xref: /netbsd-src/external/gpl3/gcc.old/dist/gcc/tree-vrp.c (revision cef8759bd76c1b621f8eab8faa6f208faabc2e15)
1 /* Support routines for Value Range Propagation (VRP).
2    Copyright (C) 2005-2017 Free Software Foundation, Inc.
3    Contributed by Diego Novillo <dnovillo@redhat.com>.
4 
5 This file is part of GCC.
6 
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11 
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 GNU General Public License for more details.
16 
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3.  If not see
19 <http://www.gnu.org/licenses/>.  */
20 
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "insn-codes.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "gimple.h"
29 #include "cfghooks.h"
30 #include "tree-pass.h"
31 #include "ssa.h"
32 #include "optabs-tree.h"
33 #include "gimple-pretty-print.h"
34 #include "diagnostic-core.h"
35 #include "flags.h"
36 #include "fold-const.h"
37 #include "stor-layout.h"
38 #include "calls.h"
39 #include "cfganal.h"
40 #include "gimple-fold.h"
41 #include "tree-eh.h"
42 #include "gimple-iterator.h"
43 #include "gimple-walk.h"
44 #include "tree-cfg.h"
45 #include "tree-ssa-loop-manip.h"
46 #include "tree-ssa-loop-niter.h"
47 #include "tree-ssa-loop.h"
48 #include "tree-into-ssa.h"
49 #include "tree-ssa.h"
50 #include "intl.h"
51 #include "cfgloop.h"
52 #include "tree-scalar-evolution.h"
53 #include "tree-ssa-propagate.h"
54 #include "tree-chrec.h"
55 #include "tree-ssa-threadupdate.h"
56 #include "tree-ssa-scopedtables.h"
57 #include "tree-ssa-threadedge.h"
58 #include "omp-general.h"
59 #include "target.h"
60 #include "case-cfn-macros.h"
61 #include "params.h"
62 #include "alloc-pool.h"
63 #include "domwalk.h"
64 #include "tree-cfgcleanup.h"
65 
66 #define VR_INITIALIZER { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL }
67 
68 /* Allocation pools for tree-vrp allocations.  */
69 static object_allocator<value_range> vrp_value_range_pool ("Tree VRP value ranges");
70 static bitmap_obstack vrp_equiv_obstack;
71 
72 /* Set of SSA names found live during the RPO traversal of the function
73    for still active basic-blocks.  */
74 static sbitmap *live;
75 
76 /* Return true if the SSA name NAME is live on the edge E.  */
77 
78 static bool
79 live_on_edge (edge e, tree name)
80 {
81   return (live[e->dest->index]
82 	  && bitmap_bit_p (live[e->dest->index], SSA_NAME_VERSION (name)));
83 }
84 
85 /* Local functions.  */
86 static int compare_values (tree val1, tree val2);
87 static int compare_values_warnv (tree val1, tree val2, bool *);
88 static tree vrp_evaluate_conditional_warnv_with_ops (enum tree_code,
89 						     tree, tree, bool, bool *,
90 						     bool *);
91 
92 /* Location information for ASSERT_EXPRs.  Each instance of this
93    structure describes an ASSERT_EXPR for an SSA name.  Since a single
94    SSA name may have more than one assertion associated with it, these
95    locations are kept in a linked list attached to the corresponding
96    SSA name.  */
97 struct assert_locus
98 {
99   /* Basic block where the assertion would be inserted.  */
100   basic_block bb;
101 
102   /* Some assertions need to be inserted on an edge (e.g., assertions
103      generated by COND_EXPRs).  In those cases, BB will be NULL.  */
104   edge e;
105 
106   /* Pointer to the statement that generated this assertion.  */
107   gimple_stmt_iterator si;
108 
109   /* Predicate code for the ASSERT_EXPR.  Must be COMPARISON_CLASS_P.  */
110   enum tree_code comp_code;
111 
112   /* Value being compared against.  */
113   tree val;
114 
115   /* Expression to compare.  */
116   tree expr;
117 
118   /* Next node in the linked list.  */
119   assert_locus *next;
120 };
121 
122 /* If bit I is present, it means that SSA name N_i has a list of
123    assertions that should be inserted in the IL.  */
124 static bitmap need_assert_for;
125 
126 /* Array of locations lists where to insert assertions.  ASSERTS_FOR[I]
127    holds a list of ASSERT_LOCUS_T nodes that describe where
128    ASSERT_EXPRs for SSA name N_I should be inserted.  */
129 static assert_locus **asserts_for;
130 
131 /* Value range array.  After propagation, VR_VALUE[I] holds the range
132    of values that SSA name N_I may take.  */
133 static unsigned num_vr_values;
134 static value_range **vr_value;
135 static bool values_propagated;
136 
137 /* For a PHI node which sets SSA name N_I, VR_COUNTS[I] holds the
138    number of executable edges we saw the last time we visited the
139    node.  */
140 static int *vr_phi_edge_counts;
141 
142 struct switch_update {
143   gswitch *stmt;
144   tree vec;
145 };
146 
147 static vec<edge> to_remove_edges;
148 static vec<switch_update> to_update_switch_stmts;
149 
150 
151 /* Return the maximum value for TYPE.  */
152 
153 static inline tree
154 vrp_val_max (const_tree type)
155 {
156   if (!INTEGRAL_TYPE_P (type))
157     return NULL_TREE;
158 
159   return TYPE_MAX_VALUE (type);
160 }
161 
162 /* Return the minimum value for TYPE.  */
163 
164 static inline tree
165 vrp_val_min (const_tree type)
166 {
167   if (!INTEGRAL_TYPE_P (type))
168     return NULL_TREE;
169 
170   return TYPE_MIN_VALUE (type);
171 }
172 
173 /* Return whether VAL is equal to the maximum value of its type.  This
174    will be true for a positive overflow infinity.  We can't do a
175    simple equality comparison with TYPE_MAX_VALUE because C typedefs
176    and Ada subtypes can produce types whose TYPE_MAX_VALUE is not ==
177    to the integer constant with the same value in the type.  */
178 
179 static inline bool
180 vrp_val_is_max (const_tree val)
181 {
182   tree type_max = vrp_val_max (TREE_TYPE (val));
183   return (val == type_max
184 	  || (type_max != NULL_TREE
185 	      && operand_equal_p (val, type_max, 0)));
186 }
187 
188 /* Return whether VAL is equal to the minimum value of its type.  This
189    will be true for a negative overflow infinity.  */
190 
191 static inline bool
192 vrp_val_is_min (const_tree val)
193 {
194   tree type_min = vrp_val_min (TREE_TYPE (val));
195   return (val == type_min
196 	  || (type_min != NULL_TREE
197 	      && operand_equal_p (val, type_min, 0)));
198 }
199 
200 
201 /* Return whether TYPE should use an overflow infinity distinct from
202    TYPE_{MIN,MAX}_VALUE.  We use an overflow infinity value to
203    represent a signed overflow during VRP computations.  An infinity
204    is distinct from a half-range, which will go from some number to
205    TYPE_{MIN,MAX}_VALUE.  */
206 
207 static inline bool
208 needs_overflow_infinity (const_tree type)
209 {
210   return INTEGRAL_TYPE_P (type) && !TYPE_OVERFLOW_WRAPS (type);
211 }
212 
213 /* Return whether TYPE can support our overflow infinity
214    representation: we use the TREE_OVERFLOW flag, which only exists
215    for constants.  If TYPE doesn't support this, we don't optimize
216    cases which would require signed overflow--we drop them to
217    VARYING.  */
218 
219 static inline bool
220 supports_overflow_infinity (const_tree type)
221 {
222   tree min = vrp_val_min (type), max = vrp_val_max (type);
223   gcc_checking_assert (needs_overflow_infinity (type));
224   return (min != NULL_TREE
225 	  && CONSTANT_CLASS_P (min)
226 	  && max != NULL_TREE
227 	  && CONSTANT_CLASS_P (max));
228 }
229 
230 /* VAL is the maximum or minimum value of a type.  Return a
231    corresponding overflow infinity.  */
232 
233 static inline tree
234 make_overflow_infinity (tree val)
235 {
236   gcc_checking_assert (val != NULL_TREE && CONSTANT_CLASS_P (val));
237   val = copy_node (val);
238   TREE_OVERFLOW (val) = 1;
239   return val;
240 }
241 
242 /* Return a negative overflow infinity for TYPE.  */
243 
244 static inline tree
245 negative_overflow_infinity (tree type)
246 {
247   gcc_checking_assert (supports_overflow_infinity (type));
248   return make_overflow_infinity (vrp_val_min (type));
249 }
250 
251 /* Return a positive overflow infinity for TYPE.  */
252 
253 static inline tree
254 positive_overflow_infinity (tree type)
255 {
256   gcc_checking_assert (supports_overflow_infinity (type));
257   return make_overflow_infinity (vrp_val_max (type));
258 }
259 
260 /* Return whether VAL is a negative overflow infinity.  */
261 
262 static inline bool
263 is_negative_overflow_infinity (const_tree val)
264 {
265   return (TREE_OVERFLOW_P (val)
266 	  && needs_overflow_infinity (TREE_TYPE (val))
267 	  && vrp_val_is_min (val));
268 }
269 
270 /* Return whether VAL is a positive overflow infinity.  */
271 
272 static inline bool
273 is_positive_overflow_infinity (const_tree val)
274 {
275   return (TREE_OVERFLOW_P (val)
276 	  && needs_overflow_infinity (TREE_TYPE (val))
277 	  && vrp_val_is_max (val));
278 }
279 
280 /* Return whether VAL is a positive or negative overflow infinity.  */
281 
282 static inline bool
283 is_overflow_infinity (const_tree val)
284 {
285   return (TREE_OVERFLOW_P (val)
286 	  && needs_overflow_infinity (TREE_TYPE (val))
287 	  && (vrp_val_is_min (val) || vrp_val_is_max (val)));
288 }
289 
290 /* Return whether STMT has a constant rhs that is_overflow_infinity. */
291 
292 static inline bool
293 stmt_overflow_infinity (gimple *stmt)
294 {
295   if (is_gimple_assign (stmt)
296       && get_gimple_rhs_class (gimple_assign_rhs_code (stmt)) ==
297       GIMPLE_SINGLE_RHS)
298     return is_overflow_infinity (gimple_assign_rhs1 (stmt));
299   return false;
300 }
301 
302 /* If VAL is now an overflow infinity, return VAL.  Otherwise, return
303    the same value with TREE_OVERFLOW clear.  This can be used to avoid
304    confusing a regular value with an overflow value.  */
305 
306 static inline tree
307 avoid_overflow_infinity (tree val)
308 {
309   if (!is_overflow_infinity (val))
310     return val;
311 
312   if (vrp_val_is_max (val))
313     return vrp_val_max (TREE_TYPE (val));
314   else
315     {
316       gcc_checking_assert (vrp_val_is_min (val));
317       return vrp_val_min (TREE_TYPE (val));
318     }
319 }
320 
321 
322 /* Set value range VR to VR_UNDEFINED.  */
323 
324 static inline void
325 set_value_range_to_undefined (value_range *vr)
326 {
327   vr->type = VR_UNDEFINED;
328   vr->min = vr->max = NULL_TREE;
329   if (vr->equiv)
330     bitmap_clear (vr->equiv);
331 }
332 
333 
334 /* Set value range VR to VR_VARYING.  */
335 
336 static inline void
337 set_value_range_to_varying (value_range *vr)
338 {
339   vr->type = VR_VARYING;
340   vr->min = vr->max = NULL_TREE;
341   if (vr->equiv)
342     bitmap_clear (vr->equiv);
343 }
344 
345 
346 /* Set value range VR to {T, MIN, MAX, EQUIV}.  */
347 
348 static void
349 set_value_range (value_range *vr, enum value_range_type t, tree min,
350 		 tree max, bitmap equiv)
351 {
352   /* Check the validity of the range.  */
353   if (flag_checking
354       && (t == VR_RANGE || t == VR_ANTI_RANGE))
355     {
356       int cmp;
357 
358       gcc_assert (min && max);
359 
360       gcc_assert ((!TREE_OVERFLOW_P (min) || is_overflow_infinity (min))
361 		  && (!TREE_OVERFLOW_P (max) || is_overflow_infinity (max)));
362 
363       if (INTEGRAL_TYPE_P (TREE_TYPE (min)) && t == VR_ANTI_RANGE)
364 	gcc_assert (!vrp_val_is_min (min) || !vrp_val_is_max (max));
365 
366       cmp = compare_values (min, max);
367       gcc_assert (cmp == 0 || cmp == -1 || cmp == -2);
368     }
369 
370   if (flag_checking
371       && (t == VR_UNDEFINED || t == VR_VARYING))
372     {
373       gcc_assert (min == NULL_TREE && max == NULL_TREE);
374       gcc_assert (equiv == NULL || bitmap_empty_p (equiv));
375     }
376 
377   vr->type = t;
378   vr->min = min;
379   vr->max = max;
380 
381   /* Since updating the equivalence set involves deep copying the
382      bitmaps, only do it if absolutely necessary.  */
383   if (vr->equiv == NULL
384       && equiv != NULL)
385     vr->equiv = BITMAP_ALLOC (&vrp_equiv_obstack);
386 
387   if (equiv != vr->equiv)
388     {
389       if (equiv && !bitmap_empty_p (equiv))
390 	bitmap_copy (vr->equiv, equiv);
391       else
392 	bitmap_clear (vr->equiv);
393     }
394 }
395 
396 
397 /* Set value range VR to the canonical form of {T, MIN, MAX, EQUIV}.
398    This means adjusting T, MIN and MAX representing the case of a
399    wrapping range with MAX < MIN covering [MIN, type_max] U [type_min, MAX]
400    as anti-rage ~[MAX+1, MIN-1].  Likewise for wrapping anti-ranges.
401    In corner cases where MAX+1 or MIN-1 wraps this will fall back
402    to varying.
403    This routine exists to ease canonicalization in the case where we
404    extract ranges from var + CST op limit.  */
405 
406 static void
407 set_and_canonicalize_value_range (value_range *vr, enum value_range_type t,
408 				  tree min, tree max, bitmap equiv)
409 {
410   /* Use the canonical setters for VR_UNDEFINED and VR_VARYING.  */
411   if (t == VR_UNDEFINED)
412     {
413       set_value_range_to_undefined (vr);
414       return;
415     }
416   else if (t == VR_VARYING)
417     {
418       set_value_range_to_varying (vr);
419       return;
420     }
421 
422   /* Nothing to canonicalize for symbolic ranges.  */
423   if (TREE_CODE (min) != INTEGER_CST
424       || TREE_CODE (max) != INTEGER_CST)
425     {
426       set_value_range (vr, t, min, max, equiv);
427       return;
428     }
429 
430   /* Wrong order for min and max, to swap them and the VR type we need
431      to adjust them.  */
432   if (tree_int_cst_lt (max, min))
433     {
434       tree one, tmp;
435 
436       /* For one bit precision if max < min, then the swapped
437 	 range covers all values, so for VR_RANGE it is varying and
438 	 for VR_ANTI_RANGE empty range, so drop to varying as well.  */
439       if (TYPE_PRECISION (TREE_TYPE (min)) == 1)
440 	{
441 	  set_value_range_to_varying (vr);
442 	  return;
443 	}
444 
445       one = build_int_cst (TREE_TYPE (min), 1);
446       tmp = int_const_binop (PLUS_EXPR, max, one);
447       max = int_const_binop (MINUS_EXPR, min, one);
448       min = tmp;
449 
450       /* There's one corner case, if we had [C+1, C] before we now have
451 	 that again.  But this represents an empty value range, so drop
452 	 to varying in this case.  */
453       if (tree_int_cst_lt (max, min))
454 	{
455 	  set_value_range_to_varying (vr);
456 	  return;
457 	}
458 
459       t = t == VR_RANGE ? VR_ANTI_RANGE : VR_RANGE;
460     }
461 
462   /* Anti-ranges that can be represented as ranges should be so.  */
463   if (t == VR_ANTI_RANGE)
464     {
465       bool is_min = vrp_val_is_min (min);
466       bool is_max = vrp_val_is_max (max);
467 
468       if (is_min && is_max)
469 	{
470 	  /* We cannot deal with empty ranges, drop to varying.
471 	     ???  This could be VR_UNDEFINED instead.  */
472 	  set_value_range_to_varying (vr);
473 	  return;
474 	}
475       else if (TYPE_PRECISION (TREE_TYPE (min)) == 1
476 	       && (is_min || is_max))
477 	{
478 	  /* Non-empty boolean ranges can always be represented
479 	     as a singleton range.  */
480 	  if (is_min)
481 	    min = max = vrp_val_max (TREE_TYPE (min));
482 	  else
483 	    min = max = vrp_val_min (TREE_TYPE (min));
484 	  t = VR_RANGE;
485 	}
486       else if (is_min
487 	       /* As a special exception preserve non-null ranges.  */
488 	       && !(TYPE_UNSIGNED (TREE_TYPE (min))
489 		    && integer_zerop (max)))
490         {
491 	  tree one = build_int_cst (TREE_TYPE (max), 1);
492 	  min = int_const_binop (PLUS_EXPR, max, one);
493 	  max = vrp_val_max (TREE_TYPE (max));
494 	  t = VR_RANGE;
495         }
496       else if (is_max)
497         {
498 	  tree one = build_int_cst (TREE_TYPE (min), 1);
499 	  max = int_const_binop (MINUS_EXPR, min, one);
500 	  min = vrp_val_min (TREE_TYPE (min));
501 	  t = VR_RANGE;
502         }
503     }
504 
505   /* Do not drop [-INF(OVF), +INF(OVF)] to varying.  (OVF) has to be sticky
506      to make sure VRP iteration terminates, otherwise we can get into
507      oscillations.  */
508 
509   set_value_range (vr, t, min, max, equiv);
510 }
511 
512 /* Copy value range FROM into value range TO.  */
513 
514 static inline void
515 copy_value_range (value_range *to, value_range *from)
516 {
517   set_value_range (to, from->type, from->min, from->max, from->equiv);
518 }
519 
520 /* Set value range VR to a single value.  This function is only called
521    with values we get from statements, and exists to clear the
522    TREE_OVERFLOW flag so that we don't think we have an overflow
523    infinity when we shouldn't.  */
524 
525 static inline void
526 set_value_range_to_value (value_range *vr, tree val, bitmap equiv)
527 {
528   gcc_assert (is_gimple_min_invariant (val));
529   if (TREE_OVERFLOW_P (val))
530     val = drop_tree_overflow (val);
531   set_value_range (vr, VR_RANGE, val, val, equiv);
532 }
533 
534 /* Set value range VR to a non-negative range of type TYPE.
535    OVERFLOW_INFINITY indicates whether to use an overflow infinity
536    rather than TYPE_MAX_VALUE; this should be true if we determine
537    that the range is nonnegative based on the assumption that signed
538    overflow does not occur.  */
539 
540 static inline void
541 set_value_range_to_nonnegative (value_range *vr, tree type,
542 				bool overflow_infinity)
543 {
544   tree zero;
545 
546   if (overflow_infinity && !supports_overflow_infinity (type))
547     {
548       set_value_range_to_varying (vr);
549       return;
550     }
551 
552   zero = build_int_cst (type, 0);
553   set_value_range (vr, VR_RANGE, zero,
554 		   (overflow_infinity
555 		    ? positive_overflow_infinity (type)
556 		    : TYPE_MAX_VALUE (type)),
557 		   vr->equiv);
558 }
559 
560 /* Set value range VR to a non-NULL range of type TYPE.  */
561 
562 static inline void
563 set_value_range_to_nonnull (value_range *vr, tree type)
564 {
565   tree zero = build_int_cst (type, 0);
566   set_value_range (vr, VR_ANTI_RANGE, zero, zero, vr->equiv);
567 }
568 
569 
570 /* Set value range VR to a NULL range of type TYPE.  */
571 
572 static inline void
573 set_value_range_to_null (value_range *vr, tree type)
574 {
575   set_value_range_to_value (vr, build_int_cst (type, 0), vr->equiv);
576 }
577 
578 
579 /* Set value range VR to a range of a truthvalue of type TYPE.  */
580 
581 static inline void
582 set_value_range_to_truthvalue (value_range *vr, tree type)
583 {
584   if (TYPE_PRECISION (type) == 1)
585     set_value_range_to_varying (vr);
586   else
587     set_value_range (vr, VR_RANGE,
588 		     build_int_cst (type, 0), build_int_cst (type, 1),
589 		     vr->equiv);
590 }
591 
592 
593 /* If abs (min) < abs (max), set VR to [-max, max], if
594    abs (min) >= abs (max), set VR to [-min, min].  */
595 
596 static void
597 abs_extent_range (value_range *vr, tree min, tree max)
598 {
599   int cmp;
600 
601   gcc_assert (TREE_CODE (min) == INTEGER_CST);
602   gcc_assert (TREE_CODE (max) == INTEGER_CST);
603   gcc_assert (INTEGRAL_TYPE_P (TREE_TYPE (min)));
604   gcc_assert (!TYPE_UNSIGNED (TREE_TYPE (min)));
605   min = fold_unary (ABS_EXPR, TREE_TYPE (min), min);
606   max = fold_unary (ABS_EXPR, TREE_TYPE (max), max);
607   if (TREE_OVERFLOW (min) || TREE_OVERFLOW (max))
608     {
609       set_value_range_to_varying (vr);
610       return;
611     }
612   cmp = compare_values (min, max);
613   if (cmp == -1)
614     min = fold_unary (NEGATE_EXPR, TREE_TYPE (min), max);
615   else if (cmp == 0 || cmp == 1)
616     {
617       max = min;
618       min = fold_unary (NEGATE_EXPR, TREE_TYPE (min), min);
619     }
620   else
621     {
622       set_value_range_to_varying (vr);
623       return;
624     }
625   set_and_canonicalize_value_range (vr, VR_RANGE, min, max, NULL);
626 }
627 
628 
629 /* Return value range information for VAR.
630 
631    If we have no values ranges recorded (ie, VRP is not running), then
632    return NULL.  Otherwise create an empty range if none existed for VAR.  */
633 
634 static value_range *
635 get_value_range (const_tree var)
636 {
637   static const value_range vr_const_varying
638     = { VR_VARYING, NULL_TREE, NULL_TREE, NULL };
639   value_range *vr;
640   tree sym;
641   unsigned ver = SSA_NAME_VERSION (var);
642 
643   /* If we have no recorded ranges, then return NULL.  */
644   if (! vr_value)
645     return NULL;
646 
647   /* If we query the range for a new SSA name return an unmodifiable VARYING.
648      We should get here at most from the substitute-and-fold stage which
649      will never try to change values.  */
650   if (ver >= num_vr_values)
651     return CONST_CAST (value_range *, &vr_const_varying);
652 
653   vr = vr_value[ver];
654   if (vr)
655     return vr;
656 
657   /* After propagation finished do not allocate new value-ranges.  */
658   if (values_propagated)
659     return CONST_CAST (value_range *, &vr_const_varying);
660 
661   /* Create a default value range.  */
662   vr_value[ver] = vr = vrp_value_range_pool.allocate ();
663   memset (vr, 0, sizeof (*vr));
664 
665   /* Defer allocating the equivalence set.  */
666   vr->equiv = NULL;
667 
668   /* If VAR is a default definition of a parameter, the variable can
669      take any value in VAR's type.  */
670   if (SSA_NAME_IS_DEFAULT_DEF (var))
671     {
672       sym = SSA_NAME_VAR (var);
673       if (TREE_CODE (sym) == PARM_DECL)
674 	{
675 	  /* Try to use the "nonnull" attribute to create ~[0, 0]
676 	     anti-ranges for pointers.  Note that this is only valid with
677 	     default definitions of PARM_DECLs.  */
678 	  if (POINTER_TYPE_P (TREE_TYPE (sym))
679 	      && (nonnull_arg_p (sym)
680 		  || get_ptr_nonnull (var)))
681 	    set_value_range_to_nonnull (vr, TREE_TYPE (sym));
682 	  else if (INTEGRAL_TYPE_P (TREE_TYPE (sym)))
683 	    {
684 	      wide_int min, max;
685 	      value_range_type rtype = get_range_info (var, &min, &max);
686 	      if (rtype == VR_RANGE || rtype == VR_ANTI_RANGE)
687 		set_value_range (vr, rtype,
688 				 wide_int_to_tree (TREE_TYPE (var), min),
689 				 wide_int_to_tree (TREE_TYPE (var), max),
690 				 NULL);
691 	      else
692 		set_value_range_to_varying (vr);
693 	    }
694 	  else
695 	    set_value_range_to_varying (vr);
696 	}
697       else if (TREE_CODE (sym) == RESULT_DECL
698 	       && DECL_BY_REFERENCE (sym))
699 	set_value_range_to_nonnull (vr, TREE_TYPE (sym));
700     }
701 
702   return vr;
703 }
704 
705 /* Set value-ranges of all SSA names defined by STMT to varying.  */
706 
707 static void
708 set_defs_to_varying (gimple *stmt)
709 {
710   ssa_op_iter i;
711   tree def;
712   FOR_EACH_SSA_TREE_OPERAND (def, stmt, i, SSA_OP_DEF)
713     {
714       value_range *vr = get_value_range (def);
715       /* Avoid writing to vr_const_varying get_value_range may return.  */
716       if (vr->type != VR_VARYING)
717 	set_value_range_to_varying (vr);
718     }
719 }
720 
721 
722 /* Return true, if VAL1 and VAL2 are equal values for VRP purposes.  */
723 
724 static inline bool
725 vrp_operand_equal_p (const_tree val1, const_tree val2)
726 {
727   if (val1 == val2)
728     return true;
729   if (!val1 || !val2 || !operand_equal_p (val1, val2, 0))
730     return false;
731   return is_overflow_infinity (val1) == is_overflow_infinity (val2);
732 }
733 
734 /* Return true, if the bitmaps B1 and B2 are equal.  */
735 
736 static inline bool
737 vrp_bitmap_equal_p (const_bitmap b1, const_bitmap b2)
738 {
739   return (b1 == b2
740 	  || ((!b1 || bitmap_empty_p (b1))
741 	      && (!b2 || bitmap_empty_p (b2)))
742 	  || (b1 && b2
743 	      && bitmap_equal_p (b1, b2)));
744 }
745 
746 /* Update the value range and equivalence set for variable VAR to
747    NEW_VR.  Return true if NEW_VR is different from VAR's previous
748    value.
749 
750    NOTE: This function assumes that NEW_VR is a temporary value range
751    object created for the sole purpose of updating VAR's range.  The
752    storage used by the equivalence set from NEW_VR will be freed by
753    this function.  Do not call update_value_range when NEW_VR
754    is the range object associated with another SSA name.  */
755 
756 static inline bool
757 update_value_range (const_tree var, value_range *new_vr)
758 {
759   value_range *old_vr;
760   bool is_new;
761 
762   /* If there is a value-range on the SSA name from earlier analysis
763      factor that in.  */
764   if (INTEGRAL_TYPE_P (TREE_TYPE (var)))
765     {
766       wide_int min, max;
767       value_range_type rtype = get_range_info (var, &min, &max);
768       if (rtype == VR_RANGE || rtype == VR_ANTI_RANGE)
769 	{
770 	  tree nr_min, nr_max;
771 	  /* Range info on SSA names doesn't carry overflow information
772 	     so make sure to preserve the overflow bit on the lattice.  */
773 	  if (rtype == VR_RANGE
774 	      && needs_overflow_infinity (TREE_TYPE (var))
775 	      && (new_vr->type == VR_VARYING
776 		  || (new_vr->type == VR_RANGE
777 		      && is_negative_overflow_infinity (new_vr->min)))
778 	      && wi::eq_p (vrp_val_min (TREE_TYPE (var)), min))
779 	    nr_min = negative_overflow_infinity (TREE_TYPE (var));
780 	  else
781 	    nr_min = wide_int_to_tree (TREE_TYPE (var), min);
782 	  if (rtype == VR_RANGE
783 	      && needs_overflow_infinity (TREE_TYPE (var))
784 	      && (new_vr->type == VR_VARYING
785 		  || (new_vr->type == VR_RANGE
786 		      && is_positive_overflow_infinity (new_vr->max)))
787 	      && wi::eq_p (vrp_val_max (TREE_TYPE (var)), max))
788 	    nr_max = positive_overflow_infinity (TREE_TYPE (var));
789 	  else
790 	    nr_max = wide_int_to_tree (TREE_TYPE (var), max);
791 	  value_range nr = VR_INITIALIZER;
792 	  set_and_canonicalize_value_range (&nr, rtype, nr_min, nr_max, NULL);
793 	  vrp_intersect_ranges (new_vr, &nr);
794 	}
795     }
796 
797   /* Update the value range, if necessary.  */
798   old_vr = get_value_range (var);
799   is_new = old_vr->type != new_vr->type
800 	   || !vrp_operand_equal_p (old_vr->min, new_vr->min)
801 	   || !vrp_operand_equal_p (old_vr->max, new_vr->max)
802 	   || !vrp_bitmap_equal_p (old_vr->equiv, new_vr->equiv);
803 
804   if (is_new)
805     {
806       /* Do not allow transitions up the lattice.  The following
807 	 is slightly more awkward than just new_vr->type < old_vr->type
808 	 because VR_RANGE and VR_ANTI_RANGE need to be considered
809 	 the same.  We may not have is_new when transitioning to
810 	 UNDEFINED.  If old_vr->type is VARYING, we shouldn't be
811 	 called.  */
812       if (new_vr->type == VR_UNDEFINED)
813 	{
814 	  BITMAP_FREE (new_vr->equiv);
815 	  set_value_range_to_varying (old_vr);
816 	  set_value_range_to_varying (new_vr);
817 	  return true;
818 	}
819       else
820 	set_value_range (old_vr, new_vr->type, new_vr->min, new_vr->max,
821 			 new_vr->equiv);
822     }
823 
824   BITMAP_FREE (new_vr->equiv);
825 
826   return is_new;
827 }
828 
829 
830 /* Add VAR and VAR's equivalence set to EQUIV.  This is the central
831    point where equivalence processing can be turned on/off.  */
832 
833 static void
834 add_equivalence (bitmap *equiv, const_tree var)
835 {
836   unsigned ver = SSA_NAME_VERSION (var);
837   value_range *vr = get_value_range (var);
838 
839   if (*equiv == NULL)
840     *equiv = BITMAP_ALLOC (&vrp_equiv_obstack);
841   bitmap_set_bit (*equiv, ver);
842   if (vr && vr->equiv)
843     bitmap_ior_into (*equiv, vr->equiv);
844 }
845 
846 
847 /* Return true if VR is ~[0, 0].  */
848 
849 static inline bool
850 range_is_nonnull (value_range *vr)
851 {
852   return vr->type == VR_ANTI_RANGE
853 	 && integer_zerop (vr->min)
854 	 && integer_zerop (vr->max);
855 }
856 
857 
858 /* Return true if VR is [0, 0].  */
859 
860 static inline bool
861 range_is_null (value_range *vr)
862 {
863   return vr->type == VR_RANGE
864 	 && integer_zerop (vr->min)
865 	 && integer_zerop (vr->max);
866 }
867 
868 /* Return true if max and min of VR are INTEGER_CST.  It's not necessary
869    a singleton.  */
870 
871 static inline bool
872 range_int_cst_p (value_range *vr)
873 {
874   return (vr->type == VR_RANGE
875 	  && TREE_CODE (vr->max) == INTEGER_CST
876 	  && TREE_CODE (vr->min) == INTEGER_CST);
877 }
878 
879 /* Return true if VR is a INTEGER_CST singleton.  */
880 
881 static inline bool
882 range_int_cst_singleton_p (value_range *vr)
883 {
884   return (range_int_cst_p (vr)
885 	  && !is_overflow_infinity (vr->min)
886 	  && !is_overflow_infinity (vr->max)
887 	  && tree_int_cst_equal (vr->min, vr->max));
888 }
889 
890 /* Return true if value range VR involves at least one symbol.  */
891 
892 static inline bool
893 symbolic_range_p (value_range *vr)
894 {
895   return (!is_gimple_min_invariant (vr->min)
896           || !is_gimple_min_invariant (vr->max));
897 }
898 
899 /* Return the single symbol (an SSA_NAME) contained in T if any, or NULL_TREE
900    otherwise.  We only handle additive operations and set NEG to true if the
901    symbol is negated and INV to the invariant part, if any.  */
902 
903 static tree
904 get_single_symbol (tree t, bool *neg, tree *inv)
905 {
906   bool neg_;
907   tree inv_;
908 
909   *inv = NULL_TREE;
910   *neg = false;
911 
912   if (TREE_CODE (t) == PLUS_EXPR
913       || TREE_CODE (t) == POINTER_PLUS_EXPR
914       || TREE_CODE (t) == MINUS_EXPR)
915     {
916       if (is_gimple_min_invariant (TREE_OPERAND (t, 0)))
917 	{
918 	  neg_ = (TREE_CODE (t) == MINUS_EXPR);
919 	  inv_ = TREE_OPERAND (t, 0);
920 	  t = TREE_OPERAND (t, 1);
921 	}
922       else if (is_gimple_min_invariant (TREE_OPERAND (t, 1)))
923 	{
924 	  neg_ = false;
925 	  inv_ = TREE_OPERAND (t, 1);
926 	  t = TREE_OPERAND (t, 0);
927 	}
928       else
929         return NULL_TREE;
930     }
931   else
932     {
933       neg_ = false;
934       inv_ = NULL_TREE;
935     }
936 
937   if (TREE_CODE (t) == NEGATE_EXPR)
938     {
939       t = TREE_OPERAND (t, 0);
940       neg_ = !neg_;
941     }
942 
943   if (TREE_CODE (t) != SSA_NAME)
944     return NULL_TREE;
945 
946   *neg = neg_;
947   *inv = inv_;
948   return t;
949 }
950 
951 /* The reverse operation: build a symbolic expression with TYPE
952    from symbol SYM, negated according to NEG, and invariant INV.  */
953 
954 static tree
955 build_symbolic_expr (tree type, tree sym, bool neg, tree inv)
956 {
957   const bool pointer_p = POINTER_TYPE_P (type);
958   tree t = sym;
959 
960   if (neg)
961     t = build1 (NEGATE_EXPR, type, t);
962 
963   if (integer_zerop (inv))
964     return t;
965 
966   return build2 (pointer_p ? POINTER_PLUS_EXPR : PLUS_EXPR, type, t, inv);
967 }
968 
969 /* Return true if value range VR involves exactly one symbol SYM.  */
970 
971 static bool
972 symbolic_range_based_on_p (value_range *vr, const_tree sym)
973 {
974   bool neg, min_has_symbol, max_has_symbol;
975   tree inv;
976 
977   if (is_gimple_min_invariant (vr->min))
978     min_has_symbol = false;
979   else if (get_single_symbol (vr->min, &neg, &inv) == sym)
980     min_has_symbol = true;
981   else
982     return false;
983 
984   if (is_gimple_min_invariant (vr->max))
985     max_has_symbol = false;
986   else if (get_single_symbol (vr->max, &neg, &inv) == sym)
987     max_has_symbol = true;
988   else
989     return false;
990 
991   return (min_has_symbol || max_has_symbol);
992 }
993 
994 /* Return true if value range VR uses an overflow infinity.  */
995 
996 static inline bool
997 overflow_infinity_range_p (value_range *vr)
998 {
999   return (vr->type == VR_RANGE
1000 	  && (is_overflow_infinity (vr->min)
1001 	      || is_overflow_infinity (vr->max)));
1002 }
1003 
1004 /* Return false if we can not make a valid comparison based on VR;
1005    this will be the case if it uses an overflow infinity and overflow
1006    is not undefined (i.e., -fno-strict-overflow is in effect).
1007    Otherwise return true, and set *STRICT_OVERFLOW_P to true if VR
1008    uses an overflow infinity.  */
1009 
1010 static bool
1011 usable_range_p (value_range *vr, bool *strict_overflow_p)
1012 {
1013   gcc_assert (vr->type == VR_RANGE);
1014   if (is_overflow_infinity (vr->min))
1015     {
1016       *strict_overflow_p = true;
1017       if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (vr->min)))
1018 	return false;
1019     }
1020   if (is_overflow_infinity (vr->max))
1021     {
1022       *strict_overflow_p = true;
1023       if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (vr->max)))
1024 	return false;
1025     }
1026   return true;
1027 }
1028 
1029 /* Return true if the result of assignment STMT is know to be non-zero.
1030    If the return value is based on the assumption that signed overflow is
1031    undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
1032    *STRICT_OVERFLOW_P.*/
1033 
1034 static bool
1035 gimple_assign_nonzero_warnv_p (gimple *stmt, bool *strict_overflow_p)
1036 {
1037   enum tree_code code = gimple_assign_rhs_code (stmt);
1038   switch (get_gimple_rhs_class (code))
1039     {
1040     case GIMPLE_UNARY_RHS:
1041       return tree_unary_nonzero_warnv_p (gimple_assign_rhs_code (stmt),
1042 					 gimple_expr_type (stmt),
1043 					 gimple_assign_rhs1 (stmt),
1044 					 strict_overflow_p);
1045     case GIMPLE_BINARY_RHS:
1046       return tree_binary_nonzero_warnv_p (gimple_assign_rhs_code (stmt),
1047 					  gimple_expr_type (stmt),
1048 					  gimple_assign_rhs1 (stmt),
1049 					  gimple_assign_rhs2 (stmt),
1050 					  strict_overflow_p);
1051     case GIMPLE_TERNARY_RHS:
1052       return false;
1053     case GIMPLE_SINGLE_RHS:
1054       return tree_single_nonzero_warnv_p (gimple_assign_rhs1 (stmt),
1055 					  strict_overflow_p);
1056     case GIMPLE_INVALID_RHS:
1057       gcc_unreachable ();
1058     default:
1059       gcc_unreachable ();
1060     }
1061 }
1062 
1063 /* Return true if STMT is known to compute a non-zero value.
1064    If the return value is based on the assumption that signed overflow is
1065    undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
1066    *STRICT_OVERFLOW_P.*/
1067 
1068 static bool
1069 gimple_stmt_nonzero_warnv_p (gimple *stmt, bool *strict_overflow_p)
1070 {
1071   switch (gimple_code (stmt))
1072     {
1073     case GIMPLE_ASSIGN:
1074       return gimple_assign_nonzero_warnv_p (stmt, strict_overflow_p);
1075     case GIMPLE_CALL:
1076       {
1077 	tree fndecl = gimple_call_fndecl (stmt);
1078 	if (!fndecl) return false;
1079 	if (flag_delete_null_pointer_checks && !flag_check_new
1080 	    && DECL_IS_OPERATOR_NEW (fndecl)
1081 	    && !TREE_NOTHROW (fndecl))
1082 	  return true;
1083 	/* References are always non-NULL.  */
1084 	if (flag_delete_null_pointer_checks
1085 	    && TREE_CODE (TREE_TYPE (fndecl)) == REFERENCE_TYPE)
1086 	  return true;
1087 	if (flag_delete_null_pointer_checks &&
1088 	    lookup_attribute ("returns_nonnull",
1089 			      TYPE_ATTRIBUTES (gimple_call_fntype (stmt))))
1090 	  return true;
1091 
1092 	gcall *call_stmt = as_a<gcall *> (stmt);
1093 	unsigned rf = gimple_call_return_flags (call_stmt);
1094 	if (rf & ERF_RETURNS_ARG)
1095 	  {
1096 	    unsigned argnum = rf & ERF_RETURN_ARG_MASK;
1097 	    if (argnum < gimple_call_num_args (call_stmt))
1098 	      {
1099 		tree arg = gimple_call_arg (call_stmt, argnum);
1100 		if (SSA_VAR_P (arg)
1101 		    && infer_nonnull_range_by_attribute (stmt, arg))
1102 		  return true;
1103 	      }
1104 	  }
1105 	return gimple_alloca_call_p (stmt);
1106       }
1107     default:
1108       gcc_unreachable ();
1109     }
1110 }
1111 
1112 /* Like tree_expr_nonzero_warnv_p, but this function uses value ranges
1113    obtained so far.  */
1114 
1115 static bool
1116 vrp_stmt_computes_nonzero (gimple *stmt, bool *strict_overflow_p)
1117 {
1118   if (gimple_stmt_nonzero_warnv_p (stmt, strict_overflow_p))
1119     return true;
1120 
1121   /* If we have an expression of the form &X->a, then the expression
1122      is nonnull if X is nonnull.  */
1123   if (is_gimple_assign (stmt)
1124       && gimple_assign_rhs_code (stmt) == ADDR_EXPR)
1125     {
1126       tree expr = gimple_assign_rhs1 (stmt);
1127       tree base = get_base_address (TREE_OPERAND (expr, 0));
1128 
1129       if (base != NULL_TREE
1130 	  && TREE_CODE (base) == MEM_REF
1131 	  && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME)
1132 	{
1133 	  value_range *vr = get_value_range (TREE_OPERAND (base, 0));
1134 	  if (range_is_nonnull (vr))
1135 	    return true;
1136 	}
1137     }
1138 
1139   return false;
1140 }
1141 
1142 /* Returns true if EXPR is a valid value (as expected by compare_values) --
1143    a gimple invariant, or SSA_NAME +- CST.  */
1144 
1145 static bool
1146 valid_value_p (tree expr)
1147 {
1148   if (TREE_CODE (expr) == SSA_NAME)
1149     return true;
1150 
1151   if (TREE_CODE (expr) == PLUS_EXPR
1152       || TREE_CODE (expr) == MINUS_EXPR)
1153     return (TREE_CODE (TREE_OPERAND (expr, 0)) == SSA_NAME
1154 	    && TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST);
1155 
1156   return is_gimple_min_invariant (expr);
1157 }
1158 
1159 /* Return
1160    1 if VAL < VAL2
1161    0 if !(VAL < VAL2)
1162    -2 if those are incomparable.  */
1163 static inline int
1164 operand_less_p (tree val, tree val2)
1165 {
1166   /* LT is folded faster than GE and others.  Inline the common case.  */
1167   if (TREE_CODE (val) == INTEGER_CST && TREE_CODE (val2) == INTEGER_CST)
1168     {
1169       if (! is_positive_overflow_infinity (val2))
1170 	return tree_int_cst_lt (val, val2);
1171     }
1172   else
1173     {
1174       tree tcmp;
1175 
1176       fold_defer_overflow_warnings ();
1177 
1178       tcmp = fold_binary_to_constant (LT_EXPR, boolean_type_node, val, val2);
1179 
1180       fold_undefer_and_ignore_overflow_warnings ();
1181 
1182       if (!tcmp
1183 	  || TREE_CODE (tcmp) != INTEGER_CST)
1184 	return -2;
1185 
1186       if (!integer_zerop (tcmp))
1187 	return 1;
1188     }
1189 
1190   /* val >= val2, not considering overflow infinity.  */
1191   if (is_negative_overflow_infinity (val))
1192     return is_negative_overflow_infinity (val2) ? 0 : 1;
1193   else if (is_positive_overflow_infinity (val2))
1194     return is_positive_overflow_infinity (val) ? 0 : 1;
1195 
1196   return 0;
1197 }
1198 
1199 /* Compare two values VAL1 and VAL2.  Return
1200 
1201    	-2 if VAL1 and VAL2 cannot be compared at compile-time,
1202    	-1 if VAL1 < VAL2,
1203    	 0 if VAL1 == VAL2,
1204 	+1 if VAL1 > VAL2, and
1205 	+2 if VAL1 != VAL2
1206 
1207    This is similar to tree_int_cst_compare but supports pointer values
1208    and values that cannot be compared at compile time.
1209 
1210    If STRICT_OVERFLOW_P is not NULL, then set *STRICT_OVERFLOW_P to
1211    true if the return value is only valid if we assume that signed
1212    overflow is undefined.  */
1213 
1214 static int
1215 compare_values_warnv (tree val1, tree val2, bool *strict_overflow_p)
1216 {
1217   if (val1 == val2)
1218     return 0;
1219 
1220   /* Below we rely on the fact that VAL1 and VAL2 are both pointers or
1221      both integers.  */
1222   gcc_assert (POINTER_TYPE_P (TREE_TYPE (val1))
1223 	      == POINTER_TYPE_P (TREE_TYPE (val2)));
1224 
1225   /* Convert the two values into the same type.  This is needed because
1226      sizetype causes sign extension even for unsigned types.  */
1227   val2 = fold_convert (TREE_TYPE (val1), val2);
1228   STRIP_USELESS_TYPE_CONVERSION (val2);
1229 
1230   const bool overflow_undefined
1231     = INTEGRAL_TYPE_P (TREE_TYPE (val1))
1232       && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (val1));
1233   tree inv1, inv2;
1234   bool neg1, neg2;
1235   tree sym1 = get_single_symbol (val1, &neg1, &inv1);
1236   tree sym2 = get_single_symbol (val2, &neg2, &inv2);
1237 
1238   /* If VAL1 and VAL2 are of the form '[-]NAME [+ CST]', return -1 or +1
1239      accordingly.  If VAL1 and VAL2 don't use the same name, return -2.  */
1240   if (sym1 && sym2)
1241     {
1242       /* Both values must use the same name with the same sign.  */
1243       if (sym1 != sym2 || neg1 != neg2)
1244 	return -2;
1245 
1246       /* [-]NAME + CST == [-]NAME + CST.  */
1247       if (inv1 == inv2)
1248 	return 0;
1249 
1250       /* If overflow is defined we cannot simplify more.  */
1251       if (!overflow_undefined)
1252 	return -2;
1253 
1254       if (strict_overflow_p != NULL
1255 	  && (!inv1 || !TREE_NO_WARNING (val1))
1256 	  && (!inv2 || !TREE_NO_WARNING (val2)))
1257 	*strict_overflow_p = true;
1258 
1259       if (!inv1)
1260 	inv1 = build_int_cst (TREE_TYPE (val1), 0);
1261       if (!inv2)
1262 	inv2 = build_int_cst (TREE_TYPE (val2), 0);
1263 
1264       return compare_values_warnv (inv1, inv2, strict_overflow_p);
1265     }
1266 
1267   const bool cst1 = is_gimple_min_invariant (val1);
1268   const bool cst2 = is_gimple_min_invariant (val2);
1269 
1270   /* If one is of the form '[-]NAME + CST' and the other is constant, then
1271      it might be possible to say something depending on the constants.  */
1272   if ((sym1 && inv1 && cst2) || (sym2 && inv2 && cst1))
1273     {
1274       if (!overflow_undefined)
1275 	return -2;
1276 
1277       if (strict_overflow_p != NULL
1278 	  && (!sym1 || !TREE_NO_WARNING (val1))
1279 	  && (!sym2 || !TREE_NO_WARNING (val2)))
1280 	*strict_overflow_p = true;
1281 
1282       const signop sgn = TYPE_SIGN (TREE_TYPE (val1));
1283       tree cst = cst1 ? val1 : val2;
1284       tree inv = cst1 ? inv2 : inv1;
1285 
1286       /* Compute the difference between the constants.  If it overflows or
1287 	 underflows, this means that we can trivially compare the NAME with
1288 	 it and, consequently, the two values with each other.  */
1289       wide_int diff = wi::sub (cst, inv);
1290       if (wi::cmp (0, inv, sgn) != wi::cmp (diff, cst, sgn))
1291 	{
1292 	  const int res = wi::cmp (cst, inv, sgn);
1293 	  return cst1 ? res : -res;
1294 	}
1295 
1296       return -2;
1297     }
1298 
1299   /* We cannot say anything more for non-constants.  */
1300   if (!cst1 || !cst2)
1301     return -2;
1302 
1303   if (!POINTER_TYPE_P (TREE_TYPE (val1)))
1304     {
1305       /* We cannot compare overflowed values, except for overflow
1306 	 infinities.  */
1307       if (TREE_OVERFLOW (val1) || TREE_OVERFLOW (val2))
1308 	{
1309 	  if (strict_overflow_p != NULL)
1310 	    *strict_overflow_p = true;
1311 	  if (is_negative_overflow_infinity (val1))
1312 	    return is_negative_overflow_infinity (val2) ? 0 : -1;
1313 	  else if (is_negative_overflow_infinity (val2))
1314 	    return 1;
1315 	  else if (is_positive_overflow_infinity (val1))
1316 	    return is_positive_overflow_infinity (val2) ? 0 : 1;
1317 	  else if (is_positive_overflow_infinity (val2))
1318 	    return -1;
1319 	  return -2;
1320 	}
1321 
1322       return tree_int_cst_compare (val1, val2);
1323     }
1324   else
1325     {
1326       tree t;
1327 
1328       /* First see if VAL1 and VAL2 are not the same.  */
1329       if (val1 == val2 || operand_equal_p (val1, val2, 0))
1330 	return 0;
1331 
1332       /* If VAL1 is a lower address than VAL2, return -1.  */
1333       if (operand_less_p (val1, val2) == 1)
1334 	return -1;
1335 
1336       /* If VAL1 is a higher address than VAL2, return +1.  */
1337       if (operand_less_p (val2, val1) == 1)
1338 	return 1;
1339 
1340       /* If VAL1 is different than VAL2, return +2.
1341 	 For integer constants we either have already returned -1 or 1
1342 	 or they are equivalent.  We still might succeed in proving
1343 	 something about non-trivial operands.  */
1344       if (TREE_CODE (val1) != INTEGER_CST
1345 	  || TREE_CODE (val2) != INTEGER_CST)
1346 	{
1347           t = fold_binary_to_constant (NE_EXPR, boolean_type_node, val1, val2);
1348 	  if (t && integer_onep (t))
1349 	    return 2;
1350 	}
1351 
1352       return -2;
1353     }
1354 }
1355 
1356 /* Compare values like compare_values_warnv, but treat comparisons of
1357    nonconstants which rely on undefined overflow as incomparable.  */
1358 
1359 static int
1360 compare_values (tree val1, tree val2)
1361 {
1362   bool sop;
1363   int ret;
1364 
1365   sop = false;
1366   ret = compare_values_warnv (val1, val2, &sop);
1367   if (sop
1368       && (!is_gimple_min_invariant (val1) || !is_gimple_min_invariant (val2)))
1369     ret = -2;
1370   return ret;
1371 }
1372 
1373 
1374 /* Return 1 if VAL is inside value range MIN <= VAL <= MAX,
1375           0 if VAL is not inside [MIN, MAX],
1376 	 -2 if we cannot tell either way.
1377 
1378    Benchmark compile/20001226-1.c compilation time after changing this
1379    function.  */
1380 
1381 static inline int
1382 value_inside_range (tree val, tree min, tree max)
1383 {
1384   int cmp1, cmp2;
1385 
1386   cmp1 = operand_less_p (val, min);
1387   if (cmp1 == -2)
1388     return -2;
1389   if (cmp1 == 1)
1390     return 0;
1391 
1392   cmp2 = operand_less_p (max, val);
1393   if (cmp2 == -2)
1394     return -2;
1395 
1396   return !cmp2;
1397 }
1398 
1399 
1400 /* Return true if value ranges VR0 and VR1 have a non-empty
1401    intersection.
1402 
1403    Benchmark compile/20001226-1.c compilation time after changing this
1404    function.
1405    */
1406 
1407 static inline bool
1408 value_ranges_intersect_p (value_range *vr0, value_range *vr1)
1409 {
1410   /* The value ranges do not intersect if the maximum of the first range is
1411      less than the minimum of the second range or vice versa.
1412      When those relations are unknown, we can't do any better.  */
1413   if (operand_less_p (vr0->max, vr1->min) != 0)
1414     return false;
1415   if (operand_less_p (vr1->max, vr0->min) != 0)
1416     return false;
1417   return true;
1418 }
1419 
1420 
1421 /* Return 1 if [MIN, MAX] includes the value zero, 0 if it does not
1422    include the value zero, -2 if we cannot tell.  */
1423 
1424 static inline int
1425 range_includes_zero_p (tree min, tree max)
1426 {
1427   tree zero = build_int_cst (TREE_TYPE (min), 0);
1428   return value_inside_range (zero, min, max);
1429 }
1430 
1431 /* Return true if *VR is know to only contain nonnegative values.  */
1432 
1433 static inline bool
1434 value_range_nonnegative_p (value_range *vr)
1435 {
1436   /* Testing for VR_ANTI_RANGE is not useful here as any anti-range
1437      which would return a useful value should be encoded as a
1438      VR_RANGE.  */
1439   if (vr->type == VR_RANGE)
1440     {
1441       int result = compare_values (vr->min, integer_zero_node);
1442       return (result == 0 || result == 1);
1443     }
1444 
1445   return false;
1446 }
1447 
1448 /* If *VR has a value rante that is a single constant value return that,
1449    otherwise return NULL_TREE.  */
1450 
1451 static tree
1452 value_range_constant_singleton (value_range *vr)
1453 {
1454   if (vr->type == VR_RANGE
1455       && vrp_operand_equal_p (vr->min, vr->max)
1456       && is_gimple_min_invariant (vr->min))
1457     return vr->min;
1458 
1459   return NULL_TREE;
1460 }
1461 
1462 /* If OP has a value range with a single constant value return that,
1463    otherwise return NULL_TREE.  This returns OP itself if OP is a
1464    constant.  */
1465 
1466 static tree
1467 op_with_constant_singleton_value_range (tree op)
1468 {
1469   if (is_gimple_min_invariant (op))
1470     return op;
1471 
1472   if (TREE_CODE (op) != SSA_NAME)
1473     return NULL_TREE;
1474 
1475   return value_range_constant_singleton (get_value_range (op));
1476 }
1477 
1478 /* Return true if op is in a boolean [0, 1] value-range.  */
1479 
1480 static bool
1481 op_with_boolean_value_range_p (tree op)
1482 {
1483   value_range *vr;
1484 
1485   if (TYPE_PRECISION (TREE_TYPE (op)) == 1)
1486     return true;
1487 
1488   if (integer_zerop (op)
1489       || integer_onep (op))
1490     return true;
1491 
1492   if (TREE_CODE (op) != SSA_NAME)
1493     return false;
1494 
1495   vr = get_value_range (op);
1496   return (vr->type == VR_RANGE
1497 	  && integer_zerop (vr->min)
1498 	  && integer_onep (vr->max));
1499 }
1500 
1501 /* Extract value range information for VAR when (OP COND_CODE LIMIT) is
1502    true and store it in *VR_P.  */
1503 
1504 static void
1505 extract_range_for_var_from_comparison_expr (tree var, enum tree_code cond_code,
1506 					    tree op, tree limit,
1507 					    value_range *vr_p)
1508 {
1509   tree  min, max, type;
1510   value_range *limit_vr;
1511   limit = avoid_overflow_infinity (limit);
1512   type = TREE_TYPE (var);
1513   gcc_assert (limit != var);
1514 
1515   /* For pointer arithmetic, we only keep track of pointer equality
1516      and inequality.  */
1517   if (POINTER_TYPE_P (type) && cond_code != NE_EXPR && cond_code != EQ_EXPR)
1518     {
1519       set_value_range_to_varying (vr_p);
1520       return;
1521     }
1522 
1523   /* If LIMIT is another SSA name and LIMIT has a range of its own,
1524      try to use LIMIT's range to avoid creating symbolic ranges
1525      unnecessarily. */
1526   limit_vr = (TREE_CODE (limit) == SSA_NAME) ? get_value_range (limit) : NULL;
1527 
1528   /* LIMIT's range is only interesting if it has any useful information.  */
1529   if (! limit_vr
1530       || limit_vr->type == VR_UNDEFINED
1531       || limit_vr->type == VR_VARYING
1532       || (symbolic_range_p (limit_vr)
1533 	  && ! (limit_vr->type == VR_RANGE
1534 		&& (limit_vr->min == limit_vr->max
1535 		    || operand_equal_p (limit_vr->min, limit_vr->max, 0)))))
1536     limit_vr = NULL;
1537 
1538   /* Initially, the new range has the same set of equivalences of
1539      VAR's range.  This will be revised before returning the final
1540      value.  Since assertions may be chained via mutually exclusive
1541      predicates, we will need to trim the set of equivalences before
1542      we are done.  */
1543   gcc_assert (vr_p->equiv == NULL);
1544   add_equivalence (&vr_p->equiv, var);
1545 
1546   /* Extract a new range based on the asserted comparison for VAR and
1547      LIMIT's value range.  Notice that if LIMIT has an anti-range, we
1548      will only use it for equality comparisons (EQ_EXPR).  For any
1549      other kind of assertion, we cannot derive a range from LIMIT's
1550      anti-range that can be used to describe the new range.  For
1551      instance, ASSERT_EXPR <x_2, x_2 <= b_4>.  If b_4 is ~[2, 10],
1552      then b_4 takes on the ranges [-INF, 1] and [11, +INF].  There is
1553      no single range for x_2 that could describe LE_EXPR, so we might
1554      as well build the range [b_4, +INF] for it.
1555      One special case we handle is extracting a range from a
1556      range test encoded as (unsigned)var + CST <= limit.  */
1557   if (TREE_CODE (op) == NOP_EXPR
1558       || TREE_CODE (op) == PLUS_EXPR)
1559     {
1560       if (TREE_CODE (op) == PLUS_EXPR)
1561         {
1562 	  min = fold_build1 (NEGATE_EXPR, TREE_TYPE (TREE_OPERAND (op, 1)),
1563 			     TREE_OPERAND (op, 1));
1564           max = int_const_binop (PLUS_EXPR, limit, min);
1565 	  op = TREE_OPERAND (op, 0);
1566 	}
1567       else
1568 	{
1569 	  min = build_int_cst (TREE_TYPE (var), 0);
1570 	  max = limit;
1571 	}
1572 
1573       /* Make sure to not set TREE_OVERFLOW on the final type
1574 	 conversion.  We are willingly interpreting large positive
1575 	 unsigned values as negative signed values here.  */
1576       min = force_fit_type (TREE_TYPE (var), wi::to_widest (min), 0, false);
1577       max = force_fit_type (TREE_TYPE (var), wi::to_widest (max), 0, false);
1578 
1579       /* We can transform a max, min range to an anti-range or
1580          vice-versa.  Use set_and_canonicalize_value_range which does
1581 	 this for us.  */
1582       if (cond_code == LE_EXPR)
1583         set_and_canonicalize_value_range (vr_p, VR_RANGE,
1584 					  min, max, vr_p->equiv);
1585       else if (cond_code == GT_EXPR)
1586         set_and_canonicalize_value_range (vr_p, VR_ANTI_RANGE,
1587 					  min, max, vr_p->equiv);
1588       else
1589 	gcc_unreachable ();
1590     }
1591   else if (cond_code == EQ_EXPR)
1592     {
1593       enum value_range_type range_type;
1594 
1595       if (limit_vr)
1596 	{
1597 	  range_type = limit_vr->type;
1598 	  min = limit_vr->min;
1599 	  max = limit_vr->max;
1600 	}
1601       else
1602 	{
1603 	  range_type = VR_RANGE;
1604 	  min = limit;
1605 	  max = limit;
1606 	}
1607 
1608       set_value_range (vr_p, range_type, min, max, vr_p->equiv);
1609 
1610       /* When asserting the equality VAR == LIMIT and LIMIT is another
1611 	 SSA name, the new range will also inherit the equivalence set
1612 	 from LIMIT.  */
1613       if (TREE_CODE (limit) == SSA_NAME)
1614 	add_equivalence (&vr_p->equiv, limit);
1615     }
1616   else if (cond_code == NE_EXPR)
1617     {
1618       /* As described above, when LIMIT's range is an anti-range and
1619 	 this assertion is an inequality (NE_EXPR), then we cannot
1620 	 derive anything from the anti-range.  For instance, if
1621 	 LIMIT's range was ~[0, 0], the assertion 'VAR != LIMIT' does
1622 	 not imply that VAR's range is [0, 0].  So, in the case of
1623 	 anti-ranges, we just assert the inequality using LIMIT and
1624 	 not its anti-range.
1625 
1626 	 If LIMIT_VR is a range, we can only use it to build a new
1627 	 anti-range if LIMIT_VR is a single-valued range.  For
1628 	 instance, if LIMIT_VR is [0, 1], the predicate
1629 	 VAR != [0, 1] does not mean that VAR's range is ~[0, 1].
1630 	 Rather, it means that for value 0 VAR should be ~[0, 0]
1631 	 and for value 1, VAR should be ~[1, 1].  We cannot
1632 	 represent these ranges.
1633 
1634 	 The only situation in which we can build a valid
1635 	 anti-range is when LIMIT_VR is a single-valued range
1636 	 (i.e., LIMIT_VR->MIN == LIMIT_VR->MAX).  In that case,
1637 	 build the anti-range ~[LIMIT_VR->MIN, LIMIT_VR->MAX].  */
1638       if (limit_vr
1639 	  && limit_vr->type == VR_RANGE
1640 	  && compare_values (limit_vr->min, limit_vr->max) == 0)
1641 	{
1642 	  min = limit_vr->min;
1643 	  max = limit_vr->max;
1644 	}
1645       else
1646 	{
1647 	  /* In any other case, we cannot use LIMIT's range to build a
1648 	     valid anti-range.  */
1649 	  min = max = limit;
1650 	}
1651 
1652       /* If MIN and MAX cover the whole range for their type, then
1653 	 just use the original LIMIT.  */
1654       if (INTEGRAL_TYPE_P (type)
1655 	  && vrp_val_is_min (min)
1656 	  && vrp_val_is_max (max))
1657 	min = max = limit;
1658 
1659       set_and_canonicalize_value_range (vr_p, VR_ANTI_RANGE,
1660 					min, max, vr_p->equiv);
1661     }
1662   else if (cond_code == LE_EXPR || cond_code == LT_EXPR)
1663     {
1664       min = TYPE_MIN_VALUE (type);
1665 
1666       if (limit_vr == NULL || limit_vr->type == VR_ANTI_RANGE)
1667 	max = limit;
1668       else
1669 	{
1670 	  /* If LIMIT_VR is of the form [N1, N2], we need to build the
1671 	     range [MIN, N2] for LE_EXPR and [MIN, N2 - 1] for
1672 	     LT_EXPR.  */
1673 	  max = limit_vr->max;
1674 	}
1675 
1676       /* If the maximum value forces us to be out of bounds, simply punt.
