xref: /netbsd-src/external/gpl3/gcc.old/dist/gcc/tree.c (revision 53b02e147d4ed531c0d2a5ca9b3e8026ba3e99b5)
1 /* Language-independent node constructors for parse phase of GNU compiler.
2    Copyright (C) 1987-2019 Free Software Foundation, Inc.
3 
4 This file is part of GCC.
5 
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10 
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 for more details.
15 
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3.  If not see
18 <http://www.gnu.org/licenses/>.  */
19 
20 /* This file contains the low level primitives for operating on tree nodes,
21    including allocation, list operations, interning of identifiers,
22    construction of data type nodes and statement nodes,
23    and construction of type conversion nodes.  It also contains
24    tables index by tree code that describe how to take apart
25    nodes of that code.
26 
27    It is intended to be language-independent but can occasionally
28    calls language-dependent routines.  */
29 
30 #include "config.h"
31 #include "system.h"
32 #include "coretypes.h"
33 #include "backend.h"
34 #include "target.h"
35 #include "tree.h"
36 #include "gimple.h"
37 #include "tree-pass.h"
38 #include "ssa.h"
39 #include "cgraph.h"
40 #include "diagnostic.h"
41 #include "flags.h"
42 #include "alias.h"
43 #include "fold-const.h"
44 #include "stor-layout.h"
45 #include "calls.h"
46 #include "attribs.h"
47 #include "toplev.h" /* get_random_seed */
48 #include "output.h"
49 #include "common/common-target.h"
50 #include "langhooks.h"
51 #include "tree-inline.h"
52 #include "tree-iterator.h"
53 #include "internal-fn.h"
54 #include "gimple-iterator.h"
55 #include "gimplify.h"
56 #include "tree-dfa.h"
57 #include "params.h"
58 #include "langhooks-def.h"
59 #include "tree-diagnostic.h"
60 #include "except.h"
61 #include "builtins.h"
62 #include "print-tree.h"
63 #include "ipa-utils.h"
64 #include "selftest.h"
65 #include "stringpool.h"
66 #include "attribs.h"
67 #include "rtl.h"
68 #include "regs.h"
69 #include "tree-vector-builder.h"
70 
71 /* Tree code classes.  */
72 
73 #define DEFTREECODE(SYM, NAME, TYPE, LENGTH) TYPE,
74 #define END_OF_BASE_TREE_CODES tcc_exceptional,
75 
76 const enum tree_code_class tree_code_type[] = {
77 #include "all-tree.def"
78 };
79 
80 #undef DEFTREECODE
81 #undef END_OF_BASE_TREE_CODES
82 
83 /* Table indexed by tree code giving number of expression
84    operands beyond the fixed part of the node structure.
85    Not used for types or decls.  */
86 
87 #define DEFTREECODE(SYM, NAME, TYPE, LENGTH) LENGTH,
88 #define END_OF_BASE_TREE_CODES 0,
89 
90 const unsigned char tree_code_length[] = {
91 #include "all-tree.def"
92 };
93 
94 #undef DEFTREECODE
95 #undef END_OF_BASE_TREE_CODES
96 
97 /* Names of tree components.
98    Used for printing out the tree and error messages.  */
99 #define DEFTREECODE(SYM, NAME, TYPE, LEN) NAME,
100 #define END_OF_BASE_TREE_CODES "@dummy",
101 
102 static const char *const tree_code_name[] = {
103 #include "all-tree.def"
104 };
105 
106 #undef DEFTREECODE
107 #undef END_OF_BASE_TREE_CODES
108 
109 /* Each tree code class has an associated string representation.
110    These must correspond to the tree_code_class entries.  */
111 
112 const char *const tree_code_class_strings[] =
113 {
114   "exceptional",
115   "constant",
116   "type",
117   "declaration",
118   "reference",
119   "comparison",
120   "unary",
121   "binary",
122   "statement",
123   "vl_exp",
124   "expression"
125 };
126 
127 /* obstack.[ch] explicitly declined to prototype this.  */
128 extern int _obstack_allocated_p (struct obstack *h, void *obj);
129 
130 /* Statistics-gathering stuff.  */
131 
132 static uint64_t tree_code_counts[MAX_TREE_CODES];
133 uint64_t tree_node_counts[(int) all_kinds];
134 uint64_t tree_node_sizes[(int) all_kinds];
135 
136 /* Keep in sync with tree.h:enum tree_node_kind.  */
137 static const char * const tree_node_kind_names[] = {
138   "decls",
139   "types",
140   "blocks",
141   "stmts",
142   "refs",
143   "exprs",
144   "constants",
145   "identifiers",
146   "vecs",
147   "binfos",
148   "ssa names",
149   "constructors",
150   "random kinds",
151   "lang_decl kinds",
152   "lang_type kinds",
153   "omp clauses",
154 };
155 
156 /* Unique id for next decl created.  */
157 static GTY(()) int next_decl_uid;
158 /* Unique id for next type created.  */
159 static GTY(()) unsigned next_type_uid = 1;
160 /* Unique id for next debug decl created.  Use negative numbers,
161    to catch erroneous uses.  */
162 static GTY(()) int next_debug_decl_uid;
163 
164 /* Since we cannot rehash a type after it is in the table, we have to
165    keep the hash code.  */
166 
167 struct GTY((for_user)) type_hash {
168   unsigned long hash;
169   tree type;
170 };
171 
172 /* Initial size of the hash table (rounded to next prime).  */
173 #define TYPE_HASH_INITIAL_SIZE 1000
174 
175 struct type_cache_hasher : ggc_cache_ptr_hash<type_hash>
176 {
177   static hashval_t hash (type_hash *t) { return t->hash; }
178   static bool equal (type_hash *a, type_hash *b);
179 
180   static int
181   keep_cache_entry (type_hash *&t)
182   {
183     return ggc_marked_p (t->type);
184   }
185 };
186 
187 /* Now here is the hash table.  When recording a type, it is added to
188    the slot whose index is the hash code.  Note that the hash table is
189    used for several kinds of types (function types, array types and
190    array index range types, for now).  While all these live in the
191    same table, they are completely independent, and the hash code is
192    computed differently for each of these.  */
193 
194 static GTY ((cache)) hash_table<type_cache_hasher> *type_hash_table;
195 
196 /* Hash table and temporary node for larger integer const values.  */
197 static GTY (()) tree int_cst_node;
198 
199 struct int_cst_hasher : ggc_cache_ptr_hash<tree_node>
200 {
201   static hashval_t hash (tree t);
202   static bool equal (tree x, tree y);
203 };
204 
205 static GTY ((cache)) hash_table<int_cst_hasher> *int_cst_hash_table;
206 
207 /* Class and variable for making sure that there is a single POLY_INT_CST
208    for a given value.  */
209 struct poly_int_cst_hasher : ggc_cache_ptr_hash<tree_node>
210 {
211   typedef std::pair<tree, const poly_wide_int *> compare_type;
212   static hashval_t hash (tree t);
213   static bool equal (tree x, const compare_type &y);
214 };
215 
216 static GTY ((cache)) hash_table<poly_int_cst_hasher> *poly_int_cst_hash_table;
217 
218 /* Hash table for optimization flags and target option flags.  Use the same
219    hash table for both sets of options.  Nodes for building the current
220    optimization and target option nodes.  The assumption is most of the time
221    the options created will already be in the hash table, so we avoid
222    allocating and freeing up a node repeatably.  */
223 static GTY (()) tree cl_optimization_node;
224 static GTY (()) tree cl_target_option_node;
225 
226 struct cl_option_hasher : ggc_cache_ptr_hash<tree_node>
227 {
228   static hashval_t hash (tree t);
229   static bool equal (tree x, tree y);
230 };
231 
232 static GTY ((cache)) hash_table<cl_option_hasher> *cl_option_hash_table;
233 
234 /* General tree->tree mapping  structure for use in hash tables.  */
235 
236 
237 static GTY ((cache))
238      hash_table<tree_decl_map_cache_hasher> *debug_expr_for_decl;
239 
240 static GTY ((cache))
241      hash_table<tree_decl_map_cache_hasher> *value_expr_for_decl;
242 
243 struct tree_vec_map_cache_hasher : ggc_cache_ptr_hash<tree_vec_map>
244 {
245   static hashval_t hash (tree_vec_map *m) { return DECL_UID (m->base.from); }
246 
247   static bool
248   equal (tree_vec_map *a, tree_vec_map *b)
249   {
250     return a->base.from == b->base.from;
251   }
252 
253   static int
254   keep_cache_entry (tree_vec_map *&m)
255   {
256     return ggc_marked_p (m->base.from);
257   }
258 };
259 
260 static GTY ((cache))
261      hash_table<tree_vec_map_cache_hasher> *debug_args_for_decl;
262 
263 static void set_type_quals (tree, int);
264 static void print_type_hash_statistics (void);
265 static void print_debug_expr_statistics (void);
266 static void print_value_expr_statistics (void);
267 
268 static tree build_array_type_1 (tree, tree, bool, bool, bool);
269 
270 tree global_trees[TI_MAX];
271 tree integer_types[itk_none];
272 
273 bool int_n_enabled_p[NUM_INT_N_ENTS];
274 struct int_n_trees_t int_n_trees [NUM_INT_N_ENTS];
275 
276 bool tree_contains_struct[MAX_TREE_CODES][64];
277 
278 /* Number of operands for each OpenMP clause.  */
279 unsigned const char omp_clause_num_ops[] =
280 {
281   0, /* OMP_CLAUSE_ERROR  */
282   1, /* OMP_CLAUSE_PRIVATE  */
283   1, /* OMP_CLAUSE_SHARED  */
284   1, /* OMP_CLAUSE_FIRSTPRIVATE  */
285   2, /* OMP_CLAUSE_LASTPRIVATE  */
286   5, /* OMP_CLAUSE_REDUCTION  */
287   5, /* OMP_CLAUSE_TASK_REDUCTION  */
288   5, /* OMP_CLAUSE_IN_REDUCTION  */
289   1, /* OMP_CLAUSE_COPYIN  */
290   1, /* OMP_CLAUSE_COPYPRIVATE  */
291   3, /* OMP_CLAUSE_LINEAR  */
292   2, /* OMP_CLAUSE_ALIGNED  */
293   1, /* OMP_CLAUSE_DEPEND  */
294   1, /* OMP_CLAUSE_NONTEMPORAL  */
295   1, /* OMP_CLAUSE_UNIFORM  */
296   1, /* OMP_CLAUSE_TO_DECLARE  */
297   1, /* OMP_CLAUSE_LINK  */
298   2, /* OMP_CLAUSE_FROM  */
299   2, /* OMP_CLAUSE_TO  */
300   2, /* OMP_CLAUSE_MAP  */
301   1, /* OMP_CLAUSE_USE_DEVICE_PTR  */
302   1, /* OMP_CLAUSE_IS_DEVICE_PTR  */
303   2, /* OMP_CLAUSE__CACHE_  */
304   2, /* OMP_CLAUSE_GANG  */
305   1, /* OMP_CLAUSE_ASYNC  */
306   1, /* OMP_CLAUSE_WAIT  */
307   0, /* OMP_CLAUSE_AUTO  */
308   0, /* OMP_CLAUSE_SEQ  */
309   1, /* OMP_CLAUSE__LOOPTEMP_  */
310   1, /* OMP_CLAUSE__REDUCTEMP_  */
311   1, /* OMP_CLAUSE_IF  */
312   1, /* OMP_CLAUSE_NUM_THREADS  */
313   1, /* OMP_CLAUSE_SCHEDULE  */
314   0, /* OMP_CLAUSE_NOWAIT  */
315   1, /* OMP_CLAUSE_ORDERED  */
316   0, /* OMP_CLAUSE_DEFAULT  */
317   3, /* OMP_CLAUSE_COLLAPSE  */
318   0, /* OMP_CLAUSE_UNTIED   */
319   1, /* OMP_CLAUSE_FINAL  */
320   0, /* OMP_CLAUSE_MERGEABLE  */
321   1, /* OMP_CLAUSE_DEVICE  */
322   1, /* OMP_CLAUSE_DIST_SCHEDULE  */
323   0, /* OMP_CLAUSE_INBRANCH  */
324   0, /* OMP_CLAUSE_NOTINBRANCH  */
325   1, /* OMP_CLAUSE_NUM_TEAMS  */
326   1, /* OMP_CLAUSE_THREAD_LIMIT  */
327   0, /* OMP_CLAUSE_PROC_BIND  */
328   1, /* OMP_CLAUSE_SAFELEN  */
329   1, /* OMP_CLAUSE_SIMDLEN  */
330   0, /* OMP_CLAUSE_FOR  */
331   0, /* OMP_CLAUSE_PARALLEL  */
332   0, /* OMP_CLAUSE_SECTIONS  */
333   0, /* OMP_CLAUSE_TASKGROUP  */
334   1, /* OMP_CLAUSE_PRIORITY  */
335   1, /* OMP_CLAUSE_GRAINSIZE  */
336   1, /* OMP_CLAUSE_NUM_TASKS  */
337   0, /* OMP_CLAUSE_NOGROUP  */
338   0, /* OMP_CLAUSE_THREADS  */
339   0, /* OMP_CLAUSE_SIMD  */
340   1, /* OMP_CLAUSE_HINT  */
341   0, /* OMP_CLAUSE_DEFALTMAP  */
342   1, /* OMP_CLAUSE__SIMDUID_  */
343   0, /* OMP_CLAUSE__SIMT_  */
344   0, /* OMP_CLAUSE_INDEPENDENT  */
345   1, /* OMP_CLAUSE_WORKER  */
346   1, /* OMP_CLAUSE_VECTOR  */
347   1, /* OMP_CLAUSE_NUM_GANGS  */
348   1, /* OMP_CLAUSE_NUM_WORKERS  */
349   1, /* OMP_CLAUSE_VECTOR_LENGTH  */
350   3, /* OMP_CLAUSE_TILE  */
351   2, /* OMP_CLAUSE__GRIDDIM_  */
352   0, /* OMP_CLAUSE_IF_PRESENT */
353   0, /* OMP_CLAUSE_FINALIZE */
354 };
355 
356 const char * const omp_clause_code_name[] =
357 {
358   "error_clause",
359   "private",
360   "shared",
361   "firstprivate",
362   "lastprivate",
363   "reduction",
364   "task_reduction",
365   "in_reduction",
366   "copyin",
367   "copyprivate",
368   "linear",
369   "aligned",
370   "depend",
371   "nontemporal",
372   "uniform",
373   "to",
374   "link",
375   "from",
376   "to",
377   "map",
378   "use_device_ptr",
379   "is_device_ptr",
380   "_cache_",
381   "gang",
382   "async",
383   "wait",
384   "auto",
385   "seq",
386   "_looptemp_",
387   "_reductemp_",
388   "if",
389   "num_threads",
390   "schedule",
391   "nowait",
392   "ordered",
393   "default",
394   "collapse",
395   "untied",
396   "final",
397   "mergeable",
398   "device",
399   "dist_schedule",
400   "inbranch",
401   "notinbranch",
402   "num_teams",
403   "thread_limit",
404   "proc_bind",
405   "safelen",
406   "simdlen",
407   "for",
408   "parallel",
409   "sections",
410   "taskgroup",
411   "priority",
412   "grainsize",
413   "num_tasks",
414   "nogroup",
415   "threads",
416   "simd",
417   "hint",
418   "defaultmap",
419   "_simduid_",
420   "_simt_",
421   "independent",
422   "worker",
423   "vector",
424   "num_gangs",
425   "num_workers",
426   "vector_length",
427   "tile",
428   "_griddim_",
429   "if_present",
430   "finalize",
431 };
432 
433 
434 /* Return the tree node structure used by tree code CODE.  */
435 
436 static inline enum tree_node_structure_enum
437 tree_node_structure_for_code (enum tree_code code)
438 {
439   switch (TREE_CODE_CLASS (code))
440     {
441     case tcc_declaration:
442       {
443 	switch (code)
444 	  {
445 	  case FIELD_DECL:
446 	    return TS_FIELD_DECL;
447 	  case PARM_DECL:
448 	    return TS_PARM_DECL;
449 	  case VAR_DECL:
450 	    return TS_VAR_DECL;
451 	  case LABEL_DECL:
452 	    return TS_LABEL_DECL;
453 	  case RESULT_DECL:
454 	    return TS_RESULT_DECL;
455 	  case DEBUG_EXPR_DECL:
456 	    return TS_DECL_WRTL;
457 	  case CONST_DECL:
458 	    return TS_CONST_DECL;
459 	  case TYPE_DECL:
460 	    return TS_TYPE_DECL;
461 	  case FUNCTION_DECL:
462 	    return TS_FUNCTION_DECL;
463 	  case TRANSLATION_UNIT_DECL:
464 	    return TS_TRANSLATION_UNIT_DECL;
465 	  default:
466 	    return TS_DECL_NON_COMMON;
467 	  }
468       }
469     case tcc_type:
470       return TS_TYPE_NON_COMMON;
471     case tcc_reference:
472     case tcc_comparison:
473     case tcc_unary:
474     case tcc_binary:
475     case tcc_expression:
476     case tcc_statement:
477     case tcc_vl_exp:
478       return TS_EXP;
479     default:  /* tcc_constant and tcc_exceptional */
480       break;
481     }
482   switch (code)
483     {
484       /* tcc_constant cases.  */
485     case VOID_CST:		return TS_TYPED;
486     case INTEGER_CST:		return TS_INT_CST;
487     case POLY_INT_CST:		return TS_POLY_INT_CST;
488     case REAL_CST:		return TS_REAL_CST;
489     case FIXED_CST:		return TS_FIXED_CST;
490     case COMPLEX_CST:		return TS_COMPLEX;
491     case VECTOR_CST:		return TS_VECTOR;
492     case STRING_CST:		return TS_STRING;
493       /* tcc_exceptional cases.  */
494     case ERROR_MARK:		return TS_COMMON;
495     case IDENTIFIER_NODE:	return TS_IDENTIFIER;
496     case TREE_LIST:		return TS_LIST;
497     case TREE_VEC:		return TS_VEC;
498     case SSA_NAME:		return TS_SSA_NAME;
499     case PLACEHOLDER_EXPR:	return TS_COMMON;
500     case STATEMENT_LIST:	return TS_STATEMENT_LIST;
501     case BLOCK:			return TS_BLOCK;
502     case CONSTRUCTOR:		return TS_CONSTRUCTOR;
503     case TREE_BINFO:		return TS_BINFO;
504     case OMP_CLAUSE:		return TS_OMP_CLAUSE;
505     case OPTIMIZATION_NODE:	return TS_OPTIMIZATION;
506     case TARGET_OPTION_NODE:	return TS_TARGET_OPTION;
507 
508     default:
509       gcc_unreachable ();
510     }
511 }
512 
513 
514 /* Initialize tree_contains_struct to describe the hierarchy of tree
515    nodes.  */
516 
517 static void
518 initialize_tree_contains_struct (void)
519 {
520   unsigned i;
521 
522   for (i = ERROR_MARK; i < LAST_AND_UNUSED_TREE_CODE; i++)
523     {
524       enum tree_code code;
525       enum tree_node_structure_enum ts_code;
526 
527       code = (enum tree_code) i;
528       ts_code = tree_node_structure_for_code (code);
529 
530       /* Mark the TS structure itself.  */
531       tree_contains_struct[code][ts_code] = 1;
532 
533       /* Mark all the structures that TS is derived from.  */
534       switch (ts_code)
535 	{
536 	case TS_TYPED:
537 	case TS_BLOCK:
538 	case TS_OPTIMIZATION:
539 	case TS_TARGET_OPTION:
540 	  MARK_TS_BASE (code);
541 	  break;
542 
543 	case TS_COMMON:
544 	case TS_INT_CST:
545 	case TS_POLY_INT_CST:
546 	case TS_REAL_CST:
547 	case TS_FIXED_CST:
548 	case TS_VECTOR:
549 	case TS_STRING:
550 	case TS_COMPLEX:
551 	case TS_SSA_NAME:
552 	case TS_CONSTRUCTOR:
553 	case TS_EXP:
554 	case TS_STATEMENT_LIST:
555 	  MARK_TS_TYPED (code);
556 	  break;
557 
558 	case TS_IDENTIFIER:
559 	case TS_DECL_MINIMAL:
560 	case TS_TYPE_COMMON:
561 	case TS_LIST:
562 	case TS_VEC:
563 	case TS_BINFO:
564 	case TS_OMP_CLAUSE:
565 	  MARK_TS_COMMON (code);
566 	  break;
567 
568 	case TS_TYPE_WITH_LANG_SPECIFIC:
569 	  MARK_TS_TYPE_COMMON (code);
570 	  break;
571 
572 	case TS_TYPE_NON_COMMON:
573 	  MARK_TS_TYPE_WITH_LANG_SPECIFIC (code);
574 	  break;
575 
576 	case TS_DECL_COMMON:
577 	  MARK_TS_DECL_MINIMAL (code);
578 	  break;
579 
580 	case TS_DECL_WRTL:
581 	case TS_CONST_DECL:
582 	  MARK_TS_DECL_COMMON (code);
583 	  break;
584 
585 	case TS_DECL_NON_COMMON:
586 	  MARK_TS_DECL_WITH_VIS (code);
587 	  break;
588 
589 	case TS_DECL_WITH_VIS:
590 	case TS_PARM_DECL:
591 	case TS_LABEL_DECL:
592 	case TS_RESULT_DECL:
593 	  MARK_TS_DECL_WRTL (code);
594 	  break;
595 
596 	case TS_FIELD_DECL:
597 	  MARK_TS_DECL_COMMON (code);
598 	  break;
599 
600 	case TS_VAR_DECL:
601 	  MARK_TS_DECL_WITH_VIS (code);
602 	  break;
603 
604 	case TS_TYPE_DECL:
605 	case TS_FUNCTION_DECL:
606 	  MARK_TS_DECL_NON_COMMON (code);
607 	  break;
608 
609 	case TS_TRANSLATION_UNIT_DECL:
610 	  MARK_TS_DECL_COMMON (code);
611 	  break;
612 
613 	default:
614 	  gcc_unreachable ();
615 	}
616     }
617 
618   /* Basic consistency checks for attributes used in fold.  */
619   gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_NON_COMMON]);
620   gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_NON_COMMON]);
621   gcc_assert (tree_contains_struct[CONST_DECL][TS_DECL_COMMON]);
622   gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_COMMON]);
623   gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_COMMON]);
624   gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_COMMON]);
625   gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_COMMON]);
626   gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_COMMON]);
627   gcc_assert (tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_COMMON]);
628   gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_COMMON]);
629   gcc_assert (tree_contains_struct[FIELD_DECL][TS_DECL_COMMON]);
630   gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_WRTL]);
631   gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_WRTL]);
632   gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_WRTL]);
633   gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_WRTL]);
634   gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_WRTL]);
635   gcc_assert (tree_contains_struct[CONST_DECL][TS_DECL_MINIMAL]);
636   gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_MINIMAL]);
637   gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_MINIMAL]);
638   gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_MINIMAL]);
639   gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_MINIMAL]);
640   gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_MINIMAL]);
641   gcc_assert (tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_MINIMAL]);
642   gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_MINIMAL]);
643   gcc_assert (tree_contains_struct[FIELD_DECL][TS_DECL_MINIMAL]);
644   gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_WITH_VIS]);
645   gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_WITH_VIS]);
646   gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_WITH_VIS]);
647   gcc_assert (tree_contains_struct[VAR_DECL][TS_VAR_DECL]);
648   gcc_assert (tree_contains_struct[FIELD_DECL][TS_FIELD_DECL]);
649   gcc_assert (tree_contains_struct[PARM_DECL][TS_PARM_DECL]);
650   gcc_assert (tree_contains_struct[LABEL_DECL][TS_LABEL_DECL]);
651   gcc_assert (tree_contains_struct[RESULT_DECL][TS_RESULT_DECL]);
652   gcc_assert (tree_contains_struct[CONST_DECL][TS_CONST_DECL]);
653   gcc_assert (tree_contains_struct[TYPE_DECL][TS_TYPE_DECL]);
654   gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_FUNCTION_DECL]);
655   gcc_assert (tree_contains_struct[IMPORTED_DECL][TS_DECL_MINIMAL]);
656   gcc_assert (tree_contains_struct[IMPORTED_DECL][TS_DECL_COMMON]);
657   gcc_assert (tree_contains_struct[NAMELIST_DECL][TS_DECL_MINIMAL]);
658   gcc_assert (tree_contains_struct[NAMELIST_DECL][TS_DECL_COMMON]);
659 }
660 
661 
662 /* Init tree.c.  */
663 
664 void
665 init_ttree (void)
666 {
667   /* Initialize the hash table of types.  */
668   type_hash_table
669     = hash_table<type_cache_hasher>::create_ggc (TYPE_HASH_INITIAL_SIZE);
670 
671   debug_expr_for_decl
672     = hash_table<tree_decl_map_cache_hasher>::create_ggc (512);
673 
674   value_expr_for_decl
675     = hash_table<tree_decl_map_cache_hasher>::create_ggc (512);
676 
677   int_cst_hash_table = hash_table<int_cst_hasher>::create_ggc (1024);
678 
679   poly_int_cst_hash_table = hash_table<poly_int_cst_hasher>::create_ggc (64);
680 
681   int_cst_node = make_int_cst (1, 1);
682 
683   cl_option_hash_table = hash_table<cl_option_hasher>::create_ggc (64);
684 
685   cl_optimization_node = make_node (OPTIMIZATION_NODE);
686   cl_target_option_node = make_node (TARGET_OPTION_NODE);
687 
688   /* Initialize the tree_contains_struct array.  */
689   initialize_tree_contains_struct ();
690   lang_hooks.init_ts ();
691 }
692 
693 
694 /* The name of the object as the assembler will see it (but before any
695    translations made by ASM_OUTPUT_LABELREF).  Often this is the same
696    as DECL_NAME.  It is an IDENTIFIER_NODE.  */
697 tree
698 decl_assembler_name (tree decl)
699 {
700   if (!DECL_ASSEMBLER_NAME_SET_P (decl))
701     lang_hooks.set_decl_assembler_name (decl);
702   return DECL_ASSEMBLER_NAME_RAW (decl);
703 }
704 
705 /* The DECL_ASSEMBLER_NAME_RAW of DECL is being explicitly set to NAME
706    (either of which may be NULL).  Inform the FE, if this changes the
707    name.  */
708 
709 void
710 overwrite_decl_assembler_name (tree decl, tree name)
711 {
712   if (DECL_ASSEMBLER_NAME_RAW (decl) != name)
713     lang_hooks.overwrite_decl_assembler_name (decl, name);
714 }
715 
716 /* When the target supports COMDAT groups, this indicates which group the
717    DECL is associated with.  This can be either an IDENTIFIER_NODE or a
718    decl, in which case its DECL_ASSEMBLER_NAME identifies the group.  */
719 tree
720 decl_comdat_group (const_tree node)
721 {
722   struct symtab_node *snode = symtab_node::get (node);
723   if (!snode)
724     return NULL;
725   return snode->get_comdat_group ();
726 }
727 
728 /* Likewise, but make sure it's been reduced to an IDENTIFIER_NODE.  */
729 tree
730 decl_comdat_group_id (const_tree node)
731 {
732   struct symtab_node *snode = symtab_node::get (node);
733   if (!snode)
734     return NULL;
735   return snode->get_comdat_group_id ();
736 }
737 
738 /* When the target supports named section, return its name as IDENTIFIER_NODE
739    or NULL if it is in no section.  */
740 const char *
741 decl_section_name (const_tree node)
742 {
743   struct symtab_node *snode = symtab_node::get (node);
744   if (!snode)
745     return NULL;
746   return snode->get_section ();
747 }
748 
749 /* Set section name of NODE to VALUE (that is expected to be
750    identifier node) */
751 void
752 set_decl_section_name (tree node, const char *value)
753 {
754   struct symtab_node *snode;
755 
756   if (value == NULL)
757     {
758       snode = symtab_node::get (node);
759       if (!snode)
760 	return;
761     }
762   else if (VAR_P (node))
763     snode = varpool_node::get_create (node);
764   else
765     snode = cgraph_node::get_create (node);
766   snode->set_section (value);
767 }
768 
769 /* Return TLS model of a variable NODE.  */
770 enum tls_model
771 decl_tls_model (const_tree node)
772 {
773   struct varpool_node *snode = varpool_node::get (node);
774   if (!snode)
775     return TLS_MODEL_NONE;
776   return snode->tls_model;
777 }
778 
779 /* Set TLS model of variable NODE to MODEL.  */
780 void
781 set_decl_tls_model (tree node, enum tls_model model)
782 {
783   struct varpool_node *vnode;
784 
785   if (model == TLS_MODEL_NONE)
786     {
787       vnode = varpool_node::get (node);
788       if (!vnode)
789 	return;
790     }
791   else
792     vnode = varpool_node::get_create (node);
793   vnode->tls_model = model;
794 }
795 
796 /* Compute the number of bytes occupied by a tree with code CODE.
797    This function cannot be used for nodes that have variable sizes,
798    including TREE_VEC, INTEGER_CST, STRING_CST, and CALL_EXPR.  */
799 size_t
800 tree_code_size (enum tree_code code)
801 {
802   switch (TREE_CODE_CLASS (code))
803     {
804     case tcc_declaration:  /* A decl node */
805       switch (code)
806 	{
807 	case FIELD_DECL:	return sizeof (tree_field_decl);
808 	case PARM_DECL:		return sizeof (tree_parm_decl);
809 	case VAR_DECL:		return sizeof (tree_var_decl);
810 	case LABEL_DECL:	return sizeof (tree_label_decl);
811 	case RESULT_DECL:	return sizeof (tree_result_decl);
812 	case CONST_DECL:	return sizeof (tree_const_decl);
813 	case TYPE_DECL:		return sizeof (tree_type_decl);
814 	case FUNCTION_DECL:	return sizeof (tree_function_decl);
815 	case DEBUG_EXPR_DECL:	return sizeof (tree_decl_with_rtl);
816 	case TRANSLATION_UNIT_DECL: return sizeof (tree_translation_unit_decl);
817 	case NAMESPACE_DECL:
818 	case IMPORTED_DECL:
819 	case NAMELIST_DECL:	return sizeof (tree_decl_non_common);
820 	default:
821 	  gcc_checking_assert (code >= NUM_TREE_CODES);
822 	  return lang_hooks.tree_size (code);
823 	}
824 
825     case tcc_type:  /* a type node */
826       switch (code)
827 	{
828 	case OFFSET_TYPE:
829 	case ENUMERAL_TYPE:
830 	case BOOLEAN_TYPE:
831 	case INTEGER_TYPE:
832 	case REAL_TYPE:
833 	case POINTER_TYPE:
834 	case REFERENCE_TYPE:
835 	case NULLPTR_TYPE:
836 	case FIXED_POINT_TYPE:
837 	case COMPLEX_TYPE:
838 	case VECTOR_TYPE:
839 	case ARRAY_TYPE:
840 	case RECORD_TYPE:
841 	case UNION_TYPE:
842 	case QUAL_UNION_TYPE:
843 	case VOID_TYPE:
844 	case FUNCTION_TYPE:
845 	case METHOD_TYPE:
846 	case LANG_TYPE:		return sizeof (tree_type_non_common);
847 	default:
848 	  gcc_checking_assert (code >= NUM_TREE_CODES);
849 	  return lang_hooks.tree_size (code);
850 	}
851 
852     case tcc_reference:   /* a reference */
853     case tcc_expression:  /* an expression */
854     case tcc_statement:   /* an expression with side effects */
855     case tcc_comparison:  /* a comparison expression */
856     case tcc_unary:       /* a unary arithmetic expression */
857     case tcc_binary:      /* a binary arithmetic expression */
858       return (sizeof (struct tree_exp)
859 	      + (TREE_CODE_LENGTH (code) - 1) * sizeof (tree));
860 
861     case tcc_constant:  /* a constant */
862       switch (code)
863 	{
864 	case VOID_CST:		return sizeof (tree_typed);
865 	case INTEGER_CST:	gcc_unreachable ();
866 	case POLY_INT_CST:	return sizeof (tree_poly_int_cst);
867 	case REAL_CST:		return sizeof (tree_real_cst);
868 	case FIXED_CST:		return sizeof (tree_fixed_cst);
869 	case COMPLEX_CST:	return sizeof (tree_complex);
870 	case VECTOR_CST:	gcc_unreachable ();
871 	case STRING_CST:	gcc_unreachable ();
872 	default:
873 	  gcc_checking_assert (code >= NUM_TREE_CODES);
874 	  return lang_hooks.tree_size (code);
875 	}
876 
877     case tcc_exceptional:  /* something random, like an identifier.  */
878       switch (code)
879 	{
880 	case IDENTIFIER_NODE:	return lang_hooks.identifier_size;
881 	case TREE_LIST:		return sizeof (tree_list);
882 
883 	case ERROR_MARK:
884 	case PLACEHOLDER_EXPR:	return sizeof (tree_common);
885 
886 	case TREE_VEC:		gcc_unreachable ();
887 	case OMP_CLAUSE:	gcc_unreachable ();
888 
889 	case SSA_NAME:		return sizeof (tree_ssa_name);
890 
891 	case STATEMENT_LIST:	return sizeof (tree_statement_list);
892 	case BLOCK:		return sizeof (struct tree_block);
893 	case CONSTRUCTOR:	return sizeof (tree_constructor);
894 	case OPTIMIZATION_NODE: return sizeof (tree_optimization_option);
895 	case TARGET_OPTION_NODE: return sizeof (tree_target_option);
896 
897 	default:
898 	  gcc_checking_assert (code >= NUM_TREE_CODES);
899 	  return lang_hooks.tree_size (code);
900 	}
901 
902     default:
903       gcc_unreachable ();
904     }
905 }
906 
907 /* Compute the number of bytes occupied by NODE.  This routine only
908    looks at TREE_CODE, except for those nodes that have variable sizes.  */
909 size_t
910 tree_size (const_tree node)
911 {
912   const enum tree_code code = TREE_CODE (node);
913   switch (code)
914     {
915     case INTEGER_CST:
916       return (sizeof (struct tree_int_cst)
917 	      + (TREE_INT_CST_EXT_NUNITS (node) - 1) * sizeof (HOST_WIDE_INT));
918 
919     case TREE_BINFO:
920       return (offsetof (struct tree_binfo, base_binfos)
921 	      + vec<tree, va_gc>
922 		  ::embedded_size (BINFO_N_BASE_BINFOS (node)));
923 
924     case TREE_VEC:
925       return (sizeof (struct tree_vec)
926 	      + (TREE_VEC_LENGTH (node) - 1) * sizeof (tree));
927 
928     case VECTOR_CST:
929       return (sizeof (struct tree_vector)
930 	      + (vector_cst_encoded_nelts (node) - 1) * sizeof (tree));
931 
932     case STRING_CST:
933       return TREE_STRING_LENGTH (node) + offsetof (struct tree_string, str) + 1;
934 
935     case OMP_CLAUSE:
936       return (sizeof (struct tree_omp_clause)
937 	      + (omp_clause_num_ops[OMP_CLAUSE_CODE (node)] - 1)
938 	        * sizeof (tree));
939 
940     default:
941       if (TREE_CODE_CLASS (code) == tcc_vl_exp)
942 	return (sizeof (struct tree_exp)
943 		+ (VL_EXP_OPERAND_LENGTH (node) - 1) * sizeof (tree));
944       else
945 	return tree_code_size (code);
946     }
947 }
948 
949 /* Return tree node kind based on tree CODE.  */
950 
951 static tree_node_kind
952 get_stats_node_kind (enum tree_code code)
953 {
954   enum tree_code_class type = TREE_CODE_CLASS (code);
955 
956   switch (type)
957     {
958     case tcc_declaration:  /* A decl node */
959       return d_kind;
960     case tcc_type:  /* a type node */
961       return t_kind;
962     case tcc_statement:  /* an expression with side effects */
963       return s_kind;
964     case tcc_reference:  /* a reference */
965       return r_kind;
966     case tcc_expression:  /* an expression */
967     case tcc_comparison:  /* a comparison expression */
968     case tcc_unary:  /* a unary arithmetic expression */
969     case tcc_binary:  /* a binary arithmetic expression */
970       return e_kind;
971     case tcc_constant:  /* a constant */
972       return c_kind;
973     case tcc_exceptional:  /* something random, like an identifier.  */
974       switch (code)
975 	{
976 	case IDENTIFIER_NODE:
977 	  return id_kind;
978 	case TREE_VEC:
979 	  return vec_kind;
980 	case TREE_BINFO:
981 	  return binfo_kind;
982 	case SSA_NAME:
983 	  return ssa_name_kind;
984 	case BLOCK:
985 	  return b_kind;
986 	case CONSTRUCTOR:
987 	  return constr_kind;
988 	case OMP_CLAUSE:
989 	  return omp_clause_kind;
990 	default:
991 	  return x_kind;
992 	}
993       break;
994     case tcc_vl_exp:
995       return e_kind;
996     default:
997       gcc_unreachable ();
998     }
999 }
1000 
1001 /* Record interesting allocation statistics for a tree node with CODE
1002    and LENGTH.  */
1003 
1004 static void
1005 record_node_allocation_statistics (enum tree_code code, size_t length)
1006 {
1007   if (!GATHER_STATISTICS)
1008     return;
1009 
1010   tree_node_kind kind = get_stats_node_kind (code);
1011 
1012   tree_code_counts[(int) code]++;
1013   tree_node_counts[(int) kind]++;
1014   tree_node_sizes[(int) kind] += length;
1015 }
1016 
1017 /* Allocate and return a new UID from the DECL_UID namespace.  */
1018 
1019 int
1020 allocate_decl_uid (void)
1021 {
1022   return next_decl_uid++;
1023 }
1024 
1025 /* Return a newly allocated node of code CODE.  For decl and type
1026    nodes, some other fields are initialized.  The rest of the node is
1027    initialized to zero.  This function cannot be used for TREE_VEC,
1028    INTEGER_CST or OMP_CLAUSE nodes, which is enforced by asserts in
1029    tree_code_size.
1030 
1031    Achoo!  I got a code in the node.  */
1032 
1033 tree
1034 make_node (enum tree_code code MEM_STAT_DECL)
1035 {
1036   tree t;
1037   enum tree_code_class type = TREE_CODE_CLASS (code);
1038   size_t length = tree_code_size (code);
1039 
1040   record_node_allocation_statistics (code, length);
1041 
1042   t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);
1043   TREE_SET_CODE (t, code);
1044 
1045   switch (type)
1046     {
1047     case tcc_statement:
1048       if (code != DEBUG_BEGIN_STMT)
1049 	TREE_SIDE_EFFECTS (t) = 1;
1050       break;
1051 
1052     case tcc_declaration:
1053       if (CODE_CONTAINS_STRUCT (code, TS_DECL_COMMON))
1054 	{
1055 	  if (code == FUNCTION_DECL)
1056 	    {
1057 	      SET_DECL_ALIGN (t, FUNCTION_ALIGNMENT (FUNCTION_BOUNDARY));
1058 	      SET_DECL_MODE (t, FUNCTION_MODE);
1059 	    }
1060 	  else
1061 	    SET_DECL_ALIGN (t, 1);
1062 	}
1063       DECL_SOURCE_LOCATION (t) = input_location;
1064       if (TREE_CODE (t) == DEBUG_EXPR_DECL)
1065 	DECL_UID (t) = --next_debug_decl_uid;
1066       else
1067 	{
1068 	  DECL_UID (t) = allocate_decl_uid ();
1069 	  SET_DECL_PT_UID (t, -1);
1070 	}
1071       if (TREE_CODE (t) == LABEL_DECL)
1072 	LABEL_DECL_UID (t) = -1;
1073 
1074       break;
1075 
1076     case tcc_type:
1077       TYPE_UID (t) = next_type_uid++;
1078       SET_TYPE_ALIGN (t, BITS_PER_UNIT);
1079       TYPE_USER_ALIGN (t) = 0;
1080       TYPE_MAIN_VARIANT (t) = t;
1081       TYPE_CANONICAL (t) = t;
1082 
1083       /* Default to no attributes for type, but let target change that.  */
1084       TYPE_ATTRIBUTES (t) = NULL_TREE;
1085       targetm.set_default_type_attributes (t);
1086 
1087       /* We have not yet computed the alias set for this type.  */
1088       TYPE_ALIAS_SET (t) = -1;
1089       break;
1090 
1091     case tcc_constant:
1092       TREE_CONSTANT (t) = 1;
1093       break;
1094 
1095     case tcc_expression:
1096       switch (code)
1097 	{
1098 	case INIT_EXPR:
1099 	case MODIFY_EXPR:
1100 	case VA_ARG_EXPR:
1101 	case PREDECREMENT_EXPR:
1102 	case PREINCREMENT_EXPR:
1103 	case POSTDECREMENT_EXPR:
1104 	case POSTINCREMENT_EXPR:
1105 	  /* All of these have side-effects, no matter what their
1106 	     operands are.  */
1107 	  TREE_SIDE_EFFECTS (t) = 1;
1108 	  break;
1109 
1110 	default:
1111 	  break;
1112 	}
1113       break;
1114 
1115     case tcc_exceptional:
1116       switch (code)
1117         {
1118 	case TARGET_OPTION_NODE:
1119 	  TREE_TARGET_OPTION(t)
1120 			    = ggc_cleared_alloc<struct cl_target_option> ();
1121 	  break;
1122 
1123 	case OPTIMIZATION_NODE:
1124 	  TREE_OPTIMIZATION (t)
1125 			    = ggc_cleared_alloc<struct cl_optimization> ();
1126 	  break;
1127 
1128 	default:
1129 	  break;
1130 	}
1131       break;
1132 
1133     default:
1134       /* Other classes need no special treatment.  */
1135       break;
1136     }
1137 
1138   return t;
1139 }
1140 
1141 /* Free tree node.  */
1142 
1143 void
1144 free_node (tree node)
1145 {
1146   enum tree_code code = TREE_CODE (node);
1147   if (GATHER_STATISTICS)
1148     {
1149       enum tree_node_kind kind = get_stats_node_kind (code);
1150 
1151       gcc_checking_assert (tree_code_counts[(int) TREE_CODE (node)] != 0);
1152       gcc_checking_assert (tree_node_counts[(int) kind] != 0);
1153       gcc_checking_assert (tree_node_sizes[(int) kind] >= tree_size (node));
1154 
1155       tree_code_counts[(int) TREE_CODE (node)]--;
1156       tree_node_counts[(int) kind]--;
1157       tree_node_sizes[(int) kind] -= tree_size (node);
1158     }
1159   if (CODE_CONTAINS_STRUCT (code, TS_CONSTRUCTOR))
1160     vec_free (CONSTRUCTOR_ELTS (node));
1161   else if (code == BLOCK)
1162     vec_free (BLOCK_NONLOCALIZED_VARS (node));
1163   else if (code == TREE_BINFO)
1164     vec_free (BINFO_BASE_ACCESSES (node));
1165   ggc_free (node);
1166 }
1167 
1168 /* Return a new node with the same contents as NODE except that its
1169    TREE_CHAIN, if it has one, is zero and it has a fresh uid.  */
1170 
1171 tree
1172 copy_node (tree node MEM_STAT_DECL)
1173 {
1174   tree t;
1175   enum tree_code code = TREE_CODE (node);
1176   size_t length;
1177 
1178   gcc_assert (code != STATEMENT_LIST);
1179 
1180   length = tree_size (node);
1181   record_node_allocation_statistics (code, length);
1182   t = ggc_alloc_tree_node_stat (length PASS_MEM_STAT);
1183   memcpy (t, node, length);
1184 
1185   if (CODE_CONTAINS_STRUCT (code, TS_COMMON))
1186     TREE_CHAIN (t) = 0;
1187   TREE_ASM_WRITTEN (t) = 0;
1188   TREE_VISITED (t) = 0;
1189 
1190   if (TREE_CODE_CLASS (code) == tcc_declaration)
1191     {
1192       if (code == DEBUG_EXPR_DECL)
1193 	DECL_UID (t) = --next_debug_decl_uid;
1194       else
1195 	{
1196 	  DECL_UID (t) = allocate_decl_uid ();
1197 	  if (DECL_PT_UID_SET_P (node))
1198 	    SET_DECL_PT_UID (t, DECL_PT_UID (node));
1199 	}
1200       if ((TREE_CODE (node) == PARM_DECL || VAR_P (node))
1201 	  && DECL_HAS_VALUE_EXPR_P (node))
1202 	{
1203 	  SET_DECL_VALUE_EXPR (t, DECL_VALUE_EXPR (node));
1204 	  DECL_HAS_VALUE_EXPR_P (t) = 1;
1205 	}
1206       /* DECL_DEBUG_EXPR is copied explicitely by callers.  */
1207       if (VAR_P (node))
1208 	{
1209 	  DECL_HAS_DEBUG_EXPR_P (t) = 0;
1210 	  t->decl_with_vis.symtab_node = NULL;
1211 	}
1212       if (VAR_P (node) && DECL_HAS_INIT_PRIORITY_P (node))
1213 	{
1214 	  SET_DECL_INIT_PRIORITY (t, DECL_INIT_PRIORITY (node));
1215 	  DECL_HAS_INIT_PRIORITY_P (t) = 1;
1216 	}
1217       if (TREE_CODE (node) == FUNCTION_DECL)
1218 	{
1219 	  DECL_STRUCT_FUNCTION (t) = NULL;
1220 	  t->decl_with_vis.symtab_node = NULL;
1221 	}
1222     }
1223   else if (TREE_CODE_CLASS (code) == tcc_type)
1224     {
1225       TYPE_UID (t) = next_type_uid++;
1226       /* The following is so that the debug code for
1227 	 the copy is different from the original type.
1228 	 The two statements usually duplicate each other
1229 	 (because they clear fields of the same union),
1230 	 but the optimizer should catch that.  */
1231       TYPE_SYMTAB_ADDRESS (t) = 0;
1232       TYPE_SYMTAB_DIE (t) = 0;
1233 
1234       /* Do not copy the values cache.  */
1235       if (TYPE_CACHED_VALUES_P (t))
1236 	{
1237 	  TYPE_CACHED_VALUES_P (t) = 0;
1238 	  TYPE_CACHED_VALUES (t) = NULL_TREE;
1239 	}
1240     }
1241     else if (code == TARGET_OPTION_NODE)
1242       {
1243 	TREE_TARGET_OPTION (t) = ggc_alloc<struct cl_target_option>();
1244 	memcpy (TREE_TARGET_OPTION (t), TREE_TARGET_OPTION (node),
1245 		sizeof (struct cl_target_option));
1246       }
1247     else if (code == OPTIMIZATION_NODE)
1248       {
1249 	TREE_OPTIMIZATION (t) = ggc_alloc<struct cl_optimization>();
1250 	memcpy (TREE_OPTIMIZATION (t), TREE_OPTIMIZATION (node),
1251 		sizeof (struct cl_optimization));
1252       }
1253 
1254   return t;
1255 }
1256 
1257 /* Return a copy of a chain of nodes, chained through the TREE_CHAIN field.
1258    For example, this can copy a list made of TREE_LIST nodes.  */
1259 
1260 tree
1261 copy_list (tree list)
1262 {
1263   tree head;
1264   tree prev, next;
1265 
1266   if (list == 0)
1267     return 0;
1268 
1269   head = prev = copy_node (list);
1270   next = TREE_CHAIN (list);
1271   while (next)
1272     {
1273       TREE_CHAIN (prev) = copy_node (next);
1274       prev = TREE_CHAIN (prev);
1275       next = TREE_CHAIN (next);
1276     }
1277   return head;
1278 }
1279 
1280 
1281 /* Return the value that TREE_INT_CST_EXT_NUNITS should have for an
1282    INTEGER_CST with value CST and type TYPE.   */
1283 
1284 static unsigned int
1285 get_int_cst_ext_nunits (tree type, const wide_int &cst)
1286 {
1287   gcc_checking_assert (cst.get_precision () == TYPE_PRECISION (type));
1288   /* We need extra HWIs if CST is an unsigned integer with its
1289      upper bit set.  */
1290   if (TYPE_UNSIGNED (type) && wi::neg_p (cst))
1291     return cst.get_precision () / HOST_BITS_PER_WIDE_INT + 1;
1292   return cst.get_len ();
1293 }
1294 
1295 /* Return a new INTEGER_CST with value CST and type TYPE.  */
1296 
1297 static tree
1298 build_new_int_cst (tree type, const wide_int &cst)
1299 {
1300   unsigned int len = cst.get_len ();
1301   unsigned int ext_len = get_int_cst_ext_nunits (type, cst);
1302   tree nt = make_int_cst (len, ext_len);
1303 
1304   if (len < ext_len)
1305     {
1306       --ext_len;
1307       TREE_INT_CST_ELT (nt, ext_len)
1308 	= zext_hwi (-1, cst.get_precision () % HOST_BITS_PER_WIDE_INT);
1309       for (unsigned int i = len; i < ext_len; ++i)
1310 	TREE_INT_CST_ELT (nt, i) = -1;
1311     }
1312   else if (TYPE_UNSIGNED (type)
1313 	   && cst.get_precision () < len * HOST_BITS_PER_WIDE_INT)
1314     {
1315       len--;
1316       TREE_INT_CST_ELT (nt, len)
1317 	= zext_hwi (cst.elt (len),
1318 		    cst.get_precision () % HOST_BITS_PER_WIDE_INT);
1319     }
1320 
1321   for (unsigned int i = 0; i < len; i++)
1322     TREE_INT_CST_ELT (nt, i) = cst.elt (i);
1323   TREE_TYPE (nt) = type;
1324   return nt;
1325 }
1326 
1327 /* Return a new POLY_INT_CST with coefficients COEFFS and type TYPE.  */
1328 
1329 static tree
1330 build_new_poly_int_cst (tree type, tree (&coeffs)[NUM_POLY_INT_COEFFS]
1331 			CXX_MEM_STAT_INFO)
1332 {
1333   size_t length = sizeof (struct tree_poly_int_cst);
1334   record_node_allocation_statistics (POLY_INT_CST, length);
1335 
1336   tree t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);
1337 
1338   TREE_SET_CODE (t, POLY_INT_CST);
1339   TREE_CONSTANT (t) = 1;
1340   TREE_TYPE (t) = type;
1341   for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
1342     POLY_INT_CST_COEFF (t, i) = coeffs[i];
1343   return t;
1344 }
1345 
1346 /* Create a constant tree that contains CST sign-extended to TYPE.  */
1347 
1348 tree
1349 build_int_cst (tree type, poly_int64 cst)
1350 {
1351   /* Support legacy code.  */
1352   if (!type)
1353     type = integer_type_node;
1354 
1355   return wide_int_to_tree (type, wi::shwi (cst, TYPE_PRECISION (type)));
1356 }
1357 
1358 /* Create a constant tree that contains CST zero-extended to TYPE.  */
1359 
1360 tree
1361 build_int_cstu (tree type, poly_uint64 cst)
1362 {
1363   return wide_int_to_tree (type, wi::uhwi (cst, TYPE_PRECISION (type)));
1364 }
1365 
1366 /* Create a constant tree that contains CST sign-extended to TYPE.  */
1367 
1368 tree
1369 build_int_cst_type (tree type, poly_int64 cst)
1370 {
1371   gcc_assert (type);
1372   return wide_int_to_tree (type, wi::shwi (cst, TYPE_PRECISION (type)));
1373 }
1374 
1375 /* Constructs tree in type TYPE from with value given by CST.  Signedness
1376    of CST is assumed to be the same as the signedness of TYPE.  */
1377 
1378 tree
1379 double_int_to_tree (tree type, double_int cst)
1380 {
1381   return wide_int_to_tree (type, widest_int::from (cst, TYPE_SIGN (type)));
1382 }
1383 
1384 /* We force the wide_int CST to the range of the type TYPE by sign or
1385    zero extending it.  OVERFLOWABLE indicates if we are interested in
1386    overflow of the value, when >0 we are only interested in signed
1387    overflow, for <0 we are interested in any overflow.  OVERFLOWED
1388    indicates whether overflow has already occurred.  CONST_OVERFLOWED
1389    indicates whether constant overflow has already occurred.  We force
1390    T's value to be within range of T's type (by setting to 0 or 1 all
1391    the bits outside the type's range).  We set TREE_OVERFLOWED if,
1392         OVERFLOWED is nonzero,
1393         or OVERFLOWABLE is >0 and signed overflow occurs
1394         or OVERFLOWABLE is <0 and any overflow occurs
1395    We return a new tree node for the extended wide_int.  The node
1396    is shared if no overflow flags are set.  */
1397 
1398 
1399 tree
1400 force_fit_type (tree type, const poly_wide_int_ref &cst,
1401 		int overflowable, bool overflowed)
1402 {
1403   signop sign = TYPE_SIGN (type);
1404 
1405   /* If we need to set overflow flags, return a new unshared node.  */
1406   if (overflowed || !wi::fits_to_tree_p (cst, type))
1407     {
1408       if (overflowed
1409 	  || overflowable < 0
1410 	  || (overflowable > 0 && sign == SIGNED))
1411 	{
1412 	  poly_wide_int tmp = poly_wide_int::from (cst, TYPE_PRECISION (type),
1413 						   sign);
1414 	  tree t;
1415 	  if (tmp.is_constant ())
1416 	    t = build_new_int_cst (type, tmp.coeffs[0]);
1417 	  else
1418 	    {
1419 	      tree coeffs[NUM_POLY_INT_COEFFS];
1420 	      for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
1421 		{
1422 		  coeffs[i] = build_new_int_cst (type, tmp.coeffs[i]);
1423 		  TREE_OVERFLOW (coeffs[i]) = 1;
1424 		}
1425 	      t = build_new_poly_int_cst (type, coeffs);
1426 	    }
1427 	  TREE_OVERFLOW (t) = 1;
1428 	  return t;
1429 	}
1430     }
1431 
1432   /* Else build a shared node.  */
1433   return wide_int_to_tree (type, cst);
1434 }
1435 
1436 /* These are the hash table functions for the hash table of INTEGER_CST
1437    nodes of a sizetype.  */
1438 
1439 /* Return the hash code X, an INTEGER_CST.  */
1440 
1441 hashval_t
1442 int_cst_hasher::hash (tree x)
1443 {
1444   const_tree const t = x;
1445   hashval_t code = TYPE_UID (TREE_TYPE (t));
1446   int i;
1447 
1448   for (i = 0; i < TREE_INT_CST_NUNITS (t); i++)
1449     code = iterative_hash_host_wide_int (TREE_INT_CST_ELT(t, i), code);
1450 
1451   return code;
1452 }
1453 
1454 /* Return nonzero if the value represented by *X (an INTEGER_CST tree node)
1455    is the same as that given by *Y, which is the same.  */
1456 
1457 bool
1458 int_cst_hasher::equal (tree x, tree y)
1459 {
1460   const_tree const xt = x;
1461   const_tree const yt = y;
1462 
1463   if (TREE_TYPE (xt) != TREE_TYPE (yt)
1464       || TREE_INT_CST_NUNITS (xt) != TREE_INT_CST_NUNITS (yt)
1465       || TREE_INT_CST_EXT_NUNITS (xt) != TREE_INT_CST_EXT_NUNITS (yt))
1466     return false;
1467 
1468   for (int i = 0; i < TREE_INT_CST_NUNITS (xt); i++)
1469     if (TREE_INT_CST_ELT (xt, i) != TREE_INT_CST_ELT (yt, i))
1470       return false;
1471 
1472   return true;
1473 }
1474 
1475 /* Create an INT_CST node of TYPE and value CST.
1476    The returned node is always shared.  For small integers we use a
1477    per-type vector cache, for larger ones we use a single hash table.
1478    The value is extended from its precision according to the sign of
1479    the type to be a multiple of HOST_BITS_PER_WIDE_INT.  This defines
1480    the upper bits and ensures that hashing and value equality based
1481    upon the underlying HOST_WIDE_INTs works without masking.  */
1482 
1483 static tree
1484 wide_int_to_tree_1 (tree type, const wide_int_ref &pcst)
1485 {
1486   tree t;
1487   int ix = -1;
1488   int limit = 0;
1489 
1490   gcc_assert (type);
1491   unsigned int prec = TYPE_PRECISION (type);
1492   signop sgn = TYPE_SIGN (type);
1493 
1494   /* Verify that everything is canonical.  */
1495   int l = pcst.get_len ();
1496   if (l > 1)
1497     {
1498       if (pcst.elt (l - 1) == 0)
1499 	gcc_checking_assert (pcst.elt (l - 2) < 0);
1500       if (pcst.elt (l - 1) == HOST_WIDE_INT_M1)
1501 	gcc_checking_assert (pcst.elt (l - 2) >= 0);
1502     }
1503 
1504   wide_int cst = wide_int::from (pcst, prec, sgn);
1505   unsigned int ext_len = get_int_cst_ext_nunits (type, cst);
1506 
1507   if (ext_len == 1)
1508     {
1509       /* We just need to store a single HOST_WIDE_INT.  */
1510       HOST_WIDE_INT hwi;
1511       if (TYPE_UNSIGNED (type))
1512 	hwi = cst.to_uhwi ();
1513       else
1514 	hwi = cst.to_shwi ();
1515 
1516       switch (TREE_CODE (type))
1517 	{
1518 	case NULLPTR_TYPE:
1519 	  gcc_assert (hwi == 0);
1520 	  /* Fallthru.  */
1521 
1522 	case POINTER_TYPE:
1523 	case REFERENCE_TYPE:
1524 	  /* Cache NULL pointer and zero bounds.  */
1525 	  if (hwi == 0)
1526 	    {
1527 	      limit = 1;
1528 	      ix = 0;
1529 	    }
1530 	  break;
1531 
1532 	case BOOLEAN_TYPE:
1533 	  /* Cache false or true.  */
1534 	  limit = 2;
1535 	  if (IN_RANGE (hwi, 0, 1))
1536 	    ix = hwi;
1537 	  break;
1538 
1539 	case INTEGER_TYPE:
1540 	case OFFSET_TYPE:
1541 	  if (TYPE_SIGN (type) == UNSIGNED)
1542 	    {
1543 	      /* Cache [0, N).  */
1544 	      limit = INTEGER_SHARE_LIMIT;
1545 	      if (IN_RANGE (hwi, 0, INTEGER_SHARE_LIMIT - 1))
1546 		ix = hwi;
1547 	    }
1548 	  else
1549 	    {
1550 	      /* Cache [-1, N).  */
1551 	      limit = INTEGER_SHARE_LIMIT + 1;
1552 	      if (IN_RANGE (hwi, -1, INTEGER_SHARE_LIMIT - 1))
1553 		ix = hwi + 1;
1554 	    }
1555 	  break;
1556 
1557 	case ENUMERAL_TYPE:
1558 	  break;
1559 
1560 	default:
1561 	  gcc_unreachable ();
1562 	}
1563 
1564       if (ix >= 0)
1565 	{
1566 	  /* Look for it in the type's vector of small shared ints.  */
1567 	  if (!TYPE_CACHED_VALUES_P (type))
1568 	    {
1569 	      TYPE_CACHED_VALUES_P (type) = 1;
1570 	      TYPE_CACHED_VALUES (type) = make_tree_vec (limit);
1571 	    }
1572 
1573 	  t = TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix);
1574 	  if (t)
1575 	    /* Make sure no one is clobbering the shared constant.  */
1576 	    gcc_checking_assert (TREE_TYPE (t) == type
1577 				 && TREE_INT_CST_NUNITS (t) == 1
1578 				 && TREE_INT_CST_OFFSET_NUNITS (t) == 1
1579 				 && TREE_INT_CST_EXT_NUNITS (t) == 1
1580 				 && TREE_INT_CST_ELT (t, 0) == hwi);
1581 	  else
1582 	    {
1583 	      /* Create a new shared int.  */
1584 	      t = build_new_int_cst (type, cst);
1585 	      TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix) = t;
1586 	    }
1587 	}
1588       else
1589 	{
1590 	  /* Use the cache of larger shared ints, using int_cst_node as
1591 	     a temporary.  */
1592 
1593 	  TREE_INT_CST_ELT (int_cst_node, 0) = hwi;
1594 	  TREE_TYPE (int_cst_node) = type;
1595 
1596 	  tree *slot = int_cst_hash_table->find_slot (int_cst_node, INSERT);
1597 	  t = *slot;
1598 	  if (!t)
1599 	    {
1600 	      /* Insert this one into the hash table.  */
1601 	      t = int_cst_node;
1602 	      *slot = t;
1603 	      /* Make a new node for next time round.  */
1604 	      int_cst_node = make_int_cst (1, 1);
1605 	    }
1606 	}
1607     }
1608   else
1609     {
1610       /* The value either hashes properly or we drop it on the floor
1611 	 for the gc to take care of.  There will not be enough of them
1612 	 to worry about.  */
1613 
1614       tree nt = build_new_int_cst (type, cst);
1615       tree *slot = int_cst_hash_table->find_slot (nt, INSERT);
1616       t = *slot;
1617       if (!t)
1618 	{
1619 	  /* Insert this one into the hash table.  */
1620 	  t = nt;
1621 	  *slot = t;
1622 	}
1623       else
1624 	ggc_free (nt);
1625     }
1626 
1627   return t;
1628 }
1629 
1630 hashval_t
1631 poly_int_cst_hasher::hash (tree t)
1632 {
1633   inchash::hash hstate;
1634 
1635   hstate.add_int (TYPE_UID (TREE_TYPE (t)));
1636   for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
1637     hstate.add_wide_int (wi::to_wide (POLY_INT_CST_COEFF (t, i)));
1638 
1639   return hstate.end ();
1640 }
1641 
1642 bool
1643 poly_int_cst_hasher::equal (tree x, const compare_type &y)
1644 {
1645   if (TREE_TYPE (x) != y.first)
1646     return false;
1647   for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
1648     if (wi::to_wide (POLY_INT_CST_COEFF (x, i)) != y.second->coeffs[i])
1649       return false;
1650   return true;
1651 }
1652 
1653 /* Build a POLY_INT_CST node with type TYPE and with the elements in VALUES.
1654    The elements must also have type TYPE.  */
1655 
1656 tree
1657 build_poly_int_cst (tree type, const poly_wide_int_ref &values)
1658 {
1659   unsigned int prec = TYPE_PRECISION (type);
1660   gcc_assert (prec <= values.coeffs[0].get_precision ());
1661   poly_wide_int c = poly_wide_int::from (values, prec, SIGNED);
1662 
1663   inchash::hash h;
1664   h.add_int (TYPE_UID (type));
1665   for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
1666     h.add_wide_int (c.coeffs[i]);
1667   poly_int_cst_hasher::compare_type comp (type, &c);
1668   tree *slot = poly_int_cst_hash_table->find_slot_with_hash (comp, h.end (),
1669 							     INSERT);
1670   if (*slot == NULL_TREE)
1671     {
1672       tree coeffs[NUM_POLY_INT_COEFFS];
1673       for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
1674 	coeffs[i] = wide_int_to_tree_1 (type, c.coeffs[i]);
1675       *slot = build_new_poly_int_cst (type, coeffs);
1676     }
1677   return *slot;
1678 }
1679 
1680 /* Create a constant tree with value VALUE in type TYPE.  */
1681 
1682 tree
1683 wide_int_to_tree (tree type, const poly_wide_int_ref &value)
1684 {
1685   if (value.is_constant ())
1686     return wide_int_to_tree_1 (type, value.coeffs[0]);
1687   return build_poly_int_cst (type, value);
1688 }
1689 
1690 void
1691 cache_integer_cst (tree t)
1692 {
1693   tree type = TREE_TYPE (t);
1694   int ix = -1;
1695   int limit = 0;
1696   int prec = TYPE_PRECISION (type);
1697 
1698   gcc_assert (!TREE_OVERFLOW (t));
1699 
1700   switch (TREE_CODE (type))
1701     {
1702     case NULLPTR_TYPE:
1703       gcc_assert (integer_zerop (t));
1704       /* Fallthru.  */
1705 
1706     case POINTER_TYPE:
1707     case REFERENCE_TYPE:
1708       /* Cache NULL pointer.  */
1709       if (integer_zerop (t))
1710 	{
1711 	  limit = 1;
1712 	  ix = 0;
1713 	}
1714       break;
1715 
1716     case BOOLEAN_TYPE:
1717       /* Cache false or true.  */
1718       limit = 2;
1719       if (wi::ltu_p (wi::to_wide (t), 2))
1720 	ix = TREE_INT_CST_ELT (t, 0);
1721       break;
1722 
1723     case INTEGER_TYPE:
1724     case OFFSET_TYPE:
1725       if (TYPE_UNSIGNED (type))
1726 	{
1727 	  /* Cache 0..N */
1728 	  limit = INTEGER_SHARE_LIMIT;
1729 
1730 	  /* This is a little hokie, but if the prec is smaller than
1731 	     what is necessary to hold INTEGER_SHARE_LIMIT, then the
1732 	     obvious test will not get the correct answer.  */
1733 	  if (prec < HOST_BITS_PER_WIDE_INT)
1734 	    {
1735 	      if (tree_to_uhwi (t) < (unsigned HOST_WIDE_INT) INTEGER_SHARE_LIMIT)
1736 		ix = tree_to_uhwi (t);
1737 	    }
1738 	  else if (wi::ltu_p (wi::to_wide (t), INTEGER_SHARE_LIMIT))
1739 	    ix = tree_to_uhwi (t);
1740 	}
1741       else
1742 	{
1743 	  /* Cache -1..N */
1744 	  limit = INTEGER_SHARE_LIMIT + 1;
1745 
1746 	  if (integer_minus_onep (t))
1747 	    ix = 0;
1748 	  else if (!wi::neg_p (wi::to_wide (t)))
1749 	    {
1750 	      if (prec < HOST_BITS_PER_WIDE_INT)
1751 		{
1752 		  if (tree_to_shwi (t) < INTEGER_SHARE_LIMIT)
1753 		    ix = tree_to_shwi (t) + 1;
1754 		}
1755 	      else if (wi::ltu_p (wi::to_wide (t), INTEGER_SHARE_LIMIT))
1756 		ix = tree_to_shwi (t) + 1;
1757 	    }
1758 	}
1759       break;
1760 
1761     case ENUMERAL_TYPE:
1762       break;
1763 
1764     default:
1765       gcc_unreachable ();
1766     }
1767 
1768   if (ix >= 0)
1769     {
1770       /* Look for it in the type's vector of small shared ints.  */
1771       if (!TYPE_CACHED_VALUES_P (type))
1772 	{
1773 	  TYPE_CACHED_VALUES_P (type) = 1;
1774 	  TYPE_CACHED_VALUES (type) = make_tree_vec (limit);
1775 	}
1776 
1777       gcc_assert (TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix) == NULL_TREE);
1778       TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix) = t;
1779     }
1780   else
1781     {
1782       /* Use the cache of larger shared ints.  */
1783       tree *slot = int_cst_hash_table->find_slot (t, INSERT);
1784       /* If there is already an entry for the number verify it's the
1785          same.  */
1786       if (*slot)
1787 	gcc_assert (wi::to_wide (tree (*slot)) == wi::to_wide (t));
1788       else
1789 	/* Otherwise insert this one into the hash table.  */
1790 	*slot = t;
1791     }
1792 }
1793 
1794 
1795 /* Builds an integer constant in TYPE such that lowest BITS bits are ones
1796    and the rest are zeros.  */
1797 
1798 tree
1799 build_low_bits_mask (tree type, unsigned bits)
1800 {
1801   gcc_assert (bits <= TYPE_PRECISION (type));
1802 
1803   return wide_int_to_tree (type, wi::mask (bits, false,
1804 					   TYPE_PRECISION (type)));
1805 }
1806 
1807 /* Checks that X is integer constant that can be expressed in (unsigned)
1808    HOST_WIDE_INT without loss of precision.  */
1809 
1810 bool
1811 cst_and_fits_in_hwi (const_tree x)
1812 {
1813   return (TREE_CODE (x) == INTEGER_CST
1814 	  && (tree_fits_shwi_p (x) || tree_fits_uhwi_p (x)));
1815 }
1816 
1817 /* Build a newly constructed VECTOR_CST with the given values of
1818    (VECTOR_CST_)LOG2_NPATTERNS and (VECTOR_CST_)NELTS_PER_PATTERN.  */
1819 
1820 tree
1821 make_vector (unsigned log2_npatterns,
1822 	     unsigned int nelts_per_pattern MEM_STAT_DECL)
1823 {
1824   gcc_assert (IN_RANGE (nelts_per_pattern, 1, 3));
1825   tree t;
1826   unsigned npatterns = 1 << log2_npatterns;
1827   unsigned encoded_nelts = npatterns * nelts_per_pattern;
1828   unsigned length = (sizeof (struct tree_vector)
1829 		     + (encoded_nelts - 1) * sizeof (tree));
1830 
1831   record_node_allocation_statistics (VECTOR_CST, length);
1832 
1833   t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);
1834 
1835   TREE_SET_CODE (t, VECTOR_CST);
1836   TREE_CONSTANT (t) = 1;
1837   VECTOR_CST_LOG2_NPATTERNS (t) = log2_npatterns;
1838   VECTOR_CST_NELTS_PER_PATTERN (t) = nelts_per_pattern;
1839 
1840   return t;
1841 }
1842 
1843 /* Return a new VECTOR_CST node whose type is TYPE and whose values
1844    are extracted from V, a vector of CONSTRUCTOR_ELT.  */
1845 
1846 tree
1847 build_vector_from_ctor (tree type, vec<constructor_elt, va_gc> *v)
1848 {
1849   unsigned HOST_WIDE_INT idx, nelts;
1850   tree value;
1851 
1852   /* We can't construct a VECTOR_CST for a variable number of elements.  */
1853   nelts = TYPE_VECTOR_SUBPARTS (type).to_constant ();
1854   tree_vector_builder vec (type, nelts, 1);
1855   FOR_EACH_CONSTRUCTOR_VALUE (v, idx, value)
1856     {
1857       if (TREE_CODE (value) == VECTOR_CST)
1858 	{
1859 	  /* If NELTS is constant then this must be too.  */
1860 	  unsigned int sub_nelts = VECTOR_CST_NELTS (value).to_constant ();
1861 	  for (unsigned i = 0; i < sub_nelts; ++i)
1862 	    vec.quick_push (VECTOR_CST_ELT (value, i));
1863 	}
1864       else
1865 	vec.quick_push (value);
1866     }
1867   while (vec.length () < nelts)
1868     vec.quick_push (build_zero_cst (TREE_TYPE (type)));
1869 
1870   return vec.build ();
1871 }
1872 
1873 /* Build a vector of type VECTYPE where all the elements are SCs.  */
1874 tree
1875 build_vector_from_val (tree vectype, tree sc)
1876 {
1877   unsigned HOST_WIDE_INT i, nunits;
1878 
1879   if (sc == error_mark_node)
1880     return sc;
1881 
1882   /* Verify that the vector type is suitable for SC.  Note that there
1883      is some inconsistency in the type-system with respect to restrict
1884      qualifications of pointers.  Vector types always have a main-variant
1885      element type and the qualification is applied to the vector-type.
1886      So TREE_TYPE (vector-type) does not return a properly qualified
1887      vector element-type.  */
1888   gcc_checking_assert (types_compatible_p (TYPE_MAIN_VARIANT (TREE_TYPE (sc)),
1889 					   TREE_TYPE (vectype)));
1890 
1891   if (CONSTANT_CLASS_P (sc))
1892     {
1893       tree_vector_builder v (vectype, 1, 1);
1894       v.quick_push (sc);
1895       return v.build ();
1896     }
1897   else if (!TYPE_VECTOR_SUBPARTS (vectype).is_constant (&nunits))
1898     return fold_build1 (VEC_DUPLICATE_EXPR, vectype, sc);
1899   else
1900     {
1901       vec<constructor_elt, va_gc> *v;
1902       vec_alloc (v, nunits);
1903       for (i = 0; i < nunits; ++i)
1904 	CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, sc);
1905       return build_constructor (vectype, v);
1906     }
1907 }
1908 
1909 /* If TYPE is not a vector type, just return SC, otherwise return
1910    build_vector_from_val (TYPE, SC).  */
1911 
1912 tree
1913 build_uniform_cst (tree type, tree sc)
1914 {
1915   if (!VECTOR_TYPE_P (type))
1916     return sc;
1917 
1918   return build_vector_from_val (type, sc);
1919 }
1920 
1921 /* Build a vector series of type TYPE in which element I has the value
1922    BASE + I * STEP.  The result is a constant if BASE and STEP are constant
1923    and a VEC_SERIES_EXPR otherwise.  */
1924 
1925 tree
1926 build_vec_series (tree type, tree base, tree step)
1927 {
1928   if (integer_zerop (step))
1929     return build_vector_from_val (type, base);
1930   if (TREE_CODE (base) == INTEGER_CST && TREE_CODE (step) == INTEGER_CST)
1931     {
1932       tree_vector_builder builder (type, 1, 3);
1933       tree elt1 = wide_int_to_tree (TREE_TYPE (base),
1934 				    wi::to_wide (base) + wi::to_wide (step));
1935       tree elt2 = wide_int_to_tree (TREE_TYPE (base),
1936 				    wi::to_wide (elt1) + wi::to_wide (step));
1937       builder.quick_push (base);
1938       builder.quick_push (elt1);
1939       builder.quick_push (elt2);
1940       return builder.build ();
1941     }
1942   return build2 (VEC_SERIES_EXPR, type, base, step);
1943 }
1944 
1945 /* Return a vector with the same number of units and number of bits
1946    as VEC_TYPE, but in which the elements are a linear series of unsigned
1947    integers { BASE, BASE + STEP, BASE + STEP * 2, ... }.  */
1948 
1949 tree
1950 build_index_vector (tree vec_type, poly_uint64 base, poly_uint64 step)
1951 {
1952   tree index_vec_type = vec_type;
1953   tree index_elt_type = TREE_TYPE (vec_type);
1954   poly_uint64 nunits = TYPE_VECTOR_SUBPARTS (vec_type);
1955   if (!INTEGRAL_TYPE_P (index_elt_type) || !TYPE_UNSIGNED (index_elt_type))
1956     {
1957       index_elt_type = build_nonstandard_integer_type
1958 	(GET_MODE_BITSIZE (SCALAR_TYPE_MODE (index_elt_type)), true);
1959       index_vec_type = build_vector_type (index_elt_type, nunits);
1960     }
1961 
1962   tree_vector_builder v (index_vec_type, 1, 3);
1963   for (unsigned int i = 0; i < 3; ++i)
1964     v.quick_push (build_int_cstu (index_elt_type, base + i * step));
1965   return v.build ();
1966 }
1967 
1968 /* Something has messed with the elements of CONSTRUCTOR C after it was built;
1969    calculate TREE_CONSTANT and TREE_SIDE_EFFECTS.  */
1970 
1971 void
1972 recompute_constructor_flags (tree c)
1973 {
1974   unsigned int i;
1975   tree val;
1976   bool constant_p = true;
1977   bool side_effects_p = false;
1978   vec<constructor_elt, va_gc> *vals = CONSTRUCTOR_ELTS (c);
1979 
1980   FOR_EACH_CONSTRUCTOR_VALUE (vals, i, val)
1981     {
1982       /* Mostly ctors will have elts that don't have side-effects, so
1983 	 the usual case is to scan all the elements.  Hence a single
1984 	 loop for both const and side effects, rather than one loop
1985 	 each (with early outs).  */
1986       if (!TREE_CONSTANT (val))
1987 	constant_p = false;
1988       if (TREE_SIDE_EFFECTS (val))
1989 	side_effects_p = true;
1990     }
1991 
1992   TREE_SIDE_EFFECTS (c) = side_effects_p;
1993   TREE_CONSTANT (c) = constant_p;
1994 }
1995 
1996 /* Make sure that TREE_CONSTANT and TREE_SIDE_EFFECTS are correct for
1997    CONSTRUCTOR C.  */
1998 
1999 void
2000 verify_constructor_flags (tree c)
2001 {
2002   unsigned int i;
2003   tree val;
2004   bool constant_p = TREE_CONSTANT (c);
2005   bool side_effects_p = TREE_SIDE_EFFECTS (c);
2006   vec<constructor_elt, va_gc> *vals = CONSTRUCTOR_ELTS (c);
2007 
2008   FOR_EACH_CONSTRUCTOR_VALUE (vals, i, val)
2009     {
2010       if (constant_p && !TREE_CONSTANT (val))
2011 	internal_error ("non-constant element in constant CONSTRUCTOR");
2012       if (!side_effects_p && TREE_SIDE_EFFECTS (val))
2013 	internal_error ("side-effects element in no-side-effects CONSTRUCTOR");
2014     }
2015 }
2016 
2017 /* Return a new CONSTRUCTOR node whose type is TYPE and whose values
2018    are in the vec pointed to by VALS.  */
2019 tree
2020 build_constructor (tree type, vec<constructor_elt, va_gc> *vals)
2021 {
2022   tree c = make_node (CONSTRUCTOR);
2023 
2024   TREE_TYPE (c) = type;
2025   CONSTRUCTOR_ELTS (c) = vals;
2026 
2027   recompute_constructor_flags (c);
2028 
2029   return c;
2030 }
2031 
2032 /* Build a CONSTRUCTOR node made of a single initializer, with the specified
2033    INDEX and VALUE.  */
2034 tree
2035 build_constructor_single (tree type, tree index, tree value)
2036 {
2037   vec<constructor_elt, va_gc> *v;
2038   constructor_elt elt = {index, value};
2039 
2040   vec_alloc (v, 1);
2041   v->quick_push (elt);
2042 
2043   return build_constructor (type, v);
2044 }
2045 
2046 
2047 /* Return a new CONSTRUCTOR node whose type is TYPE and whose values
2048    are in a list pointed to by VALS.  */
2049 tree
2050 build_constructor_from_list (tree type, tree vals)
2051 {
2052   tree t;
2053   vec<constructor_elt, va_gc> *v = NULL;
2054 
2055   if (vals)
2056     {
2057       vec_alloc (v, list_length (vals));
2058       for (t = vals; t; t = TREE_CHAIN (t))
2059 	CONSTRUCTOR_APPEND_ELT (v, TREE_PURPOSE (t), TREE_VALUE (t));
2060     }
2061 
2062   return build_constructor (type, v);
2063 }
2064 
2065 /* Return a new CONSTRUCTOR node whose type is TYPE.  NELTS is the number
2066    of elements, provided as index/value pairs.  */
2067 
2068 tree
2069 build_constructor_va (tree type, int nelts, ...)
2070 {
2071   vec<constructor_elt, va_gc> *v = NULL;
2072   va_list p;
2073 
2074   va_start (p, nelts);
2075   vec_alloc (v, nelts);
2076   while (nelts--)
2077     {
2078       tree index = va_arg (p, tree);
2079       tree value = va_arg (p, tree);
2080       CONSTRUCTOR_APPEND_ELT (v, index, value);
2081     }
2082   va_end (p);
2083   return build_constructor (type, v);
2084 }
2085 
2086 /* Return a node of type TYPE for which TREE_CLOBBER_P is true.  */
2087 
2088 tree
2089 build_clobber (tree type)
2090 {
2091   tree clobber = build_constructor (type, NULL);
2092   TREE_THIS_VOLATILE (clobber) = true;
2093   return clobber;
2094 }
2095 
2096 /* Return a new FIXED_CST node whose type is TYPE and value is F.  */
2097 
2098 tree
2099 build_fixed (tree type, FIXED_VALUE_TYPE f)
2100 {
2101   tree v;
2102   FIXED_VALUE_TYPE *fp;
2103 
2104   v = make_node (FIXED_CST);
2105   fp = ggc_alloc<fixed_value> ();
2106   memcpy (fp, &f, sizeof (FIXED_VALUE_TYPE));
2107 
2108   TREE_TYPE (v) = type;
2109   TREE_FIXED_CST_PTR (v) = fp;
2110   return v;
2111 }
2112 
2113 /* Return a new REAL_CST node whose type is TYPE and value is D.  */
2114 
2115 tree
2116 build_real (tree type, REAL_VALUE_TYPE d)
2117 {
2118   tree v;
2119   REAL_VALUE_TYPE *dp;
2120   int overflow = 0;
2121 
2122   /* ??? Used to check for overflow here via CHECK_FLOAT_TYPE.
