_set_bit (argmap, val);
14157 	}
14158     }
14159 
14160   return argmap;
14161 }
14162 
14163 /* Returns true if TYPE is a type where it and all of its subobjects
14164    (recursively) are of structure, union, or array type.  */
14165 
14166 static bool
14167 default_is_empty_type (tree type)
14168 {
14169   if (RECORD_OR_UNION_TYPE_P (type))
14170     {
14171       for (tree field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
14172 	if (TREE_CODE (field) == FIELD_DECL
14173 	    && !DECL_PADDING_P (field)
14174 	    && !default_is_empty_type (TREE_TYPE (field)))
14175 	  return false;
14176       return true;
14177     }
14178   else if (TREE_CODE (type) == ARRAY_TYPE)
14179     return (integer_minus_onep (array_type_nelts (type))
14180 	    || TYPE_DOMAIN (type) == NULL_TREE
14181 	    || default_is_empty_type (TREE_TYPE (type)));
14182   return false;
14183 }
14184 
14185 /* Implement TARGET_EMPTY_RECORD_P.  Return true if TYPE is an empty type
14186    that shouldn't be passed via stack.  */
14187 
14188 bool
14189 default_is_empty_record (const_tree type)
14190 {
14191   if (!abi_version_at_least (12))
14192     return false;
14193 
14194   if (type == error_mark_node)
14195     return false;
14196 
14197   if (TREE_ADDRESSABLE (type))
14198     return false;
14199 
14200   return default_is_empty_type (TYPE_MAIN_VARIANT (type));
14201 }
14202 
14203 /* Like int_size_in_bytes, but handle empty records specially.  */
14204 
14205 HOST_WIDE_INT
14206 arg_int_size_in_bytes (const_tree type)
14207 {
14208   return TYPE_EMPTY_P (type) ? 0 : int_size_in_bytes (type);
14209 }
14210 
14211 /* Like size_in_bytes, but handle empty records specially.  */
14212 
14213 tree
14214 arg_size_in_bytes (const_tree type)
14215 {
14216   return TYPE_EMPTY_P (type) ? size_zero_node : size_in_bytes (type);
14217 }
14218 
14219 /* Return true if an expression with CODE has to have the same result type as
14220    its first operand.  */
14221 
14222 bool
14223 expr_type_first_operand_type_p (tree_code code)
14224 {
14225   switch (code)
14226     {
14227     case NEGATE_EXPR:
14228     case ABS_EXPR:
14229     case BIT_NOT_EXPR:
14230     case PAREN_EXPR:
14231     case CONJ_EXPR:
14232 
14233     case PLUS_EXPR:
14234     case MINUS_EXPR:
14235     case MULT_EXPR:
14236     case TRUNC_DIV_EXPR:
14237     case CEIL_DIV_EXPR:
14238     case FLOOR_DIV_EXPR:
14239     case ROUND_DIV_EXPR:
14240     case TRUNC_MOD_EXPR:
14241     case CEIL_MOD_EXPR:
14242     case FLOOR_MOD_EXPR:
14243     case ROUND_MOD_EXPR:
14244     case RDIV_EXPR:
14245     case EXACT_DIV_EXPR:
14246     case MIN_EXPR:
14247     case MAX_EXPR:
14248     case BIT_IOR_EXPR:
14249     case BIT_XOR_EXPR:
14250     case BIT_AND_EXPR:
14251 
14252     case LSHIFT_EXPR:
14253     case RSHIFT_EXPR:
14254     case LROTATE_EXPR:
14255     case RROTATE_EXPR:
14256       return true;
14257 
14258     default:
14259       return false;
14260     }
14261 }
14262 
14263 /* List of pointer types used to declare builtins before we have seen their
14264    real declaration.