1677 	 It would be pointless to try and do anything more since this
1678 	 all should be optimized away above us.  */
1679       if ((cond_code == LT_EXPR
1680 	   && compare_values (max, min) == 0)
1681 	  || is_overflow_infinity (max))
1682 	set_value_range_to_varying (vr_p);
1683       else
1684 	{
1685 	  /* For LT_EXPR, we create the range [MIN, MAX - 1].  */
1686 	  if (cond_code == LT_EXPR)
1687 	    {
1688 	      if (TYPE_PRECISION (TREE_TYPE (max)) == 1
1689 		  && !TYPE_UNSIGNED (TREE_TYPE (max)))
1690 		max = fold_build2 (PLUS_EXPR, TREE_TYPE (max), max,
1691 				   build_int_cst (TREE_TYPE (max), -1));
1692 	      else
1693 		max = fold_build2 (MINUS_EXPR, TREE_TYPE (max), max,
1694 				   build_int_cst (TREE_TYPE (max), 1));
1695 	      if (EXPR_P (max))
1696 		TREE_NO_WARNING (max) = 1;
1697 	    }
1698 
1699 	  set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1700 	}
1701     }
1702   else if (cond_code == GE_EXPR || cond_code == GT_EXPR)
1703     {
1704       max = TYPE_MAX_VALUE (type);
1705 
1706       if (limit_vr == NULL || limit_vr->type == VR_ANTI_RANGE)
1707 	min = limit;
1708       else
1709 	{
1710 	  /* If LIMIT_VR is of the form [N1, N2], we need to build the
1711 	     range [N1, MAX] for GE_EXPR and [N1 + 1, MAX] for
1712 	     GT_EXPR.  */
1713 	  min = limit_vr->min;
1714 	}
1715 
1716       /* If the minimum value forces us to be out of bounds, simply punt.
1717 	 It would be pointless to try and do anything more since this
1718 	 all should be optimized away above us.  */
1719       if ((cond_code == GT_EXPR
1720 	   && compare_values (min, max) == 0)
1721 	  || is_overflow_infinity (min))
1722 	set_value_range_to_varying (vr_p);
1723       else
1724 	{
1725 	  /* For GT_EXPR, we create the range [MIN + 1, MAX].  */
1726 	  if (cond_code == GT_EXPR)
1727 	    {
1728 	      if (TYPE_PRECISION (TREE_TYPE (min)) == 1
1729 		  && !TYPE_UNSIGNED (TREE_TYPE (min)))
1730 		min = fold_build2 (MINUS_EXPR, TREE_TYPE (min), min,
1731 				   build_int_cst (TREE_TYPE (min), -1));
1732 	      else
1733 		min = fold_build2 (PLUS_EXPR, TREE_TYPE (min), min,
1734 				   build_int_cst (TREE_TYPE (min), 1));
1735 	      if (EXPR_P (min))
1736 		TREE_NO_WARNING (min) = 1;
1737 	    }
1738 
1739 	  set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1740 	}
1741     }
1742   else
1743     gcc_unreachable ();
1744 
1745   /* Finally intersect the new range with what we already know about var.  */
1746   vrp_intersect_ranges (vr_p, get_value_range (var));
1747 }
1748 
1749 /* Extract value range information from an ASSERT_EXPR EXPR and store
1750    it in *VR_P.  */
1751 
1752 static void
1753 extract_range_from_assert (value_range *vr_p, tree expr)
1754 {
1755   tree var = ASSERT_EXPR_VAR (expr);
1756   tree cond = ASSERT_EXPR_COND (expr);
1757   tree limit, op;
1758   enum tree_code cond_code;
1759   gcc_assert (COMPARISON_CLASS_P (cond));
1760 
1761   /* Find VAR in the ASSERT_EXPR conditional.  */
1762   if (var == TREE_OPERAND (cond, 0)
1763       || TREE_CODE (TREE_OPERAND (cond, 0)) == PLUS_EXPR
1764       || TREE_CODE (TREE_OPERAND (cond, 0)) == NOP_EXPR)
1765     {
1766       /* If the predicate is of the form VAR COMP LIMIT, then we just
1767 	 take LIMIT from the RHS and use the same comparison code.  */
1768       cond_code = TREE_CODE (cond);
1769       limit = TREE_OPERAND (cond, 1);
1770       op = TREE_OPERAND (cond, 0);
1771     }
1772   else
1773     {
1774       /* If the predicate is of the form LIMIT COMP VAR, then we need
1775 	 to flip around the comparison code to create the proper range
1776 	 for VAR.  */
1777       cond_code = swap_tree_comparison (TREE_CODE (cond));
1778       limit = TREE_OPERAND (cond, 0);
1779       op = TREE_OPERAND (cond, 1);
1780     }
1781   extract_range_for_var_from_comparison_expr (var, cond_code, op,
1782 					      limit, vr_p);
1783 }
1784 
1785 /* Extract range information from SSA name VAR and store it in VR.  If
1786    VAR has an interesting range, use it.  Otherwise, create the
1787    range [VAR, VAR] and return it.  This is useful in situations where
1788    we may have conditionals testing values of VARYING names.  For
1789    instance,
1790 
1791    	x_3 = y_5;
1792 	if (x_3 > y_5)
1793 	  ...
1794 
1795     Even if y_5 is deemed VARYING, we can determine that x_3 > y_5 is
1796     always false.  */
1797 
1798 static void
1799 extract_range_from_ssa_name (value_range *vr, tree var)
1800 {
1801   value_range *var_vr = get_value_range (var);
1802 
1803   if (var_vr->type != VR_VARYING)
1804     copy_value_range (vr, var_vr);
1805   else
1806     set_value_range (vr, VR_RANGE, var, var, NULL);
1807 
1808   add_equivalence (&vr->equiv, var);
1809 }
1810 
1811 
1812 /* Wrapper around int_const_binop.  If the operation overflows and we
1813    are not using wrapping arithmetic, then adjust the result to be
1814    -INF or +INF depending on CODE, VAL1 and VAL2.  This can return
1815    NULL_TREE if we need to use an overflow infinity representation but
1816    the type does not support it.  */
1817 
1818 static tree
1819 vrp_int_const_binop (enum tree_code code, tree val1, tree val2)
1820 {
1821   tree res;
1822 
1823   res = int_const_binop (code, val1, val2);
1824 
1825   /* If we are using unsigned arithmetic, operate symbolically
1826      on -INF and +INF as int_const_binop only handles signed overflow.  */
1827   if (TYPE_UNSIGNED (TREE_TYPE (val1)))
1828     {
1829       int checkz = compare_values (res, val1);
1830       bool overflow = false;
1831 
1832       /* Ensure that res = val1 [+*] val2 >= val1
1833          or that res = val1 - val2 <= val1.  */
1834       if ((code == PLUS_EXPR
1835 	   && !(checkz == 1 || checkz == 0))
1836           || (code == MINUS_EXPR
1837 	      && !(checkz == 0 || checkz == -1)))
1838 	{
1839 	  overflow = true;
1840 	}
1841       /* Checking for multiplication overflow is done by dividing the
1842 	 output of the multiplication by the first input of the
1843 	 multiplication.  If the result of that division operation is
1844 	 not equal to the second input of the multiplication, then the
1845 	 multiplication overflowed.  */
1846       else if (code == MULT_EXPR && !integer_zerop (val1))
1847 	{
1848 	  tree tmp = int_const_binop (TRUNC_DIV_EXPR,
1849 				      res,
1850 				      val1);
1851 	  int check = compare_values (tmp, val2);
1852 
1853 	  if (check != 0)
1854 	    overflow = true;
1855 	}
1856 
1857       if (overflow)
1858 	{
1859 	  res = copy_node (res);
1860 	  TREE_OVERFLOW (res) = 1;
1861 	}
1862 
1863     }
1864   else if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (val1)))
1865     /* If the singed operation wraps then int_const_binop has done
1866        everything we want.  */
1867     ;
1868   /* Signed division of -1/0 overflows and by the time it gets here
1869      returns NULL_TREE.  */
1870   else if (!res)
1871     return NULL_TREE;
1872   else if ((TREE_OVERFLOW (res)
1873 	    && !TREE_OVERFLOW (val1)
1874 	    && !TREE_OVERFLOW (val2))
1875 	   || is_overflow_infinity (val1)
1876 	   || is_overflow_infinity (val2))
1877     {
1878       /* If the operation overflowed but neither VAL1 nor VAL2 are
1879 	 overflown, return -INF or +INF depending on the operation
1880 	 and the combination of signs of the operands.  */
1881       int sgn1 = tree_int_cst_sgn (val1);
1882       int sgn2 = tree_int_cst_sgn (val2);
1883 
1884       if (needs_overflow_infinity (TREE_TYPE (res))
1885 	  && !supports_overflow_infinity (TREE_TYPE (res)))
1886 	return NULL_TREE;
1887 
1888       /* We have to punt on adding infinities of different signs,
1889 	 since we can't tell what the sign of the result should be.
1890 	 Likewise for subtracting infinities of the same sign.  */
1891       if (((code == PLUS_EXPR && sgn1 != sgn2)
1892 	   || (code == MINUS_EXPR && sgn1 == sgn2))
1893 	  && is_overflow_infinity (val1)
1894 	  && is_overflow_infinity (val2))
1895 	return NULL_TREE;
1896 
1897       /* Don't try to handle division or shifting of infinities.  */
1898       if ((code == TRUNC_DIV_EXPR
1899 	   || code == FLOOR_DIV_EXPR
1900 	   || code == CEIL_DIV_EXPR
1901 	   || code == EXACT_DIV_EXPR
1902 	   || code == ROUND_DIV_EXPR
1903 	   || code == RSHIFT_EXPR)
1904 	  && (is_overflow_infinity (val1)
1905 	      || is_overflow_infinity (val2)))
1906 	return NULL_TREE;
1907 
1908       /* Notice that we only need to handle the restricted set of
1909 	 operations handled by extract_range_from_binary_expr.
1910 	 Among them, only multiplication, addition and subtraction
1911 	 can yield overflow without overflown operands because we
1912 	 are working with integral types only... except in the
1913 	 case VAL1 = -INF and VAL2 = -1 which overflows to +INF
1914 	 for division too.  */
1915 
1916       /* For multiplication, the sign of the overflow is given
1917 	 by the comparison of the signs of the operands.  */
1918       if ((code == MULT_EXPR && sgn1 == sgn2)
1919           /* For addition, the operands must be of the same sign
1920 	     to yield an overflow.  Its sign is therefore that
1921 	     of one of the operands, for example the first.  For
1922 	     infinite operands X + -INF is negative, not positive.  */
1923 	  || (code == PLUS_EXPR
1924 	      && (sgn1 >= 0
1925 		  ? !is_negative_overflow_infinity (val2)
1926 		  : is_positive_overflow_infinity (val2)))
1927 	  /* For subtraction, non-infinite operands must be of
1928 	     different signs to yield an overflow.  Its sign is
1929 	     therefore that of the first operand or the opposite of
1930 	     that of the second operand.  A first operand of 0 counts
1931 	     as positive here, for the corner case 0 - (-INF), which
1932 	     overflows, but must yield +INF.  For infinite operands 0
1933 	     - INF is negative, not positive.  */
1934 	  || (code == MINUS_EXPR
1935 	      && (sgn1 >= 0
1936 		  ? !is_positive_overflow_infinity (val2)
1937 		  : is_negative_overflow_infinity (val2)))
1938 	  /* We only get in here with positive shift count, so the
1939 	     overflow direction is the same as the sign of val1.
1940 	     Actually rshift does not overflow at all, but we only
1941 	     handle the case of shifting overflowed -INF and +INF.  */
1942 	  || (code == RSHIFT_EXPR
1943 	      && sgn1 >= 0)
1944 	  /* For division, the only case is -INF / -1 = +INF.  */
1945 	  || code == TRUNC_DIV_EXPR
1946 	  || code == FLOOR_DIV_EXPR
1947 	  || code == CEIL_DIV_EXPR
1948 	  || code == EXACT_DIV_EXPR
1949 	  || code == ROUND_DIV_EXPR)
1950 	return (needs_overflow_infinity (TREE_TYPE (res))
1951 		? positive_overflow_infinity (TREE_TYPE (res))
1952 		: TYPE_MAX_VALUE (TREE_TYPE (res)));
1953       else
1954 	return (needs_overflow_infinity (TREE_TYPE (res))
1955 		? negative_overflow_infinity (TREE_TYPE (res))
1956 		: TYPE_MIN_VALUE (TREE_TYPE (res)));
1957     }
1958 
1959   return res;
1960 }
1961 
1962 
1963 /* For range VR compute two wide_int bitmasks.  In *MAY_BE_NONZERO
1964    bitmask if some bit is unset, it means for all numbers in the range
1965    the bit is 0, otherwise it might be 0 or 1.  In *MUST_BE_NONZERO
1966    bitmask if some bit is set, it means for all numbers in the range
1967    the bit is 1, otherwise it might be 0 or 1.  */
1968 
1969 static bool
1970 zero_nonzero_bits_from_vr (const tree expr_type,
1971 			   value_range *vr,
1972 			   wide_int *may_be_nonzero,
1973 			   wide_int *must_be_nonzero)
1974 {
1975   *may_be_nonzero = wi::minus_one (TYPE_PRECISION (expr_type));
1976   *must_be_nonzero = wi::zero (TYPE_PRECISION (expr_type));
1977   if (!range_int_cst_p (vr)
1978       || is_overflow_infinity (vr->min)
1979       || is_overflow_infinity (vr->max))
1980     return false;
1981 
1982   if (range_int_cst_singleton_p (vr))
1983     {
1984       *may_be_nonzero = vr->min;
1985       *must_be_nonzero = *may_be_nonzero;
1986     }
1987   else if (tree_int_cst_sgn (vr->min) >= 0
1988 	   || tree_int_cst_sgn (vr->max) < 0)
1989     {
1990       wide_int xor_mask = wi::bit_xor (vr->min, vr->max);
1991       *may_be_nonzero = wi::bit_or (vr->min, vr->max);
1992       *must_be_nonzero = wi::bit_and (vr->min, vr->max);
1993       if (xor_mask != 0)
1994 	{
1995 	  wide_int mask = wi::mask (wi::floor_log2 (xor_mask), false,
1996 				    may_be_nonzero->get_precision ());
1997 	  *may_be_nonzero = *may_be_nonzero | mask;
1998 	  *must_be_nonzero = must_be_nonzero->and_not (mask);
1999 	}
2000     }
2001 
2002   return true;
2003 }
2004 
2005 /* Create two value-ranges in *VR0 and *VR1 from the anti-range *AR
2006    so that *VR0 U *VR1 == *AR.  Returns true if that is possible,
2007    false otherwise.  If *AR can be represented with a single range
2008    *VR1 will be VR_UNDEFINED.  */
2009 
2010 static bool
2011 ranges_from_anti_range (value_range *ar,
2012 			value_range *vr0, value_range *vr1)
2013 {
2014   tree type = TREE_TYPE (ar->min);
2015 
2016   vr0->type = VR_UNDEFINED;
2017   vr1->type = VR_UNDEFINED;
2018 
2019   if (ar->type != VR_ANTI_RANGE
2020       || TREE_CODE (ar->min) != INTEGER_CST
2021       || TREE_CODE (ar->max) != INTEGER_CST
2022       || !vrp_val_min (type)
2023       || !vrp_val_max (type))
2024     return false;
2025 
2026   if (!vrp_val_is_min (ar->min))
2027     {
2028       vr0->type = VR_RANGE;
2029       vr0->min = vrp_val_min (type);
2030       vr0->max = wide_int_to_tree (type, wi::sub (ar->min, 1));
2031     }
2032   if (!vrp_val_is_max (ar->max))
2033     {
2034       vr1->type = VR_RANGE;
2035       vr1->min = wide_int_to_tree (type, wi::add (ar->max, 1));
2036       vr1->max = vrp_val_max (type);
2037     }
2038   if (vr0->type == VR_UNDEFINED)
2039     {
2040       *vr0 = *vr1;
2041       vr1->type = VR_UNDEFINED;
2042     }
2043 
2044   return vr0->type != VR_UNDEFINED;
2045 }
2046 
2047 /* Helper to extract a value-range *VR for a multiplicative operation
2048    *VR0 CODE *VR1.  */
2049 
2050 static void
2051 extract_range_from_multiplicative_op_1 (value_range *vr,
2052 					enum tree_code code,
2053 					value_range *vr0, value_range *vr1)
2054 {
2055   enum value_range_type type;
2056   tree val[4];
2057   size_t i;
2058   tree min, max;
2059   bool sop;
2060   int cmp;
2061 
2062   /* Multiplications, divisions and shifts are a bit tricky to handle,
2063      depending on the mix of signs we have in the two ranges, we
2064      need to operate on different values to get the minimum and
2065      maximum values for the new range.  One approach is to figure
2066      out all the variations of range combinations and do the
2067      operations.
2068 
2069      However, this involves several calls to compare_values and it
2070      is pretty convoluted.  It's simpler to do the 4 operations
2071      (MIN0 OP MIN1, MIN0 OP MAX1, MAX0 OP MIN1 and MAX0 OP MAX0 OP
2072      MAX1) and then figure the smallest and largest values to form
2073      the new range.  */
2074   gcc_assert (code == MULT_EXPR
2075 	      || code == TRUNC_DIV_EXPR
2076 	      || code == FLOOR_DIV_EXPR
2077 	      || code == CEIL_DIV_EXPR
2078 	      || code == EXACT_DIV_EXPR
2079 	      || code == ROUND_DIV_EXPR
2080 	      || code == RSHIFT_EXPR
2081 	      || code == LSHIFT_EXPR);
2082   gcc_assert ((vr0->type == VR_RANGE
2083 	       || (code == MULT_EXPR && vr0->type == VR_ANTI_RANGE))
2084 	      && vr0->type == vr1->type);
2085 
2086   type = vr0->type;
2087 
2088   /* Compute the 4 cross operations.  */
2089   sop = false;
2090   val[0] = vrp_int_const_binop (code, vr0->min, vr1->min);
2091   if (val[0] == NULL_TREE)
2092     sop = true;
2093 
2094   if (vr1->max == vr1->min)
2095     val[1] = NULL_TREE;
2096   else
2097     {
2098       val[1] = vrp_int_const_binop (code, vr0->min, vr1->max);
2099       if (val[1] == NULL_TREE)
2100 	sop = true;
2101     }
2102 
2103   if (vr0->max == vr0->min)
2104     val[2] = NULL_TREE;
2105   else
2106     {
2107       val[2] = vrp_int_const_binop (code, vr0->max, vr1->min);
2108       if (val[2] == NULL_TREE)
2109 	sop = true;
2110     }
2111 
2112   if (vr0->min == vr0->max || vr1->min == vr1->max)
2113     val[3] = NULL_TREE;
2114   else
2115     {
2116       val[3] = vrp_int_const_binop (code, vr0->max, vr1->max);
2117       if (val[3] == NULL_TREE)
2118 	sop = true;
2119     }
2120 
2121   if (sop)
2122     {
2123       set_value_range_to_varying (vr);
2124       return;
2125     }
2126 
2127   /* Set MIN to the minimum of VAL[i] and MAX to the maximum
2128      of VAL[i].  */
2129   min = val[0];
2130   max = val[0];
2131   for (i = 1; i < 4; i++)
2132     {
2133       if (!is_gimple_min_invariant (min)
2134 	  || (TREE_OVERFLOW (min) && !is_overflow_infinity (min))
2135 	  || !is_gimple_min_invariant (max)
2136 	  || (TREE_OVERFLOW (max) && !is_overflow_infinity (max)))
2137 	break;
2138 
2139       if (val[i])
2140 	{
2141 	  if (!is_gimple_min_invariant (val[i])
2142 	      || (TREE_OVERFLOW (val[i])
2143 		  && !is_overflow_infinity (val[i])))
2144 	    {
2145 	      /* If we found an overflowed value, set MIN and MAX
2146 		 to it so that we set the resulting range to
2147 		 VARYING.  */
2148 	      min = max = val[i];
2149 	      break;
2150 	    }
2151 
2152 	  if (compare_values (val[i], min) == -1)
2153 	    min = val[i];
2154 
2155 	  if (compare_values (val[i], max) == 1)
2156 	    max = val[i];
2157 	}
2158     }
2159 
2160   /* If either MIN or MAX overflowed, then set the resulting range to
2161      VARYING.  But we do accept an overflow infinity
2162      representation.  */
2163   if (min == NULL_TREE
2164       || !is_gimple_min_invariant (min)
2165       || (TREE_OVERFLOW (min) && !is_overflow_infinity (min))
2166       || max == NULL_TREE
2167       || !is_gimple_min_invariant (max)
2168       || (TREE_OVERFLOW (max) && !is_overflow_infinity (max)))
2169     {
2170       set_value_range_to_varying (vr);
2171       return;
2172     }
2173 
2174   /* We punt if:
2175      1) [-INF, +INF]
2176      2) [-INF, +-INF(OVF)]
2177      3) [+-INF(OVF), +INF]
2178      4) [+-INF(OVF), +-INF(OVF)]
2179      We learn nothing when we have INF and INF(OVF) on both sides.
2180      Note that we do accept [-INF, -INF] and [+INF, +INF] without
2181      overflow.  */
2182   if ((vrp_val_is_min (min) || is_overflow_infinity (min))
2183       && (vrp_val_is_max (max) || is_overflow_infinity (max)))
2184     {
2185       set_value_range_to_varying (vr);
2186       return;
2187     }
2188 
2189   cmp = compare_values (min, max);
2190   if (cmp == -2 || cmp == 1)
2191     {
2192       /* If the new range has its limits swapped around (MIN > MAX),
2193 	 then the operation caused one of them to wrap around, mark
2194 	 the new range VARYING.  */
2195       set_value_range_to_varying (vr);
2196     }
2197   else
2198     set_value_range (vr, type, min, max, NULL);
2199 }
2200 
2201 /* Extract range information from a binary operation CODE based on
2202    the ranges of each of its operands *VR0 and *VR1 with resulting
2203    type EXPR_TYPE.  The resulting range is stored in *VR.  */
2204 
2205 static void
2206 extract_range_from_binary_expr_1 (value_range *vr,
2207 				  enum tree_code code, tree expr_type,
2208 				  value_range *vr0_, value_range *vr1_)
2209 {
2210   value_range vr0 = *vr0_, vr1 = *vr1_;
2211   value_range vrtem0 = VR_INITIALIZER, vrtem1 = VR_INITIALIZER;
2212   enum value_range_type type;
2213   tree min = NULL_TREE, max = NULL_TREE;
2214   int cmp;
2215 
2216   if (!INTEGRAL_TYPE_P (expr_type)
2217       && !POINTER_TYPE_P (expr_type))
2218     {
2219       set_value_range_to_varying (vr);
2220       return;
2221     }
2222 
2223   /* Not all binary expressions can be applied to ranges in a
2224      meaningful way.  Handle only arithmetic operations.  */
2225   if (code != PLUS_EXPR
2226       && code != MINUS_EXPR
2227       && code != POINTER_PLUS_EXPR
2228       && code != MULT_EXPR
2229       && code != TRUNC_DIV_EXPR
2230       && code != FLOOR_DIV_EXPR
2231       && code != CEIL_DIV_EXPR
2232       && code != EXACT_DIV_EXPR
2233       && code != ROUND_DIV_EXPR
2234       && code != TRUNC_MOD_EXPR
2235       && code != RSHIFT_EXPR
2236       && code != LSHIFT_EXPR
2237       && code != MIN_EXPR
2238       && code != MAX_EXPR
2239       && code != BIT_AND_EXPR
2240       && code != BIT_IOR_EXPR
2241       && code != BIT_XOR_EXPR)
2242     {
2243       set_value_range_to_varying (vr);
2244       return;
2245     }
2246 
2247   /* If both ranges are UNDEFINED, so is the result.  */
2248   if (vr0.type == VR_UNDEFINED && vr1.type == VR_UNDEFINED)
2249     {
2250       set_value_range_to_undefined (vr);
2251       return;
2252     }
2253   /* If one of the ranges is UNDEFINED drop it to VARYING for the following
2254      code.  At some point we may want to special-case operations that
2255      have UNDEFINED result for all or some value-ranges of the not UNDEFINED
2256      operand.  */
2257   else if (vr0.type == VR_UNDEFINED)
2258     set_value_range_to_varying (&vr0);
2259   else if (vr1.type == VR_UNDEFINED)
2260     set_value_range_to_varying (&vr1);
2261 
2262   /* We get imprecise results from ranges_from_anti_range when
2263      code is EXACT_DIV_EXPR.  We could mask out bits in the resulting
2264      range, but then we also need to hack up vrp_meet.  It's just
2265      easier to special case when vr0 is ~[0,0] for EXACT_DIV_EXPR.  */
2266   if (code == EXACT_DIV_EXPR
2267       && vr0.type == VR_ANTI_RANGE
2268       && vr0.min == vr0.max
2269       && integer_zerop (vr0.min))
2270     {
2271       set_value_range_to_nonnull (vr, expr_type);
2272       return;
2273     }
2274 
2275   /* Now canonicalize anti-ranges to ranges when they are not symbolic
2276      and express ~[] op X as ([]' op X) U ([]'' op X).  */
2277   if (vr0.type == VR_ANTI_RANGE
2278       && ranges_from_anti_range (&vr0, &vrtem0, &vrtem1))
2279     {
2280       extract_range_from_binary_expr_1 (vr, code, expr_type, &vrtem0, vr1_);
2281       if (vrtem1.type != VR_UNDEFINED)
2282 	{
2283 	  value_range vrres = VR_INITIALIZER;
2284 	  extract_range_from_binary_expr_1 (&vrres, code, expr_type,
2285 					    &vrtem1, vr1_);
2286 	  vrp_meet (vr, &vrres);
2287 	}
2288       return;
2289     }
2290   /* Likewise for X op ~[].  */
2291   if (vr1.type == VR_ANTI_RANGE
2292       && ranges_from_anti_range (&vr1, &vrtem0, &vrtem1))
2293     {
2294       extract_range_from_binary_expr_1 (vr, code, expr_type, vr0_, &vrtem0);
2295       if (vrtem1.type != VR_UNDEFINED)
2296 	{
2297 	  value_range vrres = VR_INITIALIZER;
2298 	  extract_range_from_binary_expr_1 (&vrres, code, expr_type,
2299 					    vr0_, &vrtem1);
2300 	  vrp_meet (vr, &vrres);
2301 	}
2302       return;
2303     }
2304 
2305   /* The type of the resulting value range defaults to VR0.TYPE.  */
2306   type = vr0.type;
2307 
2308   /* Refuse to operate on VARYING ranges, ranges of different kinds
2309      and symbolic ranges.  As an exception, we allow BIT_{AND,IOR}
2310      because we may be able to derive a useful range even if one of
2311      the operands is VR_VARYING or symbolic range.  Similarly for
2312      divisions, MIN/MAX and PLUS/MINUS.
2313 
2314      TODO, we may be able to derive anti-ranges in some cases.  */
2315   if (code != BIT_AND_EXPR
2316       && code != BIT_IOR_EXPR
2317       && code != TRUNC_DIV_EXPR
2318       && code != FLOOR_DIV_EXPR
2319       && code != CEIL_DIV_EXPR
2320       && code != EXACT_DIV_EXPR
2321       && code != ROUND_DIV_EXPR
2322       && code != TRUNC_MOD_EXPR
2323       && code != MIN_EXPR
2324       && code != MAX_EXPR
2325       && code != PLUS_EXPR
2326       && code != MINUS_EXPR
2327       && code != RSHIFT_EXPR
2328       && (vr0.type == VR_VARYING
2329 	  || vr1.type == VR_VARYING
2330 	  || vr0.type != vr1.type
2331 	  || symbolic_range_p (&vr0)
2332 	  || symbolic_range_p (&vr1)))
2333     {
2334       set_value_range_to_varying (vr);
2335       return;
2336     }
2337 
2338   /* Now evaluate the expression to determine the new range.  */
2339   if (POINTER_TYPE_P (expr_type))
2340     {
2341       if (code == MIN_EXPR || code == MAX_EXPR)
2342 	{
2343 	  /* For MIN/MAX expressions with pointers, we only care about
2344 	     nullness, if both are non null, then the result is nonnull.
2345 	     If both are null, then the result is null. Otherwise they
2346 	     are varying.  */
2347 	  if (range_is_nonnull (&vr0) && range_is_nonnull (&vr1))
2348 	    set_value_range_to_nonnull (vr, expr_type);
2349 	  else if (range_is_null (&vr0) && range_is_null (&vr1))
2350 	    set_value_range_to_null (vr, expr_type);
2351 	  else
2352 	    set_value_range_to_varying (vr);
2353 	}
2354       else if (code == POINTER_PLUS_EXPR)
2355 	{
2356 	  /* For pointer types, we are really only interested in asserting
2357 	     whether the expression evaluates to non-NULL.  */
2358 	  if (range_is_nonnull (&vr0) || range_is_nonnull (&vr1))
2359 	    set_value_range_to_nonnull (vr, expr_type);
2360 	  else if (range_is_null (&vr0) && range_is_null (&vr1))
2361 	    set_value_range_to_null (vr, expr_type);
2362 	  else
2363 	    set_value_range_to_varying (vr);
2364 	}
2365       else if (code == BIT_AND_EXPR)
2366 	{
2367 	  /* For pointer types, we are really only interested in asserting
2368 	     whether the expression evaluates to non-NULL.  */
2369 	  if (range_is_nonnull (&vr0) && range_is_nonnull (&vr1))
2370 	    set_value_range_to_nonnull (vr, expr_type);
2371 	  else if (range_is_null (&vr0) || range_is_null (&vr1))
2372 	    set_value_range_to_null (vr, expr_type);
2373 	  else
2374 	    set_value_range_to_varying (vr);
2375 	}
2376       else
2377 	set_value_range_to_varying (vr);
2378 
2379       return;
2380     }
2381 
2382   /* For integer ranges, apply the operation to each end of the
2383      range and see what we end up with.  */
2384   if (code == PLUS_EXPR || code == MINUS_EXPR)
2385     {
2386       const bool minus_p = (code == MINUS_EXPR);
2387       tree min_op0 = vr0.min;
2388       tree min_op1 = minus_p ? vr1.max : vr1.min;
2389       tree max_op0 = vr0.max;
2390       tree max_op1 = minus_p ? vr1.min : vr1.max;
2391       tree sym_min_op0 = NULL_TREE;
2392       tree sym_min_op1 = NULL_TREE;
2393       tree sym_max_op0 = NULL_TREE;
2394       tree sym_max_op1 = NULL_TREE;
2395       bool neg_min_op0, neg_min_op1, neg_max_op0, neg_max_op1;
2396 
2397       /* If we have a PLUS or MINUS with two VR_RANGEs, either constant or
2398 	 single-symbolic ranges, try to compute the precise resulting range,
2399 	 but only if we know that this resulting range will also be constant
2400 	 or single-symbolic.  */
2401       if (vr0.type == VR_RANGE && vr1.type == VR_RANGE
2402 	  && (TREE_CODE (min_op0) == INTEGER_CST
2403 	      || (sym_min_op0
2404 		  = get_single_symbol (min_op0, &neg_min_op0, &min_op0)))
2405 	  && (TREE_CODE (min_op1) == INTEGER_CST
2406 	      || (sym_min_op1
2407 		  = get_single_symbol (min_op1, &neg_min_op1, &min_op1)))
2408 	  && (!(sym_min_op0 && sym_min_op1)
2409 	      || (sym_min_op0 == sym_min_op1
2410 		  && neg_min_op0 == (minus_p ? neg_min_op1 : !neg_min_op1)))
2411 	  && (TREE_CODE (max_op0) == INTEGER_CST
2412 	      || (sym_max_op0
2413 		  = get_single_symbol (max_op0, &neg_max_op0, &max_op0)))
2414 	  && (TREE_CODE (max_op1) == INTEGER_CST
2415 	      || (sym_max_op1
2416 		  = get_single_symbol (max_op1, &neg_max_op1, &max_op1)))
2417 	  && (!(sym_max_op0 && sym_max_op1)
2418 	      || (sym_max_op0 == sym_max_op1
2419 		  && neg_max_op0 == (minus_p ? neg_max_op1 : !neg_max_op1))))
2420 	{
2421 	  const signop sgn = TYPE_SIGN (expr_type);
2422 	  const unsigned int prec = TYPE_PRECISION (expr_type);
2423 	  wide_int type_min, type_max, wmin, wmax;
2424 	  int min_ovf = 0;
2425 	  int max_ovf = 0;
2426 
2427 	  /* Get the lower and upper bounds of the type.  */
2428 	  if (TYPE_OVERFLOW_WRAPS (expr_type))
2429 	    {
2430 	      type_min = wi::min_value (prec, sgn);
2431 	      type_max = wi::max_value (prec, sgn);
2432 	    }
2433 	  else
2434 	    {
2435 	      type_min = vrp_val_min (expr_type);
2436 	      type_max = vrp_val_max (expr_type);
2437 	    }
2438 
2439 	  /* Combine the lower bounds, if any.  */
2440 	  if (min_op0 && min_op1)
2441 	    {
2442 	      if (minus_p)
2443 		{
2444 		  wmin = wi::sub (min_op0, min_op1);
2445 
2446 		  /* Check for overflow.  */
2447 		  if (wi::cmp (0, min_op1, sgn)
2448 		      != wi::cmp (wmin, min_op0, sgn))
2449 		    min_ovf = wi::cmp (min_op0, min_op1, sgn);
2450 		}
2451 	      else
2452 		{
2453 		  wmin = wi::add (min_op0, min_op1);
2454 
2455 		  /* Check for overflow.  */
2456 		  if (wi::cmp (min_op1, 0, sgn)
2457 		      != wi::cmp (wmin, min_op0, sgn))
2458 		    min_ovf = wi::cmp (min_op0, wmin, sgn);
2459 		}
2460 	    }
2461 	  else if (min_op0)
2462 	    wmin = min_op0;
2463 	  else if (min_op1)
2464 	    {
2465 	      if (minus_p)
2466 		{
2467 		  wmin = wi::neg (min_op1);
2468 
2469 		  /* Check for overflow.  */
2470 		  if (sgn == SIGNED && wi::neg_p (min_op1) && wi::neg_p (wmin))
2471 		    min_ovf = 1;
2472 		  else if (sgn == UNSIGNED && wi::ne_p (min_op1, 0))
2473 		    min_ovf = -1;
2474 		}
2475 	      else
2476 		wmin = min_op1;
2477 	    }
2478 	  else
2479 	    wmin = wi::shwi (0, prec);
2480 
2481 	  /* Combine the upper bounds, if any.  */
2482 	  if (max_op0 && max_op1)
2483 	    {
2484 	      if (minus_p)
2485 		{
2486 		  wmax = wi::sub (max_op0, max_op1);
2487 
2488 		  /* Check for overflow.  */
2489 		  if (wi::cmp (0, max_op1, sgn)
2490 		      != wi::cmp (wmax, max_op0, sgn))
2491 		    max_ovf = wi::cmp (max_op0, max_op1, sgn);
2492 		}
2493 	      else
2494 		{
2495 		  wmax = wi::add (max_op0, max_op1);
2496 
2497 		  if (wi::cmp (max_op1, 0, sgn)
2498 		      != wi::cmp (wmax, max_op0, sgn))
2499 		    max_ovf = wi::cmp (max_op0, wmax, sgn);
2500 		}
2501 	    }
2502 	  else if (max_op0)
2503 	    wmax = max_op0;
2504 	  else if (max_op1)
2505 	    {
2506 	      if (minus_p)
2507 		{
2508 		  wmax = wi::neg (max_op1);
2509 
2510 		  /* Check for overflow.  */
2511 		  if (sgn == SIGNED && wi::neg_p (max_op1) && wi::neg_p (wmax))
2512 		    max_ovf = 1;
2513 		  else if (sgn == UNSIGNED && wi::ne_p (max_op1, 0))
2514 		    max_ovf = -1;
2515 		}
2516 	      else
2517 		wmax = max_op1;
2518 	    }
2519 	  else
2520 	    wmax = wi::shwi (0, prec);
2521 
2522 	  /* Check for type overflow.  */
2523 	  if (min_ovf == 0)
2524 	    {
2525 	      if (wi::cmp (wmin, type_min, sgn) == -1)
2526 		min_ovf = -1;
2527 	      else if (wi::cmp (wmin, type_max, sgn) == 1)
2528 		min_ovf = 1;
2529 	    }
2530 	  if (max_ovf == 0)
2531 	    {
2532 	      if (wi::cmp (wmax, type_min, sgn) == -1)
2533 		max_ovf = -1;
2534 	      else if (wi::cmp (wmax, type_max, sgn) == 1)
2535 		max_ovf = 1;
2536 	    }
2537 
2538 	  /* If the resulting range will be symbolic, we need to eliminate any
2539 	     explicit or implicit overflow introduced in the above computation
2540 	     because compare_values could make an incorrect use of it.  That's
2541 	     why we require one of the ranges to be a singleton.  */
2542 	  if ((sym_min_op0 != sym_min_op1 || sym_max_op0 != sym_max_op1)
2543 	      && (min_ovf || max_ovf
2544 		  || (min_op0 != max_op0 && min_op1 != max_op1)))
2545 	    {
2546 	      set_value_range_to_varying (vr);
2547 	      return;
2548 	    }
2549 
2550 	  if (TYPE_OVERFLOW_WRAPS (expr_type))
2551 	    {
2552 	      /* If overflow wraps, truncate the values and adjust the
2553 		 range kind and bounds appropriately.  */
2554 	      wide_int tmin = wide_int::from (wmin, prec, sgn);
2555 	      wide_int tmax = wide_int::from (wmax, prec, sgn);
2556 	      if (min_ovf == max_ovf)
2557 		{
2558 		  /* No overflow or both overflow or underflow.  The
2559 		     range kind stays VR_RANGE.  */
2560 		  min = wide_int_to_tree (expr_type, tmin);
2561 		  max = wide_int_to_tree (expr_type, tmax);
2562 		}
2563 	      else if ((min_ovf == -1 && max_ovf == 0)
2564 		       || (max_ovf == 1 && min_ovf == 0))
2565 		{
2566 		  /* Min underflow or max overflow.  The range kind
2567 		     changes to VR_ANTI_RANGE.  */
2568 		  bool covers = false;
2569 		  wide_int tem = tmin;
2570 		  type = VR_ANTI_RANGE;
2571 		  tmin = tmax + 1;
2572 		  if (wi::cmp (tmin, tmax, sgn) < 0)
2573 		    covers = true;
2574 		  tmax = tem - 1;
2575 		  if (wi::cmp (tmax, tem, sgn) > 0)
2576 		    covers = true;
2577 		  /* If the anti-range would cover nothing, drop to varying.
2578 		     Likewise if the anti-range bounds are outside of the
2579 		     types values.  */
2580 		  if (covers || wi::cmp (tmin, tmax, sgn) > 0)
2581 		    {
2582 		      set_value_range_to_varying (vr);
2583 		      return;
2584 		    }
2585 		  min = wide_int_to_tree (expr_type, tmin);
2586 		  max = wide_int_to_tree (expr_type, tmax);
2587 		}
2588 	      else
2589 		{
2590 		  /* Other underflow and/or overflow, drop to VR_VARYING.  */
2591 		  set_value_range_to_varying (vr);
2592 		  return;
2593 		}
2594 	    }
2595 	  else
2596 	    {
2597 	      /* If overflow does not wrap, saturate to the types min/max
2598 	         value.  */
2599 	      if (min_ovf == -1)
2600 		{
2601 		  if (needs_overflow_infinity (expr_type)
2602 		      && supports_overflow_infinity (expr_type))
2603 		    min = negative_overflow_infinity (expr_type);
2604 		  else
2605 		    min = wide_int_to_tree (expr_type, type_min);
2606 		}
2607 	      else if (min_ovf == 1)
2608 		{
2609 		  if (needs_overflow_infinity (expr_type)
2610 		      && supports_overflow_infinity (expr_type))
2611 		    min = positive_overflow_infinity (expr_type);
2612 		  else
2613 		    min = wide_int_to_tree (expr_type, type_max);
2614 		}
2615 	      else
2616 		min = wide_int_to_tree (expr_type, wmin);
2617 
2618 	      if (max_ovf == -1)
2619 		{
2620 		  if (needs_overflow_infinity (expr_type)
2621 		      && supports_overflow_infinity (expr_type))
2622 		    max = negative_overflow_infinity (expr_type);
2623 		  else
2624 		    max = wide_int_to_tree (expr_type, type_min);
2625 		}
2626 	      else if (max_ovf == 1)
2627 		{
2628 		  if (needs_overflow_infinity (expr_type)
2629 		      && supports_overflow_infinity (expr_type))
2630 		    max = positive_overflow_infinity (expr_type);
2631 		  else
2632 		    max = wide_int_to_tree (expr_type, type_max);
2633 		}
2634 	      else
2635 		max = wide_int_to_tree (expr_type, wmax);
2636 	    }
2637 
2638 	  if (needs_overflow_infinity (expr_type)
2639 	      && supports_overflow_infinity (expr_type))
2640 	    {
2641 	      if ((min_op0 && is_negative_overflow_infinity (min_op0))
2642 		  || (min_op1
2643 		      && (minus_p
2644 			  ? is_positive_overflow_infinity (min_op1)
2645 			  : is_negative_overflow_infinity (min_op1))))
2646 		min = negative_overflow_infinity (expr_type);
2647 	      if ((max_op0 && is_positive_overflow_infinity (max_op0))
2648 		  || (max_op1
2649 		      && (minus_p
2650 			  ? is_negative_overflow_infinity (max_op1)
2651 			  : is_positive_overflow_infinity (max_op1))))
2652 		max = positive_overflow_infinity (expr_type);
2653 	    }
2654 
2655 	  /* If the result lower bound is constant, we're done;
2656 	     otherwise, build the symbolic lower bound.  */
2657 	  if (sym_min_op0 == sym_min_op1)
2658 	    ;
2659 	  else if (sym_min_op0)
2660 	    min = build_symbolic_expr (expr_type, sym_min_op0,
2661 				       neg_min_op0, min);
2662 	  else if (sym_min_op1)
2663 	    {
2664 	      /* We may not negate if that might introduce
2665 		 undefined overflow.  */
2666 	      if (! minus_p
2667 		  || neg_min_op1
2668 		  || TYPE_OVERFLOW_WRAPS (expr_type))
2669 		min = build_symbolic_expr (expr_type, sym_min_op1,
2670 					   neg_min_op1 ^ minus_p, min);
2671 	      else
2672 		min = NULL_TREE;
2673 	    }
2674 
2675 	  /* Likewise for the upper bound.  */
2676 	  if (sym_max_op0 == sym_max_op1)
2677 	    ;
2678 	  else if (sym_max_op0)
2679 	    max = build_symbolic_expr (expr_type, sym_max_op0,
2680 				       neg_max_op0, max);
2681 	  else if (sym_max_op1)
2682 	    {
2683 	      /* We may not negate if that might introduce
2684 		 undefined overflow.  */
2685 	      if (! minus_p
2686 		  || neg_max_op1
2687 		  || TYPE_OVERFLOW_WRAPS (expr_type))
2688 		max = build_symbolic_expr (expr_type, sym_max_op1,
2689 					   neg_max_op1 ^ minus_p, max);
2690 	      else
2691 		max = NULL_TREE;
2692 	    }
2693 	}
2694       else
2695 	{
2696 	  /* For other cases, for example if we have a PLUS_EXPR with two
2697 	     VR_ANTI_RANGEs, drop to VR_VARYING.  It would take more effort
2698 	     to compute a precise range for such a case.
2699 	     ???  General even mixed range kind operations can be expressed
2700 	     by for example transforming ~[3, 5] + [1, 2] to range-only
2701 	     operations and a union primitive:
2702 	       [-INF, 2] + [1, 2]  U  [5, +INF] + [1, 2]
2703 	           [-INF+1, 4]     U    [6, +INF(OVF)]
2704 	     though usually the union is not exactly representable with
2705 	     a single range or anti-range as the above is
2706 		 [-INF+1, +INF(OVF)] intersected with ~[5, 5]
2707 	     but one could use a scheme similar to equivalences for this. */
2708 	  set_value_range_to_varying (vr);
2709 	  return;
2710 	}
2711     }
2712   else if (code == MIN_EXPR
2713 	   || code == MAX_EXPR)
2714     {
2715       if (vr0.type == VR_RANGE
2716 	  && !symbolic_range_p (&vr0))
2717 	{
2718 	  type = VR_RANGE;
2719 	  if (vr1.type == VR_RANGE
2720 	      && !symbolic_range_p (&vr1))
2721 	    {
2722 	      /* For operations that make the resulting range directly
2723 		 proportional to the original ranges, apply the operation to
2724 		 the same end of each range.  */
2725 	      min = vrp_int_const_binop (code, vr0.min, vr1.min);
2726 	      max = vrp_int_const_binop (code, vr0.max, vr1.max);
2727 	    }
2728 	  else if (code == MIN_EXPR)
2729 	    {
2730 	      min = vrp_val_min (expr_type);
2731 	      max = vr0.max;
2732 	    }
2733 	  else if (code == MAX_EXPR)
2734 	    {
2735 	      min = vr0.min;
2736 	      max = vrp_val_max (expr_type);
2737 	    }
2738 	}
2739       else if (vr1.type == VR_RANGE
2740 	       && !symbolic_range_p (&vr1))
2741 	{
2742 	  type = VR_RANGE;
2743 	  if (code == MIN_EXPR)
2744 	    {
2745 	      min = vrp_val_min (expr_type);
2746 	      max = vr1.max;
2747 	    }
2748 	  else if (code == MAX_EXPR)
2749 	    {
2750 	      min = vr1.min;
2751 	      max = vrp_val_max (expr_type);
2752 	    }
2753 	}
2754       else
2755 	{
2756 	  set_value_range_to_varying (vr);
2757 	  return;
2758 	}
2759     }
2760   else if (code == MULT_EXPR)
2761     {
2762       /* Fancy code so that with unsigned, [-3,-1]*[-3,-1] does not
2763 	 drop to varying.  This test requires 2*prec bits if both
2764 	 operands are signed and 2*prec + 2 bits if either is not.  */
2765 
2766       signop sign = TYPE_SIGN (expr_type);
2767       unsigned int prec = TYPE_PRECISION (expr_type);
2768 
2769       if (range_int_cst_p (&vr0)
2770 	  && range_int_cst_p (&vr1)
2771 	  && TYPE_OVERFLOW_WRAPS (expr_type))
2772 	{
2773 	  typedef FIXED_WIDE_INT (WIDE_INT_MAX_PRECISION * 2) vrp_int;
2774 	  typedef generic_wide_int
2775              <wi::extended_tree <WIDE_INT_MAX_PRECISION * 2> > vrp_int_cst;
2776 	  vrp_int sizem1 = wi::mask <vrp_int> (prec, false);
2777 	  vrp_int size = sizem1 + 1;
2778 
2779 	  /* Extend the values using the sign of the result to PREC2.
2780 	     From here on out, everthing is just signed math no matter
2781 	     what the input types were.  */
2782           vrp_int min0 = vrp_int_cst (vr0.min);
2783           vrp_int max0 = vrp_int_cst (vr0.max);
2784           vrp_int min1 = vrp_int_cst (vr1.min);
2785           vrp_int max1 = vrp_int_cst (vr1.max);
2786 	  /* Canonicalize the intervals.  */
2787 	  if (sign == UNSIGNED)
2788 	    {
2789 	      if (wi::ltu_p (size, min0 + max0))
2790 		{
2791 		  min0 -= size;
2792 		  max0 -= size;
2793 		}
2794 
2795 	      if (wi::ltu_p (size, min1 + max1))
2796 		{
2797 		  min1 -= size;
2798 		  max1 -= size;
2799 		}
2800 	    }
2801 
2802 	  vrp_int prod0 = min0 * min1;
2803 	  vrp_int prod1 = min0 * max1;
2804 	  vrp_int prod2 = max0 * min1;
2805 	  vrp_int prod3 = max0 * max1;
2806 
2807 	  /* Sort the 4 products so that min is in prod0 and max is in
2808 	     prod3.  */
2809 	  /* min0min1 > max0max1 */
2810 	  if (prod0 > prod3)
2811 	    std::swap (prod0, prod3);
2812 
2813 	  /* min0max1 > max0min1 */
2814 	  if (prod1 > prod2)
2815 	    std::swap (prod1, prod2);
2816 
2817 	  if (prod0 > prod1)
2818 	    std::swap (prod0, prod1);
2819 
2820 	  if (prod2 > prod3)
2821 	    std::swap (prod2, prod3);
2822 
2823 	  /* diff = max - min.  */
2824 	  prod2 = prod3 - prod0;
2825 	  if (wi::geu_p (prod2, sizem1))
2826 	    {
2827 	      /* the range covers all values.  */
2828 	      set_value_range_to_varying (vr);
2829 	      return;
2830 	    }
2831 
2832 	  /* The following should handle the wrapping and selecting
2833 	     VR_ANTI_RANGE for us.  */
2834 	  min = wide_int_to_tree (expr_type, prod0);
2835 	  max = wide_int_to_tree (expr_type, prod3);
2836 	  set_and_canonicalize_value_range (vr, VR_RANGE, min, max, NULL);
2837 	  return;
2838 	}
2839 
2840       /* If we have an unsigned MULT_EXPR with two VR_ANTI_RANGEs,
2841 	 drop to VR_VARYING.  It would take more effort to compute a
2842 	 precise range for such a case.  For example, if we have
2843 	 op0 == 65536 and op1 == 65536 with their ranges both being
2844 	 ~[0,0] on a 32-bit machine, we would have op0 * op1 == 0, so
2845 	 we cannot claim that the product is in ~[0,0].  Note that we
2846 	 are guaranteed to have vr0.type == vr1.type at this
2847 	 point.  */
2848       if (vr0.type == VR_ANTI_RANGE
2849 	  && !TYPE_OVERFLOW_UNDEFINED (expr_type))
2850 	{
2851 	  set_value_range_to_varying (vr);
2852 	  return;
2853 	}
2854 
2855       extract_range_from_multiplicative_op_1 (vr, code, &vr0, &vr1);
2856       return;
2857     }
2858   else if (code == RSHIFT_EXPR
2859 	   || code == LSHIFT_EXPR)
2860     {
2861       /* If we have a RSHIFT_EXPR with any shift values outside [0..prec-1],
2862 	 then drop to VR_VARYING.  Outside of this range we get undefined
2863 	 behavior from the shift operation.  We cannot even trust
2864 	 SHIFT_COUNT_TRUNCATED at this stage, because that applies to rtl
2865 	 shifts, and the operation at the tree level may be widened.  */
2866       if (range_int_cst_p (&vr1)
2867 	  && compare_tree_int (vr1.min, 0) >= 0
2868 	  && compare_tree_int (vr1.max, TYPE_PRECISION (expr_type)) == -1)
2869 	{
2870 	  if (code == RSHIFT_EXPR)
2871 	    {
2872 	      /* Even if vr0 is VARYING or otherwise not usable, we can derive
2873 		 useful ranges just from the shift count.  E.g.
2874 		 x >> 63 for signed 64-bit x is always [-1, 0].  */
2875 	      if (vr0.type != VR_RANGE || symbolic_range_p (&vr0))
2876 		{
2877 		  vr0.type = type = VR_RANGE;
2878 		  vr0.min = vrp_val_min (expr_type);
2879 		  vr0.max = vrp_val_max (expr_type);
2880 		}
2881 	      extract_range_from_multiplicative_op_1 (vr, code, &vr0, &vr1);
2882 	      return;
2883 	    }
2884 	  /* We can map lshifts by constants to MULT_EXPR handling.  */
2885 	  else if (code == LSHIFT_EXPR
2886 		   && range_int_cst_singleton_p (&vr1))
2887 	    {
2888 	      bool saved_flag_wrapv;
2889 	      value_range vr1p = VR_INITIALIZER;
2890 	      vr1p.type = VR_RANGE;
2891 	      vr1p.min = (wide_int_to_tree
2892 			  (expr_type,
2893 			   wi::set_bit_in_zero (tree_to_shwi (vr1.min),
2894 						TYPE_PRECISION (expr_type))));
2895 	      vr1p.max = vr1p.min;
2896 	      /* We have to use a wrapping multiply though as signed overflow
2897 		 on lshifts is implementation defined in C89.  */
2898 	      saved_flag_wrapv = flag_wrapv;
2899 	      flag_wrapv = 1;
2900 	      extract_range_from_binary_expr_1 (vr, MULT_EXPR, expr_type,
2901 						&vr0, &vr1p);
2902 	      flag_wrapv = saved_flag_wrapv;
2903 	      return;
2904 	    }
2905 	  else if (code == LSHIFT_EXPR
2906 		   && range_int_cst_p (&vr0))
2907 	    {
2908 	      int prec = TYPE_PRECISION (expr_type);
2909 	      int overflow_pos = prec;
2910 	      int bound_shift;
2911 	      wide_int low_bound, high_bound;
2912 	      bool uns = TYPE_UNSIGNED (expr_type);
2913 	      bool in_bounds = false;
2914 
2915 	      if (!uns)
2916 		overflow_pos -= 1;
2917 
2918 	      bound_shift = overflow_pos - tree_to_shwi (vr1.max);
2919 	      /* If bound_shift == HOST_BITS_PER_WIDE_INT, the llshift can
2920 		 overflow.  However, for that to happen, vr1.max needs to be
2921 		 zero, which means vr1 is a singleton range of zero, which
2922 		 means it should be handled by the previous LSHIFT_EXPR
2923 		 if-clause.  */
2924 	      wide_int bound = wi::set_bit_in_zero (bound_shift, prec);
2925 	      wide_int complement = ~(bound - 1);
2926 
2927 	      if (uns)
2928 		{
2929 		  low_bound = bound;
2930 		  high_bound = complement;
2931 		  if (wi::ltu_p (vr0.max, low_bound))
2932 		    {
2933 		      /* [5, 6] << [1, 2] == [10, 24].  */
2934 		      /* We're shifting out only zeroes, the value increases
2935 			 monotonically.  */
2936 		      in_bounds = true;
2937 		    }
2938 		  else if (wi::ltu_p (high_bound, vr0.min))
2939 		    {
2940 		      /* [0xffffff00, 0xffffffff] << [1, 2]
2941 		         == [0xfffffc00, 0xfffffffe].  */
2942 		      /* We're shifting out only ones, the value decreases
2943 			 monotonically.  */
2944 		      in_bounds = true;
2945 		    }
2946 		}
2947 	      else
2948 		{
2949 		  /* [-1, 1] << [1, 2] == [-4, 4].  */
2950 		  low_bound = complement;
2951 		  high_bound = bound;
2952 		  if (wi::lts_p (vr0.max, high_bound)
2953 		      && wi::lts_p (low_bound, vr0.min))
2954 		    {
2955 		      /* For non-negative numbers, we're shifting out only
2956 			 zeroes, the value increases monotonically.