2123      Consider doing it via real_convert now.  */
2124 
2125   v = make_node (REAL_CST);
2126   dp = ggc_alloc<real_value> ();
2127   memcpy (dp, &d, sizeof (REAL_VALUE_TYPE));
2128 
2129   TREE_TYPE (v) = type;
2130   TREE_REAL_CST_PTR (v) = dp;
2131   TREE_OVERFLOW (v) = overflow;
2132   return v;
2133 }
2134 
2135 /* Like build_real, but first truncate D to the type.  */
2136 
2137 tree
2138 build_real_truncate (tree type, REAL_VALUE_TYPE d)
2139 {
2140   return build_real (type, real_value_truncate (TYPE_MODE (type), d));
2141 }
2142 
2143 /* Return a new REAL_CST node whose type is TYPE
2144    and whose value is the integer value of the INTEGER_CST node I.  */
2145 
2146 REAL_VALUE_TYPE
2147 real_value_from_int_cst (const_tree type, const_tree i)
2148 {
2149   REAL_VALUE_TYPE d;
2150 
2151   /* Clear all bits of the real value type so that we can later do
2152      bitwise comparisons to see if two values are the same.  */
2153   memset (&d, 0, sizeof d);
2154 
2155   real_from_integer (&d, type ? TYPE_MODE (type) : VOIDmode, wi::to_wide (i),
2156 		     TYPE_SIGN (TREE_TYPE (i)));
2157   return d;
2158 }
2159 
2160 /* Given a tree representing an integer constant I, return a tree
2161    representing the same value as a floating-point constant of type TYPE.  */
2162 
2163 tree
2164 build_real_from_int_cst (tree type, const_tree i)
2165 {
2166   tree v;
2167   int overflow = TREE_OVERFLOW (i);
2168 
2169   v = build_real (type, real_value_from_int_cst (type, i));
2170 
2171   TREE_OVERFLOW (v) |= overflow;
2172   return v;
2173 }
2174 
2175 /* Return a newly constructed STRING_CST node whose value is the LEN
2176    characters at STR when STR is nonnull, or all zeros otherwise.
2177    Note that for a C string literal, LEN should include the trailing NUL.
2178    The TREE_TYPE is not initialized.  */
2179 
2180 tree
2181 build_string (unsigned len, const char *str /*= NULL */)
2182 {
2183   /* Do not waste bytes provided by padding of struct tree_string.  */
2184   unsigned size = len + offsetof (struct tree_string, str) + 1;
2185 
2186   record_node_allocation_statistics (STRING_CST, size);
2187 
2188   tree s = (tree) ggc_internal_alloc (size);
2189 
2190   memset (s, 0, sizeof (struct tree_typed));
2191   TREE_SET_CODE (s, STRING_CST);
2192   TREE_CONSTANT (s) = 1;
2193   TREE_STRING_LENGTH (s) = len;
2194   if (str)
2195     memcpy (s->string.str, str, len);
2196   else
2197     memset (s->string.str, 0, len);
2198   s->string.str[len] = '\0';
2199 
2200   return s;
2201 }
2202 
2203 /* Return a newly constructed COMPLEX_CST node whose value is
2204    specified by the real and imaginary parts REAL and IMAG.
2205    Both REAL and IMAG should be constant nodes.  TYPE, if specified,
2206    will be the type of the COMPLEX_CST; otherwise a new type will be made.  */
2207 
2208 tree
2209 build_complex (tree type, tree real, tree imag)
2210 {
2211   gcc_assert (CONSTANT_CLASS_P (real));
2212   gcc_assert (CONSTANT_CLASS_P (imag));
2213 
2214   tree t = make_node (COMPLEX_CST);
2215 
2216   TREE_REALPART (t) = real;
2217   TREE_IMAGPART (t) = imag;
2218   TREE_TYPE (t) = type ? type : build_complex_type (TREE_TYPE (real));
2219   TREE_OVERFLOW (t) = TREE_OVERFLOW (real) | TREE_OVERFLOW (imag);
2220   return t;
2221 }
2222 
2223 /* Build a complex (inf +- 0i), such as for the result of cproj.
2224    TYPE is the complex tree type of the result.  If NEG is true, the
2225    imaginary zero is negative.  */
2226 
2227 tree
2228 build_complex_inf (tree type, bool neg)
2229 {
2230   REAL_VALUE_TYPE rinf, rzero = dconst0;
2231 
2232   real_inf (&rinf);
2233   rzero.sign = neg;
2234   return build_complex (type, build_real (TREE_TYPE (type), rinf),
2235 			build_real (TREE_TYPE (type), rzero));
2236 }
2237 
2238 /* Return the constant 1 in type TYPE.  If TYPE has several elements, each
2239    element is set to 1.  In particular, this is 1 + i for complex types.  */
2240 
2241 tree
2242 build_each_one_cst (tree type)
2243 {
2244   if (TREE_CODE (type) == COMPLEX_TYPE)
2245     {
2246       tree scalar = build_one_cst (TREE_TYPE (type));
2247       return build_complex (type, scalar, scalar);
2248     }
2249   else
2250     return build_one_cst (type);
2251 }
2252 
2253 /* Return a constant of arithmetic type TYPE which is the
2254    multiplicative identity of the set TYPE.  */
2255 
2256 tree
2257 build_one_cst (tree type)
2258 {
2259   switch (TREE_CODE (type))
2260     {
2261     case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
2262     case POINTER_TYPE: case REFERENCE_TYPE:
2263     case OFFSET_TYPE:
2264       return build_int_cst (type, 1);
2265 
2266     case REAL_TYPE:
2267       return build_real (type, dconst1);
2268 
2269     case FIXED_POINT_TYPE:
2270       /* We can only generate 1 for accum types.  */
2271       gcc_assert (ALL_SCALAR_ACCUM_MODE_P (TYPE_MODE (type)));
2272       return build_fixed (type, FCONST1 (TYPE_MODE (type)));
2273 
2274     case VECTOR_TYPE:
2275       {
2276 	tree scalar = build_one_cst (TREE_TYPE (type));
2277 
2278 	return build_vector_from_val (type, scalar);
2279       }
2280 
2281     case COMPLEX_TYPE:
2282       return build_complex (type,
2283 			    build_one_cst (TREE_TYPE (type)),
2284 			    build_zero_cst (TREE_TYPE (type)));
2285 
2286     default:
2287       gcc_unreachable ();
2288     }
2289 }
2290 
2291 /* Return an integer of type TYPE containing all 1's in as much precision as
2292    it contains, or a complex or vector whose subparts are such integers.  */
2293 
2294 tree
2295 build_all_ones_cst (tree type)
2296 {
2297   if (TREE_CODE (type) == COMPLEX_TYPE)
2298     {
2299       tree scalar = build_all_ones_cst (TREE_TYPE (type));
2300       return build_complex (type, scalar, scalar);
2301     }
2302   else
2303     return build_minus_one_cst (type);
2304 }
2305 
2306 /* Return a constant of arithmetic type TYPE which is the
2307    opposite of the multiplicative identity of the set TYPE.  */
2308 
2309 tree
2310 build_minus_one_cst (tree type)
2311 {
2312   switch (TREE_CODE (type))
2313     {
2314     case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
2315     case POINTER_TYPE: case REFERENCE_TYPE:
2316     case OFFSET_TYPE:
2317       return build_int_cst (type, -1);
2318 
2319     case REAL_TYPE:
2320       return build_real (type, dconstm1);
2321 
2322     case FIXED_POINT_TYPE:
2323       /* We can only generate 1 for accum types.  */
2324       gcc_assert (ALL_SCALAR_ACCUM_MODE_P (TYPE_MODE (type)));
2325       return build_fixed (type,
2326 			  fixed_from_double_int (double_int_minus_one,
2327 						 SCALAR_TYPE_MODE (type)));
2328 
2329     case VECTOR_TYPE:
2330       {
2331 	tree scalar = build_minus_one_cst (TREE_TYPE (type));
2332 
2333 	return build_vector_from_val (type, scalar);
2334       }
2335 
2336     case COMPLEX_TYPE:
2337       return build_complex (type,
2338 			    build_minus_one_cst (TREE_TYPE (type)),
2339 			    build_zero_cst (TREE_TYPE (type)));
2340 
2341     default:
2342       gcc_unreachable ();
2343     }
2344 }
2345 
2346 /* Build 0 constant of type TYPE.  This is used by constructor folding
2347    and thus the constant should be represented in memory by
2348    zero(es).  */
2349 
2350 tree
2351 build_zero_cst (tree type)
2352 {
2353   switch (TREE_CODE (type))
2354     {
2355     case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
2356     case POINTER_TYPE: case REFERENCE_TYPE:
2357     case OFFSET_TYPE: case NULLPTR_TYPE:
2358       return build_int_cst (type, 0);
2359 
2360     case REAL_TYPE:
2361       return build_real (type, dconst0);
2362 
2363     case FIXED_POINT_TYPE:
2364       return build_fixed (type, FCONST0 (TYPE_MODE (type)));
2365 
2366     case VECTOR_TYPE:
2367       {
2368 	tree scalar = build_zero_cst (TREE_TYPE (type));
2369 
2370 	return build_vector_from_val (type, scalar);
2371       }
2372 
2373     case COMPLEX_TYPE:
2374       {
2375 	tree zero = build_zero_cst (TREE_TYPE (type));
2376 
2377 	return build_complex (type, zero, zero);
2378       }
2379 
2380     default:
2381       if (!AGGREGATE_TYPE_P (type))
2382 	return fold_convert (type, integer_zero_node);
2383       return build_constructor (type, NULL);
2384     }
2385 }
2386 
2387 
2388 /* Build a BINFO with LEN language slots.  */
2389 
2390 tree
2391 make_tree_binfo (unsigned base_binfos MEM_STAT_DECL)
2392 {
2393   tree t;
2394   size_t length = (offsetof (struct tree_binfo, base_binfos)
2395 		   + vec<tree, va_gc>::embedded_size (base_binfos));
2396 
2397   record_node_allocation_statistics (TREE_BINFO, length);
2398 
2399   t = ggc_alloc_tree_node_stat (length PASS_MEM_STAT);
2400 
2401   memset (t, 0, offsetof (struct tree_binfo, base_binfos));
2402 
2403   TREE_SET_CODE (t, TREE_BINFO);
2404 
2405   BINFO_BASE_BINFOS (t)->embedded_init (base_binfos);
2406 
2407   return t;
2408 }
2409 
2410 /* Create a CASE_LABEL_EXPR tree node and return it.  */
2411 
2412 tree
2413 build_case_label (tree low_value, tree high_value, tree label_decl)
2414 {
2415   tree t = make_node (CASE_LABEL_EXPR);
2416 
2417   TREE_TYPE (t) = void_type_node;
2418   SET_EXPR_LOCATION (t, DECL_SOURCE_LOCATION (label_decl));
2419 
2420   CASE_LOW (t) = low_value;
2421   CASE_HIGH (t) = high_value;
2422   CASE_LABEL (t) = label_decl;
2423   CASE_CHAIN (t) = NULL_TREE;
2424 
2425   return t;
2426 }
2427 
2428 /* Build a newly constructed INTEGER_CST node.  LEN and EXT_LEN are the
2429    values of TREE_INT_CST_NUNITS and TREE_INT_CST_EXT_NUNITS respectively.
2430    The latter determines the length of the HOST_WIDE_INT vector.  */
2431 
2432 tree
2433 make_int_cst (int len, int ext_len MEM_STAT_DECL)
2434 {
2435   tree t;
2436   int length = ((ext_len - 1) * sizeof (HOST_WIDE_INT)
2437 		+ sizeof (struct tree_int_cst));
2438 
2439   gcc_assert (len);
2440   record_node_allocation_statistics (INTEGER_CST, length);
2441 
2442   t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);
2443 
2444   TREE_SET_CODE (t, INTEGER_CST);
2445   TREE_INT_CST_NUNITS (t) = len;
2446   TREE_INT_CST_EXT_NUNITS (t) = ext_len;
2447   /* to_offset can only be applied to trees that are offset_int-sized
2448      or smaller.  EXT_LEN is correct if it fits, otherwise the constant
2449      must be exactly the precision of offset_int and so LEN is correct.  */
2450   if (ext_len <= OFFSET_INT_ELTS)
2451     TREE_INT_CST_OFFSET_NUNITS (t) = ext_len;
2452   else
2453     TREE_INT_CST_OFFSET_NUNITS (t) = len;
2454 
2455   TREE_CONSTANT (t) = 1;
2456 
2457   return t;
2458 }
2459 
2460 /* Build a newly constructed TREE_VEC node of length LEN.  */
2461 
2462 tree
2463 make_tree_vec (int len MEM_STAT_DECL)
2464 {
2465   tree t;
2466   size_t length = (len - 1) * sizeof (tree) + sizeof (struct tree_vec);
2467 
2468   record_node_allocation_statistics (TREE_VEC, length);
2469 
2470   t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);
2471 
2472   TREE_SET_CODE (t, TREE_VEC);
2473   TREE_VEC_LENGTH (t) = len;
2474 
2475   return t;
2476 }
2477 
2478 /* Grow a TREE_VEC node to new length LEN.  */
2479 
2480 tree
2481 grow_tree_vec (tree v, int len MEM_STAT_DECL)
2482 {
2483   gcc_assert (TREE_CODE (v) == TREE_VEC);
2484 
2485   int oldlen = TREE_VEC_LENGTH (v);
2486   gcc_assert (len > oldlen);
2487 
2488   size_t oldlength = (oldlen - 1) * sizeof (tree) + sizeof (struct tree_vec);
2489   size_t length = (len - 1) * sizeof (tree) + sizeof (struct tree_vec);
2490 
2491   record_node_allocation_statistics (TREE_VEC, length - oldlength);
2492 
2493   v = (tree) ggc_realloc (v, length PASS_MEM_STAT);
2494 
2495   TREE_VEC_LENGTH (v) = len;
2496 
2497   return v;
2498 }
2499 
2500 /* Return 1 if EXPR is the constant zero, whether it is integral, float or
2501    fixed, and scalar, complex or vector.  */
2502 
2503 bool
2504 zerop (const_tree expr)
2505 {
2506   return (integer_zerop (expr)
2507 	  || real_zerop (expr)
2508 	  || fixed_zerop (expr));
2509 }
2510 
2511 /* Return 1 if EXPR is the integer constant zero or a complex constant
2512    of zero, or a location wrapper for such a constant.  */
2513 
2514 bool
2515 integer_zerop (const_tree expr)
2516 {
2517   STRIP_ANY_LOCATION_WRAPPER (expr);
2518 
2519   switch (TREE_CODE (expr))
2520     {
2521     case INTEGER_CST:
2522       return wi::to_wide (expr) == 0;
2523     case COMPLEX_CST:
2524       return (integer_zerop (TREE_REALPART (expr))
2525 	      && integer_zerop (TREE_IMAGPART (expr)));
2526     case VECTOR_CST:
2527       return (VECTOR_CST_NPATTERNS (expr) == 1
2528 	      && VECTOR_CST_DUPLICATE_P (expr)
2529 	      && integer_zerop (VECTOR_CST_ENCODED_ELT (expr, 0)));
2530     default:
2531       return false;
2532     }
2533 }
2534 
2535 /* Return 1 if EXPR is the integer constant one or the corresponding
2536    complex constant, or a location wrapper for such a constant.  */
2537 
2538 bool
2539 integer_onep (const_tree expr)
2540 {
2541   STRIP_ANY_LOCATION_WRAPPER (expr);
2542 
2543   switch (TREE_CODE (expr))
2544     {
2545     case INTEGER_CST:
2546       return wi::eq_p (wi::to_widest (expr), 1);
2547     case COMPLEX_CST:
2548       return (integer_onep (TREE_REALPART (expr))
2549 	      && integer_zerop (TREE_IMAGPART (expr)));
2550     case VECTOR_CST:
2551       return (VECTOR_CST_NPATTERNS (expr) == 1
2552 	      && VECTOR_CST_DUPLICATE_P (expr)
2553 	      && integer_onep (VECTOR_CST_ENCODED_ELT (expr, 0)));
2554     default:
2555       return false;
2556     }
2557 }
2558 
2559 /* Return 1 if EXPR is the integer constant one.  For complex and vector,
2560    return 1 if every piece is the integer constant one.
2561    Also return 1 for location wrappers for such a constant.  */
2562 
2563 bool
2564 integer_each_onep (const_tree expr)
2565 {
2566   STRIP_ANY_LOCATION_WRAPPER (expr);
2567 
2568   if (TREE_CODE (expr) == COMPLEX_CST)
2569     return (integer_onep (TREE_REALPART (expr))
2570 	    && integer_onep (TREE_IMAGPART (expr)));
2571   else
2572     return integer_onep (expr);
2573 }
2574 
2575 /* Return 1 if EXPR is an integer containing all 1's in as much precision as
2576    it contains, or a complex or vector whose subparts are such integers,
2577    or a location wrapper for such a constant.  */
2578 
2579 bool
2580 integer_all_onesp (const_tree expr)
2581 {
2582   STRIP_ANY_LOCATION_WRAPPER (expr);
2583 
2584   if (TREE_CODE (expr) == COMPLEX_CST
2585       && integer_all_onesp (TREE_REALPART (expr))
2586       && integer_all_onesp (TREE_IMAGPART (expr)))
2587     return true;
2588 
2589   else if (TREE_CODE (expr) == VECTOR_CST)
2590     return (VECTOR_CST_NPATTERNS (expr) == 1
2591 	    && VECTOR_CST_DUPLICATE_P (expr)
2592 	    && integer_all_onesp (VECTOR_CST_ENCODED_ELT (expr, 0)));
2593 
2594   else if (TREE_CODE (expr) != INTEGER_CST)
2595     return false;
2596 
2597   return (wi::max_value (TYPE_PRECISION (TREE_TYPE (expr)), UNSIGNED)
2598 	  == wi::to_wide (expr));
2599 }
2600 
2601 /* Return 1 if EXPR is the integer constant minus one, or a location wrapper
2602    for such a constant.  */
2603 
2604 bool
2605 integer_minus_onep (const_tree expr)
2606 {
2607   STRIP_ANY_LOCATION_WRAPPER (expr);
2608 
2609   if (TREE_CODE (expr) == COMPLEX_CST)
2610     return (integer_all_onesp (TREE_REALPART (expr))
2611 	    && integer_zerop (TREE_IMAGPART (expr)));
2612   else
2613     return integer_all_onesp (expr);
2614 }
2615 
2616 /* Return 1 if EXPR is an integer constant that is a power of 2 (i.e., has only
2617    one bit on), or a location wrapper for such a constant.  */
2618 
2619 bool
2620 integer_pow2p (const_tree expr)
2621 {
2622   STRIP_ANY_LOCATION_WRAPPER (expr);
2623 
2624   if (TREE_CODE (expr) == COMPLEX_CST
2625       && integer_pow2p (TREE_REALPART (expr))
2626       && integer_zerop (TREE_IMAGPART (expr)))
2627     return true;
2628 
2629   if (TREE_CODE (expr) != INTEGER_CST)
2630     return false;
2631 
2632   return wi::popcount (wi::to_wide (expr)) == 1;
2633 }
2634 
2635 /* Return 1 if EXPR is an integer constant other than zero or a
2636    complex constant other than zero, or a location wrapper for such a
2637    constant.  */
2638 
2639 bool
2640 integer_nonzerop (const_tree expr)
2641 {
2642   STRIP_ANY_LOCATION_WRAPPER (expr);
2643 
2644   return ((TREE_CODE (expr) == INTEGER_CST
2645 	   && wi::to_wide (expr) != 0)
2646 	  || (TREE_CODE (expr) == COMPLEX_CST
2647 	      && (integer_nonzerop (TREE_REALPART (expr))
2648 		  || integer_nonzerop (TREE_IMAGPART (expr)))));
2649 }
2650 
2651 /* Return 1 if EXPR is the integer constant one.  For vector,
2652    return 1 if every piece is the integer constant minus one
2653    (representing the value TRUE).
2654    Also return 1 for location wrappers for such a constant.  */
2655 
2656 bool
2657 integer_truep (const_tree expr)
2658 {
2659   STRIP_ANY_LOCATION_WRAPPER (expr);
2660 
2661   if (TREE_CODE (expr) == VECTOR_CST)
2662     return integer_all_onesp (expr);
2663   return integer_onep (expr);
2664 }
2665 
2666 /* Return 1 if EXPR is the fixed-point constant zero, or a location wrapper
2667    for such a constant.  */
2668 
2669 bool
2670 fixed_zerop (const_tree expr)
2671 {
2672   STRIP_ANY_LOCATION_WRAPPER (expr);
2673 
2674   return (TREE_CODE (expr) == FIXED_CST
2675 	  && TREE_FIXED_CST (expr).data.is_zero ());
2676 }
2677 
2678 /* Return the power of two represented by a tree node known to be a
2679    power of two.  */
2680 
2681 int
2682 tree_log2 (const_tree expr)
2683 {
2684   if (TREE_CODE (expr) == COMPLEX_CST)
2685     return tree_log2 (TREE_REALPART (expr));
2686 
2687   return wi::exact_log2 (wi::to_wide (expr));
2688 }
2689 
2690 /* Similar, but return the largest integer Y such that 2 ** Y is less
2691    than or equal to EXPR.  */
2692 
2693 int
2694 tree_floor_log2 (const_tree expr)
2695 {
2696   if (TREE_CODE (expr) == COMPLEX_CST)
2697     return tree_log2 (TREE_REALPART (expr));
2698 
2699   return wi::floor_log2 (wi::to_wide (expr));
2700 }
2701 
2702 /* Return number of known trailing zero bits in EXPR, or, if the value of
2703    EXPR is known to be zero, the precision of it's type.  */
2704 
2705 unsigned int
2706 tree_ctz (const_tree expr)
2707 {
2708   if (!INTEGRAL_TYPE_P (TREE_TYPE (expr))
2709       && !POINTER_TYPE_P (TREE_TYPE (expr)))
2710     return 0;
2711 
2712   unsigned int ret1, ret2, prec = TYPE_PRECISION (TREE_TYPE (expr));
2713   switch (TREE_CODE (expr))
2714     {
2715     case INTEGER_CST:
2716       ret1 = wi::ctz (wi::to_wide (expr));
2717       return MIN (ret1, prec);
2718     case SSA_NAME:
2719       ret1 = wi::ctz (get_nonzero_bits (expr));
2720       return MIN (ret1, prec);
2721     case PLUS_EXPR:
2722     case MINUS_EXPR:
2723     case BIT_IOR_EXPR:
2724     case BIT_XOR_EXPR:
2725     case MIN_EXPR:
2726     case MAX_EXPR:
2727       ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2728       if (ret1 == 0)
2729 	return ret1;
2730       ret2 = tree_ctz (TREE_OPERAND (expr, 1));
2731       return MIN (ret1, ret2);
2732     case POINTER_PLUS_EXPR:
2733       ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2734       ret2 = tree_ctz (TREE_OPERAND (expr, 1));
2735       /* Second operand is sizetype, which could be in theory
2736 	 wider than pointer's precision.  Make sure we never
2737 	 return more than prec.  */
2738       ret2 = MIN (ret2, prec);
2739       return MIN (ret1, ret2);
2740     case BIT_AND_EXPR:
2741       ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2742       ret2 = tree_ctz (TREE_OPERAND (expr, 1));
2743       return MAX (ret1, ret2);
2744     case MULT_EXPR:
2745       ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2746       ret2 = tree_ctz (TREE_OPERAND (expr, 1));
2747       return MIN (ret1 + ret2, prec);
2748     case LSHIFT_EXPR:
2749       ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2750       if (tree_fits_uhwi_p (TREE_OPERAND (expr, 1))
2751 	  && (tree_to_uhwi (TREE_OPERAND (expr, 1)) < prec))
2752 	{
2753 	  ret2 = tree_to_uhwi (TREE_OPERAND (expr, 1));
2754 	  return MIN (ret1 + ret2, prec);
2755 	}
2756       return ret1;
2757     case RSHIFT_EXPR:
2758       if (tree_fits_uhwi_p (TREE_OPERAND (expr, 1))
2759 	  && (tree_to_uhwi (TREE_OPERAND (expr, 1)) < prec))
2760 	{
2761 	  ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2762 	  ret2 = tree_to_uhwi (TREE_OPERAND (expr, 1));
2763 	  if (ret1 > ret2)
2764 	    return ret1 - ret2;
2765 	}
2766       return 0;
2767     case TRUNC_DIV_EXPR:
2768     case CEIL_DIV_EXPR:
2769     case FLOOR_DIV_EXPR:
2770     case ROUND_DIV_EXPR:
2771     case EXACT_DIV_EXPR:
2772       if (TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST
2773 	  && tree_int_cst_sgn (TREE_OPERAND (expr, 1)) == 1)
2774 	{
2775 	  int l = tree_log2 (TREE_OPERAND (expr, 1));
2776 	  if (l >= 0)
2777 	    {
2778 	      ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2779 	      ret2 = l;
2780 	      if (ret1 > ret2)
2781 		return ret1 - ret2;
2782 	    }
2783 	}
2784       return 0;
2785     CASE_CONVERT:
2786       ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2787       if (ret1 && ret1 == TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (expr, 0))))
2788 	ret1 = prec;
2789       return MIN (ret1, prec);
2790     case SAVE_EXPR:
2791       return tree_ctz (TREE_OPERAND (expr, 0));
2792     case COND_EXPR:
2793       ret1 = tree_ctz (TREE_OPERAND (expr, 1));
2794       if (ret1 == 0)
2795 	return 0;
2796       ret2 = tree_ctz (TREE_OPERAND (expr, 2));
2797       return MIN (ret1, ret2);
2798     case COMPOUND_EXPR:
2799       return tree_ctz (TREE_OPERAND (expr, 1));
2800     case ADDR_EXPR:
2801       ret1 = get_pointer_alignment (CONST_CAST_TREE (expr));
2802       if (ret1 > BITS_PER_UNIT)
2803 	{
2804 	  ret1 = ctz_hwi (ret1 / BITS_PER_UNIT);
2805 	  return MIN (ret1, prec);
2806 	}
2807       return 0;
2808     default:
2809       return 0;
2810     }
2811 }
2812 
2813 /* Return 1 if EXPR is the real constant zero.  Trailing zeroes matter for
2814    decimal float constants, so don't return 1 for them.
2815    Also return 1 for location wrappers around such a constant.  */
2816 
2817 bool
2818 real_zerop (const_tree expr)
2819 {
2820   STRIP_ANY_LOCATION_WRAPPER (expr);
2821 
2822   switch (TREE_CODE (expr))
2823     {
2824     case REAL_CST:
2825       return real_equal (&TREE_REAL_CST (expr), &dconst0)
2826 	     && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr))));
2827     case COMPLEX_CST:
2828       return real_zerop (TREE_REALPART (expr))
2829 	     && real_zerop (TREE_IMAGPART (expr));
2830     case VECTOR_CST:
2831       {
2832 	/* Don't simply check for a duplicate because the predicate
2833 	   accepts both +0.0 and -0.0.  */
2834 	unsigned count = vector_cst_encoded_nelts (expr);
2835 	for (unsigned int i = 0; i < count; ++i)
2836 	  if (!real_zerop (VECTOR_CST_ENCODED_ELT (expr, i)))
2837 	    return false;
2838 	return true;
2839       }
2840     default:
2841       return false;
2842     }
2843 }
2844 
2845 /* Return 1 if EXPR is the real constant one in real or complex form.
2846    Trailing zeroes matter for decimal float constants, so don't return
2847    1 for them.
2848    Also return 1 for location wrappers around such a constant.  */
2849 
2850 bool
2851 real_onep (const_tree expr)
2852 {
2853   STRIP_ANY_LOCATION_WRAPPER (expr);
2854 
2855   switch (TREE_CODE (expr))
2856     {
2857     case REAL_CST:
2858       return real_equal (&TREE_REAL_CST (expr), &dconst1)
2859 	     && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr))));
2860     case COMPLEX_CST:
2861       return real_onep (TREE_REALPART (expr))
2862 	     && real_zerop (TREE_IMAGPART (expr));
2863     case VECTOR_CST:
2864       return (VECTOR_CST_NPATTERNS (expr) == 1
2865 	      && VECTOR_CST_DUPLICATE_P (expr)
2866 	      && real_onep (VECTOR_CST_ENCODED_ELT (expr, 0)));
2867     default:
2868       return false;
2869     }
2870 }
2871 
2872 /* Return 1 if EXPR is the real constant minus one.  Trailing zeroes
2873    matter for decimal float constants, so don't return 1 for them.
2874    Also return 1 for location wrappers around such a constant.  */
2875 
2876 bool
2877 real_minus_onep (const_tree expr)
2878 {
2879   STRIP_ANY_LOCATION_WRAPPER (expr);
2880 
2881   switch (TREE_CODE (expr))
2882     {
2883     case REAL_CST:
2884       return real_equal (&TREE_REAL_CST (expr), &dconstm1)
2885 	     && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr))));
2886     case COMPLEX_CST:
2887       return real_minus_onep (TREE_REALPART (expr))
2888 	     && real_zerop (TREE_IMAGPART (expr));
2889     case VECTOR_CST:
2890       return (VECTOR_CST_NPATTERNS (expr) == 1
2891 	      && VECTOR_CST_DUPLICATE_P (expr)
2892 	      && real_minus_onep (VECTOR_CST_ENCODED_ELT (expr, 0)));
2893     default:
2894       return false;
2895     }
2896 }
2897 
2898 /* Nonzero if EXP is a constant or a cast of a constant.  */
2899 
2900 bool
2901 really_constant_p (const_tree exp)
2902 {
2903   /* This is not quite the same as STRIP_NOPS.  It does more.  */
2904   while (CONVERT_EXPR_P (exp)
2905 	 || TREE_CODE (exp) == NON_LVALUE_EXPR)
2906     exp = TREE_OPERAND (exp, 0);
2907   return TREE_CONSTANT (exp);
2908 }
2909 
2910 /* Return true if T holds a polynomial pointer difference, storing it in
2911    *VALUE if so.  A true return means that T's precision is no greater
2912    than 64 bits, which is the largest address space we support, so *VALUE
2913    never loses precision.  However, the signedness of the result does
2914    not necessarily match the signedness of T: sometimes an unsigned type
2915    like sizetype is used to encode a value that is actually negative.  */
2916 
2917 bool
2918 ptrdiff_tree_p (const_tree t, poly_int64_pod *value)
2919 {
2920   if (!t)
2921     return false;
2922   if (TREE_CODE (t) == INTEGER_CST)
2923     {
2924       if (!cst_and_fits_in_hwi (t))
2925 	return false;
2926       *value = int_cst_value (t);
2927       return true;
2928     }
2929   if (POLY_INT_CST_P (t))
2930     {
2931       for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
2932 	if (!cst_and_fits_in_hwi (POLY_INT_CST_COEFF (t, i)))
2933 	  return false;
2934       for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
2935 	value->coeffs[i] = int_cst_value (POLY_INT_CST_COEFF (t, i));
2936       return true;
2937     }
2938   return false;
2939 }
2940 
2941 poly_int64
2942 tree_to_poly_int64 (const_tree t)
2943 {
2944   gcc_assert (tree_fits_poly_int64_p (t));
2945   if (POLY_INT_CST_P (t))
2946     return poly_int_cst_value (t).force_shwi ();
2947   return TREE_INT_CST_LOW (t);
2948 }
2949 
2950 poly_uint64
2951 tree_to_poly_uint64 (const_tree t)
2952 {
2953   gcc_assert (tree_fits_poly_uint64_p (t));
2954   if (POLY_INT_CST_P (t))
2955     return poly_int_cst_value (t).force_uhwi ();
2956   return TREE_INT_CST_LOW (t);
2957 }
2958 
2959 /* Return first list element whose TREE_VALUE is ELEM.
2960    Return 0 if ELEM is not in LIST.  */
2961 
2962 tree
2963 value_member (tree elem, tree list)
2964 {
2965   while (list)
2966     {
2967       if (elem == TREE_VALUE (list))
2968 	return list;
2969       list = TREE_CHAIN (list);
2970     }
2971   return NULL_TREE;
2972 }
2973 
2974 /* Return first list element whose TREE_PURPOSE is ELEM.
2975    Return 0 if ELEM is not in LIST.  */
2976 
2977 tree
2978 purpose_member (const_tree elem, tree list)
2979 {
2980   while (list)
2981     {
2982       if (elem == TREE_PURPOSE (list))
2983 	return list;
2984       list = TREE_CHAIN (list);
2985     }
2986   return NULL_TREE;
2987 }
2988 
2989 /* Return true if ELEM is in V.  */
2990 
2991 bool
2992 vec_member (const_tree elem, vec<tree, va_gc> *v)
2993 {
2994   unsigned ix;
2995   tree t;
2996   FOR_EACH_VEC_SAFE_ELT (v, ix, t)
2997     if (elem == t)
2998       return true;
2999   return false;
3000 }
3001 
3002 /* Returns element number IDX (zero-origin) of chain CHAIN, or
3003    NULL_TREE.  */
3004 
3005 tree
3006 chain_index (int idx, tree chain)
3007 {
3008   for (; chain && idx > 0; --idx)
3009     chain = TREE_CHAIN (chain);
3010   return chain;
3011 }
3012 
3013 /* Return nonzero if ELEM is part of the chain CHAIN.  */
3014 
3015 bool
3016 chain_member (const_tree elem, const_tree chain)
3017 {
3018   while (chain)
3019     {
3020       if (elem == chain)
3021 	return true;
3022       chain = DECL_CHAIN (chain);
3023     }
3024 
3025   return false;
3026 }
3027 
3028 /* Return the length of a chain of nodes chained through TREE_CHAIN.
3029    We expect a null pointer to mark the end of the chain.
3030    This is the Lisp primitive `length'.  */
3031 
3032 int
3033 list_length (const_tree t)
3034 {
3035   const_tree p = t;
3036 #ifdef ENABLE_TREE_CHECKING
3037   const_tree q = t;
3038 #endif
3039   int len = 0;
3040 
3041   while (p)
3042     {
3043       p = TREE_CHAIN (p);
3044 #ifdef ENABLE_TREE_CHECKING
3045       if (len % 2)
3046 	q = TREE_CHAIN (q);
3047       gcc_assert (p != q);
3048 #endif
3049       len++;
3050     }
3051 
3052   return len;
3053 }
3054 
3055 /* Returns the first FIELD_DECL in the TYPE_FIELDS of the RECORD_TYPE or
3056    UNION_TYPE TYPE, or NULL_TREE if none.  */
3057 
3058 tree
3059 first_field (const_tree type)
3060 {
3061   tree t = TYPE_FIELDS (type);
3062   while (t && TREE_CODE (t) != FIELD_DECL)
3063     t = TREE_CHAIN (t);
3064   return t;
3065 }
3066 
3067 /* Concatenate two chains of nodes (chained through TREE_CHAIN)
3068    by modifying the last node in chain 1 to point to chain 2.
3069    This is the Lisp primitive `nconc'.  */
3070 
3071 tree
3072 chainon (tree op1, tree op2)
3073 {
3074   tree t1;
3075 
3076   if (!op1)
3077     return op2;
3078   if (!op2)
3079     return op1;
3080 
3081   for (t1 = op1; TREE_CHAIN (t1); t1 = TREE_CHAIN (t1))
3082     continue;
3083   TREE_CHAIN (t1) = op2;
3084 
3085 #ifdef ENABLE_TREE_CHECKING
3086   {
3087     tree t2;
3088     for (t2 = op2; t2; t2 = TREE_CHAIN (t2))
3089       gcc_assert (t2 != t1);
3090   }
3091 #endif
3092 
3093   return op1;
3094 }
3095 
3096 /* Return the last node in a chain of nodes (chained through TREE_CHAIN).  */
3097 
3098 tree
3099 tree_last (tree chain)
3100 {
3101   tree next;
3102   if (chain)
3103     while ((next = TREE_CHAIN (chain)))
3104       chain = next;
3105   return chain;
3106 }
3107 
3108 /* Reverse the order of elements in the chain T,
3109    and return the new head of the chain (old last element).  */
3110 
3111 tree
3112 nreverse (tree t)
3113 {
3114   tree prev = 0, decl, next;
3115   for (decl = t; decl; decl = next)
3116     {
3117       /* We shouldn't be using this function to reverse BLOCK chains; we
3118 	 have blocks_nreverse for that.  */
3119       gcc_checking_assert (TREE_CODE (decl) != BLOCK);
3120       next = TREE_CHAIN (decl);
3121       TREE_CHAIN (decl) = prev;
3122       prev = decl;
3123     }
3124   return prev;
3125 }
3126 
3127 /* Return a newly created TREE_LIST node whose
3128    purpose and value fields are PARM and VALUE.  */
3129 
3130 tree
3131 build_tree_list (tree parm, tree value MEM_STAT_DECL)
3132 {
3133   tree t = make_node (TREE_LIST PASS_MEM_STAT);
3134   TREE_PURPOSE (t) = parm;
3135   TREE_VALUE (t) = value;
3136   return t;
3137 }
3138 
3139 /* Build a chain of TREE_LIST nodes from a vector.  */
3140 
3141 tree
3142 build_tree_list_vec (const vec<tree, va_gc> *vec MEM_STAT_DECL)
3143 {
3144   tree ret = NULL_TREE;
3145   tree *pp = &ret;
3146   unsigned int i;
3147   tree t;
3148   FOR_EACH_VEC_SAFE_ELT (vec, i, t)
3149     {
3150       *pp = build_tree_list (NULL, t PASS_MEM_STAT);
3151       pp = &TREE_CHAIN (*pp);
3152     }
3153   return ret;
3154 }
3155 
3156 /* Return a newly created TREE_LIST node whose
3157    purpose and value fields are PURPOSE and VALUE
3158    and whose TREE_CHAIN is CHAIN.  */
3159 
3160 tree
3161 tree_cons (tree purpose, tree value, tree chain MEM_STAT_DECL)
3162 {
3163   tree node;
3164 
3165   node = ggc_alloc_tree_node_stat (sizeof (struct tree_list) PASS_MEM_STAT);
3166   memset (node, 0, sizeof (struct tree_common));
3167 
3168   record_node_allocation_statistics (TREE_LIST, sizeof (struct tree_list));
3169 
3170   TREE_SET_CODE (node, TREE_LIST);
3171   TREE_CHAIN (node) = chain;
3172   TREE_PURPOSE (node) = purpose;
3173   TREE_VALUE (node) = value;
3174   return node;
3175 }
3176 
3177 /* Return the values of the elements of a CONSTRUCTOR as a vector of
3178    trees.  */
3179 
3180 vec<tree, va_gc> *
3181 ctor_to_vec (tree ctor)
3182 {
3183   vec<tree, va_gc> *vec;
3184   vec_alloc (vec, CONSTRUCTOR_NELTS (ctor));
3185   unsigned int ix;
3186   tree val;
3187 
3188   FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (ctor), ix, val)
3189     vec->quick_push (val);
3190 
3191   return vec;
3192 }
3193 
3194 /* Return the size nominally occupied by an object of type TYPE
3195    when it resides in memory.  The value is measured in units of bytes,
3196    and its data type is that normally used for type sizes
3197    (which is the first type created by make_signed_type or
3198    make_unsigned_type).  */
3199 
3200 tree
3201 size_in_bytes_loc (location_t loc, const_tree type)
3202 {
3203   tree t;
3204 
3205   if (type == error_mark_node)
3206     return integer_zero_node;
3207 
3208   type = TYPE_MAIN_VARIANT (type);
3209   t = TYPE_SIZE_UNIT (type);
3210 
3211   if (t == 0)
3212     {
3213       lang_hooks.types.incomplete_type_error (loc, NULL_TREE, type);
3214       return size_zero_node;
3215     }
3216 
3217   return t;
3218 }
3219 
3220 /* Return the size of TYPE (in bytes) as a wide integer
3221    or return -1 if the size can vary or is larger than an integer.  */
3222 
3223 HOST_WIDE_INT
3224 int_size_in_bytes (const_tree type)
3225 {
3226   tree t;
3227 
3228   if (type == error_mark_node)
3229     return 0;
3230 
3231   type = TYPE_MAIN_VARIANT (type);
3232   t = TYPE_SIZE_UNIT (type);
3233 
3234   if (t && tree_fits_uhwi_p (t))
3235     return TREE_INT_CST_LOW (t);
3236   else
3237     return -1;
3238 }
3239 
3240 /* Return the maximum size of TYPE (in bytes) as a wide integer
3241    or return -1 if the size can vary or is larger than an integer.  */
3242 
3243 HOST_WIDE_INT
3244 max_int_size_in_bytes (const_tree type)
3245 {
3246   HOST_WIDE_INT size = -1;
3247   tree size_tree;
3248 
3249   /* If this is an array type, check for a possible MAX_SIZE attached.  */
3250 
3251   if (TREE_CODE (type) == ARRAY_TYPE)
3252     {
3253       size_tree = TYPE_ARRAY_MAX_SIZE (type);
3254 
3255       if (size_tree && tree_fits_uhwi_p (size_tree))
3256 	size = tree_to_uhwi (size_tree);
3257     }
3258 
3259   /* If we still haven't been able to get a size, see if the language
3260      can compute a maximum size.  */
3261 
3262   if (size == -1)
3263     {
3264       size_tree = lang_hooks.types.max_size (type);
3265 
3266       if (size_tree && tree_fits_uhwi_p (size_tree))
3267 	size = tree_to_uhwi (size_tree);
3268     }
3269 
3270   return size;
3271 }
3272 
3273 /* Return the bit position of FIELD, in bits from the start of the record.
3274    This is a tree of type bitsizetype.  */
3275 
3276 tree
3277 bit_position (const_tree field)
3278 {
3279   return bit_from_pos (DECL_FIELD_OFFSET (field),
3280 		       DECL_FIELD_BIT_OFFSET (field));
3281 }
3282 
3283 /* Return the byte position of FIELD, in bytes from the start of the record.
3284    This is a tree of type sizetype.  */
3285 
3286 tree
3287 byte_position (const_tree field)
3288 {
3289   return byte_from_pos (DECL_FIELD_OFFSET (field),
3290 			DECL_FIELD_BIT_OFFSET (field));
3291 }
3292 
3293 /* Likewise, but return as an integer.  It must be representable in
3294    that way (since it could be a signed value, we don't have the
3295    option of returning -1 like int_size_in_byte can.  */
3296 
3297 HOST_WIDE_INT
3298 int_byte_position (const_tree field)
3299 {
3300   return tree_to_shwi (byte_position (field));
3301 }
3302 
3303 /* Return the strictest alignment, in bits, that T is known to have.  */
3304 
3305 unsigned int
3306 expr_align (const_tree t)
3307 {
3308   unsigned int align0, align1;
3309 
3310   switch (TREE_CODE (t))
3311     {
3312     CASE_CONVERT:  case NON_LVALUE_EXPR:
3313       /* If we have conversions, we know that the alignment of the
3314 	 object must meet each of the alignments of the types.  */
3315       align0 = expr_align (TREE_OPERAND (t, 0));
3316       align1 = TYPE_ALIGN (TREE_TYPE (t));
3317       return MAX (align0, align1);
3318 
3319     case SAVE_EXPR:         case COMPOUND_EXPR:       case MODIFY_EXPR:
3320     case INIT_EXPR:         case TARGET_EXPR:         case WITH_CLEANUP_EXPR:
3321     case CLEANUP_POINT_EXPR:
3322       /* These don't change the alignment of an object.  */
3323       return expr_align (TREE_OPERAND (t, 0));
3324 
3325     case COND_EXPR:
3326       /* The best we can do is say that the alignment is the least aligned
3327 	 of the two arms.  */
3328       align0 = expr_align (TREE_OPERAND (t, 1));
3329       align1 = expr_align (TREE_OPERAND (t, 2));
3330       return MIN (align0, align1);
3331 
3332       /* FIXME: LABEL_DECL and CONST_DECL never have DECL_ALIGN set
3333 	 meaningfully, it's always 1.  */
3334     case LABEL_DECL:     case CONST_DECL:
3335     case VAR_DECL:       case PARM_DECL:   case RESULT_DECL:
3336     case FUNCTION_DECL:
3337       gcc_assert (DECL_ALIGN (t) != 0);
3338       return DECL_ALIGN (t);
3339 
3340     default:
3341       break;
3342     }
3343 
3344   /* Otherwise take the alignment from that of the type.  */
3345   return TYPE_ALIGN (TREE_TYPE (t));
3346 }
3347 
3348 /* Return, as a tree node, the number of elements for TYPE (which is an
3349    ARRAY_TYPE) minus one. This counts only elements of the top array.  */
3350 
3351 tree
3352 array_type_nelts (const_tree type)
3353 {
3354   tree index_type, min, max;
3355 
3356   /* If they did it with unspecified bounds, then we should have already
3357      given an error about it before we got here.  */
3358   if (! TYPE_DOMAIN (type))
3359     return error_mark_node;
3360 
3361   index_type = TYPE_DOMAIN (type);
3362   min = TYPE_MIN_VALUE (index_type);
3363   max = TYPE_MAX_VALUE (index_type);
3364 
3365   /* TYPE_MAX_VALUE may not be set if the array has unknown length.  */
3366   if (!max)
3367     return error_mark_node;
3368 
3369   return (integer_zerop (min)
3370 	  ? max
3371 	  : fold_build2 (MINUS_EXPR, TREE_TYPE (max), max, min));
3372 }
3373 
3374 /* If arg is static -- a reference to an object in static storage -- then
3375    return the object.  This is not the same as the C meaning of `static'.
3376    If arg isn't static, return NULL.  */
3377 
3378 tree
3379 staticp (tree arg)
3380 {
3381   switch (TREE_CODE (arg))
3382     {
3383     case FUNCTION_DECL:
3384       /* Nested functions are static, even though taking their address will
3385 	 involve a trampoline as we unnest the nested function and create
3386 	 the trampoline on the tree level.  */
3387       return arg;
3388 
3389     case VAR_DECL:
3390       return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
3391 	      && ! DECL_THREAD_LOCAL_P (arg)
3392 	      && ! DECL_DLLIMPORT_P (arg)
3393 	      ? arg : NULL);
3394 
3395     case CONST_DECL:
3396       return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
3397 	      ? arg : NULL);
3398 
3399     case CONSTRUCTOR:
3400       return TREE_STATIC (arg) ? arg : NULL;
3401 
3402     case LABEL_DECL:
3403     case STRING_CST:
3404       return arg;
3405 
3406     case COMPONENT_REF:
3407       /* If the thing being referenced is not a field, then it is
3408 	 something language specific.  */
3409       gcc_assert (TREE_CODE (TREE_OPERAND (arg, 1)) == FIELD_DECL);
3410 
3411       /* If we are referencing a bitfield, we can't evaluate an
3412 	 ADDR_EXPR at compile time and so it isn't a constant.  */
3413       if (DECL_BIT_FIELD (TREE_OPERAND (arg, 1)))
3414 	return NULL;
3415 
3416       return staticp (TREE_OPERAND (arg, 0));
3417 
3418     case BIT_FIELD_REF:
3419       return NULL;
3420 
3421     case INDIRECT_REF:
3422       return TREE_CONSTANT (TREE_OPERAND (arg, 0)) ? arg : NULL;
3423 
3424     case ARRAY_REF:
3425     case ARRAY_RANGE_REF:
3426       if (TREE_CODE (TYPE_SIZE (TREE_TYPE (arg))) == INTEGER_CST
3427 	  && TREE_CODE (TREE_OPERAND (arg, 1)) == INTEGER_CST)
3428 	return staticp (TREE_OPERAND (arg, 0));
3429       else
3430 	return NULL;
3431 
3432     case COMPOUND_LITERAL_EXPR:
3433       return TREE_STATIC (COMPOUND_LITERAL_EXPR_DECL (arg)) ? arg : NULL;
3434 
3435     default:
3436       return NULL;
3437     }
3438 }
3439 
3440 
3441 
3442 
3443 /* Return whether OP is a DECL whose address is function-invariant.  */
3444 
3445 bool
3446 decl_address_invariant_p (const_tree op)
3447 {
3448   /* The conditions below are slightly less strict than the one in
3449      staticp.  */
3450 
3451   switch (TREE_CODE (op))
3452     {
3453     case PARM_DECL:
3454     case RESULT_DECL:
3455     case LABEL_DECL:
3456     case FUNCTION_DECL:
3457       return true;
3458 
3459     case VAR_DECL:
3460       if ((TREE_STATIC (op) || DECL_EXTERNAL (op))
3461           || DECL_THREAD_LOCAL_P (op)
3462           || DECL_CONTEXT (op) == current_function_decl
3463           || decl_function_context (op) == current_function_decl)
3464         return true;
3465       break;
3466 
3467     case CONST_DECL:
3468       if ((TREE_STATIC (op) || DECL_EXTERNAL (op))
3469           || decl_function_context (op) == current_function_decl)
3470         return true;
3471       break;
3472 
3473     default:
3474       break;
3475     }
3476 
3477   return false;
3478 }
3479 
3480 /* Return whether OP is a DECL whose address is interprocedural-invariant.  */
3481 
3482 bool
3483 decl_address_ip_invariant_p (const_tree op)
3484 {
3485   /* The conditions below are slightly less strict than the one in
3486      staticp.  */
3487 
3488   switch (TREE_CODE (op))
3489     {
3490     case LABEL_DECL:
3491     case FUNCTION_DECL:
3492     case STRING_CST:
3493       return true;
3494 
3495     case VAR_DECL:
3496       if (((TREE_STATIC (op) || DECL_EXTERNAL (op))
3497            && !DECL_DLLIMPORT_P (op))
3498           || DECL_THREAD_LOCAL_P (op))
3499         return true;
3500       break;
3501 
3502     case CONST_DECL:
3503       if ((TREE_STATIC (op) || DECL_EXTERNAL (op)))
3504         return true;
3505       break;
3506 
3507     default:
3508       break;
3509     }
3510 
3511   return false;
3512 }
3513 
3514 
3515 /* Return true if T is function-invariant (internal function, does
3516    not handle arithmetic; that's handled in skip_simple_arithmetic and
3517    tree_invariant_p).  */
3518 
3519 static bool
3520 tree_invariant_p_1 (tree t)
3521 {
3522   tree op;
3523 
3524   if (TREE_CONSTANT (t)
3525       || (TREE_READONLY (t) && !TREE_SIDE_EFFECTS (t)))
3526     return true;
3527 
3528   switch (TREE_CODE (t))
3529     {
3530     case SAVE_EXPR:
3531       return true;
3532 
3533     case ADDR_EXPR:
3534       op = TREE_OPERAND (t, 0);
3535       while (handled_component_p (op))
3536 	{
3537 	  switch (TREE_CODE (op))
3538 	    {
3539 	    case ARRAY_REF:
3540 	    case ARRAY_RANGE_REF:
3541 	      if (!tree_invariant_p (TREE_OPERAND (op, 1))
3542 		  || TREE_OPERAND (op, 2) != NULL_TREE
3543 		  || TREE_OPERAND (op, 3) != NULL_TREE)
3544 		return false;
3545 	      break;
3546 
3547 	    case COMPONENT_REF:
3548 	      if (TREE_OPERAND (op, 2) != NULL_TREE)
3549 		return false;
3550 	      break;
3551 
3552 	    default:;
3553 	    }
3554 	  op = TREE_OPERAND (op, 0);
3555 	}
3556 
3557       return CONSTANT_CLASS_P (op) || decl_address_invariant_p (op);
3558 
3559     default:
3560       break;
3561     }
3562 
3563   return false;
3564 }
3565 
3566 /* Return true if T is function-invariant.  */
3567 
3568 bool
3569 tree_invariant_p (tree t)
3570 {
3571   tree inner = skip_simple_arithmetic (t);
3572   return tree_invariant_p_1 (inner);
3573 }
3574 
3575 /* Wrap a SAVE_EXPR around EXPR, if appropriate.
3576    Do this to any expression which may be used in more than one place,
3577    but must be evaluated only once.
3578 
3579    Normally, expand_expr would reevaluate the expression each time.
3580    Calling save_expr produces something that is evaluated and recorded
3581    the first time expand_expr is called on it.  Subsequent calls to
3582    expand_expr just reuse the recorded value.
3583 
3584    The call to expand_expr that generates code that actually computes
3585    the value is the first call *at compile time*.  Subsequent calls
3586    *at compile time* generate code to use the saved value.
3587    This produces correct result provided that *at run time* control
3588    always flows through the insns made by the first expand_expr
3589    before reaching the other places where the save_expr was evaluated.
3590    You, the caller of save_expr, must make sure this is so.
3591 
3592    Constants, and certain read-only nodes, are returned with no
3593    SAVE_EXPR because that is safe.  Expressions containing placeholders
3594    are not touched; see tree.def for an explanation of what these
3595    are used for.  */
3596 
3597 tree
3598 save_expr (tree expr)
3599 {
3600   tree inner;
3601 
3602   /* If the tree evaluates to a constant, then we don't want to hide that
3603      fact (i.e. this allows further folding, and direct checks for constants).
3604      However, a read-only object that has side effects cannot be bypassed.
3605      Since it is no problem to reevaluate literals, we just return the
3606      literal node.  */
3607   inner = skip_simple_arithmetic (expr);
3608   if (TREE_CODE (inner) == ERROR_MARK)
3609     return inner;
3610 
3611   if (tree_invariant_p_1 (inner))
3612     return expr;
3613 
3614   /* If INNER contains a PLACEHOLDER_EXPR, we must evaluate it each time, since
3615      it means that the size or offset of some field of an object depends on
3616      the value within another field.
3617 
3618      Note that it must not be the case that EXPR contains both a PLACEHOLDER_EXPR
3619      and some variable since it would then need to be both evaluated once and
3620      evaluated more than once.  Front-ends must assure this case cannot
3621      happen by surrounding any such subexpressions in their own SAVE_EXPR
3622      and forcing evaluation at the proper time.  */
3623   if (contains_placeholder_p (inner))
3624     return expr;
3625 
3626   expr = build1_loc (EXPR_LOCATION (expr), SAVE_EXPR, TREE_TYPE (expr), expr);
3627 
3628   /* This expression might be placed ahead of a jump to ensure that the
3629      value was computed on both sides of the jump.  So make sure it isn't
3630      eliminated as dead.  */
3631   TREE_SIDE_EFFECTS (expr) = 1;
3632   return expr;
3633 }
3634 
3635 /* Look inside EXPR into any simple arithmetic operations.  Return the
3636    outermost non-arithmetic or non-invariant node.  */
3637 
3638 tree
3639 skip_simple_arithmetic (tree expr)
3640 {
3641   /* We don't care about whether this can be used as an lvalue in this
3642      context.  */
3643   while (TREE_CODE (expr) == NON_LVALUE_EXPR)
3644     expr = TREE_OPERAND (expr, 0);
3645 
3646   /* If we have simple operations applied to a SAVE_EXPR or to a SAVE_EXPR and
3647      a constant, it will be more efficient to not make another SAVE_EXPR since
3648      it will allow better simplification and GCSE will be able to merge the
3649      computations if they actually occur.  */
3650   while (true)
3651     {
3652       if (UNARY_CLASS_P (expr))
3653 	expr = TREE_OPERAND (expr, 0);
3654       else if (BINARY_CLASS_P (expr))
3655 	{
3656 	  if (tree_invariant_p (TREE_OPERAND (expr, 1)))
3657 	    expr = TREE_OPERAND (expr, 0);
3658 	  else if (tree_invariant_p (TREE_OPERAND (expr, 0)))
3659 	    expr = TREE_OPERAND (expr, 1);
3660 	  else
3661 	    break;
3662 	}
3663       else
3664 	break;
3665     }
3666 
3667   return expr;
3668 }
3669 
3670 /* Look inside EXPR into simple arithmetic operations involving constants.
3671    Return the outermost non-arithmetic or non-constant node.  */
3672 
3673 tree
3674 skip_simple_constant_arithmetic (tree expr)
3675 {
3676   while (TREE_CODE (expr) == NON_LVALUE_EXPR)
3677     expr = TREE_OPERAND (expr, 0);
3678 
3679   while (true)
3680     {
3681       if (UNARY_CLASS_P (expr))
3682 	expr = TREE_OPERAND (expr, 0);
3683       else if (BINARY_CLASS_P (expr))
3684 	{
3685 	  if (TREE_CONSTANT (TREE_OPERAND (expr, 1)))
3686 	    expr = TREE_OPERAND (expr, 0);
3687 	  else if (TREE_CONSTANT (TREE_OPERAND (expr, 0)))
3688 	    expr = TREE_OPERAND (expr, 1);
3689 	  else
3690 	    break;
3691 	}
3692       else
3693 	break;
3694     }
3695 
3696   return expr;
3697 }
3698 
3699 /* Return which tree structure is used by T.  */
3700 
3701 enum tree_node_structure_enum
3702 tree_node_structure (const_tree t)
3703 {
3704   const enum tree_code code = TREE_CODE (t);
3705   return tree_node_structure_for_code (code);
3706 }
3707 
3708 /* Set various status flags when building a CALL_EXPR object T.  */
3709 
3710 static void
3711 process_call_operands (tree t)
3712 {
3713   bool side_effects = TREE_SIDE_EFFECTS (t);
3714   bool read_only = false;
3715   int i = call_expr_flags (t);
3716 
3717   /* Calls have side-effects, except those to const or pure functions.  */
3718   if ((i & ECF_LOOPING_CONST_OR_PURE) || !(i & (ECF_CONST | ECF_PURE)))
3719     side_effects = true;
3720   /* Propagate TREE_READONLY of arguments for const functions.  */
3721   if (i & ECF_CONST)
3722     read_only = true;
3723 
3724   if (!side_effects || read_only)
3725     for (i = 1; i < TREE_OPERAND_LENGTH (t); i++)
3726       {
3727 	tree op = TREE_OPERAND (t, i);
3728 	if (op && TREE_SIDE_EFFECTS (op))
3729 	  side_effects = true;
3730 	if (op && !TREE_READONLY (op) && !CONSTANT_CLASS_P (op))
3731 	  read_only = false;
3732       }
3733 
3734   TREE_SIDE_EFFECTS (t) = side_effects;
3735   TREE_READONLY (t) = read_only;
3736 }
3737 
3738 /* Return true if EXP contains a PLACEHOLDER_EXPR, i.e. if it represents a
3739    size or offset that depends on a field within a record.  */
3740 
3741 bool
3742 contains_placeholder_p (const_tree exp)
3743 {
3744   enum tree_code code;
3745 
3746   if (!exp)
3747     return 0;
3748 
3749   code = TREE_CODE (exp);
3750   if (code == PLACEHOLDER_EXPR)
3751     return 1;
3752 
3753   switch (TREE_CODE_CLASS (code))
3754     {
3755     case tcc_reference:
3756       /* Don't look at any PLACEHOLDER_EXPRs that might be in index or bit
3757 	 position computations since they will be converted into a
3758 	 WITH_RECORD_EXPR involving the reference, which will assume
3759 	 here will be valid.  */
3760       return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
3761 
3762     case tcc_exceptional:
3763       if (code == TREE_LIST)
3764 	return (CONTAINS_PLACEHOLDER_P (TREE_VALUE (exp))
3765 		|| CONTAINS_PLACEHOLDER_P (TREE_CHAIN (exp)));
3766       break;
3767 
3768     case tcc_unary:
3769     case tcc_binary:
3770     case tcc_comparison:
3771     case tcc_expression:
3772       switch (code)
3773 	{
3774 	case COMPOUND_EXPR:
3775 	  /* Ignoring the first operand isn't quite right, but works best.  */
3776 	  return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1));
3777 
3778 	case COND_EXPR:
3779 	  return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
3780 		  || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1))
3781 		  || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 2)));
3782 
3783 	case SAVE_EXPR:
3784 	  /* The save_expr function never wraps anything containing
3785 	     a PLACEHOLDER_EXPR. */
3786 	  return 0;
3787 
3788 	default:
3789 	  break;
3790 	}
3791 
3792       switch (TREE_CODE_LENGTH (code))
3793 	{
3794 	case 1:
3795 	  return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
3796 	case 2:
3797 	  return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
3798 		  || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1)));
3799 	default:
3800 	  return 0;
3801 	}
3802 
3803     case tcc_vl_exp:
3804       switch (code)
3805 	{
3806 	case CALL_EXPR:
3807 	  {
3808 	    const_tree arg;
3809 	    const_call_expr_arg_iterator iter;
3810 	    FOR_EACH_CONST_CALL_EXPR_ARG (arg, iter, exp)
3811 	      if (CONTAINS_PLACEHOLDER_P (arg))
3812 		return 1;
3813 	    return 0;
3814 	  }
3815 	default:
3816 	  return 0;
3817 	}
3818 
3819     default:
3820       return 0;
3821     }
3822   return 0;
3823 }
3824 
3825 /* Return true if any part of the structure of TYPE involves a PLACEHOLDER_EXPR
3826    directly.  This includes size, bounds, qualifiers (for QUAL_UNION_TYPE) and
3827    field positions.  */
3828 
3829 static bool
3830 type_contains_placeholder_1 (const_tree type)
3831 {
3832   /* If the size contains a placeholder or the parent type (component type in
3833      the case of arrays) type involves a placeholder, this type does.  */
3834   if (CONTAINS_PLACEHOLDER_P (TYPE_SIZE (type))
3835       || CONTAINS_PLACEHOLDER_P (TYPE_SIZE_UNIT (type))
3836       || (!POINTER_TYPE_P (type)
3837 	  && TREE_TYPE (type)
3838 	  && type_contains_placeholder_p (TREE_TYPE (type))))
3839     return true;
3840 
3841   /* Now do type-specific checks.  Note that the last part of the check above
3842      greatly limits what we have to do below.  */
3843   switch (TREE_CODE (type))
3844     {
3845     case VOID_TYPE:
3846     case COMPLEX_TYPE:
3847     case ENUMERAL_TYPE:
3848     case BOOLEAN_TYPE:
3849     case POINTER_TYPE:
3850     case OFFSET_TYPE:
3851     case REFERENCE_TYPE:
3852     case METHOD_TYPE:
3853     case FUNCTION_TYPE:
3854     case VECTOR_TYPE:
3855     case NULLPTR_TYPE:
3856       return false;
3857 
3858     case INTEGER_TYPE:
3859     case REAL_TYPE:
3860     case FIXED_POINT_TYPE:
3861       /* Here we just check the bounds.  */
3862       return (CONTAINS_PLACEHOLDER_P (TYPE_MIN_VALUE (type))
3863 	      || CONTAINS_PLACEHOLDER_P (TYPE_MAX_VALUE (type)));
3864 
3865     case ARRAY_TYPE:
3866       /* We have already checked the component type above, so just check
3867 	 the domain type.  Flexible array members have a null domain.  */
3868       return TYPE_DOMAIN (type) ?
3869 	type_contains_placeholder_p (TYPE_DOMAIN (type)) : false;
3870 
3871     case RECORD_TYPE:
3872     case UNION_TYPE:
3873     case QUAL_UNION_TYPE:
3874       {
3875 	tree field;
3876 
3877 	for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
3878 	  if (TREE_CODE (field) == FIELD_DECL
3879 	      && (CONTAINS_PLACEHOLDER_P (DECL_FIELD_OFFSET (field))
3880 		  || (TREE_CODE (type) == QUAL_UNION_TYPE
3881 		      && CONTAINS_PLACEHOLDER_P (DECL_QUALIFIER (field)))
3882 		  || type_contains_placeholder_p (TREE_TYPE (field))))
3883 	    return true;
3884 
3885 	return false;
3886       }
3887 
3888     default:
3889       gcc_unreachable ();
3890     }
3891 }
3892 
3893 /* Wrapper around above function used to cache its result.  */
3894 
3895 bool
3896 type_contains_placeholder_p (tree type)
3897 {
3898   bool result;
3899 
3900   /* If the contains_placeholder_bits field has been initialized,
3901      then we know the answer.  */
3902   if (TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) > 0)
3903     return TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) - 1;
3904 
3905   /* Indicate that we've seen this type node, and the answer is false.
3906      This is what we want to return if we run into recursion via fields.  */
3907   TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) = 1;
3908 
3909   /* Compute the real value.  */
3910   result = type_contains_placeholder_1 (type);
3911 
3912   /* Store the real value.  */
3913   TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) = result + 1;
3914 
3915   return result;
3916 }
3917 
3918 /* Push tree EXP onto vector QUEUE if it is not already present.  */
3919 
3920 static void
3921 push_without_duplicates (tree exp, vec<tree> *queue)
3922 {
3923   unsigned int i;
3924   tree iter;
3925 
3926   FOR_EACH_VEC_ELT (*queue, i, iter)
3927     if (simple_cst_equal (iter, exp) == 1)
3928       break;
3929 
3930   if (!iter)
3931     queue->safe_push (exp);
3932 }
3933 
3934 /* Given a tree EXP, find all occurrences of references to fields
3935    in a PLACEHOLDER_EXPR and place them in vector REFS without
3936    duplicates.  Also record VAR_DECLs and CONST_DECLs.  Note that
3937    we assume here that EXP contains only arithmetic expressions
3938    or CALL_EXPRs with PLACEHOLDER_EXPRs occurring only in their
3939    argument list.  */
3940 
3941 void
3942 find_placeholder_in_expr (tree exp, vec<tree> *refs)
3943 {
3944   enum tree_code code = TREE_CODE (exp);
3945   tree inner;
3946   int i;
3947 
3948   /* We handle TREE_LIST and COMPONENT_REF separately.  */
3949   if (code == TREE_LIST)
3950     {
3951       FIND_PLACEHOLDER_IN_EXPR (TREE_CHAIN (exp), refs);
3952       FIND_PLACEHOLDER_IN_EXPR (TREE_VALUE (exp), refs);
3953     }
3954   else if (code == COMPONENT_REF)
3955     {
3956       for (inner = TREE_OPERAND (exp, 0);
3957 	   REFERENCE_CLASS_P (inner);
3958 	   inner = TREE_OPERAND (inner, 0))
3959 	;
3960 
3961       if (TREE_CODE (inner) == PLACEHOLDER_EXPR)
3962 	push_without_duplicates (exp, refs);
3963       else
3964 	FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), refs);
3965    }
3966   else
3967     switch (TREE_CODE_CLASS (code))
3968       {
3969       case tcc_constant:
3970 	break;
3971 
3972       case tcc_declaration:
3973 	/* Variables allocated to static storage can stay.  */
3974         if (!TREE_STATIC (exp))
3975 	  push_without_duplicates (exp, refs);
3976 	break;
3977 
3978       case tcc_expression:
3979 	/* This is the pattern built in ada/make_aligning_type.  */
3980 	if (code == ADDR_EXPR
3981 	    && TREE_CODE (TREE_OPERAND (exp, 0)) == PLACEHOLDER_EXPR)
3982 	  {
3983 	    push_without_duplicates (exp, refs);
3984 	    break;
3985 	  }
3986 
3987         /* Fall through.  */
3988 
3989       case tcc_exceptional:
3990       case tcc_unary:
3991       case tcc_binary:
3992       case tcc_comparison:
3993       case tcc_reference:
3994 	for (i = 0; i < TREE_CODE_LENGTH (code); i++)
3995 	  FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, i), refs);
3996 	break;
3997 
3998       case tcc_vl_exp:
3999 	for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++)
4000 	  FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, i), refs);
4001 	break;
4002 
4003       default:
4004 	gcc_unreachable ();
4005       }
4006 }
4007 
4008 /* Given a tree EXP, a FIELD_DECL F, and a replacement value R,
4009    return a tree with all occurrences of references to F in a
4010    PLACEHOLDER_EXPR replaced by R.  Also handle VAR_DECLs and
4011    CONST_DECLs.  Note that we assume here that EXP contains only
4012    arithmetic expressions or CALL_EXPRs with PLACEHOLDER_EXPRs
4013    occurring only in their argument list.  */
4014 
4015 tree
4016 substitute_in_expr (tree exp, tree f, tree r)
4017 {
4018   enum tree_code code = TREE_CODE (exp);
4019   tree op0, op1, op2, op3;
4020   tree new_tree;
4021 
4022   /* We handle TREE_LIST and COMPONENT_REF separately.  */
4023   if (code == TREE_LIST)
4024     {
4025       op0 = SUBSTITUTE_IN_EXPR (TREE_CHAIN (exp), f, r);
4026       op1 = SUBSTITUTE_IN_EXPR (TREE_VALUE (exp), f, r);
4027       if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
4028 	return exp;
4029 
4030       return tree_cons (TREE_PURPOSE (exp), op1, op0);
4031     }
4032   else if (code == COMPONENT_REF)
4033     {
4034       tree inner;
4035 
4036       /* If this expression is getting a value from a PLACEHOLDER_EXPR
4037 	 and it is the right field, replace it with R.  */
4038       for (inner = TREE_OPERAND (exp, 0);
4039 	   REFERENCE_CLASS_P (inner);
4040 	   inner = TREE_OPERAND (inner, 0))
4041 	;
4042 
4043       /* The field.  */
4044       op1 = TREE_OPERAND (exp, 1);
4045 
4046       if (TREE_CODE (inner) == PLACEHOLDER_EXPR && op1 == f)
4047 	return r;
4048 
4049       /* If this expression hasn't been completed let, leave it alone.  */
4050       if (TREE_CODE (inner) == PLACEHOLDER_EXPR && !TREE_TYPE (inner))
4051 	return exp;
4052 
4053       op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
4054       if (op0 == TREE_OPERAND (exp, 0))
4055 	return exp;
4056 
4057       new_tree
4058 	= fold_build3 (COMPONENT_REF, TREE_TYPE (exp), op0, op1, NULL_TREE);
4059    }
4060   else
4061     switch (TREE_CODE_CLASS (code))
4062       {
4063       case tcc_constant:
4064 	return exp;
4065 
4066       case tcc_declaration:
4067 	if (exp == f)
4068 	  return r;
4069 	else
4070 	  return exp;
4071 
4072       case tcc_expression:
4073 	if (exp == f)
4074 	  return r;
4075 
4076         /* Fall through.  */
4077 
4078       case tcc_exceptional:
4079       case tcc_unary:
4080       case tcc_binary:
4081       case tcc_comparison:
4082       case tcc_reference:
4083 	switch (TREE_CODE_LENGTH (code))
4084 	  {
4085 	  case 0:
4086 	    return exp;
4087 
4088 	  case 1:
4089 	    op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
4090 	    if (op0 == TREE_OPERAND (exp, 0))
4091 	      return exp;
4092 
4093 	    new_tree = fold_build1 (code, TREE_TYPE (exp), op0);
4094 	    break;
4095 
4096 	  case 2:
4097 	    op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
4098 	    op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
4099 
4100 	    if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
4101 	      return exp;
4102 
4103 	    new_tree = fold_build2 (code, TREE_TYPE (exp), op0, op1);
4104 	    break;
4105 
4106 	  case 3:
4107 	    op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
4108 	    op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
4109 	    op2 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 2), f, r);
4110 
4111 	    if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
4112 		&& op2 == TREE_OPERAND (exp, 2))
4113 	      return exp;
4114 
4115 	    new_tree = fold_build3 (code, TREE_TYPE (exp), op0, op1, op2);
4116 	    break;
4117 
4118 	  case 4:
4119 	    op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
4120 	    op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
4121 	    op2 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 2), f, r);
4122 	    op3 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 3), f, r);
4123 
4124 	    if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
4125 		&& op2 == TREE_OPERAND (exp, 2)
4126 		&& op3 == TREE_OPERAND (exp, 3))
4127 	      return exp;
4128 
4129 	    new_tree
4130 	      = fold (build4 (code, TREE_TYPE (exp), op0, op1, op2, op3));
4131 	    break;
4132 
4133 	  default:
4134 	    gcc_unreachable ();
4135 	  }
4136 	break;
4137 
4138       case tcc_vl_exp:
4139 	{
4140 	  int i;
4141 
4142 	  new_tree = NULL_TREE;
4143 
4144 	  /* If we are trying to replace F with a constant or with another
4145 	     instance of one of the arguments of the call, inline back
4146 	     functions which do nothing else than computing a value from
4147 	     the arguments they are passed.  This makes it possible to
4148 	     fold partially or entirely the replacement expression.  */
4149 	  if (code == CALL_EXPR)
4150 	    {
4151 	      bool maybe_inline = false;
4152 	      if (CONSTANT_CLASS_P (r))
4153 		maybe_inline = true;
4154 	      else
4155 		for (i = 3; i < TREE_OPERAND_LENGTH (exp); i++)
4156 		  if (operand_equal_p (TREE_OPERAND (exp, i), r, 0))
4157 		    {
4158 		      maybe_inline = true;
4159 		      break;
4160 		    }
4161 	      if (maybe_inline)
4162 		{
4163 		  tree t = maybe_inline_call_in_expr (exp);
4164 		  if (t)
4165 		    return SUBSTITUTE_IN_EXPR (t, f, r);
4166 		}
4167 	    }
4168 
4169 	  for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++)
4170 	    {
4171 	      tree op = TREE_OPERAND (exp, i);
4172 	      tree new_op = SUBSTITUTE_IN_EXPR (op, f, r);
4173 	      if (new_op != op)
4174 		{
4175 		  if (!new_tree)
4176 		    new_tree = copy_node (exp);
4177 		  TREE_OPERAND (new_tree, i) = new_op;
4178 		}
4179 	    }
4180 
4181 	  if (new_tree)
4182 	    {
4183 	      new_tree = fold (new_tree);
4184 	      if (TREE_CODE (new_tree) == CALL_EXPR)
4185 		process_call_operands (new_tree);
4186 	    }
4187 	  else
4188 	    return exp;
4189 	}
4190 	break;
4191 
4192       default:
4193 	gcc_unreachable ();
4194       }
4195 
4196   TREE_READONLY (new_tree) |= TREE_READONLY (exp);
4197 
4198   if (code == INDIRECT_REF || code == ARRAY_REF || code == ARRAY_RANGE_REF)
4199     TREE_THIS_NOTRAP (new_tree) |= TREE_THIS_NOTRAP (exp);
4200 
4201   return new_tree;
4202 }
4203 
4204 /* Similar, but look for a PLACEHOLDER_EXPR in EXP and find a replacement
4205    for it within OBJ, a tree that is an object or a chain of references.  */
4206 
4207 tree
4208 substitute_placeholder_in_expr (tree exp, tree obj)
4209 {
4210   enum tree_code code = TREE_CODE (exp);
4211   tree op0, op1, op2, op3;
4212   tree new_tree;
4213 
4214   /* If this is a PLACEHOLDER_EXPR, see if we find a corresponding type
4215      in the chain of OBJ.  */
4216   if (code == PLACEHOLDER_EXPR)
4217     {
4218       tree need_type = TYPE_MAIN_VARIANT (TREE_TYPE (exp));
4219       tree elt;
4220 
4221       for (elt = obj; elt != 0;
4222 	   elt = ((TREE_CODE (elt) == COMPOUND_EXPR
4223 		   || TREE_CODE (elt) == COND_EXPR)
4224 		  ? TREE_OPERAND (elt, 1)
4225 		  : (REFERENCE_CLASS_P (elt)
4226 		     || UNARY_CLASS_P (elt)
4227 		     || BINARY_CLASS_P (elt)
4228 		     || VL_EXP_CLASS_P (elt)
4229 		     || EXPRESSION_CLASS_P (elt))
4230 		  ? TREE_OPERAND (elt, 0) : 0))
4231 	if (TYPE_MAIN_VARIANT (TREE_TYPE (elt)) == need_type)
4232 	  return elt;
4233 
4234       for (elt = obj; elt != 0;
4235 	   elt = ((TREE_CODE (elt) == COMPOUND_EXPR
4236 		   || TREE_CODE (elt) == COND_EXPR)
4237 		  ? TREE_OPERAND (elt, 1)
4238 		  : (REFERENCE_CLASS_P (elt)
4239 		     || UNARY_CLASS_P (elt)
4240 		     || BINARY_CLASS_P (elt)
4241 		     || VL_EXP_CLASS_P (elt)
4242 		     || EXPRESSION_CLASS_P (elt))
4243 		  ? TREE_OPERAND (elt, 0) : 0))
4244 	if (POINTER_TYPE_P (TREE_TYPE (elt))
4245 	    && (TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (elt)))
4246 		== need_type))
4247 	  return fold_build1 (INDIRECT_REF, need_type, elt);
4248 
4249       /* If we didn't find it, return the original PLACEHOLDER_EXPR.  If it
4250 	 survives until RTL generation, there will be an error.  */
4251       return exp;
4252     }
4253 
4254   /* TREE_LIST is special because we need to look at TREE_VALUE
4255      and TREE_CHAIN, not TREE_OPERANDS.  */
4256   else if (code == TREE_LIST)
4257     {
4258       op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_CHAIN (exp), obj);
4259       op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_VALUE (exp), obj);
4260       if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
4261 	return exp;
4262 
4263       return tree_cons (TREE_PURPOSE (exp), op1, op0);
4264     }
4265   else
4266     switch (TREE_CODE_CLASS (code))
4267       {
4268       case tcc_constant:
4269       case tcc_declaration:
4270 	return exp;
4271 
4272       case tcc_exceptional:
4273       case tcc_unary:
4274       case tcc_binary:
4275       case tcc_comparison:
4276       case tcc_expression:
4277       case tcc_reference:
4278       case tcc_statement:
4279 	switch (TREE_CODE_LENGTH (code))
4280 	  {
4281 	  case 0:
4282 	    return exp;
4283 
4284 	  case 1:
4285 	    op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
4286 	    if (op0 == TREE_OPERAND (exp, 0))
4287 	      return exp;
4288 
4289 	    new_tree = fold_build1 (code, TREE_TYPE (exp), op0);
4290 	    break;
4291 
4292 	  case 2:
4293 	    op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
4294 	    op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
4295 
4296 	    if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
4297 	      return exp;
4298 
4299 	    new_tree = fold_build2 (code, TREE_TYPE (exp), op0, op1);
4300 	    break;
4301 
4302 	  case 3:
4303 	    op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
4304 	    op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
4305 	    op2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 2), obj);
4306 
4307 	    if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
4308 		&& op2 == TREE_OPERAND (exp, 2))
4309 	      return exp;
4310 
4311 	    new_tree = fold_build3 (code, TREE_TYPE (exp), op0, op1, op2);
4312 	    break;
4313 
4314 	  case 4:
4315 	    op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
4316 	    op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
4317 	    op2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 2), obj);
4318 	    op3 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 3), obj);
4319 
4320 	    if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
4321 		&& op2 == TREE_OPERAND (exp, 2)
4322 		&& op3 == TREE_OPERAND (exp, 3))
4323 	      return exp;
4324 
4325 	    new_tree
4326 	      = fold (build4 (code, TREE_TYPE (exp), op0, op1, op2, op3));
4327 	    break;
4328 
4329 	  default:
4330 	    gcc_unreachable ();
4331 	  }
4332 	break;
4333 
4334       case tcc_vl_exp:
4335 	{
4336 	  int i;
4337 
4338 	  new_tree = NULL_TREE;
4339 
4340 	  for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++)
4341 	    {
4342 	      tree op = TREE_OPERAND (exp, i);
4343 	      tree new_op = SUBSTITUTE_PLACEHOLDER_IN_EXPR (op, obj);
4344 	      if (new_op != op)
4345 		{
4346 		  if (!new_tree)
4347 		    new_tree = copy_node (exp);
4348 		  TREE_OPERAND (new_tree, i) = new_op;
4349 		}
4350 	    }
4351 
4352 	  if (new_tree)
4353 	    {
4354 	      new_tree = fold (new_tree);
4355 	      if (TREE_CODE (new_tree) == CALL_EXPR)
4356 		process_call_operands (new_tree);
4357 	    }
4358 	  else
4359 	    return exp;
4360 	}
4361 	break;
4362 
4363       default:
4364 	gcc_unreachable ();
4365       }
4366 
4367   TREE_READONLY (new_tree) |= TREE_READONLY (exp);
4368 
4369   if (code == INDIRECT_REF || code == ARRAY_REF || code == ARRAY_RANGE_REF)
4370     TREE_THIS_NOTRAP (new_tree) |= TREE_THIS_NOTRAP (exp);
4371 
4372   return new_tree;
4373 }
4374 
4375 
4376 /* Subroutine of stabilize_reference; this is called for subtrees of
4377    references.  Any expression with side-effects must be put in a SAVE_EXPR
4378    to ensure that it is only evaluated once.
