1 /* Tail call optimization on trees. 2 Copyright (C) 2003-2013 Free Software Foundation, Inc. 3 4 This file is part of GCC. 5 6 GCC is free software; you can redistribute it and/or modify 7 it under the terms of the GNU General Public License as published by 8 the Free Software Foundation; either version 3, or (at your option) 9 any later version. 10 11 GCC is distributed in the hope that it will be useful, 12 but WITHOUT ANY WARRANTY; without even the implied warranty of 13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 GNU General Public License for more details. 15 16 You should have received a copy of the GNU General Public License 17 along with GCC; see the file COPYING3. If not see 18 <http://www.gnu.org/licenses/>. */ 19 20 #include "config.h" 21 #include "system.h" 22 #include "coretypes.h" 23 #include "tm.h" 24 #include "tree.h" 25 #include "tm_p.h" 26 #include "basic-block.h" 27 #include "function.h" 28 #include "tree-flow.h" 29 #include "gimple-pretty-print.h" 30 #include "except.h" 31 #include "tree-pass.h" 32 #include "flags.h" 33 #include "langhooks.h" 34 #include "dbgcnt.h" 35 #include "target.h" 36 #include "cfgloop.h" 37 #include "common/common-target.h" 38 39 /* The file implements the tail recursion elimination. It is also used to 40 analyze the tail calls in general, passing the results to the rtl level 41 where they are used for sibcall optimization. 42 43 In addition to the standard tail recursion elimination, we handle the most 44 trivial cases of making the call tail recursive by creating accumulators. 45 For example the following function 46 47 int sum (int n) 48 { 49 if (n > 0) 50 return n + sum (n - 1); 51 else 52 return 0; 53 } 54 55 is transformed into 56 57 int sum (int n) 58 { 59 int acc = 0; 60 61 while (n > 0) 62 acc += n--; 63 64 return acc; 65 } 66 67 To do this, we maintain two accumulators (a_acc and m_acc) that indicate 68 when we reach the return x statement, we should return a_acc + x * m_acc 69 instead. They are initially initialized to 0 and 1, respectively, 70 so the semantics of the function is obviously preserved. If we are 71 guaranteed that the value of the accumulator never change, we 72 omit the accumulator. 73 74 There are three cases how the function may exit. The first one is 75 handled in adjust_return_value, the other two in adjust_accumulator_values 76 (the second case is actually a special case of the third one and we 77 present it separately just for clarity): 78 79 1) Just return x, where x is not in any of the remaining special shapes. 80 We rewrite this to a gimple equivalent of return m_acc * x + a_acc. 81 82 2) return f (...), where f is the current function, is rewritten in a 83 classical tail-recursion elimination way, into assignment of arguments 84 and jump to the start of the function. Values of the accumulators 85 are unchanged. 86 87 3) return a + m * f(...), where a and m do not depend on call to f. 88 To preserve the semantics described before we want this to be rewritten 89 in such a way that we finally return 90 91 a_acc + (a + m * f(...)) * m_acc = (a_acc + a * m_acc) + (m * m_acc) * f(...). 92 93 I.e. we increase a_acc by a * m_acc, multiply m_acc by m and 94 eliminate the tail call to f. Special cases when the value is just 95 added or just multiplied are obtained by setting a = 0 or m = 1. 96 97 TODO -- it is possible to do similar tricks for other operations. */ 98 99 /* A structure that describes the tailcall. */ 100 101 struct tailcall 102 { 103 /* The iterator pointing to the call statement. */ 104 gimple_stmt_iterator call_gsi; 105 106 /* True if it is a call to the current function. */ 107 bool tail_recursion; 108 109 /* The return value of the caller is mult * f + add, where f is the return 110 value of the call. */ 111 tree mult, add; 112 113 /* Next tailcall in the chain. */ 114 struct tailcall *next; 115 }; 116 117 /* The variables holding the value of multiplicative and additive 118 accumulator. */ 119 static tree m_acc, a_acc; 120 121 static bool suitable_for_tail_opt_p (void); 122 static bool optimize_tail_call (struct tailcall *, bool); 123 static void eliminate_tail_call (struct tailcall *); 124 static void find_tail_calls (basic_block, struct tailcall **); 125 126 /* Returns false when the function is not suitable for tail call optimization 127 from some reason (e.g. if it takes variable number of arguments). */ 128 129 static bool 130 suitable_for_tail_opt_p (void) 131 { 132 if (cfun->stdarg) 133 return false; 134 135 return true; 136 } 137 /* Returns false when the function is not suitable for tail call optimization 138 from some reason (e.g. if it takes variable number of arguments). 139 This test must pass in addition to suitable_for_tail_opt_p in order to make 140 tail call discovery happen. */ 141 142 static bool 143 suitable_for_tail_call_opt_p (void) 144 { 145 tree param; 146 147 /* alloca (until we have stack slot life analysis) inhibits 148 sibling call optimizations, but not tail recursion. */ 149 if (cfun->calls_alloca) 150 return false; 151 152 /* If we are using sjlj exceptions, we may need to add a call to 153 _Unwind_SjLj_Unregister at exit of the function. Which means 154 that we cannot do any sibcall transformations. */ 155 if (targetm_common.except_unwind_info (&global_options) == UI_SJLJ 156 && current_function_has_exception_handlers ()) 157 return false; 158 159 /* Any function that calls setjmp might have longjmp called from 160 any called function. ??? We really should represent this 161 properly in the CFG so that this needn't be special cased. */ 162 if (cfun->calls_setjmp) 163 return false; 164 165 /* ??? It is OK if the argument of a function is taken in some cases, 166 but not in all cases. See PR15387 and PR19616. Revisit for 4.1. */ 167 for (param = DECL_ARGUMENTS (current_function_decl); 168 param; 169 param = DECL_CHAIN (param)) 170 if (TREE_ADDRESSABLE (param)) 171 return false; 172 173 return true; 174 } 175 176 /* Checks whether the expression EXPR in stmt AT is independent of the 177 statement pointed to by GSI (in a sense that we already know EXPR's value 178 at GSI). We use the fact that we are only called from the chain of 179 basic blocks that have only single successor. Returns the expression 180 containing the value of EXPR at GSI. */ 181 182 static tree 183 independent_of_stmt_p (tree expr, gimple at, gimple_stmt_iterator gsi) 184 { 185 basic_block bb, call_bb, at_bb; 186 edge e; 187 edge_iterator ei; 188 189 if (is_gimple_min_invariant (expr)) 190 return expr; 191 192 if (TREE_CODE (expr) != SSA_NAME) 193 return NULL_TREE; 194 195 /* Mark the blocks in the chain leading to the end. */ 196 at_bb = gimple_bb (at); 197 call_bb = gimple_bb (gsi_stmt (gsi)); 198 for (bb = call_bb; bb != at_bb; bb = single_succ (bb)) 199 bb->aux = &bb->aux; 200 bb->aux = &bb->aux; 201 202 while (1) 203 { 204 at = SSA_NAME_DEF_STMT (expr); 205 bb = gimple_bb (at); 206 207 /* The default definition or defined before the chain. */ 208 if (!bb || !bb->aux) 209 break; 210 211 if (bb == call_bb) 212 { 213 for (; !gsi_end_p (gsi); gsi_next (&gsi)) 214 if (gsi_stmt (gsi) == at) 215 break; 216 217 if (!gsi_end_p (gsi)) 218 expr = NULL_TREE; 219 break; 220 } 221 222 if (gimple_code (at) != GIMPLE_PHI) 223 { 224 expr = NULL_TREE; 225 break; 226 } 227 228 FOR_EACH_EDGE