14265 
14266    Keep the size up to date in tree.h !  */
14267 const builtin_structptr_type builtin_structptr_types[6] =
14268 {
14269   { fileptr_type_node, ptr_type_node, "FILE" },
14270   { const_tm_ptr_type_node, const_ptr_type_node, "tm" },
14271   { fenv_t_ptr_type_node, ptr_type_node, "fenv_t" },
14272   { const_fenv_t_ptr_type_node, const_ptr_type_node, "fenv_t" },
14273   { fexcept_t_ptr_type_node, ptr_type_node, "fexcept_t" },
14274   { const_fexcept_t_ptr_type_node, const_ptr_type_node, "fexcept_t" }
14275 };
14276 
14277 #if CHECKING_P
14278 
14279 namespace selftest {
14280 
14281 /* Selftests for tree.  */
14282 
14283 /* Verify that integer constants are sane.  */
14284 
14285 static void
14286 test_integer_constants ()
14287 {
14288   ASSERT_TRUE (integer_type_node != NULL);
14289   ASSERT_TRUE (build_int_cst (integer_type_node, 0) != NULL);
14290 
14291   tree type = integer_type_node;
14292 
14293   tree zero = build_zero_cst (type);
14294   ASSERT_EQ (INTEGER_CST, TREE_CODE (zero));
14295   ASSERT_EQ (type, TREE_TYPE (zero));
14296 
14297   tree one = build_int_cst (type, 1);
14298   ASSERT_EQ (INTEGER_CST, TREE_CODE (one));
14299   ASSERT_EQ (type, TREE_TYPE (zero));
14300 }
14301 
14302 /* Verify identifiers.  */
14303 
14304 static void
14305 test_identifiers ()
14306 {
14307   tree identifier = get_identifier ("foo");
14308   ASSERT_EQ (3, IDENTIFIER_LENGTH (identifier));
14309   ASSERT_STREQ ("foo", IDENTIFIER_POINTER (identifier));
14310 }
14311 
14312 /* Verify LABEL_DECL.  */
14313 
14314 static void
14315 test_labels ()
14316 {
14317   tree identifier = get_identifier ("err");
14318   tree label_decl = build_decl (UNKNOWN_LOCATION, LABEL_DECL,
14319 				identifier, void_type_node);
14320   ASSERT_EQ (-1, LABEL_DECL_UID (label_decl));
14321   ASSERT_FALSE (FORCED_LABEL (label_decl));
14322 }
14323 
14324 /* Return a new VECTOR_CST node whose type is TYPE and whose values
14325    are given by VALS.  */
14326 
14327 static tree
14328 build_vector (tree type, vec<tree> vals MEM_STAT_DECL)
14329 {
14330   gcc_assert (known_eq (vals.length (), TYPE_VECTOR_SUBPARTS (type)));
14331   tree_vector_builder builder (type, vals.length (), 1);
14332   builder.splice (vals);
14333   return builder.build ();
14334 }
14335 
14336 /* Check that VECTOR_CST ACTUAL contains the elements in EXPECTED.  */
14337 
14338 static void
14339 check_vector_cst (vec<tree> expected, tree actual)
14340 {
14341   ASSERT_KNOWN_EQ (expected.length (),
14342 		   TYPE_VECTOR_SUBPARTS (TREE_TYPE (actual)));
14343   for (unsigned int i = 0; i < expected.length (); ++i)
14344     ASSERT_EQ (wi::to_wide (expected[i]),
14345 	       wi::to_wide (vector_cst_elt (actual, i)));
14346 }
14347 
14348 /* Check that VECTOR_CST ACTUAL contains NPATTERNS duplicated elements,
14349    and that its elements match EXPECTED.  */
14350 
14351 static void
14352 check_vector_cst_duplicate (vec<tree> expected, tree actual,
14353 			    unsigned int npatterns)
14354 {
14355   ASSERT_EQ (npatterns, VECTOR_CST_NPATTERNS (actual));
14356   ASSERT_EQ (1, VECTOR_CST_NELTS_PER_PATTERN (actual));
14357   ASSERT_EQ (npatterns, vector_cst_encoded_nelts (actual));
14358   ASSERT_TRUE (VECTOR_CST_DUPLICATE_P (actual));
14359   ASSERT_FALSE (VECTOR_CST_STEPPED_P (actual));
14360   check_vector_cst (expected, actual);
14361 }
14362 
14363 /* Check that VECTOR_CST ACTUAL contains NPATTERNS foreground elements
14364    and NPATTERNS background elements, and that its elements match
14365    EXPECTED.  */
14366 
14367 static void
14368 check_vector_cst_fill (vec<tree> expected, tree actual,
14369 		       unsigned int npatterns)
14370 {
14371   ASSERT_EQ (npatterns, VECTOR_CST_NPATTERNS (actual));
14372   ASSERT_EQ (2, VECTOR_CST_NELTS_PER_PATTERN (actual));
14373   ASSERT_EQ (2 * npatterns, vector_cst_encoded_nelts (actual));
14374   ASSERT_FALSE (VECTOR_CST_DUPLICATE_P (actual));
14375   ASSERT_FALSE (VECTOR_CST_STEPPED_P (actual));
14376   check_vector_cst (expected, actual);
14377 }
14378 
14379 /* Check that VECTOR_CST ACTUAL contains NPATTERNS stepped patterns,
14380    and that its elements match EXPECTED.  */
14381 
14382 static void
14383 check_vector_cst_stepped (vec<tree> expected, tree actual,
14384 			  unsigned int npatterns)
14385 {