4379 
4380    We don't put SAVE_EXPR nodes around everything, because assigning very
4381    simple expressions to temporaries causes us to miss good opportunities
4382    for optimizations.  Among other things, the opportunity to fold in the
4383    addition of a constant into an addressing mode often gets lost, e.g.
4384    "y[i+1] += x;".  In general, we take the approach that we should not make
4385    an assignment unless we are forced into it - i.e., that any non-side effect
4386    operator should be allowed, and that cse should take care of coalescing
4387    multiple utterances of the same expression should that prove fruitful.  */
4388 
4389 static tree
4390 stabilize_reference_1 (tree e)
4391 {
4392   tree result;
4393   enum tree_code code = TREE_CODE (e);
4394 
4395   /* We cannot ignore const expressions because it might be a reference
4396      to a const array but whose index contains side-effects.  But we can
4397      ignore things that are actual constant or that already have been
4398      handled by this function.  */
4399 
4400   if (tree_invariant_p (e))
4401     return e;
4402 
4403   switch (TREE_CODE_CLASS (code))
4404     {
4405     case tcc_exceptional:
4406       /* Always wrap STATEMENT_LIST into SAVE_EXPR, even if it doesn't
4407 	 have side-effects.  */
4408       if (code == STATEMENT_LIST)
4409 	return save_expr (e);
4410       /* FALLTHRU */
4411     case tcc_type:
4412     case tcc_declaration:
4413     case tcc_comparison:
4414     case tcc_statement:
4415     case tcc_expression:
4416     case tcc_reference:
4417     case tcc_vl_exp:
4418       /* If the expression has side-effects, then encase it in a SAVE_EXPR
4419 	 so that it will only be evaluated once.  */
4420       /* The reference (r) and comparison (<) classes could be handled as
4421 	 below, but it is generally faster to only evaluate them once.  */
4422       if (TREE_SIDE_EFFECTS (e))
4423 	return save_expr (e);
4424       return e;
4425 
4426     case tcc_constant:
4427       /* Constants need no processing.  In fact, we should never reach
4428 	 here.  */
4429       return e;
4430 
4431     case tcc_binary:
4432       /* Division is slow and tends to be compiled with jumps,
4433 	 especially the division by powers of 2 that is often
4434 	 found inside of an array reference.  So do it just once.  */
4435       if (code == TRUNC_DIV_EXPR || code == TRUNC_MOD_EXPR
4436 	  || code == FLOOR_DIV_EXPR || code == FLOOR_MOD_EXPR
4437 	  || code == CEIL_DIV_EXPR || code == CEIL_MOD_EXPR
4438 	  || code == ROUND_DIV_EXPR || code == ROUND_MOD_EXPR)
4439 	return save_expr (e);
4440       /* Recursively stabilize each operand.  */
4441       result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)),
4442 			 stabilize_reference_1 (TREE_OPERAND (e, 1)));
4443       break;
4444 
4445     case tcc_unary:
4446       /* Recursively stabilize each operand.  */
4447       result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)));
4448       break;
4449 
4450     default:
4451       gcc_unreachable ();
4452     }
4453 
4454   TREE_TYPE (result) = TREE_TYPE (e);
4455   TREE_READONLY (result) = TREE_READONLY (e);
4456   TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (e);
4457   TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (e);
4458 
4459   return result;
4460 }
4461 
4462 /* Stabilize a reference so that we can use it any number of times
4463    without causing its operands to be evaluated more than once.
4464    Returns the stabilized reference.  This works by means of save_expr,
4465    so see the caveats in the comments about save_expr.
4466 
4467    Also allows conversion expressions whose operands are references.
4468    Any other kind of expression is returned unchanged.  */
4469 
4470 tree
4471 stabilize_reference (tree ref)
4472 {
4473   tree result;
4474   enum tree_code code = TREE_CODE (ref);
4475 
4476   switch (code)
4477     {
4478     case VAR_DECL:
4479     case PARM_DECL:
4480     case RESULT_DECL:
4481       /* No action is needed in this case.  */
4482       return ref;
4483 
4484     CASE_CONVERT:
4485     case FLOAT_EXPR:
4486     case FIX_TRUNC_EXPR:
4487       result = build_nt (code, stabilize_reference (TREE_OPERAND (ref, 0)));
4488       break;
4489 
4490     case INDIRECT_REF:
4491       result = build_nt (INDIRECT_REF,
4492 			 stabilize_reference_1 (TREE_OPERAND (ref, 0)));
4493       break;
4494 
4495     case COMPONENT_REF:
4496       result = build_nt (COMPONENT_REF,
4497 			 stabilize_reference (TREE_OPERAND (ref, 0)),
4498 			 TREE_OPERAND (ref, 1), NULL_TREE);
4499       break;
4500 
4501     case BIT_FIELD_REF:
4502       result = build_nt (BIT_FIELD_REF,
4503 			 stabilize_reference (TREE_OPERAND (ref, 0)),
4504 			 TREE_OPERAND (ref, 1), TREE_OPERAND (ref, 2));
4505       REF_REVERSE_STORAGE_ORDER (result) = REF_REVERSE_STORAGE_ORDER (ref);
4506       break;
4507 
4508     case ARRAY_REF:
4509       result = build_nt (ARRAY_REF,
4510 			 stabilize_reference (TREE_OPERAND (ref, 0)),
4511 			 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
4512 			 TREE_OPERAND (ref, 2), TREE_OPERAND (ref, 3));
4513       break;
4514 
4515     case ARRAY_RANGE_REF:
4516       result = build_nt (ARRAY_RANGE_REF,
4517 			 stabilize_reference (TREE_OPERAND (ref, 0)),
4518 			 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
4519 			 TREE_OPERAND (ref, 2), TREE_OPERAND (ref, 3));
4520       break;
4521 
4522     case COMPOUND_EXPR:
4523       /* We cannot wrap the first expression in a SAVE_EXPR, as then
4524 	 it wouldn't be ignored.  This matters when dealing with
4525 	 volatiles.  */
4526       return stabilize_reference_1 (ref);
4527 
4528       /* If arg isn't a kind of lvalue we recognize, make no change.
4529 	 Caller should recognize the error for an invalid lvalue.  */
4530     default:
4531       return ref;
4532 
4533     case ERROR_MARK:
4534       return error_mark_node;
4535     }
4536 
4537   TREE_TYPE (result) = TREE_TYPE (ref);
4538   TREE_READONLY (result) = TREE_READONLY (ref);
4539   TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (ref);
4540   TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (ref);
4541 
4542   return result;
4543 }
4544 
4545 /* Low-level constructors for expressions.  */
4546 
4547 /* A helper function for build1 and constant folders.  Set TREE_CONSTANT,
4548    and TREE_SIDE_EFFECTS for an ADDR_EXPR.  */
4549 
4550 void
4551 recompute_tree_invariant_for_addr_expr (tree t)
4552 {
4553   tree node;
4554   bool tc = true, se = false;
4555 
4556   gcc_assert (TREE_CODE (t) == ADDR_EXPR);
4557 
4558   /* We started out assuming this address is both invariant and constant, but
4559      does not have side effects.  Now go down any handled components and see if
4560      any of them involve offsets that are either non-constant or non-invariant.
4561      Also check for side-effects.
4562 
4563      ??? Note that this code makes no attempt to deal with the case where
4564      taking the address of something causes a copy due to misalignment.  */
4565 
4566 #define UPDATE_FLAGS(NODE)  \
4567 do { tree _node = (NODE); \
4568      if (_node && !TREE_CONSTANT (_node)) tc = false; \
4569      if (_node && TREE_SIDE_EFFECTS (_node)) se = true; } while (0)
4570 
4571   for (node = TREE_OPERAND (t, 0); handled_component_p (node);
4572        node = TREE_OPERAND (node, 0))
4573     {
4574       /* If the first operand doesn't have an ARRAY_TYPE, this is a bogus
4575 	 array reference (probably made temporarily by the G++ front end),
4576 	 so ignore all the operands.  */
4577       if ((TREE_CODE (node) == ARRAY_REF
4578 	   || TREE_CODE (node) == ARRAY_RANGE_REF)
4579 	  && TREE_CODE (TREE_TYPE (TREE_OPERAND (node, 0))) == ARRAY_TYPE)
4580 	{
4581 	  UPDATE_FLAGS (TREE_OPERAND (node, 1));
4582 	  if (TREE_OPERAND (node, 2))
4583 	    UPDATE_FLAGS (TREE_OPERAND (node, 2));
4584 	  if (TREE_OPERAND (node, 3))
4585 	    UPDATE_FLAGS (TREE_OPERAND (node, 3));
4586 	}
4587       /* Likewise, just because this is a COMPONENT_REF doesn't mean we have a
4588 	 FIELD_DECL, apparently.  The G++ front end can put something else
4589 	 there, at least temporarily.  */
4590       else if (TREE_CODE (node) == COMPONENT_REF
4591 	       && TREE_CODE (TREE_OPERAND (node, 1)) == FIELD_DECL)
4592 	{
4593 	  if (TREE_OPERAND (node, 2))
4594 	    UPDATE_FLAGS (TREE_OPERAND (node, 2));
4595 	}
4596     }
4597 
4598   node = lang_hooks.expr_to_decl (node, &tc, &se);
4599 
4600   /* Now see what's inside.  If it's an INDIRECT_REF, copy our properties from
4601      the address, since &(*a)->b is a form of addition.  If it's a constant, the
4602      address is constant too.  If it's a decl, its address is constant if the
4603      decl is static.  Everything else is not constant and, furthermore,
4604      taking the address of a volatile variable is not volatile.  */
4605   if (TREE_CODE (node) == INDIRECT_REF
4606       || TREE_CODE (node) == MEM_REF)
4607     UPDATE_FLAGS (TREE_OPERAND (node, 0));
4608   else if (CONSTANT_CLASS_P (node))
4609     ;
4610   else if (DECL_P (node))
4611     tc &= (staticp (node) != NULL_TREE);
4612   else
4613     {
4614       tc = false;
4615       se |= TREE_SIDE_EFFECTS (node);
4616     }
4617 
4618 
4619   TREE_CONSTANT (t) = tc;
4620   TREE_SIDE_EFFECTS (t) = se;
4621 #undef UPDATE_FLAGS
4622 }
4623 
4624 /* Build an expression of code CODE, data type TYPE, and operands as
4625    specified.  Expressions and reference nodes can be created this way.
4626    Constants, decls, types and misc nodes cannot be.
4627 
4628    We define 5 non-variadic functions, from 0 to 4 arguments.  This is
4629    enough for all extant tree codes.  */
4630 
4631 tree
4632 build0 (enum tree_code code, tree tt MEM_STAT_DECL)
4633 {
4634   tree t;
4635 
4636   gcc_assert (TREE_CODE_LENGTH (code) == 0);
4637 
4638   t = make_node (code PASS_MEM_STAT);
4639   TREE_TYPE (t) = tt;
4640 
4641   return t;
4642 }
4643 
4644 tree
4645 build1 (enum tree_code code, tree type, tree node MEM_STAT_DECL)
4646 {
4647   int length = sizeof (struct tree_exp);
4648   tree t;
4649 
4650   record_node_allocation_statistics (code, length);
4651 
4652   gcc_assert (TREE_CODE_LENGTH (code) == 1);
4653 
4654   t = ggc_alloc_tree_node_stat (length PASS_MEM_STAT);
4655 
4656   memset (t, 0, sizeof (struct tree_common));
4657 
4658   TREE_SET_CODE (t, code);
4659 
4660   TREE_TYPE (t) = type;
4661   SET_EXPR_LOCATION (t, UNKNOWN_LOCATION);
4662   TREE_OPERAND (t, 0) = node;
4663   if (node && !TYPE_P (node))
4664     {
4665       TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (node);
4666       TREE_READONLY (t) = TREE_READONLY (node);
4667     }
4668 
4669   if (TREE_CODE_CLASS (code) == tcc_statement)
4670     {
4671       if (code != DEBUG_BEGIN_STMT)
4672 	TREE_SIDE_EFFECTS (t) = 1;
4673     }
4674   else switch (code)
4675     {
4676     case VA_ARG_EXPR:
4677       /* All of these have side-effects, no matter what their
4678 	 operands are.  */
4679       TREE_SIDE_EFFECTS (t) = 1;
4680       TREE_READONLY (t) = 0;
4681       break;
4682 
4683     case INDIRECT_REF:
4684       /* Whether a dereference is readonly has nothing to do with whether
4685 	 its operand is readonly.  */
4686       TREE_READONLY (t) = 0;
4687       break;
4688 
4689     case ADDR_EXPR:
4690       if (node)
4691 	recompute_tree_invariant_for_addr_expr (t);
4692       break;
4693 
4694     default:
4695       if ((TREE_CODE_CLASS (code) == tcc_unary || code == VIEW_CONVERT_EXPR)
4696 	  && node && !TYPE_P (node)
4697 	  && TREE_CONSTANT (node))
4698 	TREE_CONSTANT (t) = 1;
4699       if (TREE_CODE_CLASS (code) == tcc_reference
4700 	  && node && TREE_THIS_VOLATILE (node))
4701 	TREE_THIS_VOLATILE (t) = 1;
4702       break;
4703     }
4704 
4705   return t;
4706 }
4707 
4708 #define PROCESS_ARG(N)				\
4709   do {						\
4710     TREE_OPERAND (t, N) = arg##N;		\
4711     if (arg##N &&!TYPE_P (arg##N))		\
4712       {						\
4713         if (TREE_SIDE_EFFECTS (arg##N))		\
4714 	  side_effects = 1;			\
4715         if (!TREE_READONLY (arg##N)		\
4716 	    && !CONSTANT_CLASS_P (arg##N))	\
4717 	  (void) (read_only = 0);		\
4718         if (!TREE_CONSTANT (arg##N))		\
4719 	  (void) (constant = 0);		\
4720       }						\
4721   } while (0)
4722 
4723 tree
4724 build2 (enum tree_code code, tree tt, tree arg0, tree arg1 MEM_STAT_DECL)
4725 {
4726   bool constant, read_only, side_effects, div_by_zero;
4727   tree t;
4728 
4729   gcc_assert (TREE_CODE_LENGTH (code) == 2);
4730 
4731   if ((code == MINUS_EXPR || code == PLUS_EXPR || code == MULT_EXPR)
4732       && arg0 && arg1 && tt && POINTER_TYPE_P (tt)
4733       /* When sizetype precision doesn't match that of pointers
4734          we need to be able to build explicit extensions or truncations
4735 	 of the offset argument.  */
4736       && TYPE_PRECISION (sizetype) == TYPE_PRECISION (tt))
4737     gcc_assert (TREE_CODE (arg0) == INTEGER_CST
4738 		&& TREE_CODE (arg1) == INTEGER_CST);
4739 
4740   if (code == POINTER_PLUS_EXPR && arg0 && arg1 && tt)
4741     gcc_assert (POINTER_TYPE_P (tt) && POINTER_TYPE_P (TREE_TYPE (arg0))
4742 		&& ptrofftype_p (TREE_TYPE (arg1)));
4743 
4744   t = make_node (code PASS_MEM_STAT);
4745   TREE_TYPE (t) = tt;
4746 
4747   /* Below, we automatically set TREE_SIDE_EFFECTS and TREE_READONLY for the
4748      result based on those same flags for the arguments.  But if the
4749      arguments aren't really even `tree' expressions, we shouldn't be trying
4750      to do this.  */
4751 
4752   /* Expressions without side effects may be constant if their
4753      arguments are as well.  */
4754   constant = (TREE_CODE_CLASS (code) == tcc_comparison
4755 	      || TREE_CODE_CLASS (code) == tcc_binary);
4756   read_only = 1;
4757   side_effects = TREE_SIDE_EFFECTS (t);
4758 
4759   switch (code)
4760     {
4761     case TRUNC_DIV_EXPR:
4762     case CEIL_DIV_EXPR:
4763     case FLOOR_DIV_EXPR:
4764     case ROUND_DIV_EXPR:
4765     case EXACT_DIV_EXPR:
4766     case CEIL_MOD_EXPR:
4767     case FLOOR_MOD_EXPR:
4768     case ROUND_MOD_EXPR:
4769     case TRUNC_MOD_EXPR:
4770       div_by_zero = integer_zerop (arg1);
4771       break;
4772     default:
4773       div_by_zero = false;
4774     }
4775 
4776   PROCESS_ARG (0);
4777   PROCESS_ARG (1);
4778 
4779   TREE_SIDE_EFFECTS (t) = side_effects;
4780   if (code == MEM_REF)
4781     {
4782       if (arg0 && TREE_CODE (arg0) == ADDR_EXPR)
4783 	{
4784 	  tree o = TREE_OPERAND (arg0, 0);
4785 	  TREE_READONLY (t) = TREE_READONLY (o);
4786 	  TREE_THIS_VOLATILE (t) = TREE_THIS_VOLATILE (o);
4787 	}
4788     }
4789   else
4790     {
4791       TREE_READONLY (t) = read_only;
4792       /* Don't mark X / 0 as constant.  */
4793       TREE_CONSTANT (t) = constant && !div_by_zero;
4794       TREE_THIS_VOLATILE (t)
4795 	= (TREE_CODE_CLASS (code) == tcc_reference
4796 	   && arg0 && TREE_THIS_VOLATILE (arg0));
4797     }
4798 
4799   return t;
4800 }
4801 
4802 
4803 tree
4804 build3 (enum tree_code code, tree tt, tree arg0, tree arg1,
4805 	tree arg2 MEM_STAT_DECL)
4806 {
4807   bool constant, read_only, side_effects;
4808   tree t;
4809 
4810   gcc_assert (TREE_CODE_LENGTH (code) == 3);
4811   gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
4812 
4813   t = make_node (code PASS_MEM_STAT);
4814   TREE_TYPE (t) = tt;
4815 
4816   read_only = 1;
4817 
4818   /* As a special exception, if COND_EXPR has NULL branches, we
4819      assume that it is a gimple statement and always consider
4820      it to have side effects.  */
4821   if (code == COND_EXPR
4822       && tt == void_type_node
4823       && arg1 == NULL_TREE
4824       && arg2 == NULL_TREE)
4825     side_effects = true;
4826   else
4827     side_effects = TREE_SIDE_EFFECTS (t);
4828 
4829   PROCESS_ARG (0);
4830   PROCESS_ARG (1);
4831   PROCESS_ARG (2);
4832 
4833   if (code == COND_EXPR)
4834     TREE_READONLY (t) = read_only;
4835 
4836   TREE_SIDE_EFFECTS (t) = side_effects;
4837   TREE_THIS_VOLATILE (t)
4838     = (TREE_CODE_CLASS (code) == tcc_reference
4839        && arg0 && TREE_THIS_VOLATILE (arg0));
4840 
4841   return t;
4842 }
4843 
4844 tree
4845 build4 (enum tree_code code, tree tt, tree arg0, tree arg1,
4846 	tree arg2, tree arg3 MEM_STAT_DECL)
4847 {
4848   bool constant, read_only, side_effects;
4849   tree t;
4850 
4851   gcc_assert (TREE_CODE_LENGTH (code) == 4);
4852 
4853   t = make_node (code PASS_MEM_STAT);
4854   TREE_TYPE (t) = tt;
4855 
4856   side_effects = TREE_SIDE_EFFECTS (t);
4857 
4858   PROCESS_ARG (0);
4859   PROCESS_ARG (1);
4860   PROCESS_ARG (2);
4861   PROCESS_ARG (3);
4862 
4863   TREE_SIDE_EFFECTS (t) = side_effects;
4864   TREE_THIS_VOLATILE (t)
4865     = (TREE_CODE_CLASS (code) == tcc_reference
4866        && arg0 && TREE_THIS_VOLATILE (arg0));
4867 
4868   return t;
4869 }
4870 
4871 tree
4872 build5 (enum tree_code code, tree tt, tree arg0, tree arg1,
4873 	tree arg2, tree arg3, tree arg4 MEM_STAT_DECL)
4874 {
4875   bool constant, read_only, side_effects;
4876   tree t;
4877 
4878   gcc_assert (TREE_CODE_LENGTH (code) == 5);
4879 
4880   t = make_node (code PASS_MEM_STAT);
4881   TREE_TYPE (t) = tt;
4882 
4883   side_effects = TREE_SIDE_EFFECTS (t);
4884 
4885   PROCESS_ARG (0);
4886   PROCESS_ARG (1);
4887   PROCESS_ARG (2);
4888   PROCESS_ARG (3);
4889   PROCESS_ARG (4);
4890 
4891   TREE_SIDE_EFFECTS (t) = side_effects;
4892   if (code == TARGET_MEM_REF)
4893     {
4894       if (arg0 && TREE_CODE (arg0) == ADDR_EXPR)
4895 	{
4896 	  tree o = TREE_OPERAND (arg0, 0);
4897 	  TREE_READONLY (t) = TREE_READONLY (o);
4898 	  TREE_THIS_VOLATILE (t) = TREE_THIS_VOLATILE (o);
4899 	}
4900     }
4901   else
4902     TREE_THIS_VOLATILE (t)
4903       = (TREE_CODE_CLASS (code) == tcc_reference
4904 	 && arg0 && TREE_THIS_VOLATILE (arg0));
4905 
4906   return t;
4907 }
4908 
4909 /* Build a simple MEM_REF tree with the sematics of a plain INDIRECT_REF
4910    on the pointer PTR.  */
4911 
4912 tree
4913 build_simple_mem_ref_loc (location_t loc, tree ptr)
4914 {
4915   poly_int64 offset = 0;
4916   tree ptype = TREE_TYPE (ptr);
4917   tree tem;
4918   /* For convenience allow addresses that collapse to a simple base
4919      and offset.  */
4920   if (TREE_CODE (ptr) == ADDR_EXPR
4921       && (handled_component_p (TREE_OPERAND (ptr, 0))
4922 	  || TREE_CODE (TREE_OPERAND (ptr, 0)) == MEM_REF))
4923     {
4924       ptr = get_addr_base_and_unit_offset (TREE_OPERAND (ptr, 0), &offset);
4925       gcc_assert (ptr);
4926       if (TREE_CODE (ptr) == MEM_REF)
4927 	{
4928 	  offset += mem_ref_offset (ptr).force_shwi ();
4929 	  ptr = TREE_OPERAND (ptr, 0);
4930 	}
4931       else
4932 	ptr = build_fold_addr_expr (ptr);
4933       gcc_assert (is_gimple_reg (ptr) || is_gimple_min_invariant (ptr));
4934     }
4935   tem = build2 (MEM_REF, TREE_TYPE (ptype),
4936 		ptr, build_int_cst (ptype, offset));
4937   SET_EXPR_LOCATION (tem, loc);
4938   return tem;
4939 }
4940 
4941 /* Return the constant offset of a MEM_REF or TARGET_MEM_REF tree T.  */
4942 
4943 poly_offset_int
4944 mem_ref_offset (const_tree t)
4945 {
4946   return poly_offset_int::from (wi::to_poly_wide (TREE_OPERAND (t, 1)),
4947 				SIGNED);
4948 }
4949 
4950 /* Return an invariant ADDR_EXPR of type TYPE taking the address of BASE
4951    offsetted by OFFSET units.  */
4952 
4953 tree
4954 build_invariant_address (tree type, tree base, poly_int64 offset)
4955 {
4956   tree ref = fold_build2 (MEM_REF, TREE_TYPE (type),
4957 			  build_fold_addr_expr (base),
4958 			  build_int_cst (ptr_type_node, offset));
4959   tree addr = build1 (ADDR_EXPR, type, ref);
4960   recompute_tree_invariant_for_addr_expr (addr);
4961   return addr;
4962 }
4963 
4964 /* Similar except don't specify the TREE_TYPE
4965    and leave the TREE_SIDE_EFFECTS as 0.
4966    It is permissible for arguments to be null,
4967    or even garbage if their values do not matter.  */
4968 
4969 tree
4970 build_nt (enum tree_code code, ...)
4971 {
4972   tree t;
4973   int length;
4974   int i;
4975   va_list p;
4976 
4977   gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
4978 
4979   va_start (p, code);
4980 
4981   t = make_node (code);
4982   length = TREE_CODE_LENGTH (code);
4983 
4984   for (i = 0; i < length; i++)
4985     TREE_OPERAND (t, i) = va_arg (p, tree);
4986 
4987   va_end (p);
4988   return t;
4989 }
4990 
4991 /* Similar to build_nt, but for creating a CALL_EXPR object with a
4992    tree vec.  */
4993 
4994 tree
4995 build_nt_call_vec (tree fn, vec<tree, va_gc> *args)
4996 {
4997   tree ret, t;
4998   unsigned int ix;
4999 
5000   ret = build_vl_exp (CALL_EXPR, vec_safe_length (args) + 3);
5001   CALL_EXPR_FN (ret) = fn;
5002   CALL_EXPR_STATIC_CHAIN (ret) = NULL_TREE;
5003   FOR_EACH_VEC_SAFE_ELT (args, ix, t)
5004     CALL_EXPR_ARG (ret, ix) = t;
5005   return ret;
5006 }
5007 
5008 /* Create a DECL_... node of code CODE, name NAME  (if non-null)
5009    and data type TYPE.
5010    We do NOT enter this node in any sort of symbol table.
5011 
5012    LOC is the location of the decl.
5013 
5014    layout_decl is used to set up the decl's storage layout.
5015    Other slots are initialized to 0 or null pointers.  */
5016 
5017 tree
5018 build_decl (location_t loc, enum tree_code code, tree name,
5019     		 tree type MEM_STAT_DECL)
5020 {
5021   tree t;
5022 
5023   t = make_node (code PASS_MEM_STAT);
5024   DECL_SOURCE_LOCATION (t) = loc;
5025 
5026 /*  if (type == error_mark_node)
5027     type = integer_type_node; */
5028 /* That is not done, deliberately, so that having error_mark_node
5029    as the type can suppress useless errors in the use of this variable.  */
5030 
5031   DECL_NAME (t) = name;
5032   TREE_TYPE (t) = type;
5033 
5034   if (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL)
5035     layout_decl (t, 0);
5036 
5037   return t;
5038 }
5039 
5040 /* Builds and returns function declaration with NAME and TYPE.  */
5041 
5042 tree
5043 build_fn_decl (const char *name, tree type)
5044 {
5045   tree id = get_identifier (name);
5046   tree decl = build_decl (input_location, FUNCTION_DECL, id, type);
5047 
5048   DECL_EXTERNAL (decl) = 1;
5049   TREE_PUBLIC (decl) = 1;
5050   DECL_ARTIFICIAL (decl) = 1;
5051   TREE_NOTHROW (decl) = 1;
5052 
5053   return decl;
5054 }
5055 
5056 vec<tree, va_gc> *all_translation_units;
5057 
5058 /* Builds a new translation-unit decl with name NAME, queues it in the
5059    global list of translation-unit decls and returns it.   */
5060 
5061 tree
5062 build_translation_unit_decl (tree name)
5063 {
5064   tree tu = build_decl (UNKNOWN_LOCATION, TRANSLATION_UNIT_DECL,
5065 			name, NULL_TREE);
5066   TRANSLATION_UNIT_LANGUAGE (tu) = lang_hooks.name;
5067   vec_safe_push (all_translation_units, tu);
5068   return tu;
5069 }
5070 
5071 
5072 /* BLOCK nodes are used to represent the structure of binding contours
5073    and declarations, once those contours have been exited and their contents
5074    compiled.  This information is used for outputting debugging info.  */
5075 
5076 tree
5077 build_block (tree vars, tree subblocks, tree supercontext, tree chain)
5078 {
5079   tree block = make_node (BLOCK);
5080 
5081   BLOCK_VARS (block) = vars;
5082   BLOCK_SUBBLOCKS (block) = subblocks;
5083   BLOCK_SUPERCONTEXT (block) = supercontext;
5084   BLOCK_CHAIN (block) = chain;
5085   return block;
5086 }
5087 
5088 
5089 /* Like SET_EXPR_LOCATION, but make sure the tree can have a location.
5090 
5091    LOC is the location to use in tree T.  */
5092 
5093 void
5094 protected_set_expr_location (tree t, location_t loc)
5095 {
5096   if (CAN_HAVE_LOCATION_P (t))
5097     SET_EXPR_LOCATION (t, loc);
5098 }
5099 
5100 /* Data used when collecting DECLs and TYPEs for language data removal.  */
5101 
5102 struct free_lang_data_d
5103 {
5104   free_lang_data_d () : decls (100), types (100) {}
5105 
5106   /* Worklist to avoid excessive recursion.  */
5107   auto_vec<tree> worklist;
5108 
5109   /* Set of traversed objects.  Used to avoid duplicate visits.  */
5110   hash_set<tree> pset;
5111 
5112   /* Array of symbols to process with free_lang_data_in_decl.  */
5113   auto_vec<tree> decls;
5114 
5115   /* Array of types to process with free_lang_data_in_type.  */
5116   auto_vec<tree> types;
5117 };
5118 
5119 
5120 /* Add type or decl T to one of the list of tree nodes that need their
5121    language data removed.  The lists are held inside FLD.  */
5122 
5123 static void
5124 add_tree_to_fld_list (tree t, struct free_lang_data_d *fld)
5125 {
5126   if (DECL_P (t))
5127     fld->decls.safe_push (t);
5128   else if (TYPE_P (t))
5129     fld->types.safe_push (t);
5130   else
5131     gcc_unreachable ();
5132 }
5133 
5134 /* Push tree node T into FLD->WORKLIST.  */
5135 
5136 static inline void
5137 fld_worklist_push (tree t, struct free_lang_data_d *fld)
5138 {
5139   if (t && !is_lang_specific (t) && !fld->pset.contains (t))
5140     fld->worklist.safe_push ((t));
5141 }
5142 
5143 
5144 
5145 /* Return simplified TYPE_NAME of TYPE.  */
5146 
5147 static tree
5148 fld_simplified_type_name (tree type)
5149 {
5150   if (!TYPE_NAME (type) || TREE_CODE (TYPE_NAME (type)) != TYPE_DECL)
5151     return TYPE_NAME (type);
5152   /* Drop TYPE_DECLs in TYPE_NAME in favor of the identifier in the
5153      TYPE_DECL if the type doesn't have linkage.
5154      this must match fld_  */
5155   if (type != TYPE_MAIN_VARIANT (type)
5156       || (!DECL_ASSEMBLER_NAME_SET_P (TYPE_NAME (type))
5157 	  && (TREE_CODE (type) != RECORD_TYPE
5158 	      || !TYPE_BINFO (type)
5159 	      || !BINFO_VTABLE (TYPE_BINFO (type)))))
5160     return DECL_NAME (TYPE_NAME (type));
5161   return TYPE_NAME (type);
5162 }
5163 
5164 /* Do same comparsion as check_qualified_type skipping lang part of type
5165    and be more permissive about type names: we only care that names are
5166    same (for diagnostics) and that ODR names are the same.
5167    If INNER_TYPE is non-NULL, be sure that TREE_TYPE match it.  */
5168 
5169 static bool
5170 fld_type_variant_equal_p (tree t, tree v, tree inner_type)
5171 {
5172   if (TYPE_QUALS (t) != TYPE_QUALS (v)
5173       /* We want to match incomplete variants with complete types.
5174 	 In this case we need to ignore alignment.   */
5175       || ((!RECORD_OR_UNION_TYPE_P (t) || COMPLETE_TYPE_P (v))
5176 	  && (TYPE_ALIGN (t) != TYPE_ALIGN (v)
5177 	      || TYPE_USER_ALIGN (t) != TYPE_USER_ALIGN (v)))
5178       || fld_simplified_type_name (t) != fld_simplified_type_name (v)
5179       || !attribute_list_equal (TYPE_ATTRIBUTES (t),
5180 			        TYPE_ATTRIBUTES (v))
5181       || (inner_type && TREE_TYPE (v) != inner_type))
5182     return false;
5183 
5184   return true;
5185 }
5186 
5187 /* Find variant of FIRST that match T and create new one if necessary.
5188    Set TREE_TYPE to INNER_TYPE if non-NULL.  */
5189 
5190 static tree
5191 fld_type_variant (tree first, tree t, struct free_lang_data_d *fld,
5192 		  tree inner_type = NULL)
5193 {
5194   if (first == TYPE_MAIN_VARIANT (t))
5195     return t;
5196   for (tree v = first; v; v = TYPE_NEXT_VARIANT (v))
5197     if (fld_type_variant_equal_p (t, v, inner_type))
5198       return v;
5199   tree v = build_variant_type_copy (first);
5200   TYPE_READONLY (v) = TYPE_READONLY (t);
5201   TYPE_VOLATILE (v) = TYPE_VOLATILE (t);
5202   TYPE_ATOMIC (v) = TYPE_ATOMIC (t);
5203   TYPE_RESTRICT (v) = TYPE_RESTRICT (t);
5204   TYPE_ADDR_SPACE (v) = TYPE_ADDR_SPACE (t);
5205   TYPE_NAME (v) = TYPE_NAME (t);
5206   TYPE_ATTRIBUTES (v) = TYPE_ATTRIBUTES (t);
5207   TYPE_CANONICAL (v) = TYPE_CANONICAL (t);
5208   /* Variants of incomplete types should have alignment
5209      set to BITS_PER_UNIT.  Do not copy the actual alignment.  */
5210   if (!RECORD_OR_UNION_TYPE_P (v) || COMPLETE_TYPE_P (v))
5211     {
5212       SET_TYPE_ALIGN (v, TYPE_ALIGN (t));
5213       TYPE_USER_ALIGN (v) = TYPE_USER_ALIGN (t);
5214     }
5215   if (inner_type)
5216     TREE_TYPE (v) = inner_type;
5217   gcc_checking_assert (fld_type_variant_equal_p (t,v, inner_type));
5218   if (!fld->pset.add (v))
5219     add_tree_to_fld_list (v, fld);
5220   return v;
5221 }
5222 
5223 /* Map complete types to incomplete types.  */
5224 
5225 static hash_map<tree, tree> *fld_incomplete_types;
5226 
5227 /* Map types to simplified types.  */
5228 
5229 static hash_map<tree, tree> *fld_simplified_types;
5230 
5231 /* Produce variant of T whose TREE_TYPE is T2. If it is main variant,
5232    use MAP to prevent duplicates.  */
5233 
5234 static tree
5235 fld_process_array_type (tree t, tree t2, hash_map<tree, tree> *map,
5236 			struct free_lang_data_d *fld)
5237 {
5238   if (TREE_TYPE (t) == t2)
5239     return t;
5240 
5241   if (TYPE_MAIN_VARIANT (t) != t)
5242     {
5243       return fld_type_variant
5244 	       (fld_process_array_type (TYPE_MAIN_VARIANT (t),
5245 					TYPE_MAIN_VARIANT (t2), map, fld),
5246 		t, fld, t2);
5247     }
5248 
5249   bool existed;
5250   tree &array
5251      = map->get_or_insert (t, &existed);
5252   if (!existed)
5253     {
5254       array
5255 	= build_array_type_1 (t2, TYPE_DOMAIN (t), TYPE_TYPELESS_STORAGE (t),
5256 			      false, false);
5257       TYPE_CANONICAL (array) = TYPE_CANONICAL (t);
5258       if (!fld->pset.add (array))
5259 	add_tree_to_fld_list (array, fld);
5260     }
5261   return array;
5262 }
5263 
5264 /* Return CTX after removal of contexts that are not relevant  */
5265 
5266 static tree
5267 fld_decl_context (tree ctx)
5268 {
5269   /* Variably modified types are needed for tree_is_indexable to decide
5270      whether the type needs to go to local or global section.
5271      This code is semi-broken but for now it is easiest to keep contexts
5272      as expected.  */
5273   if (ctx && TYPE_P (ctx)
5274       && !variably_modified_type_p (ctx, NULL_TREE))
5275      {
5276        while (ctx && TYPE_P (ctx))
5277 	 ctx = TYPE_CONTEXT (ctx);
5278      }
5279   return ctx;
5280 }
5281 
5282 /* For T being aggregate type try to turn it into a incomplete variant.
5283    Return T if no simplification is possible.  */
5284 
5285 static tree
5286 fld_incomplete_type_of (tree t, struct free_lang_data_d *fld)
5287 {
5288   if (!t)
5289     return NULL;
5290   if (POINTER_TYPE_P (t))
5291     {
5292       tree t2 = fld_incomplete_type_of (TREE_TYPE (t), fld);
5293       if (t2 != TREE_TYPE (t))
5294 	{
5295 	  tree first;
5296 	  if (TREE_CODE (t) == POINTER_TYPE)
5297 	    first = build_pointer_type_for_mode (t2, TYPE_MODE (t),
5298 						TYPE_REF_CAN_ALIAS_ALL (t));
5299 	  else
5300 	    first = build_reference_type_for_mode (t2, TYPE_MODE (t),
5301 						TYPE_REF_CAN_ALIAS_ALL (t));
5302 	  gcc_assert (TYPE_CANONICAL (t2) != t2
5303 		      && TYPE_CANONICAL (t2) == TYPE_CANONICAL (TREE_TYPE (t)));
5304 	  if (!fld->pset.add (first))
5305 	    add_tree_to_fld_list (first, fld);
5306 	  return fld_type_variant (first, t, fld);
5307 	}
5308       return t;
5309     }
5310   if (TREE_CODE (t) == ARRAY_TYPE)
5311     return fld_process_array_type (t,
5312 				   fld_incomplete_type_of (TREE_TYPE (t), fld),
5313 				   fld_incomplete_types, fld);
5314   if ((!RECORD_OR_UNION_TYPE_P (t) && TREE_CODE (t) != ENUMERAL_TYPE)
5315       || !COMPLETE_TYPE_P (t))
5316     return t;
5317   if (TYPE_MAIN_VARIANT (t) == t)
5318     {
5319       bool existed;
5320       tree &copy
5321 	 = fld_incomplete_types->get_or_insert (t, &existed);
5322 
5323       if (!existed)
5324 	{
5325 	  copy = build_distinct_type_copy (t);
5326 
5327 	  /* It is possible that type was not seen by free_lang_data yet.  */
5328 	  if (!fld->pset.add (copy))
5329 	    add_tree_to_fld_list (copy, fld);
5330 	  TYPE_SIZE (copy) = NULL;
5331 	  TYPE_USER_ALIGN (copy) = 0;
5332 	  TYPE_SIZE_UNIT (copy) = NULL;
5333 	  TYPE_CANONICAL (copy) = TYPE_CANONICAL (t);
5334 	  TREE_ADDRESSABLE (copy) = 0;
5335 	  if (AGGREGATE_TYPE_P (t))
5336 	    {
5337 	      SET_TYPE_MODE (copy, VOIDmode);
5338 	      SET_TYPE_ALIGN (copy, BITS_PER_UNIT);
5339 	      TYPE_TYPELESS_STORAGE (copy) = 0;
5340 	      TYPE_FIELDS (copy) = NULL;
5341 	      TYPE_BINFO (copy) = NULL;
5342 	    }
5343 	  else
5344 	    TYPE_VALUES (copy) = NULL;
5345 
5346 	  /* Build copy of TYPE_DECL in TYPE_NAME if necessary.
5347 	     This is needed for ODR violation warnings to come out right (we
5348 	     want duplicate TYPE_DECLs whenever the type is duplicated because
5349 	     of ODR violation.  Because lang data in the TYPE_DECL may not
5350 	     have been freed yet, rebuild it from scratch and copy relevant
5351 	     fields.  */
5352 	  TYPE_NAME (copy) = fld_simplified_type_name (copy);
5353 	  tree name = TYPE_NAME (copy);
5354 
5355 	  if (name && TREE_CODE (name) == TYPE_DECL)
5356 	    {
5357 	      gcc_checking_assert (TREE_TYPE (name) == t);
5358 	      tree name2 = build_decl (DECL_SOURCE_LOCATION (name), TYPE_DECL,
5359 				       DECL_NAME (name), copy);
5360 	      if (DECL_ASSEMBLER_NAME_SET_P (name))
5361 	        SET_DECL_ASSEMBLER_NAME (name2, DECL_ASSEMBLER_NAME (name));
5362 	      SET_DECL_ALIGN (name2, 0);
5363 	      DECL_CONTEXT (name2) = fld_decl_context
5364 					 (DECL_CONTEXT (name));
5365 	      TYPE_NAME (copy) = name2;
5366 	    }
5367 	}
5368       return copy;
5369    }
5370   return (fld_type_variant
5371 	    (fld_incomplete_type_of (TYPE_MAIN_VARIANT (t), fld), t, fld));
5372 }
5373 
5374 /* Simplify type T for scenarios where we do not need complete pointer
5375    types.  */
5376 
5377 static tree
5378 fld_simplified_type (tree t, struct free_lang_data_d *fld)
5379 {
5380   if (!t)
5381     return t;
5382   if (POINTER_TYPE_P (t))
5383     return fld_incomplete_type_of (t, fld);
5384   /* FIXME: This triggers verification error, see PR88140.  */
5385   if (TREE_CODE (t) == ARRAY_TYPE && 0)
5386     return fld_process_array_type (t, fld_simplified_type (TREE_TYPE (t), fld),
5387 				   fld_simplified_types, fld);
5388   return t;
5389 }
5390 
5391 /* Reset the expression *EXPR_P, a size or position.
5392 
5393    ??? We could reset all non-constant sizes or positions.  But it's cheap
5394    enough to not do so and refrain from adding workarounds to dwarf2out.c.
5395 
5396    We need to reset self-referential sizes or positions because they cannot
5397    be gimplified and thus can contain a CALL_EXPR after the gimplification
5398    is finished, which will run afoul of LTO streaming.  And they need to be
5399    reset to something essentially dummy but not constant, so as to preserve
5400    the properties of the object they are attached to.  */
5401 
5402 static inline void
5403 free_lang_data_in_one_sizepos (tree *expr_p)
5404 {
5405   tree expr = *expr_p;
5406   if (CONTAINS_PLACEHOLDER_P (expr))
5407     *expr_p = build0 (PLACEHOLDER_EXPR, TREE_TYPE (expr));
5408 }
5409 
5410 
5411 /* Reset all the fields in a binfo node BINFO.  We only keep
5412    BINFO_VTABLE, which is used by gimple_fold_obj_type_ref.  */
5413 
5414 static void
5415 free_lang_data_in_binfo (tree binfo)
5416 {
5417   unsigned i;
5418   tree t;
5419 
5420   gcc_assert (TREE_CODE (binfo) == TREE_BINFO);
5421 
5422   BINFO_VIRTUALS (binfo) = NULL_TREE;
5423   BINFO_BASE_ACCESSES (binfo) = NULL;
5424   BINFO_INHERITANCE_CHAIN (binfo) = NULL_TREE;
5425   BINFO_SUBVTT_INDEX (binfo) = NULL_TREE;
5426   BINFO_VPTR_FIELD (binfo) = NULL_TREE;
5427 
5428   FOR_EACH_VEC_ELT (*BINFO_BASE_BINFOS (binfo), i, t)
5429     free_lang_data_in_binfo (t);
5430 }
5431 
5432 
5433 /* Reset all language specific information still present in TYPE.  */
5434 
5435 static void
5436 free_lang_data_in_type (tree type, struct free_lang_data_d *fld)
5437 {
5438   gcc_assert (TYPE_P (type));
5439 
5440   /* Give the FE a chance to remove its own data first.  */
5441   lang_hooks.free_lang_data (type);
5442 
5443   TREE_LANG_FLAG_0 (type) = 0;
5444   TREE_LANG_FLAG_1 (type) = 0;
5445   TREE_LANG_FLAG_2 (type) = 0;
5446   TREE_LANG_FLAG_3 (type) = 0;
5447   TREE_LANG_FLAG_4 (type) = 0;
5448   TREE_LANG_FLAG_5 (type) = 0;
5449   TREE_LANG_FLAG_6 (type) = 0;
5450 
5451   TYPE_NEEDS_CONSTRUCTING (type) = 0;
5452 
5453   /* Purge non-marked variants from the variants chain, so that they
5454      don't reappear in the IL after free_lang_data.  */
5455   while (TYPE_NEXT_VARIANT (type)
5456 	 && !fld->pset.contains (TYPE_NEXT_VARIANT (type)))
5457     {
5458       tree t = TYPE_NEXT_VARIANT (type);
5459       TYPE_NEXT_VARIANT (type) = TYPE_NEXT_VARIANT (t);
5460       /* Turn the removed types into distinct types.  */
5461       TYPE_MAIN_VARIANT (t) = t;
5462       TYPE_NEXT_VARIANT (t) = NULL_TREE;
5463     }
5464 
5465   if (TREE_CODE (type) == FUNCTION_TYPE)
5466     {
5467       TREE_TYPE (type) = fld_simplified_type (TREE_TYPE (type), fld);
5468       /* Remove the const and volatile qualifiers from arguments.  The
5469 	 C++ front end removes them, but the C front end does not,
5470 	 leading to false ODR violation errors when merging two
5471 	 instances of the same function signature compiled by
5472 	 different front ends.  */
5473       for (tree p = TYPE_ARG_TYPES (type); p; p = TREE_CHAIN (p))
5474 	{
5475           TREE_VALUE (p) = fld_simplified_type (TREE_VALUE (p), fld);
5476 	  tree arg_type = TREE_VALUE (p);
5477 
5478 	  if (TYPE_READONLY (arg_type) || TYPE_VOLATILE (arg_type))
5479 	    {
5480 	      int quals = TYPE_QUALS (arg_type)
5481 			  & ~TYPE_QUAL_CONST
5482 			  & ~TYPE_QUAL_VOLATILE;
5483 	      TREE_VALUE (p) = build_qualified_type (arg_type, quals);
5484 	      if (!fld->pset.add (TREE_VALUE (p)))
5485 		free_lang_data_in_type (TREE_VALUE (p), fld);
5486 	    }
5487 	  /* C++ FE uses TREE_PURPOSE to store initial values.  */
5488 	  TREE_PURPOSE (p) = NULL;
5489 	}
5490     }
5491   else if (TREE_CODE (type) == METHOD_TYPE)
5492     {
5493       TREE_TYPE (type) = fld_simplified_type (TREE_TYPE (type), fld);
5494       for (tree p = TYPE_ARG_TYPES (type); p; p = TREE_CHAIN (p))
5495 	{
5496 	  /* C++ FE uses TREE_PURPOSE to store initial values.  */
5497 	  TREE_VALUE (p) = fld_simplified_type (TREE_VALUE (p), fld);
5498 	  TREE_PURPOSE (p) = NULL;
5499 	}
5500     }
5501   else if (RECORD_OR_UNION_TYPE_P (type))
5502     {
5503       /* Remove members that are not FIELD_DECLs from the field list
5504 	 of an aggregate.  These occur in C++.  */
5505       for (tree *prev = &TYPE_FIELDS (type), member; (member = *prev);)
5506 	if (TREE_CODE (member) == FIELD_DECL)
5507 	  prev = &DECL_CHAIN (member);
5508 	else
5509 	  *prev = DECL_CHAIN (member);
5510 
5511       TYPE_VFIELD (type) = NULL_TREE;
5512 
5513       if (TYPE_BINFO (type))
5514 	{
5515 	  free_lang_data_in_binfo (TYPE_BINFO (type));
5516 	  /* We need to preserve link to bases and virtual table for all
5517 	     polymorphic types to make devirtualization machinery working.  */
5518 	  if (!BINFO_VTABLE (TYPE_BINFO (type)))
5519 	    TYPE_BINFO (type) = NULL;
5520 	}
5521     }
5522   else if (INTEGRAL_TYPE_P (type)
5523 	   || SCALAR_FLOAT_TYPE_P (type)
5524 	   || FIXED_POINT_TYPE_P (type))
5525     {
5526       if (TREE_CODE (type) == ENUMERAL_TYPE)
5527 	{
5528 	  /* Type values are used only for C++ ODR checking.  Drop them
5529 	     for all type variants and non-ODR types.
5530 	     For ODR types the data is freed in free_odr_warning_data.  */
5531 	  if (TYPE_MAIN_VARIANT (type) != type
5532 	      || !type_with_linkage_p (type))
5533 	    TYPE_VALUES (type) = NULL;
5534 	  else
5535 	  /* Simplify representation by recording only values rather
5536 	     than const decls.  */
5537 	    for (tree e = TYPE_VALUES (type); e; e = TREE_CHAIN (e))
5538 	      if (TREE_CODE (TREE_VALUE (e)) == CONST_DECL)
5539 		TREE_VALUE (e) = DECL_INITIAL (TREE_VALUE (e));
5540 	}
5541       free_lang_data_in_one_sizepos (&TYPE_MIN_VALUE (type));
5542       free_lang_data_in_one_sizepos (&TYPE_MAX_VALUE (type));
5543     }
5544 
5545   TYPE_LANG_SLOT_1 (type) = NULL_TREE;
5546 
5547   free_lang_data_in_one_sizepos (&TYPE_SIZE (type));
5548   free_lang_data_in_one_sizepos (&TYPE_SIZE_UNIT (type));
5549 
5550   if (TYPE_CONTEXT (type)
5551       && TREE_CODE (TYPE_CONTEXT (type)) == BLOCK)
5552     {
5553       tree ctx = TYPE_CONTEXT (type);
5554       do
5555 	{
5556 	  ctx = BLOCK_SUPERCONTEXT (ctx);
5557 	}
5558       while (ctx && TREE_CODE (ctx) == BLOCK);
5559       TYPE_CONTEXT (type) = ctx;
5560     }
5561 
5562   TYPE_STUB_DECL (type) = NULL;
5563   TYPE_NAME (type) = fld_simplified_type_name (type);
5564 }
5565 
5566 
5567 /* Return true if DECL may need an assembler name to be set.  */
5568 
5569 static inline bool
5570 need_assembler_name_p (tree decl)
5571 {
5572   /* We use DECL_ASSEMBLER_NAME to hold mangled type names for One Definition
5573      Rule merging.  This makes type_odr_p to return true on those types during
5574      LTO and by comparing the mangled name, we can say what types are intended
5575      to be equivalent across compilation unit.
5576 
5577      We do not store names of type_in_anonymous_namespace_p.
5578 
5579      Record, union and enumeration type have linkage that allows use
5580      to check type_in_anonymous_namespace_p. We do not mangle compound types
5581      that always can be compared structurally.
5582 
5583      Similarly for builtin types, we compare properties of their main variant.
5584      A special case are integer types where mangling do make differences
5585      between char/signed char/unsigned char etc.  Storing name for these makes
5586      e.g.  -fno-signed-char/-fsigned-char mismatches to be handled well.
5587      See cp/mangle.c:write_builtin_type for details.  */
5588 
5589   if (TREE_CODE (decl) == TYPE_DECL)
5590     {
5591       if (flag_lto_odr_type_mering
5592 	  && DECL_NAME (decl)
5593 	  && decl == TYPE_NAME (TREE_TYPE (decl))
5594 	  && TYPE_MAIN_VARIANT (TREE_TYPE (decl)) == TREE_TYPE (decl)
5595 	  && !TYPE_ARTIFICIAL (TREE_TYPE (decl))
5596 	  && (type_with_linkage_p (TREE_TYPE (decl))
5597 	      || TREE_CODE (TREE_TYPE (decl)) == INTEGER_TYPE)
5598 	  && !variably_modified_type_p (TREE_TYPE (decl), NULL_TREE))
5599 	return !DECL_ASSEMBLER_NAME_SET_P (decl);
5600       return false;
5601     }
5602   /* Only FUNCTION_DECLs and VAR_DECLs are considered.  */
5603   if (!VAR_OR_FUNCTION_DECL_P (decl))
5604     return false;
5605 
5606   /* If DECL already has its assembler name set, it does not need a
5607      new one.  */
5608   if (!HAS_DECL_ASSEMBLER_NAME_P (decl)
5609       || DECL_ASSEMBLER_NAME_SET_P (decl))
5610     return false;
5611 
5612   /* Abstract decls do not need an assembler name.  */
5613   if (DECL_ABSTRACT_P (decl))
5614     return false;
5615 
5616   /* For VAR_DECLs, only static, public and external symbols need an
5617      assembler name.  */
5618   if (VAR_P (decl)
5619       && !TREE_STATIC (decl)
5620       && !TREE_PUBLIC (decl)
5621       && !DECL_EXTERNAL (decl))
5622     return false;
5623 
5624   if (TREE_CODE (decl) == FUNCTION_DECL)
5625     {
5626       /* Do not set assembler name on builtins.  Allow RTL expansion to
5627 	 decide whether to expand inline or via a regular call.  */
5628       if (fndecl_built_in_p (decl)
5629 	  && DECL_BUILT_IN_CLASS (decl) != BUILT_IN_FRONTEND)
5630 	return false;
5631 
5632       /* Functions represented in the callgraph need an assembler name.  */
5633       if (cgraph_node::get (decl) != NULL)
5634 	return true;
5635 
5636       /* Unused and not public functions don't need an assembler name.  */
5637       if (!TREE_USED (decl) && !TREE_PUBLIC (decl))
5638 	return false;
5639     }
5640 
5641   return true;
5642 }
5643 
5644 
5645 /* Reset all language specific information still present in symbol
5646    DECL.  */
5647 
5648 static void
5649 free_lang_data_in_decl (tree decl, struct free_lang_data_d *fld)
5650 {
5651   gcc_assert (DECL_P (decl));
5652 
5653   /* Give the FE a chance to remove its own data first.  */
5654   lang_hooks.free_lang_data (decl);
5655 
5656   TREE_LANG_FLAG_0 (decl) = 0;
5657   TREE_LANG_FLAG_1 (decl) = 0;
5658   TREE_LANG_FLAG_2 (decl) = 0;
5659   TREE_LANG_FLAG_3 (decl) = 0;
5660   TREE_LANG_FLAG_4 (decl) = 0;
5661   TREE_LANG_FLAG_5 (decl) = 0;
5662   TREE_LANG_FLAG_6 (decl) = 0;
5663 
5664   free_lang_data_in_one_sizepos (&DECL_SIZE (decl));
5665   free_lang_data_in_one_sizepos (&DECL_SIZE_UNIT (decl));
5666   if (TREE_CODE (decl) == FIELD_DECL)
5667     {
5668       DECL_FCONTEXT (decl) = NULL;
5669       free_lang_data_in_one_sizepos (&DECL_FIELD_OFFSET (decl));
5670       if (TREE_CODE (DECL_CONTEXT (decl)) == QUAL_UNION_TYPE)
5671 	DECL_QUALIFIER (decl) = NULL_TREE;
5672     }
5673 
5674  if (TREE_CODE (decl) == FUNCTION_DECL)
5675     {
5676       struct cgraph_node *node;
5677       /* Frontends do not set TREE_ADDRESSABLE on public variables even though
5678 	 the address may be taken in other unit, so this flag has no practical
5679 	 use for middle-end.
5680 
5681 	 It would make more sense if frontends set TREE_ADDRESSABLE to 0 only
5682 	 for public objects that indeed cannot be adressed, but it is not
5683 	 the case.  Set the flag to true so we do not get merge failures for
5684 	 i.e. virtual tables between units that take address of it and
5685 	 units that don't.  */
5686       if (TREE_PUBLIC (decl))
5687 	TREE_ADDRESSABLE (decl) = true;
5688       TREE_TYPE (decl) = fld_simplified_type (TREE_TYPE (decl), fld);
5689       if (!(node = cgraph_node::get (decl))
5690 	  || (!node->definition && !node->clones))
5691 	{
5692 	  if (node)
5693 	    node->release_body ();
5694 	  else
5695 	    {
5696 	      release_function_body (decl);
5697 	      DECL_ARGUMENTS (decl) = NULL;
5698 	      DECL_RESULT (decl) = NULL;
5699 	      DECL_INITIAL (decl) = error_mark_node;
5700 	    }
5701 	}
5702       if (gimple_has_body_p (decl) || (node && node->thunk.thunk_p))
5703 	{
5704 	  tree t;
5705 
5706 	  /* If DECL has a gimple body, then the context for its
5707 	     arguments must be DECL.  Otherwise, it doesn't really
5708 	     matter, as we will not be emitting any code for DECL.  In
5709 	     general, there may be other instances of DECL created by
5710 	     the front end and since PARM_DECLs are generally shared,
5711 	     their DECL_CONTEXT changes as the replicas of DECL are
5712 	     created.  The only time where DECL_CONTEXT is important
5713 	     is for the FUNCTION_DECLs that have a gimple body (since
5714 	     the PARM_DECL will be used in the function's body).  */
5715 	  for (t = DECL_ARGUMENTS (decl); t; t = TREE_CHAIN (t))
5716 	    DECL_CONTEXT (t) = decl;
5717 	  if (!DECL_FUNCTION_SPECIFIC_TARGET (decl))
5718 	    DECL_FUNCTION_SPECIFIC_TARGET (decl)
5719 	      = target_option_default_node;
5720 	  if (!DECL_FUNCTION_SPECIFIC_OPTIMIZATION (decl))
5721 	    DECL_FUNCTION_SPECIFIC_OPTIMIZATION (decl)
5722 	      = optimization_default_node;
5723 	}
5724 
5725       /* DECL_SAVED_TREE holds the GENERIC representation for DECL.
5726 	 At this point, it is not needed anymore.  */
5727       DECL_SAVED_TREE (decl) = NULL_TREE;
5728 
5729       /* Clear the abstract origin if it refers to a method.
5730          Otherwise dwarf2out.c will ICE as we splice functions out of
5731          TYPE_FIELDS and thus the origin will not be output
5732          correctly.  */
5733       if (DECL_ABSTRACT_ORIGIN (decl)
5734 	  && DECL_CONTEXT (DECL_ABSTRACT_ORIGIN (decl))
5735 	  && RECORD_OR_UNION_TYPE_P
5736 	       (DECL_CONTEXT (DECL_ABSTRACT_ORIGIN (decl))))
5737 	DECL_ABSTRACT_ORIGIN (decl) = NULL_TREE;
5738 
5739       DECL_VINDEX (decl) = NULL_TREE;
5740     }
5741   else if (VAR_P (decl))
5742     {
5743       /* See comment above why we set the flag for functoins.  */
5744       if (TREE_PUBLIC (decl))
5745 	TREE_ADDRESSABLE (decl) = true;
5746       if ((DECL_EXTERNAL (decl)
5747 	   && (!TREE_STATIC (decl) || !TREE_READONLY (decl)))
5748 	  || (decl_function_context (decl) && !TREE_STATIC (decl)))
5749 	DECL_INITIAL (decl) = NULL_TREE;
5750     }
5751   else if (TREE_CODE (decl) == TYPE_DECL)
5752     {
5753       DECL_VISIBILITY (decl) = VISIBILITY_DEFAULT;
5754       DECL_VISIBILITY_SPECIFIED (decl) = 0;
5755       TREE_PUBLIC (decl) = 0;
5756       TREE_PRIVATE (decl) = 0;
5757       DECL_ARTIFICIAL (decl) = 0;
5758       TYPE_DECL_SUPPRESS_DEBUG (decl) = 0;
5759       DECL_INITIAL (decl) = NULL_TREE;
5760       DECL_ORIGINAL_TYPE (decl) = NULL_TREE;
5761       DECL_MODE (decl) = VOIDmode;
5762       SET_DECL_ALIGN (decl, 0);
5763       /* TREE_TYPE is cleared at WPA time in free_odr_warning_data.  */
5764     }
5765   else if (TREE_CODE (decl) == FIELD_DECL)
5766     {
5767       TREE_TYPE (decl) = fld_simplified_type (TREE_TYPE (decl), fld);
5768       DECL_INITIAL (decl) = NULL_TREE;
5769     }
5770   else if (TREE_CODE (decl) == TRANSLATION_UNIT_DECL
5771            && DECL_INITIAL (decl)
5772            && TREE_CODE (DECL_INITIAL (decl)) == BLOCK)
5773     {
5774       /* Strip builtins from the translation-unit BLOCK.  We still have targets
5775 	 without builtin_decl_explicit support and also builtins are shared
5776 	 nodes and thus we can't use TREE_CHAIN in multiple lists.  */
5777       tree *nextp = &BLOCK_VARS (DECL_INITIAL (decl));
5778       while (*nextp)
5779 	{
5780 	  tree var = *nextp;
5781 	  if (TREE_CODE (var) == FUNCTION_DECL
5782 	      && fndecl_built_in_p (var))
5783 	    *nextp = TREE_CHAIN (var);
5784 	  else
5785 	    nextp = &TREE_CHAIN (var);
5786         }
5787     }
5788   /* We need to keep field decls associated with their trees. Otherwise tree
5789      merging may merge some fileds and keep others disjoint wich in turn will
5790      not do well with TREE_CHAIN pointers linking them.
5791 
5792      Also do not drop containing types for virtual methods and tables because
5793      these are needed by devirtualization.
5794      C++ destructors are special because C++ frontends sometimes produces
5795      virtual destructor as an alias of non-virtual destructor.  In
5796      devirutalization code we always walk through aliases and we need
5797      context to be preserved too.  See PR89335  */
5798   if (TREE_CODE (decl) != FIELD_DECL
5799       && ((TREE_CODE (decl) != VAR_DECL && TREE_CODE (decl) != FUNCTION_DECL)
5800           || (!DECL_VIRTUAL_P (decl)
5801 	      && (TREE_CODE (decl) != FUNCTION_DECL
5802 		  || !DECL_CXX_DESTRUCTOR_P (decl)))))
5803     DECL_CONTEXT (decl) = fld_decl_context (DECL_CONTEXT (decl));
5804 }
5805 
5806 
5807 /* Operand callback helper for free_lang_data_in_node.  *TP is the
5808    subtree operand being considered.  */
5809 
5810 static tree
5811 find_decls_types_r (tree *tp, int *ws, void *data)
5812 {
5813   tree t = *tp;
5814   struct free_lang_data_d *fld = (struct free_lang_data_d *) data;
5815 
5816   if (TREE_CODE (t) == TREE_LIST)
5817     return NULL_TREE;
5818 
5819   /* Language specific nodes will be removed, so there is no need
5820      to gather anything under them.  */
5821   if (is_lang_specific (t))
5822     {
5823       *ws = 0;
5824       return NULL_TREE;
5825     }
5826 
5827   if (DECL_P (t))
5828     {
5829       /* Note that walk_tree does not traverse every possible field in
5830 	 decls, so we have to do our own traversals here.  */
5831       add_tree_to_fld_list (t, fld);
5832 
5833       fld_worklist_push (DECL_NAME (t), fld);
5834       fld_worklist_push (DECL_CONTEXT (t), fld);
5835       fld_worklist_push (DECL_SIZE (t), fld);
5836       fld_worklist_push (DECL_SIZE_UNIT (t), fld);
5837 
5838       /* We are going to remove everything under DECL_INITIAL for
5839 	 TYPE_DECLs.  No point walking them.  */
5840       if (TREE_CODE (t) != TYPE_DECL)
5841 	fld_worklist_push (DECL_INITIAL (t), fld);
5842 
5843       fld_worklist_push (DECL_ATTRIBUTES (t), fld);
5844       fld_worklist_push (DECL_ABSTRACT_ORIGIN (t), fld);
5845 
5846       if (TREE_CODE (t) == FUNCTION_DECL)
5847 	{
5848 	  fld_worklist_push (DECL_ARGUMENTS (t), fld);
5849 	  fld_worklist_push (DECL_RESULT (t), fld);
5850 	}
5851       else if (TREE_CODE (t) == FIELD_DECL)
5852 	{
5853 	  fld_worklist_push (DECL_FIELD_OFFSET (t), fld);
5854 	  fld_worklist_push (DECL_BIT_FIELD_TYPE (t), fld);
5855 	  fld_worklist_push (DECL_FIELD_BIT_OFFSET (t), fld);
5856 	  fld_worklist_push (DECL_FCONTEXT (t), fld);
5857 	}
5858 
5859       if ((VAR_P (t) || TREE_CODE (t) == PARM_DECL)
5860 	  && DECL_HAS_VALUE_EXPR_P (t))
5861 	fld_worklist_push (DECL_VALUE_EXPR (t), fld);
5862 
5863       if (TREE_CODE (t) != FIELD_DECL
5864 	  && TREE_CODE (t) != TYPE_DECL)
5865 	fld_worklist_push (TREE_CHAIN (t), fld);
5866       *ws = 0;
5867     }
5868   else if (TYPE_P (t))
5869     {
5870       /* Note that walk_tree does not traverse every possible field in
5871 	 types, so we have to do our own traversals here.  */
5872       add_tree_to_fld_list (t, fld);
5873 
5874       if (!RECORD_OR_UNION_TYPE_P (t))
5875 	fld_worklist_push (TYPE_CACHED_VALUES (t), fld);
5876       fld_worklist_push (TYPE_SIZE (t), fld);
5877       fld_worklist_push (TYPE_SIZE_UNIT (t), fld);
5878       fld_worklist_push (TYPE_ATTRIBUTES (t), fld);
5879       fld_worklist_push (TYPE_POINTER_TO (t), fld);
5880       fld_worklist_push (TYPE_REFERENCE_TO (t), fld);
5881       fld_worklist_push (TYPE_NAME (t), fld);
5882       /* While we do not stream TYPE_POINTER_TO and TYPE_REFERENCE_TO
5883 	 lists, we may look types up in these lists and use them while
5884 	 optimizing the function body.  Thus we need to free lang data
5885 	 in them.  */
5886       if (TREE_CODE (t) == POINTER_TYPE)
5887         fld_worklist_push (TYPE_NEXT_PTR_TO (t), fld);
5888       if (TREE_CODE (t) == REFERENCE_TYPE)
5889         fld_worklist_push (TYPE_NEXT_REF_TO (t), fld);
5890       if (!POINTER_TYPE_P (t))
5891 	fld_worklist_push (TYPE_MIN_VALUE_RAW (t), fld);
5892       /* TYPE_MAX_VALUE_RAW is TYPE_BINFO for record types.  */
5893       if (!RECORD_OR_UNION_TYPE_P (t))
5894 	fld_worklist_push (TYPE_MAX_VALUE_RAW (t), fld);
5895       fld_worklist_push (TYPE_MAIN_VARIANT (t), fld);
5896       /* Do not walk TYPE_NEXT_VARIANT.  We do not stream it and thus
5897          do not and want not to reach unused variants this way.  */
5898       if (TYPE_CONTEXT (t))
5899 	{
5900 	  tree ctx = TYPE_CONTEXT (t);
5901 	  /* We adjust BLOCK TYPE_CONTEXTs to the innermost non-BLOCK one.
5902 	     So push that instead.  */
5903 	  while (ctx && TREE_CODE (ctx) == BLOCK)
5904 	    ctx = BLOCK_SUPERCONTEXT (ctx);
5905 	  fld_worklist_push (ctx, fld);
5906 	}
5907       fld_worklist_push (TYPE_CANONICAL (t), fld);
5908 
5909       if (RECORD_OR_UNION_TYPE_P (t) && TYPE_BINFO (t))
5910 	{
5911 	  unsigned i;
5912 	  tree tem;
5913 	  FOR_EACH_VEC_ELT (*BINFO_BASE_BINFOS (TYPE_BINFO (t)), i, tem)
5914 	    fld_worklist_push (TREE_TYPE (tem), fld);
5915 	  fld_worklist_push (BINFO_TYPE (TYPE_BINFO (t)), fld);
5916 	  fld_worklist_push (BINFO_VTABLE (TYPE_BINFO (t)), fld);
5917 	}
5918       if (RECORD_OR_UNION_TYPE_P (t))
5919 	{
5920 	  tree tem;
5921 	  /* Push all TYPE_FIELDS - there can be interleaving interesting
5922 	     and non-interesting things.  */
5923 	  tem = TYPE_FIELDS (t);
5924 	  while (tem)
5925 	    {
5926 	      if (TREE_CODE (tem) == FIELD_DECL)
5927 		fld_worklist_push (tem, fld);
5928 	      tem = TREE_CHAIN (tem);
5929 	    }
5930 	}
5931       if (FUNC_OR_METHOD_TYPE_P (t))
5932 	fld_worklist_push (TYPE_METHOD_BASETYPE (t), fld);
5933 
5934       fld_worklist_push (TYPE_STUB_DECL (t), fld);
5935       *ws = 0;
5936     }
5937   else if (TREE_CODE (t) == BLOCK)
5938     {
5939       for (tree *tem = &BLOCK_VARS (t); *tem; )
5940 	{
5941 	  if (TREE_CODE (*tem) != LABEL_DECL
5942 	      && (TREE_CODE (*tem) != VAR_DECL
5943 		  || !auto_var_in_fn_p (*tem, DECL_CONTEXT (*tem))))
5944 	    {
5945 	      gcc_assert (TREE_CODE (*tem) != RESULT_DECL
5946 			  && TREE_CODE (*tem) != PARM_DECL);
5947 	      *tem = TREE_CHAIN (*tem);
5948 	    }
5949 	  else
5950 	    {
5951 	      fld_worklist_push (*tem, fld);
5952 	      tem = &TREE_CHAIN (*tem);
5953 	    }
5954 	}
5955       for (tree tem = BLOCK_SUBBLOCKS (t); tem; tem = BLOCK_CHAIN (tem))
5956 	fld_worklist_push (tem, fld);
5957       fld_worklist_push (BLOCK_ABSTRACT_ORIGIN (t), fld);
5958     }
5959 
5960   if (TREE_CODE (t) != IDENTIFIER_NODE
5961       && CODE_CONTAINS_STRUCT (TREE_CODE (t), TS_TYPED))
5962     fld_worklist_push (TREE_TYPE (t), fld);
5963 
5964   return NULL_TREE;
5965 }
5966 
5967 
5968 /* Find decls and types in T.  */
5969 
5970 static void
5971 find_decls_types (tree t, struct free_lang_data_d *fld)
5972 {
5973   while (1)
5974     {
5975       if (!fld->pset.contains (t))
5976 	walk_tree (&t, find_decls_types_r, fld, &fld->pset);
5977       if (fld->worklist.is_empty ())
5978 	break;
5979       t = fld->worklist.pop ();
5980     }
5981 }
5982 
5983 /* Translate all the types in LIST with the corresponding runtime
5984    types.  */
5985 
5986 static tree
5987 get_eh_types_for_runtime (tree list)
5988 {
5989   tree head, prev;
5990 
5991   if (list == NULL_TREE)
5992     return NULL_TREE;
5993 
5994   head = build_tree_list (0, lookup_type_for_runtime (TREE_VALUE (list)));
5995   prev = head;
5996   list = TREE_CHAIN (list);
5997   while (list)
5998     {
5999       tree n = build_tree_list (0, lookup_type_for_runtime (TREE_VALUE (list)));
6000       TREE_CHAIN (prev) = n;
6001       prev = TREE_CHAIN (prev);
6002       list = TREE_CHAIN (list);
6003     }
6004 
6005   return head;
6006 }
6007 
6008 
6009 /* Find decls and types referenced in EH region R and store them in
6010    FLD->DECLS and FLD->TYPES.  */
6011 
6012 static void
6013 find_decls_types_in_eh_region (eh_region r, struct free_lang_data_d *fld)
6014 {
6015   switch (r->type)
6016     {
6017     case ERT_CLEANUP:
6018       break;
6019 
6020     case ERT_TRY:
6021       {
6022 	eh_catch c;
6023 
6024 	/* The types referenced in each catch must first be changed to the
6025 	   EH types used at runtime.  This removes references to FE types
6026 	   in the region.  */
6027 	for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
6028 	  {
6029 	    c->type_list = get_eh_types_for_runtime (c->type_list);
6030 	    walk_tree (&c->type_list, find_decls_types_r, fld, &fld->pset);
6031 	  }
6032       }
6033       break;
6034 
6035     case ERT_ALLOWED_EXCEPTIONS:
6036       r->u.allowed.type_list
6037 	= get_eh_types_for_runtime (r->u.allowed.type_list);
6038       walk_tree (&r->u.allowed.type_list, find_decls_types_r, fld, &fld->pset);
6039       break;
6040 
6041     case ERT_MUST_NOT_THROW:
6042       walk_tree (&r->u.must_not_throw.failure_decl,
6043 		 find_decls_types_r, fld, &fld->pset);
6044       break;
6045     }
6046 }
6047 
6048 
6049 /* Find decls and types referenced in cgraph node N and store them in
6050    FLD->DECLS and FLD->TYPES.  Unlike pass_referenced_vars, this will
6051    look for *every* kind of DECL and TYPE node reachable from N,
6052    including those embedded inside types and decls (i.e,, TYPE_DECLs,
6053    NAMESPACE_DECLs, etc).  */
6054 
6055 static void
6056 find_decls_types_in_node (struct cgraph_node *n, struct free_lang_data_d *fld)
6057 {
6058   basic_block bb;
6059   struct function *fn;
6060   unsigned ix;
6061   tree t;
6062 
6063   find_decls_types (n->decl, fld);
6064 
6065   if (!gimple_has_body_p (n->decl))
6066     return;
6067 
6068   gcc_assert (current_function_decl == NULL_TREE && cfun == NULL);
6069 
6070   fn = DECL_STRUCT_FUNCTION (n->decl);
6071 
6072   /* Traverse locals. */
6073   FOR_EACH_LOCAL_DECL (fn, ix, t)
6074     find_decls_types (t, fld);
6075 
6076   /* Traverse EH regions in FN.  */
6077   {
6078     eh_region r;
6079     FOR_ALL_EH_REGION_FN (r, fn)
6080       find_decls_types_in_eh_region (r, fld);
6081   }
6082 
6083   /* Traverse every statement in FN.  */
6084   FOR_EACH_BB_FN (bb, fn)
6085     {
6086       gphi_iterator psi;
6087       gimple_stmt_iterator si;
6088       unsigned i;
6089 
6090       for (psi = gsi_start_phis (bb); !gsi_end_p (psi); gsi_next (&psi))
6091 	{
6092 	  gphi *phi = psi.phi ();
6093 
6094 	  for (i = 0; i < gimple_phi_num_args (phi); i++)
6095 	    {
6096 	      tree *arg_p = gimple_phi_arg_def_ptr (phi, i);
6097 	      find_decls_types (*arg_p, fld);
6098 	    }
6099 	}
6100 
6101       for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
6102 	{
6103 	  gimple *stmt = gsi_stmt (si);
6104 
6105 	  if (is_gimple_call (stmt))
6106 	    find_decls_types (gimple_call_fntype (stmt), fld);
6107 
6108 	  for (i = 0; i < gimple_num_ops (stmt); i++)
6109 	    {
6110 	      tree arg = gimple_op (stmt, i);
6111 	      find_decls_types (arg, fld);
6112 	      /* find_decls_types doesn't walk TREE_PURPOSE of TREE_LISTs,
6113 		 which we need for asm stmts.  */
6114 	      if (arg
6115 		  && TREE_CODE (arg) == TREE_LIST
6116 		  && TREE_PURPOSE (arg)
6117 		  && gimple_code (stmt) == GIMPLE_ASM)
6118 		find_decls_types (TREE_PURPOSE (arg), fld);
6119 	    }
6120 	}
6121     }
6122 }
6123 
6124 
6125 /* Find decls and types referenced in varpool node N and store them in
6126    FLD->DECLS and FLD->TYPES.  Unlike pass_referenced_vars, this will
6127    look for *every* kind of DECL and TYPE node reachable from N,
6128    including those embedded inside types and decls (i.e,, TYPE_DECLs,
6129    NAMESPACE_DECLs, etc).  */
6130 
6131 static void
6132 find_decls_types_in_var (varpool_node *v, struct free_lang_data_d *fld)
6133 {
6134   find_decls_types (v->decl, fld);
6135 }
6136 
6137 /* If T needs an assembler name, have one created for it.  */
6138 
6139 void
6140 assign_assembler_name_if_needed (tree t)
6141 {
6142   if (need_assembler_name_p (t))
6143     {
6144       /* When setting DECL_ASSEMBLER_NAME, the C++ mangler may emit
6145 	 diagnostics that use input_location to show locus
6146 	 information.  The problem here is that, at this point,
6147 	 input_location is generally anchored to the end of the file
6148 	 (since the parser is long gone), so we don't have a good
6149 	 position to pin it to.
6150 
6151 	 To alleviate this problem, this uses the location of T's
6152 	 declaration.  Examples of this are
6153 	 testsuite/g++.dg/template/cond2.C and
6154 	 testsuite/g++.dg/template/pr35240.C.  */
6155       location_t saved_location = input_location;
6156       input_location = DECL_SOURCE_LOCATION (t);
6157 
6158       decl_assembler_name (t);
6159 
6160       input_location = saved_location;
6161     }
6162 }
6163 
6164 
6165 /* Free language specific information for every operand and expression
6166    in every node of the call graph.  This process operates in three stages:
6167 
6168    1- Every callgraph node and varpool node is traversed looking for
6169       decls and types embedded in them.  This is a more exhaustive
6170       search than that done by find_referenced_vars, because it will
6171       also collect individual fields, decls embedded in types, etc.
6172 
6173    2- All the decls found are sent to free_lang_data_in_decl.
6174 
6175    3- All the types found are sent to free_lang_data_in_type.