2957 			 For negative numbers, we're shifting out only ones, the
2958 			 value decreases monotomically.  */
2959 		      in_bounds = true;
2960 		    }
2961 		}
2962 
2963 	      if (in_bounds)
2964 		{
2965 		  extract_range_from_multiplicative_op_1 (vr, code, &vr0, &vr1);
2966 		  return;
2967 		}
2968 	    }
2969 	}
2970       set_value_range_to_varying (vr);
2971       return;
2972     }
2973   else if (code == TRUNC_DIV_EXPR
2974 	   || code == FLOOR_DIV_EXPR
2975 	   || code == CEIL_DIV_EXPR
2976 	   || code == EXACT_DIV_EXPR
2977 	   || code == ROUND_DIV_EXPR)
2978     {
2979       if (vr0.type != VR_RANGE || symbolic_range_p (&vr0))
2980 	{
2981 	  /* For division, if op1 has VR_RANGE but op0 does not, something
2982 	     can be deduced just from that range.  Say [min, max] / [4, max]
2983 	     gives [min / 4, max / 4] range.  */
2984 	  if (vr1.type == VR_RANGE
2985 	      && !symbolic_range_p (&vr1)
2986 	      && range_includes_zero_p (vr1.min, vr1.max) == 0)
2987 	    {
2988 	      vr0.type = type = VR_RANGE;
2989 	      vr0.min = vrp_val_min (expr_type);
2990 	      vr0.max = vrp_val_max (expr_type);
2991 	    }
2992 	  else
2993 	    {
2994 	      set_value_range_to_varying (vr);
2995 	      return;
2996 	    }
2997 	}
2998 
2999       /* For divisions, if flag_non_call_exceptions is true, we must
3000 	 not eliminate a division by zero.  */
3001       if (cfun->can_throw_non_call_exceptions
3002 	  && (vr1.type != VR_RANGE
3003 	      || range_includes_zero_p (vr1.min, vr1.max) != 0))
3004 	{
3005 	  set_value_range_to_varying (vr);
3006 	  return;
3007 	}
3008 
3009       /* For divisions, if op0 is VR_RANGE, we can deduce a range
3010 	 even if op1 is VR_VARYING, VR_ANTI_RANGE, symbolic or can
3011 	 include 0.  */
3012       if (vr0.type == VR_RANGE
3013 	  && (vr1.type != VR_RANGE
3014 	      || range_includes_zero_p (vr1.min, vr1.max) != 0))
3015 	{
3016 	  tree zero = build_int_cst (TREE_TYPE (vr0.min), 0);
3017 	  int cmp;
3018 
3019 	  min = NULL_TREE;
3020 	  max = NULL_TREE;
3021 	  if (TYPE_UNSIGNED (expr_type)
3022 	      || value_range_nonnegative_p (&vr1))
3023 	    {
3024 	      /* For unsigned division or when divisor is known
3025 		 to be non-negative, the range has to cover
3026 		 all numbers from 0 to max for positive max
3027 		 and all numbers from min to 0 for negative min.  */
3028 	      cmp = compare_values (vr0.max, zero);
3029 	      if (cmp == -1)
3030 		{
3031 		  /* When vr0.max < 0, vr1.min != 0 and value
3032 		     ranges for dividend and divisor are available.  */
3033 		  if (vr1.type == VR_RANGE
3034 		      && !symbolic_range_p (&vr0)
3035 		      && !symbolic_range_p (&vr1)
3036 		      && compare_values (vr1.min, zero) != 0)
3037 		    max = int_const_binop (code, vr0.max, vr1.min);
3038 		  else
3039 		    max = zero;
3040 		}
3041 	      else if (cmp == 0 || cmp == 1)
3042 		max = vr0.max;
3043 	      else
3044 		type = VR_VARYING;
3045 	      cmp = compare_values (vr0.min, zero);
3046 	      if (cmp == 1)
3047 		{
3048 		  /* For unsigned division when value ranges for dividend
3049 		     and divisor are available.  */
3050 		  if (vr1.type == VR_RANGE
3051 		      && !symbolic_range_p (&vr0)
3052 		      && !symbolic_range_p (&vr1)
3053 		      && compare_values (vr1.max, zero) != 0)
3054 		    min = int_const_binop (code, vr0.min, vr1.max);
3055 		  else
3056 		    min = zero;
3057 		}
3058 	      else if (cmp == 0 || cmp == -1)
3059 		min = vr0.min;
3060 	      else
3061 		type = VR_VARYING;
3062 	    }
3063 	  else
3064 	    {
3065 	      /* Otherwise the range is -max .. max or min .. -min
3066 		 depending on which bound is bigger in absolute value,
3067 		 as the division can change the sign.  */
3068 	      abs_extent_range (vr, vr0.min, vr0.max);
3069 	      return;
3070 	    }
3071 	  if (type == VR_VARYING)
3072 	    {
3073 	      set_value_range_to_varying (vr);
3074 	      return;
3075 	    }
3076 	}
3077       else if (!symbolic_range_p (&vr0) && !symbolic_range_p (&vr1))
3078 	{
3079 	  extract_range_from_multiplicative_op_1 (vr, code, &vr0, &vr1);
3080 	  return;
3081 	}
3082     }
3083   else if (code == TRUNC_MOD_EXPR)
3084     {
3085       if (range_is_null (&vr1))
3086 	{
3087 	  set_value_range_to_undefined (vr);
3088 	  return;
3089 	}
3090       /* ABS (A % B) < ABS (B) and either
3091 	 0 <= A % B <= A or A <= A % B <= 0.  */
3092       type = VR_RANGE;
3093       signop sgn = TYPE_SIGN (expr_type);
3094       unsigned int prec = TYPE_PRECISION (expr_type);
3095       wide_int wmin, wmax, tmp;
3096       wide_int zero = wi::zero (prec);
3097       wide_int one = wi::one (prec);
3098       if (vr1.type == VR_RANGE && !symbolic_range_p (&vr1))
3099 	{
3100 	  wmax = wi::sub (vr1.max, one);
3101 	  if (sgn == SIGNED)
3102 	    {
3103 	      tmp = wi::sub (wi::minus_one (prec), vr1.min);
3104 	      wmax = wi::smax (wmax, tmp);
3105 	    }
3106 	}
3107       else
3108 	{
3109 	  wmax = wi::max_value (prec, sgn);
3110 	  /* X % INT_MIN may be INT_MAX.  */
3111 	  if (sgn == UNSIGNED)
3112 	    wmax = wmax - one;
3113 	}
3114 
3115       if (sgn == UNSIGNED)
3116 	wmin = zero;
3117       else
3118 	{
3119 	  wmin = -wmax;
3120 	  if (vr0.type == VR_RANGE && TREE_CODE (vr0.min) == INTEGER_CST)
3121 	    {
3122 	      tmp = vr0.min;
3123 	      if (wi::gts_p (tmp, zero))
3124 		tmp = zero;
3125 	      wmin = wi::smax (wmin, tmp);
3126 	    }
3127 	}
3128 
3129       if (vr0.type == VR_RANGE && TREE_CODE (vr0.max) == INTEGER_CST)
3130 	{
3131 	  tmp = vr0.max;
3132 	  if (sgn == SIGNED && wi::neg_p (tmp))
3133 	    tmp = zero;
3134 	  wmax = wi::min (wmax, tmp, sgn);
3135 	}
3136 
3137       min = wide_int_to_tree (expr_type, wmin);
3138       max = wide_int_to_tree (expr_type, wmax);
3139     }
3140   else if (code == BIT_AND_EXPR || code == BIT_IOR_EXPR || code == BIT_XOR_EXPR)
3141     {
3142       bool int_cst_range0, int_cst_range1;
3143       wide_int may_be_nonzero0, may_be_nonzero1;
3144       wide_int must_be_nonzero0, must_be_nonzero1;
3145 
3146       int_cst_range0 = zero_nonzero_bits_from_vr (expr_type, &vr0,
3147 						  &may_be_nonzero0,
3148 						  &must_be_nonzero0);
3149       int_cst_range1 = zero_nonzero_bits_from_vr (expr_type, &vr1,
3150 						  &may_be_nonzero1,
3151 						  &must_be_nonzero1);
3152 
3153       type = VR_RANGE;
3154       if (code == BIT_AND_EXPR)
3155 	{
3156 	  min = wide_int_to_tree (expr_type,
3157 				  must_be_nonzero0 & must_be_nonzero1);
3158 	  wide_int wmax = may_be_nonzero0 & may_be_nonzero1;
3159 	  /* If both input ranges contain only negative values we can
3160 	     truncate the result range maximum to the minimum of the
3161 	     input range maxima.  */
3162 	  if (int_cst_range0 && int_cst_range1
3163 	      && tree_int_cst_sgn (vr0.max) < 0
3164 	      && tree_int_cst_sgn (vr1.max) < 0)
3165 	    {
3166 	      wmax = wi::min (wmax, vr0.max, TYPE_SIGN (expr_type));
3167 	      wmax = wi::min (wmax, vr1.max, TYPE_SIGN (expr_type));
3168 	    }
3169 	  /* If either input range contains only non-negative values
3170 	     we can truncate the result range maximum to the respective
3171 	     maximum of the input range.  */
3172 	  if (int_cst_range0 && tree_int_cst_sgn (vr0.min) >= 0)
3173 	    wmax = wi::min (wmax, vr0.max, TYPE_SIGN (expr_type));
3174 	  if (int_cst_range1 && tree_int_cst_sgn (vr1.min) >= 0)
3175 	    wmax = wi::min (wmax, vr1.max, TYPE_SIGN (expr_type));
3176 	  max = wide_int_to_tree (expr_type, wmax);
3177 	  cmp = compare_values (min, max);
3178 	  /* PR68217: In case of signed & sign-bit-CST should
3179 	     result in [-INF, 0] instead of [-INF, INF].  */
3180 	  if (cmp == -2 || cmp == 1)
3181 	    {
3182 	      wide_int sign_bit
3183 		= wi::set_bit_in_zero (TYPE_PRECISION (expr_type) - 1,
3184 				       TYPE_PRECISION (expr_type));
3185 	      if (!TYPE_UNSIGNED (expr_type)
3186 		  && ((value_range_constant_singleton (&vr0)
3187 		       && !wi::cmps (vr0.min, sign_bit))
3188 		      || (value_range_constant_singleton (&vr1)
3189 			  && !wi::cmps (vr1.min, sign_bit))))
3190 		{
3191 		  min = TYPE_MIN_VALUE (expr_type);
3192 		  max = build_int_cst (expr_type, 0);
3193 		}
3194 	    }
3195 	}
3196       else if (code == BIT_IOR_EXPR)
3197 	{
3198 	  max = wide_int_to_tree (expr_type,
3199 				  may_be_nonzero0 | may_be_nonzero1);
3200 	  wide_int wmin = must_be_nonzero0 | must_be_nonzero1;
3201 	  /* If the input ranges contain only positive values we can
3202 	     truncate the minimum of the result range to the maximum
3203 	     of the input range minima.  */
3204 	  if (int_cst_range0 && int_cst_range1
3205 	      && tree_int_cst_sgn (vr0.min) >= 0
3206 	      && tree_int_cst_sgn (vr1.min) >= 0)
3207 	    {
3208 	      wmin = wi::max (wmin, vr0.min, TYPE_SIGN (expr_type));
3209 	      wmin = wi::max (wmin, vr1.min, TYPE_SIGN (expr_type));
3210 	    }
3211 	  /* If either input range contains only negative values
3212 	     we can truncate the minimum of the result range to the
3213 	     respective minimum range.  */
3214 	  if (int_cst_range0 && tree_int_cst_sgn (vr0.max) < 0)
3215 	    wmin = wi::max (wmin, vr0.min, TYPE_SIGN (expr_type));
3216 	  if (int_cst_range1 && tree_int_cst_sgn (vr1.max) < 0)
3217 	    wmin = wi::max (wmin, vr1.min, TYPE_SIGN (expr_type));
3218 	  min = wide_int_to_tree (expr_type, wmin);
3219 	}
3220       else if (code == BIT_XOR_EXPR)
3221 	{
3222 	  wide_int result_zero_bits = ((must_be_nonzero0 & must_be_nonzero1)
3223 				       | ~(may_be_nonzero0 | may_be_nonzero1));
3224 	  wide_int result_one_bits
3225 	    = (must_be_nonzero0.and_not (may_be_nonzero1)
3226 	       | must_be_nonzero1.and_not (may_be_nonzero0));
3227 	  max = wide_int_to_tree (expr_type, ~result_zero_bits);
3228 	  min = wide_int_to_tree (expr_type, result_one_bits);
3229 	  /* If the range has all positive or all negative values the
3230 	     result is better than VARYING.  */
3231 	  if (tree_int_cst_sgn (min) < 0
3232 	      || tree_int_cst_sgn (max) >= 0)
3233 	    ;
3234 	  else
3235 	    max = min = NULL_TREE;
3236 	}
3237     }
3238   else
3239     gcc_unreachable ();
3240 
3241   /* If either MIN or MAX overflowed, then set the resulting range to
3242      VARYING.  But we do accept an overflow infinity representation.  */
3243   if (min == NULL_TREE
3244       || (TREE_OVERFLOW_P (min) && !is_overflow_infinity (min))
3245       || max == NULL_TREE
3246       || (TREE_OVERFLOW_P (max) && !is_overflow_infinity (max)))
3247     {
3248       set_value_range_to_varying (vr);
3249       return;
3250     }
3251 
3252   /* We punt if:
3253      1) [-INF, +INF]
3254      2) [-INF, +-INF(OVF)]
3255      3) [+-INF(OVF), +INF]
3256      4) [+-INF(OVF), +-INF(OVF)]
3257      We learn nothing when we have INF and INF(OVF) on both sides.
3258      Note that we do accept [-INF, -INF] and [+INF, +INF] without
3259      overflow.  */
3260   if ((vrp_val_is_min (min) || is_overflow_infinity (min))
3261       && (vrp_val_is_max (max) || is_overflow_infinity (max)))
3262     {
3263       set_value_range_to_varying (vr);
3264       return;
3265     }
3266 
3267   cmp = compare_values (min, max);
3268   if (cmp == -2 || cmp == 1)
3269     {
3270       /* If the new range has its limits swapped around (MIN > MAX),
3271 	 then the operation caused one of them to wrap around, mark
3272 	 the new range VARYING.  */
3273       set_value_range_to_varying (vr);
3274     }
3275   else
3276     set_value_range (vr, type, min, max, NULL);
3277 }
3278 
3279 /* Extract range information from a binary expression OP0 CODE OP1 based on
3280    the ranges of each of its operands with resulting type EXPR_TYPE.
3281    The resulting range is stored in *VR.  */
3282 
3283 static void
3284 extract_range_from_binary_expr (value_range *vr,
3285 				enum tree_code code,
3286 				tree expr_type, tree op0, tree op1)
3287 {
3288   value_range vr0 = VR_INITIALIZER;
3289   value_range vr1 = VR_INITIALIZER;
3290 
3291   /* Get value ranges for each operand.  For constant operands, create
3292      a new value range with the operand to simplify processing.  */
3293   if (TREE_CODE (op0) == SSA_NAME)
3294     vr0 = *(get_value_range (op0));
3295   else if (is_gimple_min_invariant (op0))
3296     set_value_range_to_value (&vr0, op0, NULL);
3297   else
3298     set_value_range_to_varying (&vr0);
3299 
3300   if (TREE_CODE (op1) == SSA_NAME)
3301     vr1 = *(get_value_range (op1));
3302   else if (is_gimple_min_invariant (op1))
3303     set_value_range_to_value (&vr1, op1, NULL);
3304   else
3305     set_value_range_to_varying (&vr1);
3306 
3307   extract_range_from_binary_expr_1 (vr, code, expr_type, &vr0, &vr1);
3308 
3309   /* Try harder for PLUS and MINUS if the range of one operand is symbolic
3310      and based on the other operand, for example if it was deduced from a
3311      symbolic comparison.  When a bound of the range of the first operand
3312      is invariant, we set the corresponding bound of the new range to INF
3313      in order to avoid recursing on the range of the second operand.  */
3314   if (vr->type == VR_VARYING
3315       && (code == PLUS_EXPR || code == MINUS_EXPR)
3316       && TREE_CODE (op1) == SSA_NAME
3317       && vr0.type == VR_RANGE
3318       && symbolic_range_based_on_p (&vr0, op1))
3319     {
3320       const bool minus_p = (code == MINUS_EXPR);
3321       value_range n_vr1 = VR_INITIALIZER;
3322 
3323       /* Try with VR0 and [-INF, OP1].  */
3324       if (is_gimple_min_invariant (minus_p ? vr0.max : vr0.min))
3325 	set_value_range (&n_vr1, VR_RANGE, vrp_val_min (expr_type), op1, NULL);
3326 
3327       /* Try with VR0 and [OP1, +INF].  */
3328       else if (is_gimple_min_invariant (minus_p ? vr0.min : vr0.max))
3329 	set_value_range (&n_vr1, VR_RANGE, op1, vrp_val_max (expr_type), NULL);
3330 
3331       /* Try with VR0 and [OP1, OP1].  */
3332       else
3333 	set_value_range (&n_vr1, VR_RANGE, op1, op1, NULL);
3334 
3335       extract_range_from_binary_expr_1 (vr, code, expr_type, &vr0, &n_vr1);
3336     }
3337 
3338   if (vr->type == VR_VARYING
3339       && (code == PLUS_EXPR || code == MINUS_EXPR)
3340       && TREE_CODE (op0) == SSA_NAME
3341       && vr1.type == VR_RANGE
3342       && symbolic_range_based_on_p (&vr1, op0))
3343     {
3344       const bool minus_p = (code == MINUS_EXPR);
3345       value_range n_vr0 = VR_INITIALIZER;
3346 
3347       /* Try with [-INF, OP0] and VR1.  */
3348       if (is_gimple_min_invariant (minus_p ? vr1.max : vr1.min))
3349 	set_value_range (&n_vr0, VR_RANGE, vrp_val_min (expr_type), op0, NULL);
3350 
3351       /* Try with [OP0, +INF] and VR1.  */
3352       else if (is_gimple_min_invariant (minus_p ? vr1.min : vr1.max))
3353 	set_value_range (&n_vr0, VR_RANGE, op0, vrp_val_max (expr_type), NULL);
3354 
3355       /* Try with [OP0, OP0] and VR1.  */
3356       else
3357 	set_value_range (&n_vr0, VR_RANGE, op0, op0, NULL);
3358 
3359       extract_range_from_binary_expr_1 (vr, code, expr_type, &n_vr0, &vr1);
3360     }
3361 
3362   /* If we didn't derive a range for MINUS_EXPR, and
3363      op1's range is ~[op0,op0] or vice-versa, then we
3364      can derive a non-null range.  This happens often for
3365      pointer subtraction.  */
3366   if (vr->type == VR_VARYING
3367       && code == MINUS_EXPR
3368       && TREE_CODE (op0) == SSA_NAME
3369       && ((vr0.type == VR_ANTI_RANGE
3370 	   && vr0.min == op1
3371 	   && vr0.min == vr0.max)
3372 	  || (vr1.type == VR_ANTI_RANGE
3373 	      && vr1.min == op0
3374 	      && vr1.min == vr1.max)))
3375       set_value_range_to_nonnull (vr, TREE_TYPE (op0));
3376 }
3377 
3378 /* Extract range information from a unary operation CODE based on
3379    the range of its operand *VR0 with type OP0_TYPE with resulting type TYPE.
3380    The resulting range is stored in *VR.  */
3381 
3382 void
3383 extract_range_from_unary_expr (value_range *vr,
3384 			       enum tree_code code, tree type,
3385 			       value_range *vr0_, tree op0_type)
3386 {
3387   value_range vr0 = *vr0_, vrtem0 = VR_INITIALIZER, vrtem1 = VR_INITIALIZER;
3388 
3389   /* VRP only operates on integral and pointer types.  */
3390   if (!(INTEGRAL_TYPE_P (op0_type)
3391 	|| POINTER_TYPE_P (op0_type))
3392       || !(INTEGRAL_TYPE_P (type)
3393 	   || POINTER_TYPE_P (type)))
3394     {
3395       set_value_range_to_varying (vr);
3396       return;
3397     }
3398 
3399   /* If VR0 is UNDEFINED, so is the result.  */
3400   if (vr0.type == VR_UNDEFINED)
3401     {
3402       set_value_range_to_undefined (vr);
3403       return;
3404     }
3405 
3406   /* Handle operations that we express in terms of others.  */
3407   if (code == PAREN_EXPR || code == OBJ_TYPE_REF)
3408     {
3409       /* PAREN_EXPR and OBJ_TYPE_REF are simple copies.  */
3410       copy_value_range (vr, &vr0);
3411       return;
3412     }
3413   else if (code == NEGATE_EXPR)
3414     {
3415       /* -X is simply 0 - X, so re-use existing code that also handles
3416          anti-ranges fine.  */
3417       value_range zero = VR_INITIALIZER;
3418       set_value_range_to_value (&zero, build_int_cst (type, 0), NULL);
3419       extract_range_from_binary_expr_1 (vr, MINUS_EXPR, type, &zero, &vr0);
3420       return;
3421     }
3422   else if (code == BIT_NOT_EXPR)
3423     {
3424       /* ~X is simply -1 - X, so re-use existing code that also handles
3425          anti-ranges fine.  */
3426       value_range minusone = VR_INITIALIZER;
3427       set_value_range_to_value (&minusone, build_int_cst (type, -1), NULL);
3428       extract_range_from_binary_expr_1 (vr, MINUS_EXPR,
3429 					type, &minusone, &vr0);
3430       return;
3431     }
3432 
3433   /* Now canonicalize anti-ranges to ranges when they are not symbolic
3434      and express op ~[]  as (op []') U (op []'').  */
3435   if (vr0.type == VR_ANTI_RANGE
3436       && ranges_from_anti_range (&vr0, &vrtem0, &vrtem1))
3437     {
3438       extract_range_from_unary_expr (vr, code, type, &vrtem0, op0_type);
3439       if (vrtem1.type != VR_UNDEFINED)
3440 	{
3441 	  value_range vrres = VR_INITIALIZER;
3442 	  extract_range_from_unary_expr (&vrres, code, type,
3443 					 &vrtem1, op0_type);
3444 	  vrp_meet (vr, &vrres);
3445 	}
3446       return;
3447     }
3448 
3449   if (CONVERT_EXPR_CODE_P (code))
3450     {
3451       tree inner_type = op0_type;
3452       tree outer_type = type;
3453 
3454       /* If the expression evaluates to a pointer, we are only interested in
3455 	 determining if it evaluates to NULL [0, 0] or non-NULL (~[0, 0]).  */
3456       if (POINTER_TYPE_P (type))
3457 	{
3458 	  if (range_is_nonnull (&vr0))
3459 	    set_value_range_to_nonnull (vr, type);
3460 	  else if (range_is_null (&vr0))
3461 	    set_value_range_to_null (vr, type);
3462 	  else
3463 	    set_value_range_to_varying (vr);
3464 	  return;
3465 	}
3466 
3467       /* If VR0 is varying and we increase the type precision, assume
3468 	 a full range for the following transformation.  */
3469       if (vr0.type == VR_VARYING
3470 	  && INTEGRAL_TYPE_P (inner_type)
3471 	  && TYPE_PRECISION (inner_type) < TYPE_PRECISION (outer_type))
3472 	{
3473 	  vr0.type = VR_RANGE;
3474 	  vr0.min = TYPE_MIN_VALUE (inner_type);
3475 	  vr0.max = TYPE_MAX_VALUE (inner_type);
3476 	}
3477 
3478       /* If VR0 is a constant range or anti-range and the conversion is
3479 	 not truncating we can convert the min and max values and
3480 	 canonicalize the resulting range.  Otherwise we can do the
3481 	 conversion if the size of the range is less than what the
3482 	 precision of the target type can represent and the range is
3483 	 not an anti-range.  */
3484       if ((vr0.type == VR_RANGE
3485 	   || vr0.type == VR_ANTI_RANGE)
3486 	  && TREE_CODE (vr0.min) == INTEGER_CST
3487 	  && TREE_CODE (vr0.max) == INTEGER_CST
3488 	  && (!is_overflow_infinity (vr0.min)
3489 	      || (vr0.type == VR_RANGE
3490 		  && TYPE_PRECISION (outer_type) > TYPE_PRECISION (inner_type)
3491 		  && needs_overflow_infinity (outer_type)
3492 		  && supports_overflow_infinity (outer_type)))
3493 	  && (!is_overflow_infinity (vr0.max)
3494 	      || (vr0.type == VR_RANGE
3495 		  && TYPE_PRECISION (outer_type) > TYPE_PRECISION (inner_type)
3496 		  && needs_overflow_infinity (outer_type)
3497 		  && supports_overflow_infinity (outer_type)))
3498 	  && (TYPE_PRECISION (outer_type) >= TYPE_PRECISION (inner_type)
3499 	      || (vr0.type == VR_RANGE
3500 		  && integer_zerop (int_const_binop (RSHIFT_EXPR,
3501 		       int_const_binop (MINUS_EXPR, vr0.max, vr0.min),
3502 		         size_int (TYPE_PRECISION (outer_type)))))))
3503 	{
3504 	  tree new_min, new_max;
3505 	  if (is_overflow_infinity (vr0.min))
3506 	    new_min = negative_overflow_infinity (outer_type);
3507 	  else
3508 	    new_min = force_fit_type (outer_type, wi::to_widest (vr0.min),
3509 				      0, false);
3510 	  if (is_overflow_infinity (vr0.max))
3511 	    new_max = positive_overflow_infinity (outer_type);
3512 	  else
3513 	    new_max = force_fit_type (outer_type, wi::to_widest (vr0.max),
3514 				      0, false);
3515 	  set_and_canonicalize_value_range (vr, vr0.type,
3516 					    new_min, new_max, NULL);
3517 	  return;
3518 	}
3519 
3520       set_value_range_to_varying (vr);
3521       return;
3522     }
3523   else if (code == ABS_EXPR)
3524     {
3525       tree min, max;
3526       int cmp;
3527 
3528       /* Pass through vr0 in the easy cases.  */
3529       if (TYPE_UNSIGNED (type)
3530 	  || value_range_nonnegative_p (&vr0))
3531 	{
3532 	  copy_value_range (vr, &vr0);
3533 	  return;
3534 	}
3535 
3536       /* For the remaining varying or symbolic ranges we can't do anything
3537 	 useful.  */
3538       if (vr0.type == VR_VARYING
3539 	  || symbolic_range_p (&vr0))
3540 	{
3541 	  set_value_range_to_varying (vr);
3542 	  return;
3543 	}
3544 
3545       /* -TYPE_MIN_VALUE = TYPE_MIN_VALUE with flag_wrapv so we can't get a
3546          useful range.  */
3547       if (!TYPE_OVERFLOW_UNDEFINED (type)
3548 	  && ((vr0.type == VR_RANGE
3549 	       && vrp_val_is_min (vr0.min))
3550 	      || (vr0.type == VR_ANTI_RANGE
3551 		  && !vrp_val_is_min (vr0.min))))
3552 	{
3553 	  set_value_range_to_varying (vr);
3554 	  return;
3555 	}
3556 
3557       /* ABS_EXPR may flip the range around, if the original range
3558 	 included negative values.  */
3559       if (is_overflow_infinity (vr0.min))
3560 	min = positive_overflow_infinity (type);
3561       else if (!vrp_val_is_min (vr0.min))
3562 	min = fold_unary_to_constant (code, type, vr0.min);
3563       else if (!needs_overflow_infinity (type))
3564 	min = TYPE_MAX_VALUE (type);
3565       else if (supports_overflow_infinity (type))
3566 	min = positive_overflow_infinity (type);
3567       else
3568 	{
3569 	  set_value_range_to_varying (vr);
3570 	  return;
3571 	}
3572 
3573       if (is_overflow_infinity (vr0.max))
3574 	max = positive_overflow_infinity (type);
3575       else if (!vrp_val_is_min (vr0.max))
3576 	max = fold_unary_to_constant (code, type, vr0.max);
3577       else if (!needs_overflow_infinity (type))
3578 	max = TYPE_MAX_VALUE (type);
3579       else if (supports_overflow_infinity (type)
3580 	       /* We shouldn't generate [+INF, +INF] as set_value_range
3581 		  doesn't like this and ICEs.  */
3582 	       && !is_positive_overflow_infinity (min))
3583 	max = positive_overflow_infinity (type);
3584       else
3585 	{
3586 	  set_value_range_to_varying (vr);
3587 	  return;
3588 	}
3589 
3590       cmp = compare_values (min, max);
3591 
3592       /* If a VR_ANTI_RANGEs contains zero, then we have
3593 	 ~[-INF, min(MIN, MAX)].  */
3594       if (vr0.type == VR_ANTI_RANGE)
3595 	{
3596 	  if (range_includes_zero_p (vr0.min, vr0.max) == 1)
3597 	    {
3598 	      /* Take the lower of the two values.  */
3599 	      if (cmp != 1)
3600 		max = min;
3601 
3602 	      /* Create ~[-INF, min (abs(MIN), abs(MAX))]
3603 	         or ~[-INF + 1, min (abs(MIN), abs(MAX))] when
3604 		 flag_wrapv is set and the original anti-range doesn't include
3605 	         TYPE_MIN_VALUE, remember -TYPE_MIN_VALUE = TYPE_MIN_VALUE.  */
3606 	      if (TYPE_OVERFLOW_WRAPS (type))
3607 		{
3608 		  tree type_min_value = TYPE_MIN_VALUE (type);
3609 
3610 		  min = (vr0.min != type_min_value
3611 			 ? int_const_binop (PLUS_EXPR, type_min_value,
3612 					    build_int_cst (TREE_TYPE (type_min_value), 1))
3613 			 : type_min_value);
3614 		}
3615 	      else
3616 		{
3617 		  if (overflow_infinity_range_p (&vr0))
3618 		    min = negative_overflow_infinity (type);
3619 		  else
3620 		    min = TYPE_MIN_VALUE (type);
3621 		}
3622 	    }
3623 	  else
3624 	    {
3625 	      /* All else has failed, so create the range [0, INF], even for
3626 	         flag_wrapv since TYPE_MIN_VALUE is in the original
3627 	         anti-range.  */
3628 	      vr0.type = VR_RANGE;
3629 	      min = build_int_cst (type, 0);
3630 	      if (needs_overflow_infinity (type))
3631 		{
3632 		  if (supports_overflow_infinity (type))
3633 		    max = positive_overflow_infinity (type);
3634 		  else
3635 		    {
3636 		      set_value_range_to_varying (vr);
3637 		      return;
3638 		    }
3639 		}
3640 	      else
3641 		max = TYPE_MAX_VALUE (type);
3642 	    }
3643 	}
3644 
3645       /* If the range contains zero then we know that the minimum value in the
3646          range will be zero.  */
3647       else if (range_includes_zero_p (vr0.min, vr0.max) == 1)
3648 	{
3649 	  if (cmp == 1)
3650 	    max = min;
3651 	  min = build_int_cst (type, 0);
3652 	}
3653       else
3654 	{
3655           /* If the range was reversed, swap MIN and MAX.  */
3656 	  if (cmp == 1)
3657 	    std::swap (min, max);
3658 	}
3659 
3660       cmp = compare_values (min, max);
3661       if (cmp == -2 || cmp == 1)
3662 	{
3663 	  /* If the new range has its limits swapped around (MIN > MAX),
3664 	     then the operation caused one of them to wrap around, mark
3665 	     the new range VARYING.  */
3666 	  set_value_range_to_varying (vr);
3667 	}
3668       else
3669 	set_value_range (vr, vr0.type, min, max, NULL);
3670       return;
3671     }
3672 
3673   /* For unhandled operations fall back to varying.  */
3674   set_value_range_to_varying (vr);
3675   return;
3676 }
3677 
3678 
3679 /* Extract range information from a unary expression CODE OP0 based on
3680    the range of its operand with resulting type TYPE.
3681    The resulting range is stored in *VR.  */
3682 
3683 static void
3684 extract_range_from_unary_expr (value_range *vr, enum tree_code code,
3685 			       tree type, tree op0)
3686 {
3687   value_range vr0 = VR_INITIALIZER;
3688 
3689   /* Get value ranges for the operand.  For constant operands, create
3690      a new value range with the operand to simplify processing.  */
3691   if (TREE_CODE (op0) == SSA_NAME)
3692     vr0 = *(get_value_range (op0));
3693   else if (is_gimple_min_invariant (op0))
3694     set_value_range_to_value (&vr0, op0, NULL);
3695   else
3696     set_value_range_to_varying (&vr0);
3697 
3698   extract_range_from_unary_expr (vr, code, type, &vr0, TREE_TYPE (op0));
3699 }
3700 
3701 
3702 /* Extract range information from a conditional expression STMT based on
3703    the ranges of each of its operands and the expression code.  */
3704 
3705 static void
3706 extract_range_from_cond_expr (value_range *vr, gassign *stmt)
3707 {
3708   tree op0, op1;
3709   value_range vr0 = VR_INITIALIZER;
3710   value_range vr1 = VR_INITIALIZER;
3711 
3712   /* Get value ranges for each operand.  For constant operands, create
3713      a new value range with the operand to simplify processing.  */
3714   op0 = gimple_assign_rhs2 (stmt);
3715   if (TREE_CODE (op0) == SSA_NAME)
3716     vr0 = *(get_value_range (op0));
3717   else if (is_gimple_min_invariant (op0))
3718     set_value_range_to_value (&vr0, op0, NULL);
3719   else
3720     set_value_range_to_varying (&vr0);
3721 
3722   op1 = gimple_assign_rhs3 (stmt);
3723   if (TREE_CODE (op1) == SSA_NAME)
3724     vr1 = *(get_value_range (op1));
3725   else if (is_gimple_min_invariant (op1))
3726     set_value_range_to_value (&vr1, op1, NULL);
3727   else
3728     set_value_range_to_varying (&vr1);
3729 
3730   /* The resulting value range is the union of the operand ranges */
3731   copy_value_range (vr, &vr0);
3732   vrp_meet (vr, &vr1);
3733 }
3734 
3735 
3736 /* Extract range information from a comparison expression EXPR based
3737    on the range of its operand and the expression code.  */
3738 
3739 static void
3740 extract_range_from_comparison (value_range *vr, enum tree_code code,
3741 			       tree type, tree op0, tree op1)
3742 {
3743   bool sop = false;
3744   tree val;
3745 
3746   val = vrp_evaluate_conditional_warnv_with_ops (code, op0, op1, false, &sop,
3747   						 NULL);
3748 
3749   /* A disadvantage of using a special infinity as an overflow
3750      representation is that we lose the ability to record overflow
3751      when we don't have an infinity.  So we have to ignore a result
3752      which relies on overflow.  */
3753 
3754   if (val && !is_overflow_infinity (val) && !sop)
3755     {
3756       /* Since this expression was found on the RHS of an assignment,
3757 	 its type may be different from _Bool.  Convert VAL to EXPR's
3758 	 type.  */
3759       val = fold_convert (type, val);
3760       if (is_gimple_min_invariant (val))
3761 	set_value_range_to_value (vr, val, vr->equiv);
3762       else
3763 	set_value_range (vr, VR_RANGE, val, val, vr->equiv);
3764     }
3765   else
3766     /* The result of a comparison is always true or false.  */
3767     set_value_range_to_truthvalue (vr, type);
3768 }
3769 
3770 /* Helper function for simplify_internal_call_using_ranges and
3771    extract_range_basic.  Return true if OP0 SUBCODE OP1 for
3772    SUBCODE {PLUS,MINUS,MULT}_EXPR is known to never overflow or
3773    always overflow.  Set *OVF to true if it is known to always
3774    overflow.  */
3775 
3776 static bool
3777 check_for_binary_op_overflow (enum tree_code subcode, tree type,
3778 			      tree op0, tree op1, bool *ovf)
3779 {
3780   value_range vr0 = VR_INITIALIZER;
3781   value_range vr1 = VR_INITIALIZER;
3782   if (TREE_CODE (op0) == SSA_NAME)
3783     vr0 = *get_value_range (op0);
3784   else if (TREE_CODE (op0) == INTEGER_CST)
3785     set_value_range_to_value (&vr0, op0, NULL);
3786   else
3787     set_value_range_to_varying (&vr0);
3788 
3789   if (TREE_CODE (op1) == SSA_NAME)
3790     vr1 = *get_value_range (op1);
3791   else if (TREE_CODE (op1) == INTEGER_CST)
3792     set_value_range_to_value (&vr1, op1, NULL);
3793   else
3794     set_value_range_to_varying (&vr1);
3795 
3796   if (!range_int_cst_p (&vr0)
3797       || TREE_OVERFLOW (vr0.min)
3798       || TREE_OVERFLOW (vr0.max))
3799     {
3800       vr0.min = vrp_val_min (TREE_TYPE (op0));
3801       vr0.max = vrp_val_max (TREE_TYPE (op0));
3802     }
3803   if (!range_int_cst_p (&vr1)
3804       || TREE_OVERFLOW (vr1.min)
3805       || TREE_OVERFLOW (vr1.max))
3806     {
3807       vr1.min = vrp_val_min (TREE_TYPE (op1));
3808       vr1.max = vrp_val_max (TREE_TYPE (op1));
3809     }
3810   *ovf = arith_overflowed_p (subcode, type, vr0.min,
3811 			     subcode == MINUS_EXPR ? vr1.max : vr1.min);
3812   if (arith_overflowed_p (subcode, type, vr0.max,
3813 			  subcode == MINUS_EXPR ? vr1.min : vr1.max) != *ovf)
3814     return false;
3815   if (subcode == MULT_EXPR)
3816     {
3817       if (arith_overflowed_p (subcode, type, vr0.min, vr1.max) != *ovf
3818 	  || arith_overflowed_p (subcode, type, vr0.max, vr1.min) != *ovf)
3819 	return false;
3820     }
3821   if (*ovf)
3822     {
3823       /* So far we found that there is an overflow on the boundaries.
3824 	 That doesn't prove that there is an overflow even for all values
3825 	 in between the boundaries.  For that compute widest_int range
3826 	 of the result and see if it doesn't overlap the range of
3827 	 type.  */
3828       widest_int wmin, wmax;
3829       widest_int w[4];
3830       int i;
3831       w[0] = wi::to_widest (vr0.min);
3832       w[1] = wi::to_widest (vr0.max);
3833       w[2] = wi::to_widest (vr1.min);
3834       w[3] = wi::to_widest (vr1.max);
3835       for (i = 0; i < 4; i++)
3836 	{
3837 	  widest_int wt;
3838 	  switch (subcode)
3839 	    {
3840 	    case PLUS_EXPR:
3841 	      wt = wi::add (w[i & 1], w[2 + (i & 2) / 2]);
3842 	      break;
3843 	    case MINUS_EXPR:
3844 	      wt = wi::sub (w[i & 1], w[2 + (i & 2) / 2]);
3845 	      break;
3846 	    case MULT_EXPR:
3847 	      wt = wi::mul (w[i & 1], w[2 + (i & 2) / 2]);
3848 	      break;
3849 	    default:
3850 	      gcc_unreachable ();
3851 	    }
3852 	  if (i == 0)
3853 	    {
3854 	      wmin = wt;
3855 	      wmax = wt;
3856 	    }
3857 	  else
3858 	    {
3859 	      wmin = wi::smin (wmin, wt);
3860 	      wmax = wi::smax (wmax, wt);
3861 	    }
3862 	}
3863       /* The result of op0 CODE op1 is known to be in range
3864 	 [wmin, wmax].  */
3865       widest_int wtmin = wi::to_widest (vrp_val_min (type));
3866       widest_int wtmax = wi::to_widest (vrp_val_max (type));
3867       /* If all values in [wmin, wmax] are smaller than
3868 	 [wtmin, wtmax] or all are larger than [wtmin, wtmax],
3869 	 the arithmetic operation will always overflow.  */
3870       if (wmax < wtmin || wmin > wtmax)
3871 	return true;
3872       return false;
3873     }
3874   return true;
3875 }
3876 
3877 /* Try to derive a nonnegative or nonzero range out of STMT relying
3878    primarily on generic routines in fold in conjunction with range data.
3879    Store the result in *VR */
3880 
3881 static void
3882 extract_range_basic (value_range *vr, gimple *stmt)
3883 {
3884   bool sop = false;
3885   tree type = gimple_expr_type (stmt);
3886 
3887   if (is_gimple_call (stmt))
3888     {
3889       tree arg;
3890       int mini, maxi, zerov = 0, prec;
3891       enum tree_code subcode = ERROR_MARK;
3892       combined_fn cfn = gimple_call_combined_fn (stmt);
3893 
3894       switch (cfn)
3895 	{
3896 	case CFN_BUILT_IN_CONSTANT_P:
3897 	  /* If the call is __builtin_constant_p and the argument is a
3898 	     function parameter resolve it to false.  This avoids bogus
3899 	     array bound warnings.
3900 	     ???  We could do this as early as inlining is finished.  */
3901 	  arg = gimple_call_arg (stmt, 0);
3902 	  if (TREE_CODE (arg) == SSA_NAME
3903 	      && SSA_NAME_IS_DEFAULT_DEF (arg)
3904 	      && TREE_CODE (SSA_NAME_VAR (arg)) == PARM_DECL
3905 	      && cfun->after_inlining)
3906 	    {
3907 	      set_value_range_to_null (vr, type);
3908 	      return;
3909 	    }
3910 	  break;
3911 	  /* Both __builtin_ffs* and __builtin_popcount return
3912 	     [0, prec].  */
3913 	CASE_CFN_FFS:
3914 	CASE_CFN_POPCOUNT:
3915 	  arg = gimple_call_arg (stmt, 0);
3916 	  prec = TYPE_PRECISION (TREE_TYPE (arg));
3917 	  mini = 0;
3918 	  maxi = prec;
3919 	  if (TREE_CODE (arg) == SSA_NAME)
3920 	    {
3921 	      value_range *vr0 = get_value_range (arg);
3922 	      /* If arg is non-zero, then ffs or popcount
3923 		 are non-zero.  */
3924 	      if (((vr0->type == VR_RANGE
3925 		    && range_includes_zero_p (vr0->min, vr0->max) == 0)
3926 		   || (vr0->type == VR_ANTI_RANGE
3927 		       && range_includes_zero_p (vr0->min, vr0->max) == 1))
3928 		  && !is_overflow_infinity (vr0->min)
3929 		  && !is_overflow_infinity (vr0->max))
3930 		mini = 1;
3931 	      /* If some high bits are known to be zero,
3932 		 we can decrease the maximum.  */
3933 	      if (vr0->type == VR_RANGE
3934 		  && TREE_CODE (vr0->max) == INTEGER_CST
3935 		  && !operand_less_p (vr0->min,
3936 				      build_zero_cst (TREE_TYPE (vr0->min)))
3937 		  && !is_overflow_infinity (vr0->max))
3938 		maxi = tree_floor_log2 (vr0->max) + 1;
3939 	    }
3940 	  goto bitop_builtin;
3941 	  /* __builtin_parity* returns [0, 1].  */
3942 	CASE_CFN_PARITY:
3943 	  mini = 0;
3944 	  maxi = 1;
3945 	  goto bitop_builtin;
3946 	  /* __builtin_c[lt]z* return [0, prec-1], except for
3947 	     when the argument is 0, but that is undefined behavior.
3948 	     On many targets where the CLZ RTL or optab value is defined
3949 	     for 0 the value is prec, so include that in the range
3950 	     by default.  */
3951 	CASE_CFN_CLZ:
3952 	  arg = gimple_call_arg (stmt, 0);
3953 	  prec = TYPE_PRECISION (TREE_TYPE (arg));
3954 	  mini = 0;
3955 	  maxi = prec;
3956 	  if (optab_handler (clz_optab, TYPE_MODE (TREE_TYPE (arg)))
3957 	      != CODE_FOR_nothing
3958 	      && CLZ_DEFINED_VALUE_AT_ZERO (TYPE_MODE (TREE_TYPE (arg)),
3959 					    zerov)
3960 	      /* Handle only the single common value.  */
3961 	      && zerov != prec)
3962 	    /* Magic value to give up, unless vr0 proves
3963 	       arg is non-zero.  */
3964 	    mini = -2;
3965 	  if (TREE_CODE (arg) == SSA_NAME)
3966 	    {
3967 	      value_range *vr0 = get_value_range (arg);
3968 	      /* From clz of VR_RANGE minimum we can compute
3969 		 result maximum.  */
3970 	      if (vr0->type == VR_RANGE
3971 		  && TREE_CODE (vr0->min) == INTEGER_CST
3972 		  && !is_overflow_infinity (vr0->min))
3973 		{
3974 		  maxi = prec - 1 - tree_floor_log2 (vr0->min);
3975 		  if (maxi != prec)
3976 		    mini = 0;
3977 		}
3978 	      else if (vr0->type == VR_ANTI_RANGE
3979 		       && integer_zerop (vr0->min)
3980 		       && !is_overflow_infinity (vr0->min))
3981 		{
3982 		  maxi = prec - 1;
3983 		  mini = 0;
3984 		}
3985 	      if (mini == -2)
3986 		break;
3987 	      /* From clz of VR_RANGE maximum we can compute
3988 		 result minimum.  */
3989 	      if (vr0->type == VR_RANGE
3990 		  && TREE_CODE (vr0->max) == INTEGER_CST
3991 		  && !is_overflow_infinity (vr0->max))
3992 		{
3993 		  mini = prec - 1 - tree_floor_log2 (vr0->max);
3994 		  if (mini == prec)
3995 		    break;
3996 		}
3997 	    }
3998 	  if (mini == -2)
3999 	    break;
4000 	  goto bitop_builtin;
4001 	  /* __builtin_ctz* return [0, prec-1], except for
4002 	     when the argument is 0, but that is undefined behavior.
4003 	     If there is a ctz optab for this mode and
4004 	     CTZ_DEFINED_VALUE_AT_ZERO, include that in the range,
4005 	     otherwise just assume 0 won't be seen.  */
4006 	CASE_CFN_CTZ:
4007 	  arg = gimple_call_arg (stmt, 0);
4008 	  prec = TYPE_PRECISION (TREE_TYPE (arg));
4009 	  mini = 0;
4010 	  maxi = prec - 1;
4011 	  if (optab_handler (ctz_optab, TYPE_MODE (TREE_TYPE (arg)))
4012 	      != CODE_FOR_nothing
4013 	      && CTZ_DEFINED_VALUE_AT_ZERO (TYPE_MODE (TREE_TYPE (arg)),
4014 					    zerov))
4015 	    {
4016 	      /* Handle only the two common values.  */
4017 	      if (zerov == -1)
4018 		mini = -1;
4019 	      else if (zerov == prec)
4020 		maxi = prec;
4021 	      else
4022 		/* Magic value to give up, unless vr0 proves
4023 		   arg is non-zero.  */
4024 		mini = -2;
4025 	    }
4026 	  if (TREE_CODE (arg) == SSA_NAME)
4027 	    {
4028 	      value_range *vr0 = get_value_range (arg);
4029 	      /* If arg is non-zero, then use [0, prec - 1].  */
4030 	      if (((vr0->type == VR_RANGE
4031 		    && integer_nonzerop (vr0->min))
4032 		   || (vr0->type == VR_ANTI_RANGE
4033 		       && integer_zerop (vr0->min)))
4034 		  && !is_overflow_infinity (vr0->min))
4035 		{
4036 		  mini = 0;
4037 		  maxi = prec - 1;
4038 		}
4039 	      /* If some high bits are known to be zero,
4040 		 we can decrease the result maximum.  */
4041 	      if (vr0->type == VR_RANGE
4042 		  && TREE_CODE (vr0->max) == INTEGER_CST
4043 		  && !is_overflow_infinity (vr0->max))
4044 		{
4045 		  maxi = tree_floor_log2 (vr0->max);
4046 		  /* For vr0 [0, 0] give up.  */
4047 		  if (maxi == -1)
4048 		    break;
4049 		}
4050 	    }
4051 	  if (mini == -2)
4052 	    break;
4053 	  goto bitop_builtin;
4054 	  /* __builtin_clrsb* returns [0, prec-1].  */
4055 	CASE_CFN_CLRSB:
4056 	  arg = gimple_call_arg (stmt, 0);
4057 	  prec = TYPE_PRECISION (TREE_TYPE (arg));
4058 	  mini = 0;
4059 	  maxi = prec - 1;
4060 	  goto bitop_builtin;
4061 	bitop_builtin:
4062 	  set_value_range (vr, VR_RANGE, build_int_cst (type, mini),
4063 			   build_int_cst (type, maxi), NULL);
4064 	  return;
4065 	case CFN_UBSAN_CHECK_ADD:
4066 	  subcode = PLUS_EXPR;
4067 	  break;
4068 	case CFN_UBSAN_CHECK_SUB:
4069 	  subcode = MINUS_EXPR;
4070 	  break;
4071 	case CFN_UBSAN_CHECK_MUL:
4072 	  subcode = MULT_EXPR;
4073 	  break;
4074 	case CFN_GOACC_DIM_SIZE:
4075 	case CFN_GOACC_DIM_POS:
4076 	  /* Optimizing these two internal functions helps the loop
4077 	     optimizer eliminate outer comparisons.  Size is [1,N]
4078 	     and pos is [0,N-1].  */
4079 	  {
4080 	    bool is_pos = cfn == CFN_GOACC_DIM_POS;
4081 	    int axis = oacc_get_ifn_dim_arg (stmt);
4082 	    int size = oacc_get_fn_dim_size (current_function_decl, axis);
4083 
4084 	    if (!size)
4085 	      /* If it's dynamic, the backend might know a hardware
4086 		 limitation.  */
4087 	      size = targetm.goacc.dim_limit (axis);
4088 
4089 	    tree type = TREE_TYPE (gimple_call_lhs (stmt));
4090 	    set_value_range (vr, VR_RANGE,
4091 			     build_int_cst (type, is_pos ? 0 : 1),
4092 			     size ? build_int_cst (type, size - is_pos)
4093 			          : vrp_val_max (type), NULL);
4094 	  }
4095 	  return;
4096 	case CFN_BUILT_IN_STRLEN:
4097 	  if (tree lhs = gimple_call_lhs (stmt))
4098 	    if (ptrdiff_type_node
4099 		&& (TYPE_PRECISION (ptrdiff_type_node)
4100 		    == TYPE_PRECISION (TREE_TYPE (lhs))))
4101 	      {
4102 		tree type = TREE_TYPE (lhs);
4103 		tree max = vrp_val_max (ptrdiff_type_node);
4104 		wide_int wmax = wi::to_wide (max, TYPE_PRECISION (TREE_TYPE (max)));
4105 		tree range_min = build_zero_cst (type);
4106 		tree range_max = wide_int_to_tree (type, wmax - 1);
4107 		set_value_range (vr, VR_RANGE, range_min, range_max, NULL);
4108 		return;
4109 	      }
4110 	  break;
4111 	default:
4112 	  break;
4113 	}
4114       if (subcode != ERROR_MARK)
4115 	{
4116 	  bool saved_flag_wrapv = flag_wrapv;
4117 	  /* Pretend the arithmetics is wrapping.  If there is
4118 	     any overflow, we'll complain, but will actually do
4119 	     wrapping operation.  */
4120 	  flag_wrapv = 1;
4121 	  extract_range_from_binary_expr (vr, subcode, type,
4122 					  gimple_call_arg (stmt, 0),
4123 					  gimple_call_arg (stmt, 1));
4124 	  flag_wrapv = saved_flag_wrapv;
4125 
4126 	  /* If for both arguments vrp_valueize returned non-NULL,
4127 	     this should have been already folded and if not, it
4128 	     wasn't folded because of overflow.  Avoid removing the
4129 	     UBSAN_CHECK_* calls in that case.  */
4130 	  if (vr->type == VR_RANGE
4131 	      && (vr->min == vr->max
4132 		  || operand_equal_p (vr->min, vr->max, 0)))
4133 	    set_value_range_to_varying (vr);
4134 	  return;
4135 	}
4136     }
4137   /* Handle extraction of the two results (result of arithmetics and
4138      a flag whether arithmetics overflowed) from {ADD,SUB,MUL}_OVERFLOW
4139      internal function.  Similarly from ATOMIC_COMPARE_EXCHANGE.  */
4140   else if (is_gimple_assign (stmt)
4141 	   && (gimple_assign_rhs_code (stmt) == REALPART_EXPR
4142 	       || gimple_assign_rhs_code (stmt) == IMAGPART_EXPR)
4143 	   && INTEGRAL_TYPE_P (type))
4144     {
4145       enum tree_code code = gimple_assign_rhs_code (stmt);
4146       tree op = gimple_assign_rhs1 (stmt);
4147       if (TREE_CODE (op) == code && TREE_CODE (TREE_OPERAND (op, 0)) == SSA_NAME)
4148 	{
4149 	  gimple *g = SSA_NAME_DEF_STMT (TREE_OPERAND (op, 0));
4150 	  if (is_gimple_call (g) && gimple_call_internal_p (g))
4151 	    {
4152 	      enum tree_code subcode = ERROR_MARK;
4153 	      switch (gimple_call_internal_fn (g))
4154 		{
4155 		case IFN_ADD_OVERFLOW:
4156 		  subcode = PLUS_EXPR;
4157 		  break;
4158 		case IFN_SUB_OVERFLOW:
4159 		  subcode = MINUS_EXPR;
4160 		  break;
4161 		case IFN_MUL_OVERFLOW:
4162 		  subcode = MULT_EXPR;
4163 		  break;
4164 		case IFN_ATOMIC_COMPARE_EXCHANGE:
4165 		  if (code == IMAGPART_EXPR)
4166 		    {
4167 		      /* This is the boolean return value whether compare and
4168 			 exchange changed anything or not.  */
4169 		      set_value_range (vr, VR_RANGE, build_int_cst (type, 0),
4170 				       build_int_cst (type, 1), NULL);
4171 		      return;
4172 		    }
4173 		  break;
4174 		default:
4175 		  break;
4176 		}
4177 	      if (subcode != ERROR_MARK)
4178 		{
4179 		  tree op0 = gimple_call_arg (g, 0);
4180 		  tree op1 = gimple_call_arg (g, 1);
4181 		  if (code == IMAGPART_EXPR)
4182 		    {
4183 		      bool ovf = false;
4184 		      if (check_for_binary_op_overflow (subcode, type,
4185 							op0, op1, &ovf))
4186 			set_value_range_to_value (vr,
4187 						  build_int_cst (type, ovf),
4188 						  NULL);
4189 		      else if (TYPE_PRECISION (type) == 1
4190 			       && !TYPE_UNSIGNED (type))
4191 			set_value_range_to_varying (vr);
4192 		      else
4193 			set_value_range (vr, VR_RANGE, build_int_cst (type, 0),
4194 					 build_int_cst (type, 1), NULL);
4195 		    }
4196 		  else if (types_compatible_p (type, TREE_TYPE (op0))
4197 			   && types_compatible_p (type, TREE_TYPE (op1)))
4198 		    {
4199 		      bool saved_flag_wrapv = flag_wrapv;
4200 		      /* Pretend the arithmetics is wrapping.  If there is
4201 			 any overflow, IMAGPART_EXPR will be set.  */
4202 		      flag_wrapv = 1;
4203 		      extract_range_from_binary_expr (vr, subcode, type,
4204 						      op0, op1);
4205 		      flag_wrapv = saved_flag_wrapv;
4206 		    }
4207 		  else
4208 		    {
4209 		      value_range vr0 = VR_INITIALIZER;
4210 		      value_range vr1 = VR_INITIALIZER;
4211 		      bool saved_flag_wrapv = flag_wrapv;
4212 		      /* Pretend the arithmetics is wrapping.  If there is
4213 			 any overflow, IMAGPART_EXPR will be set.  */
4214 		      flag_wrapv = 1;
4215 		      extract_range_from_unary_expr (&vr0, NOP_EXPR,
4216 						     type, op0);
4217 		      extract_range_from_unary_expr (&vr1, NOP_EXPR,
4218 						     type, op1);
4219 		      extract_range_from_binary_expr_1 (vr, subcode, type,
4220 							&vr0, &vr1);
4221 		      flag_wrapv = saved_flag_wrapv;
4222 		    }
4223 		  return;
4224 		}
4225 	    }
4226 	}
4227     }
4228   if (INTEGRAL_TYPE_P (type)
4229       && gimple_stmt_nonnegative_warnv_p (stmt, &sop))
4230     set_value_range_to_nonnegative (vr, type,
4231 				    sop || stmt_overflow_infinity (stmt));
4232   else if (vrp_stmt_computes_nonzero (stmt, &sop)
4233 	   && !sop)
4234     set_value_range_to_nonnull (vr, type);
4235   else
4236     set_value_range_to_varying (vr);
4237 }
4238 
4239 
4240 /* Try to compute a useful range out of assignment STMT and store it
4241    in *VR.  */
4242 
4243 static void
4244 extract_range_from_assignment (value_range *vr, gassign *stmt)
4245 {
4246   enum tree_code code = gimple_assign_rhs_code (stmt);
4247 
4248   if (code == ASSERT_EXPR)
4249     extract_range_from_assert (vr, gimple_assign_rhs1 (stmt));
4250   else if (code == SSA_NAME)
4251     extract_range_from_ssa_name (vr, gimple_assign_rhs1 (stmt));
4252   else if (TREE_CODE_CLASS (code) == tcc_binary)
4253     extract_range_from_binary_expr (vr, gimple_assign_rhs_code (stmt),
4254 				    gimple_expr_type (stmt),
4255 				    gimple_assign_rhs1 (stmt),
4256 				    gimple_assign_rhs2 (stmt));
4257   else if (TREE_CODE_CLASS (code) == tcc_unary)
4258     extract_range_from_unary_expr (vr, gimple_assign_rhs_code (stmt),
4259 				   gimple_expr_type (stmt),
4260 				   gimple_assign_rhs1 (stmt));
4261   else if (code == COND_EXPR)
4262     extract_range_from_cond_expr (vr, stmt);
4263   else if (TREE_CODE_CLASS (code) == tcc_comparison)
4264     extract_range_from_comparison (vr, gimple_assign_rhs_code (stmt),
4265 				   gimple_expr_type (stmt),
4266 				   gimple_assign_rhs1 (stmt),
4267 				   gimple_assign_rhs2 (stmt));
4268   else if (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS
4269 	   && is_gimple_min_invariant (gimple_assign_rhs1 (stmt)))
4270     set_value_range_to_value (vr, gimple_assign_rhs1 (stmt), NULL);
4271   else
4272     set_value_range_to_varying (vr);
4273 
4274   if (vr->type == VR_VARYING)
4275     extract_range_basic (vr, stmt);
4276 }
4277 
4278 /* Given a range VR, a LOOP and a variable VAR, determine whether it
4279    would be profitable to adjust VR using scalar evolution information
4280    for VAR.  If so, update VR with the new limits.  */
4281 
4282 static void
4283 adjust_range_with_scev (value_range *vr, struct loop *loop,
4284 			gimple *stmt, tree var)
4285 {
4286   tree init, step, chrec, tmin, tmax, min, max, type, tem;
4287   enum ev_direction dir;
4288 
4289   /* TODO.  Don't adjust anti-ranges.  An anti-range may provide
4290      better opportunities than a regular range, but I'm not sure.  */
4291   if (vr->type == VR_ANTI_RANGE)
4292     return;
4293 
4294   chrec = instantiate_parameters (loop, analyze_scalar_evolution (loop, var));
4295 
4296   /* Like in PR19590, scev can return a constant function.  */
4297   if (is_gimple_min_invariant (chrec))
4298     {
4299       set_value_range_to_value (vr, chrec, vr->equiv);
4300       return;
4301     }
4302 
4303   if (TREE_CODE (chrec) != POLYNOMIAL_CHREC)
4304     return;
4305 
4306   init = initial_condition_in_loop_num (chrec, loop->num);
4307   tem = op_with_constant_singleton_value_range (init);
4308   if (tem)
4309     init = tem;
4310   step = evolution_part_in_loop_num (chrec, loop->num);
4311   tem = op_with_constant_singleton_value_range (step);
4312   if (tem)
4313     step = tem;
4314 
4315   /* If STEP is symbolic, we can't know whether INIT will be the
4316      minimum or maximum value in the range.  Also, unless INIT is
4317      a simple expression, compare_values and possibly other functions
4318      in tree-vrp won't be able to handle it.  */
4319   if (step == NULL_TREE
4320       || !is_gimple_min_invariant (step)
4321       || !valid_value_p (init))
4322     return;
4323 
4324   dir = scev_direction (chrec);
4325   if (/* Do not adjust ranges if we do not know whether the iv increases
4326 	 or decreases,  ... */
4327       dir == EV_DIR_UNKNOWN
4328       /* ... or if it may wrap.  */
4329       || scev_probably_wraps_p (NULL_TREE, init, step, stmt,
4330 				get_chrec_loop (chrec), true))
4331     return;
4332 
4333   /* We use TYPE_MIN_VALUE and TYPE_MAX_VALUE here instead of
4334      negative_overflow_infinity and positive_overflow_infinity,
4335      because we have concluded that the loop probably does not
4336      wrap.  */
4337 
4338   type = TREE_TYPE (var);
4339   if (POINTER_TYPE_P (type) || !TYPE_MIN_VALUE (type))
4340     tmin = lower_bound_in_type (type, type);
4341   else
4342     tmin = TYPE_MIN_VALUE (type);
4343   if (POINTER_TYPE_P (type) || !TYPE_MAX_VALUE (type))
4344     tmax = upper_bound_in_type (type, type);
4345   else
4346     tmax = TYPE_MAX_VALUE (type);
4347 
4348   /* Try to use estimated number of iterations for the loop to constrain the
4349      final value in the evolution.  */
4350   if (TREE_CODE (step) == INTEGER_CST
4351       && is_gimple_val (init)
4352       && (TREE_CODE (init) != SSA_NAME
4353 	  || get_value_range (init)->type == VR_RANGE))
4354     {
4355       widest_int nit;
4356 
4357       /* We are only entering here for loop header PHI nodes, so using
4358 	 the number of latch executions is the correct thing to use.  */
4359       if (max_loop_iterations (loop, &nit))
4360 	{
4361 	  value_range maxvr = VR_INITIALIZER;
4362 	  signop sgn = TYPE_SIGN (TREE_TYPE (step));
4363 	  bool overflow;
4364 
4365 	  widest_int wtmp = wi::mul (wi::to_widest (step), nit, sgn,
4366 				     &overflow);
4367 	  /* If the multiplication overflowed we can't do a meaningful
4368 	     adjustment.  Likewise if the result doesn't fit in the type
4369 	     of the induction variable.  For a signed type we have to
4370 	     check whether the result has the expected signedness which
4371 	     is that of the step as number of iterations is unsigned.  */
4372 	  if (!overflow
4373 	      && wi::fits_to_tree_p (wtmp, TREE_TYPE (init))
4374 	      && (sgn == UNSIGNED
4375 		  || wi::gts_p (wtmp, 0) == wi::gts_p (step, 0)))
4376 	    {
4377 	      tem = wide_int_to_tree (TREE_TYPE (init), wtmp);
4378 	      extract_range_from_binary_expr (&maxvr, PLUS_EXPR,
4379 					      TREE_TYPE (init), init, tem);
4380 	      /* Likewise if the addition did.  */
4381 	      if (maxvr.type == VR_RANGE)
4382 		{
4383 		  value_range initvr = VR_INITIALIZER;
4384 
4385 		  if (TREE_CODE (init) == SSA_NAME)
4386 		    initvr = *(get_value_range (init));
4387 		  else if (is_gimple_min_invariant (init))
4388 		    set_value_range_to_value (&initvr, init, NULL);
4389 		  else
4390 		    return;
4391 
4392 		  /* Check if init + nit * step overflows.  Though we checked
4393 		     scev {init, step}_loop doesn't wrap, it is not enough
4394 		     because the loop may exit immediately.  Overflow could
4395 		     happen in the plus expression in this case.  */
4396 		  if ((dir == EV_DIR_DECREASES
4397 		       && (is_negative_overflow_infinity (maxvr.min)
4398 			   || compare_values (maxvr.min, initvr.min) != -1))
4399 		      || (dir == EV_DIR_GROWS
4400 			  && (is_positive_overflow_infinity (maxvr.max)
4401 			      || compare_values (maxvr.max, initvr.max) != 1)))
4402 		    return;
4403 
4404 		  tmin = maxvr.min;
4405 		  tmax = maxvr.max;
4406 		}
4407 	    }
4408 	}
4409     }
4410 
4411   if (vr->type == VR_VARYING || vr->type == VR_UNDEFINED)
4412     {
4413       min = tmin;
4414       max = tmax;
4415 
4416       /* For VARYING or UNDEFINED ranges, just about anything we get
4417 	 from scalar evolutions should be better.  */
4418 
4419       if (dir == EV_DIR_DECREASES)
4420 	max = init;
4421       else
4422 	min = init;
4423     }
4424   else if (vr->type == VR_RANGE)
4425     {
4426       min = vr->min;
4427       max = vr->max;
4428 
4429       if (dir == EV_DIR_DECREASES)
4430 	{
4431 	  /* INIT is the maximum value.  If INIT is lower than VR->MAX
4432 	     but no smaller than VR->MIN, set VR->MAX to INIT.  */
4433 	  if (compare_values (init, max) == -1)
4434 	    max = init;
4435 
4436 	  /* According to the loop information, the variable does not
4437 	     overflow.  If we think it does, probably because of an
4438 	     overflow due to arithmetic on a different INF value,
4439 	     reset now.  */
4440 	  if (is_negative_overflow_infinity (min)
4441 	      || compare_values (min, tmin) == -1)
4442 	    min = tmin;
4443 
4444 	}
4445       else
4446 	{
4447 	  /* If INIT is bigger than VR->MIN, set VR->MIN to INIT.  */
4448 	  if (compare_values (init, min) == 1)
4449 	    min = init;
4450 
4451 	  if (is_positive_overflow_infinity (max)
4452 	      || compare_values (tmax, max) == -1)
4453 	    max = tmax;
4454 	}
4455     }
4456   else
4457     return;
4458 
4459   /* If we just created an invalid range with the minimum
4460      greater than the maximum, we fail conservatively.
4461      This should happen only in unreachable
4462      parts of code, or for invalid programs.  */
4463   if (compare_values (min, max) == 1
4464       || (is_negative_overflow_infinity (min)
4465 	  && is_positive_overflow_infinity (max)))
4466     return;
4467 
4468   /* Even for valid range info, sometimes overflow flag will leak in.
4469      As GIMPLE IL should have no constants with TREE_OVERFLOW set, we
4470      drop them except for +-overflow_infinity which still need special
4471      handling in vrp pass.  */
4472   if (TREE_OVERFLOW_P (min)
4473       && ! is_negative_overflow_infinity (min))
4474     min = drop_tree_overflow (min);
4475   if (TREE_OVERFLOW_P (max)
4476       && ! is_positive_overflow_infinity (max))
4477     max = drop_tree_overflow (max);
4478 
4479   set_value_range (vr, VR_RANGE, min, max, vr->equiv);
4480 }
4481 
4482 
4483 /* Given two numeric value ranges VR0, VR1 and a comparison code COMP:
4484 
4485    - Return BOOLEAN_TRUE_NODE if VR0 COMP VR1 always returns true for
4486      all the values in the ranges.
