xref: /netbsd-src/external/gpl3/gcc.old/dist/gcc/tree-vect-loop-manip.c (revision b7b7574d3bf8eeb51a1fa3977b59142ec6434a55)
1 /* Vectorizer Specific Loop Manipulations
2    Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
3    Free Software Foundation, Inc.
4    Contributed by Dorit Naishlos <dorit@il.ibm.com>
5    and Ira Rosen <irar@il.ibm.com>
6 
7 This file is part of GCC.
8 
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 3, or (at your option) any later
12 version.
13 
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
17 for more details.
18 
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3.  If not see
21 <http://www.gnu.org/licenses/>.  */
22 
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "ggc.h"
28 #include "tree.h"
29 #include "basic-block.h"
30 #include "diagnostic.h"
31 #include "tree-flow.h"
32 #include "tree-dump.h"
33 #include "cfgloop.h"
34 #include "cfglayout.h"
35 #include "expr.h"
36 #include "toplev.h"
37 #include "tree-scalar-evolution.h"
38 #include "tree-vectorizer.h"
39 #include "langhooks.h"
40 
41 /*************************************************************************
42   Simple Loop Peeling Utilities
43 
44   Utilities to support loop peeling for vectorization purposes.
45  *************************************************************************/
46 
47 
48 /* Renames the use *OP_P.  */
49 
50 static void
51 rename_use_op (use_operand_p op_p)
52 {
53   tree new_name;
54 
55   if (TREE_CODE (USE_FROM_PTR (op_p)) != SSA_NAME)
56     return;
57 
58   new_name = get_current_def (USE_FROM_PTR (op_p));
59 
60   /* Something defined outside of the loop.  */
61   if (!new_name)
62     return;
63 
64   /* An ordinary ssa name defined in the loop.  */
65 
66   SET_USE (op_p, new_name);
67 }
68 
69 
70 /* Renames the variables in basic block BB.  */
71 
72 void
73 rename_variables_in_bb (basic_block bb)
74 {
75   gimple_stmt_iterator gsi;
76   gimple stmt;
77   use_operand_p use_p;
78   ssa_op_iter iter;
79   edge e;
80   edge_iterator ei;
81   struct loop *loop = bb->loop_father;
82 
83   for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
84     {
85       stmt = gsi_stmt (gsi);
86       FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_ALL_USES)
87 	rename_use_op (use_p);
88     }
89 
90   FOR_EACH_EDGE (e, ei, bb->succs)
91     {
92       if (!flow_bb_inside_loop_p (loop, e->dest))
93 	continue;
94       for (gsi = gsi_start_phis (e->dest); !gsi_end_p (gsi); gsi_next (&gsi))
95         rename_use_op (PHI_ARG_DEF_PTR_FROM_EDGE (gsi_stmt (gsi), e));
96     }
97 }
98 
99 
100 /* Renames variables in new generated LOOP.  */
101 
102 void
103 rename_variables_in_loop (struct loop *loop)
104 {
105   unsigned i;
106   basic_block *bbs;
107 
108   bbs = get_loop_body (loop);
109 
110   for (i = 0; i < loop->num_nodes; i++)
111     rename_variables_in_bb (bbs[i]);
112 
113   free (bbs);
114 }
115 
116 typedef struct
117 {
118   tree from, to;
119   basic_block bb;
120 } adjust_info;
121 
122 DEF_VEC_O(adjust_info);
123 DEF_VEC_ALLOC_O_STACK(adjust_info);
124 #define VEC_adjust_info_stack_alloc(alloc) VEC_stack_alloc (adjust_info, alloc)
125 
126 /* A stack of values to be adjusted in debug stmts.  We have to
127    process them LIFO, so that the closest substitution applies.  If we
128    processed them FIFO, without the stack, we might substitute uses
129    with a PHI DEF that would soon become non-dominant, and when we got
130    to the suitable one, it wouldn't have anything to substitute any
131    more.  */
132 static VEC(adjust_info, stack) *adjust_vec;
133 
134 /* Adjust any debug stmts that referenced AI->from values to use the
135    loop-closed AI->to, if the references are dominated by AI->bb and
136    not by the definition of AI->from.  */
137 
138 static void
139 adjust_debug_stmts_now (adjust_info *ai)
140 {
141   basic_block bbphi = ai->bb;
142   tree orig_def = ai->from;
143   tree new_def = ai->to;
144   imm_use_iterator imm_iter;
145   gimple stmt;
146   basic_block bbdef = gimple_bb (SSA_NAME_DEF_STMT (orig_def));
147 
148   gcc_assert (dom_info_available_p (CDI_DOMINATORS));
149 
150   /* Adjust any debug stmts that held onto non-loop-closed
151      references.  */
152   FOR_EACH_IMM_USE_STMT (stmt, imm_iter, orig_def)
153     {
154       use_operand_p use_p;
155       basic_block bbuse;
156 
157       if (!is_gimple_debug (stmt))
158 	continue;
159 
160       gcc_assert (gimple_debug_bind_p (stmt));
161 
162       bbuse = gimple_bb (stmt);
163 
164       if ((bbuse == bbphi
165 	   || dominated_by_p (CDI_DOMINATORS, bbuse, bbphi))
166 	  && !(bbuse == bbdef
167 	       || dominated_by_p (CDI_DOMINATORS, bbuse, bbdef)))
168 	{
169 	  if (new_def)
170 	    FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
171 	      SET_USE (use_p, new_def);
172 	  else
173 	    {
174 	      gimple_debug_bind_reset_value (stmt);
175 	      update_stmt (stmt);
176 	    }
177 	}
178     }
179 }
180 
181 /* Adjust debug stmts as scheduled before.  */
182 
183 static void
184 adjust_vec_debug_stmts (void)
185 {
186   if (!MAY_HAVE_DEBUG_STMTS)
187     return;
188 
189   gcc_assert (adjust_vec);
190 
191   while (!VEC_empty (adjust_info, adjust_vec))
192     {
193       adjust_debug_stmts_now (VEC_last (adjust_info, adjust_vec));
194       VEC_pop (adjust_info, adjust_vec);
195     }
196 
197   VEC_free (adjust_info, stack, adjust_vec);
198 }
199 
200 /* Adjust any debug stmts that referenced FROM values to use the
201    loop-closed TO, if the references are dominated by BB and not by
202    the definition of FROM.  If adjust_vec is non-NULL, adjustments
203    will be postponed until adjust_vec_debug_stmts is called.  */
204 
205 static void
206 adjust_debug_stmts (tree from, tree to, basic_block bb)
207 {
208   adjust_info ai;
209 
210   if (MAY_HAVE_DEBUG_STMTS && TREE_CODE (from) == SSA_NAME
211       && SSA_NAME_VAR (from) != gimple_vop (cfun))
212     {
213       ai.from = from;
214       ai.to = to;
215       ai.bb = bb;
216 
217       if (adjust_vec)
218 	VEC_safe_push (adjust_info, stack, adjust_vec, &ai);
219       else
220 	adjust_debug_stmts_now (&ai);
221     }
222 }
223 
224 /* Change E's phi arg in UPDATE_PHI to NEW_DEF, and record information
225    to adjust any debug stmts that referenced the old phi arg,
226    presumably non-loop-closed references left over from other
227    transformations.  */
228 
229 static void
230 adjust_phi_and_debug_stmts (gimple update_phi, edge e, tree new_def)
231 {
232   tree orig_def = PHI_ARG_DEF_FROM_EDGE (update_phi, e);
233 
234   SET_PHI_ARG_DEF (update_phi, e->dest_idx, new_def);
235 
236   if (MAY_HAVE_DEBUG_STMTS)
237     adjust_debug_stmts (orig_def, PHI_RESULT (update_phi),
238 			gimple_bb (update_phi));
239 }
240 
241 
242 /* Update the PHI nodes of NEW_LOOP.
243 
244    NEW_LOOP is a duplicate of ORIG_LOOP.
245    AFTER indicates whether NEW_LOOP executes before or after ORIG_LOOP:
246    AFTER is true if NEW_LOOP executes after ORIG_LOOP, and false if it
247    executes before it.  */
248 
249 static void
250 slpeel_update_phis_for_duplicate_loop (struct loop *orig_loop,
251 				       struct loop *new_loop, bool after)
252 {
253   tree new_ssa_name;
254   gimple phi_new, phi_orig;
255   tree def;
256   edge orig_loop_latch = loop_latch_edge (orig_loop);
257   edge orig_entry_e = loop_preheader_edge (orig_loop);
258   edge new_loop_exit_e = single_exit (new_loop);
259   edge new_loop_entry_e = loop_preheader_edge (new_loop);
260   edge entry_arg_e = (after ? orig_loop_latch : orig_entry_e);
261   gimple_stmt_iterator gsi_new, gsi_orig;
262 
263   /*
264      step 1. For each loop-header-phi:
265              Add the first phi argument for the phi in NEW_LOOP
266             (the one associated with the entry of NEW_LOOP)
267 
268      step 2. For each loop-header-phi:
269              Add the second phi argument for the phi in NEW_LOOP
270             (the one associated with the latch of NEW_LOOP)
271 
272      step 3. Update the phis in the successor block of NEW_LOOP.
273 
274         case 1: NEW_LOOP was placed before ORIG_LOOP:
275                 The successor block of NEW_LOOP is the header of ORIG_LOOP.
276                 Updating the phis in the successor block can therefore be done
277                 along with the scanning of the loop header phis, because the
278                 header blocks of ORIG_LOOP and NEW_LOOP have exactly the same
279                 phi nodes, organized in the same order.
280 
281         case 2: NEW_LOOP was placed after ORIG_LOOP:
282                 The successor block of NEW_LOOP is the original exit block of
283                 ORIG_LOOP - the phis to be updated are the loop-closed-ssa phis.
284                 We postpone updating these phis to a later stage (when
285                 loop guards are added).
286    */
287 
288 
289   /* Scan the phis in the headers of the old and new loops
290      (they are organized in exactly the same order).  */
291 
292   for (gsi_new = gsi_start_phis (new_loop->header),
293        gsi_orig = gsi_start_phis (orig_loop->header);
294        !gsi_end_p (gsi_new) && !gsi_end_p (gsi_orig);
295        gsi_next (&gsi_new), gsi_next (&gsi_orig))
296     {
297       source_location locus;
298       phi_new = gsi_stmt (gsi_new);
299       phi_orig = gsi_stmt (gsi_orig);
300 
301       /* step 1.  */
302       def = PHI_ARG_DEF_FROM_EDGE (phi_orig, entry_arg_e);
303       locus = gimple_phi_arg_location_from_edge (phi_orig, entry_arg_e);
304       add_phi_arg (phi_new, def, new_loop_entry_e, locus);
305 
306       /* step 2.  */
307       def = PHI_ARG_DEF_FROM_EDGE (phi_orig, orig_loop_latch);
308       locus = gimple_phi_arg_location_from_edge (phi_orig, orig_loop_latch);
309       if (TREE_CODE (def) != SSA_NAME)
310         continue;
311 
312       new_ssa_name = get_current_def (def);
313       if (!new_ssa_name)
314 	{
315 	  /* This only happens if there are no definitions
316 	     inside the loop. use the phi_result in this case.  */
317 	  new_ssa_name = PHI_RESULT (phi_new);
318 	}
319 
320       /* An ordinary ssa name defined in the loop.  */
321       add_phi_arg (phi_new, new_ssa_name, loop_latch_edge (new_loop), locus);
322 
323       /* Drop any debug references outside the loop, if they would
324 	 become ill-formed SSA.  */
325       adjust_debug_stmts (def, NULL, single_exit (orig_loop)->dest);
326 
327       /* step 3 (case 1).  */
328       if (!after)
329         {
330           gcc_assert (new_loop_exit_e == orig_entry_e);
331 	  adjust_phi_and_debug_stmts (phi_orig, new_loop_exit_e, new_ssa_name);
332         }
333     }
334 }
335 
336 
337 /* Update PHI nodes for a guard of the LOOP.
338 
339    Input:
340    - LOOP, GUARD_EDGE: LOOP is a loop for which we added guard code that
341         controls whether LOOP is to be executed.  GUARD_EDGE is the edge that
342         originates from the guard-bb, skips LOOP and reaches the (unique) exit
343         bb of LOOP.  This loop-exit-bb is an empty bb with one successor.
344         We denote this bb NEW_MERGE_BB because before the guard code was added
345         it had a single predecessor (the LOOP header), and now it became a merge
346         point of two paths - the path that ends with the LOOP exit-edge, and
347         the path that ends with GUARD_EDGE.
348    - NEW_EXIT_BB: New basic block that is added by this function between LOOP
349         and NEW_MERGE_BB. It is used to place loop-closed-ssa-form exit-phis.
350 
351    ===> The CFG before the guard-code was added:
352         LOOP_header_bb:
353           loop_body
354           if (exit_loop) goto update_bb
355           else           goto LOOP_header_bb
356         update_bb:
357 
358    ==> The CFG after the guard-code was added:
359         guard_bb:
360           if (LOOP_guard_condition) goto new_merge_bb
361           else                      goto LOOP_header_bb
362         LOOP_header_bb:
363           loop_body
364           if (exit_loop_condition) goto new_merge_bb
365           else                     goto LOOP_header_bb
366         new_merge_bb:
367           goto update_bb
368         update_bb:
369 
370    ==> The CFG after this function:
371         guard_bb:
372           if (LOOP_guard_condition) goto new_merge_bb
373           else                      goto LOOP_header_bb
374         LOOP_header_bb:
375           loop_body
376           if (exit_loop_condition) goto new_exit_bb
377           else                     goto LOOP_header_bb
378         new_exit_bb:
379         new_merge_bb:
380           goto update_bb
381         update_bb:
382 
383    This function:
384    1. creates and updates the relevant phi nodes to account for the new
385       incoming edge (GUARD_EDGE) into NEW_MERGE_BB. This involves:
386       1.1. Create phi nodes at NEW_MERGE_BB.