6176 
6177    The ordering between decls and types is important because
6178    free_lang_data_in_decl sets assembler names, which includes
6179    mangling.  So types cannot be freed up until assembler names have
6180    been set up.  */
6181 
6182 static void
6183 free_lang_data_in_cgraph (struct free_lang_data_d *fld)
6184 {
6185   struct cgraph_node *n;
6186   varpool_node *v;
6187   tree t;
6188   unsigned i;
6189   alias_pair *p;
6190 
6191   /* Find decls and types in the body of every function in the callgraph.  */
6192   FOR_EACH_FUNCTION (n)
6193     find_decls_types_in_node (n, fld);
6194 
6195   FOR_EACH_VEC_SAFE_ELT (alias_pairs, i, p)
6196     find_decls_types (p->decl, fld);
6197 
6198   /* Find decls and types in every varpool symbol.  */
6199   FOR_EACH_VARIABLE (v)
6200     find_decls_types_in_var (v, fld);
6201 
6202   /* Set the assembler name on every decl found.  We need to do this
6203      now because free_lang_data_in_decl will invalidate data needed
6204      for mangling.  This breaks mangling on interdependent decls.  */
6205   FOR_EACH_VEC_ELT (fld->decls, i, t)
6206     assign_assembler_name_if_needed (t);
6207 
6208   /* Traverse every decl found freeing its language data.  */
6209   FOR_EACH_VEC_ELT (fld->decls, i, t)
6210     free_lang_data_in_decl (t, fld);
6211 
6212   /* Traverse every type found freeing its language data.  */
6213   FOR_EACH_VEC_ELT (fld->types, i, t)
6214     free_lang_data_in_type (t, fld);
6215 }
6216 
6217 
6218 /* Free resources that are used by FE but are not needed once they are done. */
6219 
6220 static unsigned
6221 free_lang_data (void)
6222 {
6223   unsigned i;
6224   struct free_lang_data_d fld;
6225 
6226   /* If we are the LTO frontend we have freed lang-specific data already.  */
6227   if (in_lto_p
6228       || (!flag_generate_lto && !flag_generate_offload))
6229     {
6230       /* Rebuild type inheritance graph even when not doing LTO to get
6231 	 consistent profile data.  */
6232       rebuild_type_inheritance_graph ();
6233       return 0;
6234     }
6235 
6236   fld_incomplete_types = new hash_map<tree, tree>;
6237   fld_simplified_types = new hash_map<tree, tree>;
6238 
6239   /* Provide a dummy TRANSLATION_UNIT_DECL if the FE failed to provide one.  */
6240   if (vec_safe_is_empty (all_translation_units))
6241     build_translation_unit_decl (NULL_TREE);
6242 
6243   /* Allocate and assign alias sets to the standard integer types
6244      while the slots are still in the way the frontends generated them.  */
6245   for (i = 0; i < itk_none; ++i)
6246     if (integer_types[i])
6247       TYPE_ALIAS_SET (integer_types[i]) = get_alias_set (integer_types[i]);
6248 
6249   /* Traverse the IL resetting language specific information for
6250      operands, expressions, etc.  */
6251   free_lang_data_in_cgraph (&fld);
6252 
6253   /* Create gimple variants for common types.  */
6254   for (unsigned i = 0;
6255        i < sizeof (builtin_structptr_types) / sizeof (builtin_structptr_type);
6256        ++i)
6257     builtin_structptr_types[i].node = builtin_structptr_types[i].base;
6258 
6259   /* Reset some langhooks.  Do not reset types_compatible_p, it may
6260      still be used indirectly via the get_alias_set langhook.  */
6261   lang_hooks.dwarf_name = lhd_dwarf_name;
6262   lang_hooks.decl_printable_name = gimple_decl_printable_name;
6263   lang_hooks.gimplify_expr = lhd_gimplify_expr;
6264   lang_hooks.overwrite_decl_assembler_name = lhd_overwrite_decl_assembler_name;
6265   lang_hooks.print_xnode = lhd_print_tree_nothing;
6266   lang_hooks.print_decl = lhd_print_tree_nothing;
6267   lang_hooks.print_type = lhd_print_tree_nothing;
6268   lang_hooks.print_identifier = lhd_print_tree_nothing;
6269 
6270   lang_hooks.tree_inlining.var_mod_type_p = hook_bool_tree_tree_false;
6271 
6272   if (flag_checking)
6273     {
6274       int i;
6275       tree t;
6276 
6277       FOR_EACH_VEC_ELT (fld.types, i, t)
6278 	verify_type (t);
6279     }
6280 
6281   /* We do not want the default decl_assembler_name implementation,
6282      rather if we have fixed everything we want a wrapper around it
6283      asserting that all non-local symbols already got their assembler
6284      name and only produce assembler names for local symbols.  Or rather
6285      make sure we never call decl_assembler_name on local symbols and
6286      devise a separate, middle-end private scheme for it.  */
6287 
6288   /* Reset diagnostic machinery.  */
6289   tree_diagnostics_defaults (global_dc);
6290 
6291   rebuild_type_inheritance_graph ();
6292 
6293   delete fld_incomplete_types;
6294   delete fld_simplified_types;
6295 
6296   return 0;
6297 }
6298 
6299 
6300 namespace {
6301 
6302 const pass_data pass_data_ipa_free_lang_data =
6303 {
6304   SIMPLE_IPA_PASS, /* type */
6305   "*free_lang_data", /* name */
6306   OPTGROUP_NONE, /* optinfo_flags */
6307   TV_IPA_FREE_LANG_DATA, /* tv_id */
6308   0, /* properties_required */
6309   0, /* properties_provided */
6310   0, /* properties_destroyed */
6311   0, /* todo_flags_start */
6312   0, /* todo_flags_finish */
6313 };
6314 
6315 class pass_ipa_free_lang_data : public simple_ipa_opt_pass
6316 {
6317 public:
6318   pass_ipa_free_lang_data (gcc::context *ctxt)
6319     : simple_ipa_opt_pass (pass_data_ipa_free_lang_data, ctxt)
6320   {}
6321 
6322   /* opt_pass methods: */
6323   virtual unsigned int execute (function *) { return free_lang_data (); }
6324 
6325 }; // class pass_ipa_free_lang_data
6326 
6327 } // anon namespace
6328 
6329 simple_ipa_opt_pass *
6330 make_pass_ipa_free_lang_data (gcc::context *ctxt)
6331 {
6332   return new pass_ipa_free_lang_data (ctxt);
6333 }
6334 
6335 /* Set the type qualifiers for TYPE to TYPE_QUALS, which is a bitmask
6336    of the various TYPE_QUAL values.  */
6337 
6338 static void
6339 set_type_quals (tree type, int type_quals)
6340 {
6341   TYPE_READONLY (type) = (type_quals & TYPE_QUAL_CONST) != 0;
6342   TYPE_VOLATILE (type) = (type_quals & TYPE_QUAL_VOLATILE) != 0;
6343   TYPE_RESTRICT (type) = (type_quals & TYPE_QUAL_RESTRICT) != 0;
6344   TYPE_ATOMIC (type) = (type_quals & TYPE_QUAL_ATOMIC) != 0;
6345   TYPE_ADDR_SPACE (type) = DECODE_QUAL_ADDR_SPACE (type_quals);
6346 }
6347 
6348 /* Returns true iff CAND and BASE have equivalent language-specific
6349    qualifiers.  */
6350 
6351 bool
6352 check_lang_type (const_tree cand, const_tree base)
6353 {
6354   if (lang_hooks.types.type_hash_eq == NULL)
6355     return true;
6356   /* type_hash_eq currently only applies to these types.  */
6357   if (TREE_CODE (cand) != FUNCTION_TYPE
6358       && TREE_CODE (cand) != METHOD_TYPE)
6359     return true;
6360   return lang_hooks.types.type_hash_eq (cand, base);
6361 }
6362 
6363 /* This function checks to see if TYPE matches the size one of the built-in
6364    atomic types, and returns that core atomic type.  */
6365 
6366 static tree
6367 find_atomic_core_type (const_tree type)
6368 {
6369   tree base_atomic_type;
6370 
6371   /* Only handle complete types.  */
6372   if (!tree_fits_uhwi_p (TYPE_SIZE (type)))
6373     return NULL_TREE;
6374 
6375   switch (tree_to_uhwi (TYPE_SIZE (type)))
6376     {
6377     case 8:
6378       base_atomic_type = atomicQI_type_node;
6379       break;
6380 
6381     case 16:
6382       base_atomic_type = atomicHI_type_node;
6383       break;
6384 
6385     case 32:
6386       base_atomic_type = atomicSI_type_node;
6387       break;
6388 
6389     case 64:
6390       base_atomic_type = atomicDI_type_node;
6391       break;
6392 
6393     case 128:
6394       base_atomic_type = atomicTI_type_node;
6395       break;
6396 
6397     default:
6398       base_atomic_type = NULL_TREE;
6399     }
6400 
6401   return base_atomic_type;
6402 }
6403 
6404 /* Returns true iff unqualified CAND and BASE are equivalent.  */
6405 
6406 bool
6407 check_base_type (const_tree cand, const_tree base)
6408 {
6409   if (TYPE_NAME (cand) != TYPE_NAME (base)
6410       /* Apparently this is needed for Objective-C.  */
6411       || TYPE_CONTEXT (cand) != TYPE_CONTEXT (base)
6412       || !attribute_list_equal (TYPE_ATTRIBUTES (cand),
6413 			        TYPE_ATTRIBUTES (base)))
6414     return false;
6415   /* Check alignment.  */
6416   if (TYPE_ALIGN (cand) == TYPE_ALIGN (base))
6417     return true;
6418   /* Atomic types increase minimal alignment.  We must to do so as well
6419      or we get duplicated canonical types. See PR88686.  */
6420   if ((TYPE_QUALS (cand) & TYPE_QUAL_ATOMIC))
6421     {
6422       /* See if this object can map to a basic atomic type.  */
6423       tree atomic_type = find_atomic_core_type (cand);
6424       if (atomic_type && TYPE_ALIGN (atomic_type) == TYPE_ALIGN (cand))
6425        return true;
6426     }
6427   return false;
6428 }
6429 
6430 /* Returns true iff CAND is equivalent to BASE with TYPE_QUALS.  */
6431 
6432 bool
6433 check_qualified_type (const_tree cand, const_tree base, int type_quals)
6434 {
6435   return (TYPE_QUALS (cand) == type_quals
6436 	  && check_base_type (cand, base)
6437 	  && check_lang_type (cand, base));
6438 }
6439 
6440 /* Returns true iff CAND is equivalent to BASE with ALIGN.  */
6441 
6442 static bool
6443 check_aligned_type (const_tree cand, const_tree base, unsigned int align)
6444 {
6445   return (TYPE_QUALS (cand) == TYPE_QUALS (base)
6446 	  && TYPE_NAME (cand) == TYPE_NAME (base)
6447 	  /* Apparently this is needed for Objective-C.  */
6448 	  && TYPE_CONTEXT (cand) == TYPE_CONTEXT (base)
6449 	  /* Check alignment.  */
6450 	  && TYPE_ALIGN (cand) == align
6451 	  && attribute_list_equal (TYPE_ATTRIBUTES (cand),
6452 				   TYPE_ATTRIBUTES (base))
6453 	  && check_lang_type (cand, base));
6454 }
6455 
6456 /* Return a version of the TYPE, qualified as indicated by the
6457    TYPE_QUALS, if one exists.  If no qualified version exists yet,
6458    return NULL_TREE.  */
6459 
6460 tree
6461 get_qualified_type (tree type, int type_quals)
6462 {
6463   if (TYPE_QUALS (type) == type_quals)
6464     return type;
6465 
6466   tree mv = TYPE_MAIN_VARIANT (type);
6467   if (check_qualified_type (mv, type, type_quals))
6468     return mv;
6469 
6470   /* Search the chain of variants to see if there is already one there just
6471      like the one we need to have.  If so, use that existing one.  We must
6472      preserve the TYPE_NAME, since there is code that depends on this.  */
6473   for (tree *tp = &TYPE_NEXT_VARIANT (mv); *tp; tp = &TYPE_NEXT_VARIANT (*tp))
6474     if (check_qualified_type (*tp, type, type_quals))
6475       {
6476 	/* Put the found variant at the head of the variant list so
6477 	   frequently searched variants get found faster.  The C++ FE
6478 	   benefits greatly from this.  */
6479 	tree t = *tp;
6480 	*tp = TYPE_NEXT_VARIANT (t);
6481 	TYPE_NEXT_VARIANT (t) = TYPE_NEXT_VARIANT (mv);
6482 	TYPE_NEXT_VARIANT (mv) = t;
6483 	return t;
6484       }
6485 
6486   return NULL_TREE;
6487 }
6488 
6489 /* Like get_qualified_type, but creates the type if it does not
6490    exist.  This function never returns NULL_TREE.  */
6491 
6492 tree
6493 build_qualified_type (tree type, int type_quals MEM_STAT_DECL)
6494 {
6495   tree t;
6496 
6497   /* See if we already have the appropriate qualified variant.  */
6498   t = get_qualified_type (type, type_quals);
6499 
6500   /* If not, build it.  */
6501   if (!t)
6502     {
6503       t = build_variant_type_copy (type PASS_MEM_STAT);
6504       set_type_quals (t, type_quals);
6505 
6506       if (((type_quals & TYPE_QUAL_ATOMIC) == TYPE_QUAL_ATOMIC))
6507 	{
6508 	  /* See if this object can map to a basic atomic type.  */
6509 	  tree atomic_type = find_atomic_core_type (type);
6510 	  if (atomic_type)
6511 	    {
6512 	      /* Ensure the alignment of this type is compatible with
6513 		 the required alignment of the atomic type.  */
6514 	      if (TYPE_ALIGN (atomic_type) > TYPE_ALIGN (t))
6515 		SET_TYPE_ALIGN (t, TYPE_ALIGN (atomic_type));
6516 	    }
6517 	}
6518 
6519       if (TYPE_STRUCTURAL_EQUALITY_P (type))
6520 	/* Propagate structural equality. */
6521 	SET_TYPE_STRUCTURAL_EQUALITY (t);
6522       else if (TYPE_CANONICAL (type) != type)
6523 	/* Build the underlying canonical type, since it is different
6524 	   from TYPE. */
6525 	{
6526 	  tree c = build_qualified_type (TYPE_CANONICAL (type), type_quals);
6527 	  TYPE_CANONICAL (t) = TYPE_CANONICAL (c);
6528 	}
6529       else
6530 	/* T is its own canonical type. */
6531 	TYPE_CANONICAL (t) = t;
6532 
6533     }
6534 
6535   return t;
6536 }
6537 
6538 /* Create a variant of type T with alignment ALIGN.  */
6539 
6540 tree
6541 build_aligned_type (tree type, unsigned int align)
6542 {
6543   tree t;
6544 
6545   if (TYPE_PACKED (type)
6546       || TYPE_ALIGN (type) == align)
6547     return type;
6548 
6549   for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
6550     if (check_aligned_type (t, type, align))
6551       return t;
6552 
6553   t = build_variant_type_copy (type);
6554   SET_TYPE_ALIGN (t, align);
6555   TYPE_USER_ALIGN (t) = 1;
6556 
6557   return t;
6558 }
6559 
6560 /* Create a new distinct copy of TYPE.  The new type is made its own
6561    MAIN_VARIANT. If TYPE requires structural equality checks, the
6562    resulting type requires structural equality checks; otherwise, its
6563    TYPE_CANONICAL points to itself. */
6564 
6565 tree
6566 build_distinct_type_copy (tree type MEM_STAT_DECL)
6567 {
6568   tree t = copy_node (type PASS_MEM_STAT);
6569 
6570   TYPE_POINTER_TO (t) = 0;
6571   TYPE_REFERENCE_TO (t) = 0;
6572 
6573   /* Set the canonical type either to a new equivalence class, or
6574      propagate the need for structural equality checks. */
6575   if (TYPE_STRUCTURAL_EQUALITY_P (type))
6576     SET_TYPE_STRUCTURAL_EQUALITY (t);
6577   else
6578     TYPE_CANONICAL (t) = t;
6579 
6580   /* Make it its own variant.  */
6581   TYPE_MAIN_VARIANT (t) = t;
6582   TYPE_NEXT_VARIANT (t) = 0;
6583 
6584   /* Note that it is now possible for TYPE_MIN_VALUE to be a value
6585      whose TREE_TYPE is not t.  This can also happen in the Ada
6586      frontend when using subtypes.  */
6587 
6588   return t;
6589 }
6590 
6591 /* Create a new variant of TYPE, equivalent but distinct.  This is so
6592    the caller can modify it. TYPE_CANONICAL for the return type will
6593    be equivalent to TYPE_CANONICAL of TYPE, indicating that the types
6594    are considered equal by the language itself (or that both types
6595    require structural equality checks). */
6596 
6597 tree
6598 build_variant_type_copy (tree type MEM_STAT_DECL)
6599 {
6600   tree t, m = TYPE_MAIN_VARIANT (type);
6601 
6602   t = build_distinct_type_copy (type PASS_MEM_STAT);
6603 
6604   /* Since we're building a variant, assume that it is a non-semantic
6605      variant. This also propagates TYPE_STRUCTURAL_EQUALITY_P. */
6606   TYPE_CANONICAL (t) = TYPE_CANONICAL (type);
6607   /* Type variants have no alias set defined.  */
6608   TYPE_ALIAS_SET (t) = -1;
6609 
6610   /* Add the new type to the chain of variants of TYPE.  */
6611   TYPE_NEXT_VARIANT (t) = TYPE_NEXT_VARIANT (m);
6612   TYPE_NEXT_VARIANT (m) = t;
6613   TYPE_MAIN_VARIANT (t) = m;
6614 
6615   return t;
6616 }
6617 
6618 /* Return true if the from tree in both tree maps are equal.  */
6619 
6620 int
6621 tree_map_base_eq (const void *va, const void *vb)
6622 {
6623   const struct tree_map_base  *const a = (const struct tree_map_base *) va,
6624     *const b = (const struct tree_map_base *) vb;
6625   return (a->from == b->from);
6626 }
6627 
6628 /* Hash a from tree in a tree_base_map.  */
6629 
6630 unsigned int
6631 tree_map_base_hash (const void *item)
6632 {
6633   return htab_hash_pointer (((const struct tree_map_base *)item)->from);
6634 }
6635 
6636 /* Return true if this tree map structure is marked for garbage collection
6637    purposes.  We simply return true if the from tree is marked, so that this
6638    structure goes away when the from tree goes away.  */
6639 
6640 int
6641 tree_map_base_marked_p (const void *p)
6642 {
6643   return ggc_marked_p (((const struct tree_map_base *) p)->from);
6644 }
6645 
6646 /* Hash a from tree in a tree_map.  */
6647 
6648 unsigned int
6649 tree_map_hash (const void *item)
6650 {
6651   return (((const struct tree_map *) item)->hash);
6652 }
6653 
6654 /* Hash a from tree in a tree_decl_map.  */
6655 
6656 unsigned int
6657 tree_decl_map_hash (const void *item)
6658 {
6659   return DECL_UID (((const struct tree_decl_map *) item)->base.from);
6660 }
6661 
6662 /* Return the initialization priority for DECL.  */
6663 
6664 priority_type
6665 decl_init_priority_lookup (tree decl)
6666 {
6667   symtab_node *snode = symtab_node::get (decl);
6668 
6669   if (!snode)
6670     return DEFAULT_INIT_PRIORITY;
6671   return
6672     snode->get_init_priority ();
6673 }
6674 
6675 /* Return the finalization priority for DECL.  */
6676 
6677 priority_type
6678 decl_fini_priority_lookup (tree decl)
6679 {
6680   cgraph_node *node = cgraph_node::get (decl);
6681 
6682   if (!node)
6683     return DEFAULT_INIT_PRIORITY;
6684   return
6685     node->get_fini_priority ();
6686 }
6687 
6688 /* Set the initialization priority for DECL to PRIORITY.  */
6689 
6690 void
6691 decl_init_priority_insert (tree decl, priority_type priority)
6692 {
6693   struct symtab_node *snode;
6694 
6695   if (priority == DEFAULT_INIT_PRIORITY)
6696     {
6697       snode = symtab_node::get (decl);
6698       if (!snode)
6699 	return;
6700     }
6701   else if (VAR_P (decl))
6702     snode = varpool_node::get_create (decl);
6703   else
6704     snode = cgraph_node::get_create (decl);
6705   snode->set_init_priority (priority);
6706 }
6707 
6708 /* Set the finalization priority for DECL to PRIORITY.  */
6709 
6710 void
6711 decl_fini_priority_insert (tree decl, priority_type priority)
6712 {
6713   struct cgraph_node *node;
6714 
6715   if (priority == DEFAULT_INIT_PRIORITY)
6716     {
6717       node = cgraph_node::get (decl);
6718       if (!node)
6719 	return;
6720     }
6721   else
6722     node = cgraph_node::get_create (decl);
6723   node->set_fini_priority (priority);
6724 }
6725 
6726 /* Print out the statistics for the DECL_DEBUG_EXPR hash table.  */
6727 
6728 static void
6729 print_debug_expr_statistics (void)
6730 {
6731   fprintf (stderr, "DECL_DEBUG_EXPR  hash: size %ld, %ld elements, %f collisions\n",
6732 	   (long) debug_expr_for_decl->size (),
6733 	   (long) debug_expr_for_decl->elements (),
6734 	   debug_expr_for_decl->collisions ());
6735 }
6736 
6737 /* Print out the statistics for the DECL_VALUE_EXPR hash table.  */
6738 
6739 static void
6740 print_value_expr_statistics (void)
6741 {
6742   fprintf (stderr, "DECL_VALUE_EXPR  hash: size %ld, %ld elements, %f collisions\n",
6743 	   (long) value_expr_for_decl->size (),
6744 	   (long) value_expr_for_decl->elements (),
6745 	   value_expr_for_decl->collisions ());
6746 }
6747 
6748 /* Lookup a debug expression for FROM, and return it if we find one.  */
6749 
6750 tree
6751 decl_debug_expr_lookup (tree from)
6752 {
6753   struct tree_decl_map *h, in;
6754   in.base.from = from;
6755 
6756   h = debug_expr_for_decl->find_with_hash (&in, DECL_UID (from));
6757   if (h)
6758     return h->to;
6759   return NULL_TREE;
6760 }
6761 
6762 /* Insert a mapping FROM->TO in the debug expression hashtable.  */
6763 
6764 void
6765 decl_debug_expr_insert (tree from, tree to)
6766 {
6767   struct tree_decl_map *h;
6768 
6769   h = ggc_alloc<tree_decl_map> ();
6770   h->base.from = from;
6771   h->to = to;
6772   *debug_expr_for_decl->find_slot_with_hash (h, DECL_UID (from), INSERT) = h;
6773 }
6774 
6775 /* Lookup a value expression for FROM, and return it if we find one.  */
6776 
6777 tree
6778 decl_value_expr_lookup (tree from)
6779 {
6780   struct tree_decl_map *h, in;
6781   in.base.from = from;
6782 
6783   h = value_expr_for_decl->find_with_hash (&in, DECL_UID (from));
6784   if (h)
6785     return h->to;
6786   return NULL_TREE;
6787 }
6788 
6789 /* Insert a mapping FROM->TO in the value expression hashtable.  */
6790 
6791 void
6792 decl_value_expr_insert (tree from, tree to)
6793 {
6794   struct tree_decl_map *h;
6795 
6796   h = ggc_alloc<tree_decl_map> ();
6797   h->base.from = from;
6798   h->to = to;
6799   *value_expr_for_decl->find_slot_with_hash (h, DECL_UID (from), INSERT) = h;
6800 }
6801 
6802 /* Lookup a vector of debug arguments for FROM, and return it if we
6803    find one.  */
6804 
6805 vec<tree, va_gc> **
6806 decl_debug_args_lookup (tree from)
6807 {
6808   struct tree_vec_map *h, in;
6809 
6810   if (!DECL_HAS_DEBUG_ARGS_P (from))
6811     return NULL;
6812   gcc_checking_assert (debug_args_for_decl != NULL);
6813   in.base.from = from;
6814   h = debug_args_for_decl->find_with_hash (&in, DECL_UID (from));
6815   if (h)
6816     return &h->to;
6817   return NULL;
6818 }
6819 
6820 /* Insert a mapping FROM->empty vector of debug arguments in the value
6821    expression hashtable.  */
6822 
6823 vec<tree, va_gc> **
6824 decl_debug_args_insert (tree from)
6825 {
6826   struct tree_vec_map *h;
6827   tree_vec_map **loc;
6828 
6829   if (DECL_HAS_DEBUG_ARGS_P (from))
6830     return decl_debug_args_lookup (from);
6831   if (debug_args_for_decl == NULL)
6832     debug_args_for_decl = hash_table<tree_vec_map_cache_hasher>::create_ggc (64);
6833   h = ggc_alloc<tree_vec_map> ();
6834   h->base.from = from;
6835   h->to = NULL;
6836   loc = debug_args_for_decl->find_slot_with_hash (h, DECL_UID (from), INSERT);
6837   *loc = h;
6838   DECL_HAS_DEBUG_ARGS_P (from) = 1;
6839   return &h->to;
6840 }
6841 
6842 /* Hashing of types so that we don't make duplicates.
6843    The entry point is `type_hash_canon'.  */
6844 
6845 /* Generate the default hash code for TYPE.  This is designed for
6846    speed, rather than maximum entropy.  */
6847 
6848 hashval_t
6849 type_hash_canon_hash (tree type)
6850 {
6851   inchash::hash hstate;
6852 
6853   hstate.add_int (TREE_CODE (type));
6854 
6855   if (TREE_TYPE (type))
6856     hstate.add_object (TYPE_HASH (TREE_TYPE (type)));
6857 
6858   for (tree t = TYPE_ATTRIBUTES (type); t; t = TREE_CHAIN (t))
6859     /* Just the identifier is adequate to distinguish.  */
6860     hstate.add_object (IDENTIFIER_HASH_VALUE (get_attribute_name (t)));
6861 
6862   switch (TREE_CODE (type))
6863     {
6864     case METHOD_TYPE:
6865       hstate.add_object (TYPE_HASH (TYPE_METHOD_BASETYPE (type)));
6866       /* FALLTHROUGH. */
6867     case FUNCTION_TYPE:
6868       for (tree t = TYPE_ARG_TYPES (type); t; t = TREE_CHAIN (t))
6869 	if (TREE_VALUE (t) != error_mark_node)
6870 	  hstate.add_object (TYPE_HASH (TREE_VALUE (t)));
6871       break;
6872 
6873     case OFFSET_TYPE:
6874       hstate.add_object (TYPE_HASH (TYPE_OFFSET_BASETYPE (type)));
6875       break;
6876 
6877     case ARRAY_TYPE:
6878       {
6879 	if (TYPE_DOMAIN (type))
6880 	  hstate.add_object (TYPE_HASH (TYPE_DOMAIN (type)));
6881 	if (!AGGREGATE_TYPE_P (TREE_TYPE (type)))
6882 	  {
6883 	    unsigned typeless = TYPE_TYPELESS_STORAGE (type);
6884 	    hstate.add_object (typeless);
6885 	  }
6886       }
6887       break;
6888 
6889     case INTEGER_TYPE:
6890       {
6891 	tree t = TYPE_MAX_VALUE (type);
6892 	if (!t)
6893 	  t = TYPE_MIN_VALUE (type);
6894 	for (int i = 0; i < TREE_INT_CST_NUNITS (t); i++)
6895 	  hstate.add_object (TREE_INT_CST_ELT (t, i));
6896 	break;
6897       }
6898 
6899     case REAL_TYPE:
6900     case FIXED_POINT_TYPE:
6901       {
6902 	unsigned prec = TYPE_PRECISION (type);
6903 	hstate.add_object (prec);
6904 	break;
6905       }
6906 
6907     case VECTOR_TYPE:
6908       hstate.add_poly_int (TYPE_VECTOR_SUBPARTS (type));
6909       break;
6910 
6911     default:
6912       break;
6913     }
6914 
6915   return hstate.end ();
6916 }
6917 
6918 /* These are the Hashtable callback functions.  */
6919 
6920 /* Returns true iff the types are equivalent.  */
6921 
6922 bool
6923 type_cache_hasher::equal (type_hash *a, type_hash *b)
6924 {
6925   /* First test the things that are the same for all types.  */
6926   if (a->hash != b->hash
6927       || TREE_CODE (a->type) != TREE_CODE (b->type)
6928       || TREE_TYPE (a->type) != TREE_TYPE (b->type)
6929       || !attribute_list_equal (TYPE_ATTRIBUTES (a->type),
6930 				 TYPE_ATTRIBUTES (b->type))
6931       || (TREE_CODE (a->type) != COMPLEX_TYPE
6932           && TYPE_NAME (a->type) != TYPE_NAME (b->type)))
6933     return 0;
6934 
6935   /* Be careful about comparing arrays before and after the element type
6936      has been completed; don't compare TYPE_ALIGN unless both types are
6937      complete.  */
6938   if (COMPLETE_TYPE_P (a->type) && COMPLETE_TYPE_P (b->type)
6939       && (TYPE_ALIGN (a->type) != TYPE_ALIGN (b->type)
6940 	  || TYPE_MODE (a->type) != TYPE_MODE (b->type)))
6941     return 0;
6942 
6943   switch (TREE_CODE (a->type))
6944     {
6945     case VOID_TYPE:
6946     case COMPLEX_TYPE:
6947     case POINTER_TYPE:
6948     case REFERENCE_TYPE:
6949     case NULLPTR_TYPE:
6950       return 1;
6951 
6952     case VECTOR_TYPE:
6953       return known_eq (TYPE_VECTOR_SUBPARTS (a->type),
6954 		       TYPE_VECTOR_SUBPARTS (b->type));
6955 
6956     case ENUMERAL_TYPE:
6957       if (TYPE_VALUES (a->type) != TYPE_VALUES (b->type)
6958 	  && !(TYPE_VALUES (a->type)
6959 	       && TREE_CODE (TYPE_VALUES (a->type)) == TREE_LIST
6960 	       && TYPE_VALUES (b->type)
6961 	       && TREE_CODE (TYPE_VALUES (b->type)) == TREE_LIST
6962 	       && type_list_equal (TYPE_VALUES (a->type),
6963 				   TYPE_VALUES (b->type))))
6964 	return 0;
6965 
6966       /* fall through */
6967 
6968     case INTEGER_TYPE:
6969     case REAL_TYPE:
6970     case BOOLEAN_TYPE:
6971       if (TYPE_PRECISION (a->type) != TYPE_PRECISION (b->type))
6972 	return false;
6973       return ((TYPE_MAX_VALUE (a->type) == TYPE_MAX_VALUE (b->type)
6974 	       || tree_int_cst_equal (TYPE_MAX_VALUE (a->type),
6975 				      TYPE_MAX_VALUE (b->type)))
6976 	      && (TYPE_MIN_VALUE (a->type) == TYPE_MIN_VALUE (b->type)
6977 		  || tree_int_cst_equal (TYPE_MIN_VALUE (a->type),
6978 					 TYPE_MIN_VALUE (b->type))));
6979 
6980     case FIXED_POINT_TYPE:
6981       return TYPE_SATURATING (a->type) == TYPE_SATURATING (b->type);
6982 
6983     case OFFSET_TYPE:
6984       return TYPE_OFFSET_BASETYPE (a->type) == TYPE_OFFSET_BASETYPE (b->type);
6985 
6986     case METHOD_TYPE:
6987       if (TYPE_METHOD_BASETYPE (a->type) == TYPE_METHOD_BASETYPE (b->type)
6988 	  && (TYPE_ARG_TYPES (a->type) == TYPE_ARG_TYPES (b->type)
6989 	      || (TYPE_ARG_TYPES (a->type)
6990 		  && TREE_CODE (TYPE_ARG_TYPES (a->type)) == TREE_LIST
6991 		  && TYPE_ARG_TYPES (b->type)
6992 		  && TREE_CODE (TYPE_ARG_TYPES (b->type)) == TREE_LIST
6993 		  && type_list_equal (TYPE_ARG_TYPES (a->type),
6994 				      TYPE_ARG_TYPES (b->type)))))
6995         break;
6996       return 0;
6997     case ARRAY_TYPE:
6998       /* Don't compare TYPE_TYPELESS_STORAGE flag on aggregates,
6999 	 where the flag should be inherited from the element type
7000 	 and can change after ARRAY_TYPEs are created; on non-aggregates
7001 	 compare it and hash it, scalars will never have that flag set
7002 	 and we need to differentiate between arrays created by different
7003 	 front-ends or middle-end created arrays.  */
7004       return (TYPE_DOMAIN (a->type) == TYPE_DOMAIN (b->type)
7005 	      && (AGGREGATE_TYPE_P (TREE_TYPE (a->type))
7006 		  || (TYPE_TYPELESS_STORAGE (a->type)
7007 		      == TYPE_TYPELESS_STORAGE (b->type))));
7008 
7009     case RECORD_TYPE:
7010     case UNION_TYPE:
7011     case QUAL_UNION_TYPE:
7012       return (TYPE_FIELDS (a->type) == TYPE_FIELDS (b->type)
7013 	      || (TYPE_FIELDS (a->type)
7014 		  && TREE_CODE (TYPE_FIELDS (a->type)) == TREE_LIST
7015 		  && TYPE_FIELDS (b->type)
7016 		  && TREE_CODE (TYPE_FIELDS (b->type)) == TREE_LIST
7017 		  && type_list_equal (TYPE_FIELDS (a->type),
7018 				      TYPE_FIELDS (b->type))));
7019 
7020     case FUNCTION_TYPE:
7021       if (TYPE_ARG_TYPES (a->type) == TYPE_ARG_TYPES (b->type)
7022 	  || (TYPE_ARG_TYPES (a->type)
7023 	      && TREE_CODE (TYPE_ARG_TYPES (a->type)) == TREE_LIST
7024 	      && TYPE_ARG_TYPES (b->type)
7025 	      && TREE_CODE (TYPE_ARG_TYPES (b->type)) == TREE_LIST
7026 	      && type_list_equal (TYPE_ARG_TYPES (a->type),
7027 				  TYPE_ARG_TYPES (b->type))))
7028 	break;
7029       return 0;
7030 
7031     default:
7032       return 0;
7033     }
7034 
7035   if (lang_hooks.types.type_hash_eq != NULL)
7036     return lang_hooks.types.type_hash_eq (a->type, b->type);
7037 
7038   return 1;
7039 }
7040 
7041 /* Given TYPE, and HASHCODE its hash code, return the canonical
7042    object for an identical type if one already exists.
7043    Otherwise, return TYPE, and record it as the canonical object.
7044 
7045    To use this function, first create a type of the sort you want.
7046    Then compute its hash code from the fields of the type that
7047    make it different from other similar types.
7048    Then call this function and use the value.  */
7049 
7050 tree
7051 type_hash_canon (unsigned int hashcode, tree type)
7052 {
7053   type_hash in;
7054   type_hash **loc;
7055 
7056   /* The hash table only contains main variants, so ensure that's what we're
7057      being passed.  */
7058   gcc_assert (TYPE_MAIN_VARIANT (type) == type);
7059 
7060   /* The TYPE_ALIGN field of a type is set by layout_type(), so we
7061      must call that routine before comparing TYPE_ALIGNs.  */
7062   layout_type (type);
7063 
7064   in.hash = hashcode;
7065   in.type = type;
7066 
7067   loc = type_hash_table->find_slot_with_hash (&in, hashcode, INSERT);
7068   if (*loc)
7069     {
7070       tree t1 = ((type_hash *) *loc)->type;
7071       gcc_assert (TYPE_MAIN_VARIANT (t1) == t1
7072 		  && t1 != type);
7073       if (TYPE_UID (type) + 1 == next_type_uid)
7074 	--next_type_uid;
7075       /* Free also min/max values and the cache for integer
7076 	 types.  This can't be done in free_node, as LTO frees
7077 	 those on its own.  */
7078       if (TREE_CODE (type) == INTEGER_TYPE)
7079 	{
7080 	  if (TYPE_MIN_VALUE (type)
7081 	      && TREE_TYPE (TYPE_MIN_VALUE (type)) == type)
7082 	    {
7083 	      /* Zero is always in TYPE_CACHED_VALUES.  */
7084 	      if (! TYPE_UNSIGNED (type))
7085 		int_cst_hash_table->remove_elt (TYPE_MIN_VALUE (type));
7086 	      ggc_free (TYPE_MIN_VALUE (type));
7087 	    }
7088 	  if (TYPE_MAX_VALUE (type)
7089 	      && TREE_TYPE (TYPE_MAX_VALUE (type)) == type)
7090 	    {
7091 	      int_cst_hash_table->remove_elt (TYPE_MAX_VALUE (type));
7092 	      ggc_free (TYPE_MAX_VALUE (type));
7093 	    }
7094 	  if (TYPE_CACHED_VALUES_P (type))
7095 	    ggc_free (TYPE_CACHED_VALUES (type));
7096 	}
7097       free_node (type);
7098       return t1;
7099     }
7100   else
7101     {
7102       struct type_hash *h;
7103 
7104       h = ggc_alloc<type_hash> ();
7105       h->hash = hashcode;
7106       h->type = type;
7107       *loc = h;
7108 
7109       return type;
7110     }
7111 }
7112 
7113 static void
7114 print_type_hash_statistics (void)
7115 {
7116   fprintf (stderr, "Type hash: size %ld, %ld elements, %f collisions\n",
7117 	   (long) type_hash_table->size (),
7118 	   (long) type_hash_table->elements (),
7119 	   type_hash_table->collisions ());
7120 }
7121 
7122 /* Given two lists of types
7123    (chains of TREE_LIST nodes with types in the TREE_VALUE slots)
7124    return 1 if the lists contain the same types in the same order.
7125    Also, the TREE_PURPOSEs must match.  */
7126 
7127 bool
7128 type_list_equal (const_tree l1, const_tree l2)
7129 {
7130   const_tree t1, t2;
7131 
7132   for (t1 = l1, t2 = l2; t1 && t2; t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2))
7133     if (TREE_VALUE (t1) != TREE_VALUE (t2)
7134 	|| (TREE_PURPOSE (t1) != TREE_PURPOSE (t2)
7135 	    && ! (1 == simple_cst_equal (TREE_PURPOSE (t1), TREE_PURPOSE (t2))
7136 		  && (TREE_TYPE (TREE_PURPOSE (t1))
7137 		      == TREE_TYPE (TREE_PURPOSE (t2))))))
7138       return false;
7139 
7140   return t1 == t2;
7141 }
7142 
7143 /* Returns the number of arguments to the FUNCTION_TYPE or METHOD_TYPE
7144    given by TYPE.  If the argument list accepts variable arguments,
7145    then this function counts only the ordinary arguments.  */
7146 
7147 int
7148 type_num_arguments (const_tree fntype)
7149 {
7150   int i = 0;
7151 
7152   for (tree t = TYPE_ARG_TYPES (fntype); t; t = TREE_CHAIN (t))
7153     /* If the function does not take a variable number of arguments,
7154        the last element in the list will have type `void'.  */
7155     if (VOID_TYPE_P (TREE_VALUE (t)))
7156       break;
7157     else
7158       ++i;
7159 
7160   return i;
7161 }
7162 
7163 /* Return the type of the function TYPE's argument ARGNO if known.
7164    For vararg function's where ARGNO refers to one of the variadic
7165    arguments return null.  Otherwise, return a void_type_node for
7166    out-of-bounds ARGNO.  */
7167 
7168 tree
7169 type_argument_type (const_tree fntype, unsigned argno)
7170 {
7171   /* Treat zero the same as an out-of-bounds argument number.  */
7172   if (!argno)
7173     return void_type_node;
7174 
7175   function_args_iterator iter;
7176 
7177   tree argtype;
7178   unsigned i = 1;
7179   FOREACH_FUNCTION_ARGS (fntype, argtype, iter)
7180     {
7181       /* A vararg function's argument list ends in a null.  Otherwise,
7182 	 an ordinary function's argument list ends with void.  Return
7183 	 null if ARGNO refers to a vararg argument, void_type_node if
7184 	 it's out of bounds, and the formal argument type otherwise.  */
7185       if (!argtype)
7186 	break;
7187 
7188       if (i == argno || VOID_TYPE_P (argtype))
7189 	return argtype;
7190 
7191       ++i;
7192     }
7193 
7194   return NULL_TREE;
7195 }
7196 
7197 /* Nonzero if integer constants T1 and T2
7198    represent the same constant value.  */
7199 
7200 int
7201 tree_int_cst_equal (const_tree t1, const_tree t2)
7202 {
7203   if (t1 == t2)
7204     return 1;
7205 
7206   if (t1 == 0 || t2 == 0)
7207     return 0;
7208 
7209   STRIP_ANY_LOCATION_WRAPPER (t1);
7210   STRIP_ANY_LOCATION_WRAPPER (t2);
7211 
7212   if (TREE_CODE (t1) == INTEGER_CST
7213       && TREE_CODE (t2) == INTEGER_CST
7214       && wi::to_widest (t1) == wi::to_widest (t2))
7215     return 1;
7216 
7217   return 0;
7218 }
7219 
7220 /* Return true if T is an INTEGER_CST whose numerical value (extended
7221    according to TYPE_UNSIGNED) fits in a signed HOST_WIDE_INT.  */
7222 
7223 bool
7224 tree_fits_shwi_p (const_tree t)
7225 {
7226   return (t != NULL_TREE
7227 	  && TREE_CODE (t) == INTEGER_CST
7228 	  && wi::fits_shwi_p (wi::to_widest (t)));
7229 }
7230 
7231 /* Return true if T is an INTEGER_CST or POLY_INT_CST whose numerical
7232    value (extended according to TYPE_UNSIGNED) fits in a poly_int64.  */
7233 
7234 bool
7235 tree_fits_poly_int64_p (const_tree t)
7236 {
7237   if (t == NULL_TREE)
7238     return false;
7239   if (POLY_INT_CST_P (t))
7240     {
7241       for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; i++)
7242 	if (!wi::fits_shwi_p (wi::to_wide (POLY_INT_CST_COEFF (t, i))))
7243 	  return false;
7244       return true;
7245     }
7246   return (TREE_CODE (t) == INTEGER_CST
7247 	  && wi::fits_shwi_p (wi::to_widest (t)));
7248 }
7249 
7250 /* Return true if T is an INTEGER_CST whose numerical value (extended
7251    according to TYPE_UNSIGNED) fits in an unsigned HOST_WIDE_INT.  */
7252 
7253 bool
7254 tree_fits_uhwi_p (const_tree t)
7255 {
7256   return (t != NULL_TREE
7257 	  && TREE_CODE (t) == INTEGER_CST
7258 	  && wi::fits_uhwi_p (wi::to_widest (t)));
7259 }
7260 
7261 /* Return true if T is an INTEGER_CST or POLY_INT_CST whose numerical
7262    value (extended according to TYPE_UNSIGNED) fits in a poly_uint64.  */
7263 
7264 bool
7265 tree_fits_poly_uint64_p (const_tree t)
7266 {
7267   if (t == NULL_TREE)
7268     return false;
7269   if (POLY_INT_CST_P (t))
7270     {
7271       for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; i++)
7272 	if (!wi::fits_uhwi_p (wi::to_widest (POLY_INT_CST_COEFF (t, i))))
7273 	  return false;
7274       return true;
7275     }
7276   return (TREE_CODE (t) == INTEGER_CST
7277 	  && wi::fits_uhwi_p (wi::to_widest (t)));
7278 }
7279 
7280 /* T is an INTEGER_CST whose numerical value (extended according to
7281    TYPE_UNSIGNED) fits in a signed HOST_WIDE_INT.  Return that
7282    HOST_WIDE_INT.  */
7283 
7284 HOST_WIDE_INT
7285 tree_to_shwi (const_tree t)
7286 {
7287   gcc_assert (tree_fits_shwi_p (t));
7288   return TREE_INT_CST_LOW (t);
7289 }
7290 
7291 /* T is an INTEGER_CST whose numerical value (extended according to
7292    TYPE_UNSIGNED) fits in an unsigned HOST_WIDE_INT.  Return that
7293    HOST_WIDE_INT.  */
7294 
7295 unsigned HOST_WIDE_INT
7296 tree_to_uhwi (const_tree t)
7297 {
7298   gcc_assert (tree_fits_uhwi_p (t));
7299   return TREE_INT_CST_LOW (t);
7300 }
7301 
7302 /* Return the most significant (sign) bit of T.  */
7303 
7304 int
7305 tree_int_cst_sign_bit (const_tree t)
7306 {
7307   unsigned bitno = TYPE_PRECISION (TREE_TYPE (t)) - 1;
7308 
7309   return wi::extract_uhwi (wi::to_wide (t), bitno, 1);
7310 }
7311 
7312 /* Return an indication of the sign of the integer constant T.
7313    The return value is -1 if T < 0, 0 if T == 0, and 1 if T > 0.
7314    Note that -1 will never be returned if T's type is unsigned.  */
7315 
7316 int
7317 tree_int_cst_sgn (const_tree t)
7318 {
7319   if (wi::to_wide (t) == 0)
7320     return 0;
7321   else if (TYPE_UNSIGNED (TREE_TYPE (t)))
7322     return 1;
7323   else if (wi::neg_p (wi::to_wide (t)))
7324     return -1;
7325   else
7326     return 1;
7327 }
7328 
7329 /* Return the minimum number of bits needed to represent VALUE in a
7330    signed or unsigned type, UNSIGNEDP says which.  */
7331 
7332 unsigned int
7333 tree_int_cst_min_precision (tree value, signop sgn)
7334 {
7335   /* If the value is negative, compute its negative minus 1.  The latter
7336      adjustment is because the absolute value of the largest negative value
7337      is one larger than the largest positive value.  This is equivalent to
7338      a bit-wise negation, so use that operation instead.  */
7339 
7340   if (tree_int_cst_sgn (value) < 0)
7341     value = fold_build1 (BIT_NOT_EXPR, TREE_TYPE (value), value);
7342 
7343   /* Return the number of bits needed, taking into account the fact
7344      that we need one more bit for a signed than unsigned type.
7345      If value is 0 or -1, the minimum precision is 1 no matter
7346      whether unsignedp is true or false.  */
7347 
7348   if (integer_zerop (value))
7349     return 1;
7350   else
7351     return tree_floor_log2 (value) + 1 + (sgn == SIGNED ? 1 : 0) ;
7352 }
7353 
7354 /* Return truthvalue of whether T1 is the same tree structure as T2.
7355    Return 1 if they are the same.
7356    Return 0 if they are understandably different.
7357    Return -1 if either contains tree structure not understood by
7358    this function.  */
7359 
7360 int
7361 simple_cst_equal (const_tree t1, const_tree t2)
7362 {
7363   enum tree_code code1, code2;
7364   int cmp;
7365   int i;
7366 
7367   if (t1 == t2)
7368     return 1;
7369   if (t1 == 0 || t2 == 0)
7370     return 0;
7371 
7372   /* For location wrappers to be the same, they must be at the same
7373      source location (and wrap the same thing).  */
7374   if (location_wrapper_p (t1) && location_wrapper_p (t2))
7375     {
7376       if (EXPR_LOCATION (t1) != EXPR_LOCATION (t2))
7377 	return 0;
7378       return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
7379     }
7380 
7381   code1 = TREE_CODE (t1);
7382   code2 = TREE_CODE (t2);
7383 
7384   if (CONVERT_EXPR_CODE_P (code1) || code1 == NON_LVALUE_EXPR)
7385     {
7386       if (CONVERT_EXPR_CODE_P (code2)
7387 	  || code2 == NON_LVALUE_EXPR)
7388 	return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
7389       else
7390 	return simple_cst_equal (TREE_OPERAND (t1, 0), t2);
7391     }
7392 
7393   else if (CONVERT_EXPR_CODE_P (code2)
7394 	   || code2 == NON_LVALUE_EXPR)
7395     return simple_cst_equal (t1, TREE_OPERAND (t2, 0));
7396 
7397   if (code1 != code2)
7398     return 0;
7399 
7400   switch (code1)
7401     {
7402     case INTEGER_CST:
7403       return wi::to_widest (t1) == wi::to_widest (t2);
7404 
7405     case REAL_CST:
7406       return real_identical (&TREE_REAL_CST (t1), &TREE_REAL_CST (t2));
7407 
7408     case FIXED_CST:
7409       return FIXED_VALUES_IDENTICAL (TREE_FIXED_CST (t1), TREE_FIXED_CST (t2));
7410 
7411     case STRING_CST:
7412       return (TREE_STRING_LENGTH (t1) == TREE_STRING_LENGTH (t2)
7413 	      && ! memcmp (TREE_STRING_POINTER (t1), TREE_STRING_POINTER (t2),
7414 			 TREE_STRING_LENGTH (t1)));
7415 
7416     case CONSTRUCTOR:
7417       {
7418 	unsigned HOST_WIDE_INT idx;
7419 	vec<constructor_elt, va_gc> *v1 = CONSTRUCTOR_ELTS (t1);
7420 	vec<constructor_elt, va_gc> *v2 = CONSTRUCTOR_ELTS (t2);
7421 
7422 	if (vec_safe_length (v1) != vec_safe_length (v2))
7423 	  return false;
7424 
7425         for (idx = 0; idx < vec_safe_length (v1); ++idx)
7426 	  /* ??? Should we handle also fields here? */
7427 	  if (!simple_cst_equal ((*v1)[idx].value, (*v2)[idx].value))
7428 	    return false;
7429 	return true;
7430       }
7431 
7432     case SAVE_EXPR:
7433       return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
7434 
7435     case CALL_EXPR:
7436       cmp = simple_cst_equal (CALL_EXPR_FN (t1), CALL_EXPR_FN (t2));
7437       if (cmp <= 0)
7438 	return cmp;
7439       if (call_expr_nargs (t1) != call_expr_nargs (t2))
7440 	return 0;
7441       {
7442 	const_tree arg1, arg2;
7443 	const_call_expr_arg_iterator iter1, iter2;
7444 	for (arg1 = first_const_call_expr_arg (t1, &iter1),
7445 	       arg2 = first_const_call_expr_arg (t2, &iter2);
7446 	     arg1 && arg2;
7447 	     arg1 = next_const_call_expr_arg (&iter1),
7448 	       arg2 = next_const_call_expr_arg (&iter2))
7449 	  {
7450 	    cmp = simple_cst_equal (arg1, arg2);
7451 	    if (cmp <= 0)
7452 	      return cmp;
7453 	  }
7454 	return arg1 == arg2;
7455       }
7456 
7457     case TARGET_EXPR:
7458       /* Special case: if either target is an unallocated VAR_DECL,
7459 	 it means that it's going to be unified with whatever the
7460 	 TARGET_EXPR is really supposed to initialize, so treat it
7461 	 as being equivalent to anything.  */
7462       if ((TREE_CODE (TREE_OPERAND (t1, 0)) == VAR_DECL
7463 	   && DECL_NAME (TREE_OPERAND (t1, 0)) == NULL_TREE
7464 	   && !DECL_RTL_SET_P (TREE_OPERAND (t1, 0)))
7465 	  || (TREE_CODE (TREE_OPERAND (t2, 0)) == VAR_DECL
7466 	      && DECL_NAME (TREE_OPERAND (t2, 0)) == NULL_TREE
7467 	      && !DECL_RTL_SET_P (TREE_OPERAND (t2, 0))))
7468 	cmp = 1;
7469       else
7470 	cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
7471 
7472       if (cmp <= 0)
7473 	return cmp;
7474 
7475       return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
7476 
7477     case WITH_CLEANUP_EXPR:
7478       cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
7479       if (cmp <= 0)
7480 	return cmp;
7481 
7482       return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t1, 1));
7483 
7484     case COMPONENT_REF:
7485       if (TREE_OPERAND (t1, 1) == TREE_OPERAND (t2, 1))
7486 	return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
7487 
7488       return 0;
7489 
7490     case VAR_DECL:
7491     case PARM_DECL:
7492     case CONST_DECL:
7493     case FUNCTION_DECL:
7494       return 0;
7495 
7496     default:
7497       if (POLY_INT_CST_P (t1))
7498 	/* A false return means maybe_ne rather than known_ne.  */
7499 	return known_eq (poly_widest_int::from (poly_int_cst_value (t1),
7500 						TYPE_SIGN (TREE_TYPE (t1))),
7501 			 poly_widest_int::from (poly_int_cst_value (t2),
7502 						TYPE_SIGN (TREE_TYPE (t2))));
7503       break;
7504     }
7505 
7506   /* This general rule works for most tree codes.  All exceptions should be
7507      handled above.  If this is a language-specific tree code, we can't
7508      trust what might be in the operand, so say we don't know
7509      the situation.  */
7510   if ((int) code1 >= (int) LAST_AND_UNUSED_TREE_CODE)
7511     return -1;
7512 
7513   switch (TREE_CODE_CLASS (code1))
7514     {
7515     case tcc_unary:
7516     case tcc_binary:
7517     case tcc_comparison:
7518     case tcc_expression:
7519     case tcc_reference:
7520     case tcc_statement:
7521       cmp = 1;
7522       for (i = 0; i < TREE_CODE_LENGTH (code1); i++)
7523 	{
7524 	  cmp = simple_cst_equal (TREE_OPERAND (t1, i), TREE_OPERAND (t2, i));
7525 	  if (cmp <= 0)
7526 	    return cmp;
7527 	}
7528 
7529       return cmp;
7530 
7531     default:
7532       return -1;
7533     }
7534 }
7535 
7536 /* Compare the value of T, an INTEGER_CST, with U, an unsigned integer value.
7537    Return -1, 0, or 1 if the value of T is less than, equal to, or greater
7538    than U, respectively.  */
7539 
7540 int
7541 compare_tree_int (const_tree t, unsigned HOST_WIDE_INT u)
7542 {
7543   if (tree_int_cst_sgn (t) < 0)
7544     return -1;
7545   else if (!tree_fits_uhwi_p (t))
7546     return 1;
7547   else if (TREE_INT_CST_LOW (t) == u)
7548     return 0;
7549   else if (TREE_INT_CST_LOW (t) < u)
7550     return -1;
7551   else
7552     return 1;
7553 }
7554 
7555 /* Return true if SIZE represents a constant size that is in bounds of
7556    what the middle-end and the backend accepts (covering not more than
7557    half of the address-space).
7558    When PERR is non-null, set *PERR on failure to the description of
7559    why SIZE is not valid.  */
7560 
7561 bool
7562 valid_constant_size_p (const_tree size, cst_size_error *perr /* = NULL */)
7563 {
7564   if (POLY_INT_CST_P (size))
7565     {
7566       if (TREE_OVERFLOW (size))
7567 	return false;
7568       for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
7569 	if (!valid_constant_size_p (POLY_INT_CST_COEFF (size, i)))
7570 	  return false;
7571       return true;
7572     }
7573 
7574   cst_size_error error;
7575   if (!perr)
7576     perr = &error;
7577 
7578   if (TREE_CODE (size) != INTEGER_CST)
7579     {
7580       *perr = cst_size_not_constant;
7581       return false;
7582     }
7583 
7584   if (TREE_OVERFLOW_P (size))
7585     {
7586       *perr = cst_size_overflow;
7587       return false;
7588     }
7589 
7590   if (tree_int_cst_sgn (size) < 0)
7591     {
7592       *perr = cst_size_negative;
7593       return false;
7594     }
7595   if (!tree_fits_uhwi_p (size)
7596       || (wi::to_widest (TYPE_MAX_VALUE (sizetype))
7597 	  < wi::to_widest (size) * 2))
7598     {
7599       *perr = cst_size_too_big;
7600       return false;
7601     }
7602 
7603   return true;
7604 }
7605 
7606 /* Return the precision of the type, or for a complex or vector type the
7607    precision of the type of its elements.  */
7608 
7609 unsigned int
7610 element_precision (const_tree type)
7611 {
7612   if (!TYPE_P (type))
7613     type = TREE_TYPE (type);
7614   enum tree_code code = TREE_CODE (type);
7615   if (code == COMPLEX_TYPE || code == VECTOR_TYPE)
7616     type = TREE_TYPE (type);
7617 
7618   return TYPE_PRECISION (type);
7619 }
7620 
7621 /* Return true if CODE represents an associative tree code.  Otherwise
7622    return false.  */
7623 bool
7624 associative_tree_code (enum tree_code code)
7625 {
7626   switch (code)
7627     {
7628     case BIT_IOR_EXPR:
7629     case BIT_AND_EXPR:
7630     case BIT_XOR_EXPR:
7631     case PLUS_EXPR:
7632     case MULT_EXPR:
7633     case MIN_EXPR:
7634     case MAX_EXPR:
7635       return true;
7636 
7637     default:
7638       break;
7639     }
7640   return false;
7641 }
7642 
7643 /* Return true if CODE represents a commutative tree code.  Otherwise
7644    return false.  */
7645 bool
7646 commutative_tree_code (enum tree_code code)
7647 {
7648   switch (code)
7649     {
7650     case PLUS_EXPR:
7651     case MULT_EXPR:
7652     case MULT_HIGHPART_EXPR:
7653     case MIN_EXPR:
7654     case MAX_EXPR:
7655     case BIT_IOR_EXPR:
7656     case BIT_XOR_EXPR:
7657     case BIT_AND_EXPR:
7658     case NE_EXPR:
7659     case EQ_EXPR:
7660     case UNORDERED_EXPR:
7661     case ORDERED_EXPR:
7662     case UNEQ_EXPR:
7663     case LTGT_EXPR:
7664     case TRUTH_AND_EXPR:
7665     case TRUTH_XOR_EXPR:
7666     case TRUTH_OR_EXPR:
7667     case WIDEN_MULT_EXPR:
7668     case VEC_WIDEN_MULT_HI_EXPR:
7669     case VEC_WIDEN_MULT_LO_EXPR:
7670     case VEC_WIDEN_MULT_EVEN_EXPR:
7671     case VEC_WIDEN_MULT_ODD_EXPR:
7672       return true;
7673 
7674     default:
7675       break;
7676     }
7677   return false;
7678 }
7679 
7680 /* Return true if CODE represents a ternary tree code for which the
7681    first two operands are commutative.  Otherwise return false.  */
7682 bool
7683 commutative_ternary_tree_code (enum tree_code code)
7684 {
7685   switch (code)
7686     {
7687     case WIDEN_MULT_PLUS_EXPR:
7688     case WIDEN_MULT_MINUS_EXPR:
7689     case DOT_PROD_EXPR:
7690       return true;
7691 
7692     default:
7693       break;
7694     }
7695   return false;
7696 }
7697 
7698 /* Returns true if CODE can overflow.  */
7699 
7700 bool
7701 operation_can_overflow (enum tree_code code)
7702 {
7703   switch (code)
7704     {
7705     case PLUS_EXPR:
7706     case MINUS_EXPR:
7707     case MULT_EXPR:
7708     case LSHIFT_EXPR:
7709       /* Can overflow in various ways.  */
7710       return true;
7711     case TRUNC_DIV_EXPR:
7712     case EXACT_DIV_EXPR:
7713     case FLOOR_DIV_EXPR:
7714     case CEIL_DIV_EXPR:
7715       /* For INT_MIN / -1.  */
7716       return true;
7717     case NEGATE_EXPR:
7718     case ABS_EXPR:
7719       /* For -INT_MIN.  */
7720       return true;
7721     default:
7722       /* These operators cannot overflow.  */
7723       return false;
7724     }
7725 }
7726 
7727 /* Returns true if CODE operating on operands of type TYPE doesn't overflow, or
7728    ftrapv doesn't generate trapping insns for CODE.  */
7729 
7730 bool
7731 operation_no_trapping_overflow (tree type, enum tree_code code)
7732 {
7733   gcc_checking_assert (ANY_INTEGRAL_TYPE_P (type));
7734 
7735   /* We don't generate instructions that trap on overflow for complex or vector
7736      types.  */
7737   if (!INTEGRAL_TYPE_P (type))
7738     return true;
7739 
7740   if (!TYPE_OVERFLOW_TRAPS (type))
7741     return true;
7742 
7743   switch (code)
7744     {
7745     case PLUS_EXPR:
7746     case MINUS_EXPR:
7747     case MULT_EXPR:
7748     case NEGATE_EXPR:
7749     case ABS_EXPR:
7750       /* These operators can overflow, and -ftrapv generates trapping code for
7751 	 these.  */
7752       return false;
7753     case TRUNC_DIV_EXPR:
7754     case EXACT_DIV_EXPR:
7755     case FLOOR_DIV_EXPR:
7756     case CEIL_DIV_EXPR:
7757     case LSHIFT_EXPR:
7758       /* These operators can overflow, but -ftrapv does not generate trapping
7759 	 code for these.  */
7760       return true;
7761     default:
7762       /* These operators cannot overflow.  */
7763       return true;
7764     }
7765 }
7766 
7767 namespace inchash
7768 {
7769 
7770 /* Generate a hash value for an expression.  This can be used iteratively
7771    by passing a previous result as the HSTATE argument.
7772 
7773    This function is intended to produce the same hash for expressions which
7774    would compare equal using operand_equal_p.  */
7775 void
7776 add_expr (const_tree t, inchash::hash &hstate, unsigned int flags)
7777 {
7778   int i;
7779   enum tree_code code;
7780   enum tree_code_class tclass;
7781 
7782   if (t == NULL_TREE || t == error_mark_node)
7783     {
7784       hstate.merge_hash (0);
7785       return;
7786     }
7787 
7788   STRIP_ANY_LOCATION_WRAPPER (t);
7789 
7790   if (!(flags & OEP_ADDRESS_OF))
7791     STRIP_NOPS (t);
7792 
7793   code = TREE_CODE (t);
7794 
7795   switch (code)
7796     {
7797     /* Alas, constants aren't shared, so we can't rely on pointer
7798        identity.  */
7799     case VOID_CST:
7800       hstate.merge_hash (0);
7801       return;
7802     case INTEGER_CST:
7803       gcc_checking_assert (!(flags & OEP_ADDRESS_OF));
7804       for (i = 0; i < TREE_INT_CST_EXT_NUNITS (t); i++)
7805 	hstate.add_hwi (TREE_INT_CST_ELT (t, i));
7806       return;
7807     case REAL_CST:
7808       {
7809 	unsigned int val2;
7810 	if (!HONOR_SIGNED_ZEROS (t) && real_zerop (t))
7811 	  val2 = rvc_zero;
7812 	else
7813 	  val2 = real_hash (TREE_REAL_CST_PTR (t));
7814 	hstate.merge_hash (val2);
7815 	return;
7816       }
7817     case FIXED_CST:
7818       {
7819 	unsigned int val2 = fixed_hash (TREE_FIXED_CST_PTR (t));
7820 	hstate.merge_hash (val2);
7821 	return;
7822       }
7823     case STRING_CST:
7824       hstate.add ((const void *) TREE_STRING_POINTER (t),
7825 		  TREE_STRING_LENGTH (t));
7826       return;
7827     case COMPLEX_CST:
7828       inchash::add_expr (TREE_REALPART (t), hstate, flags);
7829       inchash::add_expr (TREE_IMAGPART (t), hstate, flags);
7830       return;
7831     case VECTOR_CST:
7832       {
7833 	hstate.add_int (VECTOR_CST_NPATTERNS (t));
7834 	hstate.add_int (VECTOR_CST_NELTS_PER_PATTERN (t));
7835 	unsigned int count = vector_cst_encoded_nelts (t);
7836 	for (unsigned int i = 0; i < count; ++i)
7837 	  inchash::add_expr (VECTOR_CST_ENCODED_ELT (t, i), hstate, flags);
7838 	return;
7839       }
7840     case SSA_NAME:
7841       /* We can just compare by pointer.  */
7842       hstate.add_hwi (SSA_NAME_VERSION (t));
7843       return;
7844     case PLACEHOLDER_EXPR:
7845       /* The node itself doesn't matter.  */
7846       return;
7847     case BLOCK:
7848     case OMP_CLAUSE:
7849       /* Ignore.  */
7850       return;
7851     case TREE_LIST:
7852       /* A list of expressions, for a CALL_EXPR or as the elements of a
7853 	 VECTOR_CST.  */
7854       for (; t; t = TREE_CHAIN (t))
7855 	inchash::add_expr (TREE_VALUE (t), hstate, flags);
7856       return;
7857     case CONSTRUCTOR:
7858       {
7859 	unsigned HOST_WIDE_INT idx;
7860 	tree field, value;
7861 	flags &= ~OEP_ADDRESS_OF;
7862 	FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (t), idx, field, value)
7863 	  {
7864 	    inchash::add_expr (field, hstate, flags);
7865 	    inchash::add_expr (value, hstate, flags);
7866 	  }
7867 	return;
7868       }
7869     case STATEMENT_LIST:
7870       {
7871 	tree_stmt_iterator i;
7872 	for (i = tsi_start (CONST_CAST_TREE (t));
7873 	     !tsi_end_p (i); tsi_next (&i))
7874 	  inchash::add_expr (tsi_stmt (i), hstate, flags);
7875 	return;
7876       }
7877     case TREE_VEC:
7878       for (i = 0; i < TREE_VEC_LENGTH (t); ++i)
7879 	inchash::add_expr (TREE_VEC_ELT (t, i), hstate, flags);
7880       return;
7881     case IDENTIFIER_NODE:
7882       hstate.add_object (IDENTIFIER_HASH_VALUE (t));
7883       return;
7884     case FUNCTION_DECL:
7885       /* When referring to a built-in FUNCTION_DECL, use the __builtin__ form.
7886 	 Otherwise nodes that compare equal according to operand_equal_p might
7887 	 get different hash codes.  However, don't do this for machine specific
7888 	 or front end builtins, since the function code is overloaded in those
7889 	 cases.  */
7890       if (DECL_BUILT_IN_CLASS (t) == BUILT_IN_NORMAL
7891 	  && builtin_decl_explicit_p (DECL_FUNCTION_CODE (t)))
7892 	{
7893 	  t = builtin_decl_explicit (DECL_FUNCTION_CODE (t));
7894 	  code = TREE_CODE (t);
7895 	}
7896       /* FALL THROUGH */
7897     default:
7898       if (POLY_INT_CST_P (t))
7899 	{
7900 	  for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
7901 	    hstate.add_wide_int (wi::to_wide (POLY_INT_CST_COEFF (t, i)));
7902 	  return;
7903 	}
7904       tclass = TREE_CODE_CLASS (code);
7905 
7906       if (tclass == tcc_declaration)
7907 	{
7908 	  /* DECL's have a unique ID */
7909 	  hstate.add_hwi (DECL_UID (t));
7910 	}
7911       else if (tclass == tcc_comparison && !commutative_tree_code (code))
7912 	{
7913 	  /* For comparisons that can be swapped, use the lower
7914 	     tree code.  */
7915 	  enum tree_code ccode = swap_tree_comparison (code);
7916 	  if (code < ccode)
7917 	    ccode = code;
7918 	  hstate.add_object (ccode);
7919 	  inchash::add_expr (TREE_OPERAND (t, ccode != code), hstate, flags);
7920 	  inchash::add_expr (TREE_OPERAND (t, ccode == code), hstate, flags);
7921 	}
7922       else if (CONVERT_EXPR_CODE_P (code))
7923 	{
7924 	  /* NOP_EXPR and CONVERT_EXPR are considered equal by
7925 	     operand_equal_p.  */
7926 	  enum tree_code ccode = NOP_EXPR;
7927 	  hstate.add_object (ccode);
7928 
7929 	  /* Don't hash the type, that can lead to having nodes which
7930 	     compare equal according to operand_equal_p, but which
7931 	     have different hash codes.  Make sure to include signedness
7932 	     in the hash computation.  */
7933 	  hstate.add_int (TYPE_UNSIGNED (TREE_TYPE (t)));
7934 	  inchash::add_expr (TREE_OPERAND (t, 0), hstate, flags);
7935 	}
7936       /* For OEP_ADDRESS_OF, hash MEM_EXPR[&decl, 0] the same as decl.  */
7937       else if (code == MEM_REF
7938 	       && (flags & OEP_ADDRESS_OF) != 0
7939 	       && TREE_CODE (TREE_OPERAND (t, 0)) == ADDR_EXPR
7940 	       && DECL_P (TREE_OPERAND (TREE_OPERAND (t, 0), 0))
7941 	       && integer_zerop (TREE_OPERAND (t, 1)))
7942 	inchash::add_expr (TREE_OPERAND (TREE_OPERAND (t, 0), 0),
7943 			   hstate, flags);
7944       /* Don't ICE on FE specific trees, or their arguments etc.
7945 	 during operand_equal_p hash verification.  */
7946       else if (!IS_EXPR_CODE_CLASS (tclass))
7947 	gcc_assert (flags & OEP_HASH_CHECK);
7948       else
7949 	{
7950 	  unsigned int sflags = flags;
7951 
7952 	  hstate.add_object (code);
7953 
7954 	  switch (code)
7955 	    {
7956 	    case ADDR_EXPR:
7957 	      gcc_checking_assert (!(flags & OEP_ADDRESS_OF));
7958 	      flags |= OEP_ADDRESS_OF;
7959 	      sflags = flags;
7960 	      break;
7961 
7962 	    case INDIRECT_REF:
7963 	    case MEM_REF:
7964 	    case TARGET_MEM_REF:
7965 	      flags &= ~OEP_ADDRESS_OF;
7966 	      sflags = flags;
7967 	      break;
7968 
7969 	    case ARRAY_REF:
7970 	    case ARRAY_RANGE_REF:
7971 	    case COMPONENT_REF:
7972 	    case BIT_FIELD_REF:
7973 	      sflags &= ~OEP_ADDRESS_OF;
7974 	      break;
7975 
7976 	    case COND_EXPR:
7977 	      flags &= ~OEP_ADDRESS_OF;
7978 	      break;
7979 
7980 	    case WIDEN_MULT_PLUS_EXPR:
7981 	    case WIDEN_MULT_MINUS_EXPR:
7982 	      {
7983 		/* The multiplication operands are commutative.  */
7984 		inchash::hash one, two;
7985 		inchash::add_expr (TREE_OPERAND (t, 0), one, flags);
7986 		inchash::add_expr (TREE_OPERAND (t, 1), two, flags);
7987 		hstate.add_commutative (one, two);
7988 		inchash::add_expr (TREE_OPERAND (t, 2), two, flags);
7989 		return;
7990 	      }
7991 
7992 	    case CALL_EXPR:
7993 	      if (CALL_EXPR_FN (t) == NULL_TREE)
7994 		hstate.add_int (CALL_EXPR_IFN (t));
7995 	      break;
7996 
7997 	    case TARGET_EXPR:
7998 	      /* For TARGET_EXPR, just hash on the TARGET_EXPR_SLOT.
7999 		 Usually different TARGET_EXPRs just should use
8000 		 different temporaries in their slots.  */
8001 	      inchash::add_expr (TARGET_EXPR_SLOT (t), hstate, flags);
8002 	      return;
8003 
8004 	    default:
8005 	      break;
8006 	    }
8007 
8008 	  /* Don't hash the type, that can lead to having nodes which
8009 	     compare equal according to operand_equal_p, but which
8010 	     have different hash codes.  */
8011 	  if (code == NON_LVALUE_EXPR)
8012 	    {
8013 	      /* Make sure to include signness in the hash computation.  */
8014 	      hstate.add_int (TYPE_UNSIGNED (TREE_TYPE (t)));
8015 	      inchash::add_expr (TREE_OPERAND (t, 0), hstate, flags);
8016 	    }
8017 
8018 	  else if (commutative_tree_code (code))
8019 	    {
8020 	      /* It's a commutative expression.  We want to hash it the same
8021 		 however it appears.  We do this by first hashing both operands
8022 		 and then rehashing based on the order of their independent
8023 		 hashes.  */
8024 	      inchash::hash one, two;
8025 	      inchash::add_expr (TREE_OPERAND (t, 0), one, flags);
8026 	      inchash::add_expr (TREE_OPERAND (t, 1), two, flags);
8027 	      hstate.add_commutative (one, two);
8028 	    }
8029 	  else
8030 	    for (i = TREE_OPERAND_LENGTH (t) - 1; i >= 0; --i)
8031 	      inchash::add_expr (TREE_OPERAND (t, i), hstate,
8032 				 i == 0 ? flags : sflags);
8033 	}
8034       return;
8035     }
8036 }
8037 
8038 }
8039 
8040 /* Constructors for pointer, array and function types.
8041    (RECORD_TYPE, UNION_TYPE and ENUMERAL_TYPE nodes are
8042    constructed by language-dependent code, not here.)  */
8043 
8044 /* Construct, lay out and return the type of pointers to TO_TYPE with
8045    mode MODE.  If CAN_ALIAS_ALL is TRUE, indicate this type can
8046    reference all of memory. If such a type has already been
8047    constructed, reuse it.  */
8048 
8049 tree
8050 build_pointer_type_for_mode (tree to_type, machine_mode mode,
8051 			     bool can_alias_all)
8052 {
8053   tree t;
8054   bool could_alias = can_alias_all;
8055 
8056   if (to_type == error_mark_node)
8057     return error_mark_node;
8058 
8059   /* If the pointed-to type has the may_alias attribute set, force
8060      a TYPE_REF_CAN_ALIAS_ALL pointer to be generated.  */
8061   if (lookup_attribute ("may_alias", TYPE_ATTRIBUTES (to_type)))
8062     can_alias_all = true;
8063 
8064   /* In some cases, languages will have things that aren't a POINTER_TYPE
8065      (such as a RECORD_TYPE for fat pointers in Ada) as TYPE_POINTER_TO.
8066      In that case, return that type without regard to the rest of our
8067      operands.
8068 
8069      ??? This is a kludge, but consistent with the way this function has
8070      always operated and there doesn't seem to be a good way to avoid this
8071      at the moment.  */
8072   if (TYPE_POINTER_TO (to_type) != 0
8073       && TREE_CODE (TYPE_POINTER_TO (to_type)) != POINTER_TYPE)
8074     return TYPE_POINTER_TO (to_type);
8075 
8076   /* First, if we already have a type for pointers to TO_TYPE and it's
8077      the proper mode, use it.  */
8078   for (t = TYPE_POINTER_TO (to_type); t; t = TYPE_NEXT_PTR_TO (t))
8079     if (TYPE_MODE (t) == mode && TYPE_REF_CAN_ALIAS_ALL (t) == can_alias_all)
8080       return t;
8081 
8082   t = make_node (POINTER_TYPE);
8083 
8084   TREE_TYPE (t) = to_type;
8085   SET_TYPE_MODE (t, mode);
8086   TYPE_REF_CAN_ALIAS_ALL (t) = can_alias_all;
8087   TYPE_NEXT_PTR_TO (t) = TYPE_POINTER_TO (to_type);
8088   TYPE_POINTER_TO (to_type) = t;
8089 
8090   /* During LTO we do not set TYPE_CANONICAL of pointers and references.  */
8091   if (TYPE_STRUCTURAL_EQUALITY_P (to_type) || in_lto_p)
8092     SET_TYPE_STRUCTURAL_EQUALITY (t);
8093   else if (TYPE_CANONICAL (to_type) != to_type || could_alias)
8094     TYPE_CANONICAL (t)
8095       = build_pointer_type_for_mode (TYPE_CANONICAL (to_type),
8096 				     mode, false);
8097 
8098   /* Lay out the type.  This function has many callers that are concerned
8099      with expression-construction, and this simplifies them all.  */
8100   layout_type (t);
8101 
8102   return t;
8103 }
8104 
8105 /* By default build pointers in ptr_mode.  */
8106 
8107 tree
8108 build_pointer_type (tree to_type)
8109 {
8110   addr_space_t as = to_type == error_mark_node? ADDR_SPACE_GENERIC
8111 					      : TYPE_ADDR_SPACE (to_type);
8112   machine_mode pointer_mode = targetm.addr_space.pointer_mode (as);
8113   return build_pointer_type_for_mode (to_type, pointer_mode, false);
8114 }
8115 
8116 /* Same as build_pointer_type_for_mode, but for REFERENCE_TYPE.  */
8117 
8118 tree
8119 build_reference_type_for_mode (tree to_type, machine_mode mode,
8120 			       bool can_alias_all)
8121 {
8122   tree t;
8123   bool could_alias = can_alias_all;
8124 
8125   if (to_type == error_mark_node)
8126     return error_mark_node;
8127 
8128   /* If the pointed-to type has the may_alias attribute set, force
8129      a TYPE_REF_CAN_ALIAS_ALL pointer to be generated.  */
8130   if (lookup_attribute ("may_alias", TYPE_ATTRIBUTES (to_type)))
8131     can_alias_all = true;
8132 
8133   /* In some cases, languages will have things that aren't a REFERENCE_TYPE
8134      (such as a RECORD_TYPE for fat pointers in Ada) as TYPE_REFERENCE_TO.
8135      In that case, return that type without regard to the rest of our
8136      operands.
8137 
8138      ??? This is a kludge, but consistent with the way this function has
8139      always operated and there doesn't seem to be a good way to avoid this
8140      at the moment.  */
8141   if (TYPE_REFERENCE_TO (to_type) != 0
8142       && TREE_CODE (TYPE_REFERENCE_TO (to_type)) != REFERENCE_TYPE)
8143     return TYPE_REFERENCE_TO (to_type);
8144 
8145   /* First, if we already have a type for pointers to TO_TYPE and it's
8146      the proper mode, use it.  */
8147   for (t = TYPE_REFERENCE_TO (to_type); t; t = TYPE_NEXT_REF_TO (t))
8148     if (TYPE_MODE (t) == mode && TYPE_REF_CAN_ALIAS_ALL (t) == can_alias_all)
8149       return t;
8150 
8151   t = make_node (REFERENCE_TYPE);
8152 
8153   TREE_TYPE (t) = to_type;
8154   SET_TYPE_MODE (t, mode);
8155   TYPE_REF_CAN_ALIAS_ALL (t) = can_alias_all;
8156   TYPE_NEXT_REF_TO (t) = TYPE_REFERENCE_TO (to_type);
8157   TYPE_REFERENCE_TO (to_type) = t;
8158 
8159   /* During LTO we do not set TYPE_CANONICAL of pointers and references.  */
8160   if (TYPE_STRUCTURAL_EQUALITY_P (to_type) || in_lto_p)
8161     SET_TYPE_STRUCTURAL_EQUALITY (t);
8162   else if (TYPE_CANONICAL (to_type) != to_type || could_alias)
8163     TYPE_CANONICAL (t)
8164       = build_reference_type_for_mode (TYPE_CANONICAL (to_type),
8165 				       mode, false);
8166 
8167   layout_type (t);
8168 
8169   return t;
8170 }
8171 
8172 
8173 /* Build the node for the type of references-to-TO_TYPE by default
8174    in ptr_mode.  */
8175 
8176 tree
8177 build_reference_type (tree to_type)
8178 {
8179   addr_space_t as = to_type == error_mark_node? ADDR_SPACE_GENERIC
8180 					      : TYPE_ADDR_SPACE (to_type);
8181   machine_mode pointer_mode = targetm.addr_space.pointer_mode (as);
8182   return build_reference_type_for_mode (to_type, pointer_mode, false);
8183 }
8184 
8185 #define MAX_INT_CACHED_PREC \
8186   (HOST_BITS_PER_WIDE_INT > 64 ? HOST_BITS_PER_WIDE_INT : 64)
8187 static GTY(()) tree nonstandard_integer_type_cache[2 * MAX_INT_CACHED_PREC + 2];
8188 
8189 /* Builds a signed or unsigned integer type of precision PRECISION.
8190    Used for C bitfields whose precision does not match that of
8191    built-in target types.  */
8192 tree
8193 build_nonstandard_integer_type (unsigned HOST_WIDE_INT precision,
8194 				int unsignedp)
8195 {
8196   tree itype, ret;
8197 
8198   if (unsignedp)
8199     unsignedp = MAX_INT_CACHED_PREC + 1;
8200 
8201   if (precision <= MAX_INT_CACHED_PREC)
8202     {
8203       itype = nonstandard_integer_type_cache[precision + unsignedp];
8204       if (itype)
8205 	return itype;
8206     }
8207 
8208   itype = make_node (INTEGER_TYPE);
8209   TYPE_PRECISION (itype) = precision;
8210 
8211   if (unsignedp)
8212     fixup_unsigned_type (itype);
8213   else
8214     fixup_signed_type (itype);
8215 
8216   ret = itype;
8217 
8218   inchash::hash hstate;
8219   inchash::add_expr (TYPE_MAX_VALUE (itype), hstate);
8220   ret = type_hash_canon (hstate.end (), itype);
8221   if (precision <= MAX_INT_CACHED_PREC)
8222     nonstandard_integer_type_cache[precision + unsignedp] = ret;
8223 
8224   return ret;
8225 }
8226 
8227 #define MAX_BOOL_CACHED_PREC \
8228   (HOST_BITS_PER_WIDE_INT > 64 ? HOST_BITS_PER_WIDE_INT : 64)
8229 static GTY(()) tree nonstandard_boolean_type_cache[MAX_BOOL_CACHED_PREC + 1];
8230 
8231 /* Builds a boolean type of precision PRECISION.
8232    Used for boolean vectors to choose proper vector element size.  */
8233 tree
8234 build_nonstandard_boolean_type (unsigned HOST_WIDE_INT precision)
8235 {
8236   tree type;
8237 
8238   if (precision <= MAX_BOOL_CACHED_PREC)
8239     {
8240       type = nonstandard_boolean_type_cache[precision];
8241       if (type)
8242 	return type;
8243     }
8244 
8245   type = make_node (BOOLEAN_TYPE);
8246   TYPE_PRECISION (type) = precision;
8247   fixup_signed_type (type);
8248 
8249   if (precision <= MAX_INT_CACHED_PREC)
8250     nonstandard_boolean_type_cache[precision] = type;
8251 
8252   return type;
8253 }
8254 
8255 /* Create a range of some discrete type TYPE (an INTEGER_TYPE, ENUMERAL_TYPE
8256    or BOOLEAN_TYPE) with low bound LOWVAL and high bound HIGHVAL.  If SHARED
8257    is true, reuse such a type that has already been constructed.  */
8258 
8259 static tree
8260 build_range_type_1 (tree type, tree lowval, tree highval, bool shared)
8261 {
8262   tree itype = make_node (INTEGER_TYPE);
8263 
8264   TREE_TYPE (itype) = type;
8265 
8266   TYPE_MIN_VALUE (itype) = fold_convert (type, lowval);
8267   TYPE_MAX_VALUE (itype) = highval ? fold_convert (type, highval) : NULL;
8268 
8269   TYPE_PRECISION (itype) = TYPE_PRECISION (type);
8270   SET_TYPE_MODE (itype, TYPE_MODE (type));
8271   TYPE_SIZE (itype) = TYPE_SIZE (type);
8272   TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (type);
8273   SET_TYPE_ALIGN (itype, TYPE_ALIGN (type));
8274   TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (type);
8275   SET_TYPE_WARN_IF_NOT_ALIGN (itype, TYPE_WARN_IF_NOT_ALIGN (type));
8276 
8277   if (!shared)
8278     return itype;
8279 
8280   if ((TYPE_MIN_VALUE (itype)
8281        && TREE_CODE (TYPE_MIN_VALUE (itype)) != INTEGER_CST)
8282       || (TYPE_MAX_VALUE (itype)
8283 	  && TREE_CODE (TYPE_MAX_VALUE (itype)) != INTEGER_CST))
8284     {
8285       /* Since we cannot reliably merge this type, we need to compare it using
8286 	 structural equality checks.  */
8287       SET_TYPE_STRUCTURAL_EQUALITY (itype);
8288       return itype;
8289     }
8290 
8291   hashval_t hash = type_hash_canon_hash (itype);
8292   itype = type_hash_canon (hash, itype);
8293 
8294   return itype;
8295 }
8296 
8297 /* Wrapper around build_range_type_1 with SHARED set to true.  */
8298 
8299 tree
8300 build_range_type (tree type, tree lowval, tree highval)
8301 {
8302   return build_range_type_1 (type, lowval, highval, true);
8303 }
8304 
8305 /* Wrapper around build_range_type_1 with SHARED set to false.  */
8306 
8307 tree
8308 build_nonshared_range_type (tree type, tree lowval, tree highval)
8309 {
8310   return build_range_type_1 (type, lowval, highval, false);
8311 }
8312 
8313 /* Create a type of integers to be the TYPE_DOMAIN of an ARRAY_TYPE.