4487 
4488    - Return BOOLEAN_FALSE_NODE if the comparison always returns false.
4489 
4490    - Return NULL_TREE if it is not always possible to determine the
4491      value of the comparison.
4492 
4493    Also set *STRICT_OVERFLOW_P to indicate whether a range with an
4494    overflow infinity was used in the test.  */
4495 
4496 
4497 static tree
4498 compare_ranges (enum tree_code comp, value_range *vr0, value_range *vr1,
4499 		bool *strict_overflow_p)
4500 {
4501   /* VARYING or UNDEFINED ranges cannot be compared.  */
4502   if (vr0->type == VR_VARYING
4503       || vr0->type == VR_UNDEFINED
4504       || vr1->type == VR_VARYING
4505       || vr1->type == VR_UNDEFINED)
4506     return NULL_TREE;
4507 
4508   /* Anti-ranges need to be handled separately.  */
4509   if (vr0->type == VR_ANTI_RANGE || vr1->type == VR_ANTI_RANGE)
4510     {
4511       /* If both are anti-ranges, then we cannot compute any
4512 	 comparison.  */
4513       if (vr0->type == VR_ANTI_RANGE && vr1->type == VR_ANTI_RANGE)
4514 	return NULL_TREE;
4515 
4516       /* These comparisons are never statically computable.  */
4517       if (comp == GT_EXPR
4518 	  || comp == GE_EXPR
4519 	  || comp == LT_EXPR
4520 	  || comp == LE_EXPR)
4521 	return NULL_TREE;
4522 
4523       /* Equality can be computed only between a range and an
4524 	 anti-range.  ~[VAL1, VAL2] == [VAL1, VAL2] is always false.  */
4525       if (vr0->type == VR_RANGE)
4526 	{
4527 	  /* To simplify processing, make VR0 the anti-range.  */
4528 	  value_range *tmp = vr0;
4529 	  vr0 = vr1;
4530 	  vr1 = tmp;
4531 	}
4532 
4533       gcc_assert (comp == NE_EXPR || comp == EQ_EXPR);
4534 
4535       if (compare_values_warnv (vr0->min, vr1->min, strict_overflow_p) == 0
4536 	  && compare_values_warnv (vr0->max, vr1->max, strict_overflow_p) == 0)
4537 	return (comp == NE_EXPR) ? boolean_true_node : boolean_false_node;
4538 
4539       return NULL_TREE;
4540     }
4541 
4542   if (!usable_range_p (vr0, strict_overflow_p)
4543       || !usable_range_p (vr1, strict_overflow_p))
4544     return NULL_TREE;
4545 
4546   /* Simplify processing.  If COMP is GT_EXPR or GE_EXPR, switch the
4547      operands around and change the comparison code.  */
4548   if (comp == GT_EXPR || comp == GE_EXPR)
4549     {
4550       comp = (comp == GT_EXPR) ? LT_EXPR : LE_EXPR;
4551       std::swap (vr0, vr1);
4552     }
4553 
4554   if (comp == EQ_EXPR)
4555     {
4556       /* Equality may only be computed if both ranges represent
4557 	 exactly one value.  */
4558       if (compare_values_warnv (vr0->min, vr0->max, strict_overflow_p) == 0
4559 	  && compare_values_warnv (vr1->min, vr1->max, strict_overflow_p) == 0)
4560 	{
4561 	  int cmp_min = compare_values_warnv (vr0->min, vr1->min,
4562 					      strict_overflow_p);
4563 	  int cmp_max = compare_values_warnv (vr0->max, vr1->max,
4564 					      strict_overflow_p);
4565 	  if (cmp_min == 0 && cmp_max == 0)
4566 	    return boolean_true_node;
4567 	  else if (cmp_min != -2 && cmp_max != -2)
4568 	    return boolean_false_node;
4569 	}
4570       /* If [V0_MIN, V1_MAX] < [V1_MIN, V1_MAX] then V0 != V1.  */
4571       else if (compare_values_warnv (vr0->min, vr1->max,
4572 				     strict_overflow_p) == 1
4573 	       || compare_values_warnv (vr1->min, vr0->max,
4574 					strict_overflow_p) == 1)
4575 	return boolean_false_node;
4576 
4577       return NULL_TREE;
4578     }
4579   else if (comp == NE_EXPR)
4580     {
4581       int cmp1, cmp2;
4582 
4583       /* If VR0 is completely to the left or completely to the right
4584 	 of VR1, they are always different.  Notice that we need to
4585 	 make sure that both comparisons yield similar results to
4586 	 avoid comparing values that cannot be compared at
4587 	 compile-time.  */
4588       cmp1 = compare_values_warnv (vr0->max, vr1->min, strict_overflow_p);
4589       cmp2 = compare_values_warnv (vr0->min, vr1->max, strict_overflow_p);
4590       if ((cmp1 == -1 && cmp2 == -1) || (cmp1 == 1 && cmp2 == 1))
4591 	return boolean_true_node;
4592 
4593       /* If VR0 and VR1 represent a single value and are identical,
4594 	 return false.  */
4595       else if (compare_values_warnv (vr0->min, vr0->max,
4596 				     strict_overflow_p) == 0
4597 	       && compare_values_warnv (vr1->min, vr1->max,
4598 					strict_overflow_p) == 0
4599 	       && compare_values_warnv (vr0->min, vr1->min,
4600 					strict_overflow_p) == 0
4601 	       && compare_values_warnv (vr0->max, vr1->max,
4602 					strict_overflow_p) == 0)
4603 	return boolean_false_node;
4604 
4605       /* Otherwise, they may or may not be different.  */
4606       else
4607 	return NULL_TREE;
4608     }
4609   else if (comp == LT_EXPR || comp == LE_EXPR)
4610     {
4611       int tst;
4612 
4613       /* If VR0 is to the left of VR1, return true.  */
4614       tst = compare_values_warnv (vr0->max, vr1->min, strict_overflow_p);
4615       if ((comp == LT_EXPR && tst == -1)
4616 	  || (comp == LE_EXPR && (tst == -1 || tst == 0)))
4617 	{
4618 	  if (overflow_infinity_range_p (vr0)
4619 	      || overflow_infinity_range_p (vr1))
4620 	    *strict_overflow_p = true;
4621 	  return boolean_true_node;
4622 	}
4623 
4624       /* If VR0 is to the right of VR1, return false.  */
4625       tst = compare_values_warnv (vr0->min, vr1->max, strict_overflow_p);
4626       if ((comp == LT_EXPR && (tst == 0 || tst == 1))
4627 	  || (comp == LE_EXPR && tst == 1))
4628 	{
4629 	  if (overflow_infinity_range_p (vr0)
4630 	      || overflow_infinity_range_p (vr1))
4631 	    *strict_overflow_p = true;
4632 	  return boolean_false_node;
4633 	}
4634 
4635       /* Otherwise, we don't know.  */
4636       return NULL_TREE;
4637     }
4638 
4639   gcc_unreachable ();
4640 }
4641 
4642 
4643 /* Given a value range VR, a value VAL and a comparison code COMP, return
4644    BOOLEAN_TRUE_NODE if VR COMP VAL always returns true for all the
4645    values in VR.  Return BOOLEAN_FALSE_NODE if the comparison
4646    always returns false.  Return NULL_TREE if it is not always
4647    possible to determine the value of the comparison.  Also set
4648    *STRICT_OVERFLOW_P to indicate whether a range with an overflow
4649    infinity was used in the test.  */
4650 
4651 static tree
4652 compare_range_with_value (enum tree_code comp, value_range *vr, tree val,
4653 			  bool *strict_overflow_p)
4654 {
4655   if (vr->type == VR_VARYING || vr->type == VR_UNDEFINED)
4656     return NULL_TREE;
4657 
4658   /* Anti-ranges need to be handled separately.  */
4659   if (vr->type == VR_ANTI_RANGE)
4660     {
4661       /* For anti-ranges, the only predicates that we can compute at
4662 	 compile time are equality and inequality.  */
4663       if (comp == GT_EXPR
4664 	  || comp == GE_EXPR
4665 	  || comp == LT_EXPR
4666 	  || comp == LE_EXPR)
4667 	return NULL_TREE;
4668 
4669       /* ~[VAL_1, VAL_2] OP VAL is known if VAL_1 <= VAL <= VAL_2.  */
4670       if (value_inside_range (val, vr->min, vr->max) == 1)
4671 	return (comp == NE_EXPR) ? boolean_true_node : boolean_false_node;
4672 
4673       return NULL_TREE;
4674     }
4675 
4676   if (!usable_range_p (vr, strict_overflow_p))
4677     return NULL_TREE;
4678 
4679   if (comp == EQ_EXPR)
4680     {
4681       /* EQ_EXPR may only be computed if VR represents exactly
4682 	 one value.  */
4683       if (compare_values_warnv (vr->min, vr->max, strict_overflow_p) == 0)
4684 	{
4685 	  int cmp = compare_values_warnv (vr->min, val, strict_overflow_p);
4686 	  if (cmp == 0)
4687 	    return boolean_true_node;
4688 	  else if (cmp == -1 || cmp == 1 || cmp == 2)
4689 	    return boolean_false_node;
4690 	}
4691       else if (compare_values_warnv (val, vr->min, strict_overflow_p) == -1
4692 	       || compare_values_warnv (vr->max, val, strict_overflow_p) == -1)
4693 	return boolean_false_node;
4694 
4695       return NULL_TREE;
4696     }
4697   else if (comp == NE_EXPR)
4698     {
4699       /* If VAL is not inside VR, then they are always different.  */
4700       if (compare_values_warnv (vr->max, val, strict_overflow_p) == -1
4701 	  || compare_values_warnv (vr->min, val, strict_overflow_p) == 1)
4702 	return boolean_true_node;
4703 
4704       /* If VR represents exactly one value equal to VAL, then return
4705 	 false.  */
4706       if (compare_values_warnv (vr->min, vr->max, strict_overflow_p) == 0
4707 	  && compare_values_warnv (vr->min, val, strict_overflow_p) == 0)
4708 	return boolean_false_node;
4709 
4710       /* Otherwise, they may or may not be different.  */
4711       return NULL_TREE;
4712     }
4713   else if (comp == LT_EXPR || comp == LE_EXPR)
4714     {
4715       int tst;
4716 
4717       /* If VR is to the left of VAL, return true.  */
4718       tst = compare_values_warnv (vr->max, val, strict_overflow_p);
4719       if ((comp == LT_EXPR && tst == -1)
4720 	  || (comp == LE_EXPR && (tst == -1 || tst == 0)))
4721 	{
4722 	  if (overflow_infinity_range_p (vr))
4723 	    *strict_overflow_p = true;
4724 	  return boolean_true_node;
4725 	}
4726 
4727       /* If VR is to the right of VAL, return false.  */
4728       tst = compare_values_warnv (vr->min, val, strict_overflow_p);
4729       if ((comp == LT_EXPR && (tst == 0 || tst == 1))
4730 	  || (comp == LE_EXPR && tst == 1))
4731 	{
4732 	  if (overflow_infinity_range_p (vr))
4733 	    *strict_overflow_p = true;
4734 	  return boolean_false_node;
4735 	}
4736 
4737       /* Otherwise, we don't know.  */
4738       return NULL_TREE;
4739     }
4740   else if (comp == GT_EXPR || comp == GE_EXPR)
4741     {
4742       int tst;
4743 
4744       /* If VR is to the right of VAL, return true.  */
4745       tst = compare_values_warnv (vr->min, val, strict_overflow_p);
4746       if ((comp == GT_EXPR && tst == 1)
4747 	  || (comp == GE_EXPR && (tst == 0 || tst == 1)))
4748 	{
4749 	  if (overflow_infinity_range_p (vr))
4750 	    *strict_overflow_p = true;
4751 	  return boolean_true_node;
4752 	}
4753 
4754       /* If VR is to the left of VAL, return false.  */
4755       tst = compare_values_warnv (vr->max, val, strict_overflow_p);
4756       if ((comp == GT_EXPR && (tst == -1 || tst == 0))
4757 	  || (comp == GE_EXPR && tst == -1))
4758 	{
4759 	  if (overflow_infinity_range_p (vr))
4760 	    *strict_overflow_p = true;
4761 	  return boolean_false_node;
4762 	}
4763 
4764       /* Otherwise, we don't know.  */
4765       return NULL_TREE;
4766     }
4767 
4768   gcc_unreachable ();
4769 }
4770 
4771 
4772 /* Debugging dumps.  */
4773 
4774 void dump_value_range (FILE *, const value_range *);
4775 void debug_value_range (value_range *);
4776 void dump_all_value_ranges (FILE *);
4777 void debug_all_value_ranges (void);
4778 void dump_vr_equiv (FILE *, bitmap);
4779 void debug_vr_equiv (bitmap);
4780 
4781 
4782 /* Dump value range VR to FILE.  */
4783 
4784 void
4785 dump_value_range (FILE *file, const value_range *vr)
4786 {
4787   if (vr == NULL)
4788     fprintf (file, "[]");
4789   else if (vr->type == VR_UNDEFINED)
4790     fprintf (file, "UNDEFINED");
4791   else if (vr->type == VR_RANGE || vr->type == VR_ANTI_RANGE)
4792     {
4793       tree type = TREE_TYPE (vr->min);
4794 
4795       fprintf (file, "%s[", (vr->type == VR_ANTI_RANGE) ? "~" : "");
4796 
4797       if (is_negative_overflow_infinity (vr->min))
4798 	fprintf (file, "-INF(OVF)");
4799       else if (INTEGRAL_TYPE_P (type)
4800 	       && !TYPE_UNSIGNED (type)
4801 	       && vrp_val_is_min (vr->min))
4802 	fprintf (file, "-INF");
4803       else
4804 	print_generic_expr (file, vr->min, 0);
4805 
4806       fprintf (file, ", ");
4807 
4808       if (is_positive_overflow_infinity (vr->max))
4809 	fprintf (file, "+INF(OVF)");
4810       else if (INTEGRAL_TYPE_P (type)
4811 	       && vrp_val_is_max (vr->max))
4812 	fprintf (file, "+INF");
4813       else
4814 	print_generic_expr (file, vr->max, 0);
4815 
4816       fprintf (file, "]");
4817 
4818       if (vr->equiv)
4819 	{
4820 	  bitmap_iterator bi;
4821 	  unsigned i, c = 0;
4822 
4823 	  fprintf (file, "  EQUIVALENCES: { ");
4824 
4825 	  EXECUTE_IF_SET_IN_BITMAP (vr->equiv, 0, i, bi)
4826 	    {
4827 	      print_generic_expr (file, ssa_name (i), 0);
4828 	      fprintf (file, " ");
4829 	      c++;
4830 	    }
4831 
4832 	  fprintf (file, "} (%u elements)", c);
4833 	}
4834     }
4835   else if (vr->type == VR_VARYING)
4836     fprintf (file, "VARYING");
4837   else
4838     fprintf (file, "INVALID RANGE");
4839 }
4840 
4841 
4842 /* Dump value range VR to stderr.  */
4843 
4844 DEBUG_FUNCTION void
4845 debug_value_range (value_range *vr)
4846 {
4847   dump_value_range (stderr, vr);
4848   fprintf (stderr, "\n");
4849 }
4850 
4851 
4852 /* Dump value ranges of all SSA_NAMEs to FILE.  */
4853 
4854 void
4855 dump_all_value_ranges (FILE *file)
4856 {
4857   size_t i;
4858 
4859   for (i = 0; i < num_vr_values; i++)
4860     {
4861       if (vr_value[i])
4862 	{
4863 	  print_generic_expr (file, ssa_name (i), 0);
4864 	  fprintf (file, ": ");
4865 	  dump_value_range (file, vr_value[i]);
4866 	  fprintf (file, "\n");
4867 	}
4868     }
4869 
4870   fprintf (file, "\n");
4871 }
4872 
4873 
4874 /* Dump all value ranges to stderr.  */
4875 
4876 DEBUG_FUNCTION void
4877 debug_all_value_ranges (void)
4878 {
4879   dump_all_value_ranges (stderr);
4880 }
4881 
4882 
4883 /* Given a COND_EXPR COND of the form 'V OP W', and an SSA name V,
4884    create a new SSA name N and return the assertion assignment
4885    'N = ASSERT_EXPR <V, V OP W>'.  */
4886 
4887 static gimple *
4888 build_assert_expr_for (tree cond, tree v)
4889 {
4890   tree a;
4891   gassign *assertion;
4892 
4893   gcc_assert (TREE_CODE (v) == SSA_NAME
4894 	      && COMPARISON_CLASS_P (cond));
4895 
4896   a = build2 (ASSERT_EXPR, TREE_TYPE (v), v, cond);
4897   assertion = gimple_build_assign (NULL_TREE, a);
4898 
4899   /* The new ASSERT_EXPR, creates a new SSA name that replaces the
4900      operand of the ASSERT_EXPR.  Create it so the new name and the old one
4901      are registered in the replacement table so that we can fix the SSA web
4902      after adding all the ASSERT_EXPRs.  */
4903   tree new_def = create_new_def_for (v, assertion, NULL);
4904   /* Make sure we preserve abnormalness throughout an ASSERT_EXPR chain
4905      given we have to be able to fully propagate those out to re-create
4906      valid SSA when removing the asserts.  */
4907   if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (v))
4908     SSA_NAME_OCCURS_IN_ABNORMAL_PHI (new_def) = 1;
4909 
4910   return assertion;
4911 }
4912 
4913 
4914 /* Return false if EXPR is a predicate expression involving floating
4915    point values.  */
4916 
4917 static inline bool
4918 fp_predicate (gimple *stmt)
4919 {
4920   GIMPLE_CHECK (stmt, GIMPLE_COND);
4921 
4922   return FLOAT_TYPE_P (TREE_TYPE (gimple_cond_lhs (stmt)));
4923 }
4924 
4925 /* If the range of values taken by OP can be inferred after STMT executes,
4926    return the comparison code (COMP_CODE_P) and value (VAL_P) that
4927    describes the inferred range.  Return true if a range could be
4928    inferred.  */
4929 
4930 static bool
4931 infer_value_range (gimple *stmt, tree op, tree_code *comp_code_p, tree *val_p)
4932 {
4933   *val_p = NULL_TREE;
4934   *comp_code_p = ERROR_MARK;
4935 
4936   /* Do not attempt to infer anything in names that flow through
4937      abnormal edges.  */
4938   if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op))
4939     return false;
4940 
4941   /* If STMT is the last statement of a basic block with no normal
4942      successors, there is no point inferring anything about any of its
4943      operands.  We would not be able to find a proper insertion point
4944      for the assertion, anyway.  */
4945   if (stmt_ends_bb_p (stmt))
4946     {
4947       edge_iterator ei;
4948       edge e;
4949 
4950       FOR_EACH_EDGE (e, ei, gimple_bb (stmt)->succs)
4951 	if (!(e->flags & (EDGE_ABNORMAL|EDGE_EH)))
4952 	  break;
4953       if (e == NULL)
4954 	return false;
4955     }
4956 
4957   if (infer_nonnull_range (stmt, op))
4958     {
4959       *val_p = build_int_cst (TREE_TYPE (op), 0);
4960       *comp_code_p = NE_EXPR;
4961       return true;
4962     }
4963 
4964   return false;
4965 }
4966 
4967 
4968 void dump_asserts_for (FILE *, tree);
4969 void debug_asserts_for (tree);
4970 void dump_all_asserts (FILE *);
4971 void debug_all_asserts (void);
4972 
4973 /* Dump all the registered assertions for NAME to FILE.  */
4974 
4975 void
4976 dump_asserts_for (FILE *file, tree name)
4977 {
4978   assert_locus *loc;
4979 
4980   fprintf (file, "Assertions to be inserted for ");
4981   print_generic_expr (file, name, 0);
4982   fprintf (file, "\n");
4983 
4984   loc = asserts_for[SSA_NAME_VERSION (name)];
4985   while (loc)
4986     {
4987       fprintf (file, "\t");
4988       print_gimple_stmt (file, gsi_stmt (loc->si), 0, 0);
4989       fprintf (file, "\n\tBB #%d", loc->bb->index);
4990       if (loc->e)
4991 	{
4992 	  fprintf (file, "\n\tEDGE %d->%d", loc->e->src->index,
4993 	           loc->e->dest->index);
4994 	  dump_edge_info (file, loc->e, dump_flags, 0);
4995 	}
4996       fprintf (file, "\n\tPREDICATE: ");
4997       print_generic_expr (file, loc->expr, 0);
4998       fprintf (file, " %s ", get_tree_code_name (loc->comp_code));
4999       print_generic_expr (file, loc->val, 0);
5000       fprintf (file, "\n\n");
5001       loc = loc->next;
5002     }
5003 
5004   fprintf (file, "\n");
5005 }
5006 
5007 
5008 /* Dump all the registered assertions for NAME to stderr.  */
5009 
5010 DEBUG_FUNCTION void
5011 debug_asserts_for (tree name)
5012 {
5013   dump_asserts_for (stderr, name);
5014 }
5015 
5016 
5017 /* Dump all the registered assertions for all the names to FILE.  */
5018 
5019 void
5020 dump_all_asserts (FILE *file)
5021 {
5022   unsigned i;
5023   bitmap_iterator bi;
5024 
5025   fprintf (file, "\nASSERT_EXPRs to be inserted\n\n");
5026   EXECUTE_IF_SET_IN_BITMAP (need_assert_for, 0, i, bi)
5027     dump_asserts_for (file, ssa_name (i));
5028   fprintf (file, "\n");
5029 }
5030 
5031 
5032 /* Dump all the registered assertions for all the names to stderr.  */
5033 
5034 DEBUG_FUNCTION void
5035 debug_all_asserts (void)
5036 {
5037   dump_all_asserts (stderr);
5038 }
5039 
5040 
5041 /* If NAME doesn't have an ASSERT_EXPR registered for asserting
5042    'EXPR COMP_CODE VAL' at a location that dominates block BB or
5043    E->DEST, then register this location as a possible insertion point
5044    for ASSERT_EXPR <NAME, EXPR COMP_CODE VAL>.
5045 
5046    BB, E and SI provide the exact insertion point for the new
5047    ASSERT_EXPR.  If BB is NULL, then the ASSERT_EXPR is to be inserted
5048    on edge E.  Otherwise, if E is NULL, the ASSERT_EXPR is inserted on
5049    BB.  If SI points to a COND_EXPR or a SWITCH_EXPR statement, then E
5050    must not be NULL.  */
5051 
5052 static void
5053 register_new_assert_for (tree name, tree expr,
5054 			 enum tree_code comp_code,
5055 			 tree val,
5056 			 basic_block bb,
5057 			 edge e,
5058 			 gimple_stmt_iterator si)
5059 {
5060   assert_locus *n, *loc, *last_loc;
5061   basic_block dest_bb;
5062 
5063   gcc_checking_assert (bb == NULL || e == NULL);
5064 
5065   if (e == NULL)
5066     gcc_checking_assert (gimple_code (gsi_stmt (si)) != GIMPLE_COND
5067 			 && gimple_code (gsi_stmt (si)) != GIMPLE_SWITCH);
5068 
5069   /* Never build an assert comparing against an integer constant with
5070      TREE_OVERFLOW set.  This confuses our undefined overflow warning
5071      machinery.  */
5072   if (TREE_OVERFLOW_P (val))
5073     val = drop_tree_overflow (val);
5074 
5075   /* The new assertion A will be inserted at BB or E.  We need to
5076      determine if the new location is dominated by a previously
5077      registered location for A.  If we are doing an edge insertion,
5078      assume that A will be inserted at E->DEST.  Note that this is not
5079      necessarily true.
5080 
5081      If E is a critical edge, it will be split.  But even if E is
5082      split, the new block will dominate the same set of blocks that
5083      E->DEST dominates.
5084 
5085      The reverse, however, is not true, blocks dominated by E->DEST
5086      will not be dominated by the new block created to split E.  So,
5087      if the insertion location is on a critical edge, we will not use
5088      the new location to move another assertion previously registered
5089      at a block dominated by E->DEST.  */
5090   dest_bb = (bb) ? bb : e->dest;
5091 
5092   /* If NAME already has an ASSERT_EXPR registered for COMP_CODE and
5093      VAL at a block dominating DEST_BB, then we don't need to insert a new
5094      one.  Similarly, if the same assertion already exists at a block
5095      dominated by DEST_BB and the new location is not on a critical
5096      edge, then update the existing location for the assertion (i.e.,
5097      move the assertion up in the dominance tree).
5098 
5099      Note, this is implemented as a simple linked list because there
5100      should not be more than a handful of assertions registered per
5101      name.  If this becomes a performance problem, a table hashed by
5102      COMP_CODE and VAL could be implemented.  */
5103   loc = asserts_for[SSA_NAME_VERSION (name)];
5104   last_loc = loc;
5105   while (loc)
5106     {
5107       if (loc->comp_code == comp_code
5108 	  && (loc->val == val
5109 	      || operand_equal_p (loc->val, val, 0))
5110 	  && (loc->expr == expr
5111 	      || operand_equal_p (loc->expr, expr, 0)))
5112 	{
5113 	  /* If E is not a critical edge and DEST_BB
5114 	     dominates the existing location for the assertion, move
5115 	     the assertion up in the dominance tree by updating its
5116 	     location information.  */
5117 	  if ((e == NULL || !EDGE_CRITICAL_P (e))
5118 	      && dominated_by_p (CDI_DOMINATORS, loc->bb, dest_bb))
5119 	    {
5120 	      loc->bb = dest_bb;
5121 	      loc->e = e;
5122 	      loc->si = si;
5123 	      return;
5124 	    }
5125 	}
5126 
5127       /* Update the last node of the list and move to the next one.  */
5128       last_loc = loc;
5129       loc = loc->next;
5130     }
5131 
5132   /* If we didn't find an assertion already registered for
5133      NAME COMP_CODE VAL, add a new one at the end of the list of
5134      assertions associated with NAME.  */
5135   n = XNEW (struct assert_locus);
5136   n->bb = dest_bb;
5137   n->e = e;
5138   n->si = si;
5139   n->comp_code = comp_code;
5140   n->val = val;
5141   n->expr = expr;
5142   n->next = NULL;
5143 
5144   if (last_loc)
5145     last_loc->next = n;
5146   else
5147     asserts_for[SSA_NAME_VERSION (name)] = n;
5148 
5149   bitmap_set_bit (need_assert_for, SSA_NAME_VERSION (name));
5150 }
5151 
5152 /* (COND_OP0 COND_CODE COND_OP1) is a predicate which uses NAME.
5153    Extract a suitable test code and value and store them into *CODE_P and
5154    *VAL_P so the predicate is normalized to NAME *CODE_P *VAL_P.
5155 
5156    If no extraction was possible, return FALSE, otherwise return TRUE.
5157 
5158    If INVERT is true, then we invert the result stored into *CODE_P.  */
5159 
5160 static bool
5161 extract_code_and_val_from_cond_with_ops (tree name, enum tree_code cond_code,
5162 					 tree cond_op0, tree cond_op1,
5163 					 bool invert, enum tree_code *code_p,
5164 					 tree *val_p)
5165 {
5166   enum tree_code comp_code;
5167   tree val;
5168 
5169   /* Otherwise, we have a comparison of the form NAME COMP VAL
5170      or VAL COMP NAME.  */
5171   if (name == cond_op1)
5172     {
5173       /* If the predicate is of the form VAL COMP NAME, flip
5174 	 COMP around because we need to register NAME as the
5175 	 first operand in the predicate.  */
5176       comp_code = swap_tree_comparison (cond_code);
5177       val = cond_op0;
5178     }
5179   else if (name == cond_op0)
5180     {
5181       /* The comparison is of the form NAME COMP VAL, so the
5182 	 comparison code remains unchanged.  */
5183       comp_code = cond_code;
5184       val = cond_op1;
5185     }
5186   else
5187     gcc_unreachable ();
5188 
5189   /* Invert the comparison code as necessary.  */
5190   if (invert)
5191     comp_code = invert_tree_comparison (comp_code, 0);
5192 
5193   /* VRP only handles integral and pointer types.  */
5194   if (! INTEGRAL_TYPE_P (TREE_TYPE (val))
5195       && ! POINTER_TYPE_P (TREE_TYPE (val)))
5196     return false;
5197 
5198   /* Do not register always-false predicates.
5199      FIXME:  this works around a limitation in fold() when dealing with
5200      enumerations.  Given 'enum { N1, N2 } x;', fold will not
5201      fold 'if (x > N2)' to 'if (0)'.  */
5202   if ((comp_code == GT_EXPR || comp_code == LT_EXPR)
5203       && INTEGRAL_TYPE_P (TREE_TYPE (val)))
5204     {
5205       tree min = TYPE_MIN_VALUE (TREE_TYPE (val));
5206       tree max = TYPE_MAX_VALUE (TREE_TYPE (val));
5207 
5208       if (comp_code == GT_EXPR
5209 	  && (!max
5210 	      || compare_values (val, max) == 0))
5211 	return false;
5212 
5213       if (comp_code == LT_EXPR
5214 	  && (!min
5215 	      || compare_values (val, min) == 0))
5216 	return false;
5217     }
5218   *code_p = comp_code;
5219   *val_p = val;
5220   return true;
5221 }
5222 
5223 /* Find out smallest RES where RES > VAL && (RES & MASK) == RES, if any
5224    (otherwise return VAL).  VAL and MASK must be zero-extended for
5225    precision PREC.  If SGNBIT is non-zero, first xor VAL with SGNBIT
5226    (to transform signed values into unsigned) and at the end xor
5227    SGNBIT back.  */
5228 
5229 static wide_int
5230 masked_increment (const wide_int &val_in, const wide_int &mask,
5231 		  const wide_int &sgnbit, unsigned int prec)
5232 {
5233   wide_int bit = wi::one (prec), res;
5234   unsigned int i;
5235 
5236   wide_int val = val_in ^ sgnbit;
5237   for (i = 0; i < prec; i++, bit += bit)
5238     {
5239       res = mask;
5240       if ((res & bit) == 0)
5241 	continue;
5242       res = bit - 1;
5243       res = (val + bit).and_not (res);
5244       res &= mask;
5245       if (wi::gtu_p (res, val))
5246 	return res ^ sgnbit;
5247     }
5248   return val ^ sgnbit;
5249 }
5250 
5251 /* Helper for overflow_comparison_p
5252 
5253    OP0 CODE OP1 is a comparison.  Examine the comparison and potentially
5254    OP1's defining statement to see if it ultimately has the form
5255    OP0 CODE (OP0 PLUS INTEGER_CST)
5256 
5257    If so, return TRUE indicating this is an overflow test and store into
5258    *NEW_CST an updated constant that can be used in a narrowed range test.
5259 
5260    REVERSED indicates if the comparison was originally:
5261 
5262    OP1 CODE' OP0.
5263 
5264    This affects how we build the updated constant.  */
5265 
5266 static bool
5267 overflow_comparison_p_1 (enum tree_code code, tree op0, tree op1,
5268 		         bool follow_assert_exprs, bool reversed, tree *new_cst)
5269 {
5270   /* See if this is a relational operation between two SSA_NAMES with
5271      unsigned, overflow wrapping values.  If so, check it more deeply.  */
5272   if ((code == LT_EXPR || code == LE_EXPR
5273        || code == GE_EXPR || code == GT_EXPR)
5274       && TREE_CODE (op0) == SSA_NAME
5275       && TREE_CODE (op1) == SSA_NAME
5276       && INTEGRAL_TYPE_P (TREE_TYPE (op0))
5277       && TYPE_UNSIGNED (TREE_TYPE (op0))
5278       && TYPE_OVERFLOW_WRAPS (TREE_TYPE (op0)))
5279     {
5280       gimple *op1_def = SSA_NAME_DEF_STMT (op1);
5281 
5282       /* If requested, follow any ASSERT_EXPRs backwards for OP1.  */
5283       if (follow_assert_exprs)
5284 	{
5285 	  while (gimple_assign_single_p (op1_def)
5286 		 && TREE_CODE (gimple_assign_rhs1 (op1_def)) == ASSERT_EXPR)
5287 	    {
5288 	      op1 = TREE_OPERAND (gimple_assign_rhs1 (op1_def), 0);
5289 	      if (TREE_CODE (op1) != SSA_NAME)
5290 		break;
5291 	      op1_def = SSA_NAME_DEF_STMT (op1);
5292 	    }
5293 	}
5294 
5295       /* Now look at the defining statement of OP1 to see if it adds
5296 	 or subtracts a nonzero constant from another operand.  */
5297       if (op1_def
5298 	  && is_gimple_assign (op1_def)
5299 	  && gimple_assign_rhs_code (op1_def) == PLUS_EXPR
5300 	  && TREE_CODE (gimple_assign_rhs2 (op1_def)) == INTEGER_CST
5301 	  && !integer_zerop (gimple_assign_rhs2 (op1_def)))
5302 	{
5303 	  tree target = gimple_assign_rhs1 (op1_def);
5304 
5305 	  /* If requested, follow ASSERT_EXPRs backwards for op0 looking
5306 	     for one where TARGET appears on the RHS.  */
5307 	  if (follow_assert_exprs)
5308 	    {
5309 	      /* Now see if that "other operand" is op0, following the chain
5310 		 of ASSERT_EXPRs if necessary.  */
5311 	      gimple *op0_def = SSA_NAME_DEF_STMT (op0);
5312 	      while (op0 != target
5313 		     && gimple_assign_single_p (op0_def)
5314 		     && TREE_CODE (gimple_assign_rhs1 (op0_def)) == ASSERT_EXPR)
5315 		{
5316 		  op0 = TREE_OPERAND (gimple_assign_rhs1 (op0_def), 0);
5317 		  if (TREE_CODE (op0) != SSA_NAME)
5318 		    break;
5319 		  op0_def = SSA_NAME_DEF_STMT (op0);
5320 		}
5321 	    }
5322 
5323 	  /* If we did not find our target SSA_NAME, then this is not
5324 	     an overflow test.  */
5325 	  if (op0 != target)
5326 	    return false;
5327 
5328 	  tree type = TREE_TYPE (op0);
5329 	  wide_int max = wi::max_value (TYPE_PRECISION (type), UNSIGNED);
5330 	  tree inc = gimple_assign_rhs2 (op1_def);
5331 	  if (reversed)
5332 	    *new_cst = wide_int_to_tree (type, max + inc);
5333 	  else
5334 	    *new_cst = wide_int_to_tree (type, max - inc);
5335 	  return true;
5336 	}
5337     }
5338   return false;
5339 }
5340 
5341 /* OP0 CODE OP1 is a comparison.  Examine the comparison and potentially
5342    OP1's defining statement to see if it ultimately has the form
5343    OP0 CODE (OP0 PLUS INTEGER_CST)
5344 
5345    If so, return TRUE indicating this is an overflow test and store into
5346    *NEW_CST an updated constant that can be used in a narrowed range test.
5347 
5348    These statements are left as-is in the IL to facilitate discovery of
5349    {ADD,SUB}_OVERFLOW sequences later in the optimizer pipeline.  But
5350    the alternate range representation is often useful within VRP.  */
5351 
5352 static bool
5353 overflow_comparison_p (tree_code code, tree name, tree val,
5354 		       bool use_equiv_p, tree *new_cst)
5355 {
5356   if (overflow_comparison_p_1 (code, name, val, use_equiv_p, false, new_cst))
5357     return true;
5358   return overflow_comparison_p_1 (swap_tree_comparison (code), val, name,
5359 				  use_equiv_p, true, new_cst);
5360 }
5361 
5362 
5363 /* Try to register an edge assertion for SSA name NAME on edge E for
5364    the condition COND contributing to the conditional jump pointed to by BSI.
5365    Invert the condition COND if INVERT is true.  */
5366 
5367 static void
5368 register_edge_assert_for_2 (tree name, edge e, gimple_stmt_iterator bsi,
5369 			    enum tree_code cond_code,
5370 			    tree cond_op0, tree cond_op1, bool invert)
5371 {
5372   tree val;
5373   enum tree_code comp_code;
5374 
5375   if (!extract_code_and_val_from_cond_with_ops (name, cond_code,
5376 						cond_op0,
5377 						cond_op1,
5378 						invert, &comp_code, &val))
5379     return;
5380 
5381   /* Only register an ASSERT_EXPR if NAME was found in the sub-graph
5382      reachable from E.  */
5383   if (live_on_edge (e, name))
5384     {
5385       tree x;
5386       if (overflow_comparison_p (comp_code, name, val, false, &x))
5387 	{
5388 	  enum tree_code new_code
5389 	    = ((comp_code == GT_EXPR || comp_code == GE_EXPR)
5390 	       ? GT_EXPR : LE_EXPR);
5391 	  register_new_assert_for (name, name, new_code, x, NULL, e, bsi);
5392 	}
5393       register_new_assert_for (name, name, comp_code, val, NULL, e, bsi);
5394     }
5395 
5396   /* In the case of NAME <= CST and NAME being defined as
5397      NAME = (unsigned) NAME2 + CST2 we can assert NAME2 >= -CST2
5398      and NAME2 <= CST - CST2.  We can do the same for NAME > CST.
5399      This catches range and anti-range tests.  */
5400   if ((comp_code == LE_EXPR
5401        || comp_code == GT_EXPR)
5402       && TREE_CODE (val) == INTEGER_CST
5403       && TYPE_UNSIGNED (TREE_TYPE (val)))
5404     {
5405       gimple *def_stmt = SSA_NAME_DEF_STMT (name);
5406       tree cst2 = NULL_TREE, name2 = NULL_TREE, name3 = NULL_TREE;
5407 
5408       /* Extract CST2 from the (optional) addition.  */
5409       if (is_gimple_assign (def_stmt)
5410 	  && gimple_assign_rhs_code (def_stmt) == PLUS_EXPR)
5411 	{
5412 	  name2 = gimple_assign_rhs1 (def_stmt);
5413 	  cst2 = gimple_assign_rhs2 (def_stmt);
5414 	  if (TREE_CODE (name2) == SSA_NAME
5415 	      && TREE_CODE (cst2) == INTEGER_CST)
5416 	    def_stmt = SSA_NAME_DEF_STMT (name2);
5417 	}
5418 
5419       /* Extract NAME2 from the (optional) sign-changing cast.  */
5420       if (gimple_assign_cast_p (def_stmt))
5421 	{
5422 	  if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt))
5423 	      && ! TYPE_UNSIGNED (TREE_TYPE (gimple_assign_rhs1 (def_stmt)))
5424 	      && (TYPE_PRECISION (gimple_expr_type (def_stmt))
5425 		  == TYPE_PRECISION (TREE_TYPE (gimple_assign_rhs1 (def_stmt)))))
5426 	    name3 = gimple_assign_rhs1 (def_stmt);
5427 	}
5428 
5429       /* If name3 is used later, create an ASSERT_EXPR for it.  */
5430       if (name3 != NULL_TREE
5431       	  && TREE_CODE (name3) == SSA_NAME
5432 	  && (cst2 == NULL_TREE
5433 	      || TREE_CODE (cst2) == INTEGER_CST)
5434 	  && INTEGRAL_TYPE_P (TREE_TYPE (name3))
5435 	  && live_on_edge (e, name3))
5436 	{
5437 	  tree tmp;
5438 
5439 	  /* Build an expression for the range test.  */
5440 	  tmp = build1 (NOP_EXPR, TREE_TYPE (name), name3);
5441 	  if (cst2 != NULL_TREE)
5442 	    tmp = build2 (PLUS_EXPR, TREE_TYPE (name), tmp, cst2);
5443 
5444 	  if (dump_file)
5445 	    {
5446 	      fprintf (dump_file, "Adding assert for ");
5447 	      print_generic_expr (dump_file, name3, 0);
5448 	      fprintf (dump_file, " from ");
5449 	      print_generic_expr (dump_file, tmp, 0);
5450 	      fprintf (dump_file, "\n");
5451 	    }
5452 
5453 	  register_new_assert_for (name3, tmp, comp_code, val, NULL, e, bsi);
5454 	}
5455 
5456       /* If name2 is used later, create an ASSERT_EXPR for it.  */
5457       if (name2 != NULL_TREE
5458       	  && TREE_CODE (name2) == SSA_NAME
5459 	  && TREE_CODE (cst2) == INTEGER_CST
5460 	  && INTEGRAL_TYPE_P (TREE_TYPE (name2))
5461 	  && live_on_edge (e, name2))
5462 	{
5463 	  tree tmp;
5464 
5465 	  /* Build an expression for the range test.  */
5466 	  tmp = name2;
5467 	  if (TREE_TYPE (name) != TREE_TYPE (name2))
5468 	    tmp = build1 (NOP_EXPR, TREE_TYPE (name), tmp);
5469 	  if (cst2 != NULL_TREE)
5470 	    tmp = build2 (PLUS_EXPR, TREE_TYPE (name), tmp, cst2);
5471 
5472 	  if (dump_file)
5473 	    {
5474 	      fprintf (dump_file, "Adding assert for ");
5475 	      print_generic_expr (dump_file, name2, 0);
5476 	      fprintf (dump_file, " from ");
5477 	      print_generic_expr (dump_file, tmp, 0);
5478 	      fprintf (dump_file, "\n");
5479 	    }
5480 
5481 	  register_new_assert_for (name2, tmp, comp_code, val, NULL, e, bsi);
5482 	}
5483     }
5484 
5485   /* In the case of post-in/decrement tests like if (i++) ... and uses
5486      of the in/decremented value on the edge the extra name we want to
5487      assert for is not on the def chain of the name compared.  Instead
5488      it is in the set of use stmts.
5489      Similar cases happen for conversions that were simplified through
5490      fold_{sign_changed,widened}_comparison.  */
5491   if ((comp_code == NE_EXPR
5492        || comp_code == EQ_EXPR)
5493       && TREE_CODE (val) == INTEGER_CST)
5494     {
5495       imm_use_iterator ui;
5496       gimple *use_stmt;
5497       FOR_EACH_IMM_USE_STMT (use_stmt, ui, name)
5498 	{
5499 	  if (!is_gimple_assign (use_stmt))
5500 	    continue;
5501 
5502 	  /* Cut off to use-stmts that are dominating the predecessor.  */
5503 	  if (!dominated_by_p (CDI_DOMINATORS, e->src, gimple_bb (use_stmt)))
5504 	    continue;
5505 
5506 	  tree name2 = gimple_assign_lhs (use_stmt);
5507 	  if (TREE_CODE (name2) != SSA_NAME
5508 	      || !live_on_edge (e, name2))
5509 	    continue;
5510 
5511 	  enum tree_code code = gimple_assign_rhs_code (use_stmt);
5512 	  tree cst;
5513 	  if (code == PLUS_EXPR
5514 	      || code == MINUS_EXPR)
5515 	    {
5516 	      cst = gimple_assign_rhs2 (use_stmt);
5517 	      if (TREE_CODE (cst) != INTEGER_CST)
5518 		continue;
5519 	      cst = int_const_binop (code, val, cst);
5520 	    }
5521 	  else if (CONVERT_EXPR_CODE_P (code))
5522 	    {
5523 	      /* For truncating conversions we cannot record
5524 		 an inequality.  */
5525 	      if (comp_code == NE_EXPR
5526 		  && (TYPE_PRECISION (TREE_TYPE (name2))
5527 		      < TYPE_PRECISION (TREE_TYPE (name))))
5528 		continue;
5529 	      cst = fold_convert (TREE_TYPE (name2), val);
5530 	    }
5531 	  else
5532 	    continue;
5533 
5534 	  if (TREE_OVERFLOW_P (cst))
5535 	    cst = drop_tree_overflow (cst);
5536 	  register_new_assert_for (name2, name2, comp_code, cst,
5537 				   NULL, e, bsi);
5538 	}
5539     }
5540 
5541   if (TREE_CODE_CLASS (comp_code) == tcc_comparison
5542       && TREE_CODE (val) == INTEGER_CST)
5543     {
5544       gimple *def_stmt = SSA_NAME_DEF_STMT (name);
5545       tree name2 = NULL_TREE, names[2], cst2 = NULL_TREE;
5546       tree val2 = NULL_TREE;
5547       unsigned int prec = TYPE_PRECISION (TREE_TYPE (val));
5548       wide_int mask = wi::zero (prec);
5549       unsigned int nprec = prec;
5550       enum tree_code rhs_code = ERROR_MARK;
5551 
5552       if (is_gimple_assign (def_stmt))
5553 	rhs_code = gimple_assign_rhs_code (def_stmt);
5554 
5555       /* In the case of NAME != CST1 where NAME = A +- CST2 we can
5556          assert that A != CST1 -+ CST2.  */
5557       if ((comp_code == EQ_EXPR || comp_code == NE_EXPR)
5558 	  && (rhs_code == PLUS_EXPR || rhs_code == MINUS_EXPR))
5559 	{
5560 	  tree op0 = gimple_assign_rhs1 (def_stmt);
5561 	  tree op1 = gimple_assign_rhs2 (def_stmt);
5562 	  if (TREE_CODE (op0) == SSA_NAME
5563 	      && TREE_CODE (op1) == INTEGER_CST
5564 	      && live_on_edge (e, op0))
5565 	    {
5566 	      enum tree_code reverse_op = (rhs_code == PLUS_EXPR
5567 					   ? MINUS_EXPR : PLUS_EXPR);
5568 	      op1 = int_const_binop (reverse_op, val, op1);
5569 	      if (TREE_OVERFLOW (op1))
5570 		op1 = drop_tree_overflow (op1);
5571 	      register_new_assert_for (op0, op0, comp_code, op1, NULL, e, bsi);
5572 	    }
5573 	}
5574 
5575       /* Add asserts for NAME cmp CST and NAME being defined
5576 	 as NAME = (int) NAME2.  */
5577       if (!TYPE_UNSIGNED (TREE_TYPE (val))
5578 	  && (comp_code == LE_EXPR || comp_code == LT_EXPR
5579 	      || comp_code == GT_EXPR || comp_code == GE_EXPR)
5580 	  && gimple_assign_cast_p (def_stmt))
5581 	{
5582 	  name2 = gimple_assign_rhs1 (def_stmt);
5583 	  if (CONVERT_EXPR_CODE_P (rhs_code)
5584 	      && INTEGRAL_TYPE_P (TREE_TYPE (name2))
5585 	      && TYPE_UNSIGNED (TREE_TYPE (name2))
5586 	      && prec == TYPE_PRECISION (TREE_TYPE (name2))
5587 	      && (comp_code == LE_EXPR || comp_code == GT_EXPR
5588 		  || !tree_int_cst_equal (val,
5589 					  TYPE_MIN_VALUE (TREE_TYPE (val))))
5590 	      && live_on_edge (e, name2))
5591 	    {
5592 	      tree tmp, cst;
5593 	      enum tree_code new_comp_code = comp_code;
5594 
5595 	      cst = fold_convert (TREE_TYPE (name2),
5596 				  TYPE_MIN_VALUE (TREE_TYPE (val)));
5597 	      /* Build an expression for the range test.  */
5598 	      tmp = build2 (PLUS_EXPR, TREE_TYPE (name2), name2, cst);
5599 	      cst = fold_build2 (PLUS_EXPR, TREE_TYPE (name2), cst,
5600 				 fold_convert (TREE_TYPE (name2), val));
5601 	      if (comp_code == LT_EXPR || comp_code == GE_EXPR)
5602 		{
5603 		  new_comp_code = comp_code == LT_EXPR ? LE_EXPR : GT_EXPR;
5604 		  cst = fold_build2 (MINUS_EXPR, TREE_TYPE (name2), cst,
5605 				     build_int_cst (TREE_TYPE (name2), 1));
5606 		}
5607 
5608 	      if (dump_file)
5609 		{
5610 		  fprintf (dump_file, "Adding assert for ");
5611 		  print_generic_expr (dump_file, name2, 0);
5612 		  fprintf (dump_file, " from ");
5613 		  print_generic_expr (dump_file, tmp, 0);
5614 		  fprintf (dump_file, "\n");
5615 		}
5616 
5617 	      register_new_assert_for (name2, tmp, new_comp_code, cst, NULL,
5618 				       e, bsi);
5619 	    }
5620 	}
5621 
5622       /* Add asserts for NAME cmp CST and NAME being defined as
5623 	 NAME = NAME2 >> CST2.
5624 
5625 	 Extract CST2 from the right shift.  */
5626       if (rhs_code == RSHIFT_EXPR)
5627 	{
5628 	  name2 = gimple_assign_rhs1 (def_stmt);
5629 	  cst2 = gimple_assign_rhs2 (def_stmt);
5630 	  if (TREE_CODE (name2) == SSA_NAME
5631 	      && tree_fits_uhwi_p (cst2)
5632 	      && INTEGRAL_TYPE_P (TREE_TYPE (name2))
5633 	      && IN_RANGE (tree_to_uhwi (cst2), 1, prec - 1)
5634 	      && prec == GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (val)))
5635 	      && live_on_edge (e, name2))
5636 	    {
5637 	      mask = wi::mask (tree_to_uhwi (cst2), false, prec);
5638 	      val2 = fold_binary (LSHIFT_EXPR, TREE_TYPE (val), val, cst2);
5639 	    }
5640 	}
5641       if (val2 != NULL_TREE
5642 	  && TREE_CODE (val2) == INTEGER_CST
5643 	  && simple_cst_equal (fold_build2 (RSHIFT_EXPR,
5644 					    TREE_TYPE (val),
5645 					    val2, cst2), val))
5646 	{
5647 	  enum tree_code new_comp_code = comp_code;
5648 	  tree tmp, new_val;
5649 
5650 	  tmp = name2;
5651 	  if (comp_code == EQ_EXPR || comp_code == NE_EXPR)
5652 	    {
5653 	      if (!TYPE_UNSIGNED (TREE_TYPE (val)))
5654 		{
5655 		  tree type = build_nonstandard_integer_type (prec, 1);
5656 		  tmp = build1 (NOP_EXPR, type, name2);
5657 		  val2 = fold_convert (type, val2);
5658 		}
5659 	      tmp = fold_build2 (MINUS_EXPR, TREE_TYPE (tmp), tmp, val2);
5660 	      new_val = wide_int_to_tree (TREE_TYPE (tmp), mask);
5661 	      new_comp_code = comp_code == EQ_EXPR ? LE_EXPR : GT_EXPR;
5662 	    }
5663 	  else if (comp_code == LT_EXPR || comp_code == GE_EXPR)
5664 	    {
5665 	      wide_int minval
5666 		= wi::min_value (prec, TYPE_SIGN (TREE_TYPE (val)));
5667 	      new_val = val2;
5668 	      if (minval == new_val)
5669 		new_val = NULL_TREE;
5670 	    }
5671 	  else
5672 	    {
5673 	      wide_int maxval
5674 		= wi::max_value (prec, TYPE_SIGN (TREE_TYPE (val)));
5675 	      mask |= val2;
5676 	      if (mask == maxval)
5677 		new_val = NULL_TREE;
5678 	      else
5679 		new_val = wide_int_to_tree (TREE_TYPE (val2), mask);
5680 	    }
5681 
5682 	  if (new_val)
5683 	    {
5684 	      if (dump_file)
5685 		{
5686 		  fprintf (dump_file, "Adding assert for ");
5687 		  print_generic_expr (dump_file, name2, 0);
5688 		  fprintf (dump_file, " from ");
5689 		  print_generic_expr (dump_file, tmp, 0);
5690 		  fprintf (dump_file, "\n");
5691 		}
5692 
5693 	      register_new_assert_for (name2, tmp, new_comp_code, new_val,
5694 				       NULL, e, bsi);
5695 	    }
5696 	}
5697 
5698       /* Add asserts for NAME cmp CST and NAME being defined as
5699 	 NAME = NAME2 & CST2.
5700 
5701 	 Extract CST2 from the and.
5702 
5703 	 Also handle
5704 	 NAME = (unsigned) NAME2;
5705 	 casts where NAME's type is unsigned and has smaller precision
5706 	 than NAME2's type as if it was NAME = NAME2 & MASK.  */
5707       names[0] = NULL_TREE;
5708       names[1] = NULL_TREE;
5709       cst2 = NULL_TREE;
5710       if (rhs_code == BIT_AND_EXPR
5711 	  || (CONVERT_EXPR_CODE_P (rhs_code)
5712 	      && INTEGRAL_TYPE_P (TREE_TYPE (val))
5713 	      && TYPE_UNSIGNED (TREE_TYPE (val))
5714 	      && TYPE_PRECISION (TREE_TYPE (gimple_assign_rhs1 (def_stmt)))
5715 		 > prec))
5716 	{
5717 	  name2 = gimple_assign_rhs1 (def_stmt);
5718 	  if (rhs_code == BIT_AND_EXPR)
5719 	    cst2 = gimple_assign_rhs2 (def_stmt);
5720 	  else
5721 	    {
5722 	      cst2 = TYPE_MAX_VALUE (TREE_TYPE (val));
5723 	      nprec = TYPE_PRECISION (TREE_TYPE (name2));
5724 	    }
5725 	  if (TREE_CODE (name2) == SSA_NAME
5726 	      && INTEGRAL_TYPE_P (TREE_TYPE (name2))
5727 	      && TREE_CODE (cst2) == INTEGER_CST
5728 	      && !integer_zerop (cst2)
5729 	      && (nprec > 1
5730 		  || TYPE_UNSIGNED (TREE_TYPE (val))))
5731 	    {
5732 	      gimple *def_stmt2 = SSA_NAME_DEF_STMT (name2);
5733 	      if (gimple_assign_cast_p (def_stmt2))
5734 		{
5735 		  names[1] = gimple_assign_rhs1 (def_stmt2);
5736 		  if (!CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt2))
5737 		      || !INTEGRAL_TYPE_P (TREE_TYPE (names[1]))
5738 		      || (TYPE_PRECISION (TREE_TYPE (name2))
5739 			  != TYPE_PRECISION (TREE_TYPE (names[1])))
5740 		      || !live_on_edge (e, names[1]))
5741 		    names[1] = NULL_TREE;
5742 		}
5743 	      if (live_on_edge (e, name2))
5744 		names[0] = name2;
5745 	    }
5746 	}
5747       if (names[0] || names[1])
5748 	{
5749 	  wide_int minv, maxv, valv, cst2v;
5750 	  wide_int tem, sgnbit;
5751 	  bool valid_p = false, valn, cst2n;
5752 	  enum tree_code ccode = comp_code;
5753 
5754 	  valv = wide_int::from (val, nprec, UNSIGNED);
5755 	  cst2v = wide_int::from (cst2, nprec, UNSIGNED);
5756 	  valn = wi::neg_p (valv, TYPE_SIGN (TREE_TYPE (val)));
5757 	  cst2n = wi::neg_p (cst2v, TYPE_SIGN (TREE_TYPE (val)));
5758 	  /* If CST2 doesn't have most significant bit set,
5759 	     but VAL is negative, we have comparison like
5760 	     if ((x & 0x123) > -4) (always true).  Just give up.  */
5761 	  if (!cst2n && valn)
5762 	    ccode = ERROR_MARK;
5763 	  if (cst2n)
5764 	    sgnbit = wi::set_bit_in_zero (nprec - 1, nprec);
5765 	  else
5766 	    sgnbit = wi::zero (nprec);
5767 	  minv = valv & cst2v;
5768 	  switch (ccode)
5769 	    {
5770 	    case EQ_EXPR:
5771 	      /* Minimum unsigned value for equality is VAL & CST2
5772 		 (should be equal to VAL, otherwise we probably should
5773 		 have folded the comparison into false) and
5774 		 maximum unsigned value is VAL | ~CST2.  */
5775 	      maxv = valv | ~cst2v;
5776 	      valid_p = true;
5777 	      break;
5778 
5779 	    case NE_EXPR:
5780 	      tem = valv | ~cst2v;
5781 	      /* If VAL is 0, handle (X & CST2) != 0 as (X & CST2) > 0U.  */
5782 	      if (valv == 0)
5783 		{
5784 		  cst2n = false;
5785 		  sgnbit = wi::zero (nprec);
5786 		  goto gt_expr;
5787 		}
5788 	      /* If (VAL | ~CST2) is all ones, handle it as
5789 		 (X & CST2) < VAL.  */
5790 	      if (tem == -1)
5791 		{
5792 		  cst2n = false;
5793 		  valn = false;
5794 		  sgnbit = wi::zero (nprec);
5795 		  goto lt_expr;
5796 		}
5797 	      if (!cst2n && wi::neg_p (cst2v))
5798 		sgnbit = wi::set_bit_in_zero (nprec - 1, nprec);
5799 	      if (sgnbit != 0)
5800 		{
5801 		  if (valv == sgnbit)
5802 		    {
5803 		      cst2n = true;
5804 		      valn = true;
5805 		      goto gt_expr;
5806 		    }
5807 		  if (tem == wi::mask (nprec - 1, false, nprec))
5808 		    {
5809 		      cst2n = true;
5810 		      goto lt_expr;
5811 		    }
5812 		  if (!cst2n)
5813 		    sgnbit = wi::zero (nprec);
5814 		}
5815 	      break;
5816 
5817 	    case GE_EXPR:
5818 	      /* Minimum unsigned value for >= if (VAL & CST2) == VAL
5819 		 is VAL and maximum unsigned value is ~0.  For signed
5820 		 comparison, if CST2 doesn't have most significant bit
5821 		 set, handle it similarly.  If CST2 has MSB set,
5822 		 the minimum is the same, and maximum is ~0U/2.  */
5823 	      if (minv != valv)
5824 		{
5825 		  /* If (VAL & CST2) != VAL, X & CST2 can't be equal to
5826 		     VAL.  */
5827 		  minv = masked_increment (valv, cst2v, sgnbit, nprec);
5828 		  if (minv == valv)
5829 		    break;
5830 		}
5831 	      maxv = wi::mask (nprec - (cst2n ? 1 : 0), false, nprec);
5832 	      valid_p = true;
5833 	      break;
5834 
5835 	    case GT_EXPR:
5836 	    gt_expr:
5837 	      /* Find out smallest MINV where MINV > VAL
5838 		 && (MINV & CST2) == MINV, if any.  If VAL is signed and
5839 		 CST2 has MSB set, compute it biased by 1 << (nprec - 1).  */
5840 	      minv = masked_increment (valv, cst2v, sgnbit, nprec);
5841 	      if (minv == valv)
5842 		break;
5843 	      maxv = wi::mask (nprec - (cst2n ? 1 : 0), false, nprec);
5844 	      valid_p = true;
5845 	      break;
5846 
5847 	    case LE_EXPR:
5848 	      /* Minimum unsigned value for <= is 0 and maximum
5849 		 unsigned value is VAL | ~CST2 if (VAL & CST2) == VAL.
5850 		 Otherwise, find smallest VAL2 where VAL2 > VAL
5851 		 && (VAL2 & CST2) == VAL2 and use (VAL2 - 1) | ~CST2
5852 		 as maximum.
5853 		 For signed comparison, if CST2 doesn't have most
5854 		 significant bit set, handle it similarly.  If CST2 has
5855 		 MSB set, the maximum is the same and minimum is INT_MIN.  */
5856 	      if (minv == valv)
5857 		maxv = valv;
5858 	      else
5859 		{
5860 		  maxv = masked_increment (valv, cst2v, sgnbit, nprec);
5861 		  if (maxv == valv)
5862 		    break;
5863 		  maxv -= 1;
5864 		}
5865 	      maxv |= ~cst2v;
5866 	      minv = sgnbit;
5867 	      valid_p = true;
5868 	      break;
5869 
5870 	    case LT_EXPR:
5871 	    lt_expr:
5872 	      /* Minimum unsigned value for < is 0 and maximum
5873 		 unsigned value is (VAL-1) | ~CST2 if (VAL & CST2) == VAL.
5874 		 Otherwise, find smallest VAL2 where VAL2 > VAL
5875 		 && (VAL2 & CST2) == VAL2 and use (VAL2 - 1) | ~CST2
5876 		 as maximum.
5877 		 For signed comparison, if CST2 doesn't have most
5878 		 significant bit set, handle it similarly.  If CST2 has
5879 		 MSB set, the maximum is the same and minimum is INT_MIN.  */
5880 	      if (minv == valv)
5881 		{
5882 		  if (valv == sgnbit)
5883 		    break;
5884 		  maxv = valv;
5885 		}
5886 	      else
5887 		{
5888 		  maxv = masked_increment (valv, cst2v, sgnbit, nprec);
5889 		  if (maxv == valv)
5890 		    break;
5891 		}
5892 	      maxv -= 1;
5893 	      maxv |= ~cst2v;
5894 	      minv = sgnbit;
5895 	      valid_p = true;
5896 	      break;
5897 
5898 	    default:
5899 	      break;
5900 	    }
5901 	  if (valid_p
5902 	      && (maxv - minv) != -1)
5903 	    {
5904 	      tree tmp, new_val, type;
5905 	      int i;
5906 
5907 	      for (i = 0; i < 2; i++)
5908 		if (names[i])
5909 		  {
5910 		    wide_int maxv2 = maxv;
5911 		    tmp = names[i];
5912 		    type = TREE_TYPE (names[i]);
5913 		    if (!TYPE_UNSIGNED (type))
5914 		      {
5915 			type = build_nonstandard_integer_type (nprec, 1);
5916 			tmp = build1 (NOP_EXPR, type, names[i]);
5917 		      }
5918 		    if (minv != 0)
5919 		      {
5920 			tmp = build2 (PLUS_EXPR, type, tmp,
5921 				      wide_int_to_tree (type, -minv));
5922 			maxv2 = maxv - minv;
5923 		      }
5924 		    new_val = wide_int_to_tree (type, maxv2);
5925 
5926 		    if (dump_file)
5927 		      {
5928 			fprintf (dump_file, "Adding assert for ");
5929 			print_generic_expr (dump_file, names[i], 0);
5930 			fprintf (dump_file, " from ");
5931 			print_generic_expr (dump_file, tmp, 0);
5932 			fprintf (dump_file, "\n");
5933 		      }
5934 
5935 		    register_new_assert_for (names[i], tmp, LE_EXPR,
5936 					     new_val, NULL, e, bsi);
5937 		  }
5938 	    }
5939 	}
5940     }
5941 }
5942 
5943 /* OP is an operand of a truth value expression which is known to have
5944    a particular value.  Register any asserts for OP and for any
5945    operands in OP's defining statement.