387       1.2. Update the phi nodes at the successor of NEW_MERGE_BB (denoted
388            UPDATE_BB).  UPDATE_BB was the exit-bb of LOOP before NEW_MERGE_BB
389    2. preserves loop-closed-ssa-form by creating the required phi nodes
390       at the exit of LOOP (i.e, in NEW_EXIT_BB).
391 
392    There are two flavors to this function:
393 
394    slpeel_update_phi_nodes_for_guard1:
395      Here the guard controls whether we enter or skip LOOP, where LOOP is a
396      prolog_loop (loop1 below), and the new phis created in NEW_MERGE_BB are
397      for variables that have phis in the loop header.
398 
399    slpeel_update_phi_nodes_for_guard2:
400      Here the guard controls whether we enter or skip LOOP, where LOOP is an
401      epilog_loop (loop2 below), and the new phis created in NEW_MERGE_BB are
402      for variables that have phis in the loop exit.
403 
404    I.E., the overall structure is:
405 
406         loop1_preheader_bb:
407                 guard1 (goto loop1/merge1_bb)
408         loop1
409         loop1_exit_bb:
410                 guard2 (goto merge1_bb/merge2_bb)
411         merge1_bb
412         loop2
413         loop2_exit_bb
414         merge2_bb
415         next_bb
416 
417    slpeel_update_phi_nodes_for_guard1 takes care of creating phis in
418    loop1_exit_bb and merge1_bb. These are entry phis (phis for the vars
419    that have phis in loop1->header).
420 
421    slpeel_update_phi_nodes_for_guard2 takes care of creating phis in
422    loop2_exit_bb and merge2_bb. These are exit phis (phis for the vars
423    that have phis in next_bb). It also adds some of these phis to
424    loop1_exit_bb.
425 
426    slpeel_update_phi_nodes_for_guard1 is always called before
427    slpeel_update_phi_nodes_for_guard2. They are both needed in order
428    to create correct data-flow and loop-closed-ssa-form.
429 
430    Generally slpeel_update_phi_nodes_for_guard1 creates phis for variables
431    that change between iterations of a loop (and therefore have a phi-node
432    at the loop entry), whereas slpeel_update_phi_nodes_for_guard2 creates
433    phis for variables that are used out of the loop (and therefore have
434    loop-closed exit phis). Some variables may be both updated between
435    iterations and used after the loop. This is why in loop1_exit_bb we
436    may need both entry_phis (created by slpeel_update_phi_nodes_for_guard1)
437    and exit phis (created by slpeel_update_phi_nodes_for_guard2).
438 
439    - IS_NEW_LOOP: if IS_NEW_LOOP is true, then LOOP is a newly created copy of
440      an original loop. i.e., we have:
441 
442            orig_loop
443            guard_bb (goto LOOP/new_merge)
444            new_loop <-- LOOP
445            new_exit
446            new_merge
447            next_bb
448 
449      If IS_NEW_LOOP is false, then LOOP is an original loop, in which case we
450      have:
451 
452            new_loop
453            guard_bb (goto LOOP/new_merge)
454            orig_loop <-- LOOP
455            new_exit
456            new_merge
457            next_bb
458 
459      The SSA names defined in the original loop have a current
460      reaching definition that that records the corresponding new
461      ssa-name used in the new duplicated loop copy.
462   */
463 
464 /* Function slpeel_update_phi_nodes_for_guard1
465 
466    Input:
467    - GUARD_EDGE, LOOP, IS_NEW_LOOP, NEW_EXIT_BB - as explained above.
468    - DEFS - a bitmap of ssa names to mark new names for which we recorded
469             information.
470 
471    In the context of the overall structure, we have:
472 
473         loop1_preheader_bb:
474                 guard1 (goto loop1/merge1_bb)
475 LOOP->  loop1
476         loop1_exit_bb:
477                 guard2 (goto merge1_bb/merge2_bb)
478         merge1_bb
479         loop2
480         loop2_exit_bb
481         merge2_bb
482         next_bb
483 
484    For each name updated between loop iterations (i.e - for each name that has
485    an entry (loop-header) phi in LOOP) we create a new phi in:
486    1. merge1_bb (to account for the edge from guard1)
487    2. loop1_exit_bb (an exit-phi to keep LOOP in loop-closed form)
488 */
489 
490 static void
491 slpeel_update_phi_nodes_for_guard1 (edge guard_edge, struct loop *loop,
492                                     bool is_new_loop, basic_block *new_exit_bb,
493                                     bitmap *defs)
494 {
495   gimple orig_phi, new_phi;
496   gimple update_phi, update_phi2;
497   tree guard_arg, loop_arg;
498   basic_block new_merge_bb = guard_edge->dest;
499   edge e = EDGE_SUCC (new_merge_bb, 0);
500   basic_block update_bb = e->dest;
501   basic_block orig_bb = loop->header;
502   edge new_exit_e;
503   tree current_new_name;
504   gimple_stmt_iterator gsi_orig, gsi_update;
505 
506   /* Create new bb between loop and new_merge_bb.  */
507   *new_exit_bb = split_edge (single_exit (loop));
508 
509   new_exit_e = EDGE_SUCC (*new_exit_bb, 0);
510 
511   for (gsi_orig = gsi_start_phis (orig_bb),
512        gsi_update = gsi_start_phis (update_bb);
513        !gsi_end_p (gsi_orig) && !gsi_end_p (gsi_update);
514        gsi_next (&gsi_orig), gsi_next (&gsi_update))
515     {
516       source_location loop_locus, guard_locus;;
517       orig_phi = gsi_stmt (gsi_orig);
518       update_phi = gsi_stmt (gsi_update);
519 
520       /** 1. Handle new-merge-point phis  **/
521 
522       /* 1.1. Generate new phi node in NEW_MERGE_BB:  */
523       new_phi = create_phi_node (SSA_NAME_VAR (PHI_RESULT (orig_phi)),
524                                  new_merge_bb);
525 
526       /* 1.2. NEW_MERGE_BB has two incoming edges: GUARD_EDGE and the exit-edge
527             of LOOP. Set the two phi args in NEW_PHI for these edges:  */
528       loop_arg = PHI_ARG_DEF_FROM_EDGE (orig_phi, EDGE_SUCC (loop->latch, 0));
529       loop_locus = gimple_phi_arg_location_from_edge (orig_phi,
530 						      EDGE_SUCC (loop->latch,
531 								 0));
532       guard_arg = PHI_ARG_DEF_FROM_EDGE (orig_phi, loop_preheader_edge (loop));
533       guard_locus
534 	= gimple_phi_arg_location_from_edge (orig_phi,
535 					     loop_preheader_edge (loop));
536 
537       add_phi_arg (new_phi, loop_arg, new_exit_e, loop_locus);
538       add_phi_arg (new_phi, guard_arg, guard_edge, guard_locus);
539 
540       /* 1.3. Update phi in successor block.  */
541       gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi, e) == loop_arg
542                   || PHI_ARG_DEF_FROM_EDGE (update_phi, e) == guard_arg);
543       adjust_phi_and_debug_stmts (update_phi, e, PHI_RESULT (new_phi));
544       update_phi2 = new_phi;
545 
546 
547       /** 2. Handle loop-closed-ssa-form phis  **/
548 
549       if (!is_gimple_reg (PHI_RESULT (orig_phi)))
550 	continue;
551 
552       /* 2.1. Generate new phi node in NEW_EXIT_BB:  */
553       new_phi = create_phi_node (SSA_NAME_VAR (PHI_RESULT (orig_phi)),
554                                  *new_exit_bb);
555 
556       /* 2.2. NEW_EXIT_BB has one incoming edge: the exit-edge of the loop.  */
557       add_phi_arg (new_phi, loop_arg, single_exit (loop), loop_locus);
558 
559       /* 2.3. Update phi in successor of NEW_EXIT_BB:  */
560       gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi2, new_exit_e) == loop_arg);
561       adjust_phi_and_debug_stmts (update_phi2, new_exit_e,
562 				  PHI_RESULT (new_phi));
563 
564       /* 2.4. Record the newly created name with set_current_def.
565          We want to find a name such that
566                 name = get_current_def (orig_loop_name)
567          and to set its current definition as follows:
568                 set_current_def (name, new_phi_name)
569 
570          If LOOP is a new loop then loop_arg is already the name we're
571          looking for. If LOOP is the original loop, then loop_arg is
572          the orig_loop_name and the relevant name is recorded in its
573          current reaching definition.  */
574       if (is_new_loop)
575         current_new_name = loop_arg;
576       else
577         {
578           current_new_name = get_current_def (loop_arg);
579 	  /* current_def is not available only if the variable does not
580 	     change inside the loop, in which case we also don't care
581 	     about recording a current_def for it because we won't be
582 	     trying to create loop-exit-phis for it.  */
583 	  if (!current_new_name)
584 	    continue;
585         }
586       gcc_assert (get_current_def (current_new_name) == NULL_TREE);
587 
588       set_current_def (current_new_name, PHI_RESULT (new_phi));
589       bitmap_set_bit (*defs, SSA_NAME_VERSION (current_new_name));
590     }
591 }
592 
593 
594 /* Function slpeel_update_phi_nodes_for_guard2
595 
596    Input:
597    - GUARD_EDGE, LOOP, IS_NEW_LOOP, NEW_EXIT_BB - as explained above.
598 
599    In the context of the overall structure, we have:
600 
601         loop1_preheader_bb:
602                 guard1 (goto loop1/merge1_bb)
603         loop1
604         loop1_exit_bb:
605                 guard2 (goto merge1_bb/merge2_bb)
606         merge1_bb
607 LOOP->  loop2
608         loop2_exit_bb
609         merge2_bb
610         next_bb
611 
612    For each name used out side the loop (i.e - for each name that has an exit
613    phi in next_bb) we create a new phi in:
614    1. merge2_bb (to account for the edge from guard_bb)
615    2. loop2_exit_bb (an exit-phi to keep LOOP in loop-closed form)
616    3. guard2 bb (an exit phi to keep the preceding loop in loop-closed form),
617       if needed (if it wasn't handled by slpeel_update_phis_nodes_for_phi1).
618 */
619 
620 static void
621 slpeel_update_phi_nodes_for_guard2 (edge guard_edge, struct loop *loop,
622                                     bool is_new_loop, basic_block *new_exit_bb)
623 {
624   gimple orig_phi, new_phi;
625   gimple update_phi, update_phi2;
626   tree guard_arg, loop_arg;
627   basic_block new_merge_bb = guard_edge->dest;
628   edge e = EDGE_SUCC (new_merge_bb, 0);
629   basic_block update_bb = e->dest;
630   edge new_exit_e;
631   tree orig_def, orig_def_new_name;
632   tree new_name, new_name2;
633   tree arg;
634   gimple_stmt_iterator gsi;
635 
636   /* Create new bb between loop and new_merge_bb.  */
637   *new_exit_bb = split_edge (single_exit (loop));
638 
639   new_exit_e = EDGE_SUCC (*new_exit_bb, 0);
640 
641   for (gsi = gsi_start_phis (update_bb); !gsi_end_p (gsi); gsi_next (&gsi))
642     {
643       update_phi = gsi_stmt (gsi);
644       orig_phi = update_phi;
645       orig_def = PHI_ARG_DEF_FROM_EDGE (orig_phi, e);
646       /* This loop-closed-phi actually doesn't represent a use
647          out of the loop - the phi arg is a constant.  */
648       if (TREE_CODE (orig_def) != SSA_NAME)
649         continue;
650       orig_def_new_name = get_current_def (orig_def);
651       arg = NULL_TREE;
652 
653       /** 1. Handle new-merge-point phis  **/
654 
655       /* 1.1. Generate new phi node in NEW_MERGE_BB:  */
656       new_phi = create_phi_node (SSA_NAME_VAR (PHI_RESULT (orig_phi)),
657                                  new_merge_bb);
658 
659       /* 1.2. NEW_MERGE_BB has two incoming edges: GUARD_EDGE and the exit-edge
660             of LOOP. Set the two PHI args in NEW_PHI for these edges:  */
661       new_name = orig_def;
662       new_name2 = NULL_TREE;
663       if (orig_def_new_name)
664         {
665           new_name = orig_def_new_name;
666 	  /* Some variables have both loop-entry-phis and loop-exit-phis.