8314    MAXVAL should be the maximum value in the domain
8315    (one less than the length of the array).
8316 
8317    The maximum value that MAXVAL can have is INT_MAX for a HOST_WIDE_INT.
8318    We don't enforce this limit, that is up to caller (e.g. language front end).
8319    The limit exists because the result is a signed type and we don't handle
8320    sizes that use more than one HOST_WIDE_INT.  */
8321 
8322 tree
8323 build_index_type (tree maxval)
8324 {
8325   return build_range_type (sizetype, size_zero_node, maxval);
8326 }
8327 
8328 /* Return true if the debug information for TYPE, a subtype, should be emitted
8329    as a subrange type.  If so, set LOWVAL to the low bound and HIGHVAL to the
8330    high bound, respectively.  Sometimes doing so unnecessarily obfuscates the
8331    debug info and doesn't reflect the source code.  */
8332 
8333 bool
8334 subrange_type_for_debug_p (const_tree type, tree *lowval, tree *highval)
8335 {
8336   tree base_type = TREE_TYPE (type), low, high;
8337 
8338   /* Subrange types have a base type which is an integral type.  */
8339   if (!INTEGRAL_TYPE_P (base_type))
8340     return false;
8341 
8342   /* Get the real bounds of the subtype.  */
8343   if (lang_hooks.types.get_subrange_bounds)
8344     lang_hooks.types.get_subrange_bounds (type, &low, &high);
8345   else
8346     {
8347       low = TYPE_MIN_VALUE (type);
8348       high = TYPE_MAX_VALUE (type);
8349     }
8350 
8351   /* If the type and its base type have the same representation and the same
8352      name, then the type is not a subrange but a copy of the base type.  */
8353   if ((TREE_CODE (base_type) == INTEGER_TYPE
8354        || TREE_CODE (base_type) == BOOLEAN_TYPE)
8355       && int_size_in_bytes (type) == int_size_in_bytes (base_type)
8356       && tree_int_cst_equal (low, TYPE_MIN_VALUE (base_type))
8357       && tree_int_cst_equal (high, TYPE_MAX_VALUE (base_type))
8358       && TYPE_IDENTIFIER (type) == TYPE_IDENTIFIER (base_type))
8359     return false;
8360 
8361   if (lowval)
8362     *lowval = low;
8363   if (highval)
8364     *highval = high;
8365   return true;
8366 }
8367 
8368 /* Construct, lay out and return the type of arrays of elements with ELT_TYPE
8369    and number of elements specified by the range of values of INDEX_TYPE.
8370    If TYPELESS_STORAGE is true, TYPE_TYPELESS_STORAGE flag is set on the type.
8371    If SHARED is true, reuse such a type that has already been constructed.
8372    If SET_CANONICAL is true, compute TYPE_CANONICAL from the element type.  */
8373 
8374 static tree
8375 build_array_type_1 (tree elt_type, tree index_type, bool typeless_storage,
8376 		    bool shared, bool set_canonical)
8377 {
8378   tree t;
8379 
8380   if (TREE_CODE (elt_type) == FUNCTION_TYPE)
8381     {
8382       error ("arrays of functions are not meaningful");
8383       elt_type = integer_type_node;
8384     }
8385 
8386   t = make_node (ARRAY_TYPE);
8387   TREE_TYPE (t) = elt_type;
8388   TYPE_DOMAIN (t) = index_type;
8389   TYPE_ADDR_SPACE (t) = TYPE_ADDR_SPACE (elt_type);
8390   TYPE_TYPELESS_STORAGE (t) = typeless_storage;
8391   layout_type (t);
8392 
8393   if (shared)
8394     {
8395       hashval_t hash = type_hash_canon_hash (t);
8396       t = type_hash_canon (hash, t);
8397     }
8398 
8399   if (TYPE_CANONICAL (t) == t && set_canonical)
8400     {
8401       if (TYPE_STRUCTURAL_EQUALITY_P (elt_type)
8402 	  || (index_type && TYPE_STRUCTURAL_EQUALITY_P (index_type))
8403 	  || in_lto_p)
8404 	SET_TYPE_STRUCTURAL_EQUALITY (t);
8405       else if (TYPE_CANONICAL (elt_type) != elt_type
8406 	       || (index_type && TYPE_CANONICAL (index_type) != index_type))
8407 	TYPE_CANONICAL (t)
8408 	  = build_array_type_1 (TYPE_CANONICAL (elt_type),
8409 				index_type
8410 				? TYPE_CANONICAL (index_type) : NULL_TREE,
8411 				typeless_storage, shared, set_canonical);
8412     }
8413 
8414   return t;
8415 }
8416 
8417 /* Wrapper around build_array_type_1 with SHARED set to true.  */
8418 
8419 tree
8420 build_array_type (tree elt_type, tree index_type, bool typeless_storage)
8421 {
8422   return
8423     build_array_type_1 (elt_type, index_type, typeless_storage, true, true);
8424 }
8425 
8426 /* Wrapper around build_array_type_1 with SHARED set to false.  */
8427 
8428 tree
8429 build_nonshared_array_type (tree elt_type, tree index_type)
8430 {
8431   return build_array_type_1 (elt_type, index_type, false, false, true);
8432 }
8433 
8434 /* Return a representation of ELT_TYPE[NELTS], using indices of type
8435    sizetype.  */
8436 
8437 tree
8438 build_array_type_nelts (tree elt_type, poly_uint64 nelts)
8439 {
8440   return build_array_type (elt_type, build_index_type (size_int (nelts - 1)));
8441 }
8442 
8443 /* Recursively examines the array elements of TYPE, until a non-array
8444    element type is found.  */
8445 
8446 tree
8447 strip_array_types (tree type)
8448 {
8449   while (TREE_CODE (type) == ARRAY_TYPE)
8450     type = TREE_TYPE (type);
8451 
8452   return type;
8453 }
8454 
8455 /* Computes the canonical argument types from the argument type list
8456    ARGTYPES.
8457 
8458    Upon return, *ANY_STRUCTURAL_P will be true iff either it was true
8459    on entry to this function, or if any of the ARGTYPES are
8460    structural.
8461 
8462    Upon return, *ANY_NONCANONICAL_P will be true iff either it was
8463    true on entry to this function, or if any of the ARGTYPES are
8464    non-canonical.
8465 
8466    Returns a canonical argument list, which may be ARGTYPES when the
8467    canonical argument list is unneeded (i.e., *ANY_STRUCTURAL_P is
8468    true) or would not differ from ARGTYPES.  */
8469 
8470 static tree
8471 maybe_canonicalize_argtypes (tree argtypes,
8472 			     bool *any_structural_p,
8473 			     bool *any_noncanonical_p)
8474 {
8475   tree arg;
8476   bool any_noncanonical_argtypes_p = false;
8477 
8478   for (arg = argtypes; arg && !(*any_structural_p); arg = TREE_CHAIN (arg))
8479     {
8480       if (!TREE_VALUE (arg) || TREE_VALUE (arg) == error_mark_node)
8481 	/* Fail gracefully by stating that the type is structural.  */
8482 	*any_structural_p = true;
8483       else if (TYPE_STRUCTURAL_EQUALITY_P (TREE_VALUE (arg)))
8484 	*any_structural_p = true;
8485       else if (TYPE_CANONICAL (TREE_VALUE (arg)) != TREE_VALUE (arg)
8486 	       || TREE_PURPOSE (arg))
8487 	/* If the argument has a default argument, we consider it
8488 	   non-canonical even though the type itself is canonical.
8489 	   That way, different variants of function and method types
8490 	   with default arguments will all point to the variant with
8491 	   no defaults as their canonical type.  */
8492         any_noncanonical_argtypes_p = true;
8493     }
8494 
8495   if (*any_structural_p)
8496     return argtypes;
8497 
8498   if (any_noncanonical_argtypes_p)
8499     {
8500       /* Build the canonical list of argument types.  */
8501       tree canon_argtypes = NULL_TREE;
8502       bool is_void = false;
8503 
8504       for (arg = argtypes; arg; arg = TREE_CHAIN (arg))
8505         {
8506           if (arg == void_list_node)
8507             is_void = true;
8508           else
8509             canon_argtypes = tree_cons (NULL_TREE,
8510                                         TYPE_CANONICAL (TREE_VALUE (arg)),
8511                                         canon_argtypes);
8512         }
8513 
8514       canon_argtypes = nreverse (canon_argtypes);
8515       if (is_void)
8516         canon_argtypes = chainon (canon_argtypes, void_list_node);
8517 
8518       /* There is a non-canonical type.  */
8519       *any_noncanonical_p = true;
8520       return canon_argtypes;
8521     }
8522 
8523   /* The canonical argument types are the same as ARGTYPES.  */
8524   return argtypes;
8525 }
8526 
8527 /* Construct, lay out and return
8528    the type of functions returning type VALUE_TYPE
8529    given arguments of types ARG_TYPES.
8530    ARG_TYPES is a chain of TREE_LIST nodes whose TREE_VALUEs
8531    are data type nodes for the arguments of the function.
8532    If such a type has already been constructed, reuse it.  */
8533 
8534 tree
8535 build_function_type (tree value_type, tree arg_types)
8536 {
8537   tree t;
8538   inchash::hash hstate;
8539   bool any_structural_p, any_noncanonical_p;
8540   tree canon_argtypes;
8541 
8542   gcc_assert (arg_types != error_mark_node);
8543 
8544   if (TREE_CODE (value_type) == FUNCTION_TYPE)
8545     {
8546       error ("function return type cannot be function");
8547       value_type = integer_type_node;
8548     }
8549 
8550   /* Make a node of the sort we want.  */
8551   t = make_node (FUNCTION_TYPE);
8552   TREE_TYPE (t) = value_type;
8553   TYPE_ARG_TYPES (t) = arg_types;
8554 
8555   /* If we already have such a type, use the old one.  */
8556   hashval_t hash = type_hash_canon_hash (t);
8557   t = type_hash_canon (hash, t);
8558 
8559   /* Set up the canonical type. */
8560   any_structural_p   = TYPE_STRUCTURAL_EQUALITY_P (value_type);
8561   any_noncanonical_p = TYPE_CANONICAL (value_type) != value_type;
8562   canon_argtypes = maybe_canonicalize_argtypes (arg_types,
8563 						&any_structural_p,
8564 						&any_noncanonical_p);
8565   if (any_structural_p)
8566     SET_TYPE_STRUCTURAL_EQUALITY (t);
8567   else if (any_noncanonical_p)
8568     TYPE_CANONICAL (t) = build_function_type (TYPE_CANONICAL (value_type),
8569 					      canon_argtypes);
8570 
8571   if (!COMPLETE_TYPE_P (t))
8572     layout_type (t);
8573   return t;
8574 }
8575 
8576 /* Build a function type.  The RETURN_TYPE is the type returned by the
8577    function.  If VAARGS is set, no void_type_node is appended to the
8578    list.  ARGP must be always be terminated be a NULL_TREE.  */
8579 
8580 static tree
8581 build_function_type_list_1 (bool vaargs, tree return_type, va_list argp)
8582 {
8583   tree t, args, last;
8584 
8585   t = va_arg (argp, tree);
8586   for (args = NULL_TREE; t != NULL_TREE; t = va_arg (argp, tree))
8587     args = tree_cons (NULL_TREE, t, args);
8588 
8589   if (vaargs)
8590     {
8591       last = args;
8592       if (args != NULL_TREE)
8593 	args = nreverse (args);
8594       gcc_assert (last != void_list_node);
8595     }
8596   else if (args == NULL_TREE)
8597     args = void_list_node;
8598   else
8599     {
8600       last = args;
8601       args = nreverse (args);
8602       TREE_CHAIN (last) = void_list_node;
8603     }
8604   args = build_function_type (return_type, args);
8605 
8606   return args;
8607 }
8608 
8609 /* Build a function type.  The RETURN_TYPE is the type returned by the
8610    function.  If additional arguments are provided, they are
8611    additional argument types.  The list of argument types must always
8612    be terminated by NULL_TREE.  */
8613 
8614 tree
8615 build_function_type_list (tree return_type, ...)
8616 {
8617   tree args;
8618   va_list p;
8619 
8620   va_start (p, return_type);
8621   args = build_function_type_list_1 (false, return_type, p);
8622   va_end (p);
8623   return args;
8624 }
8625 
8626 /* Build a variable argument function type.  The RETURN_TYPE is the
8627    type returned by the function.  If additional arguments are provided,
8628    they are additional argument types.  The list of argument types must
8629    always be terminated by NULL_TREE.  */
8630 
8631 tree
8632 build_varargs_function_type_list (tree return_type, ...)
8633 {
8634   tree args;
8635   va_list p;
8636 
8637   va_start (p, return_type);
8638   args = build_function_type_list_1 (true, return_type, p);
8639   va_end (p);
8640 
8641   return args;
8642 }
8643 
8644 /* Build a function type.  RETURN_TYPE is the type returned by the
8645    function; VAARGS indicates whether the function takes varargs.  The
8646    function takes N named arguments, the types of which are provided in
8647    ARG_TYPES.  */
8648 
8649 static tree
8650 build_function_type_array_1 (bool vaargs, tree return_type, int n,
8651 			     tree *arg_types)
8652 {
8653   int i;
8654   tree t = vaargs ? NULL_TREE : void_list_node;
8655 
8656   for (i = n - 1; i >= 0; i--)
8657     t = tree_cons (NULL_TREE, arg_types[i], t);
8658 
8659   return build_function_type (return_type, t);
8660 }
8661 
8662 /* Build a function type.  RETURN_TYPE is the type returned by the
8663    function.  The function takes N named arguments, the types of which
8664    are provided in ARG_TYPES.  */
8665 
8666 tree
8667 build_function_type_array (tree return_type, int n, tree *arg_types)
8668 {
8669   return build_function_type_array_1 (false, return_type, n, arg_types);
8670 }
8671 
8672 /* Build a variable argument function type.  RETURN_TYPE is the type
8673    returned by the function.  The function takes N named arguments, the
8674    types of which are provided in ARG_TYPES.  */
8675 
8676 tree
8677 build_varargs_function_type_array (tree return_type, int n, tree *arg_types)
8678 {
8679   return build_function_type_array_1 (true, return_type, n, arg_types);
8680 }
8681 
8682 /* Build a METHOD_TYPE for a member of BASETYPE.  The RETTYPE (a TYPE)
8683    and ARGTYPES (a TREE_LIST) are the return type and arguments types
8684    for the method.  An implicit additional parameter (of type
8685    pointer-to-BASETYPE) is added to the ARGTYPES.  */
8686 
8687 tree
8688 build_method_type_directly (tree basetype,
8689 			    tree rettype,
8690 			    tree argtypes)
8691 {
8692   tree t;
8693   tree ptype;
8694   bool any_structural_p, any_noncanonical_p;
8695   tree canon_argtypes;
8696 
8697   /* Make a node of the sort we want.  */
8698   t = make_node (METHOD_TYPE);
8699 
8700   TYPE_METHOD_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
8701   TREE_TYPE (t) = rettype;
8702   ptype = build_pointer_type (basetype);
8703 
8704   /* The actual arglist for this function includes a "hidden" argument
8705      which is "this".  Put it into the list of argument types.  */
8706   argtypes = tree_cons (NULL_TREE, ptype, argtypes);
8707   TYPE_ARG_TYPES (t) = argtypes;
8708 
8709   /* If we already have such a type, use the old one.  */
8710   hashval_t hash = type_hash_canon_hash (t);
8711   t = type_hash_canon (hash, t);
8712 
8713   /* Set up the canonical type. */
8714   any_structural_p
8715     = (TYPE_STRUCTURAL_EQUALITY_P (basetype)
8716        || TYPE_STRUCTURAL_EQUALITY_P (rettype));
8717   any_noncanonical_p
8718     = (TYPE_CANONICAL (basetype) != basetype
8719        || TYPE_CANONICAL (rettype) != rettype);
8720   canon_argtypes = maybe_canonicalize_argtypes (TREE_CHAIN (argtypes),
8721 						&any_structural_p,
8722 						&any_noncanonical_p);
8723   if (any_structural_p)
8724     SET_TYPE_STRUCTURAL_EQUALITY (t);
8725   else if (any_noncanonical_p)
8726     TYPE_CANONICAL (t)
8727       = build_method_type_directly (TYPE_CANONICAL (basetype),
8728 				    TYPE_CANONICAL (rettype),
8729 				    canon_argtypes);
8730   if (!COMPLETE_TYPE_P (t))
8731     layout_type (t);
8732 
8733   return t;
8734 }
8735 
8736 /* Construct, lay out and return the type of methods belonging to class
8737    BASETYPE and whose arguments and values are described by TYPE.
8738    If that type exists already, reuse it.
8739    TYPE must be a FUNCTION_TYPE node.  */
8740 
8741 tree
8742 build_method_type (tree basetype, tree type)
8743 {
8744   gcc_assert (TREE_CODE (type) == FUNCTION_TYPE);
8745 
8746   return build_method_type_directly (basetype,
8747 				     TREE_TYPE (type),
8748 				     TYPE_ARG_TYPES (type));
8749 }
8750 
8751 /* Construct, lay out and return the type of offsets to a value
8752    of type TYPE, within an object of type BASETYPE.
8753    If a suitable offset type exists already, reuse it.  */
8754 
8755 tree
8756 build_offset_type (tree basetype, tree type)
8757 {
8758   tree t;
8759 
8760   /* Make a node of the sort we want.  */
8761   t = make_node (OFFSET_TYPE);
8762 
8763   TYPE_OFFSET_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
8764   TREE_TYPE (t) = type;
8765 
8766   /* If we already have such a type, use the old one.  */
8767   hashval_t hash = type_hash_canon_hash (t);
8768   t = type_hash_canon (hash, t);
8769 
8770   if (!COMPLETE_TYPE_P (t))
8771     layout_type (t);
8772 
8773   if (TYPE_CANONICAL (t) == t)
8774     {
8775       if (TYPE_STRUCTURAL_EQUALITY_P (basetype)
8776 	  || TYPE_STRUCTURAL_EQUALITY_P (type))
8777 	SET_TYPE_STRUCTURAL_EQUALITY (t);
8778       else if (TYPE_CANONICAL (TYPE_MAIN_VARIANT (basetype)) != basetype
8779 	       || TYPE_CANONICAL (type) != type)
8780 	TYPE_CANONICAL (t)
8781 	  = build_offset_type (TYPE_CANONICAL (TYPE_MAIN_VARIANT (basetype)),
8782 			       TYPE_CANONICAL (type));
8783     }
8784 
8785   return t;
8786 }
8787 
8788 /* Create a complex type whose components are COMPONENT_TYPE.
8789 
8790    If NAMED is true, the type is given a TYPE_NAME.  We do not always
8791    do so because this creates a DECL node and thus make the DECL_UIDs
8792    dependent on the type canonicalization hashtable, which is GC-ed,
8793    so the DECL_UIDs would not be stable wrt garbage collection.  */
8794 
8795 tree
8796 build_complex_type (tree component_type, bool named)
8797 {
8798   gcc_assert (INTEGRAL_TYPE_P (component_type)
8799 	      || SCALAR_FLOAT_TYPE_P (component_type)
8800 	      || FIXED_POINT_TYPE_P (component_type));
8801 
8802   /* Make a node of the sort we want.  */
8803   tree probe = make_node (COMPLEX_TYPE);
8804 
8805   TREE_TYPE (probe) = TYPE_MAIN_VARIANT (component_type);
8806 
8807   /* If we already have such a type, use the old one.  */
8808   hashval_t hash = type_hash_canon_hash (probe);
8809   tree t = type_hash_canon (hash, probe);
8810 
8811   if (t == probe)
8812     {
8813       /* We created a new type.  The hash insertion will have laid
8814 	 out the type.  We need to check the canonicalization and
8815 	 maybe set the name.  */
8816       gcc_checking_assert (COMPLETE_TYPE_P (t)
8817 			   && !TYPE_NAME (t)
8818 			   && TYPE_CANONICAL (t) == t);
8819 
8820       if (TYPE_STRUCTURAL_EQUALITY_P (TREE_TYPE (t)))
8821 	SET_TYPE_STRUCTURAL_EQUALITY (t);
8822       else if (TYPE_CANONICAL (TREE_TYPE (t)) != TREE_TYPE (t))
8823 	TYPE_CANONICAL (t)
8824 	  = build_complex_type (TYPE_CANONICAL (TREE_TYPE (t)), named);
8825 
8826       /* We need to create a name, since complex is a fundamental type.  */
8827       if (named)
8828 	{
8829 	  const char *name = NULL;
8830 
8831 	  if (TREE_TYPE (t) == char_type_node)
8832 	    name = "complex char";
8833 	  else if (TREE_TYPE (t) == signed_char_type_node)
8834 	    name = "complex signed char";
8835 	  else if (TREE_TYPE (t) == unsigned_char_type_node)
8836 	    name = "complex unsigned char";
8837 	  else if (TREE_TYPE (t) == short_integer_type_node)
8838 	    name = "complex short int";
8839 	  else if (TREE_TYPE (t) == short_unsigned_type_node)
8840 	    name = "complex short unsigned int";
8841 	  else if (TREE_TYPE (t) == integer_type_node)
8842 	    name = "complex int";
8843 	  else if (TREE_TYPE (t) == unsigned_type_node)
8844 	    name = "complex unsigned int";
8845 	  else if (TREE_TYPE (t) == long_integer_type_node)
8846 	    name = "complex long int";
8847 	  else if (TREE_TYPE (t) == long_unsigned_type_node)
8848 	    name = "complex long unsigned int";
8849 	  else if (TREE_TYPE (t) == long_long_integer_type_node)
8850 	    name = "complex long long int";
8851 	  else if (TREE_TYPE (t) == long_long_unsigned_type_node)
8852 	    name = "complex long long unsigned int";
8853 
8854 	  if (name != NULL)
8855 	    TYPE_NAME (t) = build_decl (UNKNOWN_LOCATION, TYPE_DECL,
8856 					get_identifier (name), t);
8857 	}
8858     }
8859 
8860   return build_qualified_type (t, TYPE_QUALS (component_type));
8861 }
8862 
8863 /* If TYPE is a real or complex floating-point type and the target
8864    does not directly support arithmetic on TYPE then return the wider
8865    type to be used for arithmetic on TYPE.  Otherwise, return
8866    NULL_TREE.  */
8867 
8868 tree
8869 excess_precision_type (tree type)
8870 {
8871   /* The target can give two different responses to the question of
8872      which excess precision mode it would like depending on whether we
8873      are in -fexcess-precision=standard or -fexcess-precision=fast.  */
8874 
8875   enum excess_precision_type requested_type
8876     = (flag_excess_precision == EXCESS_PRECISION_FAST
8877        ? EXCESS_PRECISION_TYPE_FAST
8878        : EXCESS_PRECISION_TYPE_STANDARD);
8879 
8880   enum flt_eval_method target_flt_eval_method
8881     = targetm.c.excess_precision (requested_type);
8882 
8883   /* The target should not ask for unpredictable float evaluation (though
8884      it might advertise that implicitly the evaluation is unpredictable,
8885      but we don't care about that here, it will have been reported
8886      elsewhere).  If it does ask for unpredictable evaluation, we have
8887      nothing to do here.  */
8888   gcc_assert (target_flt_eval_method != FLT_EVAL_METHOD_UNPREDICTABLE);
8889 
8890   /* Nothing to do.  The target has asked for all types we know about
8891      to be computed with their native precision and range.  */
8892   if (target_flt_eval_method == FLT_EVAL_METHOD_PROMOTE_TO_FLOAT16)
8893     return NULL_TREE;
8894 
8895   /* The target will promote this type in a target-dependent way, so excess
8896      precision ought to leave it alone.  */
8897   if (targetm.promoted_type (type) != NULL_TREE)
8898     return NULL_TREE;
8899 
8900   machine_mode float16_type_mode = (float16_type_node
8901 				    ? TYPE_MODE (float16_type_node)
8902 				    : VOIDmode);
8903   machine_mode float_type_mode = TYPE_MODE (float_type_node);
8904   machine_mode double_type_mode = TYPE_MODE (double_type_node);
8905 
8906   switch (TREE_CODE (type))
8907     {
8908     case REAL_TYPE:
8909       {
8910 	machine_mode type_mode = TYPE_MODE (type);
8911 	switch (target_flt_eval_method)
8912 	  {
8913 	  case FLT_EVAL_METHOD_PROMOTE_TO_FLOAT:
8914 	    if (type_mode == float16_type_mode)
8915 	      return float_type_node;
8916 	    break;
8917 	  case FLT_EVAL_METHOD_PROMOTE_TO_DOUBLE:
8918 	    if (type_mode == float16_type_mode
8919 		|| type_mode == float_type_mode)
8920 	      return double_type_node;
8921 	    break;
8922 	  case FLT_EVAL_METHOD_PROMOTE_TO_LONG_DOUBLE:
8923 	    if (type_mode == float16_type_mode
8924 		|| type_mode == float_type_mode
8925 		|| type_mode == double_type_mode)
8926 	      return long_double_type_node;
8927 	    break;
8928 	  default:
8929 	    gcc_unreachable ();
8930 	  }
8931 	break;
8932       }
8933     case COMPLEX_TYPE:
8934       {
8935 	if (TREE_CODE (TREE_TYPE (type)) != REAL_TYPE)
8936 	  return NULL_TREE;
8937 	machine_mode type_mode = TYPE_MODE (TREE_TYPE (type));
8938 	switch (target_flt_eval_method)
8939 	  {
8940 	  case FLT_EVAL_METHOD_PROMOTE_TO_FLOAT:
8941 	    if (type_mode == float16_type_mode)
8942 	      return complex_float_type_node;
8943 	    break;
8944 	  case FLT_EVAL_METHOD_PROMOTE_TO_DOUBLE:
8945 	    if (type_mode == float16_type_mode
8946 		|| type_mode == float_type_mode)
8947 	      return complex_double_type_node;
8948 	    break;
8949 	  case FLT_EVAL_METHOD_PROMOTE_TO_LONG_DOUBLE:
8950 	    if (type_mode == float16_type_mode
8951 		|| type_mode == float_type_mode
8952 		|| type_mode == double_type_mode)
8953 	      return complex_long_double_type_node;
8954 	    break;
8955 	  default:
8956 	    gcc_unreachable ();
8957 	  }
8958 	break;
8959       }
8960     default:
8961       break;
8962     }
8963 
8964   return NULL_TREE;
8965 }
8966 
8967 /* Return OP, stripped of any conversions to wider types as much as is safe.
8968    Converting the value back to OP's type makes a value equivalent to OP.
8969 
8970    If FOR_TYPE is nonzero, we return a value which, if converted to
8971    type FOR_TYPE, would be equivalent to converting OP to type FOR_TYPE.
8972 
8973    OP must have integer, real or enumeral type.  Pointers are not allowed!
8974 
8975    There are some cases where the obvious value we could return
8976    would regenerate to OP if converted to OP's type,
8977    but would not extend like OP to wider types.
8978    If FOR_TYPE indicates such extension is contemplated, we eschew such values.
8979    For example, if OP is (unsigned short)(signed char)-1,
8980    we avoid returning (signed char)-1 if FOR_TYPE is int,
8981    even though extending that to an unsigned short would regenerate OP,
8982    since the result of extending (signed char)-1 to (int)
8983    is different from (int) OP.  */
8984 
8985 tree
8986 get_unwidened (tree op, tree for_type)
8987 {
8988   /* Set UNS initially if converting OP to FOR_TYPE is a zero-extension.  */
8989   tree type = TREE_TYPE (op);
8990   unsigned final_prec
8991     = TYPE_PRECISION (for_type != 0 ? for_type : type);
8992   int uns
8993     = (for_type != 0 && for_type != type
8994        && final_prec > TYPE_PRECISION (type)
8995        && TYPE_UNSIGNED (type));
8996   tree win = op;
8997 
8998   while (CONVERT_EXPR_P (op))
8999     {
9000       int bitschange;
9001 
9002       /* TYPE_PRECISION on vector types has different meaning
9003 	 (TYPE_VECTOR_SUBPARTS) and casts from vectors are view conversions,
9004 	 so avoid them here.  */
9005       if (TREE_CODE (TREE_TYPE (TREE_OPERAND (op, 0))) == VECTOR_TYPE)
9006 	break;
9007 
9008       bitschange = TYPE_PRECISION (TREE_TYPE (op))
9009 		   - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0)));
9010 
9011       /* Truncations are many-one so cannot be removed.
9012 	 Unless we are later going to truncate down even farther.  */
9013       if (bitschange < 0
9014 	  && final_prec > TYPE_PRECISION (TREE_TYPE (op)))
9015 	break;
9016 
9017       /* See what's inside this conversion.  If we decide to strip it,
9018 	 we will set WIN.  */
9019       op = TREE_OPERAND (op, 0);
9020 
9021       /* If we have not stripped any zero-extensions (uns is 0),
9022 	 we can strip any kind of extension.
9023 	 If we have previously stripped a zero-extension,
9024 	 only zero-extensions can safely be stripped.
9025 	 Any extension can be stripped if the bits it would produce
9026 	 are all going to be discarded later by truncating to FOR_TYPE.  */
9027 
9028       if (bitschange > 0)
9029 	{
9030 	  if (! uns || final_prec <= TYPE_PRECISION (TREE_TYPE (op)))
9031 	    win = op;
9032 	  /* TYPE_UNSIGNED says whether this is a zero-extension.
9033 	     Let's avoid computing it if it does not affect WIN
9034 	     and if UNS will not be needed again.  */
9035 	  if ((uns
9036 	       || CONVERT_EXPR_P (op))
9037 	      && TYPE_UNSIGNED (TREE_TYPE (op)))
9038 	    {
9039 	      uns = 1;
9040 	      win = op;
9041 	    }
9042 	}
9043     }
9044 
9045   /* If we finally reach a constant see if it fits in sth smaller and
9046      in that case convert it.  */
9047   if (TREE_CODE (win) == INTEGER_CST)
9048     {
9049       tree wtype = TREE_TYPE (win);
9050       unsigned prec = wi::min_precision (wi::to_wide (win), TYPE_SIGN (wtype));
9051       if (for_type)
9052 	prec = MAX (prec, final_prec);
9053       if (prec < TYPE_PRECISION (wtype))
9054 	{
9055 	  tree t = lang_hooks.types.type_for_size (prec, TYPE_UNSIGNED (wtype));
9056 	  if (t && TYPE_PRECISION (t) < TYPE_PRECISION (wtype))
9057 	    win = fold_convert (t, win);
9058 	}
9059     }
9060 
9061   return win;
9062 }
9063 
9064 /* Return OP or a simpler expression for a narrower value
9065    which can be sign-extended or zero-extended to give back OP.
9066    Store in *UNSIGNEDP_PTR either 1 if the value should be zero-extended
9067    or 0 if the value should be sign-extended.  */
9068 
9069 tree
9070 get_narrower (tree op, int *unsignedp_ptr)
9071 {
9072   int uns = 0;
9073   int first = 1;
9074   tree win = op;
9075   bool integral_p = INTEGRAL_TYPE_P (TREE_TYPE (op));
9076 
9077   while (TREE_CODE (op) == NOP_EXPR)
9078     {
9079       int bitschange
9080 	= (TYPE_PRECISION (TREE_TYPE (op))
9081 	   - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0))));
9082 
9083       /* Truncations are many-one so cannot be removed.  */
9084       if (bitschange < 0)
9085 	break;
9086 
9087       /* See what's inside this conversion.  If we decide to strip it,
9088 	 we will set WIN.  */
9089 
9090       if (bitschange > 0)
9091 	{
9092 	  op = TREE_OPERAND (op, 0);
9093 	  /* An extension: the outermost one can be stripped,
9094 	     but remember whether it is zero or sign extension.  */
9095 	  if (first)
9096 	    uns = TYPE_UNSIGNED (TREE_TYPE (op));
9097 	  /* Otherwise, if a sign extension has been stripped,
9098 	     only sign extensions can now be stripped;
9099 	     if a zero extension has been stripped, only zero-extensions.  */
9100 	  else if (uns != TYPE_UNSIGNED (TREE_TYPE (op)))
9101 	    break;
9102 	  first = 0;
9103 	}
9104       else /* bitschange == 0 */
9105 	{
9106 	  /* A change in nominal type can always be stripped, but we must
9107 	     preserve the unsignedness.  */
9108 	  if (first)
9109 	    uns = TYPE_UNSIGNED (TREE_TYPE (op));
9110 	  first = 0;
9111 	  op = TREE_OPERAND (op, 0);
9112 	  /* Keep trying to narrow, but don't assign op to win if it
9113 	     would turn an integral type into something else.  */
9114 	  if (INTEGRAL_TYPE_P (TREE_TYPE (op)) != integral_p)
9115 	    continue;
9116 	}
9117 
9118       win = op;
9119     }
9120 
9121   if (TREE_CODE (op) == COMPONENT_REF
9122       /* Since type_for_size always gives an integer type.  */
9123       && TREE_CODE (TREE_TYPE (op)) != REAL_TYPE
9124       && TREE_CODE (TREE_TYPE (op)) != FIXED_POINT_TYPE
9125       /* Ensure field is laid out already.  */
9126       && DECL_SIZE (TREE_OPERAND (op, 1)) != 0
9127       && tree_fits_uhwi_p (DECL_SIZE (TREE_OPERAND (op, 1))))
9128     {
9129       unsigned HOST_WIDE_INT innerprec
9130 	= tree_to_uhwi (DECL_SIZE (TREE_OPERAND (op, 1)));
9131       int unsignedp = (DECL_UNSIGNED (TREE_OPERAND (op, 1))
9132 		       || TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (op, 1))));
9133       tree type = lang_hooks.types.type_for_size (innerprec, unsignedp);
9134 
9135       /* We can get this structure field in a narrower type that fits it,
9136 	 but the resulting extension to its nominal type (a fullword type)
9137 	 must satisfy the same conditions as for other extensions.
9138 
9139 	 Do this only for fields that are aligned (not bit-fields),
9140 	 because when bit-field insns will be used there is no
9141 	 advantage in doing this.  */
9142 
9143       if (innerprec < TYPE_PRECISION (TREE_TYPE (op))
9144 	  && ! DECL_BIT_FIELD (TREE_OPERAND (op, 1))
9145 	  && (first || uns == DECL_UNSIGNED (TREE_OPERAND (op, 1)))
9146 	  && type != 0)
9147 	{
9148 	  if (first)
9149 	    uns = DECL_UNSIGNED (TREE_OPERAND (op, 1));
9150 	  win = fold_convert (type, op);
9151 	}
9152     }
9153 
9154   *unsignedp_ptr = uns;
9155   return win;
9156 }
9157 
9158 /* Return true if integer constant C has a value that is permissible
9159    for TYPE, an integral type.  */
9160 
9161 bool
9162 int_fits_type_p (const_tree c, const_tree type)
9163 {
9164   tree type_low_bound, type_high_bound;
9165   bool ok_for_low_bound, ok_for_high_bound;
9166   signop sgn_c = TYPE_SIGN (TREE_TYPE (c));
9167 
9168   /* Non-standard boolean types can have arbitrary precision but various
9169      transformations assume that they can only take values 0 and +/-1.  */
9170   if (TREE_CODE (type) == BOOLEAN_TYPE)
9171     return wi::fits_to_boolean_p (wi::to_wide (c), type);
9172 
9173 retry:
9174   type_low_bound = TYPE_MIN_VALUE (type);
9175   type_high_bound = TYPE_MAX_VALUE (type);
9176 
9177   /* If at least one bound of the type is a constant integer, we can check
9178      ourselves and maybe make a decision. If no such decision is possible, but
9179      this type is a subtype, try checking against that.  Otherwise, use
9180      fits_to_tree_p, which checks against the precision.
9181 
9182      Compute the status for each possibly constant bound, and return if we see
9183      one does not match. Use ok_for_xxx_bound for this purpose, assigning -1
9184      for "unknown if constant fits", 0 for "constant known *not* to fit" and 1
9185      for "constant known to fit".  */
9186 
9187   /* Check if c >= type_low_bound.  */
9188   if (type_low_bound && TREE_CODE (type_low_bound) == INTEGER_CST)
9189     {
9190       if (tree_int_cst_lt (c, type_low_bound))
9191 	return false;
9192       ok_for_low_bound = true;
9193     }
9194   else
9195     ok_for_low_bound = false;
9196 
9197   /* Check if c <= type_high_bound.  */
9198   if (type_high_bound && TREE_CODE (type_high_bound) == INTEGER_CST)
9199     {
9200       if (tree_int_cst_lt (type_high_bound, c))
9201 	return false;
9202       ok_for_high_bound = true;
9203     }
9204   else
9205     ok_for_high_bound = false;
9206 
9207   /* If the constant fits both bounds, the result is known.  */
9208   if (ok_for_low_bound && ok_for_high_bound)
9209     return true;
9210 
9211   /* Perform some generic filtering which may allow making a decision
9212      even if the bounds are not constant.  First, negative integers
9213      never fit in unsigned types, */
9214   if (TYPE_UNSIGNED (type) && sgn_c == SIGNED && wi::neg_p (wi::to_wide (c)))
9215     return false;
9216 
9217   /* Second, narrower types always fit in wider ones.  */
9218   if (TYPE_PRECISION (type) > TYPE_PRECISION (TREE_TYPE (c)))
9219     return true;
9220 
9221   /* Third, unsigned integers with top bit set never fit signed types.  */
9222   if (!TYPE_UNSIGNED (type) && sgn_c == UNSIGNED)
9223     {
9224       int prec = GET_MODE_PRECISION (SCALAR_INT_TYPE_MODE (TREE_TYPE (c))) - 1;
9225       if (prec < TYPE_PRECISION (TREE_TYPE (c)))
9226 	{
9227 	  /* When a tree_cst is converted to a wide-int, the precision
9228 	     is taken from the type.  However, if the precision of the
9229 	     mode underneath the type is smaller than that, it is
9230 	     possible that the value will not fit.  The test below
9231 	     fails if any bit is set between the sign bit of the
9232 	     underlying mode and the top bit of the type.  */
9233 	  if (wi::zext (wi::to_wide (c), prec - 1) != wi::to_wide (c))
9234 	    return false;
9235 	}
9236       else if (wi::neg_p (wi::to_wide (c)))
9237 	return false;
9238     }
9239 
9240   /* If we haven't been able to decide at this point, there nothing more we
9241      can check ourselves here.  Look at the base type if we have one and it
9242      has the same precision.  */
9243   if (TREE_CODE (type) == INTEGER_TYPE
9244       && TREE_TYPE (type) != 0
9245       && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (type)))
9246     {
9247       type = TREE_TYPE (type);
9248       goto retry;
9249     }
9250 
9251   /* Or to fits_to_tree_p, if nothing else.  */
9252   return wi::fits_to_tree_p (wi::to_wide (c), type);
9253 }
9254 
9255 /* Stores bounds of an integer TYPE in MIN and MAX.  If TYPE has non-constant
9256    bounds or is a POINTER_TYPE, the maximum and/or minimum values that can be
9257    represented (assuming two's-complement arithmetic) within the bit
9258    precision of the type are returned instead.  */
9259 
9260 void
9261 get_type_static_bounds (const_tree type, mpz_t min, mpz_t max)
9262 {
9263   if (!POINTER_TYPE_P (type) && TYPE_MIN_VALUE (type)
9264       && TREE_CODE (TYPE_MIN_VALUE (type)) == INTEGER_CST)
9265     wi::to_mpz (wi::to_wide (TYPE_MIN_VALUE (type)), min, TYPE_SIGN (type));
9266   else
9267     {
9268       if (TYPE_UNSIGNED (type))
9269 	mpz_set_ui (min, 0);
9270       else
9271 	{
9272 	  wide_int mn = wi::min_value (TYPE_PRECISION (type), SIGNED);
9273 	  wi::to_mpz (mn, min, SIGNED);
9274 	}
9275     }
9276 
9277   if (!POINTER_TYPE_P (type) && TYPE_MAX_VALUE (type)
9278       && TREE_CODE (TYPE_MAX_VALUE (type)) == INTEGER_CST)
9279     wi::to_mpz (wi::to_wide (TYPE_MAX_VALUE (type)), max, TYPE_SIGN (type));
9280   else
9281     {
9282       wide_int mn = wi::max_value (TYPE_PRECISION (type), TYPE_SIGN (type));
9283       wi::to_mpz (mn, max, TYPE_SIGN (type));
9284     }
9285 }
9286 
9287 /* Return true if VAR is an automatic variable.  */
9288 
9289 bool
9290 auto_var_p (const_tree var)
9291 {
9292   return ((((VAR_P (var) && ! DECL_EXTERNAL (var))
9293 	    || TREE_CODE (var) == PARM_DECL)
9294 	   && ! TREE_STATIC (var))
9295 	  || TREE_CODE (var) == RESULT_DECL);
9296 }
9297 
9298 /* Return true if VAR is an automatic variable defined in function FN.  */
9299 
9300 bool
9301 auto_var_in_fn_p (const_tree var, const_tree fn)
9302 {
9303   return (DECL_P (var) && DECL_CONTEXT (var) == fn
9304 	  && (auto_var_p (var)
9305 	      || TREE_CODE (var) == LABEL_DECL));
9306 }
9307 
9308 /* Subprogram of following function.  Called by walk_tree.
9309 
9310    Return *TP if it is an automatic variable or parameter of the
9311    function passed in as DATA.  */
9312 
9313 static tree
9314 find_var_from_fn (tree *tp, int *walk_subtrees, void *data)
9315 {
9316   tree fn = (tree) data;
9317 
9318   if (TYPE_P (*tp))
9319     *walk_subtrees = 0;
9320 
9321   else if (DECL_P (*tp)
9322 	   && auto_var_in_fn_p (*tp, fn))
9323     return *tp;
9324 
9325   return NULL_TREE;
9326 }
9327 
9328 /* Returns true if T is, contains, or refers to a type with variable
9329    size.  For METHOD_TYPEs and FUNCTION_TYPEs we exclude the
9330    arguments, but not the return type.  If FN is nonzero, only return
9331    true if a modifier of the type or position of FN is a variable or
9332    parameter inside FN.
9333 
9334    This concept is more general than that of C99 'variably modified types':
9335    in C99, a struct type is never variably modified because a VLA may not
9336    appear as a structure member.  However, in GNU C code like:
9337 
9338      struct S { int i[f()]; };
9339 
9340    is valid, and other languages may define similar constructs.  */
9341 
9342 bool
9343 variably_modified_type_p (tree type, tree fn)
9344 {
9345   tree t;
9346 
9347 /* Test if T is either variable (if FN is zero) or an expression containing
9348    a variable in FN.  If TYPE isn't gimplified, return true also if
9349    gimplify_one_sizepos would gimplify the expression into a local
9350    variable.  */
9351 #define RETURN_TRUE_IF_VAR(T)						\
9352   do { tree _t = (T);							\
9353     if (_t != NULL_TREE							\
9354 	&& _t != error_mark_node					\
9355 	&& !CONSTANT_CLASS_P (_t)					\
9356 	&& TREE_CODE (_t) != PLACEHOLDER_EXPR				\
9357 	&& (!fn								\
9358 	    || (!TYPE_SIZES_GIMPLIFIED (type)				\
9359 		&& (TREE_CODE (_t) != VAR_DECL				\
9360 		    && !CONTAINS_PLACEHOLDER_P (_t)))			\
9361 	    || walk_tree (&_t, find_var_from_fn, fn, NULL)))		\
9362       return true;  } while (0)
9363 
9364   if (type == error_mark_node)
9365     return false;
9366 
9367   /* If TYPE itself has variable size, it is variably modified.  */
9368   RETURN_TRUE_IF_VAR (TYPE_SIZE (type));
9369   RETURN_TRUE_IF_VAR (TYPE_SIZE_UNIT (type));
9370 
9371   switch (TREE_CODE (type))
9372     {
9373     case POINTER_TYPE:
9374     case REFERENCE_TYPE:
9375     case VECTOR_TYPE:
9376       /* Ada can have pointer types refering to themselves indirectly.  */
9377       if (TREE_VISITED (type))
9378 	return false;
9379       TREE_VISITED (type) = true;
9380       if (variably_modified_type_p (TREE_TYPE (type), fn))
9381 	{
9382 	  TREE_VISITED (type) = false;
9383 	  return true;
9384 	}
9385       TREE_VISITED (type) = false;
9386       break;
9387 
9388     case FUNCTION_TYPE:
9389     case METHOD_TYPE:
9390       /* If TYPE is a function type, it is variably modified if the
9391 	 return type is variably modified.  */
9392       if (variably_modified_type_p (TREE_TYPE (type), fn))
9393 	  return true;
9394       break;
9395 
9396     case INTEGER_TYPE:
9397     case REAL_TYPE:
9398     case FIXED_POINT_TYPE:
9399     case ENUMERAL_TYPE:
9400     case BOOLEAN_TYPE:
9401       /* Scalar types are variably modified if their end points
9402 	 aren't constant.  */
9403       RETURN_TRUE_IF_VAR (TYPE_MIN_VALUE (type));
9404       RETURN_TRUE_IF_VAR (TYPE_MAX_VALUE (type));
9405       break;
9406 
9407     case RECORD_TYPE:
9408     case UNION_TYPE:
9409     case QUAL_UNION_TYPE:
9410       /* We can't see if any of the fields are variably-modified by the
9411 	 definition we normally use, since that would produce infinite
9412 	 recursion via pointers.  */
9413       /* This is variably modified if some field's type is.  */
9414       for (t = TYPE_FIELDS (type); t; t = DECL_CHAIN (t))
9415 	if (TREE_CODE (t) == FIELD_DECL)
9416 	  {
9417 	    RETURN_TRUE_IF_VAR (DECL_FIELD_OFFSET (t));
9418 	    RETURN_TRUE_IF_VAR (DECL_SIZE (t));
9419 	    RETURN_TRUE_IF_VAR (DECL_SIZE_UNIT (t));
9420 
9421 	    if (TREE_CODE (type) == QUAL_UNION_TYPE)
9422 	      RETURN_TRUE_IF_VAR (DECL_QUALIFIER (t));
9423 	  }
9424       break;
9425 
9426     case ARRAY_TYPE:
9427       /* Do not call ourselves to avoid infinite recursion.  This is
9428 	 variably modified if the element type is.  */
9429       RETURN_TRUE_IF_VAR (TYPE_SIZE (TREE_TYPE (type)));
9430       RETURN_TRUE_IF_VAR (TYPE_SIZE_UNIT (TREE_TYPE (type)));
9431       break;
9432 
9433     default:
9434       break;
9435     }
9436 
9437   /* The current language may have other cases to check, but in general,
9438      all other types are not variably modified.  */
9439   return lang_hooks.tree_inlining.var_mod_type_p (type, fn);
9440 
9441 #undef RETURN_TRUE_IF_VAR
9442 }
9443 
9444 /* Given a DECL or TYPE, return the scope in which it was declared, or
9445    NULL_TREE if there is no containing scope.  */
9446 
9447 tree
9448 get_containing_scope (const_tree t)
9449 {
9450   return (TYPE_P (t) ? TYPE_CONTEXT (t) : DECL_CONTEXT (t));
9451 }
9452 
9453 /* Returns the ultimate TRANSLATION_UNIT_DECL context of DECL or NULL.  */
9454 
9455 const_tree
9456 get_ultimate_context (const_tree decl)
9457 {
9458   while (decl && TREE_CODE (decl) != TRANSLATION_UNIT_DECL)
9459     {
9460       if (TREE_CODE (decl) == BLOCK)
9461 	decl = BLOCK_SUPERCONTEXT (decl);
9462       else
9463 	decl = get_containing_scope (decl);
9464     }
9465   return decl;
9466 }
9467 
9468 /* Return the innermost context enclosing DECL that is
9469    a FUNCTION_DECL, or zero if none.  */
9470 
9471 tree
9472 decl_function_context (const_tree decl)
9473 {
9474   tree context;
9475 
9476   if (TREE_CODE (decl) == ERROR_MARK)
9477     return 0;
9478 
9479   /* C++ virtual functions use DECL_CONTEXT for the class of the vtable
9480      where we look up the function at runtime.  Such functions always take
9481      a first argument of type 'pointer to real context'.
9482 
9483      C++ should really be fixed to use DECL_CONTEXT for the real context,
9484      and use something else for the "virtual context".  */
9485   else if (TREE_CODE (decl) == FUNCTION_DECL && DECL_VIRTUAL_P (decl))
9486     context
9487       = TYPE_MAIN_VARIANT
9488 	(TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
9489   else
9490     context = DECL_CONTEXT (decl);
9491 
9492   while (context && TREE_CODE (context) != FUNCTION_DECL)
9493     {
9494       if (TREE_CODE (context) == BLOCK)
9495 	context = BLOCK_SUPERCONTEXT (context);
9496       else
9497 	context = get_containing_scope (context);
9498     }
9499 
9500   return context;
9501 }
9502 
9503 /* Return the innermost context enclosing DECL that is
9504    a RECORD_TYPE, UNION_TYPE or QUAL_UNION_TYPE, or zero if none.
9505    TYPE_DECLs and FUNCTION_DECLs are transparent to this function.  */
9506 
9507 tree
9508 decl_type_context (const_tree decl)
9509 {
9510   tree context = DECL_CONTEXT (decl);
9511 
9512   while (context)
9513     switch (TREE_CODE (context))
9514       {
9515       case NAMESPACE_DECL:
9516       case TRANSLATION_UNIT_DECL:
9517 	return NULL_TREE;
9518 
9519       case RECORD_TYPE:
9520       case UNION_TYPE:
9521       case QUAL_UNION_TYPE:
9522 	return context;
9523 
9524       case TYPE_DECL:
9525       case FUNCTION_DECL:
9526 	context = DECL_CONTEXT (context);
9527 	break;
9528 
9529       case BLOCK:
9530 	context = BLOCK_SUPERCONTEXT (context);
9531 	break;
9532 
9533       default:
9534 	gcc_unreachable ();
9535       }
9536 
9537   return NULL_TREE;
9538 }
9539 
9540 /* CALL is a CALL_EXPR.  Return the declaration for the function
9541    called, or NULL_TREE if the called function cannot be
9542    determined.  */
9543 
9544 tree
9545 get_callee_fndecl (const_tree call)
9546 {
9547   tree addr;
9548 
9549   if (call == error_mark_node)
9550     return error_mark_node;
9551 
9552   /* It's invalid to call this function with anything but a
9553      CALL_EXPR.  */
9554   gcc_assert (TREE_CODE (call) == CALL_EXPR);
9555 
9556   /* The first operand to the CALL is the address of the function
9557      called.  */
9558   addr = CALL_EXPR_FN (call);
9559 
9560   /* If there is no function, return early.  */
9561   if (addr == NULL_TREE)
9562     return NULL_TREE;
9563 
9564   STRIP_NOPS (addr);
9565 
9566   /* If this is a readonly function pointer, extract its initial value.  */
9567   if (DECL_P (addr) && TREE_CODE (addr) != FUNCTION_DECL
9568       && TREE_READONLY (addr) && ! TREE_THIS_VOLATILE (addr)
9569       && DECL_INITIAL (addr))
9570     addr = DECL_INITIAL (addr);
9571 
9572   /* If the address is just `&f' for some function `f', then we know
9573      that `f' is being called.  */
9574   if (TREE_CODE (addr) == ADDR_EXPR
9575       && TREE_CODE (TREE_OPERAND (addr, 0)) == FUNCTION_DECL)
9576     return TREE_OPERAND (addr, 0);
9577 
9578   /* We couldn't figure out what was being called.  */
9579   return NULL_TREE;
9580 }
9581 
9582 /* If CALL_EXPR CALL calls a normal built-in function or an internal function,
9583    return the associated function code, otherwise return CFN_LAST.  */
9584 
9585 combined_fn
9586 get_call_combined_fn (const_tree call)
9587 {
9588   /* It's invalid to call this function with anything but a CALL_EXPR.  */
9589   gcc_assert (TREE_CODE (call) == CALL_EXPR);
9590 
9591   if (!CALL_EXPR_FN (call))
9592     return as_combined_fn (CALL_EXPR_IFN (call));
9593 
9594   tree fndecl = get_callee_fndecl (call);
9595   if (fndecl && fndecl_built_in_p (fndecl, BUILT_IN_NORMAL))
9596     return as_combined_fn (DECL_FUNCTION_CODE (fndecl));
9597 
9598   return CFN_LAST;
9599 }
9600 
9601 /* Comparator of indices based on tree_node_counts.  */
9602 
9603 static int
9604 tree_nodes_cmp (const void *p1, const void *p2)
9605 {
9606   const unsigned *n1 = (const unsigned *)p1;
9607   const unsigned *n2 = (const unsigned *)p2;
9608 
9609   return tree_node_counts[*n1] - tree_node_counts[*n2];
9610 }
9611 
9612 /* Comparator of indices based on tree_code_counts.  */
9613 
9614 static int
9615 tree_codes_cmp (const void *p1, const void *p2)
9616 {
9617   const unsigned *n1 = (const unsigned *)p1;
9618   const unsigned *n2 = (const unsigned *)p2;
9619 
9620   return tree_code_counts[*n1] - tree_code_counts[*n2];
9621 }
9622 
9623 #define TREE_MEM_USAGE_SPACES 40
9624 
9625 /* Print debugging information about tree nodes generated during the compile,
9626    and any language-specific information.  */
9627 
9628 void
9629 dump_tree_statistics (void)
9630 {
9631   if (GATHER_STATISTICS)
9632     {
9633       uint64_t total_nodes, total_bytes;
9634       fprintf (stderr, "\nKind                   Nodes      Bytes\n");
9635       mem_usage::print_dash_line (TREE_MEM_USAGE_SPACES);
9636       total_nodes = total_bytes = 0;
9637 
9638       {
9639 	auto_vec<unsigned> indices (all_kinds);
9640 	for (unsigned i = 0; i < all_kinds; i++)
9641 	  indices.quick_push (i);
9642 	indices.qsort (tree_nodes_cmp);
9643 
9644 	for (unsigned i = 0; i < (int) all_kinds; i++)
9645 	  {
9646 	    unsigned j = indices[i];
9647 	    fprintf (stderr, "%-20s %6" PRIu64 "%c %9" PRIu64 "%c\n",
9648 		     tree_node_kind_names[i], SIZE_AMOUNT (tree_node_counts[j]),
9649 		     SIZE_AMOUNT (tree_node_sizes[j]));
9650 	    total_nodes += tree_node_counts[j];
9651 	    total_bytes += tree_node_sizes[j];
9652 	  }
9653 	mem_usage::print_dash_line (TREE_MEM_USAGE_SPACES);
9654 	fprintf (stderr, "%-20s %6" PRIu64 "%c %9" PRIu64 "%c\n", "Total",
9655 		 SIZE_AMOUNT (total_nodes), SIZE_AMOUNT (total_bytes));
9656 	mem_usage::print_dash_line (TREE_MEM_USAGE_SPACES);
9657       }
9658 
9659       {
9660 	fprintf (stderr, "Code                              Nodes\n");
9661 	mem_usage::print_dash_line (TREE_MEM_USAGE_SPACES);
9662 
9663 	auto_vec<unsigned> indices (MAX_TREE_CODES);
9664 	for (unsigned i = 0; i < MAX_TREE_CODES; i++)
9665 	  indices.quick_push (i);
9666 	indices.qsort (tree_codes_cmp);
9667 
9668 	for (unsigned i = 0; i < MAX_TREE_CODES; i++)
9669 	  {
9670 	    unsigned j = indices[i];
9671 	    fprintf (stderr, "%-32s %6" PRIu64 "%c\n",
9672 		     get_tree_code_name ((enum tree_code) j),
9673 		     SIZE_AMOUNT (tree_code_counts[j]));
9674 	  }
9675 	mem_usage::print_dash_line (TREE_MEM_USAGE_SPACES);
9676 	fprintf (stderr, "\n");
9677 	ssanames_print_statistics ();
9678 	fprintf (stderr, "\n");
9679 	phinodes_print_statistics ();
9680 	fprintf (stderr, "\n");
9681       }
9682     }
9683   else
9684     fprintf (stderr, "(No per-node statistics)\n");
9685 
9686   print_type_hash_statistics ();
9687   print_debug_expr_statistics ();
9688   print_value_expr_statistics ();
9689   lang_hooks.print_statistics ();
9690 }
9691 
9692 #define FILE_FUNCTION_FORMAT "_GLOBAL__%s_%s"
9693 
9694 /* Generate a crc32 of the low BYTES bytes of VALUE.  */
9695 
9696 unsigned
9697 crc32_unsigned_n (unsigned chksum, unsigned value, unsigned bytes)
9698 {
9699   /* This relies on the raw feedback's top 4 bits being zero.  */
9700 #define FEEDBACK(X) ((X) * 0x04c11db7)
9701 #define SYNDROME(X) (FEEDBACK ((X) & 1) ^ FEEDBACK ((X) & 2) \
9702 		     ^ FEEDBACK ((X) & 4) ^ FEEDBACK ((X) & 8))
9703   static const unsigned syndromes[16] =
9704     {
9705       SYNDROME(0x0), SYNDROME(0x1), SYNDROME(0x2), SYNDROME(0x3),
9706       SYNDROME(0x4), SYNDROME(0x5), SYNDROME(0x6), SYNDROME(0x7),
9707       SYNDROME(0x8), SYNDROME(0x9), SYNDROME(0xa), SYNDROME(0xb),
9708       SYNDROME(0xc), SYNDROME(0xd), SYNDROME(0xe), SYNDROME(0xf),
9709     };
9710 #undef FEEDBACK
9711 #undef SYNDROME
9712 
9713   value <<= (32 - bytes * 8);
9714   for (unsigned ix = bytes * 2; ix--; value <<= 4)
9715     {
9716       unsigned feedback = syndromes[((value ^ chksum) >> 28) & 0xf];
9717 
9718       chksum = (chksum << 4) ^ feedback;
9719     }
9720 
9721   return chksum;
9722 }
9723 
9724 /* Generate a crc32 of a string.  */
9725 
9726 unsigned
9727 crc32_string (unsigned chksum, const char *string)
9728 {
9729   do
9730     chksum = crc32_byte (chksum, *string);
9731   while (*string++);
9732   return chksum;
9733 }
9734 
9735 /* P is a string that will be used in a symbol.  Mask out any characters
9736    that are not valid in that context.  */
9737 
9738 void
9739 clean_symbol_name (char *p)
9740 {
9741   for (; *p; p++)
9742     if (! (ISALNUM (*p)
9743 #ifndef NO_DOLLAR_IN_LABEL	/* this for `$'; unlikely, but... -- kr */
9744 	    || *p == '$'
9745 #endif
9746 #ifndef NO_DOT_IN_LABEL		/* this for `.'; unlikely, but...  */
9747 	    || *p == '.'
9748 #endif
9749 	   ))
9750       *p = '_';
9751 }
9752 
9753 /* For anonymous aggregate types, we need some sort of name to
9754    hold on to.  In practice, this should not appear, but it should
9755    not be harmful if it does.  */
9756 bool
9757 anon_aggrname_p(const_tree id_node)
9758 {
9759 #ifndef NO_DOT_IN_LABEL
9760  return (IDENTIFIER_POINTER (id_node)[0] == '.'
9761 	 && IDENTIFIER_POINTER (id_node)[1] == '_');
9762 #else /* NO_DOT_IN_LABEL */
9763 #ifndef NO_DOLLAR_IN_LABEL
9764   return (IDENTIFIER_POINTER (id_node)[0] == '$' \
9765 	  && IDENTIFIER_POINTER (id_node)[1] == '_');
9766 #else /* NO_DOLLAR_IN_LABEL */
9767 #define ANON_AGGRNAME_PREFIX "__anon_"
9768   return (!strncmp (IDENTIFIER_POINTER (id_node), ANON_AGGRNAME_PREFIX,
9769 		    sizeof (ANON_AGGRNAME_PREFIX) - 1));
9770 #endif	/* NO_DOLLAR_IN_LABEL */
9771 #endif	/* NO_DOT_IN_LABEL */
9772 }
9773 
9774 /* Return a format for an anonymous aggregate name.  */
9775 const char *
9776 anon_aggrname_format()
9777 {
9778 #ifndef NO_DOT_IN_LABEL
9779  return "._%d";
9780 #else /* NO_DOT_IN_LABEL */
9781 #ifndef NO_DOLLAR_IN_LABEL
9782   return "$_%d";
9783 #else /* NO_DOLLAR_IN_LABEL */
9784   return "__anon_%d";
9785 #endif	/* NO_DOLLAR_IN_LABEL */
9786 #endif	/* NO_DOT_IN_LABEL */
9787 }
9788 
9789 /* Generate a name for a special-purpose function.
9790    The generated name may need to be unique across the whole link.
9791    Changes to this function may also require corresponding changes to
9792    xstrdup_mask_random.
9793    TYPE is some string to identify the purpose of this function to the
9794    linker or collect2; it must start with an uppercase letter,
9795    one of:
9796    I - for constructors
9797    D - for destructors
9798    N - for C++ anonymous namespaces
9799    F - for DWARF unwind frame information.  */
9800 
9801 tree
9802 get_file_function_name (const char *type)
9803 {
9804   char *buf;
9805   const char *p;
9806   char *q;
9807 
9808   /* If we already have a name we know to be unique, just use that.  */
9809   if (first_global_object_name)
9810     p = q = ASTRDUP (first_global_object_name);
9811   /* If the target is handling the constructors/destructors, they
9812      will be local to this file and the name is only necessary for
9813      debugging purposes.
9814      We also assign sub_I and sub_D sufixes to constructors called from
9815      the global static constructors.  These are always local.  */
9816   else if (((type[0] == 'I' || type[0] == 'D') && targetm.have_ctors_dtors)
9817 	   || (strncmp (type, "sub_", 4) == 0
9818 	       && (type[4] == 'I' || type[4] == 'D')))
9819     {
9820       const char *file = main_input_filename;
9821       if (! file)
9822 	file = LOCATION_FILE (input_location);
9823       /* Just use the file's basename, because the full pathname
9824 	 might be quite long.  */
9825       p = q = ASTRDUP (lbasename (file));
9826     }
9827   else
9828     {
9829       /* Otherwise, the name must be unique across the entire link.
9830 	 We don't have anything that we know to be unique to this translation
9831 	 unit, so use what we do have and throw in some randomness.  */
9832       unsigned len;
9833       const char *name = weak_global_object_name;
9834       const char *file = main_input_filename;
9835 
9836       if (! name)
9837 	name = "";
9838       if (! file)
9839 	file = LOCATION_FILE (input_location);
9840 
9841       len = strlen (file);
9842       q = (char *) alloca (9 + 19 + len + 1);
9843       memcpy (q, file, len + 1);
9844 
9845       snprintf (q + len, 9 + 19 + 1, "_%08X_" HOST_WIDE_INT_PRINT_HEX,
9846 		crc32_string (0, name), get_random_seed (false));
9847 
9848       p = q;
9849     }
9850 
9851   clean_symbol_name (q);
9852   buf = (char *) alloca (sizeof (FILE_FUNCTION_FORMAT) + strlen (p)
9853 			 + strlen (type));
9854 
9855   /* Set up the name of the file-level functions we may need.
9856      Use a global object (which is already required to be unique over
9857      the program) rather than the file name (which imposes extra
9858      constraints).  */
9859   sprintf (buf, FILE_FUNCTION_FORMAT, type, p);
9860 
9861   return get_identifier (buf);
9862 }
9863 
9864 #if defined ENABLE_TREE_CHECKING && (GCC_VERSION >= 2007)
9865 
9866 /* Complain that the tree code of NODE does not match the expected 0
9867    terminated list of trailing codes. The trailing code list can be
9868    empty, for a more vague error message.  FILE, LINE, and FUNCTION
9869    are of the caller.  */
9870 
9871 void
9872 tree_check_failed (const_tree node, const char *file,
9873 		   int line, const char *function, ...)
9874 {
9875   va_list args;
9876   const char *buffer;
9877   unsigned length = 0;
9878   enum tree_code code;
9879 
9880   va_start (args, function);
9881   while ((code = (enum tree_code) va_arg (args, int)))
9882     length += 4 + strlen (get_tree_code_name (code));
9883   va_end (args);
9884   if (length)
9885     {
9886       char *tmp;
9887       va_start (args, function);
9888       length += strlen ("expected ");
9889       buffer = tmp = (char *) alloca (length);
9890       length = 0;
9891       while ((code = (enum tree_code) va_arg (args, int)))
9892 	{
9893 	  const char *prefix = length ? " or " : "expected ";
9894 
9895 	  strcpy (tmp + length, prefix);
9896 	  length += strlen (prefix);
9897 	  strcpy (tmp + length, get_tree_code_name (code));
9898 	  length += strlen (get_tree_code_name (code));
9899 	}
9900       va_end (args);
9901     }
9902   else
9903     buffer = "unexpected node";
9904 
9905   internal_error ("tree check: %s, have %s in %s, at %s:%d",
9906 		  buffer, get_tree_code_name (TREE_CODE (node)),
9907 		  function, trim_filename (file), line);
9908 }
9909 
9910 /* Complain that the tree code of NODE does match the expected 0
9911    terminated list of trailing codes. FILE, LINE, and FUNCTION are of
9912    the caller.  */
9913 
9914 void
9915 tree_not_check_failed (const_tree node, const char *file,
9916 		       int line, const char *function, ...)
9917 {
9918   va_list args;
9919   char *buffer;
9920   unsigned length = 0;
9921   enum tree_code code;
9922 
9923   va_start (args, function);
9924   while ((code = (enum tree_code) va_arg (args, int)))
9925     length += 4 + strlen (get_tree_code_name (code));
9926   va_end (args);
9927   va_start (args, function);
9928   buffer = (char *) alloca (length);
9929   length = 0;
9930   while ((code = (enum tree_code) va_arg (args, int)))
9931     {
9932       if (length)
9933 	{
9934 	  strcpy (buffer + length, " or ");
9935 	  length += 4;
9936 	}
9937       strcpy (buffer + length, get_tree_code_name (code));
9938       length += strlen (get_tree_code_name (code));
9939     }
9940   va_end (args);
9941 
9942   internal_error ("tree check: expected none of %s, have %s in %s, at %s:%d",
9943 		  buffer, get_tree_code_name (TREE_CODE (node)),
9944 		  function, trim_filename (file), line);
9945 }
9946 
9947 /* Similar to tree_check_failed, except that we check for a class of tree
9948    code, given in CL.  */
9949 
9950 void
9951 tree_class_check_failed (const_tree node, const enum tree_code_class cl,
9952 			 const char *file, int line, const char *function)
9953 {
9954   internal_error
9955     ("tree check: expected class %qs, have %qs (%s) in %s, at %s:%d",
9956      TREE_CODE_CLASS_STRING (cl),
9957      TREE_CODE_CLASS_STRING (TREE_CODE_CLASS (TREE_CODE (node))),
9958      get_tree_code_name (TREE_CODE (node)), function, trim_filename (file), line);
9959 }
9960 
9961 /* Similar to tree_check_failed, except that instead of specifying a
9962    dozen codes, use the knowledge that they're all sequential.  */
9963 
9964 void
9965 tree_range_check_failed (const_tree node, const char *file, int line,
9966 			 const char *function, enum tree_code c1,
9967 			 enum tree_code c2)
9968 {
9969   char *buffer;
9970   unsigned length = 0;
9971   unsigned int c;
9972 
9973   for (c = c1; c <= c2; ++c)
9974     length += 4 + strlen (get_tree_code_name ((enum tree_code) c));
9975 
9976   length += strlen ("expected ");
9977   buffer = (char *) alloca (length);
9978   length = 0;
9979 
9980   for (c = c1; c <= c2; ++c)
9981     {
9982       const char *prefix = length ? " or " : "expected ";
9983 
9984       strcpy (buffer + length, prefix);
9985       length += strlen (prefix);
9986       strcpy (buffer + length, get_tree_code_name ((enum tree_code) c));
9987       length += strlen (get_tree_code_name ((enum tree_code) c));
9988     }
9989 
9990   internal_error ("tree check: %s, have %s in %s, at %s:%d",
9991 		  buffer, get_tree_code_name (TREE_CODE (node)),
9992 		  function, trim_filename (file), line);
9993 }
9994 
9995 
9996 /* Similar to tree_check_failed, except that we check that a tree does
9997    not have the specified code, given in CL.  */
9998 
9999 void
10000 tree_not_class_check_failed (const_tree node, const enum tree_code_class cl,
10001 			     const char *file, int line, const char *function)
10002 {
10003   internal_error
10004     ("tree check: did not expect class %qs, have %qs (%s) in %s, at %s:%d",
10005      TREE_CODE_CLASS_STRING (cl),
10006      TREE_CODE_CLASS_STRING (TREE_CODE_CLASS (TREE_CODE (node))),
10007      get_tree_code_name (TREE_CODE (node)), function, trim_filename (file), line);
10008 }
10009 
10010 
10011 /* Similar to tree_check_failed but applied to OMP_CLAUSE codes.  */
10012 
10013 void
10014 omp_clause_check_failed (const_tree node, const char *file, int line,
10015                          const char *function, enum omp_clause_code code)
10016 {
10017   internal_error ("tree check: expected omp_clause %s, have %s in %s, at %s:%d",
10018 		  omp_clause_code_name[code], get_tree_code_name (TREE_CODE (node)),
10019 		  function, trim_filename (file), line);
10020 }
10021 
10022 
10023 /* Similar to tree_range_check_failed but applied to OMP_CLAUSE codes.  */
10024 
10025 void
10026 omp_clause_range_check_failed (const_tree node, const char *file, int line,
10027 			       const char *function, enum omp_clause_code c1,
10028 			       enum omp_clause_code c2)
10029 {
10030   char *buffer;
10031   unsigned length = 0;
10032   unsigned int c;
10033 
10034   for (c = c1; c <= c2; ++c)
10035     length += 4 + strlen (omp_clause_code_name[c]);
10036 
10037   length += strlen ("expected ");
10038   buffer = (char *) alloca (length);
10039   length = 0;
10040 
10041   for (c = c1; c <= c2; ++c)
10042     {
10043       const char *prefix = length ? " or " : "expected ";
10044 
10045       strcpy (buffer + length, prefix);
10046       length += strlen (prefix);
10047       strcpy (buffer + length, omp_clause_code_name[c]);
10048       length += strlen (omp_clause_code_name[c]);
10049     }
10050 
10051   internal_error ("tree check: %s, have %s in %s, at %s:%d",
10052 		  buffer, omp_clause_code_name[TREE_CODE (node)],
10053 		  function, trim_filename (file), line);
10054 }
10055 
10056 
10057 #undef DEFTREESTRUCT
10058 #define DEFTREESTRUCT(VAL, NAME) NAME,
10059 
10060 static const char *ts_enum_names[] = {
10061 #include "treestruct.def"
10062 };
10063 #undef DEFTREESTRUCT
10064 
10065 #define TS_ENUM_NAME(EN) (ts_enum_names[(EN)])
10066 
10067 /* Similar to tree_class_check_failed, except that we check for
10068    whether CODE contains the tree structure identified by EN.  */
10069 
10070 void
10071 tree_contains_struct_check_failed (const_tree node,
10072 				   const enum tree_node_structure_enum en,
10073 				   const char *file, int line,
10074 				   const char *function)
10075 {
10076   internal_error
10077     ("tree check: expected tree that contains %qs structure, have %qs in %s, at %s:%d",
10078      TS_ENUM_NAME (en),
10079      get_tree_code_name (TREE_CODE (node)), function, trim_filename (file), line);
10080 }
10081 
10082 
10083 /* Similar to above, except that the check is for the bounds of a TREE_VEC's
10084    (dynamically sized) vector.  */
10085 
10086 void
10087 tree_int_cst_elt_check_failed (int idx, int len, const char *file, int line,
10088 			       const char *function)
10089 {
10090   internal_error
10091     ("tree check: accessed elt %d of tree_int_cst with %d elts in %s, at %s:%d",
10092      idx + 1, len, function, trim_filename (file), line);
10093 }
10094 
10095 /* Similar to above, except that the check is for the bounds of a TREE_VEC's
10096    (dynamically sized) vector.  */
10097 
10098 void
10099 tree_vec_elt_check_failed (int idx, int len, const char *file, int line,
10100 			   const char *function)
10101 {
10102   internal_error
10103     ("tree check: accessed elt %d of tree_vec with %d elts in %s, at %s:%d",
10104      idx + 1, len, function, trim_filename (file), line);
10105 }
10106 
10107 /* Similar to above, except that the check is for the bounds of the operand
10108    vector of an expression node EXP.  */
10109 
10110 void
10111 tree_operand_check_failed (int idx, const_tree exp, const char *file,
10112 			   int line, const char *function)
10113 {
10114   enum tree_code code = TREE_CODE (exp);
10115   internal_error
10116     ("tree check: accessed operand %d of %s with %d operands in %s, at %s:%d",
10117      idx + 1, get_tree_code_name (code), TREE_OPERAND_LENGTH (exp),
10118      function, trim_filename (file), line);
10119 }
10120 
10121 /* Similar to above, except that the check is for the number of
10122    operands of an OMP_CLAUSE node.  */
10123 
10124 void
10125 omp_clause_operand_check_failed (int idx, const_tree t, const char *file,
10126 			         int line, const char *function)
10127 {
10128   internal_error
10129     ("tree check: accessed operand %d of omp_clause %s with %d operands "
10130      "in %s, at %s:%d", idx + 1, omp_clause_code_name[OMP_CLAUSE_CODE (t)],
10131      omp_clause_num_ops [OMP_CLAUSE_CODE (t)], function,
10132      trim_filename (file), line);
10133 }
10134 #endif /* ENABLE_TREE_CHECKING */
10135 
10136 /* Create a new vector type node holding NUNITS units of type INNERTYPE,
10137    and mapped to the machine mode MODE.  Initialize its fields and build
10138    the information necessary for debugging output.  */
10139 
10140 static tree
10141 make_vector_type (tree innertype, poly_int64 nunits, machine_mode mode)
10142 {
10143   tree t;
10144   tree mv_innertype = TYPE_MAIN_VARIANT (innertype);
10145 
10146   t = make_node (VECTOR_TYPE);
10147   TREE_TYPE (t) = mv_innertype;
10148   SET_TYPE_VECTOR_SUBPARTS (t, nunits);
10149   SET_TYPE_MODE (t, mode);
10150 
10151   if (TYPE_STRUCTURAL_EQUALITY_P (mv_innertype) || in_lto_p)
10152     SET_TYPE_STRUCTURAL_EQUALITY (t);
10153   else if ((TYPE_CANONICAL (mv_innertype) != innertype
10154 	    || mode != VOIDmode)
10155 	   && !VECTOR_BOOLEAN_TYPE_P (t))
10156     TYPE_CANONICAL (t)
10157       = make_vector_type (TYPE_CANONICAL (mv_innertype), nunits, VOIDmode);
10158 
10159   layout_type (t);
10160 
10161   hashval_t hash = type_hash_canon_hash (t);
10162   t = type_hash_canon (hash, t);
10163 
10164   /* We have built a main variant, based on the main variant of the
10165      inner type. Use it to build the variant we return.  */
10166   if ((TYPE_ATTRIBUTES (innertype) || TYPE_QUALS (innertype))
10167       && TREE_TYPE (t) != innertype)
10168     return build_type_attribute_qual_variant (t,
10169 					      TYPE_ATTRIBUTES (innertype),
10170 					      TYPE_QUALS (innertype));
10171 
10172   return t;
10173 }
10174 
10175 static tree
10176 make_or_reuse_type (unsigned size, int unsignedp)
10177 {
10178   int i;
10179 
10180   if (size == INT_TYPE_SIZE)
10181     return unsignedp ? unsigned_type_node : integer_type_node;
10182   if (size == CHAR_TYPE_SIZE)
10183     return unsignedp ? unsigned_char_type_node : signed_char_type_node;
10184   if (size == SHORT_TYPE_SIZE)
10185     return unsignedp ? short_unsigned_type_node : short_integer_type_node;
10186   if (size == LONG_TYPE_SIZE)
10187     return unsignedp ? long_unsigned_type_node : long_integer_type_node;
10188   if (size == LONG_LONG_TYPE_SIZE)
10189     return (unsignedp ? long_long_unsigned_type_node
10190             : long_long_integer_type_node);
10191 
10192   for (i = 0; i < NUM_INT_N_ENTS; i ++)
10193     if (size == int_n_data[i].bitsize
10194 	&& int_n_enabled_p[i])
10195       return (unsignedp ? int_n_trees[i].unsigned_type
10196 	      : int_n_trees[i].signed_type);
10197 
10198   if (unsignedp)
10199     return make_unsigned_type (size);
10200   else
10201     return make_signed_type (size);
10202 }
10203 
10204 /* Create or reuse a fract type by SIZE, UNSIGNEDP, and SATP.  */
10205 
10206 static tree
10207 make_or_reuse_fract_type (unsigned size, int unsignedp, int satp)
10208 {
10209   if (satp)
10210     {
10211       if (size == SHORT_FRACT_TYPE_SIZE)
10212 	return unsignedp ? sat_unsigned_short_fract_type_node
10213 			 : sat_short_fract_type_node;
10214       if (size == FRACT_TYPE_SIZE)
10215 	return unsignedp ? sat_unsigned_fract_type_node : sat_fract_type_node;
10216       if (size == LONG_FRACT_TYPE_SIZE)
10217 	return unsignedp ? sat_unsigned_long_fract_type_node
10218 			 : sat_long_fract_type_node;
10219       if (size == LONG_LONG_FRACT_TYPE_SIZE)
10220 	return unsignedp ? sat_unsigned_long_long_fract_type_node
10221 			 : sat_long_long_fract_type_node;
10222     }
10223   else
10224     {
10225       if (size == SHORT_FRACT_TYPE_SIZE)
10226 	return unsignedp ? unsigned_short_fract_type_node
10227 			 : short_fract_type_node;
10228       if (size == FRACT_TYPE_SIZE)
10229 	return unsignedp ? unsigned_fract_type_node : fract_type_node;
10230       if (size == LONG_FRACT_TYPE_SIZE)
10231 	return unsignedp ? unsigned_long_fract_type_node
10232 			 : long_fract_type_node;
10233       if (size == LONG_LONG_FRACT_TYPE_SIZE)
10234 	return unsignedp ? unsigned_long_long_fract_type_node
10235 			 : long_long_fract_type_node;
10236     }
10237 
10238   return make_fract_type (size, unsignedp, satp);
10239 }
10240 
10241 /* Create or reuse an accum type by SIZE, UNSIGNEDP, and SATP.  */
10242 
10243 static tree
10244 make_or_reuse_accum_type (unsigned size, int unsignedp, int satp)
10245 {
10246   if (satp)
10247     {
10248       if (size == SHORT_ACCUM_TYPE_SIZE)
10249 	return unsignedp ? sat_unsigned_short_accum_type_node
10250 			 : sat_short_accum_type_node;
10251       if (size == ACCUM_TYPE_SIZE)
10252 	return unsignedp ? sat_unsigned_accum_type_node : sat_accum_type_node;
10253       if (size == LONG_ACCUM_TYPE_SIZE)
10254 	return unsignedp ? sat_unsigned_long_accum_type_node
10255 			 : sat_long_accum_type_node;
10256       if (size == LONG_LONG_ACCUM_TYPE_SIZE)
10257 	return unsignedp ? sat_unsigned_long_long_accum_type_node
10258 			 : sat_long_long_accum_type_node;
10259     }
10260   else
10261     {
10262       if (size == SHORT_ACCUM_TYPE_SIZE)
10263 	return unsignedp ? unsigned_short_accum_type_node
10264 			 : short_accum_type_node;
10265       if (size == ACCUM_TYPE_SIZE)
10266 	return unsignedp ? unsigned_accum_type_node : accum_type_node;
10267       if (size == LONG_ACCUM_TYPE_SIZE)
10268 	return unsignedp ? unsigned_long_accum_type_node
10269 			 : long_accum_type_node;
10270       if (size == LONG_LONG_ACCUM_TYPE_SIZE)
10271 	return unsignedp ? unsigned_long_long_accum_type_node
10272 			 : long_long_accum_type_node;
10273     }
10274 
10275   return make_accum_type (size, unsignedp, satp);
10276 }
10277 
10278 
10279 /* Create an atomic variant node for TYPE.  This routine is called
10280    during initialization of data types to create the 5 basic atomic
10281    types. The generic build_variant_type function requires these to
10282    already be set up in order to function properly, so cannot be
10283    called from there.  If ALIGN is non-zero, then ensure alignment is
10284    overridden to this value.  */
10285 
10286 static tree
10287 build_atomic_base (tree type, unsigned int align)
10288 {
10289   tree t;
10290 
10291   /* Make sure its not already registered.  */
10292   if ((t = get_qualified_type (type, TYPE_QUAL_ATOMIC)))
10293     return t;
10294 
10295   t = build_variant_type_copy (type);
10296   set_type_quals (t, TYPE_QUAL_ATOMIC);
10297 
10298   if (align)
10299     SET_TYPE_ALIGN (t, align);
10300 
10301   return t;
10302 }
10303 
10304 /* Information about the _FloatN and _FloatNx types.  This must be in
10305    the same order as the corresponding TI_* enum values.  */
10306 const floatn_type_info floatn_nx_types[NUM_FLOATN_NX_TYPES] =
10307   {
10308     { 16, false },
10309     { 32, false },
10310     { 64, false },
10311     { 128, false },
10312     { 32, true },
10313     { 64, true },
10314     { 128, true },
10315   };
10316 
10317 
10318 /* Create nodes for all integer types (and error_mark_node) using the sizes
10319    of C datatypes.  SIGNED_CHAR specifies whether char is signed.  */
10320 
10321 void
10322 build_common_tree_nodes (bool signed_char)
10323 {
10324   int i;
10325 
10326   error_mark_node = make_node (ERROR_MARK);
10327   TREE_TYPE (error_mark_node) = error_mark_node;
10328 
10329   initialize_sizetypes ();
10330 
10331   /* Define both `signed char' and `unsigned char'.  */
10332   signed_char_type_node = make_signed_type (CHAR_TYPE_SIZE);
10333   TYPE_STRING_FLAG (signed_char_type_node) = 1;
10334   unsigned_char_type_node = make_unsigned_type (CHAR_TYPE_SIZE);
10335   TYPE_STRING_FLAG (unsigned_char_type_node) = 1;
10336 
10337   /* Define `char', which is like either `signed char' or `unsigned char'
10338      but not the same as either.  */
10339   char_type_node
10340     = (signed_char
10341        ? make_signed_type (CHAR_TYPE_SIZE)
10342        : make_unsigned_type (CHAR_TYPE_SIZE));
10343   TYPE_STRING_FLAG (char_type_node) = 1;
10344 
10345   short_integer_type_node = make_signed_type (SHORT_TYPE_SIZE);
10346   short_unsigned_type_node = make_unsigned_type (SHORT_TYPE_SIZE);
10347   integer_type_node = make_signed_type (INT_TYPE_SIZE);
10348   unsigned_type_node = make_unsigned_type (INT_TYPE_SIZE);
10349   long_integer_type_node = make_signed_type (LONG_TYPE_SIZE);
10350   long_unsigned_type_node = make_unsigned_type (LONG_TYPE_SIZE);
10351   long_long_integer_type_node = make_signed_type (LONG_LONG_TYPE_SIZE);
10352   long_long_unsigned_type_node = make_unsigned_type (LONG_LONG_TYPE_SIZE);
10353 
10354   for (i = 0; i < NUM_INT_N_ENTS; i ++)
10355     {
10356       int_n_trees[i].signed_type = make_signed_type (int_n_data[i].bitsize);
10357       int_n_trees[i].unsigned_type = make_unsigned_type (int_n_data[i].bitsize);
10358 
10359       if (int_n_enabled_p[i])
10360 	{
10361 	  integer_types[itk_intN_0 + i * 2] = int_n_trees[i].signed_type;
10362 	  integer_types[itk_unsigned_intN_0 + i * 2] = int_n_trees[i].unsigned_type;
10363 	}
10364     }
10365 
10366   /* Define a boolean type.  This type only represents boolean values but
10367      may be larger than char depending on the value of BOOL_TYPE_SIZE.  */
10368   boolean_type_node = make_unsigned_type (BOOL_TYPE_SIZE);
10369   TREE_SET_CODE (boolean_type_node, BOOLEAN_TYPE);
10370   TYPE_PRECISION (boolean_type_node) = 1;
10371   TYPE_MAX_VALUE (boolean_type_node) = build_int_cst (boolean_type_node, 1);
10372 
10373   /* Define what type to use for size_t.  */
10374   if (strcmp (SIZE_TYPE, "unsigned int") == 0)
10375     size_type_node = unsigned_type_node;
10376   else if (strcmp (SIZE_TYPE, "long unsigned int") == 0)
10377     size_type_node = long_unsigned_type_node;
10378   else if (strcmp (SIZE_TYPE, "long long unsigned int") == 0)
10379     size_type_node = long_long_unsigned_type_node;
10380   else if (strcmp (SIZE_TYPE, "short unsigned int") == 0)
10381     size_type_node = short_unsigned_type_node;
10382   else
10383     {
10384       int i;
10385 
10386       size_type_node = NULL_TREE;
10387       for (i = 0; i < NUM_INT_N_ENTS; i++)
10388 	if (int_n_enabled_p[i])
10389 	  {
10390 	    char name[50];
10391 	    sprintf (name, "__int%d unsigned", int_n_data[i].bitsize);
10392 
10393 	    if (strcmp (name, SIZE_TYPE) == 0)
10394 	      {
10395 		size_type_node = int_n_trees[i].unsigned_type;
10396 	      }
10397 	  }
10398       if (size_type_node == NULL_TREE)
10399 	gcc_unreachable ();
10400     }
10401 
10402   /* Define what type to use for ptrdiff_t.  */
10403   if (strcmp (PTRDIFF_TYPE, "int") == 0)
10404     ptrdiff_type_node = integer_type_node;
10405   else if (strcmp (PTRDIFF_TYPE, "long int") == 0)
10406     ptrdiff_type_node = long_integer_type_node;
10407   else if (strcmp (PTRDIFF_TYPE, "long long int") == 0)
10408     ptrdiff_type_node = long_long_integer_type_node;
10409   else if (strcmp (PTRDIFF_TYPE, "short int") == 0)
10410     ptrdiff_type_node = short_integer_type_node;
10411   else
10412     {
10413       ptrdiff_type_node = NULL_TREE;
10414       for (int i = 0; i < NUM_INT_N_ENTS; i++)
10415 	if (int_n_enabled_p[i])
10416 	  {
10417 	    char name[50];
10418 	    sprintf (name, "__int%d", int_n_data[i].bitsize);
10419 	    if (strcmp (name, PTRDIFF_TYPE) == 0)
10420 	      ptrdiff_type_node = int_n_trees[i].signed_type;
10421 	  }
10422       if (ptrdiff_type_node == NULL_TREE)
10423 	gcc_unreachable ();
10424     }
10425 
10426   /* Fill in the rest of the sized types.  Reuse existing type nodes
10427      when possible.  */
10428   intQI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (QImode), 0);
10429   intHI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (HImode), 0);
10430   intSI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (SImode), 0);
10431   intDI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (DImode), 0);
10432   intTI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (TImode), 0);
10433 
10434   unsigned_intQI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (QImode), 1);
10435   unsigned_intHI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (HImode), 1);
10436   unsigned_intSI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (SImode), 1);
10437   unsigned_intDI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (DImode), 1);
10438   unsigned_intTI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (TImode), 1);
10439 
10440   /* Don't call build_qualified type for atomics.  That routine does
10441      special processing for atomics, and until they are initialized
10442      it's better not to make that call.