5946 
5947    If CODE is EQ_EXPR, then we want to register OP is zero (false),
5948    if CODE is NE_EXPR, then we want to register OP is nonzero (true).   */
5949 
5950 static void
5951 register_edge_assert_for_1 (tree op, enum tree_code code,
5952 			    edge e, gimple_stmt_iterator bsi)
5953 {
5954   gimple *op_def;
5955   tree val;
5956   enum tree_code rhs_code;
5957 
5958   /* We only care about SSA_NAMEs.  */
5959   if (TREE_CODE (op) != SSA_NAME)
5960     return;
5961 
5962   /* We know that OP will have a zero or nonzero value.  If OP is used
5963      more than once go ahead and register an assert for OP.  */
5964   if (live_on_edge (e, op))
5965     {
5966       val = build_int_cst (TREE_TYPE (op), 0);
5967       register_new_assert_for (op, op, code, val, NULL, e, bsi);
5968     }
5969 
5970   /* Now look at how OP is set.  If it's set from a comparison,
5971      a truth operation or some bit operations, then we may be able
5972      to register information about the operands of that assignment.  */
5973   op_def = SSA_NAME_DEF_STMT (op);
5974   if (gimple_code (op_def) != GIMPLE_ASSIGN)
5975     return;
5976 
5977   rhs_code = gimple_assign_rhs_code (op_def);
5978 
5979   if (TREE_CODE_CLASS (rhs_code) == tcc_comparison)
5980     {
5981       bool invert = (code == EQ_EXPR ? true : false);
5982       tree op0 = gimple_assign_rhs1 (op_def);
5983       tree op1 = gimple_assign_rhs2 (op_def);
5984 
5985       if (TREE_CODE (op0) == SSA_NAME)
5986         register_edge_assert_for_2 (op0, e, bsi, rhs_code, op0, op1, invert);
5987       if (TREE_CODE (op1) == SSA_NAME)
5988         register_edge_assert_for_2 (op1, e, bsi, rhs_code, op0, op1, invert);
5989     }
5990   else if ((code == NE_EXPR
5991 	    && gimple_assign_rhs_code (op_def) == BIT_AND_EXPR)
5992 	   || (code == EQ_EXPR
5993 	       && gimple_assign_rhs_code (op_def) == BIT_IOR_EXPR))
5994     {
5995       /* Recurse on each operand.  */
5996       tree op0 = gimple_assign_rhs1 (op_def);
5997       tree op1 = gimple_assign_rhs2 (op_def);
5998       if (TREE_CODE (op0) == SSA_NAME
5999 	  && has_single_use (op0))
6000 	register_edge_assert_for_1 (op0, code, e, bsi);
6001       if (TREE_CODE (op1) == SSA_NAME
6002 	  && has_single_use (op1))
6003 	register_edge_assert_for_1 (op1, code, e, bsi);
6004     }
6005   else if (gimple_assign_rhs_code (op_def) == BIT_NOT_EXPR
6006 	   && TYPE_PRECISION (TREE_TYPE (gimple_assign_lhs (op_def))) == 1)
6007     {
6008       /* Recurse, flipping CODE.  */
6009       code = invert_tree_comparison (code, false);
6010       register_edge_assert_for_1 (gimple_assign_rhs1 (op_def), code, e, bsi);
6011     }
6012   else if (gimple_assign_rhs_code (op_def) == SSA_NAME)
6013     {
6014       /* Recurse through the copy.  */
6015       register_edge_assert_for_1 (gimple_assign_rhs1 (op_def), code, e, bsi);
6016     }
6017   else if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (op_def)))
6018     {
6019       /* Recurse through the type conversion, unless it is a narrowing
6020 	 conversion or conversion from non-integral type.  */
6021       tree rhs = gimple_assign_rhs1 (op_def);
6022       if (INTEGRAL_TYPE_P (TREE_TYPE (rhs))
6023 	  && (TYPE_PRECISION (TREE_TYPE (rhs))
6024 	      <= TYPE_PRECISION (TREE_TYPE (op))))
6025 	register_edge_assert_for_1 (rhs, code, e, bsi);
6026     }
6027 }
6028 
6029 /* Try to register an edge assertion for SSA name NAME on edge E for
6030    the condition COND contributing to the conditional jump pointed to by
6031    SI.  */
6032 
6033 static void
6034 register_edge_assert_for (tree name, edge e, gimple_stmt_iterator si,
6035 			  enum tree_code cond_code, tree cond_op0,
6036 			  tree cond_op1)
6037 {
6038   tree val;
6039   enum tree_code comp_code;
6040   bool is_else_edge = (e->flags & EDGE_FALSE_VALUE) != 0;
6041 
6042   /* Do not attempt to infer anything in names that flow through
6043      abnormal edges.  */
6044   if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
6045     return;
6046 
6047   if (!extract_code_and_val_from_cond_with_ops (name, cond_code,
6048 						cond_op0, cond_op1,
6049 						is_else_edge,
6050 						&comp_code, &val))
6051     return;
6052 
6053   /* Register ASSERT_EXPRs for name.  */
6054   register_edge_assert_for_2 (name, e, si, cond_code, cond_op0,
6055 			      cond_op1, is_else_edge);
6056 
6057 
6058   /* If COND is effectively an equality test of an SSA_NAME against
6059      the value zero or one, then we may be able to assert values
6060      for SSA_NAMEs which flow into COND.  */
6061 
6062   /* In the case of NAME == 1 or NAME != 0, for BIT_AND_EXPR defining
6063      statement of NAME we can assert both operands of the BIT_AND_EXPR
6064      have nonzero value.  */
6065   if (((comp_code == EQ_EXPR && integer_onep (val))
6066        || (comp_code == NE_EXPR && integer_zerop (val))))
6067     {
6068       gimple *def_stmt = SSA_NAME_DEF_STMT (name);
6069 
6070       if (is_gimple_assign (def_stmt)
6071 	  && gimple_assign_rhs_code (def_stmt) == BIT_AND_EXPR)
6072 	{
6073 	  tree op0 = gimple_assign_rhs1 (def_stmt);
6074 	  tree op1 = gimple_assign_rhs2 (def_stmt);
6075 	  register_edge_assert_for_1 (op0, NE_EXPR, e, si);
6076 	  register_edge_assert_for_1 (op1, NE_EXPR, e, si);
6077 	}
6078     }
6079 
6080   /* In the case of NAME == 0 or NAME != 1, for BIT_IOR_EXPR defining
6081      statement of NAME we can assert both operands of the BIT_IOR_EXPR
6082      have zero value.  */
6083   if (((comp_code == EQ_EXPR && integer_zerop (val))
6084        || (comp_code == NE_EXPR && integer_onep (val))))
6085     {
6086       gimple *def_stmt = SSA_NAME_DEF_STMT (name);
6087 
6088       /* For BIT_IOR_EXPR only if NAME == 0 both operands have
6089 	 necessarily zero value, or if type-precision is one.  */
6090       if (is_gimple_assign (def_stmt)
6091 	  && (gimple_assign_rhs_code (def_stmt) == BIT_IOR_EXPR
6092 	      && (TYPE_PRECISION (TREE_TYPE (name)) == 1
6093 	          || comp_code == EQ_EXPR)))
6094 	{
6095 	  tree op0 = gimple_assign_rhs1 (def_stmt);
6096 	  tree op1 = gimple_assign_rhs2 (def_stmt);
6097 	  register_edge_assert_for_1 (op0, EQ_EXPR, e, si);
6098 	  register_edge_assert_for_1 (op1, EQ_EXPR, e, si);
6099 	}
6100     }
6101 }
6102 
6103 
6104 /* Determine whether the outgoing edges of BB should receive an
6105    ASSERT_EXPR for each of the operands of BB's LAST statement.
6106    The last statement of BB must be a COND_EXPR.
6107 
6108    If any of the sub-graphs rooted at BB have an interesting use of
6109    the predicate operands, an assert location node is added to the
6110    list of assertions for the corresponding operands.  */
6111 
6112 static void
6113 find_conditional_asserts (basic_block bb, gcond *last)
6114 {
6115   gimple_stmt_iterator bsi;
6116   tree op;
6117   edge_iterator ei;
6118   edge e;
6119   ssa_op_iter iter;
6120 
6121   bsi = gsi_for_stmt (last);
6122 
6123   /* Look for uses of the operands in each of the sub-graphs
6124      rooted at BB.  We need to check each of the outgoing edges
6125      separately, so that we know what kind of ASSERT_EXPR to
6126      insert.  */
6127   FOR_EACH_EDGE (e, ei, bb->succs)
6128     {
6129       if (e->dest == bb)
6130 	continue;
6131 
6132       /* Register the necessary assertions for each operand in the
6133 	 conditional predicate.  */
6134       FOR_EACH_SSA_TREE_OPERAND (op, last, iter, SSA_OP_USE)
6135 	register_edge_assert_for (op, e, bsi,
6136 				  gimple_cond_code (last),
6137 				  gimple_cond_lhs (last),
6138 				  gimple_cond_rhs (last));
6139     }
6140 }
6141 
6142 struct case_info
6143 {
6144   tree expr;
6145   basic_block bb;
6146 };
6147 
6148 /* Compare two case labels sorting first by the destination bb index
6149    and then by the case value.  */
6150 
6151 static int
6152 compare_case_labels (const void *p1, const void *p2)
6153 {
6154   const struct case_info *ci1 = (const struct case_info *) p1;
6155   const struct case_info *ci2 = (const struct case_info *) p2;
6156   int idx1 = ci1->bb->index;
6157   int idx2 = ci2->bb->index;
6158 
6159   if (idx1 < idx2)
6160     return -1;
6161   else if (idx1 == idx2)
6162     {
6163       /* Make sure the default label is first in a group.  */
6164       if (!CASE_LOW (ci1->expr))
6165 	return -1;
6166       else if (!CASE_LOW (ci2->expr))
6167 	return 1;
6168       else
6169 	return tree_int_cst_compare (CASE_LOW (ci1->expr),
6170 				     CASE_LOW (ci2->expr));
6171     }
6172   else
6173     return 1;
6174 }
6175 
6176 /* Determine whether the outgoing edges of BB should receive an
6177    ASSERT_EXPR for each of the operands of BB's LAST statement.
6178    The last statement of BB must be a SWITCH_EXPR.
6179 
6180    If any of the sub-graphs rooted at BB have an interesting use of
6181    the predicate operands, an assert location node is added to the
6182    list of assertions for the corresponding operands.  */
6183 
6184 static void
6185 find_switch_asserts (basic_block bb, gswitch *last)
6186 {
6187   gimple_stmt_iterator bsi;
6188   tree op;
6189   edge e;
6190   struct case_info *ci;
6191   size_t n = gimple_switch_num_labels (last);
6192 #if GCC_VERSION >= 4000
6193   unsigned int idx;
6194 #else
6195   /* Work around GCC 3.4 bug (PR 37086).  */
6196   volatile unsigned int idx;
6197 #endif
6198 
6199   bsi = gsi_for_stmt (last);
6200   op = gimple_switch_index (last);
6201   if (TREE_CODE (op) != SSA_NAME)
6202     return;
6203 
6204   /* Build a vector of case labels sorted by destination label.  */
6205   ci = XNEWVEC (struct case_info, n);
6206   for (idx = 0; idx < n; ++idx)
6207     {
6208       ci[idx].expr = gimple_switch_label (last, idx);
6209       ci[idx].bb = label_to_block (CASE_LABEL (ci[idx].expr));
6210     }
6211   edge default_edge = find_edge (bb, ci[0].bb);
6212   qsort (ci, n, sizeof (struct case_info), compare_case_labels);
6213 
6214   for (idx = 0; idx < n; ++idx)
6215     {
6216       tree min, max;
6217       tree cl = ci[idx].expr;
6218       basic_block cbb = ci[idx].bb;
6219 
6220       min = CASE_LOW (cl);
6221       max = CASE_HIGH (cl);
6222 
6223       /* If there are multiple case labels with the same destination
6224 	 we need to combine them to a single value range for the edge.  */
6225       if (idx + 1 < n && cbb == ci[idx + 1].bb)
6226 	{
6227 	  /* Skip labels until the last of the group.  */
6228 	  do {
6229 	    ++idx;
6230 	  } while (idx < n && cbb == ci[idx].bb);
6231 	  --idx;
6232 
6233 	  /* Pick up the maximum of the case label range.  */
6234 	  if (CASE_HIGH (ci[idx].expr))
6235 	    max = CASE_HIGH (ci[idx].expr);
6236 	  else
6237 	    max = CASE_LOW (ci[idx].expr);
6238 	}
6239 
6240       /* Can't extract a useful assertion out of a range that includes the
6241 	 default label.  */
6242       if (min == NULL_TREE)
6243 	continue;
6244 
6245       /* Find the edge to register the assert expr on.  */
6246       e = find_edge (bb, cbb);
6247 
6248       /* Register the necessary assertions for the operand in the
6249 	 SWITCH_EXPR.  */
6250       register_edge_assert_for (op, e, bsi,
6251 				max ? GE_EXPR : EQ_EXPR,
6252 				op, fold_convert (TREE_TYPE (op), min));
6253       if (max)
6254 	register_edge_assert_for (op, e, bsi, LE_EXPR, op,
6255 				  fold_convert (TREE_TYPE (op), max));
6256     }
6257 
6258   XDELETEVEC (ci);
6259 
6260   if (!live_on_edge (default_edge, op))
6261     return;
6262 
6263   /* Now register along the default label assertions that correspond to the
6264      anti-range of each label.  */
6265   int insertion_limit = PARAM_VALUE (PARAM_MAX_VRP_SWITCH_ASSERTIONS);
6266   if (insertion_limit == 0)
6267     return;
6268 
6269   /* We can't do this if the default case shares a label with another case.  */
6270   tree default_cl = gimple_switch_default_label (last);
6271   for (idx = 1; idx < n; idx++)
6272     {
6273       tree min, max;
6274       tree cl = gimple_switch_label (last, idx);
6275       if (CASE_LABEL (cl) == CASE_LABEL (default_cl))
6276 	continue;
6277 
6278       min = CASE_LOW (cl);
6279       max = CASE_HIGH (cl);
6280 
6281       /* Combine contiguous case ranges to reduce the number of assertions
6282 	 to insert.  */
6283       for (idx = idx + 1; idx < n; idx++)
6284 	{
6285 	  tree next_min, next_max;
6286 	  tree next_cl = gimple_switch_label (last, idx);
6287 	  if (CASE_LABEL (next_cl) == CASE_LABEL (default_cl))
6288 	    break;
6289 
6290 	  next_min = CASE_LOW (next_cl);
6291 	  next_max = CASE_HIGH (next_cl);
6292 
6293 	  wide_int difference = wi::sub (next_min, max ? max : min);
6294 	  if (wi::eq_p (difference, 1))
6295 	    max = next_max ? next_max : next_min;
6296 	  else
6297 	    break;
6298 	}
6299       idx--;
6300 
6301       if (max == NULL_TREE)
6302 	{
6303 	  /* Register the assertion OP != MIN.  */
6304 	  min = fold_convert (TREE_TYPE (op), min);
6305 	  register_edge_assert_for (op, default_edge, bsi, NE_EXPR, op, min);
6306 	}
6307       else
6308 	{
6309 	  /* Register the assertion (unsigned)OP - MIN > (MAX - MIN),
6310 	     which will give OP the anti-range ~[MIN,MAX].  */
6311 	  tree uop = fold_convert (unsigned_type_for (TREE_TYPE (op)), op);
6312 	  min = fold_convert (TREE_TYPE (uop), min);
6313 	  max = fold_convert (TREE_TYPE (uop), max);
6314 
6315 	  tree lhs = fold_build2 (MINUS_EXPR, TREE_TYPE (uop), uop, min);
6316 	  tree rhs = int_const_binop (MINUS_EXPR, max, min);
6317 	  register_new_assert_for (op, lhs, GT_EXPR, rhs,
6318 				   NULL, default_edge, bsi);
6319 	}
6320 
6321       if (--insertion_limit == 0)
6322 	break;
6323     }
6324 }
6325 
6326 
6327 /* Traverse all the statements in block BB looking for statements that
6328    may generate useful assertions for the SSA names in their operand.
6329    If a statement produces a useful assertion A for name N_i, then the
6330    list of assertions already generated for N_i is scanned to
6331    determine if A is actually needed.
6332 
6333    If N_i already had the assertion A at a location dominating the
6334    current location, then nothing needs to be done.  Otherwise, the
6335    new location for A is recorded instead.
6336 
6337    1- For every statement S in BB, all the variables used by S are
6338       added to bitmap FOUND_IN_SUBGRAPH.
6339 
6340    2- If statement S uses an operand N in a way that exposes a known
6341       value range for N, then if N was not already generated by an
6342       ASSERT_EXPR, create a new assert location for N.  For instance,
6343       if N is a pointer and the statement dereferences it, we can
6344       assume that N is not NULL.
6345 
6346    3- COND_EXPRs are a special case of #2.  We can derive range
6347       information from the predicate but need to insert different
6348       ASSERT_EXPRs for each of the sub-graphs rooted at the
6349       conditional block.  If the last statement of BB is a conditional
6350       expression of the form 'X op Y', then
6351 
6352       a) Remove X and Y from the set FOUND_IN_SUBGRAPH.
6353 
6354       b) If the conditional is the only entry point to the sub-graph
6355 	 corresponding to the THEN_CLAUSE, recurse into it.  On
6356 	 return, if X and/or Y are marked in FOUND_IN_SUBGRAPH, then
6357 	 an ASSERT_EXPR is added for the corresponding variable.
6358 
6359       c) Repeat step (b) on the ELSE_CLAUSE.
6360 
6361       d) Mark X and Y in FOUND_IN_SUBGRAPH.
6362 
6363       For instance,
6364 
6365 	    if (a == 9)
6366 	      b = a;
6367 	    else
6368 	      b = c + 1;
6369 
6370       In this case, an assertion on the THEN clause is useful to
6371       determine that 'a' is always 9 on that edge.  However, an assertion
6372       on the ELSE clause would be unnecessary.
6373 
6374    4- If BB does not end in a conditional expression, then we recurse
6375       into BB's dominator children.
6376 
6377    At the end of the recursive traversal, every SSA name will have a
6378    list of locations where ASSERT_EXPRs should be added.  When a new
6379    location for name N is found, it is registered by calling
6380    register_new_assert_for.  That function keeps track of all the
6381    registered assertions to prevent adding unnecessary assertions.
6382    For instance, if a pointer P_4 is dereferenced more than once in a
6383    dominator tree, only the location dominating all the dereference of
6384    P_4 will receive an ASSERT_EXPR.  */
6385 
6386 static void
6387 find_assert_locations_1 (basic_block bb, sbitmap live)
6388 {
6389   gimple *last;
6390 
6391   last = last_stmt (bb);
6392 
6393   /* If BB's last statement is a conditional statement involving integer
6394      operands, determine if we need to add ASSERT_EXPRs.  */
6395   if (last
6396       && gimple_code (last) == GIMPLE_COND
6397       && !fp_predicate (last)
6398       && !ZERO_SSA_OPERANDS (last, SSA_OP_USE))
6399     find_conditional_asserts (bb, as_a <gcond *> (last));
6400 
6401   /* If BB's last statement is a switch statement involving integer
6402      operands, determine if we need to add ASSERT_EXPRs.  */
6403   if (last
6404       && gimple_code (last) == GIMPLE_SWITCH
6405       && !ZERO_SSA_OPERANDS (last, SSA_OP_USE))
6406     find_switch_asserts (bb, as_a <gswitch *> (last));
6407 
6408   /* Traverse all the statements in BB marking used names and looking
6409      for statements that may infer assertions for their used operands.  */
6410   for (gimple_stmt_iterator si = gsi_last_bb (bb); !gsi_end_p (si);
6411        gsi_prev (&si))
6412     {
6413       gimple *stmt;
6414       tree op;
6415       ssa_op_iter i;
6416 
6417       stmt = gsi_stmt (si);
6418 
6419       if (is_gimple_debug (stmt))
6420 	continue;
6421 
6422       /* See if we can derive an assertion for any of STMT's operands.  */
6423       FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_USE)
6424 	{
6425 	  tree value;
6426 	  enum tree_code comp_code;
6427 
6428 	  /* If op is not live beyond this stmt, do not bother to insert
6429 	     asserts for it.  */
6430 	  if (!bitmap_bit_p (live, SSA_NAME_VERSION (op)))
6431 	    continue;
6432 
6433 	  /* If OP is used in such a way that we can infer a value
6434 	     range for it, and we don't find a previous assertion for
6435 	     it, create a new assertion location node for OP.  */
6436 	  if (infer_value_range (stmt, op, &comp_code, &value))
6437 	    {
6438 	      /* If we are able to infer a nonzero value range for OP,
6439 		 then walk backwards through the use-def chain to see if OP
6440 		 was set via a typecast.
6441 
6442 		 If so, then we can also infer a nonzero value range
6443 		 for the operand of the NOP_EXPR.  */
6444 	      if (comp_code == NE_EXPR && integer_zerop (value))
6445 		{
6446 		  tree t = op;
6447 		  gimple *def_stmt = SSA_NAME_DEF_STMT (t);
6448 
6449 		  while (is_gimple_assign (def_stmt)
6450 			 && CONVERT_EXPR_CODE_P
6451 			     (gimple_assign_rhs_code (def_stmt))
6452 			 && TREE_CODE
6453 			     (gimple_assign_rhs1 (def_stmt)) == SSA_NAME
6454 			 && POINTER_TYPE_P
6455 			     (TREE_TYPE (gimple_assign_rhs1 (def_stmt))))
6456 		    {
6457 		      t = gimple_assign_rhs1 (def_stmt);
6458 		      def_stmt = SSA_NAME_DEF_STMT (t);
6459 
6460 		      /* Note we want to register the assert for the
6461 			 operand of the NOP_EXPR after SI, not after the
6462 			 conversion.  */
6463 		      if (bitmap_bit_p (live, SSA_NAME_VERSION (t)))
6464 			register_new_assert_for (t, t, comp_code, value,
6465 						 bb, NULL, si);
6466 		    }
6467 		}
6468 
6469 	      register_new_assert_for (op, op, comp_code, value, bb, NULL, si);
6470 	    }
6471 	}
6472 
6473       /* Update live.  */
6474       FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_USE)
6475 	bitmap_set_bit (live, SSA_NAME_VERSION (op));
6476       FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_DEF)
6477 	bitmap_clear_bit (live, SSA_NAME_VERSION (op));
6478     }
6479 
6480   /* Traverse all PHI nodes in BB, updating live.  */
6481   for (gphi_iterator si = gsi_start_phis (bb); !gsi_end_p (si);
6482        gsi_next (&si))
6483     {
6484       use_operand_p arg_p;
6485       ssa_op_iter i;
6486       gphi *phi = si.phi ();
6487       tree res = gimple_phi_result (phi);
6488 
6489       if (virtual_operand_p (res))
6490 	continue;
6491 
6492       FOR_EACH_PHI_ARG (arg_p, phi, i, SSA_OP_USE)
6493 	{
6494 	  tree arg = USE_FROM_PTR (arg_p);
6495 	  if (TREE_CODE (arg) == SSA_NAME)
6496 	    bitmap_set_bit (live, SSA_NAME_VERSION (arg));
6497 	}
6498 
6499       bitmap_clear_bit (live, SSA_NAME_VERSION (res));
6500     }
6501 }
6502 
6503 /* Do an RPO walk over the function computing SSA name liveness
6504    on-the-fly and deciding on assert expressions to insert.  */
6505 
6506 static void
6507 find_assert_locations (void)
6508 {
6509   int *rpo = XNEWVEC (int, last_basic_block_for_fn (cfun));
6510   int *bb_rpo = XNEWVEC (int, last_basic_block_for_fn (cfun));
6511   int *last_rpo = XCNEWVEC (int, last_basic_block_for_fn (cfun));
6512   int rpo_cnt, i;
6513 
6514   live = XCNEWVEC (sbitmap, last_basic_block_for_fn (cfun));
6515   rpo_cnt = pre_and_rev_post_order_compute (NULL, rpo, false);
6516   for (i = 0; i < rpo_cnt; ++i)
6517     bb_rpo[rpo[i]] = i;
6518 
6519   /* Pre-seed loop latch liveness from loop header PHI nodes.  Due to
6520      the order we compute liveness and insert asserts we otherwise
6521      fail to insert asserts into the loop latch.  */
6522   loop_p loop;
6523   FOR_EACH_LOOP (loop, 0)
6524     {
6525       i = loop->latch->index;
6526       unsigned int j = single_succ_edge (loop->latch)->dest_idx;
6527       for (gphi_iterator gsi = gsi_start_phis (loop->header);
6528 	   !gsi_end_p (gsi); gsi_next (&gsi))
6529 	{
6530 	  gphi *phi = gsi.phi ();
6531 	  if (virtual_operand_p (gimple_phi_result (phi)))
6532 	    continue;
6533 	  tree arg = gimple_phi_arg_def (phi, j);
6534 	  if (TREE_CODE (arg) == SSA_NAME)
6535 	    {
6536 	      if (live[i] == NULL)
6537 		{
6538 		  live[i] = sbitmap_alloc (num_ssa_names);
6539 		  bitmap_clear (live[i]);
6540 		}
6541 	      bitmap_set_bit (live[i], SSA_NAME_VERSION (arg));
6542 	    }
6543 	}
6544     }
6545 
6546   for (i = rpo_cnt - 1; i >= 0; --i)
6547     {
6548       basic_block bb = BASIC_BLOCK_FOR_FN (cfun, rpo[i]);
6549       edge e;
6550       edge_iterator ei;
6551 
6552       if (!live[rpo[i]])
6553 	{
6554 	  live[rpo[i]] = sbitmap_alloc (num_ssa_names);
6555 	  bitmap_clear (live[rpo[i]]);
6556 	}
6557 
6558       /* Process BB and update the live information with uses in
6559          this block.  */
6560       find_assert_locations_1 (bb, live[rpo[i]]);
6561 
6562       /* Merge liveness into the predecessor blocks and free it.  */
6563       if (!bitmap_empty_p (live[rpo[i]]))
6564 	{
6565 	  int pred_rpo = i;
6566 	  FOR_EACH_EDGE (e, ei, bb->preds)
6567 	    {
6568 	      int pred = e->src->index;
6569 	      if ((e->flags & EDGE_DFS_BACK) || pred == ENTRY_BLOCK)
6570 		continue;
6571 
6572 	      if (!live[pred])
6573 		{
6574 		  live[pred] = sbitmap_alloc (num_ssa_names);
6575 		  bitmap_clear (live[pred]);
6576 		}
6577 	      bitmap_ior (live[pred], live[pred], live[rpo[i]]);
6578 
6579 	      if (bb_rpo[pred] < pred_rpo)
6580 		pred_rpo = bb_rpo[pred];
6581 	    }
6582 
6583 	  /* Record the RPO number of the last visited block that needs
6584 	     live information from this block.  */
6585 	  last_rpo[rpo[i]] = pred_rpo;
6586 	}
6587       else
6588 	{
6589 	  sbitmap_free (live[rpo[i]]);
6590 	  live[rpo[i]] = NULL;
6591 	}
6592 
6593       /* We can free all successors live bitmaps if all their
6594          predecessors have been visited already.  */
6595       FOR_EACH_EDGE (e, ei, bb->succs)
6596 	if (last_rpo[e->dest->index] == i
6597 	    && live[e->dest->index])
6598 	  {
6599 	    sbitmap_free (live[e->dest->index]);
6600 	    live[e->dest->index] = NULL;
6601 	  }
6602     }
6603 
6604   XDELETEVEC (rpo);
6605   XDELETEVEC (bb_rpo);
6606   XDELETEVEC (last_rpo);
6607   for (i = 0; i < last_basic_block_for_fn (cfun); ++i)
6608     if (live[i])
6609       sbitmap_free (live[i]);
6610   XDELETEVEC (live);
6611 }
6612 
6613 /* Create an ASSERT_EXPR for NAME and insert it in the location
6614    indicated by LOC.  Return true if we made any edge insertions.  */
6615 
6616 static bool
6617 process_assert_insertions_for (tree name, assert_locus *loc)
6618 {
6619   /* Build the comparison expression NAME_i COMP_CODE VAL.  */
6620   gimple *stmt;
6621   tree cond;
6622   gimple *assert_stmt;
6623   edge_iterator ei;
6624   edge e;
6625 
6626   /* If we have X <=> X do not insert an assert expr for that.  */
6627   if (loc->expr == loc->val)
6628     return false;
6629 
6630   cond = build2 (loc->comp_code, boolean_type_node, loc->expr, loc->val);
6631   assert_stmt = build_assert_expr_for (cond, name);
6632   if (loc->e)
6633     {
6634       /* We have been asked to insert the assertion on an edge.  This
6635 	 is used only by COND_EXPR and SWITCH_EXPR assertions.  */
6636       gcc_checking_assert (gimple_code (gsi_stmt (loc->si)) == GIMPLE_COND
6637 			   || (gimple_code (gsi_stmt (loc->si))
6638 			       == GIMPLE_SWITCH));
6639 
6640       gsi_insert_on_edge (loc->e, assert_stmt);
6641       return true;
6642     }
6643 
6644   /* If the stmt iterator points at the end then this is an insertion
6645      at the beginning of a block.  */
6646   if (gsi_end_p (loc->si))
6647     {
6648       gimple_stmt_iterator si = gsi_after_labels (loc->bb);
6649       gsi_insert_before (&si, assert_stmt, GSI_SAME_STMT);
6650       return false;
6651 
6652     }
6653   /* Otherwise, we can insert right after LOC->SI iff the
6654      statement must not be the last statement in the block.  */
6655   stmt = gsi_stmt (loc->si);
6656   if (!stmt_ends_bb_p (stmt))
6657     {
6658       gsi_insert_after (&loc->si, assert_stmt, GSI_SAME_STMT);
6659       return false;
6660     }
6661 
6662   /* If STMT must be the last statement in BB, we can only insert new
6663      assertions on the non-abnormal edge out of BB.  Note that since
6664      STMT is not control flow, there may only be one non-abnormal/eh edge
6665      out of BB.  */
6666   FOR_EACH_EDGE (e, ei, loc->bb->succs)
6667     if (!(e->flags & (EDGE_ABNORMAL|EDGE_EH)))
6668       {
6669 	gsi_insert_on_edge (e, assert_stmt);
6670 	return true;
6671       }
6672 
6673   gcc_unreachable ();
6674 }
6675 
6676 /* Qsort helper for sorting assert locations.  */
6677 
6678 static int
6679 compare_assert_loc (const void *pa, const void *pb)
6680 {
6681   assert_locus * const a = *(assert_locus * const *)pa;
6682   assert_locus * const b = *(assert_locus * const *)pb;
6683   if (! a->e && b->e)
6684     return 1;
6685   else if (a->e && ! b->e)
6686     return -1;
6687 
6688   /* Sort after destination index.  */
6689   if (! a->e && ! b->e)
6690     ;
6691   else if (a->e->dest->index > b->e->dest->index)
6692     return 1;
6693   else if (a->e->dest->index < b->e->dest->index)
6694     return -1;
6695 
6696   /* Sort after comp_code.  */
6697   if (a->comp_code > b->comp_code)
6698     return 1;
6699   else if (a->comp_code < b->comp_code)
6700     return -1;
6701 
6702   /* Break the tie using hashing and source/bb index.  */
6703   hashval_t ha = iterative_hash_expr (a->expr, iterative_hash_expr (a->val, 0));
6704   hashval_t hb = iterative_hash_expr (b->expr, iterative_hash_expr (b->val, 0));
6705   if (ha == hb)
6706     return (a->e && b->e
6707 	    ? a->e->src->index - b->e->src->index
6708 	    : a->bb->index - b->bb->index);
6709   return ha - hb;
6710 }
6711 
6712 /* Process all the insertions registered for every name N_i registered
6713    in NEED_ASSERT_FOR.  The list of assertions to be inserted are
6714    found in ASSERTS_FOR[i].  */
6715 
6716 static void
6717 process_assert_insertions (void)
6718 {
6719   unsigned i;
6720   bitmap_iterator bi;
6721   bool update_edges_p = false;
6722   int num_asserts = 0;
6723 
6724   if (dump_file && (dump_flags & TDF_DETAILS))
6725     dump_all_asserts (dump_file);
6726 
6727   EXECUTE_IF_SET_IN_BITMAP (need_assert_for, 0, i, bi)
6728     {
6729       assert_locus *loc = asserts_for[i];
6730       gcc_assert (loc);
6731 
6732       auto_vec<assert_locus *, 16> asserts;
6733       for (; loc; loc = loc->next)
6734 	asserts.safe_push (loc);
6735       asserts.qsort (compare_assert_loc);
6736 
6737       /* Push down common asserts to successors and remove redundant ones.  */
6738       unsigned ecnt = 0;
6739       assert_locus *common = NULL;
6740       unsigned commonj = 0;
6741       for (unsigned j = 0; j < asserts.length (); ++j)
6742 	{
6743 	  loc = asserts[j];
6744 	  if (! loc->e)
6745 	    common = NULL;
6746 	  else if (! common
6747 		   || loc->e->dest != common->e->dest
6748 		   || loc->comp_code != common->comp_code
6749 		   || ! operand_equal_p (loc->val, common->val, 0)
6750 		   || ! operand_equal_p (loc->expr, common->expr, 0))
6751 	    {
6752 	      commonj = j;
6753 	      common = loc;
6754 	      ecnt = 1;
6755 	    }
6756 	  else if (loc->e == asserts[j-1]->e)
6757 	    {
6758 	      /* Remove duplicate asserts.  */
6759 	      if (commonj == j - 1)
6760 		{
6761 		  commonj = j;
6762 		  common = loc;
6763 		}
6764 	      free (asserts[j-1]);
6765 	      asserts[j-1] = NULL;
6766 	    }
6767 	  else
6768 	    {
6769 	      ecnt++;
6770 	      if (EDGE_COUNT (common->e->dest->preds) == ecnt)
6771 		{
6772 		  /* We have the same assertion on all incoming edges of a BB.
6773 		     Insert it at the beginning of that block.  */
6774 		  loc->bb = loc->e->dest;
6775 		  loc->e = NULL;
6776 		  loc->si = gsi_none ();
6777 		  common = NULL;
6778 		  /* Clear asserts commoned.  */
6779 		  for (; commonj != j; ++commonj)
6780 		    if (asserts[commonj])
6781 		      {
6782 			free (asserts[commonj]);
6783 			asserts[commonj] = NULL;
6784 		      }
6785 		}
6786 	    }
6787 	}
6788 
6789       for (unsigned j = 0; j < asserts.length (); ++j)
6790 	{
6791 	  loc = asserts[j];
6792 	  if (! loc)
6793 	    continue;
6794 	  update_edges_p |= process_assert_insertions_for (ssa_name (i), loc);
6795 	  num_asserts++;
6796 	  free (loc);
6797 	}
6798     }
6799 
6800   if (update_edges_p)
6801     gsi_commit_edge_inserts ();
6802 
6803   statistics_counter_event (cfun, "Number of ASSERT_EXPR expressions inserted",
6804 			    num_asserts);
6805 }
6806 
6807 
6808 /* Traverse the flowgraph looking for conditional jumps to insert range
6809    expressions.  These range expressions are meant to provide information
6810    to optimizations that need to reason in terms of value ranges.  They
6811    will not be expanded into RTL.  For instance, given:
6812 
6813    x = ...
6814    y = ...
6815    if (x < y)
6816      y = x - 2;
6817    else
6818      x = y + 3;
6819 
6820    this pass will transform the code into:
6821 
6822    x = ...
6823    y = ...
6824    if (x < y)
6825     {
6826       x = ASSERT_EXPR <x, x < y>
6827       y = x - 2
6828     }
6829    else
6830     {
6831       y = ASSERT_EXPR <y, x >= y>
6832       x = y + 3
6833     }
6834 
6835    The idea is that once copy and constant propagation have run, other
6836    optimizations will be able to determine what ranges of values can 'x'
6837    take in different paths of the code, simply by checking the reaching
6838    definition of 'x'.  */
6839 
6840 static void
6841 insert_range_assertions (void)
6842 {
6843   need_assert_for = BITMAP_ALLOC (NULL);
6844   asserts_for = XCNEWVEC (assert_locus *, num_ssa_names);
6845 
6846   calculate_dominance_info (CDI_DOMINATORS);
6847 
6848   find_assert_locations ();
6849   if (!bitmap_empty_p (need_assert_for))
6850     {
6851       process_assert_insertions ();
6852       update_ssa (TODO_update_ssa_no_phi);
6853     }
6854 
6855   if (dump_file && (dump_flags & TDF_DETAILS))
6856     {
6857       fprintf (dump_file, "\nSSA form after inserting ASSERT_EXPRs\n");
6858       dump_function_to_file (current_function_decl, dump_file, dump_flags);
6859     }
6860 
6861   free (asserts_for);
6862   BITMAP_FREE (need_assert_for);
6863 }
6864 
6865 /* Checks one ARRAY_REF in REF, located at LOCUS. Ignores flexible arrays
6866    and "struct" hacks. If VRP can determine that the
6867    array subscript is a constant, check if it is outside valid
6868    range. If the array subscript is a RANGE, warn if it is
6869    non-overlapping with valid range.
6870    IGNORE_OFF_BY_ONE is true if the ARRAY_REF is inside a ADDR_EXPR.  */
6871 
6872 static void
6873 check_array_ref (location_t location, tree ref, bool ignore_off_by_one)
6874 {
6875   value_range *vr = NULL;
6876   tree low_sub, up_sub;
6877   tree low_bound, up_bound, up_bound_p1;
6878 
6879   if (TREE_NO_WARNING (ref))
6880     return;
6881 
6882   low_sub = up_sub = TREE_OPERAND (ref, 1);
6883   up_bound = array_ref_up_bound (ref);
6884 
6885   /* Can not check flexible arrays.  */
6886   if (!up_bound
6887       || TREE_CODE (up_bound) != INTEGER_CST)
6888     return;
6889 
6890   /* Accesses to trailing arrays via pointers may access storage
6891      beyond the types array bounds.  */
6892   if (warn_array_bounds < 2
6893       && array_at_struct_end_p (ref))
6894     return;
6895 
6896   low_bound = array_ref_low_bound (ref);
6897   up_bound_p1 = int_const_binop (PLUS_EXPR, up_bound,
6898 				 build_int_cst (TREE_TYPE (up_bound), 1));
6899 
6900   /* Empty array.  */
6901   if (tree_int_cst_equal (low_bound, up_bound_p1))
6902     {
6903       warning_at (location, OPT_Warray_bounds,
6904 		  "array subscript is above array bounds");
6905       TREE_NO_WARNING (ref) = 1;
6906     }
6907 
6908   if (TREE_CODE (low_sub) == SSA_NAME)
6909     {
6910       vr = get_value_range (low_sub);
6911       if (vr->type == VR_RANGE || vr->type == VR_ANTI_RANGE)
6912         {
6913           low_sub = vr->type == VR_RANGE ? vr->max : vr->min;
6914           up_sub = vr->type == VR_RANGE ? vr->min : vr->max;
6915         }
6916     }
6917 
6918   if (vr && vr->type == VR_ANTI_RANGE)
6919     {
6920       if (TREE_CODE (up_sub) == INTEGER_CST
6921           && (ignore_off_by_one
6922 	      ? tree_int_cst_lt (up_bound, up_sub)
6923 	      : tree_int_cst_le (up_bound, up_sub))
6924           && TREE_CODE (low_sub) == INTEGER_CST
6925           && tree_int_cst_le (low_sub, low_bound))
6926         {
6927           warning_at (location, OPT_Warray_bounds,
6928 		      "array subscript is outside array bounds");
6929           TREE_NO_WARNING (ref) = 1;
6930         }
6931     }
6932   else if (TREE_CODE (up_sub) == INTEGER_CST
6933 	   && (ignore_off_by_one
6934 	       ? !tree_int_cst_le (up_sub, up_bound_p1)
6935 	       : !tree_int_cst_le (up_sub, up_bound)))
6936     {
6937       if (dump_file && (dump_flags & TDF_DETAILS))
6938 	{
6939 	  fprintf (dump_file, "Array bound warning for ");
6940 	  dump_generic_expr (MSG_NOTE, TDF_SLIM, ref);
6941 	  fprintf (dump_file, "\n");
6942 	}
6943       warning_at (location, OPT_Warray_bounds,
6944 		  "array subscript is above array bounds");
6945       TREE_NO_WARNING (ref) = 1;
6946     }
6947   else if (TREE_CODE (low_sub) == INTEGER_CST
6948            && tree_int_cst_lt (low_sub, low_bound))
6949     {
6950       if (dump_file && (dump_flags & TDF_DETAILS))
6951 	{
6952 	  fprintf (dump_file, "Array bound warning for ");
6953 	  dump_generic_expr (MSG_NOTE, TDF_SLIM, ref);
6954 	  fprintf (dump_file, "\n");
6955 	}
6956       warning_at (location, OPT_Warray_bounds,
6957 		  "array subscript is below array bounds");
6958       TREE_NO_WARNING (ref) = 1;
6959     }
6960 }
6961 
6962 /* Searches if the expr T, located at LOCATION computes
6963    address of an ARRAY_REF, and call check_array_ref on it.  */
6964 
6965 static void
6966 search_for_addr_array (tree t, location_t location)
6967 {
6968   /* Check each ARRAY_REFs in the reference chain. */
6969   do
6970     {
6971       if (TREE_CODE (t) == ARRAY_REF)
6972 	check_array_ref (location, t, true /*ignore_off_by_one*/);
6973 
6974       t = TREE_OPERAND (t, 0);
6975     }
6976   while (handled_component_p (t));
6977 
6978   if (TREE_CODE (t) == MEM_REF
6979       && TREE_CODE (TREE_OPERAND (t, 0)) == ADDR_EXPR
6980       && !TREE_NO_WARNING (t))
6981     {
6982       tree tem = TREE_OPERAND (TREE_OPERAND (t, 0), 0);
6983       tree low_bound, up_bound, el_sz;
6984       offset_int idx;
6985       if (TREE_CODE (TREE_TYPE (tem)) != ARRAY_TYPE
6986 	  || TREE_CODE (TREE_TYPE (TREE_TYPE (tem))) == ARRAY_TYPE
6987 	  || !TYPE_DOMAIN (TREE_TYPE (tem)))
6988 	return;
6989 
6990       low_bound = TYPE_MIN_VALUE (TYPE_DOMAIN (TREE_TYPE (tem)));
6991       up_bound = TYPE_MAX_VALUE (TYPE_DOMAIN (TREE_TYPE (tem)));
6992       el_sz = TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (tem)));
6993       if (!low_bound
6994 	  || TREE_CODE (low_bound) != INTEGER_CST
6995 	  || !up_bound
6996 	  || TREE_CODE (up_bound) != INTEGER_CST
6997 	  || !el_sz
6998 	  || TREE_CODE (el_sz) != INTEGER_CST)
6999 	return;
7000 
7001       idx = mem_ref_offset (t);
7002       idx = wi::sdiv_trunc (idx, wi::to_offset (el_sz));
7003       if (idx < 0)
7004 	{
7005 	  if (dump_file && (dump_flags & TDF_DETAILS))
7006 	    {
7007 	      fprintf (dump_file, "Array bound warning for ");
7008 	      dump_generic_expr (MSG_NOTE, TDF_SLIM, t);
7009 	      fprintf (dump_file, "\n");
7010 	    }
7011 	  warning_at (location, OPT_Warray_bounds,
7012 		      "array subscript is below array bounds");
7013 	  TREE_NO_WARNING (t) = 1;
7014 	}
7015       else if (idx > (wi::to_offset (up_bound)
7016 		      - wi::to_offset (low_bound) + 1))
7017 	{
7018 	  if (dump_file && (dump_flags & TDF_DETAILS))
7019 	    {
7020 	      fprintf (dump_file, "Array bound warning for ");
7021 	      dump_generic_expr (MSG_NOTE, TDF_SLIM, t);
7022 	      fprintf (dump_file, "\n");
7023 	    }
7024 	  warning_at (location, OPT_Warray_bounds,
7025 		      "array subscript is above array bounds");
7026 	  TREE_NO_WARNING (t) = 1;
7027 	}
7028     }
7029 }
7030 
7031 /* walk_tree() callback that checks if *TP is
7032    an ARRAY_REF inside an ADDR_EXPR (in which an array
7033    subscript one outside the valid range is allowed). Call
7034    check_array_ref for each ARRAY_REF found. The location is
7035    passed in DATA.  */
7036 
7037 static tree
7038 check_array_bounds (tree *tp, int *walk_subtree, void *data)
7039 {
7040   tree t = *tp;
7041   struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
7042   location_t location;
7043 
7044   if (EXPR_HAS_LOCATION (t))
7045     location = EXPR_LOCATION (t);
7046   else
7047     {
7048       location_t *locp = (location_t *) wi->info;
7049       location = *locp;
7050     }
7051 
7052   *walk_subtree = TRUE;
7053 
7054   if (TREE_CODE (t) == ARRAY_REF)
7055     check_array_ref (location, t, false /*ignore_off_by_one*/);
7056 
7057   else if (TREE_CODE (t) == ADDR_EXPR)
7058     {
7059       search_for_addr_array (t, location);
7060       *walk_subtree = FALSE;
7061     }
7062 
7063   return NULL_TREE;
7064 }
7065 
7066 /* Walk over all statements of all reachable BBs and call check_array_bounds
7067    on them.  */
7068 
7069 static void
7070 check_all_array_refs (void)
7071 {
7072   basic_block bb;
7073   gimple_stmt_iterator si;
7074 
7075   FOR_EACH_BB_FN (bb, cfun)
7076     {
7077       edge_iterator ei;
7078       edge e;
7079       bool executable = false;
7080 
7081       /* Skip blocks that were found to be unreachable.  */
7082       FOR_EACH_EDGE (e, ei, bb->preds)
7083 	executable |= !!(e->flags & EDGE_EXECUTABLE);
7084       if (!executable)
7085 	continue;
7086 
7087       for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
7088 	{
7089 	  gimple *stmt = gsi_stmt (si);
7090 	  struct walk_stmt_info wi;
7091 	  if (!gimple_has_location (stmt)
7092 	      || is_gimple_debug (stmt))
7093 	    continue;
7094 
7095 	  memset (&wi, 0, sizeof (wi));
7096 
7097 	  location_t loc = gimple_location (stmt);
7098 	  wi.info = &loc;
7099 
7100 	  walk_gimple_op (gsi_stmt (si),
7101 			  check_array_bounds,
7102 			  &wi);
7103 	}
7104     }
7105 }
7106 
7107 /* Return true if all imm uses of VAR are either in STMT, or
7108    feed (optionally through a chain of single imm uses) GIMPLE_COND
7109    in basic block COND_BB.  */
7110 
7111 static bool
7112 all_imm_uses_in_stmt_or_feed_cond (tree var, gimple *stmt, basic_block cond_bb)
7113 {
7114   use_operand_p use_p, use2_p;
7115   imm_use_iterator iter;
7116 
7117   FOR_EACH_IMM_USE_FAST (use_p, iter, var)
7118     if (USE_STMT (use_p) != stmt)
7119       {
7120 	gimple *use_stmt = USE_STMT (use_p), *use_stmt2;
7121 	if (is_gimple_debug (use_stmt))
7122 	  continue;
7123 	while (is_gimple_assign (use_stmt)
7124 	       && TREE_CODE (gimple_assign_lhs (use_stmt)) == SSA_NAME
7125 	       && single_imm_use (gimple_assign_lhs (use_stmt),
7126 				  &use2_p, &use_stmt2))
7127 	  use_stmt = use_stmt2;
7128 	if (gimple_code (use_stmt) != GIMPLE_COND
7129 	    || gimple_bb (use_stmt) != cond_bb)
7130 	  return false;
7131       }
7132   return true;
7133 }
7134 
7135 /* Handle
7136    _4 = x_3 & 31;
7137    if (_4 != 0)
7138      goto <bb 6>;
7139    else
7140      goto <bb 7>;
7141    <bb 6>:
7142    __builtin_unreachable ();
7143    <bb 7>:
7144    x_5 = ASSERT_EXPR <x_3, ...>;
7145    If x_3 has no other immediate uses (checked by caller),
7146    var is the x_3 var from ASSERT_EXPR, we can clear low 5 bits
7147    from the non-zero bitmask.  */
7148 
7149 static void
7150 maybe_set_nonzero_bits (basic_block bb, tree var)
7151 {
7152   edge e = single_pred_edge (bb);
7153   basic_block cond_bb = e->src;
7154   gimple *stmt = last_stmt (cond_bb);
7155   tree cst;
7156 
7157   if (stmt == NULL
7158       || gimple_code (stmt) != GIMPLE_COND
7159       || gimple_cond_code (stmt) != ((e->flags & EDGE_TRUE_VALUE)
7160 				     ? EQ_EXPR : NE_EXPR)
7161       || TREE_CODE (gimple_cond_lhs (stmt)) != SSA_NAME
7162       || !integer_zerop (gimple_cond_rhs (stmt)))
7163     return;
7164 
7165   stmt = SSA_NAME_DEF_STMT (gimple_cond_lhs (stmt));
7166   if (!is_gimple_assign (stmt)
7167       || gimple_assign_rhs_code (stmt) != BIT_AND_EXPR
7168       || TREE_CODE (gimple_assign_rhs2 (stmt)) != INTEGER_CST)
7169     return;
7170   if (gimple_assign_rhs1 (stmt) != var)
7171     {
7172       gimple *stmt2;
7173 
7174       if (TREE_CODE (gimple_assign_rhs1 (stmt)) != SSA_NAME)
7175 	return;
7176       stmt2 = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt));
7177       if (!gimple_assign_cast_p (stmt2)
7178 	  || gimple_assign_rhs1 (stmt2) != var
7179 	  || !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (stmt2))
7180 	  || (TYPE_PRECISION (TREE_TYPE (gimple_assign_rhs1 (stmt)))
7181 			      != TYPE_PRECISION (TREE_TYPE (var))))
7182 	return;
7183     }
7184   cst = gimple_assign_rhs2 (stmt);
7185   set_nonzero_bits (var, wi::bit_and_not (get_nonzero_bits (var), cst));
7186 }
7187 
7188 /* Convert range assertion expressions into the implied copies and
7189    copy propagate away the copies.  Doing the trivial copy propagation
7190    here avoids the need to run the full copy propagation pass after
7191    VRP.
7192 
7193    FIXME, this will eventually lead to copy propagation removing the
7194    names that had useful range information attached to them.  For
7195    instance, if we had the assertion N_i = ASSERT_EXPR <N_j, N_j > 3>,
7196    then N_i will have the range [3, +INF].
7197 
7198    However, by converting the assertion into the implied copy
7199    operation N_i = N_j, we will then copy-propagate N_j into the uses
7200    of N_i and lose the range information.  We may want to hold on to
7201    ASSERT_EXPRs a little while longer as the ranges could be used in
7202    things like jump threading.