667 	     Such variables were given yet newer names by phis placed in
668 	     guard_bb by slpeel_update_phi_nodes_for_guard1. I.e:
669 	     new_name2 = get_current_def (get_current_def (orig_name)).  */
670           new_name2 = get_current_def (new_name);
671         }
672 
673       if (is_new_loop)
674         {
675           guard_arg = orig_def;
676           loop_arg = new_name;
677         }
678       else
679         {
680           guard_arg = new_name;
681           loop_arg = orig_def;
682         }
683       if (new_name2)
684         guard_arg = new_name2;
685 
686       add_phi_arg (new_phi, loop_arg, new_exit_e, UNKNOWN_LOCATION);
687       add_phi_arg (new_phi, guard_arg, guard_edge, UNKNOWN_LOCATION);
688 
689       /* 1.3. Update phi in successor block.  */
690       gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi, e) == orig_def);
691       adjust_phi_and_debug_stmts (update_phi, e, PHI_RESULT (new_phi));
692       update_phi2 = new_phi;
693 
694 
695       /** 2. Handle loop-closed-ssa-form phis  **/
696 
697       /* 2.1. Generate new phi node in NEW_EXIT_BB:  */
698       new_phi = create_phi_node (SSA_NAME_VAR (PHI_RESULT (orig_phi)),
699                                  *new_exit_bb);
700 
701       /* 2.2. NEW_EXIT_BB has one incoming edge: the exit-edge of the loop.  */
702       add_phi_arg (new_phi, loop_arg, single_exit (loop), UNKNOWN_LOCATION);
703 
704       /* 2.3. Update phi in successor of NEW_EXIT_BB:  */
705       gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi2, new_exit_e) == loop_arg);
706       adjust_phi_and_debug_stmts (update_phi2, new_exit_e,
707 				  PHI_RESULT (new_phi));
708 
709 
710       /** 3. Handle loop-closed-ssa-form phis for first loop  **/
711 
712       /* 3.1. Find the relevant names that need an exit-phi in
713 	 GUARD_BB, i.e. names for which
714 	 slpeel_update_phi_nodes_for_guard1 had not already created a
715 	 phi node. This is the case for names that are used outside
716 	 the loop (and therefore need an exit phi) but are not updated
717 	 across loop iterations (and therefore don't have a
718 	 loop-header-phi).
719 
720 	 slpeel_update_phi_nodes_for_guard1 is responsible for
721 	 creating loop-exit phis in GUARD_BB for names that have a
722 	 loop-header-phi.  When such a phi is created we also record
723 	 the new name in its current definition.  If this new name
724 	 exists, then guard_arg was set to this new name (see 1.2
725 	 above).  Therefore, if guard_arg is not this new name, this
726 	 is an indication that an exit-phi in GUARD_BB was not yet
727 	 created, so we take care of it here.  */
728       if (guard_arg == new_name2)
729 	continue;
730       arg = guard_arg;
731 
732       /* 3.2. Generate new phi node in GUARD_BB:  */
733       new_phi = create_phi_node (SSA_NAME_VAR (PHI_RESULT (orig_phi)),
734                                  guard_edge->src);
735 
736       /* 3.3. GUARD_BB has one incoming edge:  */
737       gcc_assert (EDGE_COUNT (guard_edge->src->preds) == 1);
738       add_phi_arg (new_phi, arg, EDGE_PRED (guard_edge->src, 0),
739 		   UNKNOWN_LOCATION);
740 
741       /* 3.4. Update phi in successor of GUARD_BB:  */
742       gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi2, guard_edge)
743                                                                 == guard_arg);
744       adjust_phi_and_debug_stmts (update_phi2, guard_edge,
745 				  PHI_RESULT (new_phi));
746     }
747 }
748 
749 
750 /* Make the LOOP iterate NITERS times. This is done by adding a new IV
751    that starts at zero, increases by one and its limit is NITERS.
752 
753    Assumption: the exit-condition of LOOP is the last stmt in the loop.  */
754 
755 void
756 slpeel_make_loop_iterate_ntimes (struct loop *loop, tree niters)
757 {
758   tree indx_before_incr, indx_after_incr;
759   gimple cond_stmt;
760   gimple orig_cond;
761   edge exit_edge = single_exit (loop);
762   gimple_stmt_iterator loop_cond_gsi;
763   gimple_stmt_iterator incr_gsi;
764   bool insert_after;
765   tree init = build_int_cst (TREE_TYPE (niters), 0);
766   tree step = build_int_cst (TREE_TYPE (niters), 1);
767   LOC loop_loc;
768   enum tree_code code;
769 
770   orig_cond = get_loop_exit_condition (loop);
771   gcc_assert (orig_cond);
772   loop_cond_gsi = gsi_for_stmt (orig_cond);
773 
774   standard_iv_increment_position (loop, &incr_gsi, &insert_after);
775   create_iv (init, step, NULL_TREE, loop,
776              &incr_gsi, insert_after, &indx_before_incr, &indx_after_incr);
777 
778   indx_after_incr = force_gimple_operand_gsi (&loop_cond_gsi, indx_after_incr,
779 					      true, NULL_TREE, true,
780 					      GSI_SAME_STMT);
781   niters = force_gimple_operand_gsi (&loop_cond_gsi, niters, true, NULL_TREE,
782 				     true, GSI_SAME_STMT);
783 
784   code = (exit_edge->flags & EDGE_TRUE_VALUE) ? GE_EXPR : LT_EXPR;
785   cond_stmt = gimple_build_cond (code, indx_after_incr, niters, NULL_TREE,
786 				 NULL_TREE);
787 
788   gsi_insert_before (&loop_cond_gsi, cond_stmt, GSI_SAME_STMT);
789 
790   /* Remove old loop exit test:  */
791   gsi_remove (&loop_cond_gsi, true);
792 
793   loop_loc = find_loop_location (loop);
794   if (dump_file && (dump_flags & TDF_DETAILS))
795     {
796       if (loop_loc != UNKNOWN_LOC)
797         fprintf (dump_file, "\nloop at %s:%d: ",
798                  LOC_FILE (loop_loc), LOC_LINE (loop_loc));
799       print_gimple_stmt (dump_file, cond_stmt, 0, TDF_SLIM);
800     }
801 
802   loop->nb_iterations = niters;
803 }
804 
805 
806 /* Given LOOP this function generates a new copy of it and puts it
807    on E which is either the entry or exit of LOOP.  */
808 
809 struct loop *
810 slpeel_tree_duplicate_loop_to_edge_cfg (struct loop *loop, edge e)
811 {
812   struct loop *new_loop;
813   basic_block *new_bbs, *bbs;
814   bool at_exit;
815   bool was_imm_dom;
816   basic_block exit_dest;
817   gimple phi;
818   tree phi_arg;
819   edge exit, new_exit;
820   gimple_stmt_iterator gsi;
821 
822   at_exit = (e == single_exit (loop));
823   if (!at_exit && e != loop_preheader_edge (loop))
824     return NULL;
825 
826   bbs = get_loop_body (loop);
827 
828   /* Check whether duplication is possible.  */
829   if (!can_copy_bbs_p (bbs, loop->num_nodes))
830     {
831       free (bbs);
832       return NULL;
833     }
834 
835   /* Generate new loop structure.  */
836   new_loop = duplicate_loop (loop, loop_outer (loop));
837   if (!new_loop)
838     {
839       free (bbs);
840       return NULL;
841     }
842 
843   exit_dest = single_exit (loop)->dest;
844   was_imm_dom = (get_immediate_dominator (CDI_DOMINATORS,
845 					  exit_dest) == loop->header ?
846 		 true : false);
847 
848   new_bbs = XNEWVEC (basic_block, loop->num_nodes);
849 
850   exit = single_exit (loop);
851   copy_bbs (bbs, loop->num_nodes, new_bbs,
852 	    &exit, 1, &new_exit, NULL,
853 	    e->src);
854 
855   /* Duplicating phi args at exit bbs as coming
856      also from exit of duplicated loop.  */
857   for (gsi = gsi_start_phis (exit_dest); !gsi_end_p (gsi); gsi_next (&gsi))
858     {
859       phi = gsi_stmt (gsi);
860       phi_arg = PHI_ARG_DEF_FROM_EDGE (phi, single_exit (loop));
861       if (phi_arg)
862 	{
863 	  edge new_loop_exit_edge;
864 	  source_location locus;
865 
866 	  locus = gimple_phi_arg_location_from_edge (phi, single_exit (loop));
867 	  if (EDGE_SUCC (new_loop->header, 0)->dest == new_loop->latch)
868 	    new_loop_exit_edge = EDGE_SUCC (new_loop->header, 1);
869 	  else
870 	    new_loop_exit_edge = EDGE_SUCC (new_loop->header, 0);
871 
872 	  add_phi_arg (phi, phi_arg, new_loop_exit_edge, locus);
873 	}
874     }
875 
876   if (at_exit) /* Add the loop copy at exit.  */
877     {
878       redirect_edge_and_branch_force (e, new_loop->header);
879       PENDING_STMT (e) = NULL;
880       set_immediate_dominator (CDI_DOMINATORS, new_loop->header, e->src);
881       if (was_imm_dom)
882 	set_immediate_dominator (CDI_DOMINATORS, exit_dest, new_loop->header);
883     }
884   else /* Add the copy at entry.  */
885     {
886       edge new_exit_e;
887       edge entry_e = loop_preheader_edge (loop);
888       basic_block preheader = entry_e->src;
889 
890       if (!flow_bb_inside_loop_p (new_loop,
891 				  EDGE_SUCC (new_loop->header, 0)->dest))
892         new_exit_e = EDGE_SUCC (new_loop->header, 0);
893       else
894 	new_exit_e = EDGE_SUCC (new_loop->header, 1);
895 
896       redirect_edge_and_branch_force (new_exit_e, loop->header);
897       PENDING_STMT (new_exit_e) = NULL;
898       set_immediate_dominator (CDI_DOMINATORS, loop->header,
899 			       new_exit_e->src);
900 
901       /* We have to add phi args to the loop->header here as coming
902 	 from new_exit_e edge.  */
903       for (gsi = gsi_start_phis (loop->header);
904            !gsi_end_p (gsi);
905            gsi_next (&gsi))
906 	{
907 	  phi = gsi_stmt (gsi);
908 	  phi_arg = PHI_ARG_DEF_FROM_EDGE (phi, entry_e);
909 	  if (phi_arg)
910 	    add_phi_arg (phi, phi_arg, new_exit_e,
911 			 gimple_phi_arg_location_from_edge (phi, entry_e));
912 	}
913 
914       redirect_edge_and_branch_force (entry_e, new_loop->header);
915       PENDING_STMT (entry_e) = NULL;
916       set_immediate_dominator (CDI_DOMINATORS, new_loop->header, preheader);
917     }
918 
919   free (new_bbs);
920   free (bbs);
921 
922   return new_loop;
923 }
924 
925 
926 /* Given the condition statement COND, put it as the last statement
927    of GUARD_BB; EXIT_BB is the basic block to skip the loop;
928    Assumes that this is the single exit of the guarded loop.
929    Returns the skip edge, inserts new stmts on the COND_EXPR_STMT_LIST.  */
930 
931 static edge
932 slpeel_add_loop_guard (basic_block guard_bb, tree cond,
933 		       gimple_seq cond_expr_stmt_list,
934 		       basic_block exit_bb, basic_block dom_bb)
935 {
936   gimple_stmt_iterator gsi;
937   edge new_e, enter_e;
938   gimple cond_stmt;
939   gimple_seq gimplify_stmt_list = NULL;
940 
941   enter_e = EDGE_SUCC (guard_bb, 0);
942   enter_e->flags &= ~EDGE_FALLTHRU;
943   enter_e->flags |= EDGE_FALSE_VALUE;
944   gsi = gsi_last_bb (guard_bb);
945 
946   cond = force_gimple_operand (cond, &gimplify_stmt_list, true, NULL_TREE);
947   if (gimplify_stmt_list)
948     gimple_seq_add_seq (&cond_expr_stmt_list, gimplify_stmt_list);
949   cond_stmt = gimple_build_cond (NE_EXPR,
950 				 cond, build_int_cst (TREE_TYPE (cond), 0),
951 				 NULL_TREE, NULL_TREE);
952   if (cond_expr_stmt_list)
953     gsi_insert_seq_after (&gsi, cond_expr_stmt_list, GSI_NEW_STMT);
954 
955   gsi = gsi_last_bb (guard_bb);
956   gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
957 
958   /* Add new edge to connect guard block to the merge/loop-exit block.  */
959   new_e = make_edge (guard_bb, exit_bb, EDGE_TRUE_VALUE);
960   set_immediate_dominator (CDI_DOMINATORS, exit_bb, dom_bb);
961   return new_e;
962 }
963 
964 
965 /* This function verifies that the following restrictions apply to LOOP:
966    (1) it is innermost
967    (2) it consists of exactly 2 basic blocks - header, and an empty latch.
968    (3) it is single entry, single exit
969    (4) its exit condition is the last stmt in the header
970    (5) E is the entry/exit edge of LOOP.
971  */
972 
973 bool
974 slpeel_can_duplicate_loop_p (const struct loop *loop, const_edge e)
975 {
976   edge exit_e = single_exit (loop);
977   edge entry_e = loop_preheader_edge (loop);
978   gimple orig_cond = get_loop_exit_condition (loop);
979   gimple_stmt_iterator loop_exit_gsi = gsi_last_bb (exit_e->src);
980 
981   if (need_ssa_update_p (cfun))
982     return false;
983 
984   if (loop->inner
985       /* All loops have an outer scope; the only case loop->outer is NULL is for
986          the function itself.  */
987       || !loop_outer (loop)
988       || loop->num_nodes != 2
989       || !empty_block_p (loop->latch)
990       || !single_exit (loop)
991       /* Verify that new loop exit condition can be trivially modified.  */
992       || (!orig_cond || orig_cond != gsi_stmt (loop_exit_gsi))
993       || (e != exit_e && e != entry_e))
994     return false;
995 
996   return true;
997 }
998 
999 #ifdef ENABLE_CHECKING
1000 static void
1001 slpeel_verify_cfg_after_peeling (struct loop *first_loop,
1002                                  struct loop *second_loop)
1003 {
1004   basic_block loop1_exit_bb = single_exit (first_loop)->dest;
1005   basic_block loop2_entry_bb = loop_preheader_edge (second_loop)->src;
1006   basic_block loop1_entry_bb = loop_preheader_edge (first_loop)->src;
1007 
1008   /* A guard that controls whether the second_loop is to be executed or skipped
1009      is placed in first_loop->exit.  first_loop->exit therefore has two
1010      successors - one is the preheader of second_loop, and the other is a bb
1011      after second_loop.