10443 
10444      Check to see if there is a target override for atomic types.  */
10445 
10446   atomicQI_type_node = build_atomic_base (unsigned_intQI_type_node,
10447 					targetm.atomic_align_for_mode (QImode));
10448   atomicHI_type_node = build_atomic_base (unsigned_intHI_type_node,
10449 					targetm.atomic_align_for_mode (HImode));
10450   atomicSI_type_node = build_atomic_base (unsigned_intSI_type_node,
10451 					targetm.atomic_align_for_mode (SImode));
10452   atomicDI_type_node = build_atomic_base (unsigned_intDI_type_node,
10453 					targetm.atomic_align_for_mode (DImode));
10454   atomicTI_type_node = build_atomic_base (unsigned_intTI_type_node,
10455 					targetm.atomic_align_for_mode (TImode));
10456 
10457   access_public_node = get_identifier ("public");
10458   access_protected_node = get_identifier ("protected");
10459   access_private_node = get_identifier ("private");
10460 
10461   /* Define these next since types below may used them.  */
10462   integer_zero_node = build_int_cst (integer_type_node, 0);
10463   integer_one_node = build_int_cst (integer_type_node, 1);
10464   integer_three_node = build_int_cst (integer_type_node, 3);
10465   integer_minus_one_node = build_int_cst (integer_type_node, -1);
10466 
10467   size_zero_node = size_int (0);
10468   size_one_node = size_int (1);
10469   bitsize_zero_node = bitsize_int (0);
10470   bitsize_one_node = bitsize_int (1);
10471   bitsize_unit_node = bitsize_int (BITS_PER_UNIT);
10472 
10473   boolean_false_node = TYPE_MIN_VALUE (boolean_type_node);
10474   boolean_true_node = TYPE_MAX_VALUE (boolean_type_node);
10475 
10476   void_type_node = make_node (VOID_TYPE);
10477   layout_type (void_type_node);
10478 
10479   /* We are not going to have real types in C with less than byte alignment,
10480      so we might as well not have any types that claim to have it.  */
10481   SET_TYPE_ALIGN (void_type_node, BITS_PER_UNIT);
10482   TYPE_USER_ALIGN (void_type_node) = 0;
10483 
10484   void_node = make_node (VOID_CST);
10485   TREE_TYPE (void_node) = void_type_node;
10486 
10487   null_pointer_node = build_int_cst (build_pointer_type (void_type_node), 0);
10488   layout_type (TREE_TYPE (null_pointer_node));
10489 
10490   ptr_type_node = build_pointer_type (void_type_node);
10491   const_ptr_type_node
10492     = build_pointer_type (build_type_variant (void_type_node, 1, 0));
10493   for (unsigned i = 0;
10494        i < sizeof (builtin_structptr_types) / sizeof (builtin_structptr_type);
10495        ++i)
10496     builtin_structptr_types[i].node = builtin_structptr_types[i].base;
10497 
10498   pointer_sized_int_node = build_nonstandard_integer_type (POINTER_SIZE, 1);
10499 
10500   float_type_node = make_node (REAL_TYPE);
10501   TYPE_PRECISION (float_type_node) = FLOAT_TYPE_SIZE;
10502   layout_type (float_type_node);
10503 
10504   double_type_node = make_node (REAL_TYPE);
10505   TYPE_PRECISION (double_type_node) = DOUBLE_TYPE_SIZE;
10506   layout_type (double_type_node);
10507 
10508   long_double_type_node = make_node (REAL_TYPE);
10509   TYPE_PRECISION (long_double_type_node) = LONG_DOUBLE_TYPE_SIZE;
10510   layout_type (long_double_type_node);
10511 
10512   for (i = 0; i < NUM_FLOATN_NX_TYPES; i++)
10513     {
10514       int n = floatn_nx_types[i].n;
10515       bool extended = floatn_nx_types[i].extended;
10516       scalar_float_mode mode;
10517       if (!targetm.floatn_mode (n, extended).exists (&mode))
10518 	continue;
10519       int precision = GET_MODE_PRECISION (mode);
10520       /* Work around the rs6000 KFmode having precision 113 not
10521 	 128.  */
10522       const struct real_format *fmt = REAL_MODE_FORMAT (mode);
10523       gcc_assert (fmt->b == 2 && fmt->emin + fmt->emax == 3);
10524       int min_precision = fmt->p + ceil_log2 (fmt->emax - fmt->emin);
10525       if (!extended)
10526 	gcc_assert (min_precision == n);
10527       if (precision < min_precision)
10528 	precision = min_precision;
10529       FLOATN_NX_TYPE_NODE (i) = make_node (REAL_TYPE);
10530       TYPE_PRECISION (FLOATN_NX_TYPE_NODE (i)) = precision;
10531       layout_type (FLOATN_NX_TYPE_NODE (i));
10532       SET_TYPE_MODE (FLOATN_NX_TYPE_NODE (i), mode);
10533     }
10534 
10535   float_ptr_type_node = build_pointer_type (float_type_node);
10536   double_ptr_type_node = build_pointer_type (double_type_node);
10537   long_double_ptr_type_node = build_pointer_type (long_double_type_node);
10538   integer_ptr_type_node = build_pointer_type (integer_type_node);
10539 
10540   /* Fixed size integer types.  */
10541   uint16_type_node = make_or_reuse_type (16, 1);
10542   uint32_type_node = make_or_reuse_type (32, 1);
10543   uint64_type_node = make_or_reuse_type (64, 1);
10544 
10545   /* Decimal float types. */
10546   dfloat32_type_node = make_node (REAL_TYPE);
10547   TYPE_PRECISION (dfloat32_type_node) = DECIMAL32_TYPE_SIZE;
10548   SET_TYPE_MODE (dfloat32_type_node, SDmode);
10549   layout_type (dfloat32_type_node);
10550   dfloat32_ptr_type_node = build_pointer_type (dfloat32_type_node);
10551 
10552   dfloat64_type_node = make_node (REAL_TYPE);
10553   TYPE_PRECISION (dfloat64_type_node) = DECIMAL64_TYPE_SIZE;
10554   SET_TYPE_MODE (dfloat64_type_node, DDmode);
10555   layout_type (dfloat64_type_node);
10556   dfloat64_ptr_type_node = build_pointer_type (dfloat64_type_node);
10557 
10558   dfloat128_type_node = make_node (REAL_TYPE);
10559   TYPE_PRECISION (dfloat128_type_node) = DECIMAL128_TYPE_SIZE;
10560   SET_TYPE_MODE (dfloat128_type_node, TDmode);
10561   layout_type (dfloat128_type_node);
10562   dfloat128_ptr_type_node = build_pointer_type (dfloat128_type_node);
10563 
10564   complex_integer_type_node = build_complex_type (integer_type_node, true);
10565   complex_float_type_node = build_complex_type (float_type_node, true);
10566   complex_double_type_node = build_complex_type (double_type_node, true);
10567   complex_long_double_type_node = build_complex_type (long_double_type_node,
10568 						      true);
10569 
10570   for (i = 0; i < NUM_FLOATN_NX_TYPES; i++)
10571     {
10572       if (FLOATN_NX_TYPE_NODE (i) != NULL_TREE)
10573 	COMPLEX_FLOATN_NX_TYPE_NODE (i)
10574 	  = build_complex_type (FLOATN_NX_TYPE_NODE (i));
10575     }
10576 
10577 /* Make fixed-point nodes based on sat/non-sat and signed/unsigned.  */
10578 #define MAKE_FIXED_TYPE_NODE(KIND,SIZE) \
10579   sat_ ## KIND ## _type_node = \
10580     make_sat_signed_ ## KIND ## _type (SIZE); \
10581   sat_unsigned_ ## KIND ## _type_node = \
10582     make_sat_unsigned_ ## KIND ## _type (SIZE); \
10583   KIND ## _type_node = make_signed_ ## KIND ## _type (SIZE); \
10584   unsigned_ ## KIND ## _type_node = \
10585     make_unsigned_ ## KIND ## _type (SIZE);
10586 
10587 #define MAKE_FIXED_TYPE_NODE_WIDTH(KIND,WIDTH,SIZE) \
10588   sat_ ## WIDTH ## KIND ## _type_node = \
10589     make_sat_signed_ ## KIND ## _type (SIZE); \
10590   sat_unsigned_ ## WIDTH ## KIND ## _type_node = \
10591     make_sat_unsigned_ ## KIND ## _type (SIZE); \
10592   WIDTH ## KIND ## _type_node = make_signed_ ## KIND ## _type (SIZE); \
10593   unsigned_ ## WIDTH ## KIND ## _type_node = \
10594     make_unsigned_ ## KIND ## _type (SIZE);
10595 
10596 /* Make fixed-point type nodes based on four different widths.  */
10597 #define MAKE_FIXED_TYPE_NODE_FAMILY(N1,N2) \
10598   MAKE_FIXED_TYPE_NODE_WIDTH (N1, short_, SHORT_ ## N2 ## _TYPE_SIZE) \
10599   MAKE_FIXED_TYPE_NODE (N1, N2 ## _TYPE_SIZE) \
10600   MAKE_FIXED_TYPE_NODE_WIDTH (N1, long_, LONG_ ## N2 ## _TYPE_SIZE) \
10601   MAKE_FIXED_TYPE_NODE_WIDTH (N1, long_long_, LONG_LONG_ ## N2 ## _TYPE_SIZE)
10602 
10603 /* Make fixed-point mode nodes based on sat/non-sat and signed/unsigned.  */
10604 #define MAKE_FIXED_MODE_NODE(KIND,NAME,MODE) \
10605   NAME ## _type_node = \
10606     make_or_reuse_signed_ ## KIND ## _type (GET_MODE_BITSIZE (MODE ## mode)); \
10607   u ## NAME ## _type_node = \
10608     make_or_reuse_unsigned_ ## KIND ## _type \
10609       (GET_MODE_BITSIZE (U ## MODE ## mode)); \
10610   sat_ ## NAME ## _type_node = \
10611     make_or_reuse_sat_signed_ ## KIND ## _type \
10612       (GET_MODE_BITSIZE (MODE ## mode)); \
10613   sat_u ## NAME ## _type_node = \
10614     make_or_reuse_sat_unsigned_ ## KIND ## _type \
10615       (GET_MODE_BITSIZE (U ## MODE ## mode));
10616 
10617   /* Fixed-point type and mode nodes.  */
10618   MAKE_FIXED_TYPE_NODE_FAMILY (fract, FRACT)
10619   MAKE_FIXED_TYPE_NODE_FAMILY (accum, ACCUM)
10620   MAKE_FIXED_MODE_NODE (fract, qq, QQ)
10621   MAKE_FIXED_MODE_NODE (fract, hq, HQ)
10622   MAKE_FIXED_MODE_NODE (fract, sq, SQ)
10623   MAKE_FIXED_MODE_NODE (fract, dq, DQ)
10624   MAKE_FIXED_MODE_NODE (fract, tq, TQ)
10625   MAKE_FIXED_MODE_NODE (accum, ha, HA)
10626   MAKE_FIXED_MODE_NODE (accum, sa, SA)
10627   MAKE_FIXED_MODE_NODE (accum, da, DA)
10628   MAKE_FIXED_MODE_NODE (accum, ta, TA)
10629 
10630   {
10631     tree t = targetm.build_builtin_va_list ();
10632 
10633     /* Many back-ends define record types without setting TYPE_NAME.
10634        If we copied the record type here, we'd keep the original
10635        record type without a name.  This breaks name mangling.  So,
10636        don't copy record types and let c_common_nodes_and_builtins()
10637        declare the type to be __builtin_va_list.  */
10638     if (TREE_CODE (t) != RECORD_TYPE)
10639       t = build_variant_type_copy (t);
10640 
10641     va_list_type_node = t;
10642   }
10643 }
10644 
10645 /* Modify DECL for given flags.
10646    TM_PURE attribute is set only on types, so the function will modify
10647    DECL's type when ECF_TM_PURE is used.  */
10648 
10649 void
10650 set_call_expr_flags (tree decl, int flags)
10651 {
10652   if (flags & ECF_NOTHROW)
10653     TREE_NOTHROW (decl) = 1;
10654   if (flags & ECF_CONST)
10655     TREE_READONLY (decl) = 1;
10656   if (flags & ECF_PURE)
10657     DECL_PURE_P (decl) = 1;
10658   if (flags & ECF_LOOPING_CONST_OR_PURE)
10659     DECL_LOOPING_CONST_OR_PURE_P (decl) = 1;
10660   if (flags & ECF_NOVOPS)
10661     DECL_IS_NOVOPS (decl) = 1;
10662   if (flags & ECF_NORETURN)
10663     TREE_THIS_VOLATILE (decl) = 1;
10664   if (flags & ECF_MALLOC)
10665     DECL_IS_MALLOC (decl) = 1;
10666   if (flags & ECF_RETURNS_TWICE)
10667     DECL_IS_RETURNS_TWICE (decl) = 1;
10668   if (flags & ECF_LEAF)
10669     DECL_ATTRIBUTES (decl) = tree_cons (get_identifier ("leaf"),
10670 					NULL, DECL_ATTRIBUTES (decl));
10671   if (flags & ECF_COLD)
10672     DECL_ATTRIBUTES (decl) = tree_cons (get_identifier ("cold"),
10673 					NULL, DECL_ATTRIBUTES (decl));
10674   if (flags & ECF_RET1)
10675     DECL_ATTRIBUTES (decl)
10676       = tree_cons (get_identifier ("fn spec"),
10677 		   build_tree_list (NULL_TREE, build_string (1, "1")),
10678 		   DECL_ATTRIBUTES (decl));
10679   if ((flags & ECF_TM_PURE) && flag_tm)
10680     apply_tm_attr (decl, get_identifier ("transaction_pure"));
10681   /* Looping const or pure is implied by noreturn.
10682      There is currently no way to declare looping const or looping pure alone.  */
10683   gcc_assert (!(flags & ECF_LOOPING_CONST_OR_PURE)
10684 	      || ((flags & ECF_NORETURN) && (flags & (ECF_CONST | ECF_PURE))));
10685 }
10686 
10687 
10688 /* A subroutine of build_common_builtin_nodes.  Define a builtin function.  */
10689 
10690 static void
10691 local_define_builtin (const char *name, tree type, enum built_in_function code,
10692                       const char *library_name, int ecf_flags)
10693 {
10694   tree decl;
10695 
10696   decl = add_builtin_function (name, type, code, BUILT_IN_NORMAL,
10697 			       library_name, NULL_TREE);
10698   set_call_expr_flags (decl, ecf_flags);
10699 
10700   set_builtin_decl (code, decl, true);
10701 }
10702 
10703 /* Call this function after instantiating all builtins that the language
10704    front end cares about.  This will build the rest of the builtins
10705    and internal functions that are relied upon by the tree optimizers and
10706    the middle-end.  */
10707 
10708 void
10709 build_common_builtin_nodes (void)
10710 {
10711   tree tmp, ftype;
10712   int ecf_flags;
10713 
10714   if (!builtin_decl_explicit_p (BUILT_IN_UNREACHABLE)
10715       || !builtin_decl_explicit_p (BUILT_IN_ABORT))
10716     {
10717       ftype = build_function_type (void_type_node, void_list_node);
10718       if (!builtin_decl_explicit_p (BUILT_IN_UNREACHABLE))
10719 	local_define_builtin ("__builtin_unreachable", ftype,
10720 			      BUILT_IN_UNREACHABLE,
10721 			      "__builtin_unreachable",
10722 			      ECF_NOTHROW | ECF_LEAF | ECF_NORETURN
10723 			      | ECF_CONST | ECF_COLD);
10724       if (!builtin_decl_explicit_p (BUILT_IN_ABORT))
10725 	local_define_builtin ("__builtin_abort", ftype, BUILT_IN_ABORT,
10726 			      "abort",
10727 			      ECF_LEAF | ECF_NORETURN | ECF_CONST | ECF_COLD);
10728     }
10729 
10730   if (!builtin_decl_explicit_p (BUILT_IN_MEMCPY)
10731       || !builtin_decl_explicit_p (BUILT_IN_MEMMOVE))
10732     {
10733       ftype = build_function_type_list (ptr_type_node,
10734 					ptr_type_node, const_ptr_type_node,
10735 					size_type_node, NULL_TREE);
10736 
10737       if (!builtin_decl_explicit_p (BUILT_IN_MEMCPY))
10738 	local_define_builtin ("__builtin_memcpy", ftype, BUILT_IN_MEMCPY,
10739 			      "memcpy", ECF_NOTHROW | ECF_LEAF | ECF_RET1);
10740       if (!builtin_decl_explicit_p (BUILT_IN_MEMMOVE))
10741 	local_define_builtin ("__builtin_memmove", ftype, BUILT_IN_MEMMOVE,
10742 			      "memmove", ECF_NOTHROW | ECF_LEAF | ECF_RET1);
10743     }
10744 
10745   if (!builtin_decl_explicit_p (BUILT_IN_MEMCMP))
10746     {
10747       ftype = build_function_type_list (integer_type_node, const_ptr_type_node,
10748 					const_ptr_type_node, size_type_node,
10749 					NULL_TREE);
10750       local_define_builtin ("__builtin_memcmp", ftype, BUILT_IN_MEMCMP,
10751 			    "memcmp", ECF_PURE | ECF_NOTHROW | ECF_LEAF);
10752     }
10753 
10754   if (!builtin_decl_explicit_p (BUILT_IN_MEMSET))
10755     {
10756       ftype = build_function_type_list (ptr_type_node,
10757 					ptr_type_node, integer_type_node,
10758 					size_type_node, NULL_TREE);
10759       local_define_builtin ("__builtin_memset", ftype, BUILT_IN_MEMSET,
10760 			    "memset", ECF_NOTHROW | ECF_LEAF | ECF_RET1);
10761     }
10762 
10763   /* If we're checking the stack, `alloca' can throw.  */
10764   const int alloca_flags
10765     = ECF_MALLOC | ECF_LEAF | (flag_stack_check ? 0 : ECF_NOTHROW);
10766 
10767   if (!builtin_decl_explicit_p (BUILT_IN_ALLOCA))
10768     {
10769       ftype = build_function_type_list (ptr_type_node,
10770 					size_type_node, NULL_TREE);
10771       local_define_builtin ("__builtin_alloca", ftype, BUILT_IN_ALLOCA,
10772 			    "alloca", alloca_flags);
10773     }
10774 
10775   ftype = build_function_type_list (ptr_type_node, size_type_node,
10776 				    size_type_node, NULL_TREE);
10777   local_define_builtin ("__builtin_alloca_with_align", ftype,
10778 			BUILT_IN_ALLOCA_WITH_ALIGN,
10779 			"__builtin_alloca_with_align",
10780 			alloca_flags);
10781 
10782   ftype = build_function_type_list (ptr_type_node, size_type_node,
10783 				    size_type_node, size_type_node, NULL_TREE);
10784   local_define_builtin ("__builtin_alloca_with_align_and_max", ftype,
10785 			BUILT_IN_ALLOCA_WITH_ALIGN_AND_MAX,
10786 			"__builtin_alloca_with_align_and_max",
10787 			alloca_flags);
10788 
10789   ftype = build_function_type_list (void_type_node,
10790 				    ptr_type_node, ptr_type_node,
10791 				    ptr_type_node, NULL_TREE);
10792   local_define_builtin ("__builtin_init_trampoline", ftype,
10793 			BUILT_IN_INIT_TRAMPOLINE,
10794 			"__builtin_init_trampoline", ECF_NOTHROW | ECF_LEAF);
10795   local_define_builtin ("__builtin_init_heap_trampoline", ftype,
10796 			BUILT_IN_INIT_HEAP_TRAMPOLINE,
10797 			"__builtin_init_heap_trampoline",
10798 			ECF_NOTHROW | ECF_LEAF);
10799   local_define_builtin ("__builtin_init_descriptor", ftype,
10800 			BUILT_IN_INIT_DESCRIPTOR,
10801 			"__builtin_init_descriptor", ECF_NOTHROW | ECF_LEAF);
10802 
10803   ftype = build_function_type_list (ptr_type_node, ptr_type_node, NULL_TREE);
10804   local_define_builtin ("__builtin_adjust_trampoline", ftype,
10805 			BUILT_IN_ADJUST_TRAMPOLINE,
10806 			"__builtin_adjust_trampoline",
10807 			ECF_CONST | ECF_NOTHROW);
10808   local_define_builtin ("__builtin_adjust_descriptor", ftype,
10809 			BUILT_IN_ADJUST_DESCRIPTOR,
10810 			"__builtin_adjust_descriptor",
10811 			ECF_CONST | ECF_NOTHROW);
10812 
10813   ftype = build_function_type_list (void_type_node,
10814 				    ptr_type_node, ptr_type_node, NULL_TREE);
10815   local_define_builtin ("__builtin_nonlocal_goto", ftype,
10816 			BUILT_IN_NONLOCAL_GOTO,
10817 			"__builtin_nonlocal_goto",
10818 			ECF_NORETURN | ECF_NOTHROW);
10819 
10820   ftype = build_function_type_list (void_type_node,
10821 				    ptr_type_node, ptr_type_node, NULL_TREE);
10822   local_define_builtin ("__builtin_setjmp_setup", ftype,
10823 			BUILT_IN_SETJMP_SETUP,
10824 			"__builtin_setjmp_setup", ECF_NOTHROW);
10825 
10826   ftype = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
10827   local_define_builtin ("__builtin_setjmp_receiver", ftype,
10828 			BUILT_IN_SETJMP_RECEIVER,
10829 			"__builtin_setjmp_receiver", ECF_NOTHROW | ECF_LEAF);
10830 
10831   ftype = build_function_type_list (ptr_type_node, NULL_TREE);
10832   local_define_builtin ("__builtin_stack_save", ftype, BUILT_IN_STACK_SAVE,
10833 			"__builtin_stack_save", ECF_NOTHROW | ECF_LEAF);
10834 
10835   ftype = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
10836   local_define_builtin ("__builtin_stack_restore", ftype,
10837 			BUILT_IN_STACK_RESTORE,
10838 			"__builtin_stack_restore", ECF_NOTHROW | ECF_LEAF);
10839 
10840   ftype = build_function_type_list (integer_type_node, const_ptr_type_node,
10841 				    const_ptr_type_node, size_type_node,
10842 				    NULL_TREE);
10843   local_define_builtin ("__builtin_memcmp_eq", ftype, BUILT_IN_MEMCMP_EQ,
10844 			"__builtin_memcmp_eq",
10845 			ECF_PURE | ECF_NOTHROW | ECF_LEAF);
10846 
10847   local_define_builtin ("__builtin_strncmp_eq", ftype, BUILT_IN_STRNCMP_EQ,
10848 			"__builtin_strncmp_eq",
10849 			ECF_PURE | ECF_NOTHROW | ECF_LEAF);
10850 
10851   local_define_builtin ("__builtin_strcmp_eq", ftype, BUILT_IN_STRCMP_EQ,
10852 			"__builtin_strcmp_eq",
10853 			ECF_PURE | ECF_NOTHROW | ECF_LEAF);
10854 
10855   /* If there's a possibility that we might use the ARM EABI, build the
10856     alternate __cxa_end_cleanup node used to resume from C++.  */
10857   if (targetm.arm_eabi_unwinder)
10858     {
10859       ftype = build_function_type_list (void_type_node, NULL_TREE);
10860       local_define_builtin ("__builtin_cxa_end_cleanup", ftype,
10861 			    BUILT_IN_CXA_END_CLEANUP,
10862 			    "__cxa_end_cleanup", ECF_NORETURN | ECF_LEAF);
10863     }
10864 
10865   ftype = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
10866   local_define_builtin ("__builtin_unwind_resume", ftype,
10867 			BUILT_IN_UNWIND_RESUME,
10868 			((targetm_common.except_unwind_info (&global_options)
10869 			  == UI_SJLJ)
10870 			 ? "_Unwind_SjLj_Resume" : "_Unwind_Resume"),
10871 			ECF_NORETURN);
10872 
10873   if (builtin_decl_explicit (BUILT_IN_RETURN_ADDRESS) == NULL_TREE)
10874     {
10875       ftype = build_function_type_list (ptr_type_node, integer_type_node,
10876 					NULL_TREE);
10877       local_define_builtin ("__builtin_return_address", ftype,
10878 			    BUILT_IN_RETURN_ADDRESS,
10879 			    "__builtin_return_address",
10880 			    ECF_NOTHROW);
10881     }
10882 
10883   if (!builtin_decl_explicit_p (BUILT_IN_PROFILE_FUNC_ENTER)
10884       || !builtin_decl_explicit_p (BUILT_IN_PROFILE_FUNC_EXIT))
10885     {
10886       ftype = build_function_type_list (void_type_node, ptr_type_node,
10887 					ptr_type_node, NULL_TREE);
10888       if (!builtin_decl_explicit_p (BUILT_IN_PROFILE_FUNC_ENTER))
10889 	local_define_builtin ("__cyg_profile_func_enter", ftype,
10890 			      BUILT_IN_PROFILE_FUNC_ENTER,
10891 			      "__cyg_profile_func_enter", 0);
10892       if (!builtin_decl_explicit_p (BUILT_IN_PROFILE_FUNC_EXIT))
10893 	local_define_builtin ("__cyg_profile_func_exit", ftype,
10894 			      BUILT_IN_PROFILE_FUNC_EXIT,
10895 			      "__cyg_profile_func_exit", 0);
10896     }
10897 
10898   /* The exception object and filter values from the runtime.  The argument
10899      must be zero before exception lowering, i.e. from the front end.  After
10900      exception lowering, it will be the region number for the exception
10901      landing pad.  These functions are PURE instead of CONST to prevent
10902      them from being hoisted past the exception edge that will initialize
10903      its value in the landing pad.  */
10904   ftype = build_function_type_list (ptr_type_node,
10905 				    integer_type_node, NULL_TREE);
10906   ecf_flags = ECF_PURE | ECF_NOTHROW | ECF_LEAF;
10907   /* Only use TM_PURE if we have TM language support.  */
10908   if (builtin_decl_explicit_p (BUILT_IN_TM_LOAD_1))
10909     ecf_flags |= ECF_TM_PURE;
10910   local_define_builtin ("__builtin_eh_pointer", ftype, BUILT_IN_EH_POINTER,
10911 			"__builtin_eh_pointer", ecf_flags);
10912 
10913   tmp = lang_hooks.types.type_for_mode (targetm.eh_return_filter_mode (), 0);
10914   ftype = build_function_type_list (tmp, integer_type_node, NULL_TREE);
10915   local_define_builtin ("__builtin_eh_filter", ftype, BUILT_IN_EH_FILTER,
10916 			"__builtin_eh_filter", ECF_PURE | ECF_NOTHROW | ECF_LEAF);
10917 
10918   ftype = build_function_type_list (void_type_node,
10919 				    integer_type_node, integer_type_node,
10920 				    NULL_TREE);
10921   local_define_builtin ("__builtin_eh_copy_values", ftype,
10922 			BUILT_IN_EH_COPY_VALUES,
10923 			"__builtin_eh_copy_values", ECF_NOTHROW);
10924 
10925   /* Complex multiplication and division.  These are handled as builtins
10926      rather than optabs because emit_library_call_value doesn't support
10927      complex.  Further, we can do slightly better with folding these
10928      beasties if the real and complex parts of the arguments are separate.  */
10929   {
10930     int mode;
10931 
10932     for (mode = MIN_MODE_COMPLEX_FLOAT; mode <= MAX_MODE_COMPLEX_FLOAT; ++mode)
10933       {
10934 	char mode_name_buf[4], *q;
10935 	const char *p;
10936 	enum built_in_function mcode, dcode;
10937 	tree type, inner_type;
10938 	const char *prefix = "__";
10939 
10940 	if (targetm.libfunc_gnu_prefix)
10941 	  prefix = "__gnu_";
10942 
10943 	type = lang_hooks.types.type_for_mode ((machine_mode) mode, 0);
10944 	if (type == NULL)
10945 	  continue;
10946 	inner_type = TREE_TYPE (type);
10947 
10948 	ftype = build_function_type_list (type, inner_type, inner_type,
10949 					  inner_type, inner_type, NULL_TREE);
10950 
10951         mcode = ((enum built_in_function)
10952 		 (BUILT_IN_COMPLEX_MUL_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
10953         dcode = ((enum built_in_function)
10954 		 (BUILT_IN_COMPLEX_DIV_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
10955 
10956         for (p = GET_MODE_NAME (mode), q = mode_name_buf; *p; p++, q++)
10957 	  *q = TOLOWER (*p);
10958 	*q = '\0';
10959 
10960 	/* For -ftrapping-math these should throw from a former
10961 	   -fnon-call-exception stmt.  */
10962 	built_in_names[mcode] = concat (prefix, "mul", mode_name_buf, "3",
10963 					NULL);
10964         local_define_builtin (built_in_names[mcode], ftype, mcode,
10965 			      built_in_names[mcode],
10966 			      ECF_CONST | ECF_LEAF);
10967 
10968 	built_in_names[dcode] = concat (prefix, "div", mode_name_buf, "3",
10969 					NULL);
10970         local_define_builtin (built_in_names[dcode], ftype, dcode,
10971 			      built_in_names[dcode],
10972 			      ECF_CONST | ECF_LEAF);
10973       }
10974   }
10975 
10976   init_internal_fns ();
10977 }
10978 
10979 /* HACK.  GROSS.  This is absolutely disgusting.  I wish there was a
10980    better way.
10981 
10982    If we requested a pointer to a vector, build up the pointers that
10983    we stripped off while looking for the inner type.  Similarly for
10984    return values from functions.
10985 
10986    The argument TYPE is the top of the chain, and BOTTOM is the
10987    new type which we will point to.  */
10988 
10989 tree
10990 reconstruct_complex_type (tree type, tree bottom)
10991 {
10992   tree inner, outer;
10993 
10994   if (TREE_CODE (type) == POINTER_TYPE)
10995     {
10996       inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
10997       outer = build_pointer_type_for_mode (inner, TYPE_MODE (type),
10998 					   TYPE_REF_CAN_ALIAS_ALL (type));
10999     }
11000   else if (TREE_CODE (type) == REFERENCE_TYPE)
11001     {
11002       inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
11003       outer = build_reference_type_for_mode (inner, TYPE_MODE (type),
11004 					     TYPE_REF_CAN_ALIAS_ALL (type));
11005     }
11006   else if (TREE_CODE (type) == ARRAY_TYPE)
11007     {
11008       inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
11009       outer = build_array_type (inner, TYPE_DOMAIN (type));
11010     }
11011   else if (TREE_CODE (type) == FUNCTION_TYPE)
11012     {
11013       inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
11014       outer = build_function_type (inner, TYPE_ARG_TYPES (type));
11015     }
11016   else if (TREE_CODE (type) == METHOD_TYPE)
11017     {
11018       inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
11019       /* The build_method_type_directly() routine prepends 'this' to argument list,
11020          so we must compensate by getting rid of it.  */
11021       outer
11022 	= build_method_type_directly
11023 	    (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (type))),
11024 	     inner,
11025 	     TREE_CHAIN (TYPE_ARG_TYPES (type)));
11026     }
11027   else if (TREE_CODE (type) == OFFSET_TYPE)
11028     {
11029       inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
11030       outer = build_offset_type (TYPE_OFFSET_BASETYPE (type), inner);
11031     }
11032   else
11033     return bottom;
11034 
11035   return build_type_attribute_qual_variant (outer, TYPE_ATTRIBUTES (type),
11036 					    TYPE_QUALS (type));
11037 }
11038 
11039 /* Returns a vector tree node given a mode (integer, vector, or BLKmode) and
11040    the inner type.  */
11041 tree
11042 build_vector_type_for_mode (tree innertype, machine_mode mode)
11043 {
11044   poly_int64 nunits;
11045   unsigned int bitsize;
11046 
11047   switch (GET_MODE_CLASS (mode))
11048     {
11049     case MODE_VECTOR_BOOL:
11050     case MODE_VECTOR_INT:
11051     case MODE_VECTOR_FLOAT:
11052     case MODE_VECTOR_FRACT:
11053     case MODE_VECTOR_UFRACT:
11054     case MODE_VECTOR_ACCUM:
11055     case MODE_VECTOR_UACCUM:
11056       nunits = GET_MODE_NUNITS (mode);
11057       break;
11058 
11059     case MODE_INT:
11060       /* Check that there are no leftover bits.  */
11061       bitsize = GET_MODE_BITSIZE (as_a <scalar_int_mode> (mode));
11062       gcc_assert (bitsize % TREE_INT_CST_LOW (TYPE_SIZE (innertype)) == 0);
11063       nunits = bitsize / TREE_INT_CST_LOW (TYPE_SIZE (innertype));
11064       break;
11065 
11066     default:
11067       gcc_unreachable ();
11068     }
11069 
11070   return make_vector_type (innertype, nunits, mode);
11071 }
11072 
11073 /* Similarly, but takes the inner type and number of units, which must be
11074    a power of two.  */
11075 
11076 tree
11077 build_vector_type (tree innertype, poly_int64 nunits)
11078 {
11079   return make_vector_type (innertype, nunits, VOIDmode);
11080 }
11081 
11082 /* Build truth vector with specified length and number of units.  */
11083 
11084 tree
11085 build_truth_vector_type (poly_uint64 nunits, poly_uint64 vector_size)
11086 {
11087   machine_mode mask_mode
11088     = targetm.vectorize.get_mask_mode (nunits, vector_size).else_blk ();
11089 
11090   poly_uint64 vsize;
11091   if (mask_mode == BLKmode)
11092     vsize = vector_size * BITS_PER_UNIT;
11093   else
11094     vsize = GET_MODE_BITSIZE (mask_mode);
11095 
11096   unsigned HOST_WIDE_INT esize = vector_element_size (vsize, nunits);
11097 
11098   tree bool_type = build_nonstandard_boolean_type (esize);
11099 
11100   return make_vector_type (bool_type, nunits, mask_mode);
11101 }
11102 
11103 /* Returns a vector type corresponding to a comparison of VECTYPE.  */
11104 
11105 tree
11106 build_same_sized_truth_vector_type (tree vectype)
11107 {
11108   if (VECTOR_BOOLEAN_TYPE_P (vectype))
11109     return vectype;
11110 
11111   poly_uint64 size = GET_MODE_SIZE (TYPE_MODE (vectype));
11112 
11113   if (known_eq (size, 0U))
11114     size = tree_to_uhwi (TYPE_SIZE_UNIT (vectype));
11115 
11116   return build_truth_vector_type (TYPE_VECTOR_SUBPARTS (vectype), size);
11117 }
11118 
11119 /* Similarly, but builds a variant type with TYPE_VECTOR_OPAQUE set.  */
11120 
11121 tree
11122 build_opaque_vector_type (tree innertype, poly_int64 nunits)
11123 {
11124   tree t = make_vector_type (innertype, nunits, VOIDmode);
11125   tree cand;
11126   /* We always build the non-opaque variant before the opaque one,
11127      so if it already exists, it is TYPE_NEXT_VARIANT of this one.  */
11128   cand = TYPE_NEXT_VARIANT (t);
11129   if (cand
11130       && TYPE_VECTOR_OPAQUE (cand)
11131       && check_qualified_type (cand, t, TYPE_QUALS (t)))
11132     return cand;
11133   /* Othewise build a variant type and make sure to queue it after
11134      the non-opaque type.  */
11135   cand = build_distinct_type_copy (t);
11136   TYPE_VECTOR_OPAQUE (cand) = true;
11137   TYPE_CANONICAL (cand) = TYPE_CANONICAL (t);
11138   TYPE_NEXT_VARIANT (cand) = TYPE_NEXT_VARIANT (t);
11139   TYPE_NEXT_VARIANT (t) = cand;
11140   TYPE_MAIN_VARIANT (cand) = TYPE_MAIN_VARIANT (t);
11141   return cand;
11142 }
11143 
11144 /* Return the value of element I of VECTOR_CST T as a wide_int.  */
11145 
11146 wide_int
11147 vector_cst_int_elt (const_tree t, unsigned int i)
11148 {
11149   /* First handle elements that are directly encoded.  */
11150   unsigned int encoded_nelts = vector_cst_encoded_nelts (t);
11151   if (i < encoded_nelts)
11152     return wi::to_wide (VECTOR_CST_ENCODED_ELT (t, i));
11153 
11154   /* Identify the pattern that contains element I and work out the index of
11155      the last encoded element for that pattern.  */
11156   unsigned int npatterns = VECTOR_CST_NPATTERNS (t);
11157   unsigned int pattern = i % npatterns;
11158   unsigned int count = i / npatterns;
11159   unsigned int final_i = encoded_nelts - npatterns + pattern;
11160 
11161   /* If there are no steps, the final encoded value is the right one.  */
11162   if (!VECTOR_CST_STEPPED_P (t))
11163     return wi::to_wide (VECTOR_CST_ENCODED_ELT (t, final_i));
11164 
11165   /* Otherwise work out the value from the last two encoded elements.  */
11166   tree v1 = VECTOR_CST_ENCODED_ELT (t, final_i - npatterns);
11167   tree v2 = VECTOR_CST_ENCODED_ELT (t, final_i);
11168   wide_int diff = wi::to_wide (v2) - wi::to_wide (v1);
11169   return wi::to_wide (v2) + (count - 2) * diff;
11170 }
11171 
11172 /* Return the value of element I of VECTOR_CST T.  */
11173 
11174 tree
11175 vector_cst_elt (const_tree t, unsigned int i)
11176 {
11177   /* First handle elements that are directly encoded.  */
11178   unsigned int encoded_nelts = vector_cst_encoded_nelts (t);
11179   if (i < encoded_nelts)
11180     return VECTOR_CST_ENCODED_ELT (t, i);
11181 
11182   /* If there are no steps, the final encoded value is the right one.  */
11183   if (!VECTOR_CST_STEPPED_P (t))
11184     {
11185       /* Identify the pattern that contains element I and work out the index of
11186 	 the last encoded element for that pattern.  */
11187       unsigned int npatterns = VECTOR_CST_NPATTERNS (t);
11188       unsigned int pattern = i % npatterns;
11189       unsigned int final_i = encoded_nelts - npatterns + pattern;
11190       return VECTOR_CST_ENCODED_ELT (t, final_i);
11191     }
11192 
11193   /* Otherwise work out the value from the last two encoded elements.  */
11194   return wide_int_to_tree (TREE_TYPE (TREE_TYPE (t)),
11195 			   vector_cst_int_elt (t, i));
11196 }
11197 
11198 /* Given an initializer INIT, return TRUE if INIT is zero or some
11199    aggregate of zeros.  Otherwise return FALSE.  If NONZERO is not
11200    null, set *NONZERO if and only if INIT is known not to be all
11201    zeros.  The combination of return value of false and *NONZERO
11202    false implies that INIT may but need not be all zeros.  Other
11203    combinations indicate definitive answers.  */
11204 
11205 bool
11206 initializer_zerop (const_tree init, bool *nonzero /* = NULL */)
11207 {
11208   bool dummy;
11209   if (!nonzero)
11210     nonzero = &dummy;
11211 
11212   /* Conservatively clear NONZERO and set it only if INIT is definitely
11213      not all zero.  */
11214   *nonzero = false;
11215 
11216   STRIP_NOPS (init);
11217 
11218   unsigned HOST_WIDE_INT off = 0;
11219 
11220   switch (TREE_CODE (init))
11221     {
11222     case INTEGER_CST:
11223       if (integer_zerop (init))
11224 	return true;
11225 
11226       *nonzero = true;
11227       return false;
11228 
11229     case REAL_CST:
11230       /* ??? Note that this is not correct for C4X float formats.  There,
11231 	 a bit pattern of all zeros is 1.0; 0.0 is encoded with the most
11232 	 negative exponent.  */
11233       if (real_zerop (init)
11234 	  && !REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (init)))
11235 	return true;
11236 
11237       *nonzero = true;
11238       return false;
11239 
11240     case FIXED_CST:
11241       if (fixed_zerop (init))
11242 	return true;
11243 
11244       *nonzero = true;
11245       return false;
11246 
11247     case COMPLEX_CST:
11248       if (integer_zerop (init)
11249 	  || (real_zerop (init)
11250 	      && !REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_REALPART (init)))
11251 	      && !REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_IMAGPART (init)))))
11252 	return true;
11253 
11254       *nonzero = true;
11255       return false;
11256 
11257     case VECTOR_CST:
11258       if (VECTOR_CST_NPATTERNS (init) == 1
11259 	  && VECTOR_CST_DUPLICATE_P (init)
11260 	  && initializer_zerop (VECTOR_CST_ENCODED_ELT (init, 0)))
11261 	return true;
11262 
11263       *nonzero = true;
11264       return false;
11265 
11266     case CONSTRUCTOR:
11267       {
11268 	if (TREE_CLOBBER_P (init))
11269 	  return false;
11270 
11271 	unsigned HOST_WIDE_INT idx;
11272 	tree elt;
11273 
11274 	FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (init), idx, elt)
11275 	  if (!initializer_zerop (elt, nonzero))
11276 	    return false;
11277 
11278 	return true;
11279       }
11280 
11281     case MEM_REF:
11282       {
11283 	tree arg = TREE_OPERAND (init, 0);
11284 	if (TREE_CODE (arg) != ADDR_EXPR)
11285 	  return false;
11286 	tree offset = TREE_OPERAND (init, 1);
11287 	if (TREE_CODE (offset) != INTEGER_CST
11288 	    || !tree_fits_uhwi_p (offset))
11289 	  return false;
11290 	off = tree_to_uhwi (offset);
11291 	if (INT_MAX < off)
11292 	  return false;
11293 	arg = TREE_OPERAND (arg, 0);
11294 	if (TREE_CODE (arg) != STRING_CST)
11295 	  return false;
11296 	init = arg;
11297       }
11298       /* Fall through.  */
11299 
11300     case STRING_CST:
11301       {
11302 	gcc_assert (off <= INT_MAX);
11303 
11304 	int i = off;
11305 	int n = TREE_STRING_LENGTH (init);
11306 	if (n <= i)
11307 	  return false;
11308 
11309 	/* We need to loop through all elements to handle cases like
11310 	   "\0" and "\0foobar".  */
11311 	for (i = 0; i < n; ++i)
11312 	  if (TREE_STRING_POINTER (init)[i] != '\0')
11313 	    {
11314 	      *nonzero = true;
11315 	      return false;
11316 	    }
11317 
11318 	return true;
11319       }
11320 
11321     default:
11322       return false;
11323     }
11324 }
11325 
11326 /* Return true if EXPR is an initializer expression in which every element
11327    is a constant that is numerically equal to 0 or 1.  The elements do not
11328    need to be equal to each other.  */
11329 
11330 bool
11331 initializer_each_zero_or_onep (const_tree expr)
11332 {
11333   STRIP_ANY_LOCATION_WRAPPER (expr);
11334 
11335   switch (TREE_CODE (expr))
11336     {
11337     case INTEGER_CST:
11338       return integer_zerop (expr) || integer_onep (expr);
11339 
11340     case REAL_CST:
11341       return real_zerop (expr) || real_onep (expr);
11342 
11343     case VECTOR_CST:
11344       {
11345 	unsigned HOST_WIDE_INT nelts = vector_cst_encoded_nelts (expr);
11346 	if (VECTOR_CST_STEPPED_P (expr)
11347 	    && !TYPE_VECTOR_SUBPARTS (TREE_TYPE (expr)).is_constant (&nelts))
11348 	  return false;
11349 
11350 	for (unsigned int i = 0; i < nelts; ++i)
11351 	  {
11352 	    tree elt = vector_cst_elt (expr, i);
11353 	    if (!initializer_each_zero_or_onep (elt))
11354 	      return false;
11355 	  }
11356 
11357 	return true;
11358       }
11359 
11360     default:
11361       return false;
11362     }
11363 }
11364 
11365 /* Check if vector VEC consists of all the equal elements and
11366    that the number of elements corresponds to the type of VEC.
11367    The function returns first element of the vector
11368    or NULL_TREE if the vector is not uniform.  */
11369 tree
11370 uniform_vector_p (const_tree vec)
11371 {
11372   tree first, t;
11373   unsigned HOST_WIDE_INT i, nelts;
11374 
11375   if (vec == NULL_TREE)
11376     return NULL_TREE;
11377 
11378   gcc_assert (VECTOR_TYPE_P (TREE_TYPE (vec)));
11379 
11380   if (TREE_CODE (vec) == VEC_DUPLICATE_EXPR)
11381     return TREE_OPERAND (vec, 0);
11382 
11383   else if (TREE_CODE (vec) == VECTOR_CST)
11384     {
11385       if (VECTOR_CST_NPATTERNS (vec) == 1 && VECTOR_CST_DUPLICATE_P (vec))
11386 	return VECTOR_CST_ENCODED_ELT (vec, 0);
11387       return NULL_TREE;
11388     }
11389 
11390   else if (TREE_CODE (vec) == CONSTRUCTOR
11391 	   && TYPE_VECTOR_SUBPARTS (TREE_TYPE (vec)).is_constant (&nelts))
11392     {
11393       first = error_mark_node;
11394 
11395       FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (vec), i, t)
11396         {
11397           if (i == 0)
11398             {
11399               first = t;
11400               continue;
11401             }
11402 	  if (!operand_equal_p (first, t, 0))
11403 	    return NULL_TREE;
11404         }
11405       if (i != nelts)
11406 	return NULL_TREE;
11407 
11408       return first;
11409     }
11410 
11411   return NULL_TREE;
11412 }
11413 
11414 /* If the argument is INTEGER_CST, return it.  If the argument is vector
11415    with all elements the same INTEGER_CST, return that INTEGER_CST.  Otherwise
11416    return NULL_TREE.
11417    Look through location wrappers. */
11418 
11419 tree
11420 uniform_integer_cst_p (tree t)
11421 {
11422   STRIP_ANY_LOCATION_WRAPPER (t);
11423 
11424   if (TREE_CODE (t) == INTEGER_CST)
11425     return t;
11426 
11427   if (VECTOR_TYPE_P (TREE_TYPE (t)))
11428     {
11429       t = uniform_vector_p (t);
11430       if (t && TREE_CODE (t) == INTEGER_CST)
11431 	return t;
11432     }
11433 
11434   return NULL_TREE;
11435 }
11436 
11437 /* If VECTOR_CST T has a single nonzero element, return the index of that
11438    element, otherwise return -1.  */
11439 
11440 int
11441 single_nonzero_element (const_tree t)
11442 {
11443   unsigned HOST_WIDE_INT nelts;
11444   unsigned int repeat_nelts;
11445   if (VECTOR_CST_NELTS (t).is_constant (&nelts))
11446     repeat_nelts = nelts;
11447   else if (VECTOR_CST_NELTS_PER_PATTERN (t) == 2)
11448     {
11449       nelts = vector_cst_encoded_nelts (t);
11450       repeat_nelts = VECTOR_CST_NPATTERNS (t);
11451     }
11452   else
11453     return -1;
11454 
11455   int res = -1;
11456   for (unsigned int i = 0; i < nelts; ++i)
11457     {
11458       tree elt = vector_cst_elt (t, i);
11459       if (!integer_zerop (elt) && !real_zerop (elt))
11460 	{
11461 	  if (res >= 0 || i >= repeat_nelts)
11462 	    return -1;
11463 	  res = i;
11464 	}
11465     }
11466   return res;
11467 }
11468 
11469 /* Build an empty statement at location LOC.  */
11470 
11471 tree
11472 build_empty_stmt (location_t loc)
11473 {
11474   tree t = build1 (NOP_EXPR, void_type_node, size_zero_node);
11475   SET_EXPR_LOCATION (t, loc);
11476   return t;
11477 }
11478 
11479 
11480 /* Build an OpenMP clause with code CODE.  LOC is the location of the
11481    clause.  */
11482 
11483 tree
11484 build_omp_clause (location_t loc, enum omp_clause_code code)
11485 {
11486   tree t;
11487   int size, length;
11488 
11489   length = omp_clause_num_ops[code];
11490   size = (sizeof (struct tree_omp_clause) + (length - 1) * sizeof (tree));
11491 
11492   record_node_allocation_statistics (OMP_CLAUSE, size);
11493 
11494   t = (tree) ggc_internal_alloc (size);
11495   memset (t, 0, size);
11496   TREE_SET_CODE (t, OMP_CLAUSE);
11497   OMP_CLAUSE_SET_CODE (t, code);
11498   OMP_CLAUSE_LOCATION (t) = loc;
11499 
11500   return t;
11501 }
11502 
11503 /* Build a tcc_vl_exp object with code CODE and room for LEN operands.  LEN
11504    includes the implicit operand count in TREE_OPERAND 0, and so must be >= 1.
11505    Except for the CODE and operand count field, other storage for the
11506    object is initialized to zeros.  */
11507 
11508 tree
11509 build_vl_exp (enum tree_code code, int len MEM_STAT_DECL)
11510 {
11511   tree t;
11512   int length = (len - 1) * sizeof (tree) + sizeof (struct tree_exp);
11513 
11514   gcc_assert (TREE_CODE_CLASS (code) == tcc_vl_exp);
11515   gcc_assert (len >= 1);
11516 
11517   record_node_allocation_statistics (code, length);
11518 
11519   t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);
11520 
11521   TREE_SET_CODE (t, code);
11522 
11523   /* Can't use TREE_OPERAND to store the length because if checking is
11524      enabled, it will try to check the length before we store it.  :-P  */
11525   t->exp.operands[0] = build_int_cst (sizetype, len);
11526 
11527   return t;
11528 }
11529 
11530 /* Helper function for build_call_* functions; build a CALL_EXPR with
11531    indicated RETURN_TYPE, FN, and NARGS, but do not initialize any of
11532    the argument slots.  */
11533 
11534 static tree
11535 build_call_1 (tree return_type, tree fn, int nargs)
11536 {
11537   tree t;
11538 
11539   t = build_vl_exp (CALL_EXPR, nargs + 3);
11540   TREE_TYPE (t) = return_type;
11541   CALL_EXPR_FN (t) = fn;
11542   CALL_EXPR_STATIC_CHAIN (t) = NULL;
11543 
11544   return t;
11545 }
11546 
11547 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
11548    FN and a null static chain slot.  NARGS is the number of call arguments
11549    which are specified as "..." arguments.  */
11550 
11551 tree
11552 build_call_nary (tree return_type, tree fn, int nargs, ...)
11553 {
11554   tree ret;
11555   va_list args;
11556   va_start (args, nargs);
11557   ret = build_call_valist (return_type, fn, nargs, args);
11558   va_end (args);
11559   return ret;
11560 }
11561 
11562 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
11563    FN and a null static chain slot.  NARGS is the number of call arguments
11564    which are specified as a va_list ARGS.  */
11565 
11566 tree
11567 build_call_valist (tree return_type, tree fn, int nargs, va_list args)
11568 {
11569   tree t;
11570   int i;
11571 
11572   t = build_call_1 (return_type, fn, nargs);
11573   for (i = 0; i < nargs; i++)
11574     CALL_EXPR_ARG (t, i) = va_arg (args, tree);
11575   process_call_operands (t);
11576   return t;
11577 }
11578 
11579 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
11580    FN and a null static chain slot.  NARGS is the number of call arguments
11581    which are specified as a tree array ARGS.  */
11582 
11583 tree
11584 build_call_array_loc (location_t loc, tree return_type, tree fn,
11585 		      int nargs, const tree *args)
11586 {
11587   tree t;
11588   int i;
11589 
11590   t = build_call_1 (return_type, fn, nargs);
11591   for (i = 0; i < nargs; i++)
11592     CALL_EXPR_ARG (t, i) = args[i];
11593   process_call_operands (t);
11594   SET_EXPR_LOCATION (t, loc);
11595   return t;
11596 }
11597 
11598 /* Like build_call_array, but takes a vec.  */
11599 
11600 tree
11601 build_call_vec (tree return_type, tree fn, vec<tree, va_gc> *args)
11602 {
11603   tree ret, t;
11604   unsigned int ix;
11605 
11606   ret = build_call_1 (return_type, fn, vec_safe_length (args));
11607   FOR_EACH_VEC_SAFE_ELT (args, ix, t)
11608     CALL_EXPR_ARG (ret, ix) = t;
11609   process_call_operands (ret);
11610   return ret;
11611 }
11612 
11613 /* Conveniently construct a function call expression.  FNDECL names the
11614    function to be called and N arguments are passed in the array
11615    ARGARRAY.  */
11616 
11617 tree
11618 build_call_expr_loc_array (location_t loc, tree fndecl, int n, tree *argarray)
11619 {
11620   tree fntype = TREE_TYPE (fndecl);
11621   tree fn = build1 (ADDR_EXPR, build_pointer_type (fntype), fndecl);
11622 
11623   return fold_build_call_array_loc (loc, TREE_TYPE (fntype), fn, n, argarray);
11624 }
11625 
11626 /* Conveniently construct a function call expression.  FNDECL names the
11627    function to be called and the arguments are passed in the vector
11628    VEC.  */
11629 
11630 tree
11631 build_call_expr_loc_vec (location_t loc, tree fndecl, vec<tree, va_gc> *vec)
11632 {
11633   return build_call_expr_loc_array (loc, fndecl, vec_safe_length (vec),
11634 				    vec_safe_address (vec));
11635 }
11636 
11637 
11638 /* Conveniently construct a function call expression.  FNDECL names the
11639    function to be called, N is the number of arguments, and the "..."
11640    parameters are the argument expressions.  */
11641 
11642 tree
11643 build_call_expr_loc (location_t loc, tree fndecl, int n, ...)
11644 {
11645   va_list ap;
11646   tree *argarray = XALLOCAVEC (tree, n);
11647   int i;
11648 
11649   va_start (ap, n);
11650   for (i = 0; i < n; i++)
11651     argarray[i] = va_arg (ap, tree);
11652   va_end (ap);
11653   return build_call_expr_loc_array (loc, fndecl, n, argarray);
11654 }
11655 
11656 /* Like build_call_expr_loc (UNKNOWN_LOCATION, ...).  Duplicated because
11657    varargs macros aren't supported by all bootstrap compilers.  */
11658 
11659 tree
11660 build_call_expr (tree fndecl, int n, ...)
11661 {
11662   va_list ap;
11663   tree *argarray = XALLOCAVEC (tree, n);
11664   int i;
11665 
11666   va_start (ap, n);
11667   for (i = 0; i < n; i++)
11668     argarray[i] = va_arg (ap, tree);
11669   va_end (ap);
11670   return build_call_expr_loc_array (UNKNOWN_LOCATION, fndecl, n, argarray);
11671 }
11672 
11673 /* Build an internal call to IFN, with arguments ARGS[0:N-1] and with return
11674    type TYPE.  This is just like CALL_EXPR, except its CALL_EXPR_FN is NULL.
11675    It will get gimplified later into an ordinary internal function.  */
11676 
11677 tree
11678 build_call_expr_internal_loc_array (location_t loc, internal_fn ifn,
11679 				    tree type, int n, const tree *args)
11680 {
11681   tree t = build_call_1 (type, NULL_TREE, n);
11682   for (int i = 0; i < n; ++i)
11683     CALL_EXPR_ARG (t, i) = args[i];
11684   SET_EXPR_LOCATION (t, loc);
11685   CALL_EXPR_IFN (t) = ifn;
11686   return t;
11687 }
11688 
11689 /* Build internal call expression.  This is just like CALL_EXPR, except
11690    its CALL_EXPR_FN is NULL.  It will get gimplified later into ordinary
11691    internal function.  */
11692 
11693 tree
11694 build_call_expr_internal_loc (location_t loc, enum internal_fn ifn,
11695 			      tree type, int n, ...)
11696 {
11697   va_list ap;
11698   tree *argarray = XALLOCAVEC (tree, n);
11699   int i;
11700 
11701   va_start (ap, n);
11702   for (i = 0; i < n; i++)
11703     argarray[i] = va_arg (ap, tree);
11704   va_end (ap);
11705   return build_call_expr_internal_loc_array (loc, ifn, type, n, argarray);
11706 }
11707 
11708 /* Return a function call to FN, if the target is guaranteed to support it,
11709    or null otherwise.
11710 
11711    N is the number of arguments, passed in the "...", and TYPE is the
11712    type of the return value.  */
11713 
11714 tree
11715 maybe_build_call_expr_loc (location_t loc, combined_fn fn, tree type,
11716 			   int n, ...)
11717 {
11718   va_list ap;
11719   tree *argarray = XALLOCAVEC (tree, n);
11720   int i;
11721 
11722   va_start (ap, n);
11723   for (i = 0; i < n; i++)
11724     argarray[i] = va_arg (ap, tree);
11725   va_end (ap);
11726   if (internal_fn_p (fn))
11727     {
11728       internal_fn ifn = as_internal_fn (fn);
11729       if (direct_internal_fn_p (ifn))
11730 	{
11731 	  tree_pair types = direct_internal_fn_types (ifn, type, argarray);
11732 	  if (!direct_internal_fn_supported_p (ifn, types,
11733 					       OPTIMIZE_FOR_BOTH))
11734 	    return NULL_TREE;
11735 	}
11736       return build_call_expr_internal_loc_array (loc, ifn, type, n, argarray);
11737     }
11738   else
11739     {
11740       tree fndecl = builtin_decl_implicit (as_builtin_fn (fn));
11741       if (!fndecl)
11742 	return NULL_TREE;
11743       return build_call_expr_loc_array (loc, fndecl, n, argarray);
11744     }
11745 }
11746 
11747 /* Return a function call to the appropriate builtin alloca variant.
11748 
11749    SIZE is the size to be allocated.  ALIGN, if non-zero, is the requested
11750    alignment of the allocated area.  MAX_SIZE, if non-negative, is an upper
11751    bound for SIZE in case it is not a fixed value.  */
11752 
11753 tree
11754 build_alloca_call_expr (tree size, unsigned int align, HOST_WIDE_INT max_size)
11755 {
11756   if (max_size >= 0)
11757     {
11758       tree t = builtin_decl_explicit (BUILT_IN_ALLOCA_WITH_ALIGN_AND_MAX);
11759       return
11760 	build_call_expr (t, 3, size, size_int (align), size_int (max_size));
11761     }
11762   else if (align > 0)
11763     {
11764       tree t = builtin_decl_explicit (BUILT_IN_ALLOCA_WITH_ALIGN);
11765       return build_call_expr (t, 2, size, size_int (align));
11766     }
11767   else
11768     {
11769       tree t = builtin_decl_explicit (BUILT_IN_ALLOCA);
11770       return build_call_expr (t, 1, size);
11771     }
11772 }
11773 
11774 /* Create a new constant string literal consisting of elements of type
11775    ELTYPE and return a tree node representing char* pointer to it as
11776    an ADDR_EXPR (ARRAY_REF (ELTYPE, ...)).  The STRING_CST value is
11777    the LEN bytes at STR (the representation of the string, which may
11778    be wide).  */
11779 
11780 tree
11781 build_string_literal (int len, const char *str,
11782 		      tree eltype /* = char_type_node */)
11783 {
11784   tree t = build_string (len, str);
11785   tree index = build_index_type (size_int (len - 1));
11786   eltype = build_type_variant (eltype, 1, 0);
11787   tree type = build_array_type (eltype, index);
11788   TREE_TYPE (t) = type;
11789   TREE_CONSTANT (t) = 1;
11790   TREE_READONLY (t) = 1;
11791   TREE_STATIC (t) = 1;
11792 
11793   type = build_pointer_type (eltype);
11794   t = build1 (ADDR_EXPR, type,
11795 	      build4 (ARRAY_REF, eltype,
11796 		      t, integer_zero_node, NULL_TREE, NULL_TREE));
11797   return t;
11798 }
11799 
11800 
11801 
11802 /* Return true if T (assumed to be a DECL) must be assigned a memory
11803    location.  */
11804 
11805 bool
11806 needs_to_live_in_memory (const_tree t)
11807 {
11808   return (TREE_ADDRESSABLE (t)
11809 	  || is_global_var (t)
11810 	  || (TREE_CODE (t) == RESULT_DECL
11811 	      && !DECL_BY_REFERENCE (t)
11812 	      && aggregate_value_p (t, current_function_decl)));
11813 }
11814 
11815 /* Return value of a constant X and sign-extend it.  */
11816 
11817 HOST_WIDE_INT
11818 int_cst_value (const_tree x)
11819 {
11820   unsigned bits = TYPE_PRECISION (TREE_TYPE (x));
11821   unsigned HOST_WIDE_INT val = TREE_INT_CST_LOW (x);
11822 
11823   /* Make sure the sign-extended value will fit in a HOST_WIDE_INT.  */
11824   gcc_assert (cst_and_fits_in_hwi (x));
11825 
11826   if (bits < HOST_BITS_PER_WIDE_INT)
11827     {
11828       bool negative = ((val >> (bits - 1)) & 1) != 0;
11829       if (negative)
11830 	val |= HOST_WIDE_INT_M1U << (bits - 1) << 1;
11831       else
11832 	val &= ~(HOST_WIDE_INT_M1U << (bits - 1) << 1);
11833     }
11834 
11835   return val;
11836 }
11837 
11838 /* If TYPE is an integral or pointer type, return an integer type with
11839    the same precision which is unsigned iff UNSIGNEDP is true, or itself
11840    if TYPE is already an integer type of signedness UNSIGNEDP.
11841    If TYPE is a floating-point type, return an integer type with the same
11842    bitsize and with the signedness given by UNSIGNEDP; this is useful
11843    when doing bit-level operations on a floating-point value.  */
11844 
11845 tree
11846 signed_or_unsigned_type_for (int unsignedp, tree type)
11847 {
11848   if (ANY_INTEGRAL_TYPE_P (type) && TYPE_UNSIGNED (type) == unsignedp)
11849     return type;
11850 
11851   if (TREE_CODE (type) == VECTOR_TYPE)
11852     {
11853       tree inner = TREE_TYPE (type);
11854       tree inner2 = signed_or_unsigned_type_for (unsignedp, inner);
11855       if (!inner2)
11856 	return NULL_TREE;
11857       if (inner == inner2)
11858 	return type;
11859       return build_vector_type (inner2, TYPE_VECTOR_SUBPARTS (type));
11860     }
11861 
11862   if (TREE_CODE (type) == COMPLEX_TYPE)
11863     {
11864       tree inner = TREE_TYPE (type);
11865       tree inner2 = signed_or_unsigned_type_for (unsignedp, inner);
11866       if (!inner2)
11867 	return NULL_TREE;
11868       if (inner == inner2)
11869 	return type;
11870       return build_complex_type (inner2);
11871     }
11872 
11873   unsigned int bits;
11874   if (INTEGRAL_TYPE_P (type)
11875       || POINTER_TYPE_P (type)
11876       || TREE_CODE (type) == OFFSET_TYPE)
11877     bits = TYPE_PRECISION (type);
11878   else if (TREE_CODE (type) == REAL_TYPE)
11879     bits = GET_MODE_BITSIZE (SCALAR_TYPE_MODE (type));
11880   else
11881     return NULL_TREE;
11882 
11883   return build_nonstandard_integer_type (bits, unsignedp);
11884 }
11885 
11886 /* If TYPE is an integral or pointer type, return an integer type with
11887    the same precision which is unsigned, or itself if TYPE is already an
11888    unsigned integer type.  If TYPE is a floating-point type, return an
11889    unsigned integer type with the same bitsize as TYPE.  */
11890 
11891 tree
11892 unsigned_type_for (tree type)
11893 {
11894   return signed_or_unsigned_type_for (1, type);
11895 }
11896 
11897 /* If TYPE is an integral or pointer type, return an integer type with
11898    the same precision which is signed, or itself if TYPE is already a
11899    signed integer type.  If TYPE is a floating-point type, return a
11900    signed integer type with the same bitsize as TYPE.  */
11901 
11902 tree
11903 signed_type_for (tree type)
11904 {
11905   return signed_or_unsigned_type_for (0, type);
11906 }
11907 
11908 /* If TYPE is a vector type, return a signed integer vector type with the
11909    same width and number of subparts. Otherwise return boolean_type_node.  */
11910 
11911 tree
11912 truth_type_for (tree type)
11913 {
11914   if (TREE_CODE (type) == VECTOR_TYPE)
11915     {
11916       if (VECTOR_BOOLEAN_TYPE_P (type))
11917 	return type;
11918       return build_truth_vector_type (TYPE_VECTOR_SUBPARTS (type),
11919 				      GET_MODE_SIZE (TYPE_MODE (type)));
11920     }
11921   else
11922     return boolean_type_node;
11923 }
11924 
11925 /* Returns the largest value obtainable by casting something in INNER type to
11926    OUTER type.  */
11927 
11928 tree
11929 upper_bound_in_type (tree outer, tree inner)
11930 {
11931   unsigned int det = 0;
11932   unsigned oprec = TYPE_PRECISION (outer);
11933   unsigned iprec = TYPE_PRECISION (inner);
11934   unsigned prec;
11935 
11936   /* Compute a unique number for every combination.  */
11937   det |= (oprec > iprec) ? 4 : 0;
11938   det |= TYPE_UNSIGNED (outer) ? 2 : 0;
11939   det |= TYPE_UNSIGNED (inner) ? 1 : 0;
11940 
11941   /* Determine the exponent to use.  */
11942   switch (det)
11943     {
11944     case 0:
11945     case 1:
11946       /* oprec <= iprec, outer: signed, inner: don't care.  */
11947       prec = oprec - 1;
11948       break;
11949     case 2:
11950     case 3:
11951       /* oprec <= iprec, outer: unsigned, inner: don't care.  */
11952       prec = oprec;
11953       break;
11954     case 4:
11955       /* oprec > iprec, outer: signed, inner: signed.  */
11956       prec = iprec - 1;
11957       break;
11958     case 5:
11959       /* oprec > iprec, outer: signed, inner: unsigned.  */
11960       prec = iprec;
11961       break;
11962     case 6:
11963       /* oprec > iprec, outer: unsigned, inner: signed.  */
11964       prec = oprec;
11965       break;
11966     case 7:
11967       /* oprec > iprec, outer: unsigned, inner: unsigned.  */
11968       prec = iprec;
11969       break;
11970     default:
11971       gcc_unreachable ();
11972     }
11973 
11974   return wide_int_to_tree (outer,
11975 			   wi::mask (prec, false, TYPE_PRECISION (outer)));
11976 }
11977 
11978 /* Returns the smallest value obtainable by casting something in INNER type to
11979    OUTER type.  */
11980 
11981 tree
11982 lower_bound_in_type (tree outer, tree inner)
11983 {
11984   unsigned oprec = TYPE_PRECISION (outer);
11985   unsigned iprec = TYPE_PRECISION (inner);
11986 
11987   /* If OUTER type is unsigned, we can definitely cast 0 to OUTER type
11988      and obtain 0.  */
11989   if (TYPE_UNSIGNED (outer)
11990       /* If we are widening something of an unsigned type, OUTER type
11991 	 contains all values of INNER type.  In particular, both INNER
11992 	 and OUTER types have zero in common.  */
11993       || (oprec > iprec && TYPE_UNSIGNED (inner)))
11994     return build_int_cst (outer, 0);
11995   else
11996     {
11997       /* If we are widening a signed type to another signed type, we
11998 	 want to obtain -2^^(iprec-1).  If we are keeping the
11999 	 precision or narrowing to a signed type, we want to obtain
12000 	 -2^(oprec-1).  */
12001       unsigned prec = oprec > iprec ? iprec : oprec;
12002       return wide_int_to_tree (outer,
12003 			       wi::mask (prec - 1, true,
12004 					 TYPE_PRECISION (outer)));
12005     }
12006 }
12007 
12008 /* Return nonzero if two operands that are suitable for PHI nodes are
12009    necessarily equal.  Specifically, both ARG0 and ARG1 must be either
12010    SSA_NAME or invariant.  Note that this is strictly an optimization.
12011    That is, callers of this function can directly call operand_equal_p
12012    and get the same result, only slower.  */
12013 
12014 int
12015 operand_equal_for_phi_arg_p (const_tree arg0, const_tree arg1)
12016 {
12017   if (arg0 == arg1)
12018     return 1;
12019   if (TREE_CODE (arg0) == SSA_NAME || TREE_CODE (arg1) == SSA_NAME)
12020     return 0;
12021   return operand_equal_p (arg0, arg1, 0);
12022 }
12023 
12024 /* Returns number of zeros at the end of binary representation of X.  */
12025 
12026 tree
12027 num_ending_zeros (const_tree x)
12028 {
12029   return build_int_cst (TREE_TYPE (x), wi::ctz (wi::to_wide (x)));
12030 }
12031 
12032 
12033 #define WALK_SUBTREE(NODE)				\
12034   do							\
12035     {							\
12036       result = walk_tree_1 (&(NODE), func, data, pset, lh);	\
12037       if (result)					\
12038 	return result;					\
12039     }							\
12040   while (0)
12041 
12042 /* This is a subroutine of walk_tree that walks field of TYPE that are to
12043    be walked whenever a type is seen in the tree.  Rest of operands and return
12044    value are as for walk_tree.  */
12045 
12046 static tree
12047 walk_type_fields (tree type, walk_tree_fn func, void *data,
12048 		  hash_set<tree> *pset, walk_tree_lh lh)
12049 {
12050   tree result = NULL_TREE;
12051 
12052   switch (TREE_CODE (type))
12053     {
12054     case POINTER_TYPE:
12055     case REFERENCE_TYPE:
12056     case VECTOR_TYPE:
12057       /* We have to worry about mutually recursive pointers.  These can't
12058 	 be written in C.  They can in Ada.  It's pathological, but
12059 	 there's an ACATS test (c38102a) that checks it.  Deal with this
12060 	 by checking if we're pointing to another pointer, that one
12061 	 points to another pointer, that one does too, and we have no htab.