7203 
7204    The problem with keeping ASSERT_EXPRs around is that passes after
7205    VRP need to handle them appropriately.
7206 
7207    Another approach would be to make the range information a first
7208    class property of the SSA_NAME so that it can be queried from
7209    any pass.  This is made somewhat more complex by the need for
7210    multiple ranges to be associated with one SSA_NAME.  */
7211 
7212 static void
7213 remove_range_assertions (void)
7214 {
7215   basic_block bb;
7216   gimple_stmt_iterator si;
7217   /* 1 if looking at ASSERT_EXPRs immediately at the beginning of
7218      a basic block preceeded by GIMPLE_COND branching to it and
7219      __builtin_trap, -1 if not yet checked, 0 otherwise.  */
7220   int is_unreachable;
7221 
7222   /* Note that the BSI iterator bump happens at the bottom of the
7223      loop and no bump is necessary if we're removing the statement
7224      referenced by the current BSI.  */
7225   FOR_EACH_BB_FN (bb, cfun)
7226     for (si = gsi_after_labels (bb), is_unreachable = -1; !gsi_end_p (si);)
7227       {
7228 	gimple *stmt = gsi_stmt (si);
7229 
7230 	if (is_gimple_assign (stmt)
7231 	    && gimple_assign_rhs_code (stmt) == ASSERT_EXPR)
7232 	  {
7233 	    tree lhs = gimple_assign_lhs (stmt);
7234 	    tree rhs = gimple_assign_rhs1 (stmt);
7235 	    tree var;
7236 
7237 	    var = ASSERT_EXPR_VAR (rhs);
7238 
7239 	    if (TREE_CODE (var) == SSA_NAME
7240 		&& !POINTER_TYPE_P (TREE_TYPE (lhs))
7241 		&& SSA_NAME_RANGE_INFO (lhs))
7242 	      {
7243 		if (is_unreachable == -1)
7244 		  {
7245 		    is_unreachable = 0;
7246 		    if (single_pred_p (bb)
7247 			&& assert_unreachable_fallthru_edge_p
7248 						    (single_pred_edge (bb)))
7249 		      is_unreachable = 1;
7250 		  }
7251 		/* Handle
7252 		   if (x_7 >= 10 && x_7 < 20)
7253 		     __builtin_unreachable ();
7254 		   x_8 = ASSERT_EXPR <x_7, ...>;
7255 		   if the only uses of x_7 are in the ASSERT_EXPR and
7256 		   in the condition.  In that case, we can copy the
7257 		   range info from x_8 computed in this pass also
7258 		   for x_7.  */
7259 		if (is_unreachable
7260 		    && all_imm_uses_in_stmt_or_feed_cond (var, stmt,
7261 							  single_pred (bb)))
7262 		  {
7263 		    set_range_info (var, SSA_NAME_RANGE_TYPE (lhs),
7264 				    SSA_NAME_RANGE_INFO (lhs)->get_min (),
7265 				    SSA_NAME_RANGE_INFO (lhs)->get_max ());
7266 		    maybe_set_nonzero_bits (bb, var);
7267 		  }
7268 	      }
7269 
7270 	    /* Propagate the RHS into every use of the LHS.  For SSA names
7271 	       also propagate abnormals as it merely restores the original
7272 	       IL in this case (an replace_uses_by would assert).  */
7273 	    if (TREE_CODE (var) == SSA_NAME)
7274 	      {
7275 		imm_use_iterator iter;
7276 		use_operand_p use_p;
7277 		gimple *use_stmt;
7278 		FOR_EACH_IMM_USE_STMT (use_stmt, iter, lhs)
7279 		  FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
7280 		    SET_USE (use_p, var);
7281 	      }
7282 	    else
7283 	      replace_uses_by (lhs, var);
7284 
7285 	    /* And finally, remove the copy, it is not needed.  */
7286 	    gsi_remove (&si, true);
7287 	    release_defs (stmt);
7288 	  }
7289 	else
7290 	  {
7291 	    if (!is_gimple_debug (gsi_stmt (si)))
7292 	      is_unreachable = 0;
7293 	    gsi_next (&si);
7294 	  }
7295       }
7296 }
7297 
7298 
7299 /* Return true if STMT is interesting for VRP.  */
7300 
7301 static bool
7302 stmt_interesting_for_vrp (gimple *stmt)
7303 {
7304   if (gimple_code (stmt) == GIMPLE_PHI)
7305     {
7306       tree res = gimple_phi_result (stmt);
7307       return (!virtual_operand_p (res)
7308 	      && (INTEGRAL_TYPE_P (TREE_TYPE (res))
7309 		  || POINTER_TYPE_P (TREE_TYPE (res))));
7310     }
7311   else if (is_gimple_assign (stmt) || is_gimple_call (stmt))
7312     {
7313       tree lhs = gimple_get_lhs (stmt);
7314 
7315       /* In general, assignments with virtual operands are not useful
7316 	 for deriving ranges, with the obvious exception of calls to
7317 	 builtin functions.  */
7318       if (lhs && TREE_CODE (lhs) == SSA_NAME
7319 	  && (INTEGRAL_TYPE_P (TREE_TYPE (lhs))
7320 	      || POINTER_TYPE_P (TREE_TYPE (lhs)))
7321 	  && (is_gimple_call (stmt)
7322 	      || !gimple_vuse (stmt)))
7323 	return true;
7324       else if (is_gimple_call (stmt) && gimple_call_internal_p (stmt))
7325 	switch (gimple_call_internal_fn (stmt))
7326 	  {
7327 	  case IFN_ADD_OVERFLOW:
7328 	  case IFN_SUB_OVERFLOW:
7329 	  case IFN_MUL_OVERFLOW:
7330 	  case IFN_ATOMIC_COMPARE_EXCHANGE:
7331 	    /* These internal calls return _Complex integer type,
7332 	       but are interesting to VRP nevertheless.  */
7333 	    if (lhs && TREE_CODE (lhs) == SSA_NAME)
7334 	      return true;
7335 	    break;
7336 	  default:
7337 	    break;
7338 	  }
7339     }
7340   else if (gimple_code (stmt) == GIMPLE_COND
7341 	   || gimple_code (stmt) == GIMPLE_SWITCH)
7342     return true;
7343 
7344   return false;
7345 }
7346 
7347 /* Initialize VRP lattice.  */
7348 
7349 static void
7350 vrp_initialize_lattice ()
7351 {
7352   values_propagated = false;
7353   num_vr_values = num_ssa_names;
7354   vr_value = XCNEWVEC (value_range *, num_vr_values);
7355   vr_phi_edge_counts = XCNEWVEC (int, num_ssa_names);
7356   bitmap_obstack_initialize (&vrp_equiv_obstack);
7357 }
7358 
7359 /* Initialization required by ssa_propagate engine.  */
7360 
7361 static void
7362 vrp_initialize ()
7363 {
7364   basic_block bb;
7365 
7366   FOR_EACH_BB_FN (bb, cfun)
7367     {
7368       for (gphi_iterator si = gsi_start_phis (bb); !gsi_end_p (si);
7369 	   gsi_next (&si))
7370 	{
7371 	  gphi *phi = si.phi ();
7372 	  if (!stmt_interesting_for_vrp (phi))
7373 	    {
7374 	      tree lhs = PHI_RESULT (phi);
7375 	      set_value_range_to_varying (get_value_range (lhs));
7376 	      prop_set_simulate_again (phi, false);
7377 	    }
7378 	  else
7379 	    prop_set_simulate_again (phi, true);
7380 	}
7381 
7382       for (gimple_stmt_iterator si = gsi_start_bb (bb); !gsi_end_p (si);
7383 	   gsi_next (&si))
7384         {
7385 	  gimple *stmt = gsi_stmt (si);
7386 
7387  	  /* If the statement is a control insn, then we do not
7388  	     want to avoid simulating the statement once.  Failure
7389  	     to do so means that those edges will never get added.  */
7390 	  if (stmt_ends_bb_p (stmt))
7391 	    prop_set_simulate_again (stmt, true);
7392 	  else if (!stmt_interesting_for_vrp (stmt))
7393 	    {
7394 	      set_defs_to_varying (stmt);
7395 	      prop_set_simulate_again (stmt, false);
7396 	    }
7397 	  else
7398 	    prop_set_simulate_again (stmt, true);
7399 	}
7400     }
7401 }
7402 
7403 /* Return the singleton value-range for NAME or NAME.  */
7404 
7405 static inline tree
7406 vrp_valueize (tree name)
7407 {
7408   if (TREE_CODE (name) == SSA_NAME)
7409     {
7410       value_range *vr = get_value_range (name);
7411       if (vr->type == VR_RANGE
7412 	  && (TREE_CODE (vr->min) == SSA_NAME
7413 	      || is_gimple_min_invariant (vr->min))
7414 	  && vrp_operand_equal_p (vr->min, vr->max))
7415 	return vr->min;
7416     }
7417   return name;
7418 }
7419 
7420 /* Return the singleton value-range for NAME if that is a constant
7421    but signal to not follow SSA edges.  */
7422 
7423 static inline tree
7424 vrp_valueize_1 (tree name)
7425 {
7426   if (TREE_CODE (name) == SSA_NAME)
7427     {
7428       /* If the definition may be simulated again we cannot follow
7429          this SSA edge as the SSA propagator does not necessarily
7430 	 re-visit the use.  */
7431       gimple *def_stmt = SSA_NAME_DEF_STMT (name);
7432       if (!gimple_nop_p (def_stmt)
7433 	  && prop_simulate_again_p (def_stmt))
7434 	return NULL_TREE;
7435       value_range *vr = get_value_range (name);
7436       if (range_int_cst_singleton_p (vr))
7437 	return vr->min;
7438     }
7439   return name;
7440 }
7441 
7442 /* Visit assignment STMT.  If it produces an interesting range, record
7443    the range in VR and set LHS to OUTPUT_P.  */
7444 
7445 static void
7446 vrp_visit_assignment_or_call (gimple *stmt, tree *output_p, value_range *vr)
7447 {
7448   tree lhs;
7449   enum gimple_code code = gimple_code (stmt);
7450   lhs = gimple_get_lhs (stmt);
7451   *output_p = NULL_TREE;
7452 
7453   /* We only keep track of ranges in integral and pointer types.  */
7454   if (TREE_CODE (lhs) == SSA_NAME
7455       && ((INTEGRAL_TYPE_P (TREE_TYPE (lhs))
7456 	   /* It is valid to have NULL MIN/MAX values on a type.  See
7457 	      build_range_type.  */
7458 	   && TYPE_MIN_VALUE (TREE_TYPE (lhs))
7459 	   && TYPE_MAX_VALUE (TREE_TYPE (lhs)))
7460 	  || POINTER_TYPE_P (TREE_TYPE (lhs))))
7461     {
7462       *output_p = lhs;
7463 
7464       /* Try folding the statement to a constant first.  */
7465       tree tem = gimple_fold_stmt_to_constant_1 (stmt, vrp_valueize,
7466 						 vrp_valueize_1);
7467       if (tem)
7468 	{
7469 	  if (TREE_CODE (tem) == SSA_NAME
7470 	      && (SSA_NAME_IS_DEFAULT_DEF (tem)
7471 		  || ! prop_simulate_again_p (SSA_NAME_DEF_STMT (tem))))
7472 	    {
7473 	      extract_range_from_ssa_name (vr, tem);
7474 	      return;
7475 	    }
7476 	  else if (is_gimple_min_invariant (tem))
7477 	    {
7478 	      set_value_range_to_value (vr, tem, NULL);
7479 	      return;
7480 	    }
7481 	}
7482       /* Then dispatch to value-range extracting functions.  */
7483       if (code == GIMPLE_CALL)
7484 	extract_range_basic (vr, stmt);
7485       else
7486 	extract_range_from_assignment (vr, as_a <gassign *> (stmt));
7487     }
7488 }
7489 
7490 /* Helper that gets the value range of the SSA_NAME with version I
7491    or a symbolic range containing the SSA_NAME only if the value range
7492    is varying or undefined.  */
7493 
7494 static inline value_range
7495 get_vr_for_comparison (int i)
7496 {
7497   value_range vr = *get_value_range (ssa_name (i));
7498 
7499   /* If name N_i does not have a valid range, use N_i as its own
7500      range.  This allows us to compare against names that may
7501      have N_i in their ranges.  */
7502   if (vr.type == VR_VARYING || vr.type == VR_UNDEFINED)
7503     {
7504       vr.type = VR_RANGE;
7505       vr.min = ssa_name (i);
7506       vr.max = ssa_name (i);
7507     }
7508 
7509   return vr;
7510 }
7511 
7512 /* Compare all the value ranges for names equivalent to VAR with VAL
7513    using comparison code COMP.  Return the same value returned by
7514    compare_range_with_value, including the setting of
7515    *STRICT_OVERFLOW_P.  */
7516 
7517 static tree
7518 compare_name_with_value (enum tree_code comp, tree var, tree val,
7519 			 bool *strict_overflow_p, bool use_equiv_p)
7520 {
7521   bitmap_iterator bi;
7522   unsigned i;
7523   bitmap e;
7524   tree retval, t;
7525   int used_strict_overflow;
7526   bool sop;
7527   value_range equiv_vr;
7528 
7529   /* Get the set of equivalences for VAR.  */
7530   e = get_value_range (var)->equiv;
7531 
7532   /* Start at -1.  Set it to 0 if we do a comparison without relying
7533      on overflow, or 1 if all comparisons rely on overflow.  */
7534   used_strict_overflow = -1;
7535 
7536   /* Compare vars' value range with val.  */
7537   equiv_vr = get_vr_for_comparison (SSA_NAME_VERSION (var));
7538   sop = false;
7539   retval = compare_range_with_value (comp, &equiv_vr, val, &sop);
7540   if (retval)
7541     used_strict_overflow = sop ? 1 : 0;
7542 
7543   /* If the equiv set is empty we have done all work we need to do.  */
7544   if (e == NULL)
7545     {
7546       if (retval
7547 	  && used_strict_overflow > 0)
7548 	*strict_overflow_p = true;
7549       return retval;
7550     }
7551 
7552   EXECUTE_IF_SET_IN_BITMAP (e, 0, i, bi)
7553     {
7554       tree name = ssa_name (i);
7555       if (! name)
7556 	continue;
7557 
7558       if (! use_equiv_p
7559 	  && ! SSA_NAME_IS_DEFAULT_DEF (name)
7560 	  && prop_simulate_again_p (SSA_NAME_DEF_STMT (name)))
7561 	continue;
7562 
7563       equiv_vr = get_vr_for_comparison (i);
7564       sop = false;
7565       t = compare_range_with_value (comp, &equiv_vr, val, &sop);
7566       if (t)
7567 	{
7568 	  /* If we get different answers from different members
7569 	     of the equivalence set this check must be in a dead
7570 	     code region.  Folding it to a trap representation
7571 	     would be correct here.  For now just return don't-know.  */
7572 	  if (retval != NULL
7573 	      && t != retval)
7574 	    {
7575 	      retval = NULL_TREE;
7576 	      break;
7577 	    }
7578 	  retval = t;
7579 
7580 	  if (!sop)
7581 	    used_strict_overflow = 0;
7582 	  else if (used_strict_overflow < 0)
7583 	    used_strict_overflow = 1;
7584 	}
7585     }
7586 
7587   if (retval
7588       && used_strict_overflow > 0)
7589     *strict_overflow_p = true;
7590 
7591   return retval;
7592 }
7593 
7594 
7595 /* Given a comparison code COMP and names N1 and N2, compare all the
7596    ranges equivalent to N1 against all the ranges equivalent to N2
7597    to determine the value of N1 COMP N2.  Return the same value
7598    returned by compare_ranges.  Set *STRICT_OVERFLOW_P to indicate
7599    whether we relied on an overflow infinity in the comparison.  */
7600 
7601 
7602 static tree
7603 compare_names (enum tree_code comp, tree n1, tree n2,
7604 	       bool *strict_overflow_p)
7605 {
7606   tree t, retval;
7607   bitmap e1, e2;
7608   bitmap_iterator bi1, bi2;
7609   unsigned i1, i2;
7610   int used_strict_overflow;
7611   static bitmap_obstack *s_obstack = NULL;
7612   static bitmap s_e1 = NULL, s_e2 = NULL;
7613 
7614   /* Compare the ranges of every name equivalent to N1 against the
7615      ranges of every name equivalent to N2.  */
7616   e1 = get_value_range (n1)->equiv;
7617   e2 = get_value_range (n2)->equiv;
7618 
7619   /* Use the fake bitmaps if e1 or e2 are not available.  */
7620   if (s_obstack == NULL)
7621     {
7622       s_obstack = XNEW (bitmap_obstack);
7623       bitmap_obstack_initialize (s_obstack);
7624       s_e1 = BITMAP_ALLOC (s_obstack);
7625       s_e2 = BITMAP_ALLOC (s_obstack);
7626     }
7627   if (e1 == NULL)
7628     e1 = s_e1;
7629   if (e2 == NULL)
7630     e2 = s_e2;
7631 
7632   /* Add N1 and N2 to their own set of equivalences to avoid
7633      duplicating the body of the loop just to check N1 and N2
7634      ranges.  */
7635   bitmap_set_bit (e1, SSA_NAME_VERSION (n1));
7636   bitmap_set_bit (e2, SSA_NAME_VERSION (n2));
7637 
7638   /* If the equivalence sets have a common intersection, then the two
7639      names can be compared without checking their ranges.  */
7640   if (bitmap_intersect_p (e1, e2))
7641     {
7642       bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
7643       bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
7644 
7645       return (comp == EQ_EXPR || comp == GE_EXPR || comp == LE_EXPR)
7646 	     ? boolean_true_node
7647 	     : boolean_false_node;
7648     }
7649 
7650   /* Start at -1.  Set it to 0 if we do a comparison without relying
7651      on overflow, or 1 if all comparisons rely on overflow.  */
7652   used_strict_overflow = -1;
7653 
7654   /* Otherwise, compare all the equivalent ranges.  First, add N1 and
7655      N2 to their own set of equivalences to avoid duplicating the body
7656      of the loop just to check N1 and N2 ranges.  */
7657   EXECUTE_IF_SET_IN_BITMAP (e1, 0, i1, bi1)
7658     {
7659       if (! ssa_name (i1))
7660 	continue;
7661 
7662       value_range vr1 = get_vr_for_comparison (i1);
7663 
7664       t = retval = NULL_TREE;
7665       EXECUTE_IF_SET_IN_BITMAP (e2, 0, i2, bi2)
7666 	{
7667 	  if (! ssa_name (i2))
7668 	    continue;
7669 
7670 	  bool sop = false;
7671 
7672 	  value_range vr2 = get_vr_for_comparison (i2);
7673 
7674 	  t = compare_ranges (comp, &vr1, &vr2, &sop);
7675 	  if (t)
7676 	    {
7677 	      /* If we get different answers from different members
7678 		 of the equivalence set this check must be in a dead
7679 		 code region.  Folding it to a trap representation
7680 		 would be correct here.  For now just return don't-know.  */
7681 	      if (retval != NULL
7682 		  && t != retval)
7683 		{
7684 		  bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
7685 		  bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
7686 		  return NULL_TREE;
7687 		}
7688 	      retval = t;
7689 
7690 	      if (!sop)
7691 		used_strict_overflow = 0;
7692 	      else if (used_strict_overflow < 0)
7693 		used_strict_overflow = 1;
7694 	    }
7695 	}
7696 
7697       if (retval)
7698 	{
7699 	  bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
7700 	  bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
7701 	  if (used_strict_overflow > 0)
7702 	    *strict_overflow_p = true;
7703 	  return retval;
7704 	}
7705     }
7706 
7707   /* None of the equivalent ranges are useful in computing this
7708      comparison.  */
7709   bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
7710   bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
7711   return NULL_TREE;
7712 }
7713 
7714 /* Helper function for vrp_evaluate_conditional_warnv & other
7715    optimizers.  */
7716 
7717 static tree
7718 vrp_evaluate_conditional_warnv_with_ops_using_ranges (enum tree_code code,
7719 						      tree op0, tree op1,
7720 						      bool * strict_overflow_p)
7721 {
7722   value_range *vr0, *vr1;
7723 
7724   vr0 = (TREE_CODE (op0) == SSA_NAME) ? get_value_range (op0) : NULL;
7725   vr1 = (TREE_CODE (op1) == SSA_NAME) ? get_value_range (op1) : NULL;
7726 
7727   tree res = NULL_TREE;
7728   if (vr0 && vr1)
7729     res = compare_ranges (code, vr0, vr1, strict_overflow_p);
7730   if (!res && vr0)
7731     res = compare_range_with_value (code, vr0, op1, strict_overflow_p);
7732   if (!res && vr1)
7733     res = (compare_range_with_value
7734 	    (swap_tree_comparison (code), vr1, op0, strict_overflow_p));
7735   return res;
7736 }
7737 
7738 /* Helper function for vrp_evaluate_conditional_warnv. */
7739 
7740 static tree
7741 vrp_evaluate_conditional_warnv_with_ops (enum tree_code code, tree op0,
7742 					 tree op1, bool use_equiv_p,
7743 					 bool *strict_overflow_p, bool *only_ranges)
7744 {
7745   tree ret;
7746   if (only_ranges)
7747     *only_ranges = true;
7748 
7749   /* We only deal with integral and pointer types.  */
7750   if (!INTEGRAL_TYPE_P (TREE_TYPE (op0))
7751       && !POINTER_TYPE_P (TREE_TYPE (op0)))
7752     return NULL_TREE;
7753 
7754   /* If OP0 CODE OP1 is an overflow comparison, if it can be expressed
7755      as a simple equality test, then prefer that over its current form
7756      for evaluation.
7757 
7758      An overflow test which collapses to an equality test can always be
7759      expressed as a comparison of one argument against zero.  Overflow
7760      occurs when the chosen argument is zero and does not occur if the
7761      chosen argument is not zero.  */
7762   tree x;
7763   if (overflow_comparison_p (code, op0, op1, use_equiv_p, &x))
7764     {
7765       wide_int max = wi::max_value (TYPE_PRECISION (TREE_TYPE (op0)), UNSIGNED);
7766       /* B = A - 1; if (A < B) -> B = A - 1; if (A == 0)
7767          B = A - 1; if (A > B) -> B = A - 1; if (A != 0)
7768          B = A + 1; if (B < A) -> B = A + 1; if (B == 0)
7769          B = A + 1; if (B > A) -> B = A + 1; if (B != 0) */
7770       if (integer_zerop (x))
7771 	{
7772 	  op1 = x;
7773 	  code = (code == LT_EXPR || code == LE_EXPR) ? EQ_EXPR : NE_EXPR;
7774 	}
7775       /* B = A + 1; if (A > B) -> B = A + 1; if (B == 0)
7776          B = A + 1; if (A < B) -> B = A + 1; if (B != 0)
7777          B = A - 1; if (B > A) -> B = A - 1; if (A == 0)
7778          B = A - 1; if (B < A) -> B = A - 1; if (A != 0) */
7779       else if (wi::eq_p (x, max - 1))
7780 	{
7781 	  op0 = op1;
7782 	  op1 = wide_int_to_tree (TREE_TYPE (op0), 0);
7783 	  code = (code == GT_EXPR || code == GE_EXPR) ? EQ_EXPR : NE_EXPR;
7784 	}
7785     }
7786 
7787   if ((ret = vrp_evaluate_conditional_warnv_with_ops_using_ranges
7788 	       (code, op0, op1, strict_overflow_p)))
7789     return ret;
7790   if (only_ranges)
7791     *only_ranges = false;
7792   /* Do not use compare_names during propagation, it's quadratic.  */
7793   if (TREE_CODE (op0) == SSA_NAME && TREE_CODE (op1) == SSA_NAME
7794       && use_equiv_p)
7795     return compare_names (code, op0, op1, strict_overflow_p);
7796   else if (TREE_CODE (op0) == SSA_NAME)
7797     return compare_name_with_value (code, op0, op1,
7798 				    strict_overflow_p, use_equiv_p);
7799   else if (TREE_CODE (op1) == SSA_NAME)
7800     return compare_name_with_value (swap_tree_comparison (code), op1, op0,
7801 				    strict_overflow_p, use_equiv_p);
7802   return NULL_TREE;
7803 }
7804 
7805 /* Given (CODE OP0 OP1) within STMT, try to simplify it based on value range
7806    information.  Return NULL if the conditional can not be evaluated.
7807    The ranges of all the names equivalent with the operands in COND
7808    will be used when trying to compute the value.  If the result is
7809    based on undefined signed overflow, issue a warning if
7810    appropriate.  */
7811 
7812 static tree
7813 vrp_evaluate_conditional (tree_code code, tree op0, tree op1, gimple *stmt)
7814 {
7815   bool sop;
7816   tree ret;
7817   bool only_ranges;
7818 
7819   /* Some passes and foldings leak constants with overflow flag set
7820      into the IL.  Avoid doing wrong things with these and bail out.  */
7821   if ((TREE_CODE (op0) == INTEGER_CST
7822        && TREE_OVERFLOW (op0))
7823       || (TREE_CODE (op1) == INTEGER_CST
7824 	  && TREE_OVERFLOW (op1)))
7825     return NULL_TREE;
7826 
7827   sop = false;
7828   ret = vrp_evaluate_conditional_warnv_with_ops (code, op0, op1, true, &sop,
7829   						 &only_ranges);
7830 
7831   if (ret && sop)
7832     {
7833       enum warn_strict_overflow_code wc;
7834       const char* warnmsg;
7835 
7836       if (is_gimple_min_invariant (ret))
7837 	{
7838 	  wc = WARN_STRICT_OVERFLOW_CONDITIONAL;
7839 	  warnmsg = G_("assuming signed overflow does not occur when "
7840 		       "simplifying conditional to constant");
7841 	}
7842       else
7843 	{
7844 	  wc = WARN_STRICT_OVERFLOW_COMPARISON;
7845 	  warnmsg = G_("assuming signed overflow does not occur when "
7846 		       "simplifying conditional");
7847 	}
7848 
7849       if (issue_strict_overflow_warning (wc))
7850 	{
7851 	  location_t location;
7852 
7853 	  if (!gimple_has_location (stmt))
7854 	    location = input_location;
7855 	  else
7856 	    location = gimple_location (stmt);
7857 	  warning_at (location, OPT_Wstrict_overflow, "%s", warnmsg);
7858 	}
7859     }
7860 
7861   if (warn_type_limits
7862       && ret && only_ranges
7863       && TREE_CODE_CLASS (code) == tcc_comparison
7864       && TREE_CODE (op0) == SSA_NAME)
7865     {
7866       /* If the comparison is being folded and the operand on the LHS
7867 	 is being compared against a constant value that is outside of
7868 	 the natural range of OP0's type, then the predicate will
7869 	 always fold regardless of the value of OP0.  If -Wtype-limits
7870 	 was specified, emit a warning.  */
7871       tree type = TREE_TYPE (op0);
7872       value_range *vr0 = get_value_range (op0);
7873 
7874       if (vr0->type == VR_RANGE
7875 	  && INTEGRAL_TYPE_P (type)
7876 	  && vrp_val_is_min (vr0->min)
7877 	  && vrp_val_is_max (vr0->max)
7878 	  && is_gimple_min_invariant (op1))
7879 	{
7880 	  location_t location;
7881 
7882 	  if (!gimple_has_location (stmt))
7883 	    location = input_location;
7884 	  else
7885 	    location = gimple_location (stmt);
7886 
7887 	  warning_at (location, OPT_Wtype_limits,
7888 		      integer_zerop (ret)
7889 		      ? G_("comparison always false "
7890                            "due to limited range of data type")
7891 		      : G_("comparison always true "
7892                            "due to limited range of data type"));
7893 	}
7894     }
7895 
7896   return ret;
7897 }
7898 
7899 
7900 /* Visit conditional statement STMT.  If we can determine which edge
7901    will be taken out of STMT's basic block, record it in
7902    *TAKEN_EDGE_P.  Otherwise, set *TAKEN_EDGE_P to NULL.  */
7903 
7904 static void
7905 vrp_visit_cond_stmt (gcond *stmt, edge *taken_edge_p)
7906 {
7907   tree val;
7908   bool sop;
7909 
7910   *taken_edge_p = NULL;
7911 
7912   if (dump_file && (dump_flags & TDF_DETAILS))
7913     {
7914       tree use;
7915       ssa_op_iter i;
7916 
7917       fprintf (dump_file, "\nVisiting conditional with predicate: ");
7918       print_gimple_stmt (dump_file, stmt, 0, 0);
7919       fprintf (dump_file, "\nWith known ranges\n");
7920 
7921       FOR_EACH_SSA_TREE_OPERAND (use, stmt, i, SSA_OP_USE)
7922 	{
7923 	  fprintf (dump_file, "\t");
7924 	  print_generic_expr (dump_file, use, 0);
7925 	  fprintf (dump_file, ": ");
7926 	  dump_value_range (dump_file, vr_value[SSA_NAME_VERSION (use)]);
7927 	}
7928 
7929       fprintf (dump_file, "\n");
7930     }
7931 
7932   /* Compute the value of the predicate COND by checking the known
7933      ranges of each of its operands.
7934 
7935      Note that we cannot evaluate all the equivalent ranges here
7936      because those ranges may not yet be final and with the current
7937      propagation strategy, we cannot determine when the value ranges
7938      of the names in the equivalence set have changed.
7939 
7940      For instance, given the following code fragment
7941 
7942         i_5 = PHI <8, i_13>
7943 	...
7944      	i_14 = ASSERT_EXPR <i_5, i_5 != 0>
7945 	if (i_14 == 1)
7946 	  ...
7947 
7948      Assume that on the first visit to i_14, i_5 has the temporary
7949      range [8, 8] because the second argument to the PHI function is
7950      not yet executable.  We derive the range ~[0, 0] for i_14 and the
7951      equivalence set { i_5 }.  So, when we visit 'if (i_14 == 1)' for
7952      the first time, since i_14 is equivalent to the range [8, 8], we
7953      determine that the predicate is always false.
7954 
7955      On the next round of propagation, i_13 is determined to be
7956      VARYING, which causes i_5 to drop down to VARYING.  So, another
7957      visit to i_14 is scheduled.  In this second visit, we compute the
7958      exact same range and equivalence set for i_14, namely ~[0, 0] and
7959      { i_5 }.  But we did not have the previous range for i_5
7960      registered, so vrp_visit_assignment thinks that the range for
7961      i_14 has not changed.  Therefore, the predicate 'if (i_14 == 1)'
7962      is not visited again, which stops propagation from visiting
7963      statements in the THEN clause of that if().
7964 
7965      To properly fix this we would need to keep the previous range
7966      value for the names in the equivalence set.  This way we would've
7967      discovered that from one visit to the other i_5 changed from
7968      range [8, 8] to VR_VARYING.
7969 
7970      However, fixing this apparent limitation may not be worth the
7971      additional checking.  Testing on several code bases (GCC, DLV,
7972      MICO, TRAMP3D and SPEC2000) showed that doing this results in
7973      4 more predicates folded in SPEC.  */
7974   sop = false;
7975 
7976   val = vrp_evaluate_conditional_warnv_with_ops (gimple_cond_code (stmt),
7977 						 gimple_cond_lhs (stmt),
7978 						 gimple_cond_rhs (stmt),
7979 						 false, &sop, NULL);
7980   if (val)
7981     {
7982       if (!sop)
7983 	*taken_edge_p = find_taken_edge (gimple_bb (stmt), val);
7984       else
7985 	{
7986 	  if (dump_file && (dump_flags & TDF_DETAILS))
7987 	    fprintf (dump_file,
7988 		     "\nIgnoring predicate evaluation because "
7989 		     "it assumes that signed overflow is undefined");
7990 	  val = NULL_TREE;
7991 	}
7992     }
7993 
7994   if (dump_file && (dump_flags & TDF_DETAILS))
7995     {
7996       fprintf (dump_file, "\nPredicate evaluates to: ");
7997       if (val == NULL_TREE)
7998 	fprintf (dump_file, "DON'T KNOW\n");
7999       else
8000 	print_generic_stmt (dump_file, val, 0);
8001     }
8002 }
8003 
8004 /* Searches the case label vector VEC for the index *IDX of the CASE_LABEL
8005    that includes the value VAL.  The search is restricted to the range
8006    [START_IDX, n - 1] where n is the size of VEC.
8007 
8008    If there is a CASE_LABEL for VAL, its index is placed in IDX and true is
8009    returned.
8010 
8011    If there is no CASE_LABEL for VAL and there is one that is larger than VAL,
8012    it is placed in IDX and false is returned.
8013 
8014    If VAL is larger than any CASE_LABEL, n is placed on IDX and false is
8015    returned. */
8016 
8017 static bool
8018 find_case_label_index (gswitch *stmt, size_t start_idx, tree val, size_t *idx)
8019 {
8020   size_t n = gimple_switch_num_labels (stmt);
8021   size_t low, high;
8022 
8023   /* Find case label for minimum of the value range or the next one.
8024      At each iteration we are searching in [low, high - 1]. */
8025 
8026   for (low = start_idx, high = n; high != low; )
8027     {
8028       tree t;
8029       int cmp;
8030       /* Note that i != high, so we never ask for n. */
8031       size_t i = (high + low) / 2;
8032       t = gimple_switch_label (stmt, i);
8033 
8034       /* Cache the result of comparing CASE_LOW and val.  */
8035       cmp = tree_int_cst_compare (CASE_LOW (t), val);
8036 
8037       if (cmp == 0)
8038 	{
8039 	  /* Ranges cannot be empty. */
8040 	  *idx = i;
8041 	  return true;
8042 	}
8043       else if (cmp > 0)
8044         high = i;
8045       else
8046 	{
8047 	  low = i + 1;
8048 	  if (CASE_HIGH (t) != NULL
8049 	      && tree_int_cst_compare (CASE_HIGH (t), val) >= 0)
8050 	    {
8051 	      *idx = i;
8052 	      return true;
8053 	    }
8054         }
8055     }
8056 
8057   *idx = high;
8058   return false;
8059 }
8060 
8061 /* Searches the case label vector VEC for the range of CASE_LABELs that is used
8062    for values between MIN and MAX. The first index is placed in MIN_IDX. The
8063    last index is placed in MAX_IDX. If the range of CASE_LABELs is empty
8064    then MAX_IDX < MIN_IDX.
8065    Returns true if the default label is not needed. */
8066 
8067 static bool
8068 find_case_label_range (gswitch *stmt, tree min, tree max, size_t *min_idx,
8069 		       size_t *max_idx)
8070 {
8071   size_t i, j;
8072   bool min_take_default = !find_case_label_index (stmt, 1, min, &i);
8073   bool max_take_default = !find_case_label_index (stmt, i, max, &j);
8074 
8075   if (i == j
8076       && min_take_default
8077       && max_take_default)
8078     {
8079       /* Only the default case label reached.
8080          Return an empty range. */
8081       *min_idx = 1;
8082       *max_idx = 0;
8083       return false;
8084     }
8085   else
8086     {
8087       bool take_default = min_take_default || max_take_default;
8088       tree low, high;
8089       size_t k;
8090 
8091       if (max_take_default)
8092 	j--;
8093 
8094       /* If the case label range is continuous, we do not need
8095 	 the default case label.  Verify that.  */
8096       high = CASE_LOW (gimple_switch_label (stmt, i));
8097       if (CASE_HIGH (gimple_switch_label (stmt, i)))
8098 	high = CASE_HIGH (gimple_switch_label (stmt, i));
8099       for (k = i + 1; k <= j; ++k)
8100 	{
8101 	  low = CASE_LOW (gimple_switch_label (stmt, k));
8102 	  if (!integer_onep (int_const_binop (MINUS_EXPR, low, high)))
8103 	    {
8104 	      take_default = true;
8105 	      break;
8106 	    }
8107 	  high = low;
8108 	  if (CASE_HIGH (gimple_switch_label (stmt, k)))
8109 	    high = CASE_HIGH (gimple_switch_label (stmt, k));
8110 	}
8111 
8112       *min_idx = i;
8113       *max_idx = j;
8114       return !take_default;
8115     }
8116 }
8117 
8118 /* Searches the case label vector VEC for the ranges of CASE_LABELs that are
8119    used in range VR.  The indices are placed in MIN_IDX1, MAX_IDX, MIN_IDX2 and
8120    MAX_IDX2.  If the ranges of CASE_LABELs are empty then MAX_IDX1 < MIN_IDX1.
8121    Returns true if the default label is not needed.  */
8122 
8123 static bool
8124 find_case_label_ranges (gswitch *stmt, value_range *vr, size_t *min_idx1,
8125 			size_t *max_idx1, size_t *min_idx2,
8126 			size_t *max_idx2)
8127 {
8128   size_t i, j, k, l;
8129   unsigned int n = gimple_switch_num_labels (stmt);
8130   bool take_default;
8131   tree case_low, case_high;
8132   tree min = vr->min, max = vr->max;
8133 
8134   gcc_checking_assert (vr->type == VR_RANGE || vr->type == VR_ANTI_RANGE);
8135 
8136   take_default = !find_case_label_range (stmt, min, max, &i, &j);
8137 
8138   /* Set second range to emtpy.  */
8139   *min_idx2 = 1;
8140   *max_idx2 = 0;
8141 
8142   if (vr->type == VR_RANGE)
8143     {
8144       *min_idx1 = i;
8145       *max_idx1 = j;
8146       return !take_default;
8147     }
8148 
8149   /* Set first range to all case labels.  */
8150   *min_idx1 = 1;
8151   *max_idx1 = n - 1;
8152 
8153   if (i > j)
8154     return false;
8155 
8156   /* Make sure all the values of case labels [i , j] are contained in
8157      range [MIN, MAX].  */
8158   case_low = CASE_LOW (gimple_switch_label (stmt, i));
8159   case_high = CASE_HIGH (gimple_switch_label (stmt, j));
8160   if (tree_int_cst_compare (case_low, min) < 0)
8161     i += 1;
8162   if (case_high != NULL_TREE
8163       && tree_int_cst_compare (max, case_high) < 0)
8164     j -= 1;
8165 
8166   if (i > j)
8167     return false;
8168 
8169   /* If the range spans case labels [i, j], the corresponding anti-range spans
8170      the labels [1, i - 1] and [j + 1, n -  1].  */
8171   k = j + 1;
8172   l = n - 1;
8173   if (k > l)
8174     {
8175       k = 1;
8176       l = 0;
8177     }
8178 
8179   j = i - 1;
8180   i = 1;
8181   if (i > j)
8182     {
8183       i = k;
8184       j = l;
8185       k = 1;
8186       l = 0;
8187     }
8188 
8189   *min_idx1 = i;
8190   *max_idx1 = j;
8191   *min_idx2 = k;
8192   *max_idx2 = l;
8193   return false;
8194 }
8195 
8196 /* Visit switch statement STMT.  If we can determine which edge
8197    will be taken out of STMT's basic block, record it in
8198    *TAKEN_EDGE_P.  Otherwise, *TAKEN_EDGE_P set to NULL.  */
8199 
8200 static void
8201 vrp_visit_switch_stmt (gswitch *stmt, edge *taken_edge_p)
8202 {
8203   tree op, val;
8204   value_range *vr;
8205   size_t i = 0, j = 0, k, l;
8206   bool take_default;
8207 
8208   *taken_edge_p = NULL;
8209   op = gimple_switch_index (stmt);
8210   if (TREE_CODE (op) != SSA_NAME)
8211     return;
8212 
8213   vr = get_value_range (op);
8214   if (dump_file && (dump_flags & TDF_DETAILS))
8215     {
8216       fprintf (dump_file, "\nVisiting switch expression with operand ");
8217       print_generic_expr (dump_file, op, 0);
8218       fprintf (dump_file, " with known range ");
8219       dump_value_range (dump_file, vr);
8220       fprintf (dump_file, "\n");
8221     }
8222 
8223   if ((vr->type != VR_RANGE
8224        && vr->type != VR_ANTI_RANGE)
8225       || symbolic_range_p (vr))
8226     return;
8227 
8228   /* Find the single edge that is taken from the switch expression.  */
8229   take_default = !find_case_label_ranges (stmt, vr, &i, &j, &k, &l);
8230 
8231   /* Check if the range spans no CASE_LABEL. If so, we only reach the default
8232      label */
8233   if (j < i)
8234     {
8235       gcc_assert (take_default);
8236       val = gimple_switch_default_label (stmt);
8237     }
8238   else
8239     {
8240       /* Check if labels with index i to j and maybe the default label
8241 	 are all reaching the same label.  */
8242 
8243       val = gimple_switch_label (stmt, i);
8244       if (take_default
8245 	  && CASE_LABEL (gimple_switch_default_label (stmt))
8246 	  != CASE_LABEL (val))
8247 	{
8248 	  if (dump_file && (dump_flags & TDF_DETAILS))
8249 	    fprintf (dump_file, "  not a single destination for this "
8250 		     "range\n");
8251 	  return;
8252 	}
8253       for (++i; i <= j; ++i)
8254         {
8255           if (CASE_LABEL (gimple_switch_label (stmt, i)) != CASE_LABEL (val))
8256 	    {
8257 	      if (dump_file && (dump_flags & TDF_DETAILS))
8258 		fprintf (dump_file, "  not a single destination for this "
8259 			 "range\n");
8260 	      return;
8261 	    }
8262         }
8263       for (; k <= l; ++k)
8264         {
8265           if (CASE_LABEL (gimple_switch_label (stmt, k)) != CASE_LABEL (val))
8266 	    {
8267 	      if (dump_file && (dump_flags & TDF_DETAILS))
8268 		fprintf (dump_file, "  not a single destination for this "
8269 			 "range\n");
8270 	      return;
8271 	    }
8272         }
8273     }
8274 
8275   *taken_edge_p = find_edge (gimple_bb (stmt),
8276 			     label_to_block (CASE_LABEL (val)));
8277 
8278   if (dump_file && (dump_flags & TDF_DETAILS))
8279     {
8280       fprintf (dump_file, "  will take edge to ");
8281       print_generic_stmt (dump_file, CASE_LABEL (val), 0);
8282     }
8283 }
8284 
8285 
8286 /* Evaluate statement STMT.  If the statement produces a useful range,
8287    set VR and corepsponding OUTPUT_P.
8288 
8289    If STMT is a conditional branch and we can determine its truth
8290    value, the taken edge is recorded in *TAKEN_EDGE_P.  */
8291 
8292 static void
8293 extract_range_from_stmt (gimple *stmt, edge *taken_edge_p,
8294 			 tree *output_p, value_range *vr)
8295 {
8296 
8297   if (dump_file && (dump_flags & TDF_DETAILS))
8298     {
8299       fprintf (dump_file, "\nVisiting statement:\n");
8300       print_gimple_stmt (dump_file, stmt, 0, dump_flags);
8301     }
8302 
8303   if (!stmt_interesting_for_vrp (stmt))
8304     gcc_assert (stmt_ends_bb_p (stmt));
8305   else if (is_gimple_assign (stmt) || is_gimple_call (stmt))
8306     vrp_visit_assignment_or_call (stmt, output_p, vr);
8307   else if (gimple_code (stmt) == GIMPLE_COND)
8308     vrp_visit_cond_stmt (as_a <gcond *> (stmt), taken_edge_p);
8309   else if (gimple_code (stmt) == GIMPLE_SWITCH)
8310     vrp_visit_switch_stmt (as_a <gswitch *> (stmt), taken_edge_p);
8311 }
8312 
8313 /* Evaluate statement STMT.  If the statement produces a useful range,
8314    return SSA_PROP_INTERESTING and record the SSA name with the
8315    interesting range into *OUTPUT_P.
8316 
8317    If STMT is a conditional branch and we can determine its truth
8318    value, the taken edge is recorded in *TAKEN_EDGE_P.
8319 
8320    If STMT produces a varying value, return SSA_PROP_VARYING.  */
8321 
8322 static enum ssa_prop_result
8323 vrp_visit_stmt (gimple *stmt, edge *taken_edge_p, tree *output_p)
8324 {
8325   value_range vr = VR_INITIALIZER;
8326   tree lhs = gimple_get_lhs (stmt);
8327   extract_range_from_stmt (stmt, taken_edge_p, output_p, &vr);
8328 
8329   if (*output_p)
8330     {
8331       if (update_value_range (*output_p, &vr))
8332 	{
8333 	  if (dump_file && (dump_flags & TDF_DETAILS))
8334 	    {
8335 	      fprintf (dump_file, "Found new range for ");
8336 	      print_generic_expr (dump_file, *output_p, 0);
8337 	      fprintf (dump_file, ": ");
8338 	      dump_value_range (dump_file, &vr);
8339 	      fprintf (dump_file, "\n");
8340 	    }
8341 
8342 	  if (vr.type == VR_VARYING)
8343 	    return SSA_PROP_VARYING;
8344 
8345 	  return SSA_PROP_INTERESTING;
8346 	}
8347       return SSA_PROP_NOT_INTERESTING;
8348     }
8349 
8350   if (is_gimple_call (stmt) && gimple_call_internal_p (stmt))
8351     switch (gimple_call_internal_fn (stmt))
8352       {
8353       case IFN_ADD_OVERFLOW:
8354       case IFN_SUB_OVERFLOW:
8355       case IFN_MUL_OVERFLOW:
8356       case IFN_ATOMIC_COMPARE_EXCHANGE:
8357 	/* These internal calls return _Complex integer type,
8358 	   which VRP does not track, but the immediate uses
8359 	   thereof might be interesting.  */
8360 	if (lhs && TREE_CODE (lhs) == SSA_NAME)
8361 	  {
8362 	    imm_use_iterator iter;
8363 	    use_operand_p use_p;
8364 	    enum ssa_prop_result res = SSA_PROP_VARYING;
8365 
8366 	    set_value_range_to_varying (get_value_range (lhs));
8367 
8368 	    FOR_EACH_IMM_USE_FAST (use_p, iter, lhs)
8369 	      {
8370 		gimple *use_stmt = USE_STMT (use_p);
8371 		if (!is_gimple_assign (use_stmt))
8372 		  continue;
8373 		enum tree_code rhs_code = gimple_assign_rhs_code (use_stmt);
8374 		if (rhs_code != REALPART_EXPR && rhs_code != IMAGPART_EXPR)
8375 		  continue;
8376 		tree rhs1 = gimple_assign_rhs1 (use_stmt);
8377 		tree use_lhs = gimple_assign_lhs (use_stmt);
8378 		if (TREE_CODE (rhs1) != rhs_code
8379 		    || TREE_OPERAND (rhs1, 0) != lhs
8380 		    || TREE_CODE (use_lhs) != SSA_NAME
8381 		    || !stmt_interesting_for_vrp (use_stmt)
8382 		    || (!INTEGRAL_TYPE_P (TREE_TYPE (use_lhs))
8383 			|| !TYPE_MIN_VALUE (TREE_TYPE (use_lhs))
8384 			|| !TYPE_MAX_VALUE (TREE_TYPE (use_lhs))))
8385 		  continue;
8386 
8387 		/* If there is a change in the value range for any of the
8388 		   REALPART_EXPR/IMAGPART_EXPR immediate uses, return
8389 		   SSA_PROP_INTERESTING.  If there are any REALPART_EXPR
8390 		   or IMAGPART_EXPR immediate uses, but none of them have
8391 		   a change in their value ranges, return
8392 		   SSA_PROP_NOT_INTERESTING.  If there are no
8393 		   {REAL,IMAG}PART_EXPR uses at all,
8394 		   return SSA_PROP_VARYING.  */
8395 		value_range new_vr = VR_INITIALIZER;
8396 		extract_range_basic (&new_vr, use_stmt);
8397 		value_range *old_vr = get_value_range (use_lhs);
8398 		if (old_vr->type != new_vr.type
8399 		    || !vrp_operand_equal_p (old_vr->min, new_vr.min)
8400 		    || !vrp_operand_equal_p (old_vr->max, new_vr.max)
8401 		    || !vrp_bitmap_equal_p (old_vr->equiv, new_vr.equiv))
8402 		  res = SSA_PROP_INTERESTING;
8403 		else
8404 		  res = SSA_PROP_NOT_INTERESTING;
8405 		BITMAP_FREE (new_vr.equiv);
8406 		if (res == SSA_PROP_INTERESTING)
8407 		  {
8408 		    *output_p = lhs;
8409 		    return res;
8410 		  }
8411 	      }
8412 
8413 	    return res;
8414 	  }
8415 	break;
8416       default:
8417 	break;
8418       }
8419 
8420   /* All other statements produce nothing of interest for VRP, so mark
8421      their outputs varying and prevent further simulation.  */
8422   set_defs_to_varying (stmt);
8423 
8424   return (*taken_edge_p) ? SSA_PROP_INTERESTING : SSA_PROP_VARYING;
8425 }
8426 
8427 /* Union the two value-ranges { *VR0TYPE, *VR0MIN, *VR0MAX } and
8428    { VR1TYPE, VR0MIN, VR0MAX } and store the result
8429    in { *VR0TYPE, *VR0MIN, *VR0MAX }.  This may not be the smallest
8430    possible such range.  The resulting range is not canonicalized.  */
8431 
8432 static void
8433 union_ranges (enum value_range_type *vr0type,
8434 	      tree *vr0min, tree *vr0max,
8435 	      enum value_range_type vr1type,
8436 	      tree vr1min, tree vr1max)
8437 {
8438   bool mineq = vrp_operand_equal_p (*vr0min, vr1min);
8439   bool maxeq = vrp_operand_equal_p (*vr0max, vr1max);
8440 
8441   /* [] is vr0, () is vr1 in the following classification comments.  */
8442   if (mineq && maxeq)
8443     {
8444       /* [(  )] */
8445       if (*vr0type == vr1type)
8446 	/* Nothing to do for equal ranges.  */
8447 	;
8448       else if ((*vr0type == VR_RANGE
8449 		&& vr1type == VR_ANTI_RANGE)
8450 	       || (*vr0type == VR_ANTI_RANGE
8451 		   && vr1type == VR_RANGE))
8452 	{
8453 	  /* For anti-range with range union the result is varying.  */
8454 	  goto give_up;
8455 	}
8456       else
8457 	gcc_unreachable ();
8458     }
8459   else if (operand_less_p (*vr0max, vr1min) == 1
8460 	   || operand_less_p (vr1max, *vr0min) == 1)
8461     {
8462       /* [ ] ( ) or ( ) [ ]
8463 	 If the ranges have an empty intersection, result of the union
8464 	 operation is the anti-range or if both are anti-ranges
8465 	 it covers all.  */
8466       if (*vr0type == VR_ANTI_RANGE
8467 	  && vr1type == VR_ANTI_RANGE)
8468 	goto give_up;
8469       else if (*vr0type == VR_ANTI_RANGE
8470 	       && vr1type == VR_RANGE)
8471 	;
8472       else if (*vr0type == VR_RANGE
8473 	       && vr1type == VR_ANTI_RANGE)
8474 	{
8475 	  *vr0type = vr1type;
8476 	  *vr0min = vr1min;
8477 	  *vr0max = vr1max;
8478 	}
8479       else if (*vr0type == VR_RANGE
8480 	       && vr1type == VR_RANGE)
8481 	{
8482 	  /* The result is the convex hull of both ranges.  */
8483 	  if (operand_less_p (*vr0max, vr1min) == 1)
8484 	    {
8485 	      /* If the result can be an anti-range, create one.  */
8486 	      if (TREE_CODE (*vr0max) == INTEGER_CST
8487 		  && TREE_CODE (vr1min) == INTEGER_CST
8488 		  && vrp_val_is_min (*vr0min)
8489 		  && vrp_val_is_max (vr1max))
8490 		{
8491 		  tree min = int_const_binop (PLUS_EXPR,
8492 					      *vr0max,
8493 					      build_int_cst (TREE_TYPE (*vr0max), 1));
8494 		  tree max = int_const_binop (MINUS_EXPR,
8495 					      vr1min,
8496 					      build_int_cst (TREE_TYPE (vr1min), 1));
8497 		  if (!operand_less_p (max, min))
8498 		    {
8499 		      *vr0type = VR_ANTI_RANGE;
8500 		      *vr0min = min;
8501 		      *vr0max = max;
8502 		    }
8503 		  else
8504 		    *vr0max = vr1max;
8505 		}
8506 	      else
8507 		*vr0max = vr1max;
8508 	    }
8509 	  else
8510 	    {
8511 	      /* If the result can be an anti-range, create one.  */
8512 	      if (TREE_CODE (vr1max) == INTEGER_CST
8513 		  && TREE_CODE (*vr0min) == INTEGER_CST
8514 		  && vrp_val_is_min (vr1min)
8515 		  && vrp_val_is_max (*vr0max))
8516 		{
8517 		  tree min = int_const_binop (PLUS_EXPR,
8518 					      vr1max,
8519 					      build_int_cst (TREE_TYPE (vr1max), 1));
8520 		  tree max = int_const_binop (MINUS_EXPR,
8521 					      *vr0min,
8522 					      build_int_cst (TREE_TYPE (*vr0min), 1));
8523 		  if (!operand_less_p (max, min))
8524 		    {
8525 		      *vr0type = VR_ANTI_RANGE;
8526 		      *vr0min = min;
8527 		      *vr0max = max;
8528 		    }
8529 		  else
8530 		    *vr0min = vr1min;
8531 		}
8532 	      else
8533 		*vr0min = vr1min;
8534 	    }
8535 	}
8536       else
8537 	gcc_unreachable ();
8538     }
8539   else if ((maxeq || operand_less_p (vr1max, *vr0max) == 1)
8540 	   && (mineq || operand_less_p (*vr0min, vr1min) == 1))
8541     {
8542       /* [ (  ) ] or [(  ) ] or [ (  )] */
8543       if (*vr0type == VR_RANGE
8544 	  && vr1type == VR_RANGE)
8545 	;
8546       else if (*vr0type == VR_ANTI_RANGE
8547 	       && vr1type == VR_ANTI_RANGE)
8548 	{
8549 	  *vr0type = vr1type;
8550 	  *vr0min = vr1min;
8551 	  *vr0max = vr1max;
8552 	}
8553       else if (*vr0type == VR_ANTI_RANGE
8554 	       && vr1type == VR_RANGE)
8555 	{
8556 	  /* Arbitrarily choose the right or left gap.  */
8557 	  if (!mineq && TREE_CODE (vr1min) == INTEGER_CST)
8558 	    *vr0max = int_const_binop (MINUS_EXPR, vr1min,
8559 				       build_int_cst (TREE_TYPE (vr1min), 1));
8560 	  else if (!maxeq && TREE_CODE (vr1max) == INTEGER_CST)
8561 	    *vr0min = int_const_binop (PLUS_EXPR, vr1max,
8562 				       build_int_cst (TREE_TYPE (vr1max), 1));
8563 	  else
8564 	    goto give_up;
8565 	}
8566       else if (*vr0type == VR_RANGE
8567 	       && vr1type == VR_ANTI_RANGE)
8568 	/* The result covers everything.  */
8569 	goto give_up;
8570       else
8571 	gcc_unreachable ();
8572     }
8573   else if ((maxeq || operand_less_p (*vr0max, vr1max) == 1)
8574 	   && (mineq || operand_less_p (vr1min, *vr0min) == 1))
8575     {
8576       /* ( [  ] ) or ([  ] ) or ( [  ]) */
8577       if (*vr0type == VR_RANGE
8578 	  && vr1type == VR_RANGE)
8579 	{
8580 	  *vr0type = vr1type;
8581 	  *vr0min = vr1min;
8582 	  *vr0max = vr1max;
8583 	}
8584       else if (*vr0type == VR_ANTI_RANGE
8585 	       && vr1type == VR_ANTI_RANGE)
8586 	;
8587       else if (*vr0type == VR_RANGE
8588 	       && vr1type == VR_ANTI_RANGE)
8589 	{
8590 	  *vr0type = VR_ANTI_RANGE;
8591 	  if (!mineq && TREE_CODE (*vr0min) == INTEGER_CST)
8592 	    {
8593 	      *vr0max = int_const_binop (MINUS_EXPR, *vr0min,
8594 					 build_int_cst (TREE_TYPE (*vr0min), 1));
8595 	      *vr0min = vr1min;
8596 	    }
8597 	  else if (!maxeq && TREE_CODE (*vr0max) == INTEGER_CST)
8598 	    {
8599 	      *vr0min = int_const_binop (PLUS_EXPR, *vr0max,
8600 					 build_int_cst (TREE_TYPE (*vr0max), 1));
8601 	      *vr0max = vr1max;
8602 	    }
8603 	  else
8604 	    goto give_up;
8605 	}
8606       else if (*vr0type == VR_ANTI_RANGE
8607 	       && vr1type == VR_RANGE)
8608 	/* The result covers everything.  */
8609 	goto give_up;
8610       else
8611 	gcc_unreachable ();
8612     }
8613   else if ((operand_less_p (vr1min, *vr0max) == 1
8614 	    || operand_equal_p (vr1min, *vr0max, 0))
8615 	   && operand_less_p (*vr0min, vr1min) == 1
8616 	   && operand_less_p (*vr0max, vr1max) == 1)
8617     {
8618       /* [  (  ]  ) or [   ](   ) */
8619       if (*vr0type == VR_RANGE
8620 	  && vr1type == VR_RANGE)
8621 	*vr0max = vr1max;
8622       else if (*vr0type == VR_ANTI_RANGE
8623 	       && vr1type == VR_ANTI_RANGE)
8624 	*vr0min = vr1min;
8625       else if (*vr0type == VR_ANTI_RANGE
8626 	       && vr1type == VR_RANGE)
8627 	{
8628 	  if (TREE_CODE (vr1min) == INTEGER_CST)
8629 	    *vr0max = int_const_binop (MINUS_EXPR, vr1min,
8630 				       build_int_cst (TREE_TYPE (vr1min), 1));
8631 	  else
8632 	    goto give_up;
8633 	}
8634       else if (*vr0type == VR_RANGE
8635 	       && vr1type == VR_ANTI_RANGE)
8636 	{
8637 	  if (TREE_CODE (*vr0max) == INTEGER_CST)
8638 	    {
8639 	      *vr0type = vr1type;
8640 	      *vr0min = int_const_binop (PLUS_EXPR, *vr0max,
8641 					 build_int_cst (TREE_TYPE (*vr0max), 1));
8642 	      *vr0max = vr1max;
8643 	    }
8644 	  else
8645 	    goto give_up;
8646 	}
8647       else
8648 	gcc_unreachable ();
8649     }
8650   else if ((operand_less_p (*vr0min, vr1max) == 1
8651 	    || operand_equal_p (*vr0min, vr1max, 0))
8652 	   && operand_less_p (vr1min, *vr0min) == 1
8653 	   && operand_less_p (vr1max, *vr0max) == 1)
8654     {
8655       /* (  [  )  ] or (   )[   ] */
8656       if (*vr0type == VR_RANGE
8657 	  && vr1type == VR_RANGE)
8658 	*vr0min = vr1min;
8659       else if (*vr0type == VR_ANTI_RANGE
8660 	       && vr1type == VR_ANTI_RANGE)
8661 	*vr0max = vr1max;
8662       else if (*vr0type == VR_ANTI_RANGE
8663 	       && vr1type == VR_RANGE)
8664 	{
8665 	  if (TREE_CODE (vr1max) == INTEGER_CST)
8666 	    *vr0min = int_const_binop (PLUS_EXPR, vr1max,
8667 				       build_int_cst (TREE_TYPE (vr1max), 1));
8668 	  else
8669 	    goto give_up;
8670 	}
8671       else if (*vr0type == VR_RANGE
8672 	       && vr1type == VR_ANTI_RANGE)
8673 	{
8674 	  if (TREE_CODE (*vr0min) == INTEGER_CST)
8675 	    {
8676 	      *vr0type = vr1type;
8677 	      *vr0max = int_const_binop (MINUS_EXPR, *vr0min,
8678 					 build_int_cst (TREE_TYPE (*vr0min), 1));
8679 	      *vr0min = vr1min;
8680 	    }
8681 	  else
8682 	    goto give_up;
8683 	}
8684       else
8685 	gcc_unreachable ();
8686     }
8687   else
8688     goto give_up;
8689 
8690   return;
8691 
8692 give_up:
8693   *vr0type = VR_VARYING;
8694   *vr0min = NULL_TREE;
8695   *vr0max = NULL_TREE;
8696 }
8697 
8698 /* Intersect the two value-ranges { *VR0TYPE, *VR0MIN, *VR0MAX } and
8699    { VR1TYPE, VR0MIN, VR0MAX } and store the result
8700    in { *VR0TYPE, *VR0MIN, *VR0MAX }.  This may not be the smallest
8701    possible such range.  The resulting range is not canonicalized.  */
8702 
8703 static void
8704 intersect_ranges (enum value_range_type *vr0type,
8705 		  tree *vr0min, tree *vr0max,
8706 		  enum value_range_type vr1type,
8707 		  tree vr1min, tree vr1max)
8708 {
8709   bool mineq = vrp_operand_equal_p (*vr0min, vr1min);
8710   bool maxeq = vrp_operand_equal_p (*vr0max, vr1max);
8711 
8712   /* [] is vr0, () is vr1 in the following classification comments.  */
8713   if (mineq && maxeq)
8714     {
8715       /* [(  )] */
8716       if (*vr0type == vr1type)
8717 	/* Nothing to do for equal ranges.  */
8718 	;
8719       else if ((*vr0type == VR_RANGE
8720 		&& vr1type == VR_ANTI_RANGE)
8721 	       || (*vr0type == VR_ANTI_RANGE
8722 		   && vr1type == VR_RANGE))
8723 	{
8724 	  /* For anti-range with range intersection the result is empty.  */
8725 	  *vr0type = VR_UNDEFINED;
8726 	  *vr0min = NULL_TREE;
8727 	  *vr0max = NULL_TREE;
8728 	}
8729       else
8730 	gcc_unreachable ();
8731     }
8732   else if (operand_less_p (*vr0max, vr1min) == 1
8733 	   || operand_less_p (vr1max, *vr0min) == 1)
8734     {
8735       /* [ ] ( ) or ( ) [ ]
8736 	 If the ranges have an empty intersection, the result of the
8737 	 intersect operation is the range for intersecting an
8738 	 anti-range with a range or empty when intersecting two ranges.  */
8739       if (*vr0type == VR_RANGE
8740 	  && vr1type == VR_ANTI_RANGE)
8741 	;
8742       else if (*vr0type == VR_ANTI_RANGE
8743 	       && vr1type == VR_RANGE)
8744 	{
8745 	  *vr0type = vr1type;
8746 	  *vr0min = vr1min;
8747 	  *vr0max = vr1max;
8748 	}
8749       else if (*vr0type == VR_RANGE
8750 	       && vr1type == VR_RANGE)
8751 	{
8752 	  *vr0type = VR_UNDEFINED;
8753 	  *vr0min = NULL_TREE;
8754 	  *vr0max = NULL_TREE;
8755 	}
8756       else if (*vr0type == VR_ANTI_RANGE
8757 	       && vr1type == VR_ANTI_RANGE)
8758 	{
8759 	  /* If the anti-ranges are adjacent to each other merge them.  */
8760 	  if (TREE_CODE (*vr0max) == INTEGER_CST
8761 	      && TREE_CODE (vr1min) == INTEGER_CST
8762 	      && operand_less_p (*vr0max, vr1min) == 1
8763 	      && integer_onep (int_const_binop (MINUS_EXPR,
8764 						vr1min, *vr0max)))
8765 	    *vr0max = vr1max;
8766 	  else if (TREE_CODE (vr1max) == INTEGER_CST
8767 		   && TREE_CODE (*vr0min) == INTEGER_CST
8768 		   && operand_less_p (vr1max, *vr0min) == 1
8769 		   && integer_onep (int_const_binop (MINUS_EXPR,
8770 						     *vr0min, vr1max)))
8771 	    *vr0min = vr1min;
8772 	  /* Else arbitrarily take VR0.  */
8773 	}
8774     }
8775   else if ((maxeq || operand_less_p (vr1max, *vr0max) == 1)
8776 	   && (mineq || operand_less_p (*vr0min, vr1min) == 1))
8777     {
8778       /* [ (  ) ] or [(  ) ] or [ (  )] */
8779       if (*vr0type == VR_RANGE
8780 	  && vr1type == VR_RANGE)
8781 	{
8782 	  /* If both are ranges the result is the inner one.  */
8783 	  *vr0type = vr1type;
8784 	  *vr0min = vr1min;
8785 	  *vr0max = vr1max;
8786 	}
8787       else if (*vr0type == VR_RANGE
8788 	       && vr1type == VR_ANTI_RANGE)
8789 	{
8790 	  /* Choose the right gap if the left one is empty.  */
8791 	  if (mineq)
8792 	    {
8793 	      if (TREE_CODE (vr1max) != INTEGER_CST)
8794 		*vr0min = vr1max;
8795 	      else if (TYPE_PRECISION (TREE_TYPE (vr1max)) == 1
8796 		       && !TYPE_UNSIGNED (TREE_TYPE (vr1max)))
8797 		*vr0min
8798 		  = int_const_binop (MINUS_EXPR, vr1max,
8799 				     build_int_cst (TREE_TYPE (vr1max), -1));
8800 	      else
8801 		*vr0min
8802 		  = int_const_binop (PLUS_EXPR, vr1max,
8803 				     build_int_cst (TREE_TYPE (vr1max), 1));
8804 	    }
8805 	  /* Choose the left gap if the right one is empty.  */
8806 	  else if (maxeq)
8807 	    {
8808 	      if (TREE_CODE (vr1min) != INTEGER_CST)
8809 		*vr0max = vr1min;
8810 	      else if (TYPE_PRECISION (TREE_TYPE (vr1min)) == 1
8811 		       && !TYPE_UNSIGNED (TREE_TYPE (vr1min)))
8812 		*vr0max
8813 		  = int_const_binop (PLUS_EXPR, vr1min,
8814 				     build_int_cst (TREE_TYPE (vr1min), -1));
8815 	      else
8816 		*vr0max
8817 		  = int_const_binop (MINUS_EXPR, vr1min,
8818 				     build_int_cst (TREE_TYPE (vr1min), 1));
8819 	    }
8820 	  /* Choose the anti-range if the range is effectively varying.  */
8821 	  else if (vrp_val_is_min (*vr0min)
8822 		   && vrp_val_is_max (*vr0max))
8823 	    {
8824 	      *vr0type = vr1type;
8825 	      *vr0min = vr1min;
8826 	      *vr0max = vr1max;
8827 	    }
8828 	  /* Else choose the range.  */
8829 	}
8830       else if (*vr0type == VR_ANTI_RANGE
8831 	       && vr1type == VR_ANTI_RANGE)
8832 	/* If both are anti-ranges the result is the outer one.  */
8833 	;
8834       else if (*vr0type == VR_ANTI_RANGE
8835 	       && vr1type == VR_RANGE)
8836 	{
8837 	  /* The intersection is empty.  */
8838 	  *vr0type = VR_UNDEFINED;
8839 	  *vr0min = NULL_TREE;
8840 	  *vr0max = NULL_TREE;
8841 	}
8842       else
8843 	gcc_unreachable ();
8844     }
8845   else if ((maxeq || operand_less_p (*vr0max, vr1max) == 1)
8846 	   && (mineq || operand_less_p (vr1min, *vr0min) == 1))
8847     {
8848       /* ( [  ] ) or ([  ] ) or ( [  ]) */
8849       if (*vr0type == VR_RANGE
8850 	  && vr1type == VR_RANGE)
8851 	/* Choose the inner range.  */
8852 	;
8853       else if (*vr0type == VR_ANTI_RANGE
8854 	       && vr1type == VR_RANGE)
8855 	{
8856 	  /* Choose the right gap if the left is empty.  */
8857 	  if (mineq)
8858 	    {
8859 	      *vr0type = VR_RANGE;
8860 	      if (TREE_CODE (*vr0max) != INTEGER_CST)
8861 		*vr0min = *vr0max;
8862 	      else if (TYPE_PRECISION (TREE_TYPE (*vr0max)) == 1
8863 		       && !TYPE_UNSIGNED (TREE_TYPE (*vr0max)))
8864 		*vr0min
8865 		  = int_const_binop (MINUS_EXPR, *vr0max,
8866 				     build_int_cst (TREE_TYPE (*vr0max), -1));
8867 	      else
8868 		*vr0min
8869 		  = int_const_binop (PLUS_EXPR, *vr0max,
8870 				     build_int_cst (TREE_TYPE (*vr0max), 1));
8871 	      *vr0max = vr1max;
8872 	    }
8873 	  /* Choose the left gap if the right is empty.  */
8874 	  else if (maxeq)
8875 	    {
8876 	      *vr0type = VR_RANGE;
8877 	      if (TREE_CODE (*vr0min) != INTEGER_CST)
8878 		*vr0max = *vr0min;
8879 	      else if (TYPE_PRECISION (TREE_TYPE (*vr0min)) == 1
8880 		       && !TYPE_UNSIGNED (TREE_TYPE (*vr0min)))
8881 		*vr0max
8882 		  = int_const_binop (PLUS_EXPR, *vr0min,
8883 				     build_int_cst (TREE_TYPE (*vr0min), -1));
8884 	      else
8885 		*vr0max
8886 		  = int_const_binop (MINUS_EXPR, *vr0min,
8887 				     build_int_cst (TREE_TYPE (*vr0min), 1));
8888 	      *vr0min = vr1min;
8889 	    }
8890 	  /* Choose the anti-range if the range is effectively varying.  */
8891 	  else if (vrp_val_is_min (vr1min)
8892 		   && vrp_val_is_max (vr1max))
8893 	    ;
8894 	  /* Choose the anti-range if it is ~[0,0], that range is special
8895 	     enough to special case when vr1's range is relatively wide.  */
8896 	  else if (*vr0min == *vr0max
8897 		   && integer_zerop (*vr0min)
8898 		   && (TYPE_PRECISION (TREE_TYPE (*vr0min))
8899 		       == TYPE_PRECISION (ptr_type_node))
8900 		   && TREE_CODE (vr1max) == INTEGER_CST
8901 		   && TREE_CODE (vr1min) == INTEGER_CST
8902 		   && (wi::clz (wi::sub (vr1max, vr1min))
8903 		       < TYPE_PRECISION (TREE_TYPE (*vr0min)) / 2))
8904 	    ;
8905 	  /* Else choose the range.  */
8906 	  else
8907 	    {
8908 	      *vr0type = vr1type;
8909 	      *vr0min = vr1min;
8910 	      *vr0max = vr1max;
8911 	    }
8912 	}
8913       else if (*vr0type == VR_ANTI_RANGE
8914 	       && vr1type == VR_ANTI_RANGE)
8915 	{
8916 	  /* If both are anti-ranges the result is the outer one.  */
8917 	  *vr0type = vr1type;
8918 	  *vr0min = vr1min;
8919 	  *vr0max = vr1max;
8920 	}
8921       else if (vr1type == VR_ANTI_RANGE
8922 	       && *vr0type == VR_RANGE)
8923 	{
8924 	  /* The intersection is empty.  */
8925 	  *vr0type = VR_UNDEFINED;
8926 	  *vr0min = NULL_TREE;
8927 	  *vr0max = NULL_TREE;
8928 	}
8929       else
8930 	gcc_unreachable ();
8931     }
8932   else if ((operand_less_p (vr1min, *vr0max) == 1
8933 	    || operand_equal_p (vr1min, *vr0max, 0))
8934 	   && operand_less_p (*vr0min, vr1min) == 1)
8935     {
8936       /* [  (  ]  ) or [  ](  ) */
8937       if (*vr0type == VR_ANTI_RANGE
8938 	  && vr1type == VR_ANTI_RANGE)
8939 	*vr0max = vr1max;
8940       else if (*vr0type == VR_RANGE
8941 	       && vr1type == VR_RANGE)
8942 	*vr0min = vr1min;
8943       else if (*vr0type == VR_RANGE
8944 	       && vr1type == VR_ANTI_RANGE)
8945 	{
8946 	  if (TREE_CODE (vr1min) == INTEGER_CST)
8947 	    *vr0max = int_const_binop (MINUS_EXPR, vr1min,
8948 				       build_int_cst (TREE_TYPE (vr1min), 1));
8949 	  else
8950 	    *vr0max = vr1min;
8951 	}
8952       else if (*vr0type == VR_ANTI_RANGE
8953 	       && vr1type == VR_RANGE)
8954 	{
8955 	  *vr0type = VR_RANGE;
8956 	  if (TREE_CODE (*vr0max) == INTEGER_CST)
8957 	    *vr0min = int_const_binop (PLUS_EXPR, *vr0max,
8958 				       build_int_cst (TREE_TYPE (*vr0max), 1));
8959 	  else
8960 	    *vr0min = *vr0max;
8961 	  *vr0max = vr1max;
8962 	}
8963       else
8964 	gcc_unreachable ();
8965     }
8966   else if ((operand_less_p (*vr0min, vr1max) == 1
8967 	    || operand_equal_p (*vr0min, vr1max, 0))
8968 	   && operand_less_p (vr1min, *vr0min) == 1)
8969     {
8970       /* (  [  )  ] or (  )[  ] */
8971       if (*vr0type == VR_ANTI_RANGE
8972 	  && vr1type == VR_ANTI_RANGE)
8973 	*vr0min = vr1min;
8974       else if (*vr0type == VR_RANGE
8975 	       && vr1type == VR_RANGE)
8976 	*vr0max = vr1max;
8977       else if (*vr0type == VR_RANGE
8978 	       && vr1type == VR_ANTI_RANGE)
8979 	{
8980 	  if (TREE_CODE (vr1max) == INTEGER_CST)
8981 	    *vr0min = int_const_binop (PLUS_EXPR, vr1max,
8982 				       build_int_cst (TREE_TYPE (vr1max), 1));
8983 	  else
8984 	    *vr0min = vr1max;
8985 	}
8986       else if (*vr0type == VR_ANTI_RANGE
8987 	       && vr1type == VR_RANGE)
8988 	{
8989 	  *vr0type = VR_RANGE;
8990 	  if (TREE_CODE (*vr0min) == INTEGER_CST)
8991 	    *vr0max = int_const_binop (MINUS_EXPR, *vr0min,
8992 				       build_int_cst (TREE_TYPE (*vr0min), 1));
8993 	  else
8994 	    *vr0max = *vr0min;
8995 	  *vr0min = vr1min;
8996 	}
8997       else
8998 	gcc_unreachable ();
8999     }
9000 
9001   /* As a fallback simply use { *VRTYPE, *VR0MIN, *VR0MAX } as
9002      result for the intersection.  That's always a conservative
9003      correct estimate unless VR1 is a constant singleton range
9004      in which case we choose that.  */
9005   if (vr1type == VR_RANGE
9006       && is_gimple_min_invariant (vr1min)
9007       && vrp_operand_equal_p (vr1min, vr1max))
9008     {
9009       *vr0type = vr1type;
9010       *vr0min = vr1min;
9011       *vr0max = vr1max;
9012     }
9013 
9014   return;
9015 }
9016 
9017 
9018 /* Intersect the two value-ranges *VR0 and *VR1 and store the result
9019    in *VR0.  This may not be the smallest possible such range.  */
9020 
9021 static void
9022 vrp_intersect_ranges_1 (value_range *vr0, value_range *vr1)
9023 {
9024   value_range saved;
9025 
9026   /* If either range is VR_VARYING the other one wins.  */
9027   if (vr1->type == VR_VARYING)
9028     return;
9029   if (vr0->type == VR_VARYING)
9030     {
9031       copy_value_range (vr0, vr1);
9032       return;
9033     }
9034 
9035   /* When either range is VR_UNDEFINED the resulting range is
9036      VR_UNDEFINED, too.  */
9037   if (vr0->type == VR_UNDEFINED)
9038     return;
9039   if (vr1->type == VR_UNDEFINED)
9040     {
9041       set_value_range_to_undefined (vr0);
9042       return;
9043     }
9044 
9045   /* Save the original vr0 so we can return it as conservative intersection
9046      result when our worker turns things to varying.  */
9047   saved = *vr0;
9048   intersect_ranges (&vr0->type, &vr0->min, &vr0->max,
9049 		    vr1->type, vr1->min, vr1->max);
9050   /* Make sure to canonicalize the result though as the inversion of a
9051      VR_RANGE can still be a VR_RANGE.  */
9052   set_and_canonicalize_value_range (vr0, vr0->type,
9053 				    vr0->min, vr0->max, vr0->equiv);
9054   /* If that failed, use the saved original VR0.  */
9055   if (vr0->type == VR_VARYING)
9056     {
9057       *vr0 = saved;
9058       return;
9059     }
9060   /* If the result is VR_UNDEFINED there is no need to mess with
9061      the equivalencies.  */
9062   if (vr0->type == VR_UNDEFINED)
9063     return;
9064 
9065   /* The resulting set of equivalences for range intersection is the union of
9066      the two sets.  */
9067   if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
9068     bitmap_ior_into (vr0->equiv, vr1->equiv);
9069   else if (vr1->equiv && !vr0->equiv)
9070     {
9071       vr0->equiv = BITMAP_ALLOC (&vrp_equiv_obstack);
9072       bitmap_copy (vr0->equiv, vr1->equiv);
9073     }
9074 }
9075 
9076 void
9077 vrp_intersect_ranges (value_range *vr0, value_range *vr1)
9078 {
9079   if (dump_file && (dump_flags & TDF_DETAILS))
9080     {
9081       fprintf (dump_file, "Intersecting\n  ");
9082       dump_value_range (dump_file, vr0);
9083       fprintf (dump_file, "\nand\n  ");
9084       dump_value_range (dump_file, vr1);
9085       fprintf (dump_file, "\n");
9086     }
9087   vrp_intersect_ranges_1 (vr0, vr1);
9088   if (dump_file && (dump_flags & TDF_DETAILS))
9089     {
9090       fprintf (dump_file, "to\n  ");
9091       dump_value_range (dump_file, vr0);
9092       fprintf (dump_file, "\n");
9093     }
9094 }
9095 
9096 /* Meet operation for value ranges.  Given two value ranges VR0 and
9097    VR1, store in VR0 a range that contains both VR0 and VR1.  This
9098    may not be the smallest possible such range.  */
9099 
9100 static void
9101 vrp_meet_1 (value_range *vr0, const value_range *vr1)
9102 {
9103   value_range saved;
9104 
9105   if (vr0->type == VR_UNDEFINED)
9106     {
9107       set_value_range (vr0, vr1->type, vr1->min, vr1->max, vr1->equiv);
9108       return;
9109     }
9110 
9111   if (vr1->type == VR_UNDEFINED)
9112     {
9113       /* VR0 already has the resulting range.  */
9114       return;
9115     }
9116 
9117   if (vr0->type == VR_VARYING)
9118     {
9119       /* Nothing to do.  VR0 already has the resulting range.  */
9120       return;
9121     }
9122 
9123   if (vr1->type == VR_VARYING)
9124     {
9125       set_value_range_to_varying (vr0);
9126       return;
9127     }
9128 
9129   saved = *vr0;
9130   union_ranges (&vr0->type, &vr0->min, &vr0->max,
9131 		vr1->type, vr1->min, vr1->max);
9132   if (vr0->type == VR_VARYING)
9133     {
9134       /* Failed to find an efficient meet.  Before giving up and setting
9135 	 the result to VARYING, see if we can at least derive a useful
9136 	 anti-range.  FIXME, all this nonsense about distinguishing
9137 	 anti-ranges from ranges is necessary because of the odd
9138 	 semantics of range_includes_zero_p and friends.  */
9139       if (((saved.type == VR_RANGE
9140 	    && range_includes_zero_p (saved.min, saved.max) == 0)
9141 	   || (saved.type == VR_ANTI_RANGE
9142 	       && range_includes_zero_p (saved.min, saved.max) == 1))
9143 	  && ((vr1->type == VR_RANGE
9144 	       && range_includes_zero_p (vr1->min, vr1->max) == 0)
9145 	      || (vr1->type == VR_ANTI_RANGE
9146 		  && range_includes_zero_p (vr1->min, vr1->max) == 1)))
9147 	{
9148 	  set_value_range_to_nonnull (vr0, TREE_TYPE (saved.min));
9149 
9150 	  /* Since this meet operation did not result from the meeting of
9151 	     two equivalent names, VR0 cannot have any equivalences.  */
9152 	  if (vr0->equiv)
9153 	    bitmap_clear (vr0->equiv);
9154 	  return;
9155 	}
9156 
9157       set_value_range_to_varying (vr0);
9158       return;
9159     }
9160   set_and_canonicalize_value_range (vr0, vr0->type, vr0->min, vr0->max,
9161 				    vr0->equiv);
9162   if (vr0->type == VR_VARYING)
9163     return;
9164 
9165   /* The resulting set of equivalences is always the intersection of
9166      the two sets.  */
9167   if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
9168     bitmap_and_into (vr0->equiv, vr1->equiv);
9169   else if (vr0->equiv && !vr1->equiv)
9170     bitmap_clear (vr0->equiv);
9171 }
9172 
9173 void
9174 vrp_meet (value_range *vr0, const value_range *vr1)
9175 {
9176   if (dump_file && (dump_flags & TDF_DETAILS))
9177     {
9178       fprintf (dump_file, "Meeting\n  ");
9179       dump_value_range (dump_file, vr0);
9180       fprintf (dump_file, "\nand\n  ");
9181       dump_value_range (dump_file, vr1);
9182       fprintf (dump_file, "\n");
9183     }
9184   vrp_meet_1 (vr0, vr1);
9185   if (dump_file && (dump_flags & TDF_DETAILS))
9186     {
9187       fprintf (dump_file, "to\n  ");
9188       dump_value_range (dump_file, vr0);
9189       fprintf (dump_file, "\n");
9190     }
9191 }
9192 
9193 
9194 /* Visit all arguments for PHI node PHI that flow through executable
9195    edges.  If a valid value range can be derived from all the incoming
9196    value ranges, set a new range in VR_RESULT.  */
9197 
9198 static void
9199 extract_range_from_phi_node (gphi *phi, value_range *vr_result)
9200 {
9201   size_t i;
9202   tree lhs = PHI_RESULT (phi);
9203   value_range *lhs_vr = get_value_range (lhs);
9204   bool first = true;
9205   int edges, old_edges;
9206   struct loop *l;
9207 
9208   if (dump_file && (dump_flags & TDF_DETAILS))
9209     {
9210       fprintf (dump_file, "\nVisiting PHI node: ");
9211       print_gimple_stmt (dump_file, phi, 0, dump_flags);
9212     }
9213 
9214   bool may_simulate_backedge_again = false;
9215   edges = 0;
9216   for (i = 0; i < gimple_phi_num_args (phi); i++)
9217     {
9218       edge e = gimple_phi_arg_edge (phi, i);
9219 
9220       if (dump_file && (dump_flags & TDF_DETAILS))
9221 	{
9222 	  fprintf (dump_file,
9223 	      "    Argument #%d (%d -> %d %sexecutable)\n",
9224 	      (int) i, e->src->index, e->dest->index,
9225 	      (e->flags & EDGE_EXECUTABLE) ? "" : "not ");
9226 	}
9227 
9228       if (e->flags & EDGE_EXECUTABLE)
9229 	{
9230 	  tree arg = PHI_ARG_DEF (phi, i);
9231 	  value_range vr_arg;
9232 
9233 	  ++edges;
9234 
9235 	  if (TREE_CODE (arg) == SSA_NAME)
9236 	    {
9237 	      /* See if we are eventually going to change one of the args.  */
9238 	      gimple *def_stmt = SSA_NAME_DEF_STMT (arg);
9239 	      if (! gimple_nop_p (def_stmt)
9240 		  && prop_simulate_again_p (def_stmt)
9241 		  && e->flags & EDGE_DFS_BACK)
9242 		may_simulate_backedge_again = true;
9243 
9244 	      vr_arg = *(get_value_range (arg));
9245 	      /* Do not allow equivalences or symbolic ranges to leak in from
9246 		 backedges.  That creates invalid equivalencies.