14386   ASSERT_EQ (npatterns, VECTOR_CST_NPATTERNS (actual));
14387   ASSERT_EQ (3, VECTOR_CST_NELTS_PER_PATTERN (actual));
14388   ASSERT_EQ (3 * npatterns, vector_cst_encoded_nelts (actual));
14389   ASSERT_FALSE (VECTOR_CST_DUPLICATE_P (actual));
14390   ASSERT_TRUE (VECTOR_CST_STEPPED_P (actual));
14391   check_vector_cst (expected, actual);
14392 }
14393 
14394 /* Test the creation of VECTOR_CSTs.  */
14395 
14396 static void
14397 test_vector_cst_patterns (ALONE_CXX_MEM_STAT_INFO)
14398 {
14399   auto_vec<tree, 8> elements (8);
14400   elements.quick_grow (8);
14401   tree element_type = build_nonstandard_integer_type (16, true);
14402   tree vector_type = build_vector_type (element_type, 8);
14403 
14404   /* Test a simple linear series with a base of 0 and a step of 1:
14405      { 0, 1, 2, 3, 4, 5, 6, 7 }.  */
14406   for (unsigned int i = 0; i < 8; ++i)
14407     elements[i] = build_int_cst (element_type, i);
14408   tree vector = build_vector (vector_type, elements PASS_MEM_STAT);
14409   check_vector_cst_stepped (elements, vector, 1);
14410 
14411   /* Try the same with the first element replaced by 100:
14412      { 100, 1, 2, 3, 4, 5, 6, 7 }.  */
14413   elements[0] = build_int_cst (element_type, 100);
14414   vector = build_vector (vector_type, elements PASS_MEM_STAT);
14415   check_vector_cst_stepped (elements, vector, 1);
14416 
14417   /* Try a series that wraps around.
14418      { 100, 65531, 65532, 65533, 65534, 65535, 0, 1 }.  */
14419   for (unsigned int i = 1; i < 8; ++i)
14420     elements[i] = build_int_cst (element_type, (65530 + i) & 0xffff);
14421   vector = build_vector (vector_type, elements PASS_MEM_STAT);
14422   check_vector_cst_stepped (elements, vector, 1);
14423 
14424   /* Try a downward series:
14425      { 100, 79, 78, 77, 76, 75, 75, 73 }.  */
14426   for (unsigned int i = 1; i < 8; ++i)
14427     elements[i] = build_int_cst (element_type, 80 - i);
14428   vector = build_vector (vector_type, elements PASS_MEM_STAT);
14429   check_vector_cst_stepped (elements, vector, 1);
14430 
14431   /* Try two interleaved series with different bases and steps:
14432      { 100, 53, 66, 206, 62, 212, 58, 218 }.  */
14433   elements[1] = build_int_cst (element_type, 53);
14434   for (unsigned int i = 2; i < 8; i += 2)
14435     {
14436       elements[i] = build_int_cst (element_type, 70 - i * 2);
14437       elements[i + 1] = build_int_cst (element_type, 200 + i * 3);
14438     }
14439   vector = build_vector (vector_type, elements PASS_MEM_STAT);
14440   check_vector_cst_stepped (elements, vector, 2);
14441 
14442   /* Try a duplicated value:
14443      { 100, 100, 100, 100, 100, 100, 100, 100 }.  */
14444   for (unsigned int i = 1; i < 8; ++i)
14445     elements[i] = elements[0];
14446   vector = build_vector (vector_type, elements PASS_MEM_STAT);
14447   check_vector_cst_duplicate (elements, vector, 1);
14448 
14449   /* Try an interleaved duplicated value:
14450      { 100, 55, 100, 55, 100, 55, 100, 55 }.  */
14451   elements[1] = build_int_cst (element_type, 55);
14452   for (unsigned int i = 2; i < 8; ++i)
14453     elements[i] = elements[i - 2];
14454   vector = build_vector (vector_type, elements PASS_MEM_STAT);
14455   check_vector_cst_duplicate (elements, vector, 2);
14456 
14457   /* Try a duplicated value with 2 exceptions
14458      { 41, 97, 100, 55, 100, 55, 100, 55 }.  */
14459   elements[0] = build_int_cst (element_type, 41);
14460   elements[1] = build_int_cst (element_type, 97);
14461   vector = build_vector (vector_type, elements PASS_MEM_STAT);
14462   check_vector_cst_fill (elements, vector, 2);
14463 
14464   /* Try with and without a step
14465      { 41, 97, 100, 21, 100, 35, 100, 49 }.  */
14466   for (unsigned int i = 3; i < 8; i += 2)
14467     elements[i] = build_int_cst (element_type, i * 7);
14468   vector = build_vector (vector_type, elements PASS_MEM_STAT);
14469   check_vector_cst_stepped (elements, vector, 2);
14470 
14471   /* Try a fully-general constant:
14472      { 41, 97, 100, 21, 100, 9990, 100, 49 }.  */
14473   elements[5] = build_int_cst (element_type, 9990);
14474   vector = build_vector (vector_type, elements PASS_MEM_STAT);
14475   check_vector_cst_fill (elements, vector, 4);
14476 }
14477 
14478 /* Verify that STRIP_NOPS (NODE) is EXPECTED.