12062 	 If so, get a hash table.  We check three levels deep to avoid
12063 	 the cost of the hash table if we don't need one.  */
12064       if (POINTER_TYPE_P (TREE_TYPE (type))
12065 	  && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (type)))
12066 	  && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (TREE_TYPE (type))))
12067 	  && !pset)
12068 	{
12069 	  result = walk_tree_without_duplicates (&TREE_TYPE (type),
12070 						 func, data);
12071 	  if (result)
12072 	    return result;
12073 
12074 	  break;
12075 	}
12076 
12077       /* fall through */
12078 
12079     case COMPLEX_TYPE:
12080       WALK_SUBTREE (TREE_TYPE (type));
12081       break;
12082 
12083     case METHOD_TYPE:
12084       WALK_SUBTREE (TYPE_METHOD_BASETYPE (type));
12085 
12086       /* Fall through.  */
12087 
12088     case FUNCTION_TYPE:
12089       WALK_SUBTREE (TREE_TYPE (type));
12090       {
12091 	tree arg;
12092 
12093 	/* We never want to walk into default arguments.  */
12094 	for (arg = TYPE_ARG_TYPES (type); arg; arg = TREE_CHAIN (arg))
12095 	  WALK_SUBTREE (TREE_VALUE (arg));
12096       }
12097       break;
12098 
12099     case ARRAY_TYPE:
12100       /* Don't follow this nodes's type if a pointer for fear that
12101 	 we'll have infinite recursion.  If we have a PSET, then we
12102 	 need not fear.  */
12103       if (pset
12104 	  || (!POINTER_TYPE_P (TREE_TYPE (type))
12105 	      && TREE_CODE (TREE_TYPE (type)) != OFFSET_TYPE))
12106 	WALK_SUBTREE (TREE_TYPE (type));
12107       WALK_SUBTREE (TYPE_DOMAIN (type));
12108       break;
12109 
12110     case OFFSET_TYPE:
12111       WALK_SUBTREE (TREE_TYPE (type));
12112       WALK_SUBTREE (TYPE_OFFSET_BASETYPE (type));
12113       break;
12114 
12115     default:
12116       break;
12117     }
12118 
12119   return NULL_TREE;
12120 }
12121 
12122 /* Apply FUNC to all the sub-trees of TP in a pre-order traversal.  FUNC is
12123    called with the DATA and the address of each sub-tree.  If FUNC returns a
12124    non-NULL value, the traversal is stopped, and the value returned by FUNC
12125    is returned.  If PSET is non-NULL it is used to record the nodes visited,
12126    and to avoid visiting a node more than once.  */
12127 
12128 tree
12129 walk_tree_1 (tree *tp, walk_tree_fn func, void *data,
12130 	     hash_set<tree> *pset, walk_tree_lh lh)
12131 {
12132   enum tree_code code;
12133   int walk_subtrees;
12134   tree result;
12135 
12136 #define WALK_SUBTREE_TAIL(NODE)				\
12137   do							\
12138     {							\
12139        tp = & (NODE);					\
12140        goto tail_recurse;				\
12141     }							\
12142   while (0)
12143 
12144  tail_recurse:
12145   /* Skip empty subtrees.  */
12146   if (!*tp)
12147     return NULL_TREE;
12148 
12149   /* Don't walk the same tree twice, if the user has requested
12150      that we avoid doing so.  */
12151   if (pset && pset->add (*tp))
12152     return NULL_TREE;
12153 
12154   /* Call the function.  */
12155   walk_subtrees = 1;
12156   result = (*func) (tp, &walk_subtrees, data);
12157 
12158   /* If we found something, return it.  */
12159   if (result)
12160     return result;
12161 
12162   code = TREE_CODE (*tp);
12163 
12164   /* Even if we didn't, FUNC may have decided that there was nothing
12165      interesting below this point in the tree.  */
12166   if (!walk_subtrees)
12167     {
12168       /* But we still need to check our siblings.  */
12169       if (code == TREE_LIST)
12170 	WALK_SUBTREE_TAIL (TREE_CHAIN (*tp));
12171       else if (code == OMP_CLAUSE)
12172 	WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
12173       else
12174 	return NULL_TREE;
12175     }
12176 
12177   if (lh)
12178     {
12179       result = (*lh) (tp, &walk_subtrees, func, data, pset);
12180       if (result || !walk_subtrees)
12181         return result;
12182     }
12183 
12184   switch (code)
12185     {
12186     case ERROR_MARK:
12187     case IDENTIFIER_NODE:
12188     case INTEGER_CST:
12189     case REAL_CST:
12190     case FIXED_CST:
12191     case VECTOR_CST:
12192     case STRING_CST:
12193     case BLOCK:
12194     case PLACEHOLDER_EXPR:
12195     case SSA_NAME:
12196     case FIELD_DECL:
12197     case RESULT_DECL:
12198       /* None of these have subtrees other than those already walked
12199 	 above.  */
12200       break;
12201 
12202     case TREE_LIST:
12203       WALK_SUBTREE (TREE_VALUE (*tp));
12204       WALK_SUBTREE_TAIL (TREE_CHAIN (*tp));
12205       break;
12206 
12207     case TREE_VEC:
12208       {
12209 	int len = TREE_VEC_LENGTH (*tp);
12210 
12211 	if (len == 0)
12212 	  break;
12213 
12214 	/* Walk all elements but the first.  */
12215 	while (--len)
12216 	  WALK_SUBTREE (TREE_VEC_ELT (*tp, len));
12217 
12218 	/* Now walk the first one as a tail call.  */
12219 	WALK_SUBTREE_TAIL (TREE_VEC_ELT (*tp, 0));
12220       }
12221 
12222     case COMPLEX_CST:
12223       WALK_SUBTREE (TREE_REALPART (*tp));
12224       WALK_SUBTREE_TAIL (TREE_IMAGPART (*tp));
12225 
12226     case CONSTRUCTOR:
12227       {
12228 	unsigned HOST_WIDE_INT idx;
12229 	constructor_elt *ce;
12230 
12231 	for (idx = 0; vec_safe_iterate (CONSTRUCTOR_ELTS (*tp), idx, &ce);
12232 	     idx++)
12233 	  WALK_SUBTREE (ce->value);
12234       }
12235       break;
12236 
12237     case SAVE_EXPR:
12238       WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, 0));
12239 
12240     case BIND_EXPR:
12241       {
12242 	tree decl;
12243 	for (decl = BIND_EXPR_VARS (*tp); decl; decl = DECL_CHAIN (decl))
12244 	  {
12245 	    /* Walk the DECL_INITIAL and DECL_SIZE.  We don't want to walk
12246 	       into declarations that are just mentioned, rather than
12247 	       declared; they don't really belong to this part of the tree.
12248 	       And, we can see cycles: the initializer for a declaration
12249 	       can refer to the declaration itself.  */
12250 	    WALK_SUBTREE (DECL_INITIAL (decl));
12251 	    WALK_SUBTREE (DECL_SIZE (decl));
12252 	    WALK_SUBTREE (DECL_SIZE_UNIT (decl));
12253 	  }
12254 	WALK_SUBTREE_TAIL (BIND_EXPR_BODY (*tp));
12255       }
12256 
12257     case STATEMENT_LIST:
12258       {
12259 	tree_stmt_iterator i;
12260 	for (i = tsi_start (*tp); !tsi_end_p (i); tsi_next (&i))
12261 	  WALK_SUBTREE (*tsi_stmt_ptr (i));
12262       }
12263       break;
12264 
12265     case OMP_CLAUSE:
12266       switch (OMP_CLAUSE_CODE (*tp))
12267 	{
12268 	case OMP_CLAUSE_GANG:
12269 	case OMP_CLAUSE__GRIDDIM_:
12270 	  WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, 1));
12271 	  /* FALLTHRU */
12272 
12273 	case OMP_CLAUSE_ASYNC:
12274 	case OMP_CLAUSE_WAIT:
12275 	case OMP_CLAUSE_WORKER:
12276 	case OMP_CLAUSE_VECTOR:
12277 	case OMP_CLAUSE_NUM_GANGS:
12278 	case OMP_CLAUSE_NUM_WORKERS:
12279 	case OMP_CLAUSE_VECTOR_LENGTH:
12280 	case OMP_CLAUSE_PRIVATE:
12281 	case OMP_CLAUSE_SHARED:
12282 	case OMP_CLAUSE_FIRSTPRIVATE:
12283 	case OMP_CLAUSE_COPYIN:
12284 	case OMP_CLAUSE_COPYPRIVATE:
12285 	case OMP_CLAUSE_FINAL:
12286 	case OMP_CLAUSE_IF:
12287 	case OMP_CLAUSE_NUM_THREADS:
12288 	case OMP_CLAUSE_SCHEDULE:
12289 	case OMP_CLAUSE_UNIFORM:
12290 	case OMP_CLAUSE_DEPEND:
12291 	case OMP_CLAUSE_NONTEMPORAL:
12292 	case OMP_CLAUSE_NUM_TEAMS:
12293 	case OMP_CLAUSE_THREAD_LIMIT:
12294 	case OMP_CLAUSE_DEVICE:
12295 	case OMP_CLAUSE_DIST_SCHEDULE:
12296 	case OMP_CLAUSE_SAFELEN:
12297 	case OMP_CLAUSE_SIMDLEN:
12298 	case OMP_CLAUSE_ORDERED:
12299 	case OMP_CLAUSE_PRIORITY:
12300 	case OMP_CLAUSE_GRAINSIZE:
12301 	case OMP_CLAUSE_NUM_TASKS:
12302 	case OMP_CLAUSE_HINT:
12303 	case OMP_CLAUSE_TO_DECLARE:
12304 	case OMP_CLAUSE_LINK:
12305 	case OMP_CLAUSE_USE_DEVICE_PTR:
12306 	case OMP_CLAUSE_IS_DEVICE_PTR:
12307 	case OMP_CLAUSE__LOOPTEMP_:
12308 	case OMP_CLAUSE__REDUCTEMP_:
12309 	case OMP_CLAUSE__SIMDUID_:
12310 	  WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, 0));
12311 	  /* FALLTHRU */
12312 
12313 	case OMP_CLAUSE_INDEPENDENT:
12314 	case OMP_CLAUSE_NOWAIT:
12315 	case OMP_CLAUSE_DEFAULT:
12316 	case OMP_CLAUSE_UNTIED:
12317 	case OMP_CLAUSE_MERGEABLE:
12318 	case OMP_CLAUSE_PROC_BIND:
12319 	case OMP_CLAUSE_INBRANCH:
12320 	case OMP_CLAUSE_NOTINBRANCH:
12321 	case OMP_CLAUSE_FOR:
12322 	case OMP_CLAUSE_PARALLEL:
12323 	case OMP_CLAUSE_SECTIONS:
12324 	case OMP_CLAUSE_TASKGROUP:
12325 	case OMP_CLAUSE_NOGROUP:
12326 	case OMP_CLAUSE_THREADS:
12327 	case OMP_CLAUSE_SIMD:
12328 	case OMP_CLAUSE_DEFAULTMAP:
12329 	case OMP_CLAUSE_AUTO:
12330 	case OMP_CLAUSE_SEQ:
12331 	case OMP_CLAUSE_TILE:
12332 	case OMP_CLAUSE__SIMT_:
12333 	case OMP_CLAUSE_IF_PRESENT:
12334 	case OMP_CLAUSE_FINALIZE:
12335 	  WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
12336 
12337 	case OMP_CLAUSE_LASTPRIVATE:
12338 	  WALK_SUBTREE (OMP_CLAUSE_DECL (*tp));
12339 	  WALK_SUBTREE (OMP_CLAUSE_LASTPRIVATE_STMT (*tp));
12340 	  WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
12341 
12342 	case OMP_CLAUSE_COLLAPSE:
12343 	  {
12344 	    int i;
12345 	    for (i = 0; i < 3; i++)
12346 	      WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, i));
12347 	    WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
12348 	  }
12349 
12350 	case OMP_CLAUSE_LINEAR:
12351 	  WALK_SUBTREE (OMP_CLAUSE_DECL (*tp));
12352 	  WALK_SUBTREE (OMP_CLAUSE_LINEAR_STEP (*tp));
12353 	  WALK_SUBTREE (OMP_CLAUSE_LINEAR_STMT (*tp));
12354 	  WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
12355 
12356 	case OMP_CLAUSE_ALIGNED:
12357 	case OMP_CLAUSE_FROM:
12358 	case OMP_CLAUSE_TO:
12359 	case OMP_CLAUSE_MAP:
12360 	case OMP_CLAUSE__CACHE_:
12361 	  WALK_SUBTREE (OMP_CLAUSE_DECL (*tp));
12362 	  WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, 1));
12363 	  WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
12364 
12365 	case OMP_CLAUSE_REDUCTION:
12366 	case OMP_CLAUSE_TASK_REDUCTION:
12367 	case OMP_CLAUSE_IN_REDUCTION:
12368 	  {
12369 	    int i;
12370 	    for (i = 0; i < 5; i++)
12371 	      WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, i));
12372 	    WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
12373 	  }
12374 
12375 	default:
12376 	  gcc_unreachable ();
12377 	}
12378       break;
12379 
12380     case TARGET_EXPR:
12381       {
12382 	int i, len;
12383 
12384 	/* TARGET_EXPRs are peculiar: operands 1 and 3 can be the same.
12385 	   But, we only want to walk once.  */
12386 	len = (TREE_OPERAND (*tp, 3) == TREE_OPERAND (*tp, 1)) ? 2 : 3;
12387 	for (i = 0; i < len; ++i)
12388 	  WALK_SUBTREE (TREE_OPERAND (*tp, i));
12389 	WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, len));
12390       }
12391 
12392     case DECL_EXPR:
12393       /* If this is a TYPE_DECL, walk into the fields of the type that it's
12394 	 defining.  We only want to walk into these fields of a type in this
12395 	 case and not in the general case of a mere reference to the type.
12396 
12397 	 The criterion is as follows: if the field can be an expression, it
12398 	 must be walked only here.  This should be in keeping with the fields
12399 	 that are directly gimplified in gimplify_type_sizes in order for the
12400 	 mark/copy-if-shared/unmark machinery of the gimplifier to work with
12401 	 variable-sized types.
12402 
12403 	 Note that DECLs get walked as part of processing the BIND_EXPR.  */
12404       if (TREE_CODE (DECL_EXPR_DECL (*tp)) == TYPE_DECL)
12405 	{
12406 	  tree *type_p = &TREE_TYPE (DECL_EXPR_DECL (*tp));
12407 	  if (TREE_CODE (*type_p) == ERROR_MARK)
12408 	    return NULL_TREE;
12409 
12410 	  /* Call the function for the type.  See if it returns anything or
12411 	     doesn't want us to continue.  If we are to continue, walk both
12412 	     the normal fields and those for the declaration case.  */
12413 	  result = (*func) (type_p, &walk_subtrees, data);
12414 	  if (result || !walk_subtrees)
12415 	    return result;
12416 
12417 	  /* But do not walk a pointed-to type since it may itself need to
12418 	     be walked in the declaration case if it isn't anonymous.  */
12419 	  if (!POINTER_TYPE_P (*type_p))
12420 	    {
12421 	      result = walk_type_fields (*type_p, func, data, pset, lh);
12422 	      if (result)
12423 		return result;
12424 	    }
12425 
12426 	  /* If this is a record type, also walk the fields.  */
12427 	  if (RECORD_OR_UNION_TYPE_P (*type_p))
12428 	    {
12429 	      tree field;
12430 
12431 	      for (field = TYPE_FIELDS (*type_p); field;
12432 		   field = DECL_CHAIN (field))
12433 		{
12434 		  /* We'd like to look at the type of the field, but we can
12435 		     easily get infinite recursion.  So assume it's pointed
12436 		     to elsewhere in the tree.  Also, ignore things that
12437 		     aren't fields.  */
12438 		  if (TREE_CODE (field) != FIELD_DECL)
12439 		    continue;
12440 
12441 		  WALK_SUBTREE (DECL_FIELD_OFFSET (field));
12442 		  WALK_SUBTREE (DECL_SIZE (field));
12443 		  WALK_SUBTREE (DECL_SIZE_UNIT (field));
12444 		  if (TREE_CODE (*type_p) == QUAL_UNION_TYPE)
12445 		    WALK_SUBTREE (DECL_QUALIFIER (field));
12446 		}
12447 	    }
12448 
12449 	  /* Same for scalar types.  */
12450 	  else if (TREE_CODE (*type_p) == BOOLEAN_TYPE
12451 		   || TREE_CODE (*type_p) == ENUMERAL_TYPE
12452 		   || TREE_CODE (*type_p) == INTEGER_TYPE
12453 		   || TREE_CODE (*type_p) == FIXED_POINT_TYPE
12454 		   || TREE_CODE (*type_p) == REAL_TYPE)
12455 	    {
12456 	      WALK_SUBTREE (TYPE_MIN_VALUE (*type_p));
12457 	      WALK_SUBTREE (TYPE_MAX_VALUE (*type_p));
12458 	    }
12459 
12460 	  WALK_SUBTREE (TYPE_SIZE (*type_p));
12461 	  WALK_SUBTREE_TAIL (TYPE_SIZE_UNIT (*type_p));
12462 	}
12463       /* FALLTHRU */
12464 
12465     default:
12466       if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code)))
12467 	{
12468 	  int i, len;
12469 
12470 	  /* Walk over all the sub-trees of this operand.  */
12471 	  len = TREE_OPERAND_LENGTH (*tp);
12472 
12473 	  /* Go through the subtrees.  We need to do this in forward order so
12474 	     that the scope of a FOR_EXPR is handled properly.  */
12475 	  if (len)
12476 	    {
12477 	      for (i = 0; i < len - 1; ++i)
12478 		WALK_SUBTREE (TREE_OPERAND (*tp, i));
12479 	      WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, len - 1));
12480 	    }
12481 	}
12482       /* If this is a type, walk the needed fields in the type.  */
12483       else if (TYPE_P (*tp))
12484 	return walk_type_fields (*tp, func, data, pset, lh);
12485       break;
12486     }
12487 
12488   /* We didn't find what we were looking for.  */
12489   return NULL_TREE;
12490 
12491 #undef WALK_SUBTREE_TAIL
12492 }
12493 #undef WALK_SUBTREE
12494 
12495 /* Like walk_tree, but does not walk duplicate nodes more than once.  */
12496 
12497 tree
12498 walk_tree_without_duplicates_1 (tree *tp, walk_tree_fn func, void *data,
12499 				walk_tree_lh lh)
12500 {
12501   tree result;
12502 
12503   hash_set<tree> pset;
12504   result = walk_tree_1 (tp, func, data, &pset, lh);
12505   return result;
12506 }
12507 
12508 
12509 tree
12510 tree_block (tree t)
12511 {
12512   const enum tree_code_class c = TREE_CODE_CLASS (TREE_CODE (t));
12513 
12514   if (IS_EXPR_CODE_CLASS (c))
12515     return LOCATION_BLOCK (t->exp.locus);
12516   gcc_unreachable ();
12517   return NULL;
12518 }
12519 
12520 void
12521 tree_set_block (tree t, tree b)
12522 {
12523   const enum tree_code_class c = TREE_CODE_CLASS (TREE_CODE (t));
12524 
12525   if (IS_EXPR_CODE_CLASS (c))
12526     {
12527       t->exp.locus = set_block (t->exp.locus, b);
12528     }
12529   else
12530     gcc_unreachable ();
12531 }
12532 
12533 /* Create a nameless artificial label and put it in the current
12534    function context.  The label has a location of LOC.  Returns the
12535    newly created label.  */
12536 
12537 tree
12538 create_artificial_label (location_t loc)
12539 {
12540   tree lab = build_decl (loc,
12541       			 LABEL_DECL, NULL_TREE, void_type_node);
12542 
12543   DECL_ARTIFICIAL (lab) = 1;
12544   DECL_IGNORED_P (lab) = 1;
12545   DECL_CONTEXT (lab) = current_function_decl;
12546   return lab;
12547 }
12548 
12549 /*  Given a tree, try to return a useful variable name that we can use
12550     to prefix a temporary that is being assigned the value of the tree.
12551     I.E. given  <temp> = &A, return A.  */
12552 
12553 const char *
12554 get_name (tree t)
12555 {
12556   tree stripped_decl;
12557 
12558   stripped_decl = t;
12559   STRIP_NOPS (stripped_decl);
12560   if (DECL_P (stripped_decl) && DECL_NAME (stripped_decl))
12561     return IDENTIFIER_POINTER (DECL_NAME (stripped_decl));
12562   else if (TREE_CODE (stripped_decl) == SSA_NAME)
12563     {
12564       tree name = SSA_NAME_IDENTIFIER (stripped_decl);
12565       if (!name)
12566 	return NULL;
12567       return IDENTIFIER_POINTER (name);
12568     }
12569   else
12570     {
12571       switch (TREE_CODE (stripped_decl))
12572 	{
12573 	case ADDR_EXPR:
12574 	  return get_name (TREE_OPERAND (stripped_decl, 0));
12575 	default:
12576 	  return NULL;
12577 	}
12578     }
12579 }
12580 
12581 /* Return true if TYPE has a variable argument list.  */
12582 
12583 bool
12584 stdarg_p (const_tree fntype)
12585 {
12586   function_args_iterator args_iter;
12587   tree n = NULL_TREE, t;
12588 
12589   if (!fntype)
12590     return false;
12591 
12592   FOREACH_FUNCTION_ARGS (fntype, t, args_iter)
12593     {
12594       n = t;
12595     }
12596 
12597   return n != NULL_TREE && n != void_type_node;
12598 }
12599 
12600 /* Return true if TYPE has a prototype.  */
12601 
12602 bool
12603 prototype_p (const_tree fntype)
12604 {
12605   tree t;
12606 
12607   gcc_assert (fntype != NULL_TREE);
12608 
12609   t = TYPE_ARG_TYPES (fntype);
12610   return (t != NULL_TREE);
12611 }
12612 
12613 /* If BLOCK is inlined from an __attribute__((__artificial__))
12614    routine, return pointer to location from where it has been
12615    called.  */
12616 location_t *
12617 block_nonartificial_location (tree block)
12618 {
12619   location_t *ret = NULL;
12620 
12621   while (block && TREE_CODE (block) == BLOCK
12622 	 && BLOCK_ABSTRACT_ORIGIN (block))
12623     {
12624       tree ao = BLOCK_ABSTRACT_ORIGIN (block);
12625       if (TREE_CODE (ao) == FUNCTION_DECL)
12626 	{
12627 	  /* If AO is an artificial inline, point RET to the
12628 	     call site locus at which it has been inlined and continue
12629 	     the loop, in case AO's caller is also an artificial
12630 	     inline.  */
12631 	  if (DECL_DECLARED_INLINE_P (ao)
12632 	      && lookup_attribute ("artificial", DECL_ATTRIBUTES (ao)))
12633 	    ret = &BLOCK_SOURCE_LOCATION (block);
12634 	  else
12635 	    break;
12636 	}
12637       else if (TREE_CODE (ao) != BLOCK)
12638 	break;
12639 
12640       block = BLOCK_SUPERCONTEXT (block);
12641     }
12642   return ret;
12643 }
12644 
12645 
12646 /* If EXP is inlined from an __attribute__((__artificial__))
12647    function, return the location of the original call expression.  */
12648 
12649 location_t
12650 tree_nonartificial_location (tree exp)
12651 {
12652   location_t *loc = block_nonartificial_location (TREE_BLOCK (exp));
12653 
12654   if (loc)
12655     return *loc;
12656   else
12657     return EXPR_LOCATION (exp);
12658 }
12659 
12660 
12661 /* These are the hash table functions for the hash table of OPTIMIZATION_NODEq
12662    nodes.  */
12663 
12664 /* Return the hash code X, an OPTIMIZATION_NODE or TARGET_OPTION code.  */
12665 
12666 hashval_t
12667 cl_option_hasher::hash (tree x)
12668 {
12669   const_tree const t = x;
12670   const char *p;
12671   size_t i;
12672   size_t len = 0;
12673   hashval_t hash = 0;
12674 
12675   if (TREE_CODE (t) == OPTIMIZATION_NODE)
12676     {
12677       p = (const char *)TREE_OPTIMIZATION (t);
12678       len = sizeof (struct cl_optimization);
12679     }
12680 
12681   else if (TREE_CODE (t) == TARGET_OPTION_NODE)
12682     return cl_target_option_hash (TREE_TARGET_OPTION (t));
12683 
12684   else
12685     gcc_unreachable ();
12686 
12687   /* assume most opt flags are just 0/1, some are 2-3, and a few might be
12688      something else.  */
12689   for (i = 0; i < len; i++)
12690     if (p[i])
12691       hash = (hash << 4) ^ ((i << 2) | p[i]);
12692 
12693   return hash;
12694 }
12695 
12696 /* Return nonzero if the value represented by *X (an OPTIMIZATION or
12697    TARGET_OPTION tree node) is the same as that given by *Y, which is the
12698    same.  */
12699 
12700 bool
12701 cl_option_hasher::equal (tree x, tree y)
12702 {
12703   const_tree const xt = x;
12704   const_tree const yt = y;
12705 
12706   if (TREE_CODE (xt) != TREE_CODE (yt))
12707     return 0;
12708 
12709   if (TREE_CODE (xt) == OPTIMIZATION_NODE)
12710     return cl_optimization_option_eq (TREE_OPTIMIZATION (xt),
12711 				      TREE_OPTIMIZATION (yt));
12712   else if (TREE_CODE (xt) == TARGET_OPTION_NODE)
12713     return cl_target_option_eq (TREE_TARGET_OPTION (xt),
12714 				TREE_TARGET_OPTION (yt));
12715   else
12716     gcc_unreachable ();
12717 }
12718 
12719 /* Build an OPTIMIZATION_NODE based on the options in OPTS.  */
12720 
12721 tree
12722 build_optimization_node (struct gcc_options *opts)
12723 {
12724   tree t;
12725 
12726   /* Use the cache of optimization nodes.  */
12727 
12728   cl_optimization_save (TREE_OPTIMIZATION (cl_optimization_node),
12729 			opts);
12730 
12731   tree *slot = cl_option_hash_table->find_slot (cl_optimization_node, INSERT);
12732   t = *slot;
12733   if (!t)
12734     {
12735       /* Insert this one into the hash table.  */
12736       t = cl_optimization_node;
12737       *slot = t;
12738 
12739       /* Make a new node for next time round.  */
12740       cl_optimization_node = make_node (OPTIMIZATION_NODE);
12741     }
12742 
12743   return t;
12744 }
12745 
12746 /* Build a TARGET_OPTION_NODE based on the options in OPTS.  */
12747 
12748 tree
12749 build_target_option_node (struct gcc_options *opts)
12750 {
12751   tree t;
12752 
12753   /* Use the cache of optimization nodes.  */
12754 
12755   cl_target_option_save (TREE_TARGET_OPTION (cl_target_option_node),
12756 			 opts);
12757 
12758   tree *slot = cl_option_hash_table->find_slot (cl_target_option_node, INSERT);
12759   t = *slot;
12760   if (!t)
12761     {
12762       /* Insert this one into the hash table.  */
12763       t = cl_target_option_node;
12764       *slot = t;
12765 
12766       /* Make a new node for next time round.  */
12767       cl_target_option_node = make_node (TARGET_OPTION_NODE);
12768     }
12769 
12770   return t;
12771 }
12772 
12773 /* Clear TREE_TARGET_GLOBALS of all TARGET_OPTION_NODE trees,
12774    so that they aren't saved during PCH writing.  */
12775 
12776 void
12777 prepare_target_option_nodes_for_pch (void)
12778 {
12779   hash_table<cl_option_hasher>::iterator iter = cl_option_hash_table->begin ();
12780   for (; iter != cl_option_hash_table->end (); ++iter)
12781     if (TREE_CODE (*iter) == TARGET_OPTION_NODE)
12782       TREE_TARGET_GLOBALS (*iter) = NULL;
12783 }
12784 
12785 /* Determine the "ultimate origin" of a block.  */
12786 
12787 tree
12788 block_ultimate_origin (const_tree block)
12789 {
12790   tree origin = BLOCK_ABSTRACT_ORIGIN (block);
12791 
12792   if (origin == NULL_TREE)
12793     return NULL_TREE;
12794   else
12795     {
12796       gcc_checking_assert ((DECL_P (origin)
12797 			    && DECL_ORIGIN (origin) == origin)
12798 			   || BLOCK_ORIGIN (origin) == origin);
12799       return origin;
12800     }
12801 }
12802 
12803 /* Return true iff conversion from INNER_TYPE to OUTER_TYPE generates
12804    no instruction.  */
12805 
12806 bool
12807 tree_nop_conversion_p (const_tree outer_type, const_tree inner_type)
12808 {
12809   /* Do not strip casts into or out of differing address spaces.  */
12810   if (POINTER_TYPE_P (outer_type)
12811       && TYPE_ADDR_SPACE (TREE_TYPE (outer_type)) != ADDR_SPACE_GENERIC)
12812     {
12813       if (!POINTER_TYPE_P (inner_type)
12814 	  || (TYPE_ADDR_SPACE (TREE_TYPE (outer_type))
12815 	      != TYPE_ADDR_SPACE (TREE_TYPE (inner_type))))
12816 	return false;
12817     }
12818   else if (POINTER_TYPE_P (inner_type)
12819 	   && TYPE_ADDR_SPACE (TREE_TYPE (inner_type)) != ADDR_SPACE_GENERIC)
12820     {
12821       /* We already know that outer_type is not a pointer with
12822 	 a non-generic address space.  */
12823       return false;
12824     }
12825 
12826   /* Use precision rather then machine mode when we can, which gives
12827      the correct answer even for submode (bit-field) types.  */
12828   if ((INTEGRAL_TYPE_P (outer_type)
12829        || POINTER_TYPE_P (outer_type)
12830        || TREE_CODE (outer_type) == OFFSET_TYPE)
12831       && (INTEGRAL_TYPE_P (inner_type)
12832 	  || POINTER_TYPE_P (inner_type)
12833 	  || TREE_CODE (inner_type) == OFFSET_TYPE))
12834     return TYPE_PRECISION (outer_type) == TYPE_PRECISION (inner_type);
12835 
12836   /* Otherwise fall back on comparing machine modes (e.g. for
12837      aggregate types, floats).  */
12838   return TYPE_MODE (outer_type) == TYPE_MODE (inner_type);
12839 }
12840 
12841 /* Return true iff conversion in EXP generates no instruction.  Mark
12842    it inline so that we fully inline into the stripping functions even
12843    though we have two uses of this function.  */
12844 
12845 static inline bool
12846 tree_nop_conversion (const_tree exp)
12847 {
12848   tree outer_type, inner_type;
12849 
12850   if (location_wrapper_p (exp))
12851     return true;
12852   if (!CONVERT_EXPR_P (exp)
12853       && TREE_CODE (exp) != NON_LVALUE_EXPR)
12854     return false;
12855 
12856   outer_type = TREE_TYPE (exp);
12857   inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
12858   if (!inner_type || inner_type == error_mark_node)
12859     return false;
12860 
12861   return tree_nop_conversion_p (outer_type, inner_type);
12862 }
12863 
12864 /* Return true iff conversion in EXP generates no instruction.  Don't
12865    consider conversions changing the signedness.  */
12866 
12867 static bool
12868 tree_sign_nop_conversion (const_tree exp)
12869 {
12870   tree outer_type, inner_type;
12871 
12872   if (!tree_nop_conversion (exp))
12873     return false;
12874 
12875   outer_type = TREE_TYPE (exp);
12876   inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
12877 
12878   return (TYPE_UNSIGNED (outer_type) == TYPE_UNSIGNED (inner_type)
12879 	  && POINTER_TYPE_P (outer_type) == POINTER_TYPE_P (inner_type));
12880 }
12881 
12882 /* Strip conversions from EXP according to tree_nop_conversion and
12883    return the resulting expression.  */
12884 
12885 tree
12886 tree_strip_nop_conversions (tree exp)
12887 {
12888   while (tree_nop_conversion (exp))
12889     exp = TREE_OPERAND (exp, 0);
12890   return exp;
12891 }
12892 
12893 /* Strip conversions from EXP according to tree_sign_nop_conversion
12894    and return the resulting expression.  */
12895 
12896 tree
12897 tree_strip_sign_nop_conversions (tree exp)
12898 {
12899   while (tree_sign_nop_conversion (exp))
12900     exp = TREE_OPERAND (exp, 0);
12901   return exp;
12902 }
12903 
12904 /* Avoid any floating point extensions from EXP.  */
12905 tree
12906 strip_float_extensions (tree exp)
12907 {
12908   tree sub, expt, subt;
12909 
12910   /*  For floating point constant look up the narrowest type that can hold
12911       it properly and handle it like (type)(narrowest_type)constant.
12912       This way we can optimize for instance a=a*2.0 where "a" is float
12913       but 2.0 is double constant.  */
12914   if (TREE_CODE (exp) == REAL_CST && !DECIMAL_FLOAT_TYPE_P (TREE_TYPE (exp)))
12915     {
12916       REAL_VALUE_TYPE orig;
12917       tree type = NULL;
12918 
12919       orig = TREE_REAL_CST (exp);
12920       if (TYPE_PRECISION (TREE_TYPE (exp)) > TYPE_PRECISION (float_type_node)
12921 	  && exact_real_truncate (TYPE_MODE (float_type_node), &orig))
12922 	type = float_type_node;
12923       else if (TYPE_PRECISION (TREE_TYPE (exp))
12924 	       > TYPE_PRECISION (double_type_node)
12925 	       && exact_real_truncate (TYPE_MODE (double_type_node), &orig))
12926 	type = double_type_node;
12927       if (type)
12928 	return build_real_truncate (type, orig);
12929     }
12930 
12931   if (!CONVERT_EXPR_P (exp))
12932     return exp;
12933 
12934   sub = TREE_OPERAND (exp, 0);
12935   subt = TREE_TYPE (sub);
12936   expt = TREE_TYPE (exp);
12937 
12938   if (!FLOAT_TYPE_P (subt))
12939     return exp;
12940 
12941   if (DECIMAL_FLOAT_TYPE_P (expt) != DECIMAL_FLOAT_TYPE_P (subt))
12942     return exp;
12943 
12944   if (TYPE_PRECISION (subt) > TYPE_PRECISION (expt))
12945     return exp;
12946 
12947   return strip_float_extensions (sub);
12948 }
12949 
12950 /* Strip out all handled components that produce invariant
12951    offsets.  */
12952 
12953 const_tree
12954 strip_invariant_refs (const_tree op)
12955 {
12956   while (handled_component_p (op))
12957     {
12958       switch (TREE_CODE (op))
12959 	{
12960 	case ARRAY_REF:
12961 	case ARRAY_RANGE_REF:
12962 	  if (!is_gimple_constant (TREE_OPERAND (op, 1))
12963 	      || TREE_OPERAND (op, 2) != NULL_TREE
12964 	      || TREE_OPERAND (op, 3) != NULL_TREE)
12965 	    return NULL;
12966 	  break;
12967 
12968 	case COMPONENT_REF:
12969 	  if (TREE_OPERAND (op, 2) != NULL_TREE)
12970 	    return NULL;
12971 	  break;
12972 
12973 	default:;
12974 	}
12975       op = TREE_OPERAND (op, 0);
12976     }
12977 
12978   return op;
12979 }
12980 
12981 static GTY(()) tree gcc_eh_personality_decl;
12982 
12983 /* Return the GCC personality function decl.  */
12984 
12985 tree
12986 lhd_gcc_personality (void)
12987 {
12988   if (!gcc_eh_personality_decl)
12989     gcc_eh_personality_decl = build_personality_function ("gcc");
12990   return gcc_eh_personality_decl;
12991 }
12992 
12993 /* TARGET is a call target of GIMPLE call statement
12994    (obtained by gimple_call_fn).  Return true if it is
12995    OBJ_TYPE_REF representing an virtual call of C++ method.
12996    (As opposed to OBJ_TYPE_REF representing objc calls
12997    through a cast where middle-end devirtualization machinery
12998    can't apply.) */
12999 
13000 bool
13001 virtual_method_call_p (const_tree target)
13002 {
13003   if (TREE_CODE (target) != OBJ_TYPE_REF)
13004     return false;
13005   tree t = TREE_TYPE (target);
13006   gcc_checking_assert (TREE_CODE (t) == POINTER_TYPE);
13007   t = TREE_TYPE (t);
13008   if (TREE_CODE (t) == FUNCTION_TYPE)
13009     return false;
13010   gcc_checking_assert (TREE_CODE (t) == METHOD_TYPE);
13011   /* If we do not have BINFO associated, it means that type was built
13012      without devirtualization enabled.  Do not consider this a virtual
13013      call.  */
13014   if (!TYPE_BINFO (obj_type_ref_class (target)))
13015     return false;
13016   return true;
13017 }
13018 
13019 /* Lookup sub-BINFO of BINFO of TYPE at offset POS.  */
13020 
13021 static tree
13022 lookup_binfo_at_offset (tree binfo, tree type, HOST_WIDE_INT pos)
13023 {
13024   unsigned int i;
13025   tree base_binfo, b;
13026 
13027   for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
13028     if (pos == tree_to_shwi (BINFO_OFFSET (base_binfo))
13029 	&& types_same_for_odr (TREE_TYPE (base_binfo), type))
13030       return base_binfo;
13031     else if ((b = lookup_binfo_at_offset (base_binfo, type, pos)) != NULL)
13032       return b;
13033   return NULL;
13034 }
13035 
13036 /* Try to find a base info of BINFO that would have its field decl at offset
13037    OFFSET within the BINFO type and which is of EXPECTED_TYPE.  If it can be
13038    found, return, otherwise return NULL_TREE.  */
13039 
13040 tree
13041 get_binfo_at_offset (tree binfo, poly_int64 offset, tree expected_type)
13042 {
13043   tree type = BINFO_TYPE (binfo);
13044 
13045   while (true)
13046     {
13047       HOST_WIDE_INT pos, size;
13048       tree fld;
13049       int i;
13050 
13051       if (types_same_for_odr (type, expected_type))
13052 	  return binfo;
13053       if (maybe_lt (offset, 0))
13054 	return NULL_TREE;
13055 
13056       for (fld = TYPE_FIELDS (type); fld; fld = DECL_CHAIN (fld))
13057 	{
13058 	  if (TREE_CODE (fld) != FIELD_DECL || !DECL_ARTIFICIAL (fld))
13059 	    continue;
13060 
13061 	  pos = int_bit_position (fld);
13062 	  size = tree_to_uhwi (DECL_SIZE (fld));
13063 	  if (known_in_range_p (offset, pos, size))
13064 	    break;
13065 	}
13066       if (!fld || TREE_CODE (TREE_TYPE (fld)) != RECORD_TYPE)
13067 	return NULL_TREE;
13068 
13069       /* Offset 0 indicates the primary base, whose vtable contents are
13070 	 represented in the binfo for the derived class.  */
13071       else if (maybe_ne (offset, 0))
13072 	{
13073 	  tree found_binfo = NULL, base_binfo;
13074 	  /* Offsets in BINFO are in bytes relative to the whole structure
13075 	     while POS is in bits relative to the containing field.  */
13076 	  int binfo_offset = (tree_to_shwi (BINFO_OFFSET (binfo)) + pos
13077 			     / BITS_PER_UNIT);
13078 
13079 	  for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
13080 	    if (tree_to_shwi (BINFO_OFFSET (base_binfo)) == binfo_offset
13081 		&& types_same_for_odr (TREE_TYPE (base_binfo), TREE_TYPE (fld)))
13082 	      {
13083 		found_binfo = base_binfo;
13084 		break;
13085 	      }
13086 	  if (found_binfo)
13087 	    binfo = found_binfo;
13088 	  else
13089 	    binfo = lookup_binfo_at_offset (binfo, TREE_TYPE (fld),
13090 					    binfo_offset);
13091 	 }
13092 
13093       type = TREE_TYPE (fld);
13094       offset -= pos;
13095     }
13096 }
13097 
13098 /* Returns true if X is a typedef decl.  */
13099 
13100 bool
13101 is_typedef_decl (const_tree x)
13102 {
13103   return (x && TREE_CODE (x) == TYPE_DECL
13104           && DECL_ORIGINAL_TYPE (x) != NULL_TREE);
13105 }
13106 
13107 /* Returns true iff TYPE is a type variant created for a typedef. */
13108 
13109 bool
13110 typedef_variant_p (const_tree type)
13111 {
13112   return is_typedef_decl (TYPE_NAME (type));
13113 }
13114 
13115 /* A class to handle converting a string that might contain
13116    control characters, (eg newline, form-feed, etc), into one
13117    in which contains escape sequences instead.  */
13118 
13119 class escaped_string
13120 {
13121  public:
13122   escaped_string () { m_owned = false; m_str = NULL; };
13123   ~escaped_string () { if (m_owned) free (m_str); }
13124   operator const char *() const { return (const char *) m_str; }
13125   void escape (const char *);
13126  private:
13127   char *m_str;
13128   bool  m_owned;
13129 };
13130 
13131 /* PR 84195: Replace control characters in "unescaped" with their
13132    escaped equivalents.  Allow newlines if -fmessage-length has
13133    been set to a non-zero value.  This is done here, rather than
13134    where the attribute is recorded as the message length can
13135    change between these two locations.  */
13136 
13137 void
13138 escaped_string::escape (const char *unescaped)
13139 {
13140   char *escaped;
13141   size_t i, new_i, len;
13142 
13143   if (m_owned)
13144     free (m_str);
13145 
13146   m_str = const_cast<char *> (unescaped);
13147   m_owned = false;
13148 
13149   if (unescaped == NULL || *unescaped == 0)
13150     return;
13151 
13152   len = strlen (unescaped);
13153   escaped = NULL;
13154   new_i = 0;
13155 
13156   for (i = 0; i < len; i++)
13157     {
13158       char c = unescaped[i];
13159 
13160       if (!ISCNTRL (c))
13161 	{
13162 	  if (escaped)
13163 	    escaped[new_i++] = c;
13164 	  continue;
13165 	}
13166 
13167       if (c != '\n' || !pp_is_wrapping_line (global_dc->printer))
13168 	{
13169 	  if (escaped == NULL)
13170 	    {
13171 	      /* We only allocate space for a new string if we
13172 		 actually encounter a control character that
13173 		 needs replacing.  */
13174 	      escaped = (char *) xmalloc (len * 2 + 1);
13175 	      strncpy (escaped, unescaped, i);
13176 	      new_i = i;
13177 	    }
13178 
13179 	  escaped[new_i++] = '\\';
13180 
13181 	  switch (c)
13182 	    {
13183 	    case '\a': escaped[new_i++] = 'a'; break;
13184 	    case '\b': escaped[new_i++] = 'b'; break;
13185 	    case '\f': escaped[new_i++] = 'f'; break;
13186 	    case '\n': escaped[new_i++] = 'n'; break;
13187 	    case '\r': escaped[new_i++] = 'r'; break;
13188 	    case '\t': escaped[new_i++] = 't'; break;
13189 	    case '\v': escaped[new_i++] = 'v'; break;
13190 	    default:   escaped[new_i++] = '?'; break;
13191 	    }
13192 	}
13193       else if (escaped)
13194 	escaped[new_i++] = c;
13195     }
13196 
13197   if (escaped)
13198     {
13199       escaped[new_i] = 0;
13200       m_str = escaped;
13201       m_owned = true;
13202     }
13203 }
13204 
13205 /* Warn about a use of an identifier which was marked deprecated.  Returns
13206    whether a warning was given.  */
13207 
13208 bool
13209 warn_deprecated_use (tree node, tree attr)
13210 {
13211   escaped_string msg;
13212 
13213   if (node == 0 || !warn_deprecated_decl)
13214     return false;
13215 
13216   if (!attr)
13217     {
13218       if (DECL_P (node))
13219 	attr = DECL_ATTRIBUTES (node);
13220       else if (TYPE_P (node))
13221 	{
13222 	  tree decl = TYPE_STUB_DECL (node);
13223 	  if (decl)
13224 	    attr = lookup_attribute ("deprecated",
13225 				     TYPE_ATTRIBUTES (TREE_TYPE (decl)));
13226 	}
13227     }
13228 
13229   if (attr)
13230     attr = lookup_attribute ("deprecated", attr);
13231 
13232   if (attr)
13233     msg.escape (TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr))));
13234 
13235   bool w = false;
13236   if (DECL_P (node))
13237     {
13238       auto_diagnostic_group d;
13239       if (msg)
13240 	w = warning (OPT_Wdeprecated_declarations,
13241 		     "%qD is deprecated: %s", node, (const char *) msg);
13242       else
13243 	w = warning (OPT_Wdeprecated_declarations,
13244 		     "%qD is deprecated", node);
13245       if (w)
13246 	inform (DECL_SOURCE_LOCATION (node), "declared here");
13247     }
13248   else if (TYPE_P (node))
13249     {
13250       tree what = NULL_TREE;
13251       tree decl = TYPE_STUB_DECL (node);
13252 
13253       if (TYPE_NAME (node))
13254 	{
13255 	  if (TREE_CODE (TYPE_NAME (node)) == IDENTIFIER_NODE)
13256 	    what = TYPE_NAME (node);
13257 	  else if (TREE_CODE (TYPE_NAME (node)) == TYPE_DECL
13258 		   && DECL_NAME (TYPE_NAME (node)))
13259 	    what = DECL_NAME (TYPE_NAME (node));
13260 	}
13261 
13262       auto_diagnostic_group d;
13263       if (what)
13264 	{
13265 	  if (msg)
13266 	    w = warning (OPT_Wdeprecated_declarations,
13267 			 "%qE is deprecated: %s", what, (const char *) msg);
13268 	  else
13269 	    w = warning (OPT_Wdeprecated_declarations,
13270 			 "%qE is deprecated", what);
13271 	}
13272       else
13273 	{
13274 	  if (msg)
13275 	    w = warning (OPT_Wdeprecated_declarations,
13276 			 "type is deprecated: %s", (const char *) msg);
13277 	  else
13278 	    w = warning (OPT_Wdeprecated_declarations,
13279 			 "type is deprecated");
13280 	}
13281 
13282       if (w && decl)
13283 	inform (DECL_SOURCE_LOCATION (decl), "declared here");
13284     }
13285 
13286   return w;
13287 }
13288 
13289 /* Return true if REF has a COMPONENT_REF with a bit-field field declaration
13290    somewhere in it.  */
13291 
13292 bool
13293 contains_bitfld_component_ref_p (const_tree ref)
13294 {
13295   while (handled_component_p (ref))
13296     {
13297       if (TREE_CODE (ref) == COMPONENT_REF
13298           && DECL_BIT_FIELD (TREE_OPERAND (ref, 1)))
13299         return true;
13300       ref = TREE_OPERAND (ref, 0);
13301     }
13302 
13303   return false;
13304 }
13305 
13306 /* Try to determine whether a TRY_CATCH expression can fall through.
13307    This is a subroutine of block_may_fallthru.  */
13308 
13309 static bool
13310 try_catch_may_fallthru (const_tree stmt)
13311 {
13312   tree_stmt_iterator i;
13313 
13314   /* If the TRY block can fall through, the whole TRY_CATCH can
13315      fall through.  */
13316   if (block_may_fallthru (TREE_OPERAND (stmt, 0)))
13317     return true;
13318 
13319   i = tsi_start (TREE_OPERAND (stmt, 1));
13320   switch (TREE_CODE (tsi_stmt (i)))
13321     {
13322     case CATCH_EXPR:
13323       /* We expect to see a sequence of CATCH_EXPR trees, each with a
13324 	 catch expression and a body.  The whole TRY_CATCH may fall
13325 	 through iff any of the catch bodies falls through.  */
13326       for (; !tsi_end_p (i); tsi_next (&i))
13327 	{
13328 	  if (block_may_fallthru (CATCH_BODY (tsi_stmt (i))))
13329 	    return true;
13330 	}
13331       return false;
13332 
13333     case EH_FILTER_EXPR:
13334       /* The exception filter expression only matters if there is an
13335 	 exception.  If the exception does not match EH_FILTER_TYPES,
13336 	 we will execute EH_FILTER_FAILURE, and we will fall through
13337 	 if that falls through.  If the exception does match
13338 	 EH_FILTER_TYPES, the stack unwinder will continue up the
13339 	 stack, so we will not fall through.  We don't know whether we
13340 	 will throw an exception which matches EH_FILTER_TYPES or not,
13341 	 so we just ignore EH_FILTER_TYPES and assume that we might
13342 	 throw an exception which doesn't match.  */
13343       return block_may_fallthru (EH_FILTER_FAILURE (tsi_stmt (i)));
13344 
13345     default:
13346       /* This case represents statements to be executed when an
13347 	 exception occurs.  Those statements are implicitly followed
13348 	 by a RESX statement to resume execution after the exception.
13349 	 So in this case the TRY_CATCH never falls through.  */
13350       return false;
13351     }
13352 }
13353 
13354 /* Try to determine if we can fall out of the bottom of BLOCK.  This guess
13355    need not be 100% accurate; simply be conservative and return true if we
13356    don't know.  This is used only to avoid stupidly generating extra code.
13357    If we're wrong, we'll just delete the extra code later.  */
13358 
13359 bool
13360 block_may_fallthru (const_tree block)
13361 {
13362   /* This CONST_CAST is okay because expr_last returns its argument
13363      unmodified and we assign it to a const_tree.  */
13364   const_tree stmt = expr_last (CONST_CAST_TREE (block));
13365 
13366   switch (stmt ? TREE_CODE (stmt) : ERROR_MARK)
13367     {
13368     case GOTO_EXPR:
13369     case RETURN_EXPR:
13370       /* Easy cases.  If the last statement of the block implies
13371 	 control transfer, then we can't fall through.  */
13372       return false;
13373 
13374     case SWITCH_EXPR:
13375       /* If there is a default: label or case labels cover all possible
13376 	 SWITCH_COND values, then the SWITCH_EXPR will transfer control
13377 	 to some case label in all cases and all we care is whether the
13378 	 SWITCH_BODY falls through.  */
13379       if (SWITCH_ALL_CASES_P (stmt))
13380 	return block_may_fallthru (SWITCH_BODY (stmt));
13381       return true;
13382 
13383     case COND_EXPR:
13384       if (block_may_fallthru (COND_EXPR_THEN (stmt)))
13385 	return true;
13386       return block_may_fallthru (COND_EXPR_ELSE (stmt));
13387 
13388     case BIND_EXPR:
13389       return block_may_fallthru (BIND_EXPR_BODY (stmt));
13390 
13391     case TRY_CATCH_EXPR:
13392       return try_catch_may_fallthru (stmt);
13393 
13394     case TRY_FINALLY_EXPR:
13395       /* The finally clause is always executed after the try clause,
13396 	 so if it does not fall through, then the try-finally will not
13397 	 fall through.  Otherwise, if the try clause does not fall
13398 	 through, then when the finally clause falls through it will
13399 	 resume execution wherever the try clause was going.  So the
13400 	 whole try-finally will only fall through if both the try
13401 	 clause and the finally clause fall through.  */
13402       return (block_may_fallthru (TREE_OPERAND (stmt, 0))
13403 	      && block_may_fallthru (TREE_OPERAND (stmt, 1)));
13404 
13405     case MODIFY_EXPR:
13406       if (TREE_CODE (TREE_OPERAND (stmt, 1)) == CALL_EXPR)
13407 	stmt = TREE_OPERAND (stmt, 1);
13408       else
13409 	return true;
13410       /* FALLTHRU */
13411 
13412     case CALL_EXPR:
13413       /* Functions that do not return do not fall through.  */
13414       return (call_expr_flags (stmt) & ECF_NORETURN) == 0;
13415 
13416     case CLEANUP_POINT_EXPR:
13417       return block_may_fallthru (TREE_OPERAND (stmt, 0));
13418 
13419     case TARGET_EXPR:
13420       return block_may_fallthru (TREE_OPERAND (stmt, 1));
13421 
13422     case ERROR_MARK:
13423       return true;
13424 
13425     default:
13426       return lang_hooks.block_may_fallthru (stmt);
13427     }
13428 }
13429 
13430 /* True if we are using EH to handle cleanups.  */
13431 static bool using_eh_for_cleanups_flag = false;
13432 
13433 /* This routine is called from front ends to indicate eh should be used for
13434    cleanups.  */
13435 void
13436 using_eh_for_cleanups (void)
13437 {
13438   using_eh_for_cleanups_flag = true;
13439 }
13440 
13441 /* Query whether EH is used for cleanups.  */
13442 bool
13443 using_eh_for_cleanups_p (void)
13444 {
13445   return using_eh_for_cleanups_flag;
13446 }
13447 
13448 /* Wrapper for tree_code_name to ensure that tree code is valid */
13449 const char *
13450 get_tree_code_name (enum tree_code code)
13451 {
13452   const char *invalid = "<invalid tree code>";
13453 
13454   if (code >= MAX_TREE_CODES)
13455     return invalid;
13456 
13457   return tree_code_name[code];
13458 }
13459 
13460 /* Drops the TREE_OVERFLOW flag from T.  */
13461 
13462 tree
13463 drop_tree_overflow (tree t)
13464 {
13465   gcc_checking_assert (TREE_OVERFLOW (t));
13466 
13467   /* For tree codes with a sharing machinery re-build the result.  */
13468   if (poly_int_tree_p (t))
13469     return wide_int_to_tree (TREE_TYPE (t), wi::to_poly_wide (t));
13470 
13471   /* For VECTOR_CST, remove the overflow bits from the encoded elements
13472      and canonicalize the result.  */
13473   if (TREE_CODE (t) == VECTOR_CST)
13474     {
13475       tree_vector_builder builder;
13476       builder.new_unary_operation (TREE_TYPE (t), t, true);
13477       unsigned int count = builder.encoded_nelts ();
13478       for (unsigned int i = 0; i < count; ++i)
13479 	{
13480 	  tree elt = VECTOR_CST_ELT (t, i);
13481 	  if (TREE_OVERFLOW (elt))
13482 	    elt = drop_tree_overflow (elt);
13483 	  builder.quick_push (elt);
13484 	}
13485       return builder.build ();
13486     }
13487 
13488   /* Otherwise, as all tcc_constants are possibly shared, copy the node
13489      and drop the flag.  */
13490   t = copy_node (t);
13491   TREE_OVERFLOW (t) = 0;
13492 
13493   /* For constants that contain nested constants, drop the flag
13494      from those as well.  */
13495   if (TREE_CODE (t) == COMPLEX_CST)
13496     {
13497       if (TREE_OVERFLOW (TREE_REALPART (t)))
13498 	TREE_REALPART (t) = drop_tree_overflow (TREE_REALPART (t));
13499       if (TREE_OVERFLOW (TREE_IMAGPART (t)))
13500 	TREE_IMAGPART (t) = drop_tree_overflow (TREE_IMAGPART (t));
13501     }
13502 
13503   return t;
13504 }
13505 
13506 /* Given a memory reference expression T, return its base address.
13507    The base address of a memory reference expression is the main
13508    object being referenced.  For instance, the base address for
13509    'array[i].fld[j]' is 'array'.  You can think of this as stripping
13510    away the offset part from a memory address.
13511 
13512    This function calls handled_component_p to strip away all the inner
13513    parts of the memory reference until it reaches the base object.  */
13514 
13515 tree
13516 get_base_address (tree t)
13517 {
13518   while (handled_component_p (t))
13519     t = TREE_OPERAND (t, 0);
13520 
13521   if ((TREE_CODE (t) == MEM_REF
13522        || TREE_CODE (t) == TARGET_MEM_REF)
13523       && TREE_CODE (TREE_OPERAND (t, 0)) == ADDR_EXPR)
13524     t = TREE_OPERAND (TREE_OPERAND (t, 0), 0);
13525 
13526   /* ???  Either the alias oracle or all callers need to properly deal
13527      with WITH_SIZE_EXPRs before we can look through those.  */
13528   if (TREE_CODE (t) == WITH_SIZE_EXPR)
13529     return NULL_TREE;
13530 
13531   return t;
13532 }
13533 
13534 /* Return a tree of sizetype representing the size, in bytes, of the element
13535    of EXP, an ARRAY_REF or an ARRAY_RANGE_REF.  */
13536 
13537 tree
13538 array_ref_element_size (tree exp)
13539 {
13540   tree aligned_size = TREE_OPERAND (exp, 3);
13541   tree elmt_type = TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0)));
13542   location_t loc = EXPR_LOCATION (exp);
13543 
13544   /* If a size was specified in the ARRAY_REF, it's the size measured
13545      in alignment units of the element type.  So multiply by that value.  */
13546   if (aligned_size)
13547     {
13548       /* ??? tree_ssa_useless_type_conversion will eliminate casts to
13549 	 sizetype from another type of the same width and signedness.  */
13550       if (TREE_TYPE (aligned_size) != sizetype)
13551 	aligned_size = fold_convert_loc (loc, sizetype, aligned_size);
13552       return size_binop_loc (loc, MULT_EXPR, aligned_size,
13553 			     size_int (TYPE_ALIGN_UNIT (elmt_type)));
13554     }
13555 
13556   /* Otherwise, take the size from that of the element type.  Substitute
13557      any PLACEHOLDER_EXPR that we have.  */
13558   else
13559     return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_SIZE_UNIT (elmt_type), exp);
13560 }
13561 
13562 /* Return a tree representing the lower bound of the array mentioned in
13563    EXP, an ARRAY_REF or an ARRAY_RANGE_REF.  */
13564 
13565 tree
13566 array_ref_low_bound (tree exp)
13567 {
13568   tree domain_type = TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp, 0)));
13569 
13570   /* If a lower bound is specified in EXP, use it.  */
13571   if (TREE_OPERAND (exp, 2))
13572     return TREE_OPERAND (exp, 2);
13573 
13574   /* Otherwise, if there is a domain type and it has a lower bound, use it,
13575      substituting for a PLACEHOLDER_EXPR as needed.  */
13576   if (domain_type && TYPE_MIN_VALUE (domain_type))
13577     return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MIN_VALUE (domain_type), exp);
13578 
13579   /* Otherwise, return a zero of the appropriate type.  */
13580   return build_int_cst (TREE_TYPE (TREE_OPERAND (exp, 1)), 0);
13581 }
13582 
13583 /* Return a tree representing the upper bound of the array mentioned in
13584    EXP, an ARRAY_REF or an ARRAY_RANGE_REF.  */
13585 
13586 tree
13587 array_ref_up_bound (tree exp)
13588 {
13589   tree domain_type = TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp, 0)));
13590 
13591   /* If there is a domain type and it has an upper bound, use it, substituting
13592      for a PLACEHOLDER_EXPR as needed.  */
13593   if (domain_type && TYPE_MAX_VALUE (domain_type))
13594     return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MAX_VALUE (domain_type), exp);
13595 
13596   /* Otherwise fail.  */
13597   return NULL_TREE;
13598 }
13599 
13600 /* Returns true if REF is an array reference or a component reference
13601    to an array at the end of a structure.
13602    If this is the case, the array may be allocated larger
13603    than its upper bound implies.  */
13604 
13605 bool
13606 array_at_struct_end_p (tree ref)
13607 {
13608   tree atype;
13609 
13610   if (TREE_CODE (ref) == ARRAY_REF
13611       || TREE_CODE (ref) == ARRAY_RANGE_REF)
13612     {
13613       atype = TREE_TYPE (TREE_OPERAND (ref, 0));
13614       ref = TREE_OPERAND (ref, 0);
13615     }
13616   else if (TREE_CODE (ref) == COMPONENT_REF
13617 	   && TREE_CODE (TREE_TYPE (TREE_OPERAND (ref, 1))) == ARRAY_TYPE)
13618     atype = TREE_TYPE (TREE_OPERAND (ref, 1));
13619   else
13620     return false;
13621 
13622   if (TREE_CODE (ref) == STRING_CST)
13623     return false;
13624 
13625   tree ref_to_array = ref;
13626   while (handled_component_p (ref))
13627     {
13628       /* If the reference chain contains a component reference to a
13629          non-union type and there follows another field the reference
13630 	 is not at the end of a structure.  */
13631       if (TREE_CODE (ref) == COMPONENT_REF)
13632 	{
13633 	  if (TREE_CODE (TREE_TYPE (TREE_OPERAND (ref, 0))) == RECORD_TYPE)
13634 	    {
13635 	      tree nextf = DECL_CHAIN (TREE_OPERAND (ref, 1));
13636 	      while (nextf && TREE_CODE (nextf) != FIELD_DECL)
13637 		nextf = DECL_CHAIN (nextf);
13638 	      if (nextf)
13639 		return false;
13640 	    }
13641 	}
13642       /* If we have a multi-dimensional array we do not consider
13643          a non-innermost dimension as flex array if the whole
13644 	 multi-dimensional array is at struct end.
13645 	 Same for an array of aggregates with a trailing array
13646 	 member.  */
13647       else if (TREE_CODE (ref) == ARRAY_REF)
13648 	return false;
13649       else if (TREE_CODE (ref) == ARRAY_RANGE_REF)
13650 	;
13651       /* If we view an underlying object as sth else then what we
13652          gathered up to now is what we have to rely on.  */
13653       else if (TREE_CODE (ref) == VIEW_CONVERT_EXPR)
13654 	break;
13655       else
13656 	gcc_unreachable ();
13657 
13658       ref = TREE_OPERAND (ref, 0);
13659     }
13660 
13661   /* The array now is at struct end.  Treat flexible arrays as
13662      always subject to extend, even into just padding constrained by
13663      an underlying decl.  */
13664   if (! TYPE_SIZE (atype)
13665       || ! TYPE_DOMAIN (atype)
13666       || ! TYPE_MAX_VALUE (TYPE_DOMAIN (atype)))
13667     return true;
13668 
13669   if (TREE_CODE (ref) == MEM_REF
13670       && TREE_CODE (TREE_OPERAND (ref, 0)) == ADDR_EXPR)
13671     ref = TREE_OPERAND (TREE_OPERAND (ref, 0), 0);
13672 
13673   /* If the reference is based on a declared entity, the size of the array
13674      is constrained by its given domain.  (Do not trust commons PR/69368).  */
13675   if (DECL_P (ref)
13676       && !(flag_unconstrained_commons
13677 	   && VAR_P (ref) && DECL_COMMON (ref))
13678       && DECL_SIZE_UNIT (ref)
13679       && TREE_CODE (DECL_SIZE_UNIT (ref)) == INTEGER_CST)
13680     {
13681       /* Check whether the array domain covers all of the available
13682          padding.  */
13683       poly_int64 offset;
13684       if (TREE_CODE (TYPE_SIZE_UNIT (TREE_TYPE (atype))) != INTEGER_CST
13685 	  || TREE_CODE (TYPE_MAX_VALUE (TYPE_DOMAIN (atype))) != INTEGER_CST
13686           || TREE_CODE (TYPE_MIN_VALUE (TYPE_DOMAIN (atype))) != INTEGER_CST)
13687 	return true;
13688       if (! get_addr_base_and_unit_offset (ref_to_array, &offset))
13689 	return true;
13690 
13691       /* If at least one extra element fits it is a flexarray.  */
13692       if (known_le ((wi::to_offset (TYPE_MAX_VALUE (TYPE_DOMAIN (atype)))
13693 		     - wi::to_offset (TYPE_MIN_VALUE (TYPE_DOMAIN (atype)))
13694 		     + 2)
13695 		    * wi::to_offset (TYPE_SIZE_UNIT (TREE_TYPE (atype))),
13696 		    wi::to_offset (DECL_SIZE_UNIT (ref)) - offset))
13697 	return true;
13698 
13699       return false;
13700     }
13701 
13702   return true;
13703 }
13704 
13705 /* Return a tree representing the offset, in bytes, of the field referenced
13706    by EXP.  This does not include any offset in DECL_FIELD_BIT_OFFSET.  */
13707 
13708 tree
13709 component_ref_field_offset (tree exp)
13710 {
13711   tree aligned_offset = TREE_OPERAND (exp, 2);
13712   tree field = TREE_OPERAND (exp, 1);
13713   location_t loc = EXPR_LOCATION (exp);
13714 
13715   /* If an offset was specified in the COMPONENT_REF, it's the offset measured
13716      in units of DECL_OFFSET_ALIGN / BITS_PER_UNIT.  So multiply by that
13717      value.  */
13718   if (aligned_offset)
13719     {
13720       /* ??? tree_ssa_useless_type_conversion will eliminate casts to
13721 	 sizetype from another type of the same width and signedness.  */
13722       if (TREE_TYPE (aligned_offset) != sizetype)
13723 	aligned_offset = fold_convert_loc (loc, sizetype, aligned_offset);
13724       return size_binop_loc (loc, MULT_EXPR, aligned_offset,
13725 			     size_int (DECL_OFFSET_ALIGN (field)
13726 				       / BITS_PER_UNIT));
13727     }
13728 
13729   /* Otherwise, take the offset from that of the field.  Substitute
13730      any PLACEHOLDER_EXPR that we have.  */
13731   else
13732     return SUBSTITUTE_PLACEHOLDER_IN_EXPR (DECL_FIELD_OFFSET (field), exp);
13733 }
13734 
13735 /* Return the machine mode of T.  For vectors, returns the mode of the
13736    inner type.  The main use case is to feed the result to HONOR_NANS,
13737    avoiding the BLKmode that a direct TYPE_MODE (T) might return.  */
13738 
13739 machine_mode
13740 element_mode (const_tree t)
13741 {
13742   if (!TYPE_P (t))
13743     t = TREE_TYPE (t);
13744   if (VECTOR_TYPE_P (t) || TREE_CODE (t) == COMPLEX_TYPE)
13745     t = TREE_TYPE (t);
13746   return TYPE_MODE (t);
13747 }
13748 
13749 /* Vector types need to re-check the target flags each time we report
13750    the machine mode.  We need to do this because attribute target can
13751    change the result of vector_mode_supported_p and have_regs_of_mode
13752    on a per-function basis.  Thus the TYPE_MODE of a VECTOR_TYPE can
13753    change on a per-function basis.  */
13754 /* ??? Possibly a better solution is to run through all the types
13755    referenced by a function and re-compute the TYPE_MODE once, rather
13756    than make the TYPE_MODE macro call a function.  */
13757 
13758 machine_mode
13759 vector_type_mode (const_tree t)
13760 {
13761   machine_mode mode;
13762 
13763   gcc_assert (TREE_CODE (t) == VECTOR_TYPE);
13764 
13765   mode = t->type_common.mode;
13766   if (VECTOR_MODE_P (mode)
13767       && (!targetm.vector_mode_supported_p (mode)
13768 	  || !have_regs_of_mode[mode]))
13769     {
13770       scalar_int_mode innermode;
13771 
13772       /* For integers, try mapping it to a same-sized scalar mode.  */
13773       if (is_int_mode (TREE_TYPE (t)->type_common.mode, &innermode))
13774 	{
13775 	  poly_int64 size = (TYPE_VECTOR_SUBPARTS (t)
13776 			     * GET_MODE_BITSIZE (innermode));
13777 	  scalar_int_mode mode;
13778 	  if (int_mode_for_size (size, 0).exists (&mode)
13779 	      && have_regs_of_mode[mode])
13780 	    return mode;
13781 	}
13782 
13783       return BLKmode;
13784     }
13785 
13786   return mode;
13787 }
13788 
13789 /* Verify that basic properties of T match TV and thus T can be a variant of
13790    TV.  TV should be the more specified variant (i.e. the main variant).  */
13791 
13792 static bool
13793 verify_type_variant (const_tree t, tree tv)
13794 {
13795   /* Type variant can differ by:
13796 
13797      - TYPE_QUALS: TYPE_READONLY, TYPE_VOLATILE, TYPE_ATOMIC, TYPE_RESTRICT,
13798                    ENCODE_QUAL_ADDR_SPACE.
13799      - main variant may be TYPE_COMPLETE_P and variant types !TYPE_COMPLETE_P
13800        in this case some values may not be set in the variant types
13801        (see TYPE_COMPLETE_P checks).
13802      - it is possible to have TYPE_ARTIFICIAL variant of non-artifical type
13803      - by TYPE_NAME and attributes (i.e. when variant originate by typedef)
13804      - TYPE_CANONICAL (TYPE_ALIAS_SET is the same among variants)
13805      - by the alignment: TYPE_ALIGN and TYPE_USER_ALIGN
13806      - during LTO by TYPE_CONTEXT if type is TYPE_FILE_SCOPE_P
13807        this is necessary to make it possible to merge types form different TUs
13808      - arrays, pointers and references may have TREE_TYPE that is a variant
13809        of TREE_TYPE of their main variants.
13810      - aggregates may have new TYPE_FIELDS list that list variants of
13811        the main variant TYPE_FIELDS.
13812      - vector types may differ by TYPE_VECTOR_OPAQUE
13813    */
13814 
13815   /* Convenience macro for matching individual fields.  */
13816 #define verify_variant_match(flag)					    \
13817   do {									    \
13818     if (flag (tv) != flag (t))						    \
13819       {									    \
13820 	error ("type variant differs by %s", #flag);			    \
13821 	debug_tree (tv);						    \
13822 	return false;							    \
13823       }									    \
13824   } while (false)
13825 
13826   /* tree_base checks.  */
13827 
13828   verify_variant_match (TREE_CODE);
13829   /* FIXME: Ada builds non-artificial variants of artificial types.  */
13830   if (TYPE_ARTIFICIAL (tv) && 0)
13831     verify_variant_match (TYPE_ARTIFICIAL);
13832   if (POINTER_TYPE_P (tv))
13833     verify_variant_match (TYPE_REF_CAN_ALIAS_ALL);
13834   /* FIXME: TYPE_SIZES_GIMPLIFIED may differs for Ada build.  */
13835   verify_variant_match (TYPE_UNSIGNED);
13836   verify_variant_match (TYPE_PACKED);
13837   if (TREE_CODE (t) == REFERENCE_TYPE)
13838     verify_variant_match (TYPE_REF_IS_RVALUE);
13839   if (AGGREGATE_TYPE_P (t))
13840     verify_variant_match (TYPE_REVERSE_STORAGE_ORDER);
13841   else
13842     verify_variant_match (TYPE_SATURATING);
13843   /* FIXME: This check trigger during libstdc++ build.  */
13844   if (RECORD_OR_UNION_TYPE_P (t) && COMPLETE_TYPE_P (t) && 0)
13845     verify_variant_match (TYPE_FINAL_P);
13846 
13847   /* tree_type_common checks.  */
13848 
13849   if (COMPLETE_TYPE_P (t))
13850     {
13851       verify_variant_match (TYPE_MODE);
13852       if (TREE_CODE (TYPE_SIZE (t)) != PLACEHOLDER_EXPR
13853 	  && TREE_CODE (TYPE_SIZE (tv)) != PLACEHOLDER_EXPR)
13854 	verify_variant_match (TYPE_SIZE);
13855       if (TREE_CODE (TYPE_SIZE_UNIT (t)) != PLACEHOLDER_EXPR
13856 	  && TREE_CODE (TYPE_SIZE_UNIT (tv)) != PLACEHOLDER_EXPR
13857 	  && TYPE_SIZE_UNIT (t) != TYPE_SIZE_UNIT (tv))
13858 	{
13859 	  gcc_assert (!operand_equal_p (TYPE_SIZE_UNIT (t),
13860 					TYPE_SIZE_UNIT (tv), 0));
13861 	  error ("type variant has different TYPE_SIZE_UNIT");
13862 	  debug_tree (tv);
13863 	  error ("type variant%'s TYPE_SIZE_UNIT");
13864 	  debug_tree (TYPE_SIZE_UNIT (tv));
13865 	  error ("type%'s TYPE_SIZE_UNIT");
13866 	  debug_tree (TYPE_SIZE_UNIT (t));
13867 	  return false;
13868 	}
13869       verify_variant_match (TYPE_NEEDS_CONSTRUCTING);
13870     }
13871   verify_variant_match (TYPE_PRECISION);
13872   if (RECORD_OR_UNION_TYPE_P (t))
13873     verify_variant_match (TYPE_TRANSPARENT_AGGR);
13874   else if (TREE_CODE (t) == ARRAY_TYPE)
13875     verify_variant_match (TYPE_NONALIASED_COMPONENT);
13876   /* During LTO we merge variant lists from diferent translation units
13877      that may differ BY TYPE_CONTEXT that in turn may point
13878      to TRANSLATION_UNIT_DECL.
13879      Ada also builds variants of types with different TYPE_CONTEXT.   */
13880   if ((!in_lto_p || !TYPE_FILE_SCOPE_P (t)) && 0)
13881     verify_variant_match (TYPE_CONTEXT);
13882   verify_variant_match (TYPE_STRING_FLAG);
13883   if (TYPE_ALIAS_SET_KNOWN_P (t))
13884     {
13885       error ("type variant with TYPE_ALIAS_SET_KNOWN_P");
13886       debug_tree (tv);
13887       return false;
13888     }
13889 
13890   /* tree_type_non_common checks.  */
13891 
13892   /* FIXME: C FE uses TYPE_VFIELD to record C_TYPE_INCOMPLETE_VARS
13893      and dangle the pointer from time to time.  */
13894   if (RECORD_OR_UNION_TYPE_P (t) && TYPE_VFIELD (t) != TYPE_VFIELD (tv)
13895       && (in_lto_p || !TYPE_VFIELD (tv)
13896 	  || TREE_CODE (TYPE_VFIELD (tv)) != TREE_LIST))
13897     {
13898       error ("type variant has different TYPE_VFIELD");
13899       debug_tree (tv);
13900       return false;
13901     }
13902   if ((TREE_CODE (t) == ENUMERAL_TYPE && COMPLETE_TYPE_P (t))
13903        || TREE_CODE (t) == INTEGER_TYPE
13904        || TREE_CODE (t) == BOOLEAN_TYPE
13905        || TREE_CODE (t) == REAL_TYPE
13906        || TREE_CODE (t) == FIXED_POINT_TYPE)
13907     {
13908       verify_variant_match (TYPE_MAX_VALUE);
13909       verify_variant_match (TYPE_MIN_VALUE);
13910     }
13911   if (TREE_CODE (t) == METHOD_TYPE)
13912     verify_variant_match (TYPE_METHOD_BASETYPE);
13913   if (TREE_CODE (t) == OFFSET_TYPE)
13914     verify_variant_match (TYPE_OFFSET_BASETYPE);
13915   if (TREE_CODE (t) == ARRAY_TYPE)
13916     verify_variant_match (TYPE_ARRAY_MAX_SIZE);
13917   /* FIXME: Be lax and allow TYPE_BINFO to be missing in variant types
13918      or even type's main variant.  This is needed to make bootstrap pass
13919      and the bug seems new in GCC 5.
13920      C++ FE should be updated to make this consistent and we should check
13921      that TYPE_BINFO is always NULL for !COMPLETE_TYPE_P and otherwise there
13922      is a match with main variant.
13923 
13924      Also disable the check for Java for now because of parser hack that builds
13925      first an dummy BINFO and then sometimes replace it by real BINFO in some
13926      of the copies.  */
13927   if (RECORD_OR_UNION_TYPE_P (t) && TYPE_BINFO (t) && TYPE_BINFO (tv)
13928       && TYPE_BINFO (t) != TYPE_BINFO (tv)
13929       /* FIXME: Java sometimes keep dump TYPE_BINFOs on variant types.
13930 	 Since there is no cheap way to tell C++/Java type w/o LTO, do checking
13931 	 at LTO time only.  */
13932       && (in_lto_p && odr_type_p (t)))
13933     {
13934       error ("type variant has different TYPE_BINFO");
13935       debug_tree (tv);
13936       error ("type variant%'s TYPE_BINFO");
13937       debug_tree (TYPE_BINFO (tv));
13938       error ("type%'s TYPE_BINFO");
13939       debug_tree (TYPE_BINFO (t));
13940       return false;
13941     }
13942 
13943   /* Check various uses of TYPE_VALUES_RAW.  */
13944   if (TREE_CODE (t) == ENUMERAL_TYPE
13945       && TYPE_VALUES (t))
13946     verify_variant_match (TYPE_VALUES);
13947   else if (TREE_CODE (t) == ARRAY_TYPE)
13948     verify_variant_match (TYPE_DOMAIN);
13949   /* Permit incomplete variants of complete type.  While FEs may complete
13950      all variants, this does not happen for C++ templates in all cases.  */
13951   else if (RECORD_OR_UNION_TYPE_P (t)
13952 	   && COMPLETE_TYPE_P (t)
13953 	   && TYPE_FIELDS (t) != TYPE_FIELDS (tv))
13954     {
13955       tree f1, f2;
13956 
13957       /* Fortran builds qualified variants as new records with items of
13958 	 qualified type. Verify that they looks same.  */
13959       for (f1 = TYPE_FIELDS (t), f2 = TYPE_FIELDS (tv);
13960 	   f1 && f2;
13961 	   f1 = TREE_CHAIN (f1), f2 = TREE_CHAIN (f2))
13962 	if (TREE_CODE (f1) != FIELD_DECL || TREE_CODE (f2) != FIELD_DECL
13963 	    || (TYPE_MAIN_VARIANT (TREE_TYPE (f1))
13964 		 != TYPE_MAIN_VARIANT (TREE_TYPE (f2))
13965 		/* FIXME: gfc_nonrestricted_type builds all types as variants
13966 		   with exception of pointer types.  It deeply copies the type
13967 		   which means that we may end up with a variant type
13968 		   referring non-variant pointer.  We may change it to
13969 		   produce types as variants, too, like
13970 		   objc_get_protocol_qualified_type does.  */
13971 		&& !POINTER_TYPE_P (TREE_TYPE (f1)))
13972 	    || DECL_FIELD_OFFSET (f1) != DECL_FIELD_OFFSET (f2)
13973 	    || DECL_FIELD_BIT_OFFSET (f1) != DECL_FIELD_BIT_OFFSET (f2))
13974 	  break;
13975       if (f1 || f2)
13976 	{
13977 	  error ("type variant has different TYPE_FIELDS");
13978 	  debug_tree (tv);
13979 	  error ("first mismatch is field");
13980 	  debug_tree (f1);
13981 	  error ("and field");
13982 	  debug_tree (f2);
13983           return false;
13984 	}
13985     }
13986   else if ((TREE_CODE (t) == FUNCTION_TYPE || TREE_CODE (t) == METHOD_TYPE))
13987     verify_variant_match (TYPE_ARG_TYPES);
13988   /* For C++ the qualified variant of array type is really an array type
13989      of qualified TREE_TYPE.
13990      objc builds variants of pointer where pointer to type is a variant, too
13991      in objc_get_protocol_qualified_type.  */
13992   if (TREE_TYPE (t) != TREE_TYPE (tv)
13993       && ((TREE_CODE (t) != ARRAY_TYPE
13994 	   && !POINTER_TYPE_P (t))
13995 	  || TYPE_MAIN_VARIANT (TREE_TYPE (t))
13996 	     != TYPE_MAIN_VARIANT (TREE_TYPE (tv))))
13997     {
13998       error ("type variant has different TREE_TYPE");
13999       debug_tree (tv);
14000       error ("type variant%'s TREE_TYPE");
14001       debug_tree (TREE_TYPE (tv));
14002       error ("type%'s TREE_TYPE");
14003       debug_tree (TREE_TYPE (t));
14004       return false;
14005     }
14006   if (type_with_alias_set_p (t)
14007       && !gimple_canonical_types_compatible_p (t, tv, false))
14008     {
14009       error ("type is not compatible with its variant");
14010       debug_tree (tv);
14011       error ("type variant%'s TREE_TYPE");
14012       debug_tree (TREE_TYPE (tv));
14013       error ("type%'s TREE_TYPE");
14014       debug_tree (TREE_TYPE (t));
14015       return false;
14016     }
14017   return true;
14018 #undef verify_variant_match
14019 }
14020 
14021 
14022 /* The TYPE_CANONICAL merging machinery.  It should closely resemble
14023    the middle-end types_compatible_p function.  It needs to avoid
14024    claiming types are different for types that should be treated
14025    the same with respect to TBAA.  Canonical types are also used
14026    for IL consistency checks via the useless_type_conversion_p
14027    predicate which does not handle all type kinds itself but falls
14028    back to pointer-comparison of TYPE_CANONICAL for aggregates
14029    for example.  */
14030 
14031 /* Return true if TYPE_UNSIGNED of TYPE should be ignored for canonical
14032    type calculation because we need to allow inter-operability between signed
14033    and unsigned variants.  */
14034 
14035 bool
14036 type_with_interoperable_signedness (const_tree type)
14037 {
14038   /* Fortran standard require C_SIGNED_CHAR to be interoperable with both
14039      signed char and unsigned char.  Similarly fortran FE builds
14040      C_SIZE_T as signed type, while C defines it unsigned.  */
14041 
14042   return tree_code_for_canonical_type_merging (TREE_CODE (type))
14043 	   == INTEGER_TYPE
14044          && (TYPE_PRECISION (type) == TYPE_PRECISION (signed_char_type_node)
14045 	     || TYPE_PRECISION (type) == TYPE_PRECISION (size_type_node));
14046 }
14047 
14048 /* Return true iff T1 and T2 are structurally identical for what
14049    TBAA is concerned.
14050    This function is used both by lto.c canonical type merging and by the
14051    verifier.  If TRUST_TYPE_CANONICAL we do not look into structure of types
14052    that have TYPE_CANONICAL defined and assume them equivalent.  This is useful
14053    only for LTO because only in these cases TYPE_CANONICAL equivalence
14054    correspond to one defined by gimple_canonical_types_compatible_p.  */
14055 
14056 bool
14057 gimple_canonical_types_compatible_p (const_tree t1, const_tree t2,
14058 				     bool trust_type_canonical)
14059 {
14060   /* Type variants should be same as the main variant.  When not doing sanity
14061      checking to verify this fact, go to main variants and save some work.  */
14062   if (trust_type_canonical)
14063     {
14064       t1 = TYPE_MAIN_VARIANT (t1);
14065       t2 = TYPE_MAIN_VARIANT (t2);
14066     }
14067 
14068   /* Check first for the obvious case of pointer identity.  */
14069   if (t1 == t2)
14070     return true;
14071 
14072   /* Check that we have two types to compare.  */
14073   if (t1 == NULL_TREE || t2 == NULL_TREE)
14074     return false;
14075 
14076   /* We consider complete types always compatible with incomplete type.
14077      This does not make sense for canonical type calculation and thus we
14078      need to ensure that we are never called on it.
14079 
14080      FIXME: For more correctness the function probably should have three modes
14081 	1) mode assuming that types are complete mathcing their structure
14082 	2) mode allowing incomplete types but producing equivalence classes
14083 	   and thus ignoring all info from complete types
14084 	3) mode allowing incomplete types to match complete but checking
14085 	   compatibility between complete types.