1012    */
1013   gcc_assert (EDGE_COUNT (loop1_exit_bb->succs) == 2);
1014 
1015   /* 1. Verify that one of the successors of first_loop->exit is the preheader
1016         of second_loop.  */
1017 
1018   /* The preheader of new_loop is expected to have two predecessors:
1019      first_loop->exit and the block that precedes first_loop.  */
1020 
1021   gcc_assert (EDGE_COUNT (loop2_entry_bb->preds) == 2
1022               && ((EDGE_PRED (loop2_entry_bb, 0)->src == loop1_exit_bb
1023                    && EDGE_PRED (loop2_entry_bb, 1)->src == loop1_entry_bb)
1024                || (EDGE_PRED (loop2_entry_bb, 1)->src ==  loop1_exit_bb
1025                    && EDGE_PRED (loop2_entry_bb, 0)->src == loop1_entry_bb)));
1026 
1027   /* Verify that the other successor of first_loop->exit is after the
1028      second_loop.  */
1029   /* TODO */
1030 }
1031 #endif
1032 
1033 /* If the run time cost model check determines that vectorization is
1034    not profitable and hence scalar loop should be generated then set
1035    FIRST_NITERS to prologue peeled iterations. This will allow all the
1036    iterations to be executed in the prologue peeled scalar loop.  */
1037 
1038 static void
1039 set_prologue_iterations (basic_block bb_before_first_loop,
1040 			 tree first_niters,
1041 			 struct loop *loop,
1042 			 unsigned int th)
1043 {
1044   edge e;
1045   basic_block cond_bb, then_bb;
1046   tree var, prologue_after_cost_adjust_name;
1047   gimple_stmt_iterator gsi;
1048   gimple newphi;
1049   edge e_true, e_false, e_fallthru;
1050   gimple cond_stmt;
1051   gimple_seq gimplify_stmt_list = NULL, stmts = NULL;
1052   tree cost_pre_condition = NULL_TREE;
1053   tree scalar_loop_iters =
1054     unshare_expr (LOOP_VINFO_NITERS_UNCHANGED (loop_vec_info_for_loop (loop)));
1055 
1056   e = single_pred_edge (bb_before_first_loop);
1057   cond_bb = split_edge(e);
1058 
1059   e = single_pred_edge (bb_before_first_loop);
1060   then_bb = split_edge(e);
1061   set_immediate_dominator (CDI_DOMINATORS, then_bb, cond_bb);
1062 
1063   e_false = make_single_succ_edge (cond_bb, bb_before_first_loop,
1064 				   EDGE_FALSE_VALUE);
1065   set_immediate_dominator (CDI_DOMINATORS, bb_before_first_loop, cond_bb);
1066 
1067   e_true = EDGE_PRED (then_bb, 0);
1068   e_true->flags &= ~EDGE_FALLTHRU;
1069   e_true->flags |= EDGE_TRUE_VALUE;
1070 
1071   e_fallthru = EDGE_SUCC (then_bb, 0);
1072 
1073   cost_pre_condition =
1074     fold_build2 (LE_EXPR, boolean_type_node, scalar_loop_iters,
1075 	         build_int_cst (TREE_TYPE (scalar_loop_iters), th));
1076   cost_pre_condition =
1077     force_gimple_operand (cost_pre_condition, &gimplify_stmt_list,
1078 			  true, NULL_TREE);
1079   cond_stmt = gimple_build_cond (NE_EXPR, cost_pre_condition,
1080 				 build_int_cst (TREE_TYPE (cost_pre_condition),
1081 						0), NULL_TREE, NULL_TREE);
1082 
1083   gsi = gsi_last_bb (cond_bb);
1084   if (gimplify_stmt_list)
1085     gsi_insert_seq_after (&gsi, gimplify_stmt_list, GSI_NEW_STMT);
1086 
1087   gsi = gsi_last_bb (cond_bb);
1088   gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
1089 
1090   var = create_tmp_var (TREE_TYPE (scalar_loop_iters),
1091 			"prologue_after_cost_adjust");
1092   add_referenced_var (var);
1093   prologue_after_cost_adjust_name =
1094     force_gimple_operand (scalar_loop_iters, &stmts, false, var);
1095 
1096   gsi = gsi_last_bb (then_bb);
1097   if (stmts)
1098     gsi_insert_seq_after (&gsi, stmts, GSI_NEW_STMT);
1099 
1100   newphi = create_phi_node (var, bb_before_first_loop);
1101   add_phi_arg (newphi, prologue_after_cost_adjust_name, e_fallthru,
1102 	       UNKNOWN_LOCATION);
1103   add_phi_arg (newphi, first_niters, e_false, UNKNOWN_LOCATION);
1104 
1105   first_niters = PHI_RESULT (newphi);
1106 }
1107 
1108 
1109 /* Function slpeel_tree_peel_loop_to_edge.
1110 
1111    Peel the first (last) iterations of LOOP into a new prolog (epilog) loop
1112    that is placed on the entry (exit) edge E of LOOP. After this transformation
1113    we have two loops one after the other - first-loop iterates FIRST_NITERS
1114    times, and second-loop iterates the remainder NITERS - FIRST_NITERS times.
1115    If the cost model indicates that it is profitable to emit a scalar
1116    loop instead of the vector one, then the prolog (epilog) loop will iterate
1117    for the entire unchanged scalar iterations of the loop.
1118 
1119    Input:
1120    - LOOP: the loop to be peeled.
1121    - E: the exit or entry edge of LOOP.
1122         If it is the entry edge, we peel the first iterations of LOOP. In this
1123         case first-loop is LOOP, and second-loop is the newly created loop.
1124         If it is the exit edge, we peel the last iterations of LOOP. In this
1125         case, first-loop is the newly created loop, and second-loop is LOOP.
1126    - NITERS: the number of iterations that LOOP iterates.
1127    - FIRST_NITERS: the number of iterations that the first-loop should iterate.
1128    - UPDATE_FIRST_LOOP_COUNT:  specified whether this function is responsible
1129         for updating the loop bound of the first-loop to FIRST_NITERS.  If it
1130         is false, the caller of this function may want to take care of this
1131         (this can be useful if we don't want new stmts added to first-loop).
1132    - TH: cost model profitability threshold of iterations for vectorization.
1133    - CHECK_PROFITABILITY: specify whether cost model check has not occurred
1134                           during versioning and hence needs to occur during
1135 			  prologue generation or whether cost model check
1136 			  has not occurred during prologue generation and hence
1137 			  needs to occur during epilogue generation.
1138 
1139 
1140    Output:
1141    The function returns a pointer to the new loop-copy, or NULL if it failed
1142    to perform the transformation.
1143 
1144    The function generates two if-then-else guards: one before the first loop,
1145    and the other before the second loop:
1146    The first guard is:
1147      if (FIRST_NITERS == 0) then skip the first loop,
1148      and go directly to the second loop.
1149    The second guard is:
1150      if (FIRST_NITERS == NITERS) then skip the second loop.
1151 
1152    If the optional COND_EXPR and COND_EXPR_STMT_LIST arguments are given
1153    then the generated condition is combined with COND_EXPR and the
1154    statements in COND_EXPR_STMT_LIST are emitted together with it.
1155 
1156    FORNOW only simple loops are supported (see slpeel_can_duplicate_loop_p).
1157    FORNOW the resulting code will not be in loop-closed-ssa form.
1158 */
1159 
1160 static struct loop*
1161 slpeel_tree_peel_loop_to_edge (struct loop *loop,
1162 			       edge e, tree first_niters,
1163 			       tree niters, bool update_first_loop_count,
1164 			       unsigned int th, bool check_profitability,
1165 			       tree cond_expr, gimple_seq cond_expr_stmt_list)
1166 {
1167   struct loop *new_loop = NULL, *first_loop, *second_loop;
1168   edge skip_e;
1169   tree pre_condition = NULL_TREE;
1170   bitmap definitions;
1171   basic_block bb_before_second_loop, bb_after_second_loop;
1172   basic_block bb_before_first_loop;
1173   basic_block bb_between_loops;
1174   basic_block new_exit_bb;
1175   edge exit_e = single_exit (loop);
1176   LOC loop_loc;
1177   tree cost_pre_condition = NULL_TREE;
1178 
1179   if (!slpeel_can_duplicate_loop_p (loop, e))
1180     return NULL;
1181 
1182   /* We have to initialize cfg_hooks. Then, when calling
1183    cfg_hooks->split_edge, the function tree_split_edge
1184    is actually called and, when calling cfg_hooks->duplicate_block,
1185    the function tree_duplicate_bb is called.  */
1186   gimple_register_cfg_hooks ();
1187 
1188 
1189   /* 1. Generate a copy of LOOP and put it on E (E is the entry/exit of LOOP).
1190         Resulting CFG would be:
1191 
1192         first_loop:
1193         do {
1194         } while ...
1195 
1196         second_loop:
1197         do {
1198         } while ...
1199 
1200         orig_exit_bb:
1201    */
1202 
1203   if (!(new_loop = slpeel_tree_duplicate_loop_to_edge_cfg (loop, e)))
1204     {
1205       loop_loc = find_loop_location (loop);
1206       if (dump_file && (dump_flags & TDF_DETAILS))
1207         {
1208           if (loop_loc != UNKNOWN_LOC)
1209             fprintf (dump_file, "\n%s:%d: note: ",
1210                      LOC_FILE (loop_loc), LOC_LINE (loop_loc));
1211           fprintf (dump_file, "tree_duplicate_loop_to_edge_cfg failed.\n");
1212         }
1213       return NULL;
1214     }
1215 
1216   if (MAY_HAVE_DEBUG_STMTS)
1217     {
1218       gcc_assert (!adjust_vec);
1219       adjust_vec = VEC_alloc (adjust_info, stack, 32);
1220     }
1221 
1222   if (e == exit_e)
1223     {
1224       /* NEW_LOOP was placed after LOOP.  */
1225       first_loop = loop;
1226       second_loop = new_loop;
1227     }
1228   else
1229     {
1230       /* NEW_LOOP was placed before LOOP.  */
1231       first_loop = new_loop;
1232       second_loop = loop;
1233     }
1234 
1235   definitions = ssa_names_to_replace ();
1236   slpeel_update_phis_for_duplicate_loop (loop, new_loop, e == exit_e);
1237   rename_variables_in_loop (new_loop);
1238 
1239 
1240   /* 2.  Add the guard code in one of the following ways:
1241 
1242      2.a Add the guard that controls whether the first loop is executed.
1243          This occurs when this function is invoked for prologue or epilogue
1244 	 generation and when the cost model check can be done at compile time.
1245 
1246          Resulting CFG would be:
1247 
1248          bb_before_first_loop:
1249          if (FIRST_NITERS == 0) GOTO bb_before_second_loop
1250                                 GOTO first-loop
1251 
1252          first_loop:
1253          do {
1254          } while ...
1255 
1256          bb_before_second_loop:
1257 
1258          second_loop:
1259          do {
1260          } while ...
1261 
1262          orig_exit_bb:
1263 
1264      2.b Add the cost model check that allows the prologue
1265          to iterate for the entire unchanged scalar
1266          iterations of the loop in the event that the cost
1267          model indicates that the scalar loop is more
1268          profitable than the vector one. This occurs when
1269 	 this function is invoked for prologue generation
1270 	 and the cost model check needs to be done at run
1271 	 time.
1272 
1273          Resulting CFG after prologue peeling would be:
1274 
1275          if (scalar_loop_iterations <= th)
1276            FIRST_NITERS = scalar_loop_iterations
1277 
1278          bb_before_first_loop:
1279          if (FIRST_NITERS == 0) GOTO bb_before_second_loop
1280                                 GOTO first-loop
1281 
1282          first_loop:
1283          do {
1284          } while ...
1285 
1286          bb_before_second_loop:
1287 
1288          second_loop:
1289          do {
1290          } while ...
1291 
1292          orig_exit_bb:
1293 
1294      2.c Add the cost model check that allows the epilogue
1295          to iterate for the entire unchanged scalar
1296          iterations of the loop in the event that the cost
1297          model indicates that the scalar loop is more
1298          profitable than the vector one. This occurs when
1299 	 this function is invoked for epilogue generation
1300 	 and the cost model check needs to be done at run
1301 	 time.  This check is combined with any pre-existing
1302 	 check in COND_EXPR to avoid versioning.
1303 
1304          Resulting CFG after prologue peeling would be:
1305 
1306          bb_before_first_loop:
1307          if ((scalar_loop_iterations <= th)
1308              ||
1309              FIRST_NITERS == 0) GOTO bb_before_second_loop
1310                                 GOTO first-loop
1311 
1312          first_loop:
1313          do {
1314          } while ...
1315 
1316          bb_before_second_loop:
1317 
1318          second_loop:
1319          do {
1320          } while ...