9247 		 See PR53465 and PR54767.  */
9248 	      if (e->flags & EDGE_DFS_BACK)
9249 		{
9250 		  if (vr_arg.type == VR_RANGE
9251 		      || vr_arg.type == VR_ANTI_RANGE)
9252 		    {
9253 		      vr_arg.equiv = NULL;
9254 		      if (symbolic_range_p (&vr_arg))
9255 			{
9256 			  vr_arg.type = VR_VARYING;
9257 			  vr_arg.min = NULL_TREE;
9258 			  vr_arg.max = NULL_TREE;
9259 			}
9260 		    }
9261 		}
9262 	      else
9263 		{
9264 		  /* If the non-backedge arguments range is VR_VARYING then
9265 		     we can still try recording a simple equivalence.  */
9266 		  if (vr_arg.type == VR_VARYING)
9267 		    {
9268 		      vr_arg.type = VR_RANGE;
9269 		      vr_arg.min = arg;
9270 		      vr_arg.max = arg;
9271 		      vr_arg.equiv = NULL;
9272 		    }
9273 		}
9274 	    }
9275 	  else
9276 	    {
9277 	      if (TREE_OVERFLOW_P (arg))
9278 		arg = drop_tree_overflow (arg);
9279 
9280 	      vr_arg.type = VR_RANGE;
9281 	      vr_arg.min = arg;
9282 	      vr_arg.max = arg;
9283 	      vr_arg.equiv = NULL;
9284 	    }
9285 
9286 	  if (dump_file && (dump_flags & TDF_DETAILS))
9287 	    {
9288 	      fprintf (dump_file, "\t");
9289 	      print_generic_expr (dump_file, arg, dump_flags);
9290 	      fprintf (dump_file, ": ");
9291 	      dump_value_range (dump_file, &vr_arg);
9292 	      fprintf (dump_file, "\n");
9293 	    }
9294 
9295 	  if (first)
9296 	    copy_value_range (vr_result, &vr_arg);
9297 	  else
9298 	    vrp_meet (vr_result, &vr_arg);
9299 	  first = false;
9300 
9301 	  if (vr_result->type == VR_VARYING)
9302 	    break;
9303 	}
9304     }
9305 
9306   if (vr_result->type == VR_VARYING)
9307     goto varying;
9308   else if (vr_result->type == VR_UNDEFINED)
9309     goto update_range;
9310 
9311   old_edges = vr_phi_edge_counts[SSA_NAME_VERSION (lhs)];
9312   vr_phi_edge_counts[SSA_NAME_VERSION (lhs)] = edges;
9313 
9314   /* To prevent infinite iterations in the algorithm, derive ranges
9315      when the new value is slightly bigger or smaller than the
9316      previous one.  We don't do this if we have seen a new executable
9317      edge; this helps us avoid an overflow infinity for conditionals
9318      which are not in a loop.  If the old value-range was VR_UNDEFINED
9319      use the updated range and iterate one more time.  If we will not
9320      simulate this PHI again via the backedge allow us to iterate.  */
9321   if (edges > 0
9322       && gimple_phi_num_args (phi) > 1
9323       && edges == old_edges
9324       && lhs_vr->type != VR_UNDEFINED
9325       && may_simulate_backedge_again)
9326     {
9327       /* Compare old and new ranges, fall back to varying if the
9328          values are not comparable.  */
9329       int cmp_min = compare_values (lhs_vr->min, vr_result->min);
9330       if (cmp_min == -2)
9331 	goto varying;
9332       int cmp_max = compare_values (lhs_vr->max, vr_result->max);
9333       if (cmp_max == -2)
9334 	goto varying;
9335 
9336       /* For non VR_RANGE or for pointers fall back to varying if
9337 	 the range changed.  */
9338       if ((lhs_vr->type != VR_RANGE || vr_result->type != VR_RANGE
9339 	   || POINTER_TYPE_P (TREE_TYPE (lhs)))
9340 	  && (cmp_min != 0 || cmp_max != 0))
9341 	goto varying;
9342 
9343       /* If the new minimum is larger than the previous one
9344 	 retain the old value.  If the new minimum value is smaller
9345 	 than the previous one and not -INF go all the way to -INF + 1.
9346 	 In the first case, to avoid infinite bouncing between different
9347 	 minimums, and in the other case to avoid iterating millions of
9348 	 times to reach -INF.  Going to -INF + 1 also lets the following
9349 	 iteration compute whether there will be any overflow, at the
9350 	 expense of one additional iteration.  */
9351       if (cmp_min < 0)
9352 	vr_result->min = lhs_vr->min;
9353       else if (cmp_min > 0
9354 	       && !vrp_val_is_min (vr_result->min))
9355 	vr_result->min
9356 	  = int_const_binop (PLUS_EXPR,
9357 			     vrp_val_min (TREE_TYPE (vr_result->min)),
9358 			     build_int_cst (TREE_TYPE (vr_result->min), 1));
9359 
9360       /* Similarly for the maximum value.  */
9361       if (cmp_max > 0)
9362 	vr_result->max = lhs_vr->max;
9363       else if (cmp_max < 0
9364 	       && !vrp_val_is_max (vr_result->max))
9365 	vr_result->max
9366 	  = int_const_binop (MINUS_EXPR,
9367 			     vrp_val_max (TREE_TYPE (vr_result->min)),
9368 			     build_int_cst (TREE_TYPE (vr_result->min), 1));
9369 
9370       /* If we dropped either bound to +-INF then if this is a loop
9371 	 PHI node SCEV may known more about its value-range.  */
9372       if (cmp_min > 0 || cmp_min < 0
9373 	   || cmp_max < 0 || cmp_max > 0)
9374 	goto scev_check;
9375 
9376       goto infinite_check;
9377     }
9378 
9379   goto update_range;
9380 
9381 varying:
9382   set_value_range_to_varying (vr_result);
9383 
9384 scev_check:
9385   /* If this is a loop PHI node SCEV may known more about its value-range.
9386      scev_check can be reached from two paths, one is a fall through from above
9387      "varying" label, the other is direct goto from code block which tries to
9388      avoid infinite simulation.  */
9389   if ((l = loop_containing_stmt (phi))
9390       && l->header == gimple_bb (phi))
9391     adjust_range_with_scev (vr_result, l, phi, lhs);
9392 
9393 infinite_check:
9394   /* If we will end up with a (-INF, +INF) range, set it to
9395      VARYING.  Same if the previous max value was invalid for
9396      the type and we end up with vr_result.min > vr_result.max.  */
9397   if ((vr_result->type == VR_RANGE || vr_result->type == VR_ANTI_RANGE)
9398       && !((vrp_val_is_max (vr_result->max) && vrp_val_is_min (vr_result->min))
9399 	   || compare_values (vr_result->min, vr_result->max) > 0))
9400     ;
9401   else
9402     set_value_range_to_varying (vr_result);
9403 
9404   /* If the new range is different than the previous value, keep
9405      iterating.  */
9406 update_range:
9407   return;
9408 }
9409 
9410 /* Visit all arguments for PHI node PHI that flow through executable
9411    edges.  If a valid value range can be derived from all the incoming
9412    value ranges, set a new range for the LHS of PHI.  */
9413 
9414 static enum ssa_prop_result
9415 vrp_visit_phi_node (gphi *phi)
9416 {
9417   tree lhs = PHI_RESULT (phi);
9418   value_range vr_result = VR_INITIALIZER;
9419   extract_range_from_phi_node (phi, &vr_result);
9420   if (update_value_range (lhs, &vr_result))
9421     {
9422       if (dump_file && (dump_flags & TDF_DETAILS))
9423 	{
9424 	  fprintf (dump_file, "Found new range for ");
9425 	  print_generic_expr (dump_file, lhs, 0);
9426 	  fprintf (dump_file, ": ");
9427 	  dump_value_range (dump_file, &vr_result);
9428 	  fprintf (dump_file, "\n");
9429 	}
9430 
9431       if (vr_result.type == VR_VARYING)
9432 	return SSA_PROP_VARYING;
9433 
9434       return SSA_PROP_INTERESTING;
9435     }
9436 
9437   /* Nothing changed, don't add outgoing edges.  */
9438   return SSA_PROP_NOT_INTERESTING;
9439 }
9440 
9441 /* Simplify boolean operations if the source is known
9442    to be already a boolean.  */
9443 static bool
9444 simplify_truth_ops_using_ranges (gimple_stmt_iterator *gsi, gimple *stmt)
9445 {
9446   enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
9447   tree lhs, op0, op1;
9448   bool need_conversion;
9449 
9450   /* We handle only !=/== case here.  */
9451   gcc_assert (rhs_code == EQ_EXPR || rhs_code == NE_EXPR);
9452 
9453   op0 = gimple_assign_rhs1 (stmt);
9454   if (!op_with_boolean_value_range_p (op0))
9455     return false;
9456 
9457   op1 = gimple_assign_rhs2 (stmt);
9458   if (!op_with_boolean_value_range_p (op1))
9459     return false;
9460 
9461   /* Reduce number of cases to handle to NE_EXPR.  As there is no
9462      BIT_XNOR_EXPR we cannot replace A == B with a single statement.  */
9463   if (rhs_code == EQ_EXPR)
9464     {
9465       if (TREE_CODE (op1) == INTEGER_CST)
9466 	op1 = int_const_binop (BIT_XOR_EXPR, op1,
9467 			       build_int_cst (TREE_TYPE (op1), 1));
9468       else
9469 	return false;
9470     }
9471 
9472   lhs = gimple_assign_lhs (stmt);
9473   need_conversion
9474     = !useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (op0));
9475 
9476   /* Make sure to not sign-extend a 1-bit 1 when converting the result.  */
9477   if (need_conversion
9478       && !TYPE_UNSIGNED (TREE_TYPE (op0))
9479       && TYPE_PRECISION (TREE_TYPE (op0)) == 1
9480       && TYPE_PRECISION (TREE_TYPE (lhs)) > 1)
9481     return false;
9482 
9483   /* For A != 0 we can substitute A itself.  */
9484   if (integer_zerop (op1))
9485     gimple_assign_set_rhs_with_ops (gsi,
9486 				    need_conversion
9487 				    ? NOP_EXPR : TREE_CODE (op0), op0);
9488   /* For A != B we substitute A ^ B.  Either with conversion.  */
9489   else if (need_conversion)
9490     {
9491       tree tem = make_ssa_name (TREE_TYPE (op0));
9492       gassign *newop
9493 	= gimple_build_assign (tem, BIT_XOR_EXPR, op0, op1);
9494       gsi_insert_before (gsi, newop, GSI_SAME_STMT);
9495       if (INTEGRAL_TYPE_P (TREE_TYPE (tem))
9496 	  && TYPE_PRECISION (TREE_TYPE (tem)) > 1)
9497 	set_range_info (tem, VR_RANGE,
9498 			wi::zero (TYPE_PRECISION (TREE_TYPE (tem))),
9499 			wi::one (TYPE_PRECISION (TREE_TYPE (tem))));
9500       gimple_assign_set_rhs_with_ops (gsi, NOP_EXPR, tem);
9501     }
9502   /* Or without.  */
9503   else
9504     gimple_assign_set_rhs_with_ops (gsi, BIT_XOR_EXPR, op0, op1);
9505   update_stmt (gsi_stmt (*gsi));
9506   fold_stmt (gsi, follow_single_use_edges);
9507 
9508   return true;
9509 }
9510 
9511 /* Simplify a division or modulo operator to a right shift or bitwise and
9512    if the first operand is unsigned or is greater than zero and the second
9513    operand is an exact power of two.  For TRUNC_MOD_EXPR op0 % op1 with
9514    constant op1 (op1min = op1) or with op1 in [op1min, op1max] range,
9515    optimize it into just op0 if op0's range is known to be a subset of
9516    [-op1min + 1, op1min - 1] for signed and [0, op1min - 1] for unsigned
9517    modulo.  */
9518 
9519 static bool
9520 simplify_div_or_mod_using_ranges (gimple_stmt_iterator *gsi, gimple *stmt)
9521 {
9522   enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
9523   tree val = NULL;
9524   tree op0 = gimple_assign_rhs1 (stmt);
9525   tree op1 = gimple_assign_rhs2 (stmt);
9526   tree op0min = NULL_TREE, op0max = NULL_TREE;
9527   tree op1min = op1;
9528   value_range *vr = NULL;
9529 
9530   if (TREE_CODE (op0) == INTEGER_CST)
9531     {
9532       op0min = op0;
9533       op0max = op0;
9534     }
9535   else
9536     {
9537       vr = get_value_range (op0);
9538       if (range_int_cst_p (vr))
9539 	{
9540 	  op0min = vr->min;
9541 	  op0max = vr->max;
9542 	}
9543     }
9544 
9545   if (rhs_code == TRUNC_MOD_EXPR
9546       && TREE_CODE (op1) == SSA_NAME)
9547     {
9548       value_range *vr1 = get_value_range (op1);
9549       if (range_int_cst_p (vr1))
9550 	op1min = vr1->min;
9551     }
9552   if (rhs_code == TRUNC_MOD_EXPR
9553       && TREE_CODE (op1min) == INTEGER_CST
9554       && tree_int_cst_sgn (op1min) == 1
9555       && op0max
9556       && tree_int_cst_lt (op0max, op1min))
9557     {
9558       if (TYPE_UNSIGNED (TREE_TYPE (op0))
9559 	  || tree_int_cst_sgn (op0min) >= 0
9560 	  || tree_int_cst_lt (fold_unary (NEGATE_EXPR, TREE_TYPE (op1min), op1min),
9561 			      op0min))
9562 	{
9563 	  /* If op0 already has the range op0 % op1 has,
9564 	     then TRUNC_MOD_EXPR won't change anything.  */
9565 	  gimple_assign_set_rhs_from_tree (gsi, op0);
9566 	  return true;
9567 	}
9568     }
9569 
9570   if (TREE_CODE (op0) != SSA_NAME)
9571     return false;
9572 
9573   if (!integer_pow2p (op1))
9574     {
9575       /* X % -Y can be only optimized into X % Y either if
9576 	 X is not INT_MIN, or Y is not -1.  Fold it now, as after
9577 	 remove_range_assertions the range info might be not available
9578 	 anymore.  */
9579       if (rhs_code == TRUNC_MOD_EXPR
9580 	  && fold_stmt (gsi, follow_single_use_edges))
9581 	return true;
9582       return false;
9583     }
9584 
9585   if (TYPE_UNSIGNED (TREE_TYPE (op0)))
9586     val = integer_one_node;
9587   else
9588     {
9589       bool sop = false;
9590 
9591       val = compare_range_with_value (GE_EXPR, vr, integer_zero_node, &sop);
9592 
9593       if (val
9594 	  && sop
9595 	  && integer_onep (val)
9596 	  && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC))
9597 	{
9598 	  location_t location;
9599 
9600 	  if (!gimple_has_location (stmt))
9601 	    location = input_location;
9602 	  else
9603 	    location = gimple_location (stmt);
9604 	  warning_at (location, OPT_Wstrict_overflow,
9605 		      "assuming signed overflow does not occur when "
9606 		      "simplifying %</%> or %<%%%> to %<>>%> or %<&%>");
9607 	}
9608     }
9609 
9610   if (val && integer_onep (val))
9611     {
9612       tree t;
9613 
9614       if (rhs_code == TRUNC_DIV_EXPR)
9615 	{
9616 	  t = build_int_cst (integer_type_node, tree_log2 (op1));
9617 	  gimple_assign_set_rhs_code (stmt, RSHIFT_EXPR);
9618 	  gimple_assign_set_rhs1 (stmt, op0);
9619 	  gimple_assign_set_rhs2 (stmt, t);
9620 	}
9621       else
9622 	{
9623 	  t = build_int_cst (TREE_TYPE (op1), 1);
9624 	  t = int_const_binop (MINUS_EXPR, op1, t);
9625 	  t = fold_convert (TREE_TYPE (op0), t);
9626 
9627 	  gimple_assign_set_rhs_code (stmt, BIT_AND_EXPR);
9628 	  gimple_assign_set_rhs1 (stmt, op0);
9629 	  gimple_assign_set_rhs2 (stmt, t);
9630 	}
9631 
9632       update_stmt (stmt);
9633       fold_stmt (gsi, follow_single_use_edges);
9634       return true;
9635     }
9636 
9637   return false;
9638 }
9639 
9640 /* Simplify a min or max if the ranges of the two operands are
9641    disjoint.   Return true if we do simplify.  */
9642 
9643 static bool
9644 simplify_min_or_max_using_ranges (gimple_stmt_iterator *gsi, gimple *stmt)
9645 {
9646   tree op0 = gimple_assign_rhs1 (stmt);
9647   tree op1 = gimple_assign_rhs2 (stmt);
9648   bool sop = false;
9649   tree val;
9650 
9651   val = (vrp_evaluate_conditional_warnv_with_ops_using_ranges
9652 	 (LE_EXPR, op0, op1, &sop));
9653   if (!val)
9654     {
9655       sop = false;
9656       val = (vrp_evaluate_conditional_warnv_with_ops_using_ranges
9657 	     (LT_EXPR, op0, op1, &sop));
9658     }
9659 
9660   if (val)
9661     {
9662       if (sop && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC))
9663 	{
9664 	  location_t location;
9665 
9666 	  if (!gimple_has_location (stmt))
9667 	    location = input_location;
9668 	  else
9669 	    location = gimple_location (stmt);
9670 	  warning_at (location, OPT_Wstrict_overflow,
9671 		      "assuming signed overflow does not occur when "
9672 		      "simplifying %<min/max (X,Y)%> to %<X%> or %<Y%>");
9673 	}
9674 
9675       /* VAL == TRUE -> OP0 < or <= op1
9676 	 VAL == FALSE -> OP0 > or >= op1.  */
9677       tree res = ((gimple_assign_rhs_code (stmt) == MAX_EXPR)
9678 		  == integer_zerop (val)) ? op0 : op1;
9679       gimple_assign_set_rhs_from_tree (gsi, res);
9680       return true;
9681     }
9682 
9683   return false;
9684 }
9685 
9686 /* If the operand to an ABS_EXPR is >= 0, then eliminate the
9687    ABS_EXPR.  If the operand is <= 0, then simplify the
9688    ABS_EXPR into a NEGATE_EXPR.  */
9689 
9690 static bool
9691 simplify_abs_using_ranges (gimple_stmt_iterator *gsi, gimple *stmt)
9692 {
9693   tree op = gimple_assign_rhs1 (stmt);
9694   value_range *vr = get_value_range (op);
9695 
9696   if (vr)
9697     {
9698       tree val = NULL;
9699       bool sop = false;
9700 
9701       val = compare_range_with_value (LE_EXPR, vr, integer_zero_node, &sop);
9702       if (!val)
9703 	{
9704 	  /* The range is neither <= 0 nor > 0.  Now see if it is
9705 	     either < 0 or >= 0.  */
9706 	  sop = false;
9707 	  val = compare_range_with_value (LT_EXPR, vr, integer_zero_node,
9708 					  &sop);
9709 	}
9710 
9711       if (val)
9712 	{
9713 	  if (sop && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC))
9714 	    {
9715 	      location_t location;
9716 
9717 	      if (!gimple_has_location (stmt))
9718 		location = input_location;
9719 	      else
9720 		location = gimple_location (stmt);
9721 	      warning_at (location, OPT_Wstrict_overflow,
9722 			  "assuming signed overflow does not occur when "
9723 			  "simplifying %<abs (X)%> to %<X%> or %<-X%>");
9724 	    }
9725 
9726 	  gimple_assign_set_rhs1 (stmt, op);
9727 	  if (integer_zerop (val))
9728 	    gimple_assign_set_rhs_code (stmt, SSA_NAME);
9729 	  else
9730 	    gimple_assign_set_rhs_code (stmt, NEGATE_EXPR);
9731 	  update_stmt (stmt);
9732 	  fold_stmt (gsi, follow_single_use_edges);
9733 	  return true;
9734 	}
9735     }
9736 
9737   return false;
9738 }
9739 
9740 /* Optimize away redundant BIT_AND_EXPR and BIT_IOR_EXPR.
9741    If all the bits that are being cleared by & are already
9742    known to be zero from VR, or all the bits that are being
9743    set by | are already known to be one from VR, the bit
9744    operation is redundant.  */
9745 
9746 static bool
9747 simplify_bit_ops_using_ranges (gimple_stmt_iterator *gsi, gimple *stmt)
9748 {
9749   tree op0 = gimple_assign_rhs1 (stmt);
9750   tree op1 = gimple_assign_rhs2 (stmt);
9751   tree op = NULL_TREE;
9752   value_range vr0 = VR_INITIALIZER;
9753   value_range vr1 = VR_INITIALIZER;
9754   wide_int may_be_nonzero0, may_be_nonzero1;
9755   wide_int must_be_nonzero0, must_be_nonzero1;
9756   wide_int mask;
9757 
9758   if (TREE_CODE (op0) == SSA_NAME)
9759     vr0 = *(get_value_range (op0));
9760   else if (is_gimple_min_invariant (op0))
9761     set_value_range_to_value (&vr0, op0, NULL);
9762   else
9763     return false;
9764 
9765   if (TREE_CODE (op1) == SSA_NAME)
9766     vr1 = *(get_value_range (op1));
9767   else if (is_gimple_min_invariant (op1))
9768     set_value_range_to_value (&vr1, op1, NULL);
9769   else
9770     return false;
9771 
9772   if (!zero_nonzero_bits_from_vr (TREE_TYPE (op0), &vr0, &may_be_nonzero0,
9773 				  &must_be_nonzero0))
9774     return false;
9775   if (!zero_nonzero_bits_from_vr (TREE_TYPE (op1), &vr1, &may_be_nonzero1,
9776 				  &must_be_nonzero1))
9777     return false;
9778 
9779   switch (gimple_assign_rhs_code (stmt))
9780     {
9781     case BIT_AND_EXPR:
9782       mask = may_be_nonzero0.and_not (must_be_nonzero1);
9783       if (mask == 0)
9784 	{
9785 	  op = op0;
9786 	  break;
9787 	}
9788       mask = may_be_nonzero1.and_not (must_be_nonzero0);
9789       if (mask == 0)
9790 	{
9791 	  op = op1;
9792 	  break;
9793 	}
9794       break;
9795     case BIT_IOR_EXPR:
9796       mask = may_be_nonzero0.and_not (must_be_nonzero1);
9797       if (mask == 0)
9798 	{
9799 	  op = op1;
9800 	  break;
9801 	}
9802       mask = may_be_nonzero1.and_not (must_be_nonzero0);
9803       if (mask == 0)
9804 	{
9805 	  op = op0;
9806 	  break;
9807 	}
9808       break;
9809     default:
9810       gcc_unreachable ();
9811     }
9812 
9813   if (op == NULL_TREE)
9814     return false;
9815 
9816   gimple_assign_set_rhs_with_ops (gsi, TREE_CODE (op), op);
9817   update_stmt (gsi_stmt (*gsi));
9818   return true;
9819 }
9820 
9821 /* We are comparing trees OP0 and OP1 using COND_CODE.  OP0 has
9822    a known value range VR.
9823 
9824    If there is one and only one value which will satisfy the
9825    conditional, then return that value.  Else return NULL.
9826 
9827    If signed overflow must be undefined for the value to satisfy
9828    the conditional, then set *STRICT_OVERFLOW_P to true.  */
9829 
9830 static tree
9831 test_for_singularity (enum tree_code cond_code, tree op0,
9832 		      tree op1, value_range *vr,
9833 		      bool *strict_overflow_p)
9834 {
9835   tree min = NULL;
9836   tree max = NULL;
9837 
9838   /* Extract minimum/maximum values which satisfy the conditional as it was
9839      written.  */
9840   if (cond_code == LE_EXPR || cond_code == LT_EXPR)
9841     {
9842       /* This should not be negative infinity; there is no overflow
9843 	 here.  */
9844       min = TYPE_MIN_VALUE (TREE_TYPE (op0));
9845 
9846       max = op1;
9847       if (cond_code == LT_EXPR && !is_overflow_infinity (max))
9848 	{
9849 	  tree one = build_int_cst (TREE_TYPE (op0), 1);
9850 	  max = fold_build2 (MINUS_EXPR, TREE_TYPE (op0), max, one);
9851 	  if (EXPR_P (max))
9852 	    TREE_NO_WARNING (max) = 1;
9853 	}
9854     }
9855   else if (cond_code == GE_EXPR || cond_code == GT_EXPR)
9856     {
9857       /* This should not be positive infinity; there is no overflow
9858 	 here.  */
9859       max = TYPE_MAX_VALUE (TREE_TYPE (op0));
9860 
9861       min = op1;
9862       if (cond_code == GT_EXPR && !is_overflow_infinity (min))
9863 	{
9864 	  tree one = build_int_cst (TREE_TYPE (op0), 1);
9865 	  min = fold_build2 (PLUS_EXPR, TREE_TYPE (op0), min, one);
9866 	  if (EXPR_P (min))
9867 	    TREE_NO_WARNING (min) = 1;
9868 	}
9869     }
9870 
9871   /* Now refine the minimum and maximum values using any
9872      value range information we have for op0.  */
9873   if (min && max)
9874     {
9875       if (compare_values (vr->min, min) == 1)
9876 	min = vr->min;
9877       if (compare_values (vr->max, max) == -1)
9878 	max = vr->max;
9879 
9880       /* If the new min/max values have converged to a single value,
9881 	 then there is only one value which can satisfy the condition,
9882 	 return that value.  */
9883       if (operand_equal_p (min, max, 0) && is_gimple_min_invariant (min))
9884 	{
9885 	  if ((cond_code == LE_EXPR || cond_code == LT_EXPR)
9886 	      && is_overflow_infinity (vr->max))
9887 	    *strict_overflow_p = true;
9888 	  if ((cond_code == GE_EXPR || cond_code == GT_EXPR)
9889 	      && is_overflow_infinity (vr->min))
9890 	    *strict_overflow_p = true;
9891 
9892 	  return min;
9893 	}
9894     }
9895   return NULL;
9896 }
9897 
9898 /* Return whether the value range *VR fits in an integer type specified
9899    by PRECISION and UNSIGNED_P.  */
9900 
9901 static bool
9902 range_fits_type_p (value_range *vr, unsigned dest_precision, signop dest_sgn)
9903 {
9904   tree src_type;
9905   unsigned src_precision;
9906   widest_int tem;
9907   signop src_sgn;
9908 
9909   /* We can only handle integral and pointer types.  */
9910   src_type = TREE_TYPE (vr->min);
9911   if (!INTEGRAL_TYPE_P (src_type)
9912       && !POINTER_TYPE_P (src_type))
9913     return false;
9914 
9915   /* An extension is fine unless VR is SIGNED and dest_sgn is UNSIGNED,
9916      and so is an identity transform.  */
9917   src_precision = TYPE_PRECISION (TREE_TYPE (vr->min));
9918   src_sgn = TYPE_SIGN (src_type);
9919   if ((src_precision < dest_precision
9920        && !(dest_sgn == UNSIGNED && src_sgn == SIGNED))
9921       || (src_precision == dest_precision && src_sgn == dest_sgn))
9922     return true;
9923 
9924   /* Now we can only handle ranges with constant bounds.  */
9925   if (vr->type != VR_RANGE
9926       || TREE_CODE (vr->min) != INTEGER_CST
9927       || TREE_CODE (vr->max) != INTEGER_CST)
9928     return false;
9929 
9930   /* For sign changes, the MSB of the wide_int has to be clear.
9931      An unsigned value with its MSB set cannot be represented by
9932      a signed wide_int, while a negative value cannot be represented
9933      by an unsigned wide_int.  */
9934   if (src_sgn != dest_sgn
9935       && (wi::lts_p (vr->min, 0) || wi::lts_p (vr->max, 0)))
9936     return false;
9937 
9938   /* Then we can perform the conversion on both ends and compare
9939      the result for equality.  */
9940   tem = wi::ext (wi::to_widest (vr->min), dest_precision, dest_sgn);
9941   if (tem != wi::to_widest (vr->min))
9942     return false;
9943   tem = wi::ext (wi::to_widest (vr->max), dest_precision, dest_sgn);
9944   if (tem != wi::to_widest (vr->max))
9945     return false;
9946 
9947   return true;
9948 }
9949 
9950 /* Simplify a conditional using a relational operator to an equality
9951    test if the range information indicates only one value can satisfy
9952    the original conditional.  */
9953 
9954 static bool
9955 simplify_cond_using_ranges (gcond *stmt)
9956 {
9957   tree op0 = gimple_cond_lhs (stmt);
9958   tree op1 = gimple_cond_rhs (stmt);
9959   enum tree_code cond_code = gimple_cond_code (stmt);
9960 
9961   if (cond_code != NE_EXPR
9962       && cond_code != EQ_EXPR
9963       && TREE_CODE (op0) == SSA_NAME
9964       && INTEGRAL_TYPE_P (TREE_TYPE (op0))
9965       && is_gimple_min_invariant (op1))
9966     {
9967       value_range *vr = get_value_range (op0);
9968 
9969       /* If we have range information for OP0, then we might be
9970 	 able to simplify this conditional. */
9971       if (vr->type == VR_RANGE)
9972 	{
9973 	  enum warn_strict_overflow_code wc = WARN_STRICT_OVERFLOW_COMPARISON;
9974 	  bool sop = false;
9975 	  tree new_tree = test_for_singularity (cond_code, op0, op1, vr, &sop);
9976 
9977 	  if (new_tree
9978 	      && (!sop || TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (op0))))
9979 	    {
9980 	      if (dump_file)
9981 		{
9982 		  fprintf (dump_file, "Simplified relational ");
9983 		  print_gimple_stmt (dump_file, stmt, 0, 0);
9984 		  fprintf (dump_file, " into ");
9985 		}
9986 
9987 	      gimple_cond_set_code (stmt, EQ_EXPR);
9988 	      gimple_cond_set_lhs (stmt, op0);
9989 	      gimple_cond_set_rhs (stmt, new_tree);
9990 
9991 	      update_stmt (stmt);
9992 
9993 	      if (dump_file)
9994 		{
9995 		  print_gimple_stmt (dump_file, stmt, 0, 0);
9996 		  fprintf (dump_file, "\n");
9997 		}
9998 
9999 	      if (sop && issue_strict_overflow_warning (wc))
10000 	        {
10001 	          location_t location = input_location;
10002 	          if (gimple_has_location (stmt))
10003 		    location = gimple_location (stmt);
10004 
10005 	          warning_at (location, OPT_Wstrict_overflow,
10006 			      "assuming signed overflow does not occur when "
10007 			      "simplifying conditional");
10008 	        }
10009 
10010 	      return true;
10011 	    }
10012 
10013 	  /* Try again after inverting the condition.  We only deal
10014 	     with integral types here, so no need to worry about
10015 	     issues with inverting FP comparisons.  */
10016 	  sop = false;
10017 	  new_tree = test_for_singularity
10018 		       (invert_tree_comparison (cond_code, false),
10019 			op0, op1, vr, &sop);
10020 
10021 	  if (new_tree
10022 	      && (!sop || TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (op0))))
10023 	    {
10024 	      if (dump_file)
10025 		{
10026 		  fprintf (dump_file, "Simplified relational ");
10027 		  print_gimple_stmt (dump_file, stmt, 0, 0);
10028 		  fprintf (dump_file, " into ");
10029 		}
10030 
10031 	      gimple_cond_set_code (stmt, NE_EXPR);
10032 	      gimple_cond_set_lhs (stmt, op0);
10033 	      gimple_cond_set_rhs (stmt, new_tree);
10034 
10035 	      update_stmt (stmt);
10036 
10037 	      if (dump_file)
10038 		{
10039 		  print_gimple_stmt (dump_file, stmt, 0, 0);
10040 		  fprintf (dump_file, "\n");
10041 		}
10042 
10043 	      if (sop && issue_strict_overflow_warning (wc))
10044 	        {
10045 	          location_t location = input_location;
10046 	          if (gimple_has_location (stmt))
10047 		    location = gimple_location (stmt);
10048 
10049 	          warning_at (location, OPT_Wstrict_overflow,
10050 			      "assuming signed overflow does not occur when "
10051 			      "simplifying conditional");
10052 	        }
10053 
10054 	      return true;
10055 	    }
10056 	}
10057     }
10058 
10059   /* If we have a comparison of an SSA_NAME (OP0) against a constant,
10060      see if OP0 was set by a type conversion where the source of
10061      the conversion is another SSA_NAME with a range that fits
10062      into the range of OP0's type.
10063 
10064      If so, the conversion is redundant as the earlier SSA_NAME can be
10065      used for the comparison directly if we just massage the constant in the
10066      comparison.  */
10067   if (TREE_CODE (op0) == SSA_NAME
10068       && TREE_CODE (op1) == INTEGER_CST)
10069     {
10070       gimple *def_stmt = SSA_NAME_DEF_STMT (op0);
10071       tree innerop;
10072 
10073       if (!is_gimple_assign (def_stmt)
10074 	  || !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt)))
10075 	return false;
10076 
10077       innerop = gimple_assign_rhs1 (def_stmt);
10078 
10079       if (TREE_CODE (innerop) == SSA_NAME
10080 	  && !POINTER_TYPE_P (TREE_TYPE (innerop))
10081 	  && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (innerop)
10082 	  && desired_pro_or_demotion_p (TREE_TYPE (innerop), TREE_TYPE (op0)))
10083 	{
10084 	  value_range *vr = get_value_range (innerop);
10085 
10086 	  if (range_int_cst_p (vr)
10087 	      && range_fits_type_p (vr,
10088 				    TYPE_PRECISION (TREE_TYPE (op0)),
10089 				    TYPE_SIGN (TREE_TYPE (op0)))
10090 	      && int_fits_type_p (op1, TREE_TYPE (innerop))
10091 	      /* The range must not have overflowed, or if it did overflow
10092 		 we must not be wrapping/trapping overflow and optimizing
10093 		 with strict overflow semantics.  */
10094 	      && ((!is_negative_overflow_infinity (vr->min)
10095 	           && !is_positive_overflow_infinity (vr->max))
10096 		  || TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (innerop))))
10097 	    {
10098 	      /* If the range overflowed and the user has asked for warnings
10099 		 when strict overflow semantics were used to optimize code,
10100 		 issue an appropriate warning.  */
10101 	      if (cond_code != EQ_EXPR && cond_code != NE_EXPR
10102 		  && (is_negative_overflow_infinity (vr->min)
10103 		      || is_positive_overflow_infinity (vr->max))
10104 		  && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_CONDITIONAL))
10105 		{
10106 		  location_t location;
10107 
10108 		  if (!gimple_has_location (stmt))
10109 		    location = input_location;
10110 		  else
10111 		    location = gimple_location (stmt);
10112 		  warning_at (location, OPT_Wstrict_overflow,
10113 			      "assuming signed overflow does not occur when "
10114 			      "simplifying conditional");
10115 		}
10116 
10117 	      tree newconst = fold_convert (TREE_TYPE (innerop), op1);
10118 	      gimple_cond_set_lhs (stmt, innerop);
10119 	      gimple_cond_set_rhs (stmt, newconst);
10120 	      return true;
10121 	    }
10122 	}
10123     }
10124 
10125   return false;
10126 }
10127 
10128 /* Simplify a switch statement using the value range of the switch
10129    argument.  */
10130 
10131 static bool
10132 simplify_switch_using_ranges (gswitch *stmt)
10133 {
10134   tree op = gimple_switch_index (stmt);
10135   value_range *vr = NULL;
10136   bool take_default;
10137   edge e;
10138   edge_iterator ei;
10139   size_t i = 0, j = 0, n, n2;
10140   tree vec2;
10141   switch_update su;
10142   size_t k = 1, l = 0;
10143 
10144   if (TREE_CODE (op) == SSA_NAME)
10145     {
10146       vr = get_value_range (op);
10147 
10148       /* We can only handle integer ranges.  */
10149       if ((vr->type != VR_RANGE
10150 	   && vr->type != VR_ANTI_RANGE)
10151 	  || symbolic_range_p (vr))
10152 	return false;
10153 
10154       /* Find case label for min/max of the value range.  */
10155       take_default = !find_case_label_ranges (stmt, vr, &i, &j, &k, &l);
10156     }
10157   else if (TREE_CODE (op) == INTEGER_CST)
10158     {
10159       take_default = !find_case_label_index (stmt, 1, op, &i);
10160       if (take_default)
10161 	{
10162 	  i = 1;
10163 	  j = 0;
10164 	}
10165       else
10166 	{
10167 	  j = i;
10168 	}
10169     }
10170   else
10171     return false;
10172 
10173   n = gimple_switch_num_labels (stmt);
10174 
10175   /* We can truncate the case label ranges that partially overlap with OP's
10176      value range.  */
10177   size_t min_idx = 1, max_idx = 0;
10178   if (vr != NULL)
10179     find_case_label_range (stmt, vr->min, vr->max, &min_idx, &max_idx);
10180   if (min_idx <= max_idx)
10181     {
10182       tree min_label = gimple_switch_label (stmt, min_idx);
10183       tree max_label = gimple_switch_label (stmt, max_idx);
10184 
10185       /* Avoid changing the type of the case labels when truncating.  */
10186       tree case_label_type = TREE_TYPE (CASE_LOW (min_label));
10187       tree vr_min = fold_convert (case_label_type, vr->min);
10188       tree vr_max = fold_convert (case_label_type, vr->max);
10189 
10190       if (vr->type == VR_RANGE)
10191 	{
10192 	  /* If OP's value range is [2,8] and the low label range is
10193 	     0 ... 3, truncate the label's range to 2 .. 3.  */
10194 	  if (tree_int_cst_compare (CASE_LOW (min_label), vr_min) < 0
10195 	      && CASE_HIGH (min_label) != NULL_TREE
10196 	      && tree_int_cst_compare (CASE_HIGH (min_label), vr_min) >= 0)
10197 	    CASE_LOW (min_label) = vr_min;
10198 
10199 	  /* If OP's value range is [2,8] and the high label range is
10200 	     7 ... 10, truncate the label's range to 7 .. 8.  */
10201 	  if (tree_int_cst_compare (CASE_LOW (max_label), vr_max) <= 0
10202 	      && CASE_HIGH (max_label) != NULL_TREE
10203 	      && tree_int_cst_compare (CASE_HIGH (max_label), vr_max) > 0)
10204 	    CASE_HIGH (max_label) = vr_max;
10205 	}
10206       else if (vr->type == VR_ANTI_RANGE)
10207 	{
10208 	  tree one_cst = build_one_cst (case_label_type);
10209 
10210 	  if (min_label == max_label)
10211 	    {
10212 	      /* If OP's value range is ~[7,8] and the label's range is
10213 		 7 ... 10, truncate the label's range to 9 ... 10.  */
10214 	      if (tree_int_cst_compare (CASE_LOW (min_label), vr_min) == 0
10215 		  && CASE_HIGH (min_label) != NULL_TREE
10216 		  && tree_int_cst_compare (CASE_HIGH (min_label), vr_max) > 0)
10217 		CASE_LOW (min_label)
10218 		  = int_const_binop (PLUS_EXPR, vr_max, one_cst);
10219 
10220 	      /* If OP's value range is ~[7,8] and the label's range is
10221 		 5 ... 8, truncate the label's range to 5 ... 6.  */
10222 	      if (tree_int_cst_compare (CASE_LOW (min_label), vr_min) < 0
10223 		  && CASE_HIGH (min_label) != NULL_TREE
10224 		  && tree_int_cst_compare (CASE_HIGH (min_label), vr_max) == 0)
10225 		CASE_HIGH (min_label)
10226 		  = int_const_binop (MINUS_EXPR, vr_min, one_cst);
10227 	    }
10228 	  else
10229 	    {
10230 	      /* If OP's value range is ~[2,8] and the low label range is
10231 		 0 ... 3, truncate the label's range to 0 ... 1.  */
10232 	      if (tree_int_cst_compare (CASE_LOW (min_label), vr_min) < 0
10233 		  && CASE_HIGH (min_label) != NULL_TREE
10234 		  && tree_int_cst_compare (CASE_HIGH (min_label), vr_min) >= 0)
10235 		CASE_HIGH (min_label)
10236 		  = int_const_binop (MINUS_EXPR, vr_min, one_cst);
10237 
10238 	      /* If OP's value range is ~[2,8] and the high label range is
10239 		 7 ... 10, truncate the label's range to 9 ... 10.  */
10240 	      if (tree_int_cst_compare (CASE_LOW (max_label), vr_max) <= 0
10241 		  && CASE_HIGH (max_label) != NULL_TREE
10242 		  && tree_int_cst_compare (CASE_HIGH (max_label), vr_max) > 0)
10243 		CASE_LOW (max_label)
10244 		  = int_const_binop (PLUS_EXPR, vr_max, one_cst);
10245 	    }
10246 	}
10247 
10248       /* Canonicalize singleton case ranges.  */
10249       if (tree_int_cst_equal (CASE_LOW (min_label), CASE_HIGH (min_label)))
10250 	CASE_HIGH (min_label) = NULL_TREE;
10251       if (tree_int_cst_equal (CASE_LOW (max_label), CASE_HIGH (max_label)))
10252 	CASE_HIGH (max_label) = NULL_TREE;
10253     }
10254 
10255   /* We can also eliminate case labels that lie completely outside OP's value
10256      range.  */
10257 
10258   /* Bail out if this is just all edges taken.  */
10259   if (i == 1
10260       && j == n - 1
10261       && take_default)
10262     return false;
10263 
10264   /* Build a new vector of taken case labels.  */
10265   vec2 = make_tree_vec (j - i + 1 + l - k + 1 + (int)take_default);
10266   n2 = 0;
10267 
10268   /* Add the default edge, if necessary.  */
10269   if (take_default)
10270     TREE_VEC_ELT (vec2, n2++) = gimple_switch_default_label (stmt);
10271 
10272   for (; i <= j; ++i, ++n2)
10273     TREE_VEC_ELT (vec2, n2) = gimple_switch_label (stmt, i);
10274 
10275   for (; k <= l; ++k, ++n2)
10276     TREE_VEC_ELT (vec2, n2) = gimple_switch_label (stmt, k);
10277 
10278   /* Mark needed edges.  */
10279   for (i = 0; i < n2; ++i)
10280     {
10281       e = find_edge (gimple_bb (stmt),
10282 		     label_to_block (CASE_LABEL (TREE_VEC_ELT (vec2, i))));
10283       e->aux = (void *)-1;
10284     }
10285 
10286   /* Queue not needed edges for later removal.  */
10287   FOR_EACH_EDGE (e, ei, gimple_bb (stmt)->succs)
10288     {
10289       if (e->aux == (void *)-1)
10290 	{
10291 	  e->aux = NULL;
10292 	  continue;
10293 	}
10294 
10295       if (dump_file && (dump_flags & TDF_DETAILS))
10296 	{
10297 	  fprintf (dump_file, "removing unreachable case label\n");
10298 	}
10299       to_remove_edges.safe_push (e);
10300       e->flags &= ~EDGE_EXECUTABLE;
10301     }
10302 
10303   /* And queue an update for the stmt.  */
10304   su.stmt = stmt;
10305   su.vec = vec2;
10306   to_update_switch_stmts.safe_push (su);
10307   return false;
10308 }
10309 
10310 /* Simplify an integral conversion from an SSA name in STMT.  */
10311 
10312 static bool
10313 simplify_conversion_using_ranges (gimple_stmt_iterator *gsi, gimple *stmt)
10314 {
10315   tree innerop, middleop, finaltype;
10316   gimple *def_stmt;
10317   signop inner_sgn, middle_sgn, final_sgn;
10318   unsigned inner_prec, middle_prec, final_prec;
10319   widest_int innermin, innermed, innermax, middlemin, middlemed, middlemax;
10320 
10321   finaltype = TREE_TYPE (gimple_assign_lhs (stmt));
10322   if (!INTEGRAL_TYPE_P (finaltype))
10323     return false;
10324   middleop = gimple_assign_rhs1 (stmt);
10325   def_stmt = SSA_NAME_DEF_STMT (middleop);
10326   if (!is_gimple_assign (def_stmt)
10327       || !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt)))
10328     return false;
10329   innerop = gimple_assign_rhs1 (def_stmt);
10330   if (TREE_CODE (innerop) != SSA_NAME
10331       || SSA_NAME_OCCURS_IN_ABNORMAL_PHI (innerop))
10332     return false;
10333 
10334   /* Get the value-range of the inner operand.  Use get_range_info in
10335      case innerop was created during substitute-and-fold.  */
10336   wide_int imin, imax;
10337   if (!INTEGRAL_TYPE_P (TREE_TYPE (innerop))
10338       || get_range_info (innerop, &imin, &imax) != VR_RANGE)
10339     return false;
10340   innermin = widest_int::from (imin, TYPE_SIGN (TREE_TYPE (innerop)));
10341   innermax = widest_int::from (imax, TYPE_SIGN (TREE_TYPE (innerop)));
10342 
10343   /* Simulate the conversion chain to check if the result is equal if
10344      the middle conversion is removed.  */
10345   inner_prec = TYPE_PRECISION (TREE_TYPE (innerop));
10346   middle_prec = TYPE_PRECISION (TREE_TYPE (middleop));
10347   final_prec = TYPE_PRECISION (finaltype);
10348 
10349   /* If the first conversion is not injective, the second must not
10350      be widening.  */
10351   if (wi::gtu_p (innermax - innermin,
10352 		 wi::mask <widest_int> (middle_prec, false))
10353       && middle_prec < final_prec)
10354     return false;
10355   /* We also want a medium value so that we can track the effect that
10356      narrowing conversions with sign change have.  */
10357   inner_sgn = TYPE_SIGN (TREE_TYPE (innerop));
10358   if (inner_sgn == UNSIGNED)
10359     innermed = wi::shifted_mask <widest_int> (1, inner_prec - 1, false);
10360   else
10361     innermed = 0;
10362   if (wi::cmp (innermin, innermed, inner_sgn) >= 0
10363       || wi::cmp (innermed, innermax, inner_sgn) >= 0)
10364     innermed = innermin;
10365 
10366   middle_sgn = TYPE_SIGN (TREE_TYPE (middleop));
10367   middlemin = wi::ext (innermin, middle_prec, middle_sgn);
10368   middlemed = wi::ext (innermed, middle_prec, middle_sgn);
10369   middlemax = wi::ext (innermax, middle_prec, middle_sgn);
10370 
10371   /* Require that the final conversion applied to both the original
10372      and the intermediate range produces the same result.  */
10373   final_sgn = TYPE_SIGN (finaltype);
10374   if (wi::ext (middlemin, final_prec, final_sgn)
10375 	 != wi::ext (innermin, final_prec, final_sgn)
10376       || wi::ext (middlemed, final_prec, final_sgn)
10377 	 != wi::ext (innermed, final_prec, final_sgn)
10378       || wi::ext (middlemax, final_prec, final_sgn)
10379 	 != wi::ext (innermax, final_prec, final_sgn))
10380     return false;
10381 
10382   gimple_assign_set_rhs1 (stmt, innerop);
10383   fold_stmt (gsi, follow_single_use_edges);
10384   return true;
10385 }
10386 
10387 /* Simplify a conversion from integral SSA name to float in STMT.  */
10388 
10389 static bool
10390 simplify_float_conversion_using_ranges (gimple_stmt_iterator *gsi,
10391 					gimple *stmt)
10392 {
10393   tree rhs1 = gimple_assign_rhs1 (stmt);
10394   value_range *vr = get_value_range (rhs1);
10395   machine_mode fltmode = TYPE_MODE (TREE_TYPE (gimple_assign_lhs (stmt)));
10396   machine_mode mode;
10397   tree tem;
10398   gassign *conv;
10399 
10400   /* We can only handle constant ranges.  */
10401   if (vr->type != VR_RANGE
10402       || TREE_CODE (vr->min) != INTEGER_CST
10403       || TREE_CODE (vr->max) != INTEGER_CST)
10404     return false;
10405 
10406   /* First check if we can use a signed type in place of an unsigned.  */
10407   if (TYPE_UNSIGNED (TREE_TYPE (rhs1))
10408       && (can_float_p (fltmode, TYPE_MODE (TREE_TYPE (rhs1)), 0)
10409 	  != CODE_FOR_nothing)
10410       && range_fits_type_p (vr, TYPE_PRECISION (TREE_TYPE (rhs1)), SIGNED))
10411     mode = TYPE_MODE (TREE_TYPE (rhs1));
10412   /* If we can do the conversion in the current input mode do nothing.  */
10413   else if (can_float_p (fltmode, TYPE_MODE (TREE_TYPE (rhs1)),
10414 			TYPE_UNSIGNED (TREE_TYPE (rhs1))) != CODE_FOR_nothing)
10415     return false;
10416   /* Otherwise search for a mode we can use, starting from the narrowest
10417      integer mode available.  */
10418   else
10419     {
10420       mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
10421       do
10422 	{
10423 	  /* If we cannot do a signed conversion to float from mode
10424 	     or if the value-range does not fit in the signed type
10425 	     try with a wider mode.  */
10426 	  if (can_float_p (fltmode, mode, 0) != CODE_FOR_nothing
10427 	      && range_fits_type_p (vr, GET_MODE_PRECISION (mode), SIGNED))
10428 	    break;
10429 
10430 	  mode = GET_MODE_WIDER_MODE (mode);
10431 	  /* But do not widen the input.  Instead leave that to the
10432 	     optabs expansion code.  */
10433 	  if (GET_MODE_PRECISION (mode) > TYPE_PRECISION (TREE_TYPE (rhs1)))
10434 	    return false;
10435 	}
10436       while (mode != VOIDmode);
10437       if (mode == VOIDmode)
10438 	return false;
10439     }
10440 
10441   /* It works, insert a truncation or sign-change before the
10442      float conversion.  */
10443   tem = make_ssa_name (build_nonstandard_integer_type
10444 			  (GET_MODE_PRECISION (mode), 0));
10445   conv = gimple_build_assign (tem, NOP_EXPR, rhs1);
10446   gsi_insert_before (gsi, conv, GSI_SAME_STMT);
10447   gimple_assign_set_rhs1 (stmt, tem);
10448   fold_stmt (gsi, follow_single_use_edges);
10449 
10450   return true;
10451 }
10452 
10453 /* Simplify an internal fn call using ranges if possible.  */
10454 
10455 static bool
10456 simplify_internal_call_using_ranges (gimple_stmt_iterator *gsi, gimple *stmt)
10457 {
10458   enum tree_code subcode;
10459   bool is_ubsan = false;
10460   bool ovf = false;
10461   switch (gimple_call_internal_fn (stmt))
10462     {
10463     case IFN_UBSAN_CHECK_ADD:
10464       subcode = PLUS_EXPR;
10465       is_ubsan = true;
10466       break;
10467     case IFN_UBSAN_CHECK_SUB:
10468       subcode = MINUS_EXPR;
10469       is_ubsan = true;
10470       break;
10471     case IFN_UBSAN_CHECK_MUL:
10472       subcode = MULT_EXPR;
10473       is_ubsan = true;
10474       break;
10475     case IFN_ADD_OVERFLOW:
10476       subcode = PLUS_EXPR;
10477       break;
10478     case IFN_SUB_OVERFLOW:
10479       subcode = MINUS_EXPR;
10480       break;
10481     case IFN_MUL_OVERFLOW:
10482       subcode = MULT_EXPR;
10483       break;
10484     default:
10485       return false;
10486     }
10487 
10488   tree op0 = gimple_call_arg (stmt, 0);
10489   tree op1 = gimple_call_arg (stmt, 1);
10490   tree type;
10491   if (is_ubsan)
10492     {
10493       type = TREE_TYPE (op0);
10494       if (VECTOR_TYPE_P (type))
10495 	return false;
10496     }
10497   else if (gimple_call_lhs (stmt) == NULL_TREE)
10498     return false;
10499   else
10500     type = TREE_TYPE (TREE_TYPE (gimple_call_lhs (stmt)));
10501   if (!check_for_binary_op_overflow (subcode, type, op0, op1, &ovf)
10502       || (is_ubsan && ovf))
10503     return false;
10504 
10505   gimple *g;
10506   location_t loc = gimple_location (stmt);
10507   if (is_ubsan)
10508     g = gimple_build_assign (gimple_call_lhs (stmt), subcode, op0, op1);
10509   else
10510     {
10511       int prec = TYPE_PRECISION (type);
10512       tree utype = type;
10513       if (ovf
10514 	  || !useless_type_conversion_p (type, TREE_TYPE (op0))
10515 	  || !useless_type_conversion_p (type, TREE_TYPE (op1)))
10516 	utype = build_nonstandard_integer_type (prec, 1);
10517       if (TREE_CODE (op0) == INTEGER_CST)
10518 	op0 = fold_convert (utype, op0);
10519       else if (!useless_type_conversion_p (utype, TREE_TYPE (op0)))
10520 	{
10521 	  g = gimple_build_assign (make_ssa_name (utype), NOP_EXPR, op0);
10522 	  gimple_set_location (g, loc);
10523 	  gsi_insert_before (gsi, g, GSI_SAME_STMT);
10524 	  op0 = gimple_assign_lhs (g);
10525 	}
10526       if (TREE_CODE (op1) == INTEGER_CST)
10527 	op1 = fold_convert (utype, op1);
10528       else if (!useless_type_conversion_p (utype, TREE_TYPE (op1)))
10529 	{
10530 	  g = gimple_build_assign (make_ssa_name (utype), NOP_EXPR, op1);
10531 	  gimple_set_location (g, loc);
10532 	  gsi_insert_before (gsi, g, GSI_SAME_STMT);
10533 	  op1 = gimple_assign_lhs (g);
10534 	}
10535       g = gimple_build_assign (make_ssa_name (utype), subcode, op0, op1);
10536       gimple_set_location (g, loc);
10537       gsi_insert_before (gsi, g, GSI_SAME_STMT);
10538       if (utype != type)
10539 	{
10540 	  g = gimple_build_assign (make_ssa_name (type), NOP_EXPR,
10541 				   gimple_assign_lhs (g));
10542 	  gimple_set_location (g, loc);
10543 	  gsi_insert_before (gsi, g, GSI_SAME_STMT);
10544 	}
10545       g = gimple_build_assign (gimple_call_lhs (stmt), COMPLEX_EXPR,
10546 			       gimple_assign_lhs (g),
10547 			       build_int_cst (type, ovf));
10548     }
10549   gimple_set_location (g, loc);
10550   gsi_replace (gsi, g, false);
10551   return true;
10552 }
10553 
10554 /* Return true if VAR is a two-valued variable.  Set a and b with the
10555    two-values when it is true.  Return false otherwise.  */
10556 
10557 static bool
10558 two_valued_val_range_p (tree var, tree *a, tree *b)
10559 {
10560   value_range *vr = get_value_range (var);
10561   if ((vr->type != VR_RANGE
10562        && vr->type != VR_ANTI_RANGE)
10563       || TREE_CODE (vr->min) != INTEGER_CST
10564       || TREE_CODE (vr->max) != INTEGER_CST)
10565     return false;
10566 
10567   if (vr->type == VR_RANGE
10568       && wi::sub (vr->max, vr->min) == 1)
10569     {
10570       *a = vr->min;
10571       *b = vr->max;
10572       return true;
10573     }
10574 
10575   /* ~[TYPE_MIN + 1, TYPE_MAX - 1] */
10576   if (vr->type == VR_ANTI_RANGE
10577       && wi::sub (vr->min, vrp_val_min (TREE_TYPE (var))) == 1
10578       && wi::sub (vrp_val_max (TREE_TYPE (var)), vr->max) == 1)
10579     {
10580       *a = vrp_val_min (TREE_TYPE (var));
10581       *b = vrp_val_max (TREE_TYPE (var));
10582       return true;
10583     }
10584 
10585   return false;
10586 }
10587 
10588 /* Simplify STMT using ranges if possible.  */
10589 
10590 static bool
10591 simplify_stmt_using_ranges (gimple_stmt_iterator *gsi)
10592 {
10593   gimple *stmt = gsi_stmt (*gsi);
10594   if (is_gimple_assign (stmt))
10595     {
10596       enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
10597       tree rhs1 = gimple_assign_rhs1 (stmt);
10598       tree rhs2 = gimple_assign_rhs2 (stmt);
10599       tree lhs = gimple_assign_lhs (stmt);
10600       tree val1 = NULL_TREE, val2 = NULL_TREE;
10601       use_operand_p use_p;
10602       gimple *use_stmt;
10603 
10604       /* Convert:
10605 	 LHS = CST BINOP VAR
10606 	 Where VAR is two-valued and LHS is used in GIMPLE_COND only
10607 	 To:
10608 	 LHS = VAR == VAL1 ? (CST BINOP VAL1) : (CST BINOP VAL2)
10609 
10610 	 Also handles:
10611 	 LHS = VAR BINOP CST
10612 	 Where VAR is two-valued and LHS is used in GIMPLE_COND only
10613 	 To:
10614 	 LHS = VAR == VAL1 ? (VAL1 BINOP CST) : (VAL2 BINOP CST) */
10615 
10616       if (TREE_CODE_CLASS (rhs_code) == tcc_binary
10617 	  && INTEGRAL_TYPE_P (TREE_TYPE (lhs))
10618 	  && ((TREE_CODE (rhs1) == INTEGER_CST
10619 	       && TREE_CODE (rhs2) == SSA_NAME)
10620 	      || (TREE_CODE (rhs2) == INTEGER_CST
10621 		  && TREE_CODE (rhs1) == SSA_NAME))
10622 	  && single_imm_use (lhs, &use_p, &use_stmt)
10623 	  && gimple_code (use_stmt) == GIMPLE_COND)
10624 
10625 	{
10626 	  tree new_rhs1 = NULL_TREE;
10627 	  tree new_rhs2 = NULL_TREE;
10628 	  tree cmp_var = NULL_TREE;
10629 
10630 	  if (TREE_CODE (rhs2) == SSA_NAME
10631 	      && two_valued_val_range_p (rhs2, &val1, &val2))
10632 	    {
10633 	      /* Optimize RHS1 OP [VAL1, VAL2].  */
10634 	      new_rhs1 = int_const_binop (rhs_code, rhs1, val1);
10635 	      new_rhs2 = int_const_binop (rhs_code, rhs1, val2);
10636 	      cmp_var = rhs2;
10637 	    }
10638 	  else if (TREE_CODE (rhs1) == SSA_NAME
10639 		   && two_valued_val_range_p (rhs1, &val1, &val2))
10640 	    {
10641 	      /* Optimize [VAL1, VAL2] OP RHS2.  */
10642 	      new_rhs1 = int_const_binop (rhs_code, val1, rhs2);
10643 	      new_rhs2 = int_const_binop (rhs_code, val2, rhs2);
10644 	      cmp_var = rhs1;
10645 	    }
10646 
10647 	  /* If we could not find two-vals or the optimzation is invalid as
10648 	     in divide by zero, new_rhs1 / new_rhs will be NULL_TREE.  */
10649 	  if (new_rhs1 && new_rhs2)
10650 	    {
10651 	      tree cond = build2 (EQ_EXPR, boolean_type_node, cmp_var, val1);
10652 	      gimple_assign_set_rhs_with_ops (gsi,
10653 					      COND_EXPR, cond,
10654 					      new_rhs1,
10655 					      new_rhs2);
10656 	      update_stmt (gsi_stmt (*gsi));
10657 	      fold_stmt (gsi, follow_single_use_edges);
10658 	      return true;
10659 	    }
10660 	}
10661 
10662       switch (rhs_code)
10663 	{
10664 	case EQ_EXPR:
10665 	case NE_EXPR:
10666           /* Transform EQ_EXPR, NE_EXPR into BIT_XOR_EXPR or identity
10667 	     if the RHS is zero or one, and the LHS are known to be boolean
10668 	     values.  */
10669 	  if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
10670 	    return simplify_truth_ops_using_ranges (gsi, stmt);
10671 	  break;
10672 
10673       /* Transform TRUNC_DIV_EXPR and TRUNC_MOD_EXPR into RSHIFT_EXPR
10674 	 and BIT_AND_EXPR respectively if the first operand is greater
10675 	 than zero and the second operand is an exact power of two.