14086 
14087      1 and 2 can be used for canonical type calculation. 3 is the real
14088      definition of type compatibility that can be used i.e. for warnings during
14089      declaration merging.  */
14090 
14091   gcc_assert (!trust_type_canonical
14092 	      || (type_with_alias_set_p (t1) && type_with_alias_set_p (t2)));
14093   /* If the types have been previously registered and found equal
14094      they still are.  */
14095 
14096   if (TYPE_CANONICAL (t1) && TYPE_CANONICAL (t2)
14097       && trust_type_canonical)
14098     {
14099       /* Do not use TYPE_CANONICAL of pointer types.  For LTO streamed types
14100 	 they are always NULL, but they are set to non-NULL for types
14101 	 constructed by build_pointer_type and variants.  In this case the
14102 	 TYPE_CANONICAL is more fine grained than the equivalnce we test (where
14103 	 all pointers are considered equal.  Be sure to not return false
14104 	 negatives.  */
14105       gcc_checking_assert (canonical_type_used_p (t1)
14106 			   && canonical_type_used_p (t2));
14107       return TYPE_CANONICAL (t1) == TYPE_CANONICAL (t2);
14108     }
14109 
14110   /* Can't be the same type if the types don't have the same code.  */
14111   enum tree_code code = tree_code_for_canonical_type_merging (TREE_CODE (t1));
14112   if (code != tree_code_for_canonical_type_merging (TREE_CODE (t2)))
14113     return false;
14114 
14115   /* Qualifiers do not matter for canonical type comparison purposes.  */
14116 
14117   /* Void types and nullptr types are always the same.  */
14118   if (TREE_CODE (t1) == VOID_TYPE
14119       || TREE_CODE (t1) == NULLPTR_TYPE)
14120     return true;
14121 
14122   /* Can't be the same type if they have different mode.  */
14123   if (TYPE_MODE (t1) != TYPE_MODE (t2))
14124     return false;
14125 
14126   /* Non-aggregate types can be handled cheaply.  */
14127   if (INTEGRAL_TYPE_P (t1)
14128       || SCALAR_FLOAT_TYPE_P (t1)
14129       || FIXED_POINT_TYPE_P (t1)
14130       || TREE_CODE (t1) == VECTOR_TYPE
14131       || TREE_CODE (t1) == COMPLEX_TYPE
14132       || TREE_CODE (t1) == OFFSET_TYPE
14133       || POINTER_TYPE_P (t1))
14134     {
14135       /* Can't be the same type if they have different recision.  */
14136       if (TYPE_PRECISION (t1) != TYPE_PRECISION (t2))
14137 	return false;
14138 
14139       /* In some cases the signed and unsigned types are required to be
14140 	 inter-operable.  */
14141       if (TYPE_UNSIGNED (t1) != TYPE_UNSIGNED (t2)
14142 	  && !type_with_interoperable_signedness (t1))
14143 	return false;
14144 
14145       /* Fortran's C_SIGNED_CHAR is !TYPE_STRING_FLAG but needs to be
14146 	 interoperable with "signed char".  Unless all frontends are revisited
14147 	 to agree on these types, we must ignore the flag completely.  */
14148 
14149       /* Fortran standard define C_PTR type that is compatible with every
14150  	 C pointer.  For this reason we need to glob all pointers into one.
14151 	 Still pointers in different address spaces are not compatible.  */
14152       if (POINTER_TYPE_P (t1))
14153 	{
14154 	  if (TYPE_ADDR_SPACE (TREE_TYPE (t1))
14155 	      != TYPE_ADDR_SPACE (TREE_TYPE (t2)))
14156 	    return false;
14157 	}
14158 
14159       /* Tail-recurse to components.  */
14160       if (TREE_CODE (t1) == VECTOR_TYPE
14161 	  || TREE_CODE (t1) == COMPLEX_TYPE)
14162 	return gimple_canonical_types_compatible_p (TREE_TYPE (t1),
14163 						    TREE_TYPE (t2),
14164 						    trust_type_canonical);
14165 
14166       return true;
14167     }
14168 
14169   /* Do type-specific comparisons.  */
14170   switch (TREE_CODE (t1))
14171     {
14172     case ARRAY_TYPE:
14173       /* Array types are the same if the element types are the same and
14174 	 the number of elements are the same.  */
14175       if (!gimple_canonical_types_compatible_p (TREE_TYPE (t1), TREE_TYPE (t2),
14176 						trust_type_canonical)
14177 	  || TYPE_STRING_FLAG (t1) != TYPE_STRING_FLAG (t2)
14178 	  || TYPE_REVERSE_STORAGE_ORDER (t1) != TYPE_REVERSE_STORAGE_ORDER (t2)
14179 	  || TYPE_NONALIASED_COMPONENT (t1) != TYPE_NONALIASED_COMPONENT (t2))
14180 	return false;
14181       else
14182 	{
14183 	  tree i1 = TYPE_DOMAIN (t1);
14184 	  tree i2 = TYPE_DOMAIN (t2);
14185 
14186 	  /* For an incomplete external array, the type domain can be
14187  	     NULL_TREE.  Check this condition also.  */
14188 	  if (i1 == NULL_TREE && i2 == NULL_TREE)
14189 	    return true;
14190 	  else if (i1 == NULL_TREE || i2 == NULL_TREE)
14191 	    return false;
14192 	  else
14193 	    {
14194 	      tree min1 = TYPE_MIN_VALUE (i1);
14195 	      tree min2 = TYPE_MIN_VALUE (i2);
14196 	      tree max1 = TYPE_MAX_VALUE (i1);
14197 	      tree max2 = TYPE_MAX_VALUE (i2);
14198 
14199 	      /* The minimum/maximum values have to be the same.  */
14200 	      if ((min1 == min2
14201 		   || (min1 && min2
14202 		       && ((TREE_CODE (min1) == PLACEHOLDER_EXPR
14203 			    && TREE_CODE (min2) == PLACEHOLDER_EXPR)
14204 		           || operand_equal_p (min1, min2, 0))))
14205 		  && (max1 == max2
14206 		      || (max1 && max2
14207 			  && ((TREE_CODE (max1) == PLACEHOLDER_EXPR
14208 			       && TREE_CODE (max2) == PLACEHOLDER_EXPR)
14209 			      || operand_equal_p (max1, max2, 0)))))
14210 		return true;
14211 	      else
14212 		return false;
14213 	    }
14214 	}
14215 
14216     case METHOD_TYPE:
14217     case FUNCTION_TYPE:
14218       /* Function types are the same if the return type and arguments types
14219 	 are the same.  */
14220       if (!gimple_canonical_types_compatible_p (TREE_TYPE (t1), TREE_TYPE (t2),
14221 						trust_type_canonical))
14222 	return false;
14223 
14224       if (TYPE_ARG_TYPES (t1) == TYPE_ARG_TYPES (t2))
14225 	return true;
14226       else
14227 	{
14228 	  tree parms1, parms2;
14229 
14230 	  for (parms1 = TYPE_ARG_TYPES (t1), parms2 = TYPE_ARG_TYPES (t2);
14231 	       parms1 && parms2;
14232 	       parms1 = TREE_CHAIN (parms1), parms2 = TREE_CHAIN (parms2))
14233 	    {
14234 	      if (!gimple_canonical_types_compatible_p
14235 		     (TREE_VALUE (parms1), TREE_VALUE (parms2),
14236 		      trust_type_canonical))
14237 		return false;
14238 	    }
14239 
14240 	  if (parms1 || parms2)
14241 	    return false;
14242 
14243 	  return true;
14244 	}
14245 
14246     case RECORD_TYPE:
14247     case UNION_TYPE:
14248     case QUAL_UNION_TYPE:
14249       {
14250 	tree f1, f2;
14251 
14252 	/* Don't try to compare variants of an incomplete type, before
14253 	   TYPE_FIELDS has been copied around.  */
14254 	if (!COMPLETE_TYPE_P (t1) && !COMPLETE_TYPE_P (t2))
14255 	  return true;
14256 
14257 
14258 	if (TYPE_REVERSE_STORAGE_ORDER (t1) != TYPE_REVERSE_STORAGE_ORDER (t2))
14259 	  return false;
14260 
14261 	/* For aggregate types, all the fields must be the same.  */
14262 	for (f1 = TYPE_FIELDS (t1), f2 = TYPE_FIELDS (t2);
14263 	     f1 || f2;
14264 	     f1 = TREE_CHAIN (f1), f2 = TREE_CHAIN (f2))
14265 	  {
14266 	    /* Skip non-fields and zero-sized fields.  */
14267 	    while (f1 && (TREE_CODE (f1) != FIELD_DECL
14268 			  || (DECL_SIZE (f1)
14269 			      && integer_zerop (DECL_SIZE (f1)))))
14270 	      f1 = TREE_CHAIN (f1);
14271 	    while (f2 && (TREE_CODE (f2) != FIELD_DECL
14272 			  || (DECL_SIZE (f2)
14273 			      && integer_zerop (DECL_SIZE (f2)))))
14274 	      f2 = TREE_CHAIN (f2);
14275 	    if (!f1 || !f2)
14276 	      break;
14277 	    /* The fields must have the same name, offset and type.  */
14278 	    if (DECL_NONADDRESSABLE_P (f1) != DECL_NONADDRESSABLE_P (f2)
14279 		|| !gimple_compare_field_offset (f1, f2)
14280 		|| !gimple_canonical_types_compatible_p
14281 		      (TREE_TYPE (f1), TREE_TYPE (f2),
14282 		       trust_type_canonical))
14283 	      return false;
14284 	  }
14285 
14286 	/* If one aggregate has more fields than the other, they
14287 	   are not the same.  */
14288 	if (f1 || f2)
14289 	  return false;
14290 
14291 	return true;
14292       }
14293 
14294     default:
14295       /* Consider all types with language specific trees in them mutually
14296 	 compatible.  This is executed only from verify_type and false
14297          positives can be tolerated.  */
14298       gcc_assert (!in_lto_p);
14299       return true;
14300     }
14301 }
14302 
14303 /* Verify type T.  */
14304 
14305 void
14306 verify_type (const_tree t)
14307 {
14308   bool error_found = false;
14309   tree mv = TYPE_MAIN_VARIANT (t);
14310   if (!mv)
14311     {
14312       error ("Main variant is not defined");
14313       error_found = true;
14314     }
14315   else if (mv != TYPE_MAIN_VARIANT (mv))
14316     {
14317       error ("TYPE_MAIN_VARIANT has different TYPE_MAIN_VARIANT");
14318       debug_tree (mv);
14319       error_found = true;
14320     }
14321   else if (t != mv && !verify_type_variant (t, mv))
14322     error_found = true;
14323 
14324   tree ct = TYPE_CANONICAL (t);
14325   if (!ct)
14326     ;
14327   else if (TYPE_CANONICAL (t) != ct)
14328     {
14329       error ("TYPE_CANONICAL has different TYPE_CANONICAL");
14330       debug_tree (ct);
14331       error_found = true;
14332     }
14333   /* Method and function types cannot be used to address memory and thus
14334      TYPE_CANONICAL really matters only for determining useless conversions.
14335 
14336      FIXME: C++ FE produce declarations of builtin functions that are not
14337      compatible with main variants.  */
14338   else if (TREE_CODE (t) == FUNCTION_TYPE)
14339     ;
14340   else if (t != ct
14341 	   /* FIXME: gimple_canonical_types_compatible_p cannot compare types
14342 	      with variably sized arrays because their sizes possibly
14343 	      gimplified to different variables.  */
14344 	   && !variably_modified_type_p (ct, NULL)
14345 	   && !gimple_canonical_types_compatible_p (t, ct, false)
14346 	   && COMPLETE_TYPE_P (t))
14347     {
14348       error ("TYPE_CANONICAL is not compatible");
14349       debug_tree (ct);
14350       error_found = true;
14351     }
14352 
14353   if (COMPLETE_TYPE_P (t) && TYPE_CANONICAL (t)
14354       && TYPE_MODE (t) != TYPE_MODE (TYPE_CANONICAL (t)))
14355     {
14356       error ("TYPE_MODE of TYPE_CANONICAL is not compatible");
14357       debug_tree (ct);
14358       error_found = true;
14359     }
14360   if (TYPE_MAIN_VARIANT (t) == t && ct && TYPE_MAIN_VARIANT (ct) != ct)
14361    {
14362       error ("TYPE_CANONICAL of main variant is not main variant");
14363       debug_tree (ct);
14364       debug_tree (TYPE_MAIN_VARIANT (ct));
14365       error_found = true;
14366    }
14367 
14368 
14369   /* Check various uses of TYPE_MIN_VALUE_RAW.  */
14370   if (RECORD_OR_UNION_TYPE_P (t))
14371     {
14372       /* FIXME: C FE uses TYPE_VFIELD to record C_TYPE_INCOMPLETE_VARS
14373 	 and danagle the pointer from time to time.  */
14374       if (TYPE_VFIELD (t)
14375 	  && TREE_CODE (TYPE_VFIELD (t)) != FIELD_DECL
14376 	  && TREE_CODE (TYPE_VFIELD (t)) != TREE_LIST)
14377 	{
14378 	  error ("TYPE_VFIELD is not FIELD_DECL nor TREE_LIST");
14379 	  debug_tree (TYPE_VFIELD (t));
14380 	  error_found = true;
14381 	}
14382     }
14383   else if (TREE_CODE (t) == POINTER_TYPE)
14384     {
14385       if (TYPE_NEXT_PTR_TO (t)
14386 	  && TREE_CODE (TYPE_NEXT_PTR_TO (t)) != POINTER_TYPE)
14387 	{
14388 	  error ("TYPE_NEXT_PTR_TO is not POINTER_TYPE");
14389 	  debug_tree (TYPE_NEXT_PTR_TO (t));
14390 	  error_found = true;
14391 	}
14392     }
14393   else if (TREE_CODE (t) == REFERENCE_TYPE)
14394     {
14395       if (TYPE_NEXT_REF_TO (t)
14396 	  && TREE_CODE (TYPE_NEXT_REF_TO (t)) != REFERENCE_TYPE)
14397 	{
14398 	  error ("TYPE_NEXT_REF_TO is not REFERENCE_TYPE");
14399 	  debug_tree (TYPE_NEXT_REF_TO (t));
14400 	  error_found = true;
14401 	}
14402     }
14403   else if (INTEGRAL_TYPE_P (t) || TREE_CODE (t) == REAL_TYPE
14404 	   || TREE_CODE (t) == FIXED_POINT_TYPE)
14405     {
14406       /* FIXME: The following check should pass:
14407 	  useless_type_conversion_p (const_cast <tree> (t),
14408 				     TREE_TYPE (TYPE_MIN_VALUE (t))
14409 	 but does not for C sizetypes in LTO.  */
14410     }
14411 
14412   /* Check various uses of TYPE_MAXVAL_RAW.  */
14413   if (RECORD_OR_UNION_TYPE_P (t))
14414     {
14415       if (!TYPE_BINFO (t))
14416 	;
14417       else if (TREE_CODE (TYPE_BINFO (t)) != TREE_BINFO)
14418 	{
14419 	  error ("TYPE_BINFO is not TREE_BINFO");
14420 	  debug_tree (TYPE_BINFO (t));
14421 	  error_found = true;
14422 	}
14423       else if (TREE_TYPE (TYPE_BINFO (t)) != TYPE_MAIN_VARIANT (t))
14424 	{
14425 	  error ("TYPE_BINFO type is not TYPE_MAIN_VARIANT");
14426 	  debug_tree (TREE_TYPE (TYPE_BINFO (t)));
14427 	  error_found = true;
14428 	}
14429     }
14430   else if (TREE_CODE (t) == FUNCTION_TYPE || TREE_CODE (t) == METHOD_TYPE)
14431     {
14432       if (TYPE_METHOD_BASETYPE (t)
14433 	  && TREE_CODE (TYPE_METHOD_BASETYPE (t)) != RECORD_TYPE
14434 	  && TREE_CODE (TYPE_METHOD_BASETYPE (t)) != UNION_TYPE)
14435 	{
14436 	  error ("TYPE_METHOD_BASETYPE is not record nor union");
14437 	  debug_tree (TYPE_METHOD_BASETYPE (t));
14438 	  error_found = true;
14439 	}
14440     }
14441   else if (TREE_CODE (t) == OFFSET_TYPE)
14442     {
14443       if (TYPE_OFFSET_BASETYPE (t)
14444 	  && TREE_CODE (TYPE_OFFSET_BASETYPE (t)) != RECORD_TYPE
14445 	  && TREE_CODE (TYPE_OFFSET_BASETYPE (t)) != UNION_TYPE)
14446 	{
14447 	  error ("TYPE_OFFSET_BASETYPE is not record nor union");
14448 	  debug_tree (TYPE_OFFSET_BASETYPE (t));
14449 	  error_found = true;
14450 	}
14451     }
14452   else if (INTEGRAL_TYPE_P (t) || TREE_CODE (t) == REAL_TYPE
14453 	   || TREE_CODE (t) == FIXED_POINT_TYPE)
14454     {
14455       /* FIXME: The following check should pass:
14456 	  useless_type_conversion_p (const_cast <tree> (t),
14457 				     TREE_TYPE (TYPE_MAX_VALUE (t))
14458 	 but does not for C sizetypes in LTO.  */
14459     }
14460   else if (TREE_CODE (t) == ARRAY_TYPE)
14461     {
14462       if (TYPE_ARRAY_MAX_SIZE (t)
14463 	  && TREE_CODE (TYPE_ARRAY_MAX_SIZE (t)) != INTEGER_CST)
14464         {
14465 	  error ("TYPE_ARRAY_MAX_SIZE not INTEGER_CST");
14466 	  debug_tree (TYPE_ARRAY_MAX_SIZE (t));
14467 	  error_found = true;
14468         }
14469     }
14470   else if (TYPE_MAX_VALUE_RAW (t))
14471     {
14472       error ("TYPE_MAX_VALUE_RAW non-NULL");
14473       debug_tree (TYPE_MAX_VALUE_RAW (t));
14474       error_found = true;
14475     }
14476 
14477   if (TYPE_LANG_SLOT_1 (t) && in_lto_p)
14478     {
14479       error ("TYPE_LANG_SLOT_1 (binfo) field is non-NULL");
14480       debug_tree (TYPE_LANG_SLOT_1 (t));
14481       error_found = true;
14482     }
14483 
14484   /* Check various uses of TYPE_VALUES_RAW.  */
14485   if (TREE_CODE (t) == ENUMERAL_TYPE)
14486     for (tree l = TYPE_VALUES (t); l; l = TREE_CHAIN (l))
14487       {
14488 	tree value = TREE_VALUE (l);
14489 	tree name = TREE_PURPOSE (l);
14490 
14491 	/* C FE porduce INTEGER_CST of INTEGER_TYPE, while C++ FE uses
14492  	   CONST_DECL of ENUMERAL TYPE.  */
14493 	if (TREE_CODE (value) != INTEGER_CST && TREE_CODE (value) != CONST_DECL)
14494 	  {
14495 	    error ("Enum value is not CONST_DECL or INTEGER_CST");
14496 	    debug_tree (value);
14497 	    debug_tree (name);
14498 	    error_found = true;
14499 	  }
14500 	if (TREE_CODE (TREE_TYPE (value)) != INTEGER_TYPE
14501 	    && !useless_type_conversion_p (const_cast <tree> (t), TREE_TYPE (value)))
14502 	  {
14503 	    error ("Enum value type is not INTEGER_TYPE nor convertible to the enum");
14504 	    debug_tree (value);
14505 	    debug_tree (name);
14506 	    error_found = true;
14507 	  }
14508 	if (TREE_CODE (name) != IDENTIFIER_NODE)
14509 	  {
14510 	    error ("Enum value name is not IDENTIFIER_NODE");
14511 	    debug_tree (value);
14512 	    debug_tree (name);
14513 	    error_found = true;
14514 	  }
14515       }
14516   else if (TREE_CODE (t) == ARRAY_TYPE)
14517     {
14518       if (TYPE_DOMAIN (t) && TREE_CODE (TYPE_DOMAIN (t)) != INTEGER_TYPE)
14519 	{
14520 	  error ("Array TYPE_DOMAIN is not integer type");
14521 	  debug_tree (TYPE_DOMAIN (t));
14522 	  error_found = true;
14523 	}
14524     }
14525   else if (RECORD_OR_UNION_TYPE_P (t))
14526     {
14527       if (TYPE_FIELDS (t) && !COMPLETE_TYPE_P (t) && in_lto_p)
14528 	{
14529 	  error ("TYPE_FIELDS defined in incomplete type");
14530 	  error_found = true;
14531 	}
14532       for (tree fld = TYPE_FIELDS (t); fld; fld = TREE_CHAIN (fld))
14533 	{
14534 	  /* TODO: verify properties of decls.  */
14535 	  if (TREE_CODE (fld) == FIELD_DECL)
14536 	    ;
14537 	  else if (TREE_CODE (fld) == TYPE_DECL)
14538 	    ;
14539 	  else if (TREE_CODE (fld) == CONST_DECL)
14540 	    ;
14541 	  else if (VAR_P (fld))
14542 	    ;
14543 	  else if (TREE_CODE (fld) == TEMPLATE_DECL)
14544 	    ;
14545 	  else if (TREE_CODE (fld) == USING_DECL)
14546 	    ;
14547 	  else if (TREE_CODE (fld) == FUNCTION_DECL)
14548 	    ;
14549 	  else
14550 	    {
14551 	      error ("Wrong tree in TYPE_FIELDS list");
14552 	      debug_tree (fld);
14553 	      error_found = true;
14554 	    }
14555 	}
14556     }
14557   else if (TREE_CODE (t) == INTEGER_TYPE
14558 	   || TREE_CODE (t) == BOOLEAN_TYPE
14559 	   || TREE_CODE (t) == OFFSET_TYPE
14560 	   || TREE_CODE (t) == REFERENCE_TYPE
14561 	   || TREE_CODE (t) == NULLPTR_TYPE
14562 	   || TREE_CODE (t) == POINTER_TYPE)
14563     {
14564       if (TYPE_CACHED_VALUES_P (t) != (TYPE_CACHED_VALUES (t) != NULL))
14565 	{
14566 	  error ("TYPE_CACHED_VALUES_P is %i while TYPE_CACHED_VALUES is %p",
14567 		 TYPE_CACHED_VALUES_P (t), (void *)TYPE_CACHED_VALUES (t));
14568 	  error_found = true;
14569 	}
14570       else if (TYPE_CACHED_VALUES_P (t) && TREE_CODE (TYPE_CACHED_VALUES (t)) != TREE_VEC)
14571 	{
14572 	  error ("TYPE_CACHED_VALUES is not TREE_VEC");
14573 	  debug_tree (TYPE_CACHED_VALUES (t));
14574 	  error_found = true;
14575 	}
14576       /* Verify just enough of cache to ensure that no one copied it to new type.
14577  	 All copying should go by copy_node that should clear it.  */
14578       else if (TYPE_CACHED_VALUES_P (t))
14579 	{
14580 	  int i;
14581 	  for (i = 0; i < TREE_VEC_LENGTH (TYPE_CACHED_VALUES (t)); i++)
14582 	    if (TREE_VEC_ELT (TYPE_CACHED_VALUES (t), i)
14583 		&& TREE_TYPE (TREE_VEC_ELT (TYPE_CACHED_VALUES (t), i)) != t)
14584 	      {
14585 		error ("wrong TYPE_CACHED_VALUES entry");
14586 		debug_tree (TREE_VEC_ELT (TYPE_CACHED_VALUES (t), i));
14587 		error_found = true;
14588 		break;
14589 	      }
14590 	}
14591     }
14592   else if (TREE_CODE (t) == FUNCTION_TYPE || TREE_CODE (t) == METHOD_TYPE)
14593     for (tree l = TYPE_ARG_TYPES (t); l; l = TREE_CHAIN (l))
14594       {
14595 	/* C++ FE uses TREE_PURPOSE to store initial values.  */
14596 	if (TREE_PURPOSE (l) && in_lto_p)
14597 	  {
14598 	    error ("TREE_PURPOSE is non-NULL in TYPE_ARG_TYPES list");
14599 	    debug_tree (l);
14600 	    error_found = true;
14601 	  }
14602 	if (!TYPE_P (TREE_VALUE (l)))
14603 	  {
14604 	    error ("Wrong entry in TYPE_ARG_TYPES list");
14605 	    debug_tree (l);
14606 	    error_found = true;
14607 	  }
14608       }
14609   else if (!is_lang_specific (t) && TYPE_VALUES_RAW (t))
14610     {
14611       error ("TYPE_VALUES_RAW field is non-NULL");
14612       debug_tree (TYPE_VALUES_RAW (t));
14613       error_found = true;
14614     }
14615   if (TREE_CODE (t) != INTEGER_TYPE
14616       && TREE_CODE (t) != BOOLEAN_TYPE
14617       && TREE_CODE (t) != OFFSET_TYPE
14618       && TREE_CODE (t) != REFERENCE_TYPE
14619       && TREE_CODE (t) != NULLPTR_TYPE
14620       && TREE_CODE (t) != POINTER_TYPE
14621       && TYPE_CACHED_VALUES_P (t))
14622     {
14623       error ("TYPE_CACHED_VALUES_P is set while it should not");
14624       error_found = true;
14625     }
14626   if (TYPE_STRING_FLAG (t)
14627       && TREE_CODE (t) != ARRAY_TYPE && TREE_CODE (t) != INTEGER_TYPE)
14628     {
14629       error ("TYPE_STRING_FLAG is set on wrong type code");
14630       error_found = true;
14631     }
14632 
14633   /* ipa-devirt makes an assumption that TYPE_METHOD_BASETYPE is always
14634      TYPE_MAIN_VARIANT and it would be odd to add methods only to variatns
14635      of a type. */
14636   if (TREE_CODE (t) == METHOD_TYPE
14637       && TYPE_MAIN_VARIANT (TYPE_METHOD_BASETYPE (t)) != TYPE_METHOD_BASETYPE (t))
14638     {
14639 	error ("TYPE_METHOD_BASETYPE is not main variant");
14640 	error_found = true;
14641     }
14642 
14643   if (error_found)
14644     {
14645       debug_tree (const_cast <tree> (t));
14646       internal_error ("verify_type failed");
14647     }
14648 }
14649 
14650 
14651 /* Return 1 if ARG interpreted as signed in its precision is known to be
14652    always positive or 2 if ARG is known to be always negative, or 3 if
14653    ARG may be positive or negative.  */
14654 
14655 int
14656 get_range_pos_neg (tree arg)
14657 {
14658   if (arg == error_mark_node)
14659     return 3;
14660 
14661   int prec = TYPE_PRECISION (TREE_TYPE (arg));
14662   int cnt = 0;
14663   if (TREE_CODE (arg) == INTEGER_CST)
14664     {
14665       wide_int w = wi::sext (wi::to_wide (arg), prec);
14666       if (wi::neg_p (w))
14667 	return 2;
14668       else
14669 	return 1;
14670     }
14671   while (CONVERT_EXPR_P (arg)
14672 	 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (arg, 0)))
14673 	 && TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (arg, 0))) <= prec)
14674     {
14675       arg = TREE_OPERAND (arg, 0);
14676       /* Narrower value zero extended into wider type
14677 	 will always result in positive values.  */
14678       if (TYPE_UNSIGNED (TREE_TYPE (arg))
14679 	  && TYPE_PRECISION (TREE_TYPE (arg)) < prec)
14680 	return 1;
14681       prec = TYPE_PRECISION (TREE_TYPE (arg));
14682       if (++cnt > 30)
14683 	return 3;
14684     }
14685 
14686   if (TREE_CODE (arg) != SSA_NAME)
14687     return 3;
14688   wide_int arg_min, arg_max;
14689   while (get_range_info (arg, &arg_min, &arg_max) != VR_RANGE)
14690     {
14691       gimple *g = SSA_NAME_DEF_STMT (arg);
14692       if (is_gimple_assign (g)
14693 	  && CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (g)))
14694 	{
14695 	  tree t = gimple_assign_rhs1 (g);
14696 	  if (INTEGRAL_TYPE_P (TREE_TYPE (t))
14697 	      && TYPE_PRECISION (TREE_TYPE (t)) <= prec)
14698 	    {
14699 	      if (TYPE_UNSIGNED (TREE_TYPE (t))
14700 		  && TYPE_PRECISION (TREE_TYPE (t)) < prec)
14701 		return 1;
14702 	      prec = TYPE_PRECISION (TREE_TYPE (t));
14703 	      arg = t;
14704 	      if (++cnt > 30)
14705 		return 3;
14706 	      continue;
14707 	    }
14708 	}
14709       return 3;
14710     }
14711   if (TYPE_UNSIGNED (TREE_TYPE (arg)))
14712     {
14713       /* For unsigned values, the "positive" range comes
14714 	 below the "negative" range.  */
14715       if (!wi::neg_p (wi::sext (arg_max, prec), SIGNED))
14716 	return 1;
14717       if (wi::neg_p (wi::sext (arg_min, prec), SIGNED))
14718 	return 2;
14719     }
14720   else
14721     {
14722       if (!wi::neg_p (wi::sext (arg_min, prec), SIGNED))
14723 	return 1;
14724       if (wi::neg_p (wi::sext (arg_max, prec), SIGNED))
14725 	return 2;
14726     }
14727   return 3;
14728 }
14729 
14730 
14731 
14732 
14733 /* Return true if ARG is marked with the nonnull attribute in the
14734    current function signature.  */
14735 
14736 bool
14737 nonnull_arg_p (const_tree arg)
14738 {
14739   tree t, attrs, fntype;
14740   unsigned HOST_WIDE_INT arg_num;
14741 
14742   gcc_assert (TREE_CODE (arg) == PARM_DECL
14743 	      && (POINTER_TYPE_P (TREE_TYPE (arg))
14744 		  || TREE_CODE (TREE_TYPE (arg)) == OFFSET_TYPE));
14745 
14746   /* The static chain decl is always non null.  */
14747   if (arg == cfun->static_chain_decl)
14748     return true;
14749 
14750   /* THIS argument of method is always non-NULL.  */
14751   if (TREE_CODE (TREE_TYPE (cfun->decl)) == METHOD_TYPE
14752       && arg == DECL_ARGUMENTS (cfun->decl)
14753       && flag_delete_null_pointer_checks)
14754     return true;
14755 
14756   /* Values passed by reference are always non-NULL.  */
14757   if (TREE_CODE (TREE_TYPE (arg)) == REFERENCE_TYPE
14758       && flag_delete_null_pointer_checks)
14759     return true;
14760 
14761   fntype = TREE_TYPE (cfun->decl);
14762   for (attrs = TYPE_ATTRIBUTES (fntype); attrs; attrs = TREE_CHAIN (attrs))
14763     {
14764       attrs = lookup_attribute ("nonnull", attrs);
14765 
14766       /* If "nonnull" wasn't specified, we know nothing about the argument.  */
14767       if (attrs == NULL_TREE)
14768 	return false;
14769 
14770       /* If "nonnull" applies to all the arguments, then ARG is non-null.  */
14771       if (TREE_VALUE (attrs) == NULL_TREE)
14772 	return true;
14773 
14774       /* Get the position number for ARG in the function signature.  */
14775       for (arg_num = 1, t = DECL_ARGUMENTS (cfun->decl);
14776 	   t;
14777 	   t = DECL_CHAIN (t), arg_num++)
14778 	{
14779 	  if (t == arg)
14780 	    break;
14781 	}
14782 
14783       gcc_assert (t == arg);
14784 
14785       /* Now see if ARG_NUM is mentioned in the nonnull list.  */
14786       for (t = TREE_VALUE (attrs); t; t = TREE_CHAIN (t))
14787 	{
14788 	  if (compare_tree_int (TREE_VALUE (t), arg_num) == 0)
14789 	    return true;
14790 	}
14791     }
14792 
14793   return false;
14794 }
14795 
14796 /* Combine LOC and BLOCK to a combined adhoc loc, retaining any range
14797    information.  */
14798 
14799 location_t
14800 set_block (location_t loc, tree block)
14801 {
14802   location_t pure_loc = get_pure_location (loc);
14803   source_range src_range = get_range_from_loc (line_table, loc);
14804   return COMBINE_LOCATION_DATA (line_table, pure_loc, src_range, block);
14805 }
14806 
14807 location_t
14808 set_source_range (tree expr, location_t start, location_t finish)
14809 {
14810   source_range src_range;
14811   src_range.m_start = start;
14812   src_range.m_finish = finish;
14813   return set_source_range (expr, src_range);
14814 }
14815 
14816 location_t
14817 set_source_range (tree expr, source_range src_range)
14818 {
14819   if (!EXPR_P (expr))
14820     return UNKNOWN_LOCATION;
14821 
14822   location_t pure_loc = get_pure_location (EXPR_LOCATION (expr));
14823   location_t adhoc = COMBINE_LOCATION_DATA (line_table,
14824 					    pure_loc,
14825 					    src_range,
14826 					    NULL);
14827   SET_EXPR_LOCATION (expr, adhoc);
14828   return adhoc;
14829 }
14830 
14831 /* Return EXPR, potentially wrapped with a node expression LOC,
14832    if !CAN_HAVE_LOCATION_P (expr).
14833 
14834    NON_LVALUE_EXPR is used for wrapping constants, apart from STRING_CST.
14835    VIEW_CONVERT_EXPR is used for wrapping non-constants and STRING_CST.
14836 
14837    Wrapper nodes can be identified using location_wrapper_p.  */
14838 
14839 tree
14840 maybe_wrap_with_location (tree expr, location_t loc)
14841 {
14842   if (expr == NULL)
14843     return NULL;
14844   if (loc == UNKNOWN_LOCATION)
14845     return expr;
14846   if (CAN_HAVE_LOCATION_P (expr))
14847     return expr;
14848   /* We should only be adding wrappers for constants and for decls,
14849      or for some exceptional tree nodes (e.g. BASELINK in the C++ FE).  */
14850   gcc_assert (CONSTANT_CLASS_P (expr)
14851 	      || DECL_P (expr)
14852 	      || EXCEPTIONAL_CLASS_P (expr));
14853 
14854   /* For now, don't add wrappers to exceptional tree nodes, to minimize
14855      any impact of the wrapper nodes.  */
14856   if (EXCEPTIONAL_CLASS_P (expr))
14857     return expr;
14858 
14859   /* If any auto_suppress_location_wrappers are active, don't create
14860      wrappers.  */
14861   if (suppress_location_wrappers > 0)
14862     return expr;
14863 
14864   tree_code code
14865     = (((CONSTANT_CLASS_P (expr) && TREE_CODE (expr) != STRING_CST)
14866 	|| (TREE_CODE (expr) == CONST_DECL && !TREE_STATIC (expr)))
14867        ? NON_LVALUE_EXPR : VIEW_CONVERT_EXPR);
14868   tree wrapper = build1_loc (loc, code, TREE_TYPE (expr), expr);
14869   /* Mark this node as being a wrapper.  */
14870   EXPR_LOCATION_WRAPPER_P (wrapper) = 1;
14871   return wrapper;
14872 }
14873 
14874 int suppress_location_wrappers;
14875 
14876 /* Return the name of combined function FN, for debugging purposes.  */
14877 
14878 const char *
14879 combined_fn_name (combined_fn fn)
14880 {
14881   if (builtin_fn_p (fn))
14882     {
14883       tree fndecl = builtin_decl_explicit (as_builtin_fn (fn));
14884       return IDENTIFIER_POINTER (DECL_NAME (fndecl));
14885     }
14886   else
14887     return internal_fn_name (as_internal_fn (fn));
14888 }
14889 
14890 /* Return a bitmap with a bit set corresponding to each argument in
14891    a function call type FNTYPE declared with attribute nonnull,
14892    or null if none of the function's argument are nonnull.  The caller
14893    must free the bitmap.  */
14894 
14895 bitmap
14896 get_nonnull_args (const_tree fntype)
14897 {
14898   if (fntype == NULL_TREE)
14899     return NULL;
14900 
14901   tree attrs = TYPE_ATTRIBUTES (fntype);
14902   if (!attrs)
14903     return NULL;
14904 
14905   bitmap argmap = NULL;
14906 
14907   /* A function declaration can specify multiple attribute nonnull,
14908      each with zero or more arguments.  The loop below creates a bitmap
14909      representing a union of all the arguments.  An empty (but non-null)
14910      bitmap means that all arguments have been declaraed nonnull.  */
14911   for ( ; attrs; attrs = TREE_CHAIN (attrs))
14912     {
14913       attrs = lookup_attribute ("nonnull", attrs);
14914       if (!attrs)
14915 	break;
14916 
14917       if (!argmap)
14918 	argmap = BITMAP_ALLOC (NULL);
14919 
14920       if (!TREE_VALUE (attrs))
14921 	{
14922 	  /* Clear the bitmap in case a previous attribute nonnull
14923 	     set it and this one overrides it for all arguments.  */
14924 	  bitmap_clear (argmap);
14925 	  return argmap;
14926 	}
14927 
14928       /* Iterate over the indices of the format arguments declared nonnull
14929 	 and set a bit for each.  */
14930       for (tree idx = TREE_VALUE (attrs); idx; idx = TREE_CHAIN (idx))
14931 	{
14932 	  unsigned int val = TREE_INT_CST_LOW (TREE_VALUE (idx)) - 1;
14933 	  bitmap_set_bit (argmap, val);
14934 	}
14935     }
14936 
14937   return argmap;
14938 }
14939 
14940 /* Returns true if TYPE is a type where it and all of its subobjects
14941    (recursively) are of structure, union, or array type.  */
14942 
14943 static bool
14944 default_is_empty_type (tree type)
14945 {
14946   if (RECORD_OR_UNION_TYPE_P (type))
14947     {
14948       for (tree field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
14949 	if (TREE_CODE (field) == FIELD_DECL
14950 	    && !DECL_PADDING_P (field)
14951 	    && !default_is_empty_type (TREE_TYPE (field)))
14952 	  return false;
14953       return true;
14954     }
14955   else if (TREE_CODE (type) == ARRAY_TYPE)
14956     return (integer_minus_onep (array_type_nelts (type))
14957 	    || TYPE_DOMAIN (type) == NULL_TREE
14958 	    || default_is_empty_type (TREE_TYPE (type)));
14959   return false;
14960 }
14961 
14962 /* Implement TARGET_EMPTY_RECORD_P.  Return true if TYPE is an empty type
14963    that shouldn't be passed via stack.  */
14964 
14965 bool
14966 default_is_empty_record (const_tree type)
14967 {
14968   if (!abi_version_at_least (12))
14969     return false;
14970 
14971   if (type == error_mark_node)
14972     return false;
14973 
14974   if (TREE_ADDRESSABLE (type))
14975     return false;
14976 
14977   return default_is_empty_type (TYPE_MAIN_VARIANT (type));
14978 }
14979 
14980 /* Determine whether TYPE is a structure with a flexible array member,
14981    or a union containing such a structure (possibly recursively).  */
14982 
14983 bool
14984 flexible_array_type_p (const_tree type)
14985 {
14986   tree x, last;
14987   switch (TREE_CODE (type))
14988     {
14989     case RECORD_TYPE:
14990       last = NULL_TREE;
14991       for (x = TYPE_FIELDS (type); x != NULL_TREE; x = DECL_CHAIN (x))
14992 	if (TREE_CODE (x) == FIELD_DECL)
14993 	  last = x;
14994       if (last == NULL_TREE)
14995 	return false;
14996       if (TREE_CODE (TREE_TYPE (last)) == ARRAY_TYPE
14997 	  && TYPE_SIZE (TREE_TYPE (last)) == NULL_TREE
14998 	  && TYPE_DOMAIN (TREE_TYPE (last)) != NULL_TREE
14999 	  && TYPE_MAX_VALUE (TYPE_DOMAIN (TREE_TYPE (last))) == NULL_TREE)
15000 	return true;
15001       return false;
15002     case UNION_TYPE:
15003       for (x = TYPE_FIELDS (type); x != NULL_TREE; x = DECL_CHAIN (x))
15004 	{
15005 	  if (TREE_CODE (x) == FIELD_DECL
15006 	      && flexible_array_type_p (TREE_TYPE (x)))
15007 	    return true;
15008 	}
15009       return false;
15010     default:
15011       return false;
15012   }
15013 }
15014 
15015 /* Like int_size_in_bytes, but handle empty records specially.  */
15016 
15017 HOST_WIDE_INT
15018 arg_int_size_in_bytes (const_tree type)
15019 {
15020   return TYPE_EMPTY_P (type) ? 0 : int_size_in_bytes (type);
15021 }
15022 
15023 /* Like size_in_bytes, but handle empty records specially.  */
15024 
15025 tree
15026 arg_size_in_bytes (const_tree type)
15027 {
15028   return TYPE_EMPTY_P (type) ? size_zero_node : size_in_bytes (type);
15029 }
15030 
15031 /* Return true if an expression with CODE has to have the same result type as
15032    its first operand.  */
15033 
15034 bool
15035 expr_type_first_operand_type_p (tree_code code)
15036 {
15037   switch (code)
15038     {
15039     case NEGATE_EXPR:
15040     case ABS_EXPR:
15041     case BIT_NOT_EXPR:
15042     case PAREN_EXPR:
15043     case CONJ_EXPR:
15044 
15045     case PLUS_EXPR:
15046     case MINUS_EXPR:
15047     case MULT_EXPR:
15048     case TRUNC_DIV_EXPR:
15049     case CEIL_DIV_EXPR:
15050     case FLOOR_DIV_EXPR:
15051     case ROUND_DIV_EXPR:
15052     case TRUNC_MOD_EXPR:
15053     case CEIL_MOD_EXPR:
15054     case FLOOR_MOD_EXPR:
15055     case ROUND_MOD_EXPR:
15056     case RDIV_EXPR:
15057     case EXACT_DIV_EXPR:
15058     case MIN_EXPR:
15059     case MAX_EXPR:
15060     case BIT_IOR_EXPR:
15061     case BIT_XOR_EXPR:
15062     case BIT_AND_EXPR:
15063 
15064     case LSHIFT_EXPR:
15065     case RSHIFT_EXPR:
15066     case LROTATE_EXPR:
15067     case RROTATE_EXPR:
15068       return true;
15069 
15070     default:
15071       return false;
15072     }
15073 }
15074 
15075 /* Return a typenode for the "standard" C type with a given name.  */
15076 tree
15077 get_typenode_from_name (const char *name)
15078 {
15079   if (name == NULL || *name == '\0')
15080     return NULL_TREE;
15081 
15082   if (strcmp (name, "char") == 0)
15083     return char_type_node;
15084   if (strcmp (name, "unsigned char") == 0)
15085     return unsigned_char_type_node;
15086   if (strcmp (name, "signed char") == 0)
15087     return signed_char_type_node;
15088 
15089   if (strcmp (name, "short int") == 0)
15090     return short_integer_type_node;
15091   if (strcmp (name, "short unsigned int") == 0)
15092     return short_unsigned_type_node;
15093 
15094   if (strcmp (name, "int") == 0)
15095     return integer_type_node;
15096   if (strcmp (name, "unsigned int") == 0)
15097     return unsigned_type_node;
15098 
15099   if (strcmp (name, "long int") == 0)
15100     return long_integer_type_node;
15101   if (strcmp (name, "long unsigned int") == 0)
15102     return long_unsigned_type_node;
15103 
15104   if (strcmp (name, "long long int") == 0)
15105     return long_long_integer_type_node;
15106   if (strcmp (name, "long long unsigned int") == 0)
15107     return long_long_unsigned_type_node;
15108 
15109   gcc_unreachable ();
15110 }
15111 
15112 /* List of pointer types used to declare builtins before we have seen their
15113    real declaration.
15114 
15115    Keep the size up to date in tree.h !  */
15116 const builtin_structptr_type builtin_structptr_types[6] =
15117 {
15118   { fileptr_type_node, ptr_type_node, "FILE" },
15119   { const_tm_ptr_type_node, const_ptr_type_node, "tm" },
15120   { fenv_t_ptr_type_node, ptr_type_node, "fenv_t" },
15121   { const_fenv_t_ptr_type_node, const_ptr_type_node, "fenv_t" },
15122   { fexcept_t_ptr_type_node, ptr_type_node, "fexcept_t" },
15123   { const_fexcept_t_ptr_type_node, const_ptr_type_node, "fexcept_t" }
15124 };
15125 
15126 /* Return the maximum object size.  */
15127 
15128 tree
15129 max_object_size (void)
15130 {
15131   /* To do: Make this a configurable parameter.  */
15132   return TYPE_MAX_VALUE (ptrdiff_type_node);
15133 }
15134 
15135 #if CHECKING_P
15136 
15137 namespace selftest {
15138 
15139 /* Selftests for tree.  */
15140 
15141 /* Verify that integer constants are sane.  */
15142 
15143 static void
15144 test_integer_constants ()
15145 {
15146   ASSERT_TRUE (integer_type_node != NULL);
15147   ASSERT_TRUE (build_int_cst (integer_type_node, 0) != NULL);
15148 
15149   tree type = integer_type_node;
15150 
15151   tree zero = build_zero_cst (type);
15152   ASSERT_EQ (INTEGER_CST, TREE_CODE (zero));
15153   ASSERT_EQ (type, TREE_TYPE (zero));
15154 
15155   tree one = build_int_cst (type, 1);
15156   ASSERT_EQ (INTEGER_CST, TREE_CODE (one));
15157   ASSERT_EQ (type, TREE_TYPE (zero));
15158 }
15159 
15160 /* Verify identifiers.  */
15161 
15162 static void
15163 test_identifiers ()
15164 {
15165   tree identifier = get_identifier ("foo");
15166   ASSERT_EQ (3, IDENTIFIER_LENGTH (identifier));
15167   ASSERT_STREQ ("foo", IDENTIFIER_POINTER (identifier));
15168 }
15169 
15170 /* Verify LABEL_DECL.  */
15171 
15172 static void
15173 test_labels ()
15174 {
15175   tree identifier = get_identifier ("err");
15176   tree label_decl = build_decl (UNKNOWN_LOCATION, LABEL_DECL,
15177 				identifier, void_type_node);
15178   ASSERT_EQ (-1, LABEL_DECL_UID (label_decl));
15179   ASSERT_FALSE (FORCED_LABEL (label_decl));
15180 }
15181 
15182 /* Return a new VECTOR_CST node whose type is TYPE and whose values
15183    are given by VALS.  */
15184 
15185 static tree
15186 build_vector (tree type, vec<tree> vals MEM_STAT_DECL)
15187 {
15188   gcc_assert (known_eq (vals.length (), TYPE_VECTOR_SUBPARTS (type)));
15189   tree_vector_builder builder (type, vals.length (), 1);
15190   builder.splice (vals);
15191   return builder.build ();
15192 }
15193 
15194 /* Check that VECTOR_CST ACTUAL contains the elements in EXPECTED.  */
15195 
15196 static void
15197 check_vector_cst (vec<tree> expected, tree actual)
15198 {
15199   ASSERT_KNOWN_EQ (expected.length (),
15200 		   TYPE_VECTOR_SUBPARTS (TREE_TYPE (actual)));
15201   for (unsigned int i = 0; i < expected.length (); ++i)
15202     ASSERT_EQ (wi::to_wide (expected[i]),
15203 	       wi::to_wide (vector_cst_elt (actual, i)));
15204 }
15205 
15206 /* Check that VECTOR_CST ACTUAL contains NPATTERNS duplicated elements,
15207    and that its elements match EXPECTED.  */
15208 
15209 static void
15210 check_vector_cst_duplicate (vec<tree> expected, tree actual,
15211 			    unsigned int npatterns)
15212 {
15213   ASSERT_EQ (npatterns, VECTOR_CST_NPATTERNS (actual));
15214   ASSERT_EQ (1, VECTOR_CST_NELTS_PER_PATTERN (actual));
15215   ASSERT_EQ (npatterns, vector_cst_encoded_nelts (actual));
15216   ASSERT_TRUE (VECTOR_CST_DUPLICATE_P (actual));
15217   ASSERT_FALSE (VECTOR_CST_STEPPED_P (actual));
15218   check_vector_cst (expected, actual);
15219 }
15220 
15221 /* Check that VECTOR_CST ACTUAL contains NPATTERNS foreground elements
15222    and NPATTERNS background elements, and that its elements match
15223    EXPECTED.  */
15224 
15225 static void
15226 check_vector_cst_fill (vec<tree> expected, tree actual,
15227 		       unsigned int npatterns)
15228 {
15229   ASSERT_EQ (npatterns, VECTOR_CST_NPATTERNS (actual));
15230   ASSERT_EQ (2, VECTOR_CST_NELTS_PER_PATTERN (actual));
15231   ASSERT_EQ (2 * npatterns, vector_cst_encoded_nelts (actual));
15232   ASSERT_FALSE (VECTOR_CST_DUPLICATE_P (actual));
15233   ASSERT_FALSE (VECTOR_CST_STEPPED_P (actual));
15234   check_vector_cst (expected, actual);
15235 }
15236 
15237 /* Check that VECTOR_CST ACTUAL contains NPATTERNS stepped patterns,
15238    and that its elements match EXPECTED.  */
15239 
15240 static void
15241 check_vector_cst_stepped (vec<tree> expected, tree actual,
15242 			  unsigned int npatterns)
15243 {
15244   ASSERT_EQ (npatterns, VECTOR_CST_NPATTERNS (actual));
15245   ASSERT_EQ (3, VECTOR_CST_NELTS_PER_PATTERN (actual));
15246   ASSERT_EQ (3 * npatterns, vector_cst_encoded_nelts (actual));
15247   ASSERT_FALSE (VECTOR_CST_DUPLICATE_P (actual));
15248   ASSERT_TRUE (VECTOR_CST_STEPPED_P (actual));
15249   check_vector_cst (expected, actual);
15250 }
15251 
15252 /* Test the creation of VECTOR_CSTs.  */
15253 
15254 static void
15255 test_vector_cst_patterns (ALONE_CXX_MEM_STAT_INFO)
15256 {
15257   auto_vec<tree, 8> elements (8);
15258   elements.quick_grow (8);
15259   tree element_type = build_nonstandard_integer_type (16, true);
15260   tree vector_type = build_vector_type (element_type, 8);
15261 
15262   /* Test a simple linear series with a base of 0 and a step of 1:
15263      { 0, 1, 2, 3, 4, 5, 6, 7 }.  */
15264   for (unsigned int i = 0; i < 8; ++i)
15265     elements[i] = build_int_cst (element_type, i);
15266   tree vector = build_vector (vector_type, elements PASS_MEM_STAT);
15267   check_vector_cst_stepped (elements, vector, 1);
15268 
15269   /* Try the same with the first element replaced by 100:
15270      { 100, 1, 2, 3, 4, 5, 6, 7 }.  */
15271   elements[0] = build_int_cst (element_type, 100);
15272   vector = build_vector (vector_type, elements PASS_MEM_STAT);
15273   check_vector_cst_stepped (elements, vector, 1);
15274 
15275   /* Try a series that wraps around.
15276      { 100, 65531, 65532, 65533, 65534, 65535, 0, 1 }.  */
15277   for (unsigned int i = 1; i < 8; ++i)
15278     elements[i] = build_int_cst (element_type, (65530 + i) & 0xffff);
15279   vector = build_vector (vector_type, elements PASS_MEM_STAT);
15280   check_vector_cst_stepped (elements, vector, 1);
15281 
15282   /* Try a downward series:
15283      { 100, 79, 78, 77, 76, 75, 75, 73 }.  */
15284   for (unsigned int i = 1; i < 8; ++i)
15285     elements[i] = build_int_cst (element_type, 80 - i);
15286   vector = build_vector (vector_type, elements PASS_MEM_STAT);
15287   check_vector_cst_stepped (elements, vector, 1);
15288 
15289   /* Try two interleaved series with different bases and steps:
15290      { 100, 53, 66, 206, 62, 212, 58, 218 }.  */
15291   elements[1] = build_int_cst (element_type, 53);
15292   for (unsigned int i = 2; i < 8; i += 2)
15293     {
15294       elements[i] = build_int_cst (element_type, 70 - i * 2);
15295       elements[i + 1] = build_int_cst (element_type, 200 + i * 3);
15296     }
15297   vector = build_vector (vector_type, elements PASS_MEM_STAT);
15298   check_vector_cst_stepped (elements, vector, 2);
15299 
15300   /* Try a duplicated value:
15301      { 100, 100, 100, 100, 100, 100, 100, 100 }.  */
15302   for (unsigned int i = 1; i < 8; ++i)
15303     elements[i] = elements[0];
15304   vector = build_vector (vector_type, elements PASS_MEM_STAT);
15305   check_vector_cst_duplicate (elements, vector, 1);
15306 
15307   /* Try an interleaved duplicated value:
15308      { 100, 55, 100, 55, 100, 55, 100, 55 }.  */
15309   elements[1] = build_int_cst (element_type, 55);
15310   for (unsigned int i = 2; i < 8; ++i)
15311     elements[i] = elements[i - 2];
15312   vector = build_vector (vector_type, elements PASS_MEM_STAT);
15313   check_vector_cst_duplicate (elements, vector, 2);
15314 
15315   /* Try a duplicated value with 2 exceptions
15316      { 41, 97, 100, 55, 100, 55, 100, 55 }.  */
15317   elements[0] = build_int_cst (element_type, 41);
15318   elements[1] = build_int_cst (element_type, 97);
15319   vector = build_vector (vector_type, elements PASS_MEM_STAT);
15320   check_vector_cst_fill (elements, vector, 2);
15321 
15322   /* Try with and without a step
15323      { 41, 97, 100, 21, 100, 35, 100, 49 }.  */
15324   for (unsigned int i = 3; i < 8; i += 2)
15325     elements[i] = build_int_cst (element_type, i * 7);
15326   vector = build_vector (vector_type, elements PASS_MEM_STAT);
15327   check_vector_cst_stepped (elements, vector, 2);
15328 
15329   /* Try a fully-general constant:
15330      { 41, 97, 100, 21, 100, 9990, 100, 49 }.  */
15331   elements[5] = build_int_cst (element_type, 9990);
15332   vector = build_vector (vector_type, elements PASS_MEM_STAT);
15333   check_vector_cst_fill (elements, vector, 4);
15334 }
15335 
15336 /* Verify that STRIP_NOPS (NODE) is EXPECTED.
15337    Helper function for test_location_wrappers, to deal with STRIP_NOPS
15338    modifying its argument in-place.  */
15339 
15340 static void
15341 check_strip_nops (tree node, tree expected)
15342 {
15343   STRIP_NOPS (node);
15344   ASSERT_EQ (expected, node);
15345 }
15346 
15347 /* Verify location wrappers.  */
15348 
15349 static void
15350 test_location_wrappers ()
15351 {
15352   location_t loc = BUILTINS_LOCATION;
15353 
15354   ASSERT_EQ (NULL_TREE, maybe_wrap_with_location (NULL_TREE, loc));
15355 
15356   /* Wrapping a constant.  */
15357   tree int_cst = build_int_cst (integer_type_node, 42);
15358   ASSERT_FALSE (CAN_HAVE_LOCATION_P (int_cst));
15359   ASSERT_FALSE (location_wrapper_p (int_cst));
15360 
15361   tree wrapped_int_cst = maybe_wrap_with_location (int_cst, loc);
15362   ASSERT_TRUE (location_wrapper_p (wrapped_int_cst));
15363   ASSERT_EQ (loc, EXPR_LOCATION (wrapped_int_cst));
15364   ASSERT_EQ (int_cst, tree_strip_any_location_wrapper (wrapped_int_cst));
15365 
15366   /* We shouldn't add wrapper nodes for UNKNOWN_LOCATION.  */
15367   ASSERT_EQ (int_cst, maybe_wrap_with_location (int_cst, UNKNOWN_LOCATION));
15368 
15369   /* We shouldn't add wrapper nodes for nodes that CAN_HAVE_LOCATION_P.  */
15370   tree cast = build1 (NOP_EXPR, char_type_node, int_cst);
15371   ASSERT_TRUE (CAN_HAVE_LOCATION_P (cast));
15372   ASSERT_EQ (cast, maybe_wrap_with_location (cast, loc));
15373 
15374   /* Wrapping a STRING_CST.  */
15375   tree string_cst = build_string (4, "foo");
15376   ASSERT_FALSE (CAN_HAVE_LOCATION_P (string_cst));
15377   ASSERT_FALSE (location_wrapper_p (string_cst));
15378 
15379   tree wrapped_string_cst = maybe_wrap_with_location (string_cst, loc);
15380   ASSERT_TRUE (location_wrapper_p (wrapped_string_cst));
15381   ASSERT_EQ (VIEW_CONVERT_EXPR, TREE_CODE (wrapped_string_cst));
15382   ASSERT_EQ (loc, EXPR_LOCATION (wrapped_string_cst));
15383   ASSERT_EQ (string_cst, tree_strip_any_location_wrapper (wrapped_string_cst));
15384 
15385 
15386   /* Wrapping a variable.  */
15387   tree int_var = build_decl (UNKNOWN_LOCATION, VAR_DECL,
15388 			     get_identifier ("some_int_var"),
15389 			     integer_type_node);
15390   ASSERT_FALSE (CAN_HAVE_LOCATION_P (int_var));
15391   ASSERT_FALSE (location_wrapper_p (int_var));
15392 
15393   tree wrapped_int_var = maybe_wrap_with_location (int_var, loc);
15394   ASSERT_TRUE (location_wrapper_p (wrapped_int_var));
15395   ASSERT_EQ (loc, EXPR_LOCATION (wrapped_int_var));
15396   ASSERT_EQ (int_var, tree_strip_any_location_wrapper (wrapped_int_var));
15397 
15398   /* Verify that "reinterpret_cast<int>(some_int_var)" is not a location
15399      wrapper.  */
15400   tree r_cast = build1 (NON_LVALUE_EXPR, integer_type_node, int_var);
15401   ASSERT_FALSE (location_wrapper_p (r_cast));
15402   ASSERT_EQ (r_cast, tree_strip_any_location_wrapper (r_cast));
15403 
15404   /* Verify that STRIP_NOPS removes wrappers.  */
15405   check_strip_nops (wrapped_int_cst, int_cst);
15406   check_strip_nops (wrapped_string_cst, string_cst);
15407   check_strip_nops (wrapped_int_var, int_var);
15408 }
15409 
15410 /* Test various tree predicates.  Verify that location wrappers don't
15411    affect the results.  */
15412 
15413 static void
15414 test_predicates ()
15415 {
15416   /* Build various constants and wrappers around them.  */
15417 
15418   location_t loc = BUILTINS_LOCATION;
15419 
15420   tree i_0 = build_int_cst (integer_type_node, 0);
15421   tree wr_i_0 = maybe_wrap_with_location (i_0, loc);
15422 
15423   tree i_1 = build_int_cst (integer_type_node, 1);
15424   tree wr_i_1 = maybe_wrap_with_location (i_1, loc);
15425 
15426   tree i_m1 = build_int_cst (integer_type_node, -1);
15427   tree wr_i_m1 = maybe_wrap_with_location (i_m1, loc);
15428 
15429   tree f_0 = build_real_from_int_cst (float_type_node, i_0);
15430   tree wr_f_0 = maybe_wrap_with_location (f_0, loc);
15431   tree f_1 = build_real_from_int_cst (float_type_node, i_1);
15432   tree wr_f_1 = maybe_wrap_with_location (f_1, loc);
15433   tree f_m1 = build_real_from_int_cst (float_type_node, i_m1);
15434   tree wr_f_m1 = maybe_wrap_with_location (f_m1, loc);
15435 
15436   tree c_i_0 = build_complex (NULL_TREE, i_0, i_0);
15437   tree c_i_1 = build_complex (NULL_TREE, i_1, i_0);
15438   tree c_i_m1 = build_complex (NULL_TREE, i_m1, i_0);
15439 
15440   tree c_f_0 = build_complex (NULL_TREE, f_0, f_0);
15441   tree c_f_1 = build_complex (NULL_TREE, f_1, f_0);
15442   tree c_f_m1 = build_complex (NULL_TREE, f_m1, f_0);
15443 
15444   /* TODO: vector constants.  */
15445 
15446   /* Test integer_onep.  */
15447   ASSERT_FALSE (integer_onep (i_0));
15448   ASSERT_FALSE (integer_onep (wr_i_0));
15449   ASSERT_TRUE (integer_onep (i_1));
15450   ASSERT_TRUE (integer_onep (wr_i_1));
15451   ASSERT_FALSE (integer_onep (i_m1));
15452   ASSERT_FALSE (integer_onep (wr_i_m1));
15453   ASSERT_FALSE (integer_onep (f_0));
15454   ASSERT_FALSE (integer_onep (wr_f_0));
15455   ASSERT_FALSE (integer_onep (f_1));
15456   ASSERT_FALSE (integer_onep (wr_f_1));
15457   ASSERT_FALSE (integer_onep (f_m1));
15458   ASSERT_FALSE (integer_onep (wr_f_m1));
15459   ASSERT_FALSE (integer_onep (c_i_0));
15460   ASSERT_TRUE (integer_onep (c_i_1));
15461   ASSERT_FALSE (integer_onep (c_i_m1));
15462   ASSERT_FALSE (integer_onep (c_f_0));
15463   ASSERT_FALSE (integer_onep (c_f_1));
15464   ASSERT_FALSE (integer_onep (c_f_m1));
15465 
15466   /* Test integer_zerop.  */
15467   ASSERT_TRUE (integer_zerop (i_0));
15468   ASSERT_TRUE (integer_zerop (wr_i_0));
15469   ASSERT_FALSE (integer_zerop (i_1));
15470   ASSERT_FALSE (integer_zerop (wr_i_1));
15471   ASSERT_FALSE (integer_zerop (i_m1));
15472   ASSERT_FALSE (integer_zerop (wr_i_m1));
15473   ASSERT_FALSE (integer_zerop (f_0));
15474   ASSERT_FALSE (integer_zerop (wr_f_0));
15475   ASSERT_FALSE (integer_zerop (f_1));
15476   ASSERT_FALSE (integer_zerop (wr_f_1));
15477   ASSERT_FALSE (integer_zerop (f_m1));
15478   ASSERT_FALSE (integer_zerop (wr_f_m1));
15479   ASSERT_TRUE (integer_zerop (c_i_0));
15480   ASSERT_FALSE (integer_zerop (c_i_1));
15481   ASSERT_FALSE (integer_zerop (c_i_m1));
15482   ASSERT_FALSE (integer_zerop (c_f_0));
15483   ASSERT_FALSE (integer_zerop (c_f_1));
15484   ASSERT_FALSE (integer_zerop (c_f_m1));
15485 
15486   /* Test integer_all_onesp.  */
15487   ASSERT_FALSE (integer_all_onesp (i_0));
15488   ASSERT_FALSE (integer_all_onesp (wr_i_0));
15489   ASSERT_FALSE (integer_all_onesp (i_1));
15490   ASSERT_FALSE (integer_all_onesp (wr_i_1));
15491   ASSERT_TRUE (integer_all_onesp (i_m1));
15492   ASSERT_TRUE (integer_all_onesp (wr_i_m1));
15493   ASSERT_FALSE (integer_all_onesp (f_0));
15494   ASSERT_FALSE (integer_all_onesp (wr_f_0));
15495   ASSERT_FALSE (integer_all_onesp (f_1));
15496   ASSERT_FALSE (integer_all_onesp (wr_f_1));
15497   ASSERT_FALSE (integer_all_onesp (f_m1));
15498   ASSERT_FALSE (integer_all_onesp (wr_f_m1));
15499   ASSERT_FALSE (integer_all_onesp (c_i_0));
15500   ASSERT_FALSE (integer_all_onesp (c_i_1));
15501   ASSERT_FALSE (integer_all_onesp (c_i_m1));
15502   ASSERT_FALSE (integer_all_onesp (c_f_0));
15503   ASSERT_FALSE (integer_all_onesp (c_f_1));
15504   ASSERT_FALSE (integer_all_onesp (c_f_m1));
15505 
15506   /* Test integer_minus_onep.  */
15507   ASSERT_FALSE (integer_minus_onep (i_0));
15508   ASSERT_FALSE (integer_minus_onep (wr_i_0));
15509   ASSERT_FALSE (integer_minus_onep (i_1));
15510   ASSERT_FALSE (integer_minus_onep (wr_i_1));
15511   ASSERT_TRUE (integer_minus_onep (i_m1));
15512   ASSERT_TRUE (integer_minus_onep (wr_i_m1));
15513   ASSERT_FALSE (integer_minus_onep (f_0));
15514   ASSERT_FALSE (integer_minus_onep (wr_f_0));
15515   ASSERT_FALSE (integer_minus_onep (f_1));
15516   ASSERT_FALSE (integer_minus_onep (wr_f_1));
15517   ASSERT_FALSE (integer_minus_onep (f_m1));
15518   ASSERT_FALSE (integer_minus_onep (wr_f_m1));
15519   ASSERT_FALSE (integer_minus_onep (c_i_0));
15520   ASSERT_FALSE (integer_minus_onep (c_i_1));
15521   ASSERT_TRUE (integer_minus_onep (c_i_m1));
15522   ASSERT_FALSE (integer_minus_onep (c_f_0));
15523   ASSERT_FALSE (integer_minus_onep (c_f_1));
15524   ASSERT_FALSE (integer_minus_onep (c_f_m1));
15525 
15526   /* Test integer_each_onep.  */
15527   ASSERT_FALSE (integer_each_onep (i_0));
15528   ASSERT_FALSE (integer_each_onep (wr_i_0));
15529   ASSERT_TRUE (integer_each_onep (i_1));
15530   ASSERT_TRUE (integer_each_onep (wr_i_1));
15531   ASSERT_FALSE (integer_each_onep (i_m1));
15532   ASSERT_FALSE (integer_each_onep (wr_i_m1));
15533   ASSERT_FALSE (integer_each_onep (f_0));
15534   ASSERT_FALSE (integer_each_onep (wr_f_0));
15535   ASSERT_FALSE (integer_each_onep (f_1));
15536   ASSERT_FALSE (integer_each_onep (wr_f_1));
15537   ASSERT_FALSE (integer_each_onep (f_m1));
15538   ASSERT_FALSE (integer_each_onep (wr_f_m1));
15539   ASSERT_FALSE (integer_each_onep (c_i_0));
15540   ASSERT_FALSE (integer_each_onep (c_i_1));
15541   ASSERT_FALSE (integer_each_onep (c_i_m1));
15542   ASSERT_FALSE (integer_each_onep (c_f_0));
15543   ASSERT_FALSE (integer_each_onep (c_f_1));
15544   ASSERT_FALSE (integer_each_onep (c_f_m1));
15545 
15546   /* Test integer_truep.  */
15547   ASSERT_FALSE (integer_truep (i_0));
15548   ASSERT_FALSE (integer_truep (wr_i_0));
15549   ASSERT_TRUE (integer_truep (i_1));
15550   ASSERT_TRUE (integer_truep (wr_i_1));
15551   ASSERT_FALSE (integer_truep (i_m1));
15552   ASSERT_FALSE (integer_truep (wr_i_m1));
15553   ASSERT_FALSE (integer_truep (f_0));
15554   ASSERT_FALSE (integer_truep (wr_f_0));
15555   ASSERT_FALSE (integer_truep (f_1));
15556   ASSERT_FALSE (integer_truep (wr_f_1));
15557   ASSERT_FALSE (integer_truep (f_m1));
15558   ASSERT_FALSE (integer_truep (wr_f_m1));
15559   ASSERT_FALSE (integer_truep (c_i_0));
15560   ASSERT_TRUE (integer_truep (c_i_1));
15561   ASSERT_FALSE (integer_truep (c_i_m1));
15562   ASSERT_FALSE (integer_truep (c_f_0));
15563   ASSERT_FALSE (integer_truep (c_f_1));
15564   ASSERT_FALSE (integer_truep (c_f_m1));
15565 
15566   /* Test integer_nonzerop.  */
15567   ASSERT_FALSE (integer_nonzerop (i_0));
15568   ASSERT_FALSE (integer_nonzerop (wr_i_0));
15569   ASSERT_TRUE (integer_nonzerop (i_1));
15570   ASSERT_TRUE (integer_nonzerop (wr_i_1));
15571   ASSERT_TRUE (integer_nonzerop (i_m1));
15572   ASSERT_TRUE (integer_nonzerop (wr_i_m1));
15573   ASSERT_FALSE (integer_nonzerop (f_0));
15574   ASSERT_FALSE (integer_nonzerop (wr_f_0));
15575   ASSERT_FALSE (integer_nonzerop (f_1));
15576   ASSERT_FALSE (integer_nonzerop (wr_f_1));
15577   ASSERT_FALSE (integer_nonzerop (f_m1));
15578   ASSERT_FALSE (integer_nonzerop (wr_f_m1));
15579   ASSERT_FALSE (integer_nonzerop (c_i_0));
15580   ASSERT_TRUE (integer_nonzerop (c_i_1));
15581   ASSERT_TRUE (integer_nonzerop (c_i_m1));
15582   ASSERT_FALSE (integer_nonzerop (c_f_0));
15583   ASSERT_FALSE (integer_nonzerop (c_f_1));
15584   ASSERT_FALSE (integer_nonzerop (c_f_m1));
15585 
15586   /* Test real_zerop.  */
15587   ASSERT_FALSE (real_zerop (i_0));
15588   ASSERT_FALSE (real_zerop (wr_i_0));
15589   ASSERT_FALSE (real_zerop (i_1));
15590   ASSERT_FALSE (real_zerop (wr_i_1));
15591   ASSERT_FALSE (real_zerop (i_m1));
15592   ASSERT_FALSE (real_zerop (wr_i_m1));
15593   ASSERT_TRUE (real_zerop (f_0));
15594   ASSERT_TRUE (real_zerop (wr_f_0));
15595   ASSERT_FALSE (real_zerop (f_1));
15596   ASSERT_FALSE (real_zerop (wr_f_1));
15597   ASSERT_FALSE (real_zerop (f_m1));
15598   ASSERT_FALSE (real_zerop (wr_f_m1));
15599   ASSERT_FALSE (real_zerop (c_i_0));
15600   ASSERT_FALSE (real_zerop (c_i_1));
15601   ASSERT_FALSE (real_zerop (c_i_m1));
15602   ASSERT_TRUE (real_zerop (c_f_0));
15603   ASSERT_FALSE (real_zerop (c_f_1));
15604   ASSERT_FALSE (real_zerop (c_f_m1));
15605 
15606   /* Test real_onep.  */
15607   ASSERT_FALSE (real_onep (i_0));
15608   ASSERT_FALSE (real_onep (wr_i_0));
15609   ASSERT_FALSE (real_onep (i_1));
15610   ASSERT_FALSE (real_onep (wr_i_1));
15611   ASSERT_FALSE (real_onep (i_m1));
15612   ASSERT_FALSE (real_onep (wr_i_m1));
15613   ASSERT_FALSE (real_onep (f_0));
15614   ASSERT_FALSE (real_onep (wr_f_0));
15615   ASSERT_TRUE (real_onep (f_1));
15616   ASSERT_TRUE (real_onep (wr_f_1));
15617   ASSERT_FALSE (real_onep (f_m1));
15618   ASSERT_FALSE (real_onep (wr_f_m1));
15619   ASSERT_FALSE (real_onep (c_i_0));
15620   ASSERT_FALSE (real_onep (c_i_1));
15621   ASSERT_FALSE (real_onep (c_i_m1));
15622   ASSERT_FALSE (real_onep (c_f_0));
15623   ASSERT_TRUE (real_onep (c_f_1));
15624   ASSERT_FALSE (real_onep (c_f_m1));
15625 
15626   /* Test real_minus_onep.  */
15627   ASSERT_FALSE (real_minus_onep (i_0));
15628   ASSERT_FALSE (real_minus_onep (wr_i_0));
15629   ASSERT_FALSE (real_minus_onep (i_1));
15630   ASSERT_FALSE (real_minus_onep (wr_i_1));
15631   ASSERT_FALSE (real_minus_onep (i_m1));
15632   ASSERT_FALSE (real_minus_onep (wr_i_m1));
15633   ASSERT_FALSE (real_minus_onep (f_0));
15634   ASSERT_FALSE (real_minus_onep (wr_f_0));
15635   ASSERT_FALSE (real_minus_onep (f_1));
15636   ASSERT_FALSE (real_minus_onep (wr_f_1));
15637   ASSERT_TRUE (real_minus_onep (f_m1));
15638   ASSERT_TRUE (real_minus_onep (wr_f_m1));
15639   ASSERT_FALSE (real_minus_onep (c_i_0));
15640   ASSERT_FALSE (real_minus_onep (c_i_1));
15641   ASSERT_FALSE (real_minus_onep (c_i_m1));
15642   ASSERT_FALSE (real_minus_onep (c_f_0));
15643   ASSERT_FALSE (real_minus_onep (c_f_1));
15644   ASSERT_TRUE (real_minus_onep (c_f_m1));
15645 
15646   /* Test zerop.  */
15647   ASSERT_TRUE (zerop (i_0));
15648   ASSERT_TRUE (zerop (wr_i_0));
15649   ASSERT_FALSE (zerop (i_1));
15650   ASSERT_FALSE (zerop (wr_i_1));
15651   ASSERT_FALSE (zerop (i_m1));
15652   ASSERT_FALSE (zerop (wr_i_m1));
15653   ASSERT_TRUE (zerop (f_0));
15654   ASSERT_TRUE (zerop (wr_f_0));
15655   ASSERT_FALSE (zerop (f_1));
15656   ASSERT_FALSE (zerop (wr_f_1));
15657   ASSERT_FALSE (zerop (f_m1));
15658   ASSERT_FALSE (zerop (wr_f_m1));
15659   ASSERT_TRUE (zerop (c_i_0));
15660   ASSERT_FALSE (zerop (c_i_1));
15661   ASSERT_FALSE (zerop (c_i_m1));
15662   ASSERT_TRUE (zerop (c_f_0));
15663   ASSERT_FALSE (zerop (c_f_1));
15664   ASSERT_FALSE (zerop (c_f_m1));
15665 
15666   /* Test tree_expr_nonnegative_p.  */
15667   ASSERT_TRUE (tree_expr_nonnegative_p (i_0));
15668   ASSERT_TRUE (tree_expr_nonnegative_p (wr_i_0));
15669   ASSERT_TRUE (tree_expr_nonnegative_p (i_1));
15670   ASSERT_TRUE (tree_expr_nonnegative_p (wr_i_1));
15671   ASSERT_FALSE (tree_expr_nonnegative_p (i_m1));
15672   ASSERT_FALSE (tree_expr_nonnegative_p (wr_i_m1));
15673   ASSERT_TRUE (tree_expr_nonnegative_p (f_0));
15674   ASSERT_TRUE (tree_expr_nonnegative_p (wr_f_0));
15675   ASSERT_TRUE (tree_expr_nonnegative_p (f_1));
15676   ASSERT_TRUE (tree_expr_nonnegative_p (wr_f_1));
15677   ASSERT_FALSE (tree_expr_nonnegative_p (f_m1));
15678   ASSERT_FALSE (tree_expr_nonnegative_p (wr_f_m1));
15679   ASSERT_FALSE (tree_expr_nonnegative_p (c_i_0));
15680   ASSERT_FALSE (tree_expr_nonnegative_p (c_i_1));
15681   ASSERT_FALSE (tree_expr_nonnegative_p (c_i_m1));
15682   ASSERT_FALSE (tree_expr_nonnegative_p (c_f_0));
15683   ASSERT_FALSE (tree_expr_nonnegative_p (c_f_1));
15684   ASSERT_FALSE (tree_expr_nonnegative_p (c_f_m1));
15685 
15686   /* Test tree_expr_nonzero_p.  */
15687   ASSERT_FALSE (tree_expr_nonzero_p (i_0));
15688   ASSERT_FALSE (tree_expr_nonzero_p (wr_i_0));
15689   ASSERT_TRUE (tree_expr_nonzero_p (i_1));
15690   ASSERT_TRUE (tree_expr_nonzero_p (wr_i_1));
15691   ASSERT_TRUE (tree_expr_nonzero_p (i_m1));
15692   ASSERT_TRUE (tree_expr_nonzero_p (wr_i_m1));
15693 
15694   /* Test integer_valued_real_p.  */
15695   ASSERT_FALSE (integer_valued_real_p (i_0));
15696   ASSERT_TRUE (integer_valued_real_p (f_0));
15697   ASSERT_TRUE (integer_valued_real_p (wr_f_0));
15698   ASSERT_TRUE (integer_valued_real_p (f_1));
15699   ASSERT_TRUE (integer_valued_real_p (wr_f_1));
15700 
15701   /* Test integer_pow2p.  */
15702   ASSERT_FALSE (integer_pow2p (i_0));
15703   ASSERT_TRUE (integer_pow2p (i_1));
15704   ASSERT_TRUE (integer_pow2p (wr_i_1));
15705 
15706   /* Test uniform_integer_cst_p.  */
15707   ASSERT_TRUE (uniform_integer_cst_p (i_0));
15708   ASSERT_TRUE (uniform_integer_cst_p (wr_i_0));
15709   ASSERT_TRUE (uniform_integer_cst_p (i_1));
15710   ASSERT_TRUE (uniform_integer_cst_p (wr_i_1));
15711   ASSERT_TRUE (uniform_integer_cst_p (i_m1));
15712   ASSERT_TRUE (uniform_integer_cst_p (wr_i_m1));
15713   ASSERT_FALSE (uniform_integer_cst_p (f_0));
15714   ASSERT_FALSE (uniform_integer_cst_p (wr_f_0));
15715   ASSERT_FALSE (uniform_integer_cst_p (f_1));
15716   ASSERT_FALSE (uniform_integer_cst_p (wr_f_1));
15717   ASSERT_FALSE (uniform_integer_cst_p (f_m1));
15718   ASSERT_FALSE (uniform_integer_cst_p (wr_f_m1));
15719   ASSERT_FALSE (uniform_integer_cst_p (c_i_0));
15720   ASSERT_FALSE (uniform_integer_cst_p (c_i_1));
15721   ASSERT_FALSE (uniform_integer_cst_p (c_i_m1));
15722   ASSERT_FALSE (uniform_integer_cst_p (c_f_0));
15723   ASSERT_FALSE (uniform_integer_cst_p (c_f_1));
15724   ASSERT_FALSE (uniform_integer_cst_p (c_f_m1));
15725 }
15726 
15727 /* Check that string escaping works correctly.  */
15728 
15729 static void
15730 test_escaped_strings (void)
15731 {
15732   int saved_cutoff;
15733   escaped_string msg;
15734 
15735   msg.escape (NULL);
15736   /* ASSERT_STREQ does not accept NULL as a valid test
15737      result, so we have to use ASSERT_EQ instead.  */
15738   ASSERT_EQ (NULL, (const char *) msg);
15739 
15740   msg.escape ("");
15741   ASSERT_STREQ ("", (const char *) msg);
15742 
15743   msg.escape ("foobar");
15744   ASSERT_STREQ ("foobar", (const char *) msg);
15745 
15746   /* Ensure that we have -fmessage-length set to 0.  */
15747   saved_cutoff = pp_line_cutoff (global_dc->printer);
15748   pp_line_cutoff (global_dc->printer) = 0;
15749 
15750   msg.escape ("foo\nbar");
15751   ASSERT_STREQ ("foo\\nbar", (const char *) msg);
15752 
15753   msg.escape ("\a\b\f\n\r\t\v");
15754   ASSERT_STREQ ("\\a\\b\\f\\n\\r\\t\\v", (const char *) msg);
15755 
15756   /* Now repeat the tests with -fmessage-length set to 5.  */
15757   pp_line_cutoff (global_dc->printer) = 5;
15758 
15759   /* Note that the newline is not translated into an escape.  */
15760   msg.escape ("foo\nbar");
15761   ASSERT_STREQ ("foo\nbar", (const char *) msg);
15762 
15763   msg.escape ("\a\b\f\n\r\t\v");
15764   ASSERT_STREQ ("\\a\\b\\f\n\\r\\t\\v", (const char *) msg);
15765 
15766   /* Restore the original message length setting.  */
15767   pp_line_cutoff (global_dc->printer) = saved_cutoff;
15768 }
15769 
15770 /* Run all of the selftests within this file.  */
15771 
15772 void
15773 tree_c_tests ()
15774 {
15775   test_integer_constants ();
15776   test_identifiers ();
15777   test_labels ();
15778   test_vector_cst_patterns ();
15779   test_location_wrappers ();
15780   test_predicates ();
15781   test_escaped_strings ();
15782 }
15783 
15784 } // namespace selftest
15785 
15786 #endif /* CHECKING_P */
15787 
15788 #include "gt-tree.h"
15789