1321 
1322          orig_exit_bb:
1323   */
1324 
1325   bb_before_first_loop = split_edge (loop_preheader_edge (first_loop));
1326   bb_before_second_loop = split_edge (single_exit (first_loop));
1327 
1328   /* Epilogue peeling.  */
1329   if (!update_first_loop_count)
1330     {
1331       pre_condition =
1332 	fold_build2 (LE_EXPR, boolean_type_node, first_niters,
1333 		     build_int_cst (TREE_TYPE (first_niters), 0));
1334       if (check_profitability)
1335 	{
1336 	  tree scalar_loop_iters
1337 	    = unshare_expr (LOOP_VINFO_NITERS_UNCHANGED
1338 					(loop_vec_info_for_loop (loop)));
1339 	  cost_pre_condition =
1340 	    fold_build2 (LE_EXPR, boolean_type_node, scalar_loop_iters,
1341 		         build_int_cst (TREE_TYPE (scalar_loop_iters), th));
1342 
1343 	  pre_condition = fold_build2 (TRUTH_OR_EXPR, boolean_type_node,
1344 				       cost_pre_condition, pre_condition);
1345 	}
1346       if (cond_expr)
1347 	{
1348 	  pre_condition =
1349 	    fold_build2 (TRUTH_OR_EXPR, boolean_type_node,
1350 			 pre_condition,
1351 			 fold_build1 (TRUTH_NOT_EXPR, boolean_type_node,
1352 				      cond_expr));
1353 	}
1354     }
1355 
1356   /* Prologue peeling.  */
1357   else
1358     {
1359       if (check_profitability)
1360 	set_prologue_iterations (bb_before_first_loop, first_niters,
1361 				 loop, th);
1362 
1363       pre_condition =
1364 	fold_build2 (LE_EXPR, boolean_type_node, first_niters,
1365 		     build_int_cst (TREE_TYPE (first_niters), 0));
1366     }
1367 
1368   skip_e = slpeel_add_loop_guard (bb_before_first_loop, pre_condition,
1369 				  cond_expr_stmt_list,
1370                                   bb_before_second_loop, bb_before_first_loop);
1371   slpeel_update_phi_nodes_for_guard1 (skip_e, first_loop,
1372 				      first_loop == new_loop,
1373 				      &new_exit_bb, &definitions);
1374 
1375 
1376   /* 3. Add the guard that controls whether the second loop is executed.
1377         Resulting CFG would be:
1378 
1379         bb_before_first_loop:
1380         if (FIRST_NITERS == 0) GOTO bb_before_second_loop (skip first loop)
1381                                GOTO first-loop
1382 
1383         first_loop:
1384         do {
1385         } while ...
1386 
1387         bb_between_loops:
1388         if (FIRST_NITERS == NITERS) GOTO bb_after_second_loop (skip second loop)
1389                                     GOTO bb_before_second_loop
1390 
1391         bb_before_second_loop:
1392 
1393         second_loop:
1394         do {
1395         } while ...
1396 
1397         bb_after_second_loop:
1398 
1399         orig_exit_bb:
1400    */
1401 
1402   bb_between_loops = new_exit_bb;
1403   bb_after_second_loop = split_edge (single_exit (second_loop));
1404 
1405   pre_condition =
1406 	fold_build2 (EQ_EXPR, boolean_type_node, first_niters, niters);
1407   skip_e = slpeel_add_loop_guard (bb_between_loops, pre_condition, NULL,
1408                                   bb_after_second_loop, bb_before_first_loop);
1409   slpeel_update_phi_nodes_for_guard2 (skip_e, second_loop,
1410                                      second_loop == new_loop, &new_exit_bb);
1411 
1412   /* 4. Make first-loop iterate FIRST_NITERS times, if requested.
1413    */
1414   if (update_first_loop_count)
1415     slpeel_make_loop_iterate_ntimes (first_loop, first_niters);
1416 
1417   adjust_vec_debug_stmts ();
1418 
1419   BITMAP_FREE (definitions);
1420   delete_update_ssa ();
1421 
1422   return new_loop;
1423 }
1424 
1425 /* Function vect_get_loop_location.
1426 
1427    Extract the location of the loop in the source code.
1428    If the loop is not well formed for vectorization, an estimated
1429    location is calculated.
1430    Return the loop location if succeed and NULL if not.  */
1431 
1432 LOC
1433 find_loop_location (struct loop *loop)
1434 {
1435   gimple stmt = NULL;
1436   basic_block bb;
1437   gimple_stmt_iterator si;
1438 
1439   if (!loop)
1440     return UNKNOWN_LOC;
1441 
1442   stmt = get_loop_exit_condition (loop);
1443 
1444   if (stmt && gimple_location (stmt) != UNKNOWN_LOC)
1445     return gimple_location (stmt);
1446 
1447   /* If we got here the loop is probably not "well formed",
1448      try to estimate the loop location */
1449 
1450   if (!loop->header)
1451     return UNKNOWN_LOC;
1452 
1453   bb = loop->header;
1454 
1455   for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
1456     {
1457       stmt = gsi_stmt (si);
1458       if (gimple_location (stmt) != UNKNOWN_LOC)
1459         return gimple_location (stmt);
1460     }
1461 
1462   return UNKNOWN_LOC;
1463 }
1464 
1465 
1466 /* This function builds ni_name = number of iterations loop executes
1467    on the loop preheader.  If SEQ is given the stmt is instead emitted
1468    there.  */
1469 
1470 static tree
1471 vect_build_loop_niters (loop_vec_info loop_vinfo, gimple_seq seq)
1472 {
1473   tree ni_name, var;
1474   gimple_seq stmts = NULL;
1475   edge pe;
1476   struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1477   tree ni = unshare_expr (LOOP_VINFO_NITERS (loop_vinfo));
1478 
1479   var = create_tmp_var (TREE_TYPE (ni), "niters");
1480   add_referenced_var (var);
1481   ni_name = force_gimple_operand (ni, &stmts, false, var);
1482 
1483   pe = loop_preheader_edge (loop);
1484   if (stmts)
1485     {
1486       if (seq)
1487 	gimple_seq_add_seq (&seq, stmts);
1488       else
1489 	{
1490 	  basic_block new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
1491 	  gcc_assert (!new_bb);
1492 	}
1493     }
1494 
1495   return ni_name;
1496 }
1497 
1498 
1499 /* This function generates the following statements:
1500 
1501  ni_name = number of iterations loop executes
1502  ratio = ni_name / vf
1503  ratio_mult_vf_name = ratio * vf
1504 
1505  and places them at the loop preheader edge or in COND_EXPR_STMT_LIST
1506  if that is non-NULL.  */
1507 
1508 static void
1509 vect_generate_tmps_on_preheader (loop_vec_info loop_vinfo,
1510 				 tree *ni_name_ptr,
1511 				 tree *ratio_mult_vf_name_ptr,
1512 				 tree *ratio_name_ptr,
1513 				 gimple_seq cond_expr_stmt_list)
1514 {
1515 
1516   edge pe;
1517   basic_block new_bb;
1518   gimple_seq stmts;
1519   tree ni_name, ni_minus_gap_name;
1520   tree var;
1521   tree ratio_name;
1522   tree ratio_mult_vf_name;
1523   struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1524   tree ni = LOOP_VINFO_NITERS (loop_vinfo);
1525   int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
1526   tree log_vf;
1527 
1528   pe = loop_preheader_edge (loop);
1529 
1530   /* Generate temporary variable that contains
1531      number of iterations loop executes.  */
1532 
1533   ni_name = vect_build_loop_niters (loop_vinfo, cond_expr_stmt_list);
1534   log_vf = build_int_cst (TREE_TYPE (ni), exact_log2 (vf));
1535 
1536   /* If epilogue loop is required because of data accesses with gaps, we
1537      subtract one iteration from the total number of iterations here for
1538      correct calculation of RATIO.  */
1539   if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo))
1540     {
1541       ni_minus_gap_name = fold_build2 (MINUS_EXPR, TREE_TYPE (ni_name),
1542 				       ni_name,
1543 			               build_one_cst (TREE_TYPE (ni_name)));
1544       if (!is_gimple_val (ni_minus_gap_name))
1545 	{
1546 	  var = create_tmp_var (TREE_TYPE (ni), "ni_gap");
1547           add_referenced_var (var);
1548 
1549           stmts = NULL;
1550           ni_minus_gap_name = force_gimple_operand (ni_minus_gap_name, &stmts,
1551 						    true, var);
1552           if (cond_expr_stmt_list)
1553             gimple_seq_add_seq (&cond_expr_stmt_list, stmts);
1554           else
1555             {
1556               pe = loop_preheader_edge (loop);
1557               new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
1558               gcc_assert (!new_bb);
1559             }
1560         }
1561     }
1562   else
1563     ni_minus_gap_name = ni_name;
1564 
1565   /* Create: ratio = ni >> log2(vf) */
1566 
1567   ratio_name = fold_build2 (RSHIFT_EXPR, TREE_TYPE (ni_minus_gap_name),
1568 			    ni_minus_gap_name, log_vf);
1569   if (!is_gimple_val (ratio_name))
1570     {
1571       var = create_tmp_var (TREE_TYPE (ni), "bnd");
1572       add_referenced_var (var);
1573 
1574       stmts = NULL;
1575       ratio_name = force_gimple_operand (ratio_name, &stmts, true, var);
1576       if (cond_expr_stmt_list)
1577 	gimple_seq_add_seq (&cond_expr_stmt_list, stmts);
1578       else
1579 	{
1580 	  pe = loop_preheader_edge (loop);
1581 	  new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
1582 	  gcc_assert (!new_bb);
1583 	}
1584     }
1585 
1586   /* Create: ratio_mult_vf = ratio << log2 (vf).  */
1587 
1588   ratio_mult_vf_name = fold_build2 (LSHIFT_EXPR, TREE_TYPE (ratio_name),
1589 				    ratio_name, log_vf);
1590   if (!is_gimple_val (ratio_mult_vf_name))
1591     {
1592       var = create_tmp_var (TREE_TYPE (ni), "ratio_mult_vf");
1593       add_referenced_var (var);
1594 
1595       stmts = NULL;
1596       ratio_mult_vf_name = force_gimple_operand (ratio_mult_vf_name, &stmts,
1597 						 true, var);
1598       if (cond_expr_stmt_list)
1599 	gimple_seq_add_seq (&cond_expr_stmt_list, stmts);
1600       else
1601 	{
1602 	  pe = loop_preheader_edge (loop);
1603 	  new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
1604 	  gcc_assert (!new_bb);
1605 	}
1606     }
1607 
1608   *ni_name_ptr = ni_name;
1609   *ratio_mult_vf_name_ptr = ratio_mult_vf_name;
1610   *ratio_name_ptr = ratio_name;
1611 
1612   return;
1613 }
1614 
1615 /* Function vect_can_advance_ivs_p
1616 
1617    In case the number of iterations that LOOP iterates is unknown at compile
1618    time, an epilog loop will be generated, and the loop induction variables
1619    (IVs) will be "advanced" to the value they are supposed to take just before
1620    the epilog loop.  Here we check that the access function of the loop IVs
1621    and the expression that represents the loop bound are simple enough.
1622    These restrictions will be relaxed in the future.  */
1623 
1624 bool
1625 vect_can_advance_ivs_p (loop_vec_info loop_vinfo)
1626 {
1627   struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1628   basic_block bb = loop->header;
1629   gimple phi;
1630   gimple_stmt_iterator gsi;
1631 
1632   /* Analyze phi functions of the loop header.  */
1633 
1634   if (vect_print_dump_info (REPORT_DETAILS))
1635     fprintf (vect_dump, "vect_can_advance_ivs_p:");
1636 
1637   for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1638     {
1639       tree access_fn = NULL;
1640       tree evolution_part;
1641 
1642       phi = gsi_stmt (gsi);
1643       if (vect_print_dump_info (REPORT_DETAILS))
1644 	{
1645           fprintf (vect_dump, "Analyze phi: ");
1646           print_gimple_stmt (vect_dump, phi, 0, TDF_SLIM);
1647 	}
1648 
1649       /* Skip virtual phi's. The data dependences that are associated with
1650          virtual defs/uses (i.e., memory accesses) are analyzed elsewhere.  */
1651 
1652       if (!is_gimple_reg (SSA_NAME_VAR (PHI_RESULT (phi))))
1653 	{
1654 	  if (vect_print_dump_info (REPORT_DETAILS))
1655 	    fprintf (vect_dump, "virtual phi. skip.");
1656 	  continue;
1657 	}
1658 
1659       /* Skip reduction phis.  */
1660 
1661       if (STMT_VINFO_DEF_TYPE (vinfo_for_stmt (phi)) == vect_reduction_def)
1662         {
1663           if (vect_print_dump_info (REPORT_DETAILS))
1664             fprintf (vect_dump, "reduc phi. skip.");
1665           continue;
1666         }
1667 
1668       /* Analyze the evolution function.  */
1669 
1670       access_fn = instantiate_parameters
1671 	(loop, analyze_scalar_evolution (loop, PHI_RESULT (phi)));
1672 
1673       if (!access_fn)
1674 	{
1675 	  if (vect_print_dump_info (REPORT_DETAILS))
1676 	    fprintf (vect_dump, "No Access function.");
1677 	  return false;
1678 	}
1679 
1680       if (vect_print_dump_info (REPORT_DETAILS))
1681         {
1682 	  fprintf (vect_dump, "Access function of PHI: ");
1683 	  print_generic_expr (vect_dump, access_fn, TDF_SLIM);
1684         }
1685 
1686       evolution_part = evolution_part_in_loop_num (access_fn, loop->num);
1687 
1688       if (evolution_part == NULL_TREE)
1689         {
1690 	  if (vect_print_dump_info (REPORT_DETAILS))
1691 	    fprintf (vect_dump, "No evolution.");
1692 	  return false;
1693         }
1694 
1695       /* FORNOW: We do not transform initial conditions of IVs
1696 	 which evolution functions are a polynomial of degree >= 2.  */
1697 
1698       if (tree_is_chrec (evolution_part))
1699 	return false;
1700     }
1701 
1702   return true;
1703 }
1704 
1705 
1706 /*   Function vect_update_ivs_after_vectorizer.
1707 
1708      "Advance" the induction variables of LOOP to the value they should take
1709      after the execution of LOOP.  This is currently necessary because the
1710      vectorizer does not handle induction variables that are used after the
1711      loop.  Such a situation occurs when the last iterations of LOOP are
1712      peeled, because:
1713      1. We introduced new uses after LOOP for IVs that were not originally used
1714         after LOOP: the IVs of LOOP are now used by an epilog loop.