10676 	 Also optimize TRUNC_MOD_EXPR away if the second operand is
10677 	 constant and the first operand already has the right value
10678 	 range.  */
10679 	case TRUNC_DIV_EXPR:
10680 	case TRUNC_MOD_EXPR:
10681 	  if ((TREE_CODE (rhs1) == SSA_NAME
10682 	       || TREE_CODE (rhs1) == INTEGER_CST)
10683 	      && INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
10684 	    return simplify_div_or_mod_using_ranges (gsi, stmt);
10685 	  break;
10686 
10687       /* Transform ABS (X) into X or -X as appropriate.  */
10688 	case ABS_EXPR:
10689 	  if (TREE_CODE (rhs1) == SSA_NAME
10690 	      && INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
10691 	    return simplify_abs_using_ranges (gsi, stmt);
10692 	  break;
10693 
10694 	case BIT_AND_EXPR:
10695 	case BIT_IOR_EXPR:
10696 	  /* Optimize away BIT_AND_EXPR and BIT_IOR_EXPR
10697 	     if all the bits being cleared are already cleared or
10698 	     all the bits being set are already set.  */
10699 	  if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
10700 	    return simplify_bit_ops_using_ranges (gsi, stmt);
10701 	  break;
10702 
10703 	CASE_CONVERT:
10704 	  if (TREE_CODE (rhs1) == SSA_NAME
10705 	      && INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
10706 	    return simplify_conversion_using_ranges (gsi, stmt);
10707 	  break;
10708 
10709 	case FLOAT_EXPR:
10710 	  if (TREE_CODE (rhs1) == SSA_NAME
10711 	      && INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
10712 	    return simplify_float_conversion_using_ranges (gsi, stmt);
10713 	  break;
10714 
10715 	case MIN_EXPR:
10716 	case MAX_EXPR:
10717 	  return simplify_min_or_max_using_ranges (gsi, stmt);
10718 
10719 	default:
10720 	  break;
10721 	}
10722     }
10723   else if (gimple_code (stmt) == GIMPLE_COND)
10724     return simplify_cond_using_ranges (as_a <gcond *> (stmt));
10725   else if (gimple_code (stmt) == GIMPLE_SWITCH)
10726     return simplify_switch_using_ranges (as_a <gswitch *> (stmt));
10727   else if (is_gimple_call (stmt)
10728 	   && gimple_call_internal_p (stmt))
10729     return simplify_internal_call_using_ranges (gsi, stmt);
10730 
10731   return false;
10732 }
10733 
10734 /* If the statement pointed by SI has a predicate whose value can be
10735    computed using the value range information computed by VRP, compute
10736    its value and return true.  Otherwise, return false.  */
10737 
10738 static bool
10739 fold_predicate_in (gimple_stmt_iterator *si)
10740 {
10741   bool assignment_p = false;
10742   tree val;
10743   gimple *stmt = gsi_stmt (*si);
10744 
10745   if (is_gimple_assign (stmt)
10746       && TREE_CODE_CLASS (gimple_assign_rhs_code (stmt)) == tcc_comparison)
10747     {
10748       assignment_p = true;
10749       val = vrp_evaluate_conditional (gimple_assign_rhs_code (stmt),
10750 				      gimple_assign_rhs1 (stmt),
10751 				      gimple_assign_rhs2 (stmt),
10752 				      stmt);
10753     }
10754   else if (gcond *cond_stmt = dyn_cast <gcond *> (stmt))
10755     val = vrp_evaluate_conditional (gimple_cond_code (cond_stmt),
10756 				    gimple_cond_lhs (cond_stmt),
10757 				    gimple_cond_rhs (cond_stmt),
10758 				    stmt);
10759   else
10760     return false;
10761 
10762   if (val)
10763     {
10764       if (assignment_p)
10765         val = fold_convert (gimple_expr_type (stmt), val);
10766 
10767       if (dump_file)
10768 	{
10769 	  fprintf (dump_file, "Folding predicate ");
10770 	  print_gimple_expr (dump_file, stmt, 0, 0);
10771 	  fprintf (dump_file, " to ");
10772 	  print_generic_expr (dump_file, val, 0);
10773 	  fprintf (dump_file, "\n");
10774 	}
10775 
10776       if (is_gimple_assign (stmt))
10777 	gimple_assign_set_rhs_from_tree (si, val);
10778       else
10779 	{
10780 	  gcc_assert (gimple_code (stmt) == GIMPLE_COND);
10781 	  gcond *cond_stmt = as_a <gcond *> (stmt);
10782 	  if (integer_zerop (val))
10783 	    gimple_cond_make_false (cond_stmt);
10784 	  else if (integer_onep (val))
10785 	    gimple_cond_make_true (cond_stmt);
10786 	  else
10787 	    gcc_unreachable ();
10788 	}
10789 
10790       return true;
10791     }
10792 
10793   return false;
10794 }
10795 
10796 /* Callback for substitute_and_fold folding the stmt at *SI.  */
10797 
10798 static bool
10799 vrp_fold_stmt (gimple_stmt_iterator *si)
10800 {
10801   if (fold_predicate_in (si))
10802     return true;
10803 
10804   return simplify_stmt_using_ranges (si);
10805 }
10806 
10807 /* Return the LHS of any ASSERT_EXPR where OP appears as the first
10808    argument to the ASSERT_EXPR and in which the ASSERT_EXPR dominates
10809    BB.  If no such ASSERT_EXPR is found, return OP.  */
10810 
10811 static tree
10812 lhs_of_dominating_assert (tree op, basic_block bb, gimple *stmt)
10813 {
10814   imm_use_iterator imm_iter;
10815   gimple *use_stmt;
10816   use_operand_p use_p;
10817 
10818   if (TREE_CODE (op) == SSA_NAME)
10819     {
10820       FOR_EACH_IMM_USE_FAST (use_p, imm_iter, op)
10821 	{
10822 	  use_stmt = USE_STMT (use_p);
10823 	  if (use_stmt != stmt
10824 	      && gimple_assign_single_p (use_stmt)
10825 	      && TREE_CODE (gimple_assign_rhs1 (use_stmt)) == ASSERT_EXPR
10826 	      && TREE_OPERAND (gimple_assign_rhs1 (use_stmt), 0) == op
10827 	      && dominated_by_p (CDI_DOMINATORS, bb, gimple_bb (use_stmt)))
10828 	    return gimple_assign_lhs (use_stmt);
10829 	}
10830     }
10831   return op;
10832 }
10833 
10834 /* A trivial wrapper so that we can present the generic jump threading
10835    code with a simple API for simplifying statements.  STMT is the
10836    statement we want to simplify, WITHIN_STMT provides the location
10837    for any overflow warnings.  */
10838 
10839 static tree
10840 simplify_stmt_for_jump_threading (gimple *stmt, gimple *within_stmt,
10841     class avail_exprs_stack *avail_exprs_stack ATTRIBUTE_UNUSED,
10842     basic_block bb)
10843 {
10844   /* First see if the conditional is in the hash table.  */
10845   tree cached_lhs = avail_exprs_stack->lookup_avail_expr (stmt, false, true);
10846   if (cached_lhs && is_gimple_min_invariant (cached_lhs))
10847     return cached_lhs;
10848 
10849   if (gcond *cond_stmt = dyn_cast <gcond *> (stmt))
10850     {
10851       tree op0 = gimple_cond_lhs (cond_stmt);
10852       op0 = lhs_of_dominating_assert (op0, bb, stmt);
10853 
10854       tree op1 = gimple_cond_rhs (cond_stmt);
10855       op1 = lhs_of_dominating_assert (op1, bb, stmt);
10856 
10857       return vrp_evaluate_conditional (gimple_cond_code (cond_stmt),
10858 				       op0, op1, within_stmt);
10859     }
10860 
10861   /* We simplify a switch statement by trying to determine which case label
10862      will be taken.  If we are successful then we return the corresponding
10863      CASE_LABEL_EXPR.  */
10864   if (gswitch *switch_stmt = dyn_cast <gswitch *> (stmt))
10865     {
10866       tree op = gimple_switch_index (switch_stmt);
10867       if (TREE_CODE (op) != SSA_NAME)
10868 	return NULL_TREE;
10869 
10870       op = lhs_of_dominating_assert (op, bb, stmt);
10871 
10872       value_range *vr = get_value_range (op);
10873       if ((vr->type != VR_RANGE && vr->type != VR_ANTI_RANGE)
10874 	  || symbolic_range_p (vr))
10875 	return NULL_TREE;
10876 
10877       if (vr->type == VR_RANGE)
10878 	{
10879 	  size_t i, j;
10880 	  /* Get the range of labels that contain a part of the operand's
10881 	     value range.  */
10882 	  find_case_label_range (switch_stmt, vr->min, vr->max, &i, &j);
10883 
10884 	  /* Is there only one such label?  */
10885 	  if (i == j)
10886 	    {
10887 	      tree label = gimple_switch_label (switch_stmt, i);
10888 
10889 	      /* The i'th label will be taken only if the value range of the
10890 		 operand is entirely within the bounds of this label.  */
10891 	      if (CASE_HIGH (label) != NULL_TREE
10892 		  ? (tree_int_cst_compare (CASE_LOW (label), vr->min) <= 0
10893 		     && tree_int_cst_compare (CASE_HIGH (label), vr->max) >= 0)
10894 		  : (tree_int_cst_equal (CASE_LOW (label), vr->min)
10895 		     && tree_int_cst_equal (vr->min, vr->max)))
10896 		return label;
10897 	    }
10898 
10899 	  /* If there are no such labels then the default label will be
10900 	     taken.  */
10901 	  if (i > j)
10902 	    return gimple_switch_label (switch_stmt, 0);
10903 	}
10904 
10905       if (vr->type == VR_ANTI_RANGE)
10906 	{
10907 	  unsigned n = gimple_switch_num_labels (switch_stmt);
10908 	  tree min_label = gimple_switch_label (switch_stmt, 1);
10909 	  tree max_label = gimple_switch_label (switch_stmt, n - 1);
10910 
10911 	  /* The default label will be taken only if the anti-range of the
10912 	     operand is entirely outside the bounds of all the (non-default)
10913 	     case labels.  */
10914 	  if (tree_int_cst_compare (vr->min, CASE_LOW (min_label)) <= 0
10915 	      && (CASE_HIGH (max_label) != NULL_TREE
10916 		  ? tree_int_cst_compare (vr->max, CASE_HIGH (max_label)) >= 0
10917 		  : tree_int_cst_compare (vr->max, CASE_LOW (max_label)) >= 0))
10918 	  return gimple_switch_label (switch_stmt, 0);
10919 	}
10920 
10921       return NULL_TREE;
10922     }
10923 
10924   if (gassign *assign_stmt = dyn_cast <gassign *> (stmt))
10925     {
10926       value_range new_vr = VR_INITIALIZER;
10927       tree lhs = gimple_assign_lhs (assign_stmt);
10928 
10929       if (TREE_CODE (lhs) == SSA_NAME
10930 	  && (INTEGRAL_TYPE_P (TREE_TYPE (lhs))
10931 	      || POINTER_TYPE_P (TREE_TYPE (lhs))))
10932 	{
10933 	  extract_range_from_assignment (&new_vr, assign_stmt);
10934 	  if (range_int_cst_singleton_p (&new_vr))
10935 	    return new_vr.min;
10936 	}
10937     }
10938 
10939   return NULL_TREE;
10940 }
10941 
10942 class vrp_dom_walker : public dom_walker
10943 {
10944 public:
10945   vrp_dom_walker (cdi_direction direction,
10946 		  class const_and_copies *const_and_copies,
10947 		  class avail_exprs_stack *avail_exprs_stack)
10948     : dom_walker (direction, true),
10949       m_const_and_copies (const_and_copies),
10950       m_avail_exprs_stack (avail_exprs_stack),
10951       m_dummy_cond (NULL) {}
10952 
10953   virtual edge before_dom_children (basic_block);
10954   virtual void after_dom_children (basic_block);
10955 
10956 private:
10957   class const_and_copies *m_const_and_copies;
10958   class avail_exprs_stack *m_avail_exprs_stack;
10959 
10960   gcond *m_dummy_cond;
10961 };
10962 
10963 /* Called before processing dominator children of BB.  We want to look
10964    at ASSERT_EXPRs and record information from them in the appropriate
10965    tables.
10966 
10967    We could look at other statements here.  It's not seen as likely
10968    to significantly increase the jump threads we discover.  */
10969 
10970 edge
10971 vrp_dom_walker::before_dom_children (basic_block bb)
10972 {
10973   gimple_stmt_iterator gsi;
10974 
10975   for (gsi = gsi_start_nondebug_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
10976     {
10977       gimple *stmt = gsi_stmt (gsi);
10978       if (gimple_assign_single_p (stmt)
10979          && TREE_CODE (gimple_assign_rhs1 (stmt)) == ASSERT_EXPR)
10980 	{
10981 	  tree rhs1 = gimple_assign_rhs1 (stmt);
10982 	  tree cond = TREE_OPERAND (rhs1, 1);
10983 	  tree inverted = invert_truthvalue (cond);
10984 	  vec<cond_equivalence> p;
10985 	  p.create (3);
10986 	  record_conditions (&p, cond, inverted);
10987 	  for (unsigned int i = 0; i < p.length (); i++)
10988 	    m_avail_exprs_stack->record_cond (&p[i]);
10989 
10990 	  tree lhs = gimple_assign_lhs (stmt);
10991 	  m_const_and_copies->record_const_or_copy (lhs,
10992 						    TREE_OPERAND (rhs1, 0));
10993 	  p.release ();
10994 	  continue;
10995 	}
10996       break;
10997     }
10998   return NULL;
10999 }
11000 
11001 /* Called after processing dominator children of BB.  This is where we
11002    actually call into the threader.  */
11003 void
11004 vrp_dom_walker::after_dom_children (basic_block bb)
11005 {
11006   if (!m_dummy_cond)
11007     m_dummy_cond = gimple_build_cond (NE_EXPR,
11008 				      integer_zero_node, integer_zero_node,
11009 				      NULL, NULL);
11010 
11011   thread_outgoing_edges (bb, m_dummy_cond, m_const_and_copies,
11012 			 m_avail_exprs_stack,
11013 			 simplify_stmt_for_jump_threading);
11014 
11015   m_avail_exprs_stack->pop_to_marker ();
11016   m_const_and_copies->pop_to_marker ();
11017 }
11018 
11019 /* Blocks which have more than one predecessor and more than
11020    one successor present jump threading opportunities, i.e.,
11021    when the block is reached from a specific predecessor, we
11022    may be able to determine which of the outgoing edges will
11023    be traversed.  When this optimization applies, we are able
11024    to avoid conditionals at runtime and we may expose secondary
11025    optimization opportunities.
11026 
11027    This routine is effectively a driver for the generic jump
11028    threading code.  It basically just presents the generic code
11029    with edges that may be suitable for jump threading.
11030 
11031    Unlike DOM, we do not iterate VRP if jump threading was successful.
11032    While iterating may expose new opportunities for VRP, it is expected
11033    those opportunities would be very limited and the compile time cost
11034    to expose those opportunities would be significant.
11035 
11036    As jump threading opportunities are discovered, they are registered
11037    for later realization.  */
11038 
11039 static void
11040 identify_jump_threads (void)
11041 {
11042   int i;
11043   edge e;
11044 
11045   /* Ugh.  When substituting values earlier in this pass we can
11046      wipe the dominance information.  So rebuild the dominator
11047      information as we need it within the jump threading code.  */
11048   calculate_dominance_info (CDI_DOMINATORS);
11049 
11050   /* We do not allow VRP information to be used for jump threading
11051      across a back edge in the CFG.  Otherwise it becomes too
11052      difficult to avoid eliminating loop exit tests.  Of course
11053      EDGE_DFS_BACK is not accurate at this time so we have to
11054      recompute it.  */
11055   mark_dfs_back_edges ();
11056 
11057   /* Do not thread across edges we are about to remove.  Just marking
11058      them as EDGE_IGNORE will do.  */
11059   FOR_EACH_VEC_ELT (to_remove_edges, i, e)
11060     e->flags |= EDGE_IGNORE;
11061 
11062   /* Allocate our unwinder stack to unwind any temporary equivalences
11063      that might be recorded.  */
11064   const_and_copies *equiv_stack = new const_and_copies ();
11065 
11066   hash_table<expr_elt_hasher> *avail_exprs
11067     = new hash_table<expr_elt_hasher> (1024);
11068   avail_exprs_stack *avail_exprs_stack
11069     = new class avail_exprs_stack (avail_exprs);
11070 
11071   vrp_dom_walker walker (CDI_DOMINATORS, equiv_stack, avail_exprs_stack);
11072   walker.walk (cfun->cfg->x_entry_block_ptr);
11073 
11074   /* Clear EDGE_IGNORE.  */
11075   FOR_EACH_VEC_ELT (to_remove_edges, i, e)
11076     e->flags &= ~EDGE_IGNORE;
11077 
11078   /* We do not actually update the CFG or SSA graphs at this point as
11079      ASSERT_EXPRs are still in the IL and cfg cleanup code does not yet
11080      handle ASSERT_EXPRs gracefully.  */
11081   delete equiv_stack;
11082   delete avail_exprs;
11083   delete avail_exprs_stack;
11084 }
11085 
11086 /* Free VRP lattice.  */
11087 
11088 static void
11089 vrp_free_lattice ()
11090 {
11091   /* Free allocated memory.  */
11092   free (vr_value);
11093   free (vr_phi_edge_counts);
11094   bitmap_obstack_release (&vrp_equiv_obstack);
11095   vrp_value_range_pool.release ();
11096 
11097   /* So that we can distinguish between VRP data being available
11098      and not available.  */
11099   vr_value = NULL;
11100   vr_phi_edge_counts = NULL;
11101 }
11102 
11103 /* Traverse all the blocks folding conditionals with known ranges.  */
11104 
11105 static void
11106 vrp_finalize (bool warn_array_bounds_p)
11107 {
11108   size_t i;
11109 
11110   values_propagated = true;
11111 
11112   if (dump_file)
11113     {
11114       fprintf (dump_file, "\nValue ranges after VRP:\n\n");
11115       dump_all_value_ranges (dump_file);
11116       fprintf (dump_file, "\n");
11117     }
11118 
11119   /* Set value range to non pointer SSA_NAMEs.  */
11120   for (i  = 0; i < num_vr_values; i++)
11121     if (vr_value[i])
11122       {
11123 	tree name = ssa_name (i);
11124 
11125 	if (!name
11126 	    || (vr_value[i]->type == VR_VARYING)
11127 	    || (vr_value[i]->type == VR_UNDEFINED)
11128 	    || (TREE_CODE (vr_value[i]->min) != INTEGER_CST)
11129 	    || (TREE_CODE (vr_value[i]->max) != INTEGER_CST))
11130 	  continue;
11131 
11132 	if (POINTER_TYPE_P (TREE_TYPE (name))
11133 	    && ((vr_value[i]->type == VR_RANGE
11134 		 && range_includes_zero_p (vr_value[i]->min,
11135 					   vr_value[i]->max) == 0)
11136 		|| (vr_value[i]->type == VR_ANTI_RANGE
11137 		    && range_includes_zero_p (vr_value[i]->min,
11138 					      vr_value[i]->max) == 1)))
11139 	  set_ptr_nonnull (name);
11140 	else if (!POINTER_TYPE_P (TREE_TYPE (name)))
11141 	  set_range_info (name, vr_value[i]->type, vr_value[i]->min,
11142 			  vr_value[i]->max);
11143       }
11144 
11145   substitute_and_fold (op_with_constant_singleton_value_range, vrp_fold_stmt);
11146 
11147   if (warn_array_bounds && warn_array_bounds_p)
11148     check_all_array_refs ();
11149 }
11150 
11151 /* evrp_dom_walker visits the basic blocks in the dominance order and set
11152    the Value Ranges (VR) for SSA_NAMEs in the scope.  Use this VR to
11153    discover more VRs.  */
11154 
11155 class evrp_dom_walker : public dom_walker
11156 {
11157 public:
11158   evrp_dom_walker ()
11159     : dom_walker (CDI_DOMINATORS), stack (10)
11160     {
11161       need_eh_cleanup = BITMAP_ALLOC (NULL);
11162     }
11163   ~evrp_dom_walker ()
11164     {
11165       BITMAP_FREE (need_eh_cleanup);
11166     }
11167   virtual edge before_dom_children (basic_block);
11168   virtual void after_dom_children (basic_block);
11169   void push_value_range (tree var, value_range *vr);
11170   value_range *pop_value_range (tree var);
11171   value_range *try_find_new_range (tree op, tree_code code, tree limit);
11172 
11173   /* Cond_stack holds the old VR.  */
11174   auto_vec<std::pair <tree, value_range*> > stack;
11175   bitmap need_eh_cleanup;
11176   auto_vec<gimple *> stmts_to_fixup;
11177   auto_vec<gimple *> stmts_to_remove;
11178 };
11179 
11180 /*  Find new range for OP such that (OP CODE LIMIT) is true.  */
11181 
11182 value_range *
11183 evrp_dom_walker::try_find_new_range (tree op, tree_code code, tree limit)
11184 {
11185   value_range vr = VR_INITIALIZER;
11186   value_range *old_vr = get_value_range (op);
11187 
11188   /* Discover VR when condition is true.  */
11189   extract_range_for_var_from_comparison_expr (op, code, op,
11190 					      limit, &vr);
11191   if (old_vr->type == VR_RANGE || old_vr->type == VR_ANTI_RANGE)
11192     vrp_intersect_ranges (&vr, old_vr);
11193   /* If we found any usable VR, set the VR to ssa_name and create a
11194      PUSH old value in the stack with the old VR.  */
11195   if (vr.type == VR_RANGE || vr.type == VR_ANTI_RANGE)
11196     {
11197       if (old_vr->type == vr.type
11198 	  && vrp_operand_equal_p (old_vr->min, vr.min)
11199 	  && vrp_operand_equal_p (old_vr->max, vr.max))
11200 	return NULL;
11201       value_range *new_vr = vrp_value_range_pool.allocate ();
11202       *new_vr = vr;
11203       return new_vr;
11204     }
11205   return NULL;
11206 }
11207 
11208 /* See if there is any new scope is entered with new VR and set that VR to
11209    ssa_name before visiting the statements in the scope.  */
11210 
11211 edge
11212 evrp_dom_walker::before_dom_children (basic_block bb)
11213 {
11214   tree op0 = NULL_TREE;
11215   edge_iterator ei;
11216   edge e;
11217 
11218   if (dump_file && (dump_flags & TDF_DETAILS))
11219     fprintf (dump_file, "Visiting BB%d\n", bb->index);
11220 
11221   stack.safe_push (std::make_pair (NULL_TREE, (value_range *)NULL));
11222 
11223   edge pred_e = NULL;
11224   FOR_EACH_EDGE (e, ei, bb->preds)
11225     {
11226       /* Ignore simple backedges from this to allow recording conditions
11227 	 in loop headers.  */
11228       if (dominated_by_p (CDI_DOMINATORS, e->src, e->dest))
11229 	continue;
11230       if (! pred_e)
11231 	pred_e = e;
11232       else
11233 	{
11234 	  pred_e = NULL;
11235 	  break;
11236 	}
11237     }
11238   if (pred_e)
11239     {
11240       gimple *stmt = last_stmt (pred_e->src);
11241       if (stmt
11242 	  && gimple_code (stmt) == GIMPLE_COND
11243 	  && (op0 = gimple_cond_lhs (stmt))
11244 	  && TREE_CODE (op0) == SSA_NAME
11245 	  && (INTEGRAL_TYPE_P (TREE_TYPE (gimple_cond_lhs (stmt)))
11246 	      || POINTER_TYPE_P (TREE_TYPE (gimple_cond_lhs (stmt)))))
11247 	{
11248 	  if (dump_file && (dump_flags & TDF_DETAILS))
11249 	    {
11250 	      fprintf (dump_file, "Visiting controlling predicate ");
11251 	      print_gimple_stmt (dump_file, stmt, 0, 0);
11252 	    }
11253 	  /* Entering a new scope.  Try to see if we can find a VR
11254 	     here.  */
11255 	  tree op1 = gimple_cond_rhs (stmt);
11256 	  tree_code code = gimple_cond_code (stmt);
11257 
11258 	  if (TREE_OVERFLOW_P (op1))
11259 	    op1 = drop_tree_overflow (op1);
11260 
11261 	  /* If condition is false, invert the cond.  */
11262 	  if (pred_e->flags & EDGE_FALSE_VALUE)
11263 	    code = invert_tree_comparison (gimple_cond_code (stmt),
11264 					   HONOR_NANS (op0));
11265 	  /* Add VR when (OP0 CODE OP1) condition is true.  */
11266 	  value_range *op0_range = try_find_new_range (op0, code, op1);
11267 
11268 	  /* Register ranges for y in x < y where
11269 	     y might have ranges that are useful.  */
11270 	  tree limit;
11271 	  tree_code new_code;
11272 	  if (TREE_CODE (op1) == SSA_NAME
11273 	      && extract_code_and_val_from_cond_with_ops (op1, code,
11274 							  op0, op1,
11275 							  false,
11276 							  &new_code, &limit))
11277 	    {
11278 	      /* Add VR when (OP1 NEW_CODE LIMIT) condition is true.  */
11279 	      value_range *op1_range = try_find_new_range (op1, new_code, limit);
11280 	      if (op1_range)
11281 		push_value_range (op1, op1_range);
11282 	    }
11283 
11284 	  if (op0_range)
11285 	    push_value_range (op0, op0_range);
11286 	}
11287     }
11288 
11289   /* Visit PHI stmts and discover any new VRs possible.  */
11290   bool has_unvisited_preds = false;
11291   FOR_EACH_EDGE (e, ei, bb->preds)
11292     if (e->flags & EDGE_EXECUTABLE
11293 	&& !(e->src->flags & BB_VISITED))
11294       {
11295 	has_unvisited_preds = true;
11296 	break;
11297       }
11298 
11299   for (gphi_iterator gpi = gsi_start_phis (bb);
11300        !gsi_end_p (gpi); gsi_next (&gpi))
11301     {
11302       gphi *phi = gpi.phi ();
11303       tree lhs = PHI_RESULT (phi);
11304       if (virtual_operand_p (lhs))
11305 	continue;
11306       value_range vr_result = VR_INITIALIZER;
11307       bool interesting = stmt_interesting_for_vrp (phi);
11308       if (interesting && dump_file && (dump_flags & TDF_DETAILS))
11309 	{
11310 	  fprintf (dump_file, "Visiting PHI node ");
11311 	  print_gimple_stmt (dump_file, phi, 0, 0);
11312 	}
11313       if (!has_unvisited_preds
11314 	  && interesting)
11315 	extract_range_from_phi_node (phi, &vr_result);
11316       else
11317 	{
11318 	  set_value_range_to_varying (&vr_result);
11319 	  /* When we have an unvisited executable predecessor we can't
11320 	     use PHI arg ranges which may be still UNDEFINED but have
11321 	     to use VARYING for them.  But we can still resort to
11322 	     SCEV for loop header PHIs.  */
11323 	  struct loop *l;
11324 	  if (interesting
11325 	      && (l = loop_containing_stmt (phi))
11326 	      && l->header == gimple_bb (phi))
11327 	    adjust_range_with_scev (&vr_result, l, phi, lhs);
11328 	}
11329       update_value_range (lhs, &vr_result);
11330 
11331       /* Mark PHIs whose lhs we fully propagate for removal.  */
11332       tree val = op_with_constant_singleton_value_range (lhs);
11333       if (val && may_propagate_copy (lhs, val))
11334 	{
11335 	  stmts_to_remove.safe_push (phi);
11336 	  continue;
11337 	}
11338 
11339       /* Set the SSA with the value range.  */
11340       if (INTEGRAL_TYPE_P (TREE_TYPE (lhs)))
11341 	{
11342 	  if ((vr_result.type == VR_RANGE
11343 	       || vr_result.type == VR_ANTI_RANGE)
11344 	      && (TREE_CODE (vr_result.min) == INTEGER_CST)
11345 	      && (TREE_CODE (vr_result.max) == INTEGER_CST))
11346 	    set_range_info (lhs,
11347 			    vr_result.type, vr_result.min, vr_result.max);
11348 	}
11349       else if (POINTER_TYPE_P (TREE_TYPE (lhs))
11350 	       && ((vr_result.type == VR_RANGE
11351 		    && range_includes_zero_p (vr_result.min,
11352 					      vr_result.max) == 0)
11353 		   || (vr_result.type == VR_ANTI_RANGE
11354 		       && range_includes_zero_p (vr_result.min,
11355 						 vr_result.max) == 1)))
11356 	set_ptr_nonnull (lhs);
11357     }
11358 
11359   edge taken_edge = NULL;
11360 
11361   /* Visit all other stmts and discover any new VRs possible.  */
11362   for (gimple_stmt_iterator gsi = gsi_start_bb (bb);
11363        !gsi_end_p (gsi); gsi_next (&gsi))
11364     {
11365       gimple *stmt = gsi_stmt (gsi);
11366       tree output = NULL_TREE;
11367       gimple *old_stmt = stmt;
11368       bool was_noreturn = (is_gimple_call (stmt)
11369 			   && gimple_call_noreturn_p (stmt));
11370 
11371       if (dump_file && (dump_flags & TDF_DETAILS))
11372 	{
11373 	  fprintf (dump_file, "Visiting stmt ");
11374 	  print_gimple_stmt (dump_file, stmt, 0, 0);
11375 	}
11376 
11377       if (gcond *cond = dyn_cast <gcond *> (stmt))
11378 	{
11379 	  vrp_visit_cond_stmt (cond, &taken_edge);
11380 	  if (taken_edge)
11381 	    {
11382 	      if (taken_edge->flags & EDGE_TRUE_VALUE)
11383 		gimple_cond_make_true (cond);
11384 	      else if (taken_edge->flags & EDGE_FALSE_VALUE)
11385 		gimple_cond_make_false (cond);
11386 	      else
11387 		gcc_unreachable ();
11388 	      update_stmt (stmt);
11389 	    }
11390 	}
11391       else if (stmt_interesting_for_vrp (stmt))
11392 	{
11393 	  edge taken_edge;
11394 	  value_range vr = VR_INITIALIZER;
11395 	  extract_range_from_stmt (stmt, &taken_edge, &output, &vr);
11396 	  if (output
11397 	      && (vr.type == VR_RANGE || vr.type == VR_ANTI_RANGE))
11398 	    {
11399 	      update_value_range (output, &vr);
11400 	      vr = *get_value_range (output);
11401 
11402 	      /* Mark stmts whose output we fully propagate for removal.  */
11403 	      tree val;
11404 	      if ((val = op_with_constant_singleton_value_range (output))
11405 		  && may_propagate_copy (output, val)
11406 		  && !stmt_could_throw_p (stmt)
11407 		  && !gimple_has_side_effects (stmt))
11408 		{
11409 		  stmts_to_remove.safe_push (stmt);
11410 		  continue;
11411 		}
11412 
11413 	      /* Set the SSA with the value range.  */
11414 	      if (INTEGRAL_TYPE_P (TREE_TYPE (output)))
11415 		{
11416 		  if ((vr.type == VR_RANGE
11417 		       || vr.type == VR_ANTI_RANGE)
11418 		      && (TREE_CODE (vr.min) == INTEGER_CST)
11419 		      && (TREE_CODE (vr.max) == INTEGER_CST))
11420 		    set_range_info (output, vr.type, vr.min, vr.max);
11421 		}
11422 	      else if (POINTER_TYPE_P (TREE_TYPE (output))
11423 		       && ((vr.type == VR_RANGE
11424 			    && range_includes_zero_p (vr.min,
11425 						      vr.max) == 0)
11426 			   || (vr.type == VR_ANTI_RANGE
11427 			       && range_includes_zero_p (vr.min,
11428 							 vr.max) == 1)))
11429 		set_ptr_nonnull (output);
11430 	    }
11431 	  else
11432 	    set_defs_to_varying (stmt);
11433 	}
11434       else
11435 	set_defs_to_varying (stmt);
11436 
11437       /* See if we can derive a range for any of STMT's operands.  */
11438       tree op;
11439       ssa_op_iter i;
11440       FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_USE)
11441 	{
11442 	  tree value;
11443 	  enum tree_code comp_code;
11444 
11445 	  /* If OP is used in such a way that we can infer a value
11446 	     range for it, and we don't find a previous assertion for
11447 	     it, create a new assertion location node for OP.  */
11448 	  if (infer_value_range (stmt, op, &comp_code, &value))
11449 	    {
11450 	      /* If we are able to infer a nonzero value range for OP,
11451 		 then walk backwards through the use-def chain to see if OP
11452 		 was set via a typecast.
11453 		 If so, then we can also infer a nonzero value range
11454 		 for the operand of the NOP_EXPR.  */
11455 	      if (comp_code == NE_EXPR && integer_zerop (value))
11456 		{
11457 		  tree t = op;
11458 		  gimple *def_stmt = SSA_NAME_DEF_STMT (t);
11459 		  while (is_gimple_assign (def_stmt)
11460 			 && CONVERT_EXPR_CODE_P
11461 			      (gimple_assign_rhs_code (def_stmt))
11462 			 && TREE_CODE
11463 			      (gimple_assign_rhs1 (def_stmt)) == SSA_NAME
11464 			 && POINTER_TYPE_P
11465 			      (TREE_TYPE (gimple_assign_rhs1 (def_stmt))))
11466 		    {
11467 		      t = gimple_assign_rhs1 (def_stmt);
11468 		      def_stmt = SSA_NAME_DEF_STMT (t);
11469 
11470 		      /* Add VR when (T COMP_CODE value) condition is
11471 			 true.  */
11472 		      value_range *op_range
11473 			= try_find_new_range (t, comp_code, value);
11474 		      if (op_range)
11475 			push_value_range (t, op_range);
11476 		    }
11477 		}
11478 	      /* Add VR when (OP COMP_CODE value) condition is true.  */
11479 	      value_range *op_range = try_find_new_range (op,
11480 							  comp_code, value);
11481 	      if (op_range)
11482 		push_value_range (op, op_range);
11483 	    }
11484 	}
11485 
11486       /* Try folding stmts with the VR discovered.  */
11487       bool did_replace
11488 	= replace_uses_in (stmt, op_with_constant_singleton_value_range);
11489       if (fold_stmt (&gsi, follow_single_use_edges)
11490 	  || did_replace)
11491 	{
11492 	  stmt = gsi_stmt (gsi);
11493 	  update_stmt (stmt);
11494 	  did_replace = true;
11495 	}
11496 
11497       if (did_replace)
11498 	{
11499 	  /* If we cleaned up EH information from the statement,
11500 	     remove EH edges.  */
11501 	  if (maybe_clean_or_replace_eh_stmt (old_stmt, stmt))
11502 	    bitmap_set_bit (need_eh_cleanup, bb->index);
11503 
11504 	  /* If we turned a not noreturn call into a noreturn one
11505 	     schedule it for fixup.  */
11506 	  if (!was_noreturn
11507 	      && is_gimple_call (stmt)
11508 	      && gimple_call_noreturn_p (stmt))
11509 	    stmts_to_fixup.safe_push (stmt);
11510 
11511 	  if (gimple_assign_single_p (stmt))
11512 	    {
11513 	      tree rhs = gimple_assign_rhs1 (stmt);
11514 	      if (TREE_CODE (rhs) == ADDR_EXPR)
11515 		recompute_tree_invariant_for_addr_expr (rhs);
11516 	    }
11517 	}
11518     }
11519 
11520   /* Visit BB successor PHI nodes and replace PHI args.  */
11521   FOR_EACH_EDGE (e, ei, bb->succs)
11522     {
11523       for (gphi_iterator gpi = gsi_start_phis (e->dest);
11524 	   !gsi_end_p (gpi); gsi_next (&gpi))
11525 	{
11526 	  gphi *phi = gpi.phi ();
11527 	  use_operand_p use_p = PHI_ARG_DEF_PTR_FROM_EDGE (phi, e);
11528 	  tree arg = USE_FROM_PTR (use_p);
11529 	  if (TREE_CODE (arg) != SSA_NAME
11530 	      || virtual_operand_p (arg))
11531 	    continue;
11532 	  tree val = op_with_constant_singleton_value_range (arg);
11533 	  if (val && may_propagate_copy (arg, val))
11534 	    propagate_value (use_p, val);
11535 	}
11536     }
11537 
11538   bb->flags |= BB_VISITED;
11539 
11540   return taken_edge;
11541 }
11542 
11543 /* Restore/pop VRs valid only for BB when we leave BB.  */
11544 
11545 void
11546 evrp_dom_walker::after_dom_children (basic_block bb ATTRIBUTE_UNUSED)
11547 {
11548   gcc_checking_assert (!stack.is_empty ());
11549   while (stack.last ().first != NULL_TREE)
11550     pop_value_range (stack.last ().first);
11551   stack.pop ();
11552 }
11553 
11554 /* Push the Value Range of VAR to the stack and update it with new VR.  */
11555 
11556 void
11557 evrp_dom_walker::push_value_range (tree var, value_range *vr)
11558 {
11559   if (SSA_NAME_VERSION (var) >= num_vr_values)
11560     return;
11561   if (dump_file && (dump_flags & TDF_DETAILS))
11562     {
11563       fprintf (dump_file, "pushing new range for ");
11564       print_generic_expr (dump_file, var, 0);
11565       fprintf (dump_file, ": ");
11566       dump_value_range (dump_file, vr);
11567       fprintf (dump_file, "\n");
11568     }
11569   stack.safe_push (std::make_pair (var, get_value_range (var)));
11570   vr_value[SSA_NAME_VERSION (var)] = vr;
11571 }
11572 
11573 /* Pop the Value Range from the vrp_stack and update VAR with it.  */
11574 
11575 value_range *
11576 evrp_dom_walker::pop_value_range (tree var)
11577 {
11578   value_range *vr = stack.last ().second;
11579   gcc_checking_assert (var == stack.last ().first);
11580   if (dump_file && (dump_flags & TDF_DETAILS))
11581     {
11582       fprintf (dump_file, "popping range for ");
11583       print_generic_expr (dump_file, var, 0);
11584       fprintf (dump_file, ", restoring ");
11585       dump_value_range (dump_file, vr);
11586       fprintf (dump_file, "\n");
11587     }
11588   vr_value[SSA_NAME_VERSION (var)] = vr;
11589   stack.pop ();
11590   return vr;
11591 }
11592 
11593 
11594 /* Main entry point for the early vrp pass which is a simplified non-iterative
11595    version of vrp where basic blocks are visited in dominance order.  Value
11596    ranges discovered in early vrp will also be used by ipa-vrp.  */
11597 
11598 static unsigned int
11599 execute_early_vrp ()
11600 {
11601   edge e;
11602   edge_iterator ei;
11603   basic_block bb;
11604 
11605   loop_optimizer_init (LOOPS_NORMAL | LOOPS_HAVE_RECORDED_EXITS);
11606   rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa);
11607   scev_initialize ();
11608   calculate_dominance_info (CDI_DOMINATORS);
11609   FOR_EACH_BB_FN (bb, cfun)
11610     {
11611       bb->flags &= ~BB_VISITED;
11612       FOR_EACH_EDGE (e, ei, bb->preds)
11613 	e->flags |= EDGE_EXECUTABLE;
11614     }
11615   vrp_initialize_lattice ();
11616 
11617   /* Walk stmts in dominance order and propagate VRP.  */
11618   evrp_dom_walker walker;
11619   walker.walk (ENTRY_BLOCK_PTR_FOR_FN (cfun));
11620 
11621   if (dump_file)
11622     {
11623       fprintf (dump_file, "\nValue ranges after Early VRP:\n\n");
11624       dump_all_value_ranges (dump_file);
11625       fprintf (dump_file, "\n");
11626     }
11627 
11628   /* Remove stmts in reverse order to make debug stmt creation possible.  */
11629   while (! walker.stmts_to_remove.is_empty ())
11630     {
11631       gimple *stmt = walker.stmts_to_remove.pop ();
11632       if (dump_file && dump_flags & TDF_DETAILS)
11633 	{
11634 	  fprintf (dump_file, "Removing dead stmt ");
11635 	  print_gimple_stmt (dump_file, stmt, 0, 0);
11636 	  fprintf (dump_file, "\n");
11637 	}
11638       gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
11639       if (gimple_code (stmt) == GIMPLE_PHI)
11640 	remove_phi_node (&gsi, true);
11641       else
11642 	{
11643 	  unlink_stmt_vdef (stmt);
11644 	  gsi_remove (&gsi, true);
11645 	  release_defs (stmt);
11646 	}
11647     }
11648 
11649   if (!bitmap_empty_p (walker.need_eh_cleanup))
11650     gimple_purge_all_dead_eh_edges (walker.need_eh_cleanup);
11651 
11652   /* Fixup stmts that became noreturn calls.  This may require splitting
11653      blocks and thus isn't possible during the dominator walk.  Do this
11654      in reverse order so we don't inadvertedly remove a stmt we want to
11655      fixup by visiting a dominating now noreturn call first.  */
11656   while (!walker.stmts_to_fixup.is_empty ())
11657     {
11658       gimple *stmt = walker.stmts_to_fixup.pop ();
11659       fixup_noreturn_call (stmt);
11660     }
11661 
11662   vrp_free_lattice ();
11663   scev_finalize ();
11664   loop_optimizer_finalize ();
11665   return 0;
11666 }
11667 
11668 
11669 /* Main entry point to VRP (Value Range Propagation).  This pass is
11670    loosely based on J. R. C. Patterson, ``Accurate Static Branch
11671    Prediction by Value Range Propagation,'' in SIGPLAN Conference on
11672    Programming Language Design and Implementation, pp. 67-78, 1995.
11673    Also available at http://citeseer.ist.psu.edu/patterson95accurate.html
11674 
11675    This is essentially an SSA-CCP pass modified to deal with ranges
11676    instead of constants.
11677 
11678    While propagating ranges, we may find that two or more SSA name
11679    have equivalent, though distinct ranges.  For instance,
11680 
11681      1	x_9 = p_3->a;
11682      2	p_4 = ASSERT_EXPR <p_3, p_3 != 0>
11683      3	if (p_4 == q_2)
11684      4	  p_5 = ASSERT_EXPR <p_4, p_4 == q_2>;
11685      5	endif
11686      6	if (q_2)
11687 
11688    In the code above, pointer p_5 has range [q_2, q_2], but from the
11689    code we can also determine that p_5 cannot be NULL and, if q_2 had
11690    a non-varying range, p_5's range should also be compatible with it.
11691 
11692    These equivalences are created by two expressions: ASSERT_EXPR and
11693    copy operations.  Since p_5 is an assertion on p_4, and p_4 was the
11694    result of another assertion, then we can use the fact that p_5 and
11695    p_4 are equivalent when evaluating p_5's range.
11696 
11697    Together with value ranges, we also propagate these equivalences
11698    between names so that we can take advantage of information from
11699    multiple ranges when doing final replacement.  Note that this
11700    equivalency relation is transitive but not symmetric.
11701 
11702    In the example above, p_5 is equivalent to p_4, q_2 and p_3, but we
11703    cannot assert that q_2 is equivalent to p_5 because q_2 may be used
11704    in contexts where that assertion does not hold (e.g., in line 6).
11705 
11706    TODO, the main difference between this pass and Patterson's is that
11707    we do not propagate edge probabilities.  We only compute whether
11708    edges can be taken or not.  That is, instead of having a spectrum
11709    of jump probabilities between 0 and 1, we only deal with 0, 1 and
11710    DON'T KNOW.  In the future, it may be worthwhile to propagate
11711    probabilities to aid branch prediction.  */
11712 
11713 static unsigned int
11714 execute_vrp (bool warn_array_bounds_p)
11715 {
11716   int i;
11717   edge e;
11718   switch_update *su;
11719 
11720   loop_optimizer_init (LOOPS_NORMAL | LOOPS_HAVE_RECORDED_EXITS);
11721   rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa);
11722   scev_initialize ();
11723 
11724   /* ???  This ends up using stale EDGE_DFS_BACK for liveness computation.
11725      Inserting assertions may split edges which will invalidate
11726      EDGE_DFS_BACK.  */
11727   insert_range_assertions ();
11728 
11729   to_remove_edges.create (10);
11730   to_update_switch_stmts.create (5);
11731   threadedge_initialize_values ();
11732 
11733   /* For visiting PHI nodes we need EDGE_DFS_BACK computed.  */
11734   mark_dfs_back_edges ();
11735 
11736   vrp_initialize_lattice ();
11737   vrp_initialize ();
11738   ssa_propagate (vrp_visit_stmt, vrp_visit_phi_node);
11739   vrp_finalize (warn_array_bounds_p);
11740 
11741   /* We must identify jump threading opportunities before we release
11742      the datastructures built by VRP.  */
11743   identify_jump_threads ();
11744 
11745   vrp_free_lattice ();
11746 
11747   free_numbers_of_iterations_estimates (cfun);
11748 
11749   /* ASSERT_EXPRs must be removed before finalizing jump threads
11750      as finalizing jump threads calls the CFG cleanup code which
11751      does not properly handle ASSERT_EXPRs.  */
11752   remove_range_assertions ();
11753 
11754   /* If we exposed any new variables, go ahead and put them into
11755      SSA form now, before we handle jump threading.  This simplifies
11756      interactions between rewriting of _DECL nodes into SSA form
11757      and rewriting SSA_NAME nodes into SSA form after block
11758      duplication and CFG manipulation.  */
11759   update_ssa (TODO_update_ssa);
11760 
11761   /* We identified all the jump threading opportunities earlier, but could
11762      not transform the CFG at that time.  This routine transforms the
11763      CFG and arranges for the dominator tree to be rebuilt if necessary.
11764 
11765      Note the SSA graph update will occur during the normal TODO
11766      processing by the pass manager.  */
11767   thread_through_all_blocks (false);
11768 
11769   /* Remove dead edges from SWITCH_EXPR optimization.  This leaves the
11770      CFG in a broken state and requires a cfg_cleanup run.  */
11771   FOR_EACH_VEC_ELT (to_remove_edges, i, e)
11772     remove_edge (e);
11773   /* Update SWITCH_EXPR case label vector.  */
11774   FOR_EACH_VEC_ELT (to_update_switch_stmts, i, su)
11775     {
11776       size_t j;
11777       size_t n = TREE_VEC_LENGTH (su->vec);
11778       tree label;
11779       gimple_switch_set_num_labels (su->stmt, n);
11780       for (j = 0; j < n; j++)
11781 	gimple_switch_set_label (su->stmt, j, TREE_VEC_ELT (su->vec, j));
11782       /* As we may have replaced the default label with a regular one
11783 	 make sure to make it a real default label again.  This ensures
11784 	 optimal expansion.  */
11785       label = gimple_switch_label (su->stmt, 0);
11786       CASE_LOW (label) = NULL_TREE;
11787       CASE_HIGH (label) = NULL_TREE;
11788     }
11789 
11790   if (to_remove_edges.length () > 0)
11791     {
11792       free_dominance_info (CDI_DOMINATORS);
11793       loops_state_set (LOOPS_NEED_FIXUP);
11794     }
11795 
11796   to_remove_edges.release ();
11797   to_update_switch_stmts.release ();
11798   threadedge_finalize_values ();
11799 
11800   scev_finalize ();
11801   loop_optimizer_finalize ();
11802   return 0;
11803 }
11804 
11805 namespace {
11806 
11807 const pass_data pass_data_vrp =
11808 {
11809   GIMPLE_PASS, /* type */
11810   "vrp", /* name */
11811   OPTGROUP_NONE, /* optinfo_flags */
11812   TV_TREE_VRP, /* tv_id */
11813   PROP_ssa, /* properties_required */
11814   0, /* properties_provided */
11815   0, /* properties_destroyed */
11816   0, /* todo_flags_start */
11817   ( TODO_cleanup_cfg | TODO_update_ssa ), /* todo_flags_finish */
11818 };
11819 
11820 class pass_vrp : public gimple_opt_pass
11821 {
11822 public:
11823   pass_vrp (gcc::context *ctxt)
11824     : gimple_opt_pass (pass_data_vrp, ctxt), warn_array_bounds_p (false)
11825   {}
11826 
11827   /* opt_pass methods: */
11828   opt_pass * clone () { return new pass_vrp (m_ctxt); }
11829   void set_pass_param (unsigned int n, bool param)
11830     {
11831       gcc_assert (n == 0);
11832       warn_array_bounds_p = param;
11833     }
11834   virtual bool gate (function *) { return flag_tree_vrp != 0; }
11835   virtual unsigned int execute (function *)
11836     { return execute_vrp (warn_array_bounds_p); }
11837 
11838  private:
11839   bool warn_array_bounds_p;
11840 }; // class pass_vrp
11841 
11842 } // anon namespace
11843 
11844 gimple_opt_pass *
11845 make_pass_vrp (gcc::context *ctxt)
11846 {
11847   return new pass_vrp (ctxt);
11848 }
11849 
11850 namespace {
11851 
11852 const pass_data pass_data_early_vrp =
11853 {
11854   GIMPLE_PASS, /* type */
11855   "evrp", /* name */
11856   OPTGROUP_NONE, /* optinfo_flags */
11857   TV_TREE_EARLY_VRP, /* tv_id */
11858   PROP_ssa, /* properties_required */
11859   0, /* properties_provided */
11860   0, /* properties_destroyed */
11861   0, /* todo_flags_start */
11862   ( TODO_cleanup_cfg | TODO_update_ssa | TODO_verify_all ),
11863 };
11864 
11865 class pass_early_vrp : public gimple_opt_pass
11866 {
11867 public:
11868   pass_early_vrp (gcc::context *ctxt)
11869     : gimple_opt_pass (pass_data_early_vrp, ctxt)
11870     {}
11871 
11872   /* opt_pass methods: */
11873   opt_pass * clone () { return new pass_early_vrp (m_ctxt); }
11874   virtual bool gate (function *)
11875     {
11876       return flag_tree_vrp != 0;
11877     }
11878   virtual unsigned int execute (function *)
11879     { return execute_early_vrp (); }
11880 
11881 }; // class pass_vrp
11882 } // anon namespace
11883 
11884 gimple_opt_pass *
11885 make_pass_early_vrp (gcc::context *ctxt)
11886 {
11887   return new pass_early_vrp (ctxt);
11888 }
11889 
11890