14479    Helper function for test_location_wrappers, to deal with STRIP_NOPS
14480    modifying its argument in-place.  */
14481 
14482 static void
14483 check_strip_nops (tree node, tree expected)
14484 {
14485   STRIP_NOPS (node);
14486   ASSERT_EQ (expected, node);
14487 }
14488 
14489 /* Verify location wrappers.  */
14490 
14491 static void
14492 test_location_wrappers ()
14493 {
14494   location_t loc = BUILTINS_LOCATION;
14495 
14496   ASSERT_EQ (NULL_TREE, maybe_wrap_with_location (NULL_TREE, loc));
14497 
14498   /* Wrapping a constant.  */
14499   tree int_cst = build_int_cst (integer_type_node, 42);
14500   ASSERT_FALSE (CAN_HAVE_LOCATION_P (int_cst));
14501   ASSERT_FALSE (location_wrapper_p (int_cst));
14502 
14503   tree wrapped_int_cst = maybe_wrap_with_location (int_cst, loc);
14504   ASSERT_TRUE (location_wrapper_p (wrapped_int_cst));
14505   ASSERT_EQ (loc, EXPR_LOCATION (wrapped_int_cst));
14506   ASSERT_EQ (int_cst, tree_strip_any_location_wrapper (wrapped_int_cst));
14507 
14508   /* We shouldn't add wrapper nodes for UNKNOWN_LOCATION.  */
14509   ASSERT_EQ (int_cst, maybe_wrap_with_location (int_cst, UNKNOWN_LOCATION));
14510 
14511   /* We shouldn't add wrapper nodes for nodes that CAN_HAVE_LOCATION_P.  */
14512   tree cast = build1 (NOP_EXPR, char_type_node, int_cst);
14513   ASSERT_TRUE (CAN_HAVE_LOCATION_P (cast));
14514   ASSERT_EQ (cast, maybe_wrap_with_location (cast, loc));
14515 
14516   /* Wrapping a STRING_CST.  */
14517   tree string_cst = build_string (4, "foo");
14518   ASSERT_FALSE (CAN_HAVE_LOCATION_P (string_cst));
14519   ASSERT_FALSE (location_wrapper_p (string_cst));
14520 
14521   tree wrapped_string_cst = maybe_wrap_with_location (string_cst, loc);
14522   ASSERT_TRUE (location_wrapper_p (wrapped_string_cst));
14523   ASSERT_EQ (VIEW_CONVERT_EXPR, TREE_CODE (wrapped_string_cst));
14524   ASSERT_EQ (loc, EXPR_LOCATION (wrapped_string_cst));
14525   ASSERT_EQ (string_cst, tree_strip_any_location_wrapper (wrapped_string_cst));
14526 
14527 
14528   /* Wrapping a variable.  */
14529   tree int_var = build_decl (UNKNOWN_LOCATION, VAR_DECL,
14530 			     get_identifier ("some_int_var"),
14531 			     integer_type_node);
14532   ASSERT_FALSE (CAN_HAVE_LOCATION_P (int_var));
14533   ASSERT_FALSE (location_wrapper_p (int_var));
14534 
14535   tree wrapped_int_var = maybe_wrap_with_location (int_var, loc);
14536   ASSERT_TRUE (location_wrapper_p (wrapped_int_var));
14537   ASSERT_EQ (loc, EXPR_LOCATION (wrapped_int_var));
14538   ASSERT_EQ (int_var, tree_strip_any_location_wrapper (wrapped_int_var));
14539 
14540   /* Verify that "reinterpret_cast<int>(some_int_var)" is not a location
14541      wrapper.  */
14542   tree r_cast = build1 (NON_LVALUE_EXPR, integer_type_node, int_var);
14543   ASSERT_FALSE (location_wrapper_p (r_cast));
14544   ASSERT_EQ (r_cast, tree_strip_any_location_wrapper (r_cast));
14545 
14546   /* Verify that STRIP_NOPS removes wrappers.  */
14547   check_strip_nops (wrapped_int_cst, int_cst);
14548   check_strip_nops (wrapped_string_cst, string_cst);
14549   check_strip_nops (wrapped_int_var, int_var);
14550 }
14551 
14552 /* Run all of the selftests within this file.  */
14553 
14554 void
14555 tree_c_tests ()
14556 {
14557   test_integer_constants ();
14558   test_identifiers ();
14559   test_labels ();
14560   test_vector_cst_patterns ();
14561   test_location_wrappers ();
14562 }
14563 
14564 } // namespace selftest
14565 
14566 #endif /* CHECKING_P */
14567 
14568 #include "gt-tree.h"
14569