1715      2. LOOP is going to be vectorized; this means that it will iterate N/VF
1716         times, whereas the loop IVs should be bumped N times.
1717 
1718      Input:
1719      - LOOP - a loop that is going to be vectorized. The last few iterations
1720               of LOOP were peeled.
1721      - NITERS - the number of iterations that LOOP executes (before it is
1722                 vectorized). i.e, the number of times the ivs should be bumped.
1723      - UPDATE_E - a successor edge of LOOP->exit that is on the (only) path
1724                   coming out from LOOP on which there are uses of the LOOP ivs
1725 		  (this is the path from LOOP->exit to epilog_loop->preheader).
1726 
1727                   The new definitions of the ivs are placed in LOOP->exit.
1728                   The phi args associated with the edge UPDATE_E in the bb
1729                   UPDATE_E->dest are updated accordingly.
1730 
1731      Assumption 1: Like the rest of the vectorizer, this function assumes
1732      a single loop exit that has a single predecessor.
1733 
1734      Assumption 2: The phi nodes in the LOOP header and in update_bb are
1735      organized in the same order.
1736 
1737      Assumption 3: The access function of the ivs is simple enough (see
1738      vect_can_advance_ivs_p).  This assumption will be relaxed in the future.
1739 
1740      Assumption 4: Exactly one of the successors of LOOP exit-bb is on a path
1741      coming out of LOOP on which the ivs of LOOP are used (this is the path
1742      that leads to the epilog loop; other paths skip the epilog loop).  This
1743      path starts with the edge UPDATE_E, and its destination (denoted update_bb)
1744      needs to have its phis updated.
1745  */
1746 
1747 static void
1748 vect_update_ivs_after_vectorizer (loop_vec_info loop_vinfo, tree niters,
1749 				  edge update_e)
1750 {
1751   struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1752   basic_block exit_bb = single_exit (loop)->dest;
1753   gimple phi, phi1;
1754   gimple_stmt_iterator gsi, gsi1;
1755   basic_block update_bb = update_e->dest;
1756 
1757   /* gcc_assert (vect_can_advance_ivs_p (loop_vinfo)); */
1758 
1759   /* Make sure there exists a single-predecessor exit bb:  */
1760   gcc_assert (single_pred_p (exit_bb));
1761 
1762   for (gsi = gsi_start_phis (loop->header), gsi1 = gsi_start_phis (update_bb);
1763        !gsi_end_p (gsi) && !gsi_end_p (gsi1);
1764        gsi_next (&gsi), gsi_next (&gsi1))
1765     {
1766       tree access_fn = NULL;
1767       tree evolution_part;
1768       tree init_expr;
1769       tree step_expr, off;
1770       tree type;
1771       tree var, ni, ni_name;
1772       gimple_stmt_iterator last_gsi;
1773 
1774       phi = gsi_stmt (gsi);
1775       phi1 = gsi_stmt (gsi1);
1776       if (vect_print_dump_info (REPORT_DETAILS))
1777         {
1778           fprintf (vect_dump, "vect_update_ivs_after_vectorizer: phi: ");
1779 	  print_gimple_stmt (vect_dump, phi, 0, TDF_SLIM);
1780         }
1781 
1782       /* Skip virtual phi's.  */
1783       if (!is_gimple_reg (SSA_NAME_VAR (PHI_RESULT (phi))))
1784 	{
1785 	  if (vect_print_dump_info (REPORT_DETAILS))
1786 	    fprintf (vect_dump, "virtual phi. skip.");
1787 	  continue;
1788 	}
1789 
1790       /* Skip reduction phis.  */
1791       if (STMT_VINFO_DEF_TYPE (vinfo_for_stmt (phi)) == vect_reduction_def)
1792         {
1793           if (vect_print_dump_info (REPORT_DETAILS))
1794             fprintf (vect_dump, "reduc phi. skip.");
1795           continue;
1796         }
1797 
1798       access_fn = analyze_scalar_evolution (loop, PHI_RESULT (phi));
1799       gcc_assert (access_fn);
1800       /* We can end up with an access_fn like
1801            (short int) {(short unsigned int) i_49, +, 1}_1
1802 	 for further analysis we need to strip the outer cast but we
1803 	 need to preserve the original type.  */
1804       type = TREE_TYPE (access_fn);
1805       STRIP_NOPS (access_fn);
1806       evolution_part =
1807 	 unshare_expr (evolution_part_in_loop_num (access_fn, loop->num));
1808       gcc_assert (evolution_part != NULL_TREE);
1809 
1810       /* FORNOW: We do not support IVs whose evolution function is a polynomial
1811          of degree >= 2 or exponential.  */
1812       gcc_assert (!tree_is_chrec (evolution_part));
1813 
1814       step_expr = evolution_part;
1815       init_expr = unshare_expr (initial_condition_in_loop_num (access_fn,
1816 							       loop->num));
1817       init_expr = fold_convert (type, init_expr);
1818 
1819       off = fold_build2 (MULT_EXPR, TREE_TYPE (step_expr),
1820 			 fold_convert (TREE_TYPE (step_expr), niters),
1821 			 step_expr);
1822       if (POINTER_TYPE_P (TREE_TYPE (init_expr)))
1823 	ni = fold_build2 (POINTER_PLUS_EXPR, TREE_TYPE (init_expr),
1824 			  init_expr,
1825 			  fold_convert (sizetype, off));
1826       else
1827 	ni = fold_build2 (PLUS_EXPR, TREE_TYPE (init_expr),
1828 			  init_expr,
1829 			  fold_convert (TREE_TYPE (init_expr), off));
1830 
1831       var = create_tmp_var (TREE_TYPE (init_expr), "tmp");
1832       add_referenced_var (var);
1833 
1834       last_gsi = gsi_last_bb (exit_bb);
1835       ni_name = force_gimple_operand_gsi (&last_gsi, ni, false, var,
1836 					  true, GSI_SAME_STMT);
1837 
1838       /* Fix phi expressions in the successor bb.  */
1839       adjust_phi_and_debug_stmts (phi1, update_e, ni_name);
1840     }
1841 }
1842 
1843 /* Return the more conservative threshold between the
1844    min_profitable_iters returned by the cost model and the user
1845    specified threshold, if provided.  */
1846 
1847 static unsigned int
1848 conservative_cost_threshold (loop_vec_info loop_vinfo,
1849 			     int min_profitable_iters)
1850 {
1851   unsigned int th;
1852   int min_scalar_loop_bound;
1853 
1854   min_scalar_loop_bound = ((PARAM_VALUE (PARAM_MIN_VECT_LOOP_BOUND)
1855 			    * LOOP_VINFO_VECT_FACTOR (loop_vinfo)) - 1);
1856 
1857   /* Use the cost model only if it is more conservative than user specified
1858      threshold.  */
1859   th = (unsigned) min_scalar_loop_bound;
1860   if (min_profitable_iters
1861       && (!min_scalar_loop_bound
1862           || min_profitable_iters > min_scalar_loop_bound))
1863     th = (unsigned) min_profitable_iters;
1864 
1865   if (th && vect_print_dump_info (REPORT_COST))
1866     fprintf (vect_dump, "Profitability threshold is %u loop iterations.", th);
1867 
1868   return th;
1869 }
1870 
1871 /* Function vect_do_peeling_for_loop_bound
1872 
1873    Peel the last iterations of the loop represented by LOOP_VINFO.
1874    The peeled iterations form a new epilog loop.  Given that the loop now
1875    iterates NITERS times, the new epilog loop iterates
1876    NITERS % VECTORIZATION_FACTOR times.
1877 
1878    The original loop will later be made to iterate
1879    NITERS / VECTORIZATION_FACTOR times (this value is placed into RATIO).
1880 
1881    COND_EXPR and COND_EXPR_STMT_LIST are combined with a new generated
1882    test.  */
1883 
1884 void
1885 vect_do_peeling_for_loop_bound (loop_vec_info loop_vinfo, tree *ratio,
1886 				tree cond_expr, gimple_seq cond_expr_stmt_list)
1887 {
1888   tree ni_name, ratio_mult_vf_name;
1889   struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1890   struct loop *new_loop;
1891   edge update_e;
1892   basic_block preheader;
1893   int loop_num;
1894   bool check_profitability = false;
1895   unsigned int th = 0;
1896   int min_profitable_iters;
1897 
1898   if (vect_print_dump_info (REPORT_DETAILS))
1899     fprintf (vect_dump, "=== vect_do_peeling_for_loop_bound ===");
1900 
1901   initialize_original_copy_tables ();
1902 
1903   /* Generate the following variables on the preheader of original loop:
1904 
1905      ni_name = number of iteration the original loop executes
1906      ratio = ni_name / vf
1907      ratio_mult_vf_name = ratio * vf  */
1908   vect_generate_tmps_on_preheader (loop_vinfo, &ni_name,
1909 				   &ratio_mult_vf_name, ratio,
1910 				   cond_expr_stmt_list);
1911 
1912   loop_num  = loop->num;
1913 
1914   /* If cost model check not done during versioning and
1915      peeling for alignment.  */
1916   if (!LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo)
1917       && !LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo)
1918       && !LOOP_PEELING_FOR_ALIGNMENT (loop_vinfo)
1919       && !cond_expr)
1920     {
1921       check_profitability = true;
1922 
1923       /* Get profitability threshold for vectorized loop.  */
1924       min_profitable_iters = LOOP_VINFO_COST_MODEL_MIN_ITERS (loop_vinfo);
1925 
1926       th = conservative_cost_threshold (loop_vinfo,
1927 					min_profitable_iters);
1928     }
1929 
1930   new_loop = slpeel_tree_peel_loop_to_edge (loop, single_exit (loop),
1931                                             ratio_mult_vf_name, ni_name, false,
1932                                             th, check_profitability,
1933 					    cond_expr, cond_expr_stmt_list);
1934   gcc_assert (new_loop);
1935   gcc_assert (loop_num == loop->num);
1936 #ifdef ENABLE_CHECKING
1937   slpeel_verify_cfg_after_peeling (loop, new_loop);
1938 #endif
1939 
1940   /* A guard that controls whether the new_loop is to be executed or skipped
1941      is placed in LOOP->exit.  LOOP->exit therefore has two successors - one
1942      is the preheader of NEW_LOOP, where the IVs from LOOP are used.  The other
1943      is a bb after NEW_LOOP, where these IVs are not used.  Find the edge that
1944      is on the path where the LOOP IVs are used and need to be updated.  */
1945 
1946   preheader = loop_preheader_edge (new_loop)->src;
1947   if (EDGE_PRED (preheader, 0)->src == single_exit (loop)->dest)
1948     update_e = EDGE_PRED (preheader, 0);
1949   else
1950     update_e = EDGE_PRED (preheader, 1);
1951 
1952   /* Update IVs of original loop as if they were advanced
1953      by ratio_mult_vf_name steps.  */
1954   vect_update_ivs_after_vectorizer (loop_vinfo, ratio_mult_vf_name, update_e);
1955 
1956   /* After peeling we have to reset scalar evolution analyzer.  */
1957   scev_reset ();
1958 
1959   free_original_copy_tables ();
1960 }
1961 
1962 
1963 /* Function vect_gen_niters_for_prolog_loop
1964 
1965    Set the number of iterations for the loop represented by LOOP_VINFO
1966    to the minimum between LOOP_NITERS (the original iteration count of the loop)
1967    and the misalignment of DR - the data reference recorded in
1968    LOOP_VINFO_UNALIGNED_DR (LOOP_VINFO).  As a result, after the execution of
1969    this loop, the data reference DR will refer to an aligned location.
1970 
1971    The following computation is generated:
1972 
1973    If the misalignment of DR is known at compile time:
1974      addr_mis = int mis = DR_MISALIGNMENT (dr);
1975    Else, compute address misalignment in bytes:
1976      addr_mis = addr & (vectype_size - 1)
1977 
1978    prolog_niters = min (LOOP_NITERS, ((VF - addr_mis/elem_size)&(VF-1))/step)
1979 
1980    (elem_size = element type size; an element is the scalar element whose type
1981    is the inner type of the vectype)
1982 
1983    When the step of the data-ref in the loop is not 1 (as in interleaved data
1984    and SLP), the number of iterations of the prolog must be divided by the step
1985    (which is equal to the size of interleaved group).
1986 
1987    The above formulas assume that VF == number of elements in the vector. This
1988    may not hold when there are multiple-types in the loop.
1989    In this case, for some data-references in the loop the VF does not represent
1990    the number of elements that fit in the vector.  Therefore, instead of VF we
1991    use TYPE_VECTOR_SUBPARTS.  */
1992 
1993 static tree
1994 vect_gen_niters_for_prolog_loop (loop_vec_info loop_vinfo, tree loop_niters,
1995 				 tree *wide_prolog_niters)
1996 {
1997   struct data_reference *dr = LOOP_VINFO_UNALIGNED_DR (loop_vinfo);
1998   struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1999   tree var;
2000   gimple_seq stmts;
2001   tree iters, iters_name;
2002   edge pe;
2003   basic_block new_bb;
2004   gimple dr_stmt = DR_STMT (dr);
2005   stmt_vec_info stmt_info = vinfo_for_stmt (dr_stmt);
2006   tree vectype = STMT_VINFO_VECTYPE (stmt_info);
2007   int vectype_align = TYPE_ALIGN (vectype) / BITS_PER_UNIT;
2008   tree niters_type = TREE_TYPE (loop_niters);
2009   int step = 1;
2010   int element_size = GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (DR_REF (dr))));
2011   int nelements = TYPE_VECTOR_SUBPARTS (vectype);
2012 
2013   if (STMT_VINFO_STRIDED_ACCESS (stmt_info))
2014     step = DR_GROUP_SIZE (vinfo_for_stmt (DR_GROUP_FIRST_DR (stmt_info)));
2015 
2016   pe = loop_preheader_edge (loop);
2017 
2018   if (LOOP_PEELING_FOR_ALIGNMENT (loop_vinfo) > 0)
2019     {
2020       int byte_misalign = LOOP_PEELING_FOR_ALIGNMENT (loop_vinfo);
2021       int elem_misalign = byte_misalign / element_size;
2022 
2023       if (vect_print_dump_info (REPORT_DETAILS))
2024         fprintf (vect_dump, "known alignment = %d.", byte_misalign);
2025 
2026       iters = build_int_cst (niters_type,
2027                      (((nelements - elem_misalign) & (nelements - 1)) / step));
2028     }
2029   else
2030     {
2031       gimple_seq new_stmts = NULL;
2032       tree start_addr = vect_create_addr_base_for_vector_ref (dr_stmt,
2033 						&new_stmts, NULL_TREE, loop);
2034       tree ptr_type = TREE_TYPE (start_addr);
2035       tree size = TYPE_SIZE (ptr_type);
2036       tree type = lang_hooks.types.type_for_size (tree_low_cst (size, 1), 1);
2037       tree vectype_size_minus_1 = build_int_cst (type, vectype_align - 1);
2038       tree elem_size_log =
2039         build_int_cst (type, exact_log2 (vectype_align/nelements));
2040       tree nelements_minus_1 = build_int_cst (type, nelements - 1);
2041       tree nelements_tree = build_int_cst (type, nelements);
2042       tree byte_misalign;
2043       tree elem_misalign;
2044 
2045       new_bb = gsi_insert_seq_on_edge_immediate (pe, new_stmts);
2046       gcc_assert (!new_bb);
2047 
2048       /* Create:  byte_misalign = addr & (vectype_size - 1)  */
2049       byte_misalign =
2050         fold_build2 (BIT_AND_EXPR, type, fold_convert (type, start_addr), vectype_size_minus_1);
2051 
2052       /* Create:  elem_misalign = byte_misalign / element_size  */
2053       elem_misalign =
2054         fold_build2 (RSHIFT_EXPR, type, byte_misalign, elem_size_log);
2055 
2056       /* Create:  (niters_type) (nelements - elem_misalign)&(nelements - 1)  */
2057       iters = fold_build2 (MINUS_EXPR, type, nelements_tree, elem_misalign);
2058       iters = fold_build2 (BIT_AND_EXPR, type, iters, nelements_minus_1);
2059       iters = fold_convert (niters_type, iters);
2060     }
2061 
2062   /* Create:  prolog_loop_niters = min (iters, loop_niters) */
2063   /* If the loop bound is known at compile time we already verified that it is
2064      greater than vf; since the misalignment ('iters') is at most vf, there's
2065      no need to generate the MIN_EXPR in this case.  */
2066   if (TREE_CODE (loop_niters) != INTEGER_CST)
2067     iters = fold_build2 (MIN_EXPR, niters_type, iters, loop_niters);
2068 
2069   if (vect_print_dump_info (REPORT_DETAILS))
2070     {
2071       fprintf (vect_dump, "niters for prolog loop: ");
2072       print_generic_expr (vect_dump, iters, TDF_SLIM);
2073     }
2074 
2075   var = create_tmp_var (niters_type, "prolog_loop_niters");
2076   add_referenced_var (var);
2077   stmts = NULL;
2078   iters_name = force_gimple_operand (iters, &stmts, false, var);
2079   if (types_compatible_p (sizetype, niters_type))
2080     *wide_prolog_niters = iters_name;
2081   else
2082     {
2083       gimple_seq seq = NULL;
2084       tree wide_iters = fold_convert (sizetype, iters);
2085       var = create_tmp_var (sizetype, "prolog_loop_niters");
2086       add_referenced_var (var);
2087       *wide_prolog_niters = force_gimple_operand (wide_iters, &seq, false,
2088 						  var);
2089       if (seq)
2090 	gimple_seq_add_seq (&stmts, seq);
2091     }
2092 
2093   /* Insert stmt on loop preheader edge.  */
2094   if (stmts)
2095     {
2096       basic_block new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
2097       gcc_assert (!new_bb);
2098     }
2099 
2100   return iters_name;
2101 }
2102 
2103 
2104 /* Function vect_update_init_of_dr
2105 
2106    NITERS iterations were peeled from LOOP.  DR represents a data reference
2107    in LOOP.  This function updates the information recorded in DR to
2108    account for the fact that the first NITERS iterations had already been
2109    executed.  Specifically, it updates the OFFSET field of DR.  */
2110 
2111 static void
2112 vect_update_init_of_dr (struct data_reference *dr, tree niters)
2113 {
2114   tree offset = DR_OFFSET (dr);
2115 
2116   niters = fold_build2 (MULT_EXPR, sizetype,
2117 			fold_convert (sizetype, niters),
2118 			fold_convert (sizetype, DR_STEP (dr)));
2119   offset = fold_build2 (PLUS_EXPR, sizetype,
2120 			fold_convert (sizetype, offset), niters);
2121   DR_OFFSET (dr) = offset;
2122 }
2123 
2124 
2125 /* Function vect_update_inits_of_drs
2126 
2127    NITERS iterations were peeled from the loop represented by LOOP_VINFO.
2128    This function updates the information recorded for the data references in
2129    the loop to account for the fact that the first NITERS iterations had
2130    already been executed.  Specifically, it updates the initial_condition of
2131    the access_function of all the data_references in the loop.  */
2132 
2133 static void
2134 vect_update_inits_of_drs (loop_vec_info loop_vinfo, tree niters)
2135 {
2136   unsigned int i;
2137   VEC (data_reference_p, heap) *datarefs = LOOP_VINFO_DATAREFS (loop_vinfo);
2138   struct data_reference *dr;
2139 
2140   if (vect_print_dump_info (REPORT_DETAILS))
2141     fprintf (vect_dump, "=== vect_update_inits_of_dr ===");
2142 
2143   for (i = 0; VEC_iterate (data_reference_p, datarefs, i, dr); i++)
2144     vect_update_init_of_dr (dr, niters);
2145 }
2146 
2147 
2148 /* Function vect_do_peeling_for_alignment
2149 
2150    Peel the first 'niters' iterations of the loop represented by LOOP_VINFO.
2151    'niters' is set to the misalignment of one of the data references in the
2152    loop, thereby forcing it to refer to an aligned location at the beginning
2153    of the execution of this loop.  The data reference for which we are
2154    peeling is recorded in LOOP_VINFO_UNALIGNED_DR.  */
2155 
2156 void
2157 vect_do_peeling_for_alignment (loop_vec_info loop_vinfo)
2158 {
2159   struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
2160   tree niters_of_prolog_loop, ni_name;
2161   tree n_iters;
2162   tree wide_prolog_niters;
2163   struct loop *new_loop;
2164   unsigned int th = 0;
2165   int min_profitable_iters;
2166 
2167   if (vect_print_dump_info (REPORT_DETAILS))
2168     fprintf (vect_dump, "=== vect_do_peeling_for_alignment ===");
2169 
2170   initialize_original_copy_tables ();
2171 
2172   ni_name = vect_build_loop_niters (loop_vinfo, NULL);
2173   niters_of_prolog_loop = vect_gen_niters_for_prolog_loop (loop_vinfo, ni_name,
2174 							   &wide_prolog_niters);
2175 
2176 
2177   /* Get profitability threshold for vectorized loop.  */
2178   min_profitable_iters = LOOP_VINFO_COST_MODEL_MIN_ITERS (loop_vinfo);
2179   th = conservative_cost_threshold (loop_vinfo,
2180 				    min_profitable_iters);
2181 
2182   /* Peel the prolog loop and iterate it niters_of_prolog_loop.  */
2183   new_loop =
2184     slpeel_tree_peel_loop_to_edge (loop, loop_preheader_edge (loop),
2185 				   niters_of_prolog_loop, ni_name, true,
2186 				   th, true, NULL_TREE, NULL);
2187 
2188   gcc_assert (new_loop);
2189 #ifdef ENABLE_CHECKING
2190   slpeel_verify_cfg_after_peeling (new_loop, loop);
2191 #endif
2192 
2193   /* Update number of times loop executes.  */
2194   n_iters = LOOP_VINFO_NITERS (loop_vinfo);
2195   LOOP_VINFO_NITERS (loop_vinfo) = fold_build2 (MINUS_EXPR,
2196 		TREE_TYPE (n_iters), n_iters, niters_of_prolog_loop);
2197 
2198   /* Update the init conditions of the access functions of all data refs.  */
2199   vect_update_inits_of_drs (loop_vinfo, wide_prolog_niters);
2200 
2201   /* After peeling we have to reset scalar evolution analyzer.  */
2202   scev_reset ();
2203 
2204   free_original_copy_tables ();
2205 }
2206 
2207 
2208 /* Function vect_create_cond_for_align_checks.
2209 
2210    Create a conditional expression that represents the alignment checks for
2211    all of data references (array element references) whose alignment must be
2212    checked at runtime.
2213 
2214    Input:
2215    COND_EXPR  - input conditional expression.  New conditions will be chained
2216                 with logical AND operation.
2217    LOOP_VINFO - two fields of the loop information are used.
2218                 LOOP_VINFO_PTR_MASK is the mask used to check the alignment.
2219                 LOOP_VINFO_MAY_MISALIGN_STMTS contains the refs to be checked.
2220 
2221    Output:
2222    COND_EXPR_STMT_LIST - statements needed to construct the conditional
2223                          expression.
2224    The returned value is the conditional expression to be used in the if
2225    statement that controls which version of the loop gets executed at runtime.
2226 
2227    The algorithm makes two assumptions:
2228      1) The number of bytes "n" in a vector is a power of 2.
2229      2) An address "a" is aligned if a%n is zero and that this
2230         test can be done as a&(n-1) == 0.  For example, for 16
2231         byte vectors the test is a&0xf == 0.  */
2232 
2233 static void
2234 vect_create_cond_for_align_checks (loop_vec_info loop_vinfo,
2235                                    tree *cond_expr,
2236 				   gimple_seq *cond_expr_stmt_list)
2237 {
2238   struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
2239   VEC(gimple,heap) *may_misalign_stmts
2240     = LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo);
2241   gimple ref_stmt;
2242   int mask = LOOP_VINFO_PTR_MASK (loop_vinfo);
2243   tree mask_cst;
2244   unsigned int i;
2245   tree psize;
2246   tree int_ptrsize_type;
2247   char tmp_name[20];
2248   tree or_tmp_name = NULL_TREE;
2249   tree and_tmp, and_tmp_name;
2250   gimple and_stmt;
2251   tree ptrsize_zero;
2252   tree part_cond_expr;
2253 
2254   /* Check that mask is one less than a power of 2, i.e., mask is
2255      all zeros followed by all ones.  */
2256   gcc_assert ((mask != 0) && ((mask & (mask+1)) == 0));
2257 
2258   /* CHECKME: what is the best integer or unsigned type to use to hold a
2259      cast from a pointer value?  */
2260   psize = TYPE_SIZE (ptr_type_node);
2261   int_ptrsize_type
2262     = lang_hooks.types.type_for_size (tree_low_cst (psize, 1), 0);
2263 
2264   /* Create expression (mask & (dr_1 || ... || dr_n)) where dr_i is the address
2265      of the first vector of the i'th data reference. */
2266 
2267   for (i = 0; VEC_iterate (gimple, may_misalign_stmts, i, ref_stmt); i++)
2268     {
2269       gimple_seq new_stmt_list = NULL;
2270       tree addr_base;
2271       tree addr_tmp, addr_tmp_name;
2272       tree or_tmp, new_or_tmp_name;
2273       gimple addr_stmt, or_stmt;
2274 
2275       /* create: addr_tmp = (int)(address_of_first_vector) */
2276       addr_base =
2277 	vect_create_addr_base_for_vector_ref (ref_stmt, &new_stmt_list,
2278 					      NULL_TREE, loop);
2279       if (new_stmt_list != NULL)
2280 	gimple_seq_add_seq (cond_expr_stmt_list, new_stmt_list);
2281 
2282       sprintf (tmp_name, "%s%d", "addr2int", i);
2283       addr_tmp = create_tmp_var (int_ptrsize_type, tmp_name);
2284       add_referenced_var (addr_tmp);
2285       addr_tmp_name = make_ssa_name (addr_tmp, NULL);
2286       addr_stmt = gimple_build_assign_with_ops (NOP_EXPR, addr_tmp_name,
2287 						addr_base, NULL_TREE);
2288       SSA_NAME_DEF_STMT (addr_tmp_name) = addr_stmt;
2289       gimple_seq_add_stmt (cond_expr_stmt_list, addr_stmt);
2290 
2291       /* The addresses are OR together.  */
2292 
2293       if (or_tmp_name != NULL_TREE)
2294         {
2295           /* create: or_tmp = or_tmp | addr_tmp */
2296           sprintf (tmp_name, "%s%d", "orptrs", i);
2297           or_tmp = create_tmp_var (int_ptrsize_type, tmp_name);
2298           add_referenced_var (or_tmp);
2299 	  new_or_tmp_name = make_ssa_name (or_tmp, NULL);
2300 	  or_stmt = gimple_build_assign_with_ops (BIT_IOR_EXPR,
2301 						  new_or_tmp_name,
2302 						  or_tmp_name, addr_tmp_name);
2303           SSA_NAME_DEF_STMT (new_or_tmp_name) = or_stmt;
2304 	  gimple_seq_add_stmt (cond_expr_stmt_list, or_stmt);
2305           or_tmp_name = new_or_tmp_name;
2306         }
2307       else
2308         or_tmp_name = addr_tmp_name;
2309 
2310     } /* end for i */
2311 
2312   mask_cst = build_int_cst (int_ptrsize_type, mask);
2313 
2314   /* create: and_tmp = or_tmp & mask  */
2315   and_tmp = create_tmp_var (int_ptrsize_type, "andmask" );
2316   add_referenced_var (and_tmp);
2317   and_tmp_name = make_ssa_name (and_tmp, NULL);
2318 
2319   and_stmt = gimple_build_assign_with_ops (BIT_AND_EXPR, and_tmp_name,
2320 					   or_tmp_name, mask_cst);
2321   SSA_NAME_DEF_STMT (and_tmp_name) = and_stmt;
2322   gimple_seq_add_stmt (cond_expr_stmt_list, and_stmt);
2323 
2324   /* Make and_tmp the left operand of the conditional test against zero.
2325      if and_tmp has a nonzero bit then some address is unaligned.  */
2326   ptrsize_zero = build_int_cst (int_ptrsize_type, 0);
2327   part_cond_expr = fold_build2 (EQ_EXPR, boolean_type_node,
2328 				and_tmp_name, ptrsize_zero);
2329   if (*cond_expr)
2330     *cond_expr = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
2331 			      *cond_expr, part_cond_expr);
2332   else
2333     *cond_expr = part_cond_expr;
2334 }
2335 
2336 
2337 /* Function vect_vfa_segment_size.
2338 
2339    Create an expression that computes the size of segment
2340    that will be accessed for a data reference.  The functions takes into
2341    account that realignment loads may access one more vector.
2342 
2343    Input:
2344      DR: The data reference.
2345      LENGTH_FACTOR: segment length to consider.
2346 
2347    Return an expression whose value is the size of segment which will be
2348    accessed by DR.  */
2349 
2350 static tree
2351 vect_vfa_segment_size (struct data_reference *dr, tree length_factor)
2352 {
2353   tree segment_length;
2354   segment_length = size_binop (MULT_EXPR,
2355 			       fold_convert (sizetype, DR_STEP (dr)),
2356 			       fold_convert (sizetype, length_factor));
2357   if (vect_supportable_dr_alignment (dr) == dr_explicit_realign_optimized)
2358     {
2359       tree vector_size = TYPE_SIZE_UNIT
2360 			  (STMT_VINFO_VECTYPE (vinfo_for_stmt (DR_STMT (dr))));
2361 
2362       segment_length = size_binop (PLUS_EXPR, segment_length, vector_size);
2363     }
2364   return segment_length;
2365 }
2366 
2367 
2368 /* Function vect_create_cond_for_alias_checks.
2369 
2370    Create a conditional expression that represents the run-time checks for
2371    overlapping of address ranges represented by a list of data references
2372    relations passed as input.
2373 
2374    Input:
2375    COND_EXPR  - input conditional expression.  New conditions will be chained
2376                 with logical AND operation.
2377    LOOP_VINFO - field LOOP_VINFO_MAY_ALIAS_STMTS contains the list of ddrs
2378 	        to be checked.
2379 
2380    Output:
2381    COND_EXPR - conditional expression.
2382    COND_EXPR_STMT_LIST - statements needed to construct the conditional
2383                          expression.
2384 
2385 
2386    The returned value is the conditional expression to be used in the if
2387    statement that controls which version of the loop gets executed at runtime.
2388 */
2389 
2390 static void
2391 vect_create_cond_for_alias_checks (loop_vec_info loop_vinfo,
2392 				   tree * cond_expr,
2393 				   gimple_seq * cond_expr_stmt_list)
2394 {
2395   struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
2396   VEC (ddr_p, heap) * may_alias_ddrs =
2397     LOOP_VINFO_MAY_ALIAS_DDRS (loop_vinfo);
2398   int vect_factor = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
2399   tree scalar_loop_iters = LOOP_VINFO_NITERS (loop_vinfo);
2400 
2401   ddr_p ddr;
2402   unsigned int i;
2403   tree part_cond_expr, length_factor;
2404 
2405   /* Create expression
2406      ((store_ptr_0 + store_segment_length_0) < load_ptr_0)
2407      || (load_ptr_0 + load_segment_length_0) < store_ptr_0))
2408      &&
2409      ...
2410      &&
2411      ((store_ptr_n + store_segment_length_n) < load_ptr_n)
2412      || (load_ptr_n + load_segment_length_n) < store_ptr_n))  */
2413 
2414   if (VEC_empty (ddr_p, may_alias_ddrs))
2415     return;
2416 
2417   for (i = 0; VEC_iterate (ddr_p, may_alias_ddrs, i, ddr); i++)
2418     {
2419       struct data_reference *dr_a, *dr_b;
2420       gimple dr_group_first_a, dr_group_first_b;
2421       tree addr_base_a, addr_base_b;
2422       tree segment_length_a, segment_length_b;
2423       gimple stmt_a, stmt_b;
2424 
2425       dr_a = DDR_A (ddr);
2426       stmt_a = DR_STMT (DDR_A (ddr));
2427       dr_group_first_a = DR_GROUP_FIRST_DR (vinfo_for_stmt (stmt_a));
2428       if (dr_group_first_a)
2429         {
2430 	  stmt_a = dr_group_first_a;
2431 	  dr_a = STMT_VINFO_DATA_REF (vinfo_for_stmt (stmt_a));
2432 	}
2433 
2434       dr_b = DDR_B (ddr);
2435       stmt_b = DR_STMT (DDR_B (ddr));
2436       dr_group_first_b = DR_GROUP_FIRST_DR (vinfo_for_stmt (stmt_b));
2437       if (dr_group_first_b)
2438         {
2439 	  stmt_b = dr_group_first_b;
2440 	  dr_b = STMT_VINFO_DATA_REF (vinfo_for_stmt (stmt_b));
2441 	}
2442 
2443       addr_base_a =
2444         vect_create_addr_base_for_vector_ref (stmt_a, cond_expr_stmt_list,
2445 					      NULL_TREE, loop);
2446       addr_base_b =
2447         vect_create_addr_base_for_vector_ref (stmt_b, cond_expr_stmt_list,
2448 					      NULL_TREE, loop);
2449 
2450       if (!operand_equal_p (DR_STEP (dr_a), DR_STEP (dr_b), 0))
2451 	length_factor = scalar_loop_iters;
2452       else
2453 	length_factor = size_int (vect_factor);
2454       segment_length_a = vect_vfa_segment_size (dr_a, length_factor);
2455       segment_length_b = vect_vfa_segment_size (dr_b, length_factor);
2456 
2457       if (vect_print_dump_info (REPORT_DR_DETAILS))
2458 	{
2459 	  fprintf (vect_dump,
2460 		   "create runtime check for data references ");
2461 	  print_generic_expr (vect_dump, DR_REF (dr_a), TDF_SLIM);
2462 	  fprintf (vect_dump, " and ");
2463 	  print_generic_expr (vect_dump, DR_REF (dr_b), TDF_SLIM);
2464 	}
2465 
2466 
2467       part_cond_expr =
2468       	fold_build2 (TRUTH_OR_EXPR, boolean_type_node,
2469 	  fold_build2 (LT_EXPR, boolean_type_node,
2470 	    fold_build2 (POINTER_PLUS_EXPR, TREE_TYPE (addr_base_a),
2471 	      addr_base_a,
2472 	      segment_length_a),
2473 	    addr_base_b),
2474 	  fold_build2 (LT_EXPR, boolean_type_node,
2475 	    fold_build2 (POINTER_PLUS_EXPR, TREE_TYPE (addr_base_b),
2476 	      addr_base_b,
2477 	      segment_length_b),
2478 	    addr_base_a));
2479 
2480       if (*cond_expr)
2481 	*cond_expr = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
2482 				  *cond_expr, part_cond_expr);
2483       else
2484 	*cond_expr = part_cond_expr;
2485     }
2486 
2487   if (vect_print_dump_info (REPORT_VECTORIZED_LOCATIONS))
2488     fprintf (vect_dump, "created %u versioning for alias checks.\n",
2489              VEC_length (ddr_p, may_alias_ddrs));
2490 }
2491 
2492 
2493 /* Function vect_loop_versioning.
2494 
2495    If the loop has data references that may or may not be aligned or/and
2496    has data reference relations whose independence was not proven then
2497    two versions of the loop need to be generated, one which is vectorized
2498    and one which isn't.  A test is then generated to control which of the
2499    loops is executed.  The test checks for the alignment of all of the
2500    data references that may or may not be aligned.  An additional
2501    sequence of runtime tests is generated for each pairs of DDRs whose
2502    independence was not proven.  The vectorized version of loop is
2503    executed only if both alias and alignment tests are passed.
2504 
2505    The test generated to check which version of loop is executed
2506    is modified to also check for profitability as indicated by the
2507    cost model initially.
2508 
2509    The versioning precondition(s) are placed in *COND_EXPR and
2510    *COND_EXPR_STMT_LIST.  If DO_VERSIONING is true versioning is
2511    also performed, otherwise only the conditions are generated.  */
2512 
2513 void
2514 vect_loop_versioning (loop_vec_info loop_vinfo, bool do_versioning,
2515 		      tree *cond_expr, gimple_seq *cond_expr_stmt_list)
2516 {
2517   struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
2518   basic_block condition_bb;
2519   gimple_stmt_iterator gsi, cond_exp_gsi;
2520   basic_block merge_bb;
2521   basic_block new_exit_bb;
2522   edge new_exit_e, e;
2523   gimple orig_phi, new_phi;
2524   tree arg;
2525   unsigned prob = 4 * REG_BR_PROB_BASE / 5;
2526   gimple_seq gimplify_stmt_list = NULL;
2527   tree scalar_loop_iters = LOOP_VINFO_NITERS (loop_vinfo);
2528   int min_profitable_iters = 0;
2529   unsigned int th;
2530 
2531   /* Get profitability threshold for vectorized loop.  */
2532   min_profitable_iters = LOOP_VINFO_COST_MODEL_MIN_ITERS (loop_vinfo);
2533 
2534   th = conservative_cost_threshold (loop_vinfo,
2535 				    min_profitable_iters);
2536 
2537   *cond_expr =
2538     fold_build2 (GT_EXPR, boolean_type_node, scalar_loop_iters,
2539  	         build_int_cst (TREE_TYPE (scalar_loop_iters), th));
2540 
2541   *cond_expr = force_gimple_operand (*cond_expr, cond_expr_stmt_list,
2542 				     false, NULL_TREE);
2543 
2544   if (LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo))
2545       vect_create_cond_for_align_checks (loop_vinfo, cond_expr,
2546 					 cond_expr_stmt_list);
2547 
2548   if (LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo))
2549     vect_create_cond_for_alias_checks (loop_vinfo, cond_expr,
2550 				       cond_expr_stmt_list);
2551 
2552   *cond_expr =
2553     fold_build2 (NE_EXPR, boolean_type_node, *cond_expr, integer_zero_node);
2554   *cond_expr =
2555     force_gimple_operand (*cond_expr, &gimplify_stmt_list, true, NULL_TREE);
2556   gimple_seq_add_seq (cond_expr_stmt_list, gimplify_stmt_list);
2557 
2558   /* If we only needed the extra conditions and a new loop copy
2559      bail out here.  */
2560   if (!do_versioning)
2561     return;
2562 
2563   initialize_original_copy_tables ();
2564   loop_version (loop, *cond_expr, &condition_bb,
2565 		prob, prob, REG_BR_PROB_BASE - prob, true);
2566   free_original_copy_tables();
2567 
2568   /* Loop versioning violates an assumption we try to maintain during
2569      vectorization - that the loop exit block has a single predecessor.
2570      After versioning, the exit block of both loop versions is the same
2571      basic block (i.e. it has two predecessors). Just in order to simplify
2572      following transformations in the vectorizer, we fix this situation
2573      here by adding a new (empty) block on the exit-edge of the loop,
2574      with the proper loop-exit phis to maintain loop-closed-form.  */
2575 
2576   merge_bb = single_exit (loop)->dest;
2577   gcc_assert (EDGE_COUNT (merge_bb->preds) == 2);
2578   new_exit_bb = split_edge (single_exit (loop));
2579   new_exit_e = single_exit (loop);
2580   e = EDGE_SUCC (new_exit_bb, 0);
2581 
2582   for (gsi = gsi_start_phis (merge_bb); !gsi_end_p (gsi); gsi_next (&gsi))
2583     {
2584       orig_phi = gsi_stmt (gsi);
2585       new_phi = create_phi_node (SSA_NAME_VAR (PHI_RESULT (orig_phi)),
2586 				  new_exit_bb);
2587       arg = PHI_ARG_DEF_FROM_EDGE (orig_phi, e);
2588       add_phi_arg (new_phi, arg, new_exit_e,
2589 		   gimple_phi_arg_location_from_edge (orig_phi, e));
2590       adjust_phi_and_debug_stmts (orig_phi, e, PHI_RESULT (new_phi));
2591     }
2592 
2593   /* End loop-exit-fixes after versioning.  */
2594 
2595   update_ssa (TODO_update_ssa);
2596   if (*cond_expr_stmt_list)
2597     {
2598       cond_exp_gsi = gsi_last_bb (condition_bb);
2599       gsi_insert_seq_before (&cond_exp_gsi, *cond_expr_stmt_list,
2600 			     GSI_SAME_STMT);
2601       *cond_expr_stmt_list = NULL;
2602     }
2603   *cond_expr = NULL_TREE;
2604 }
2605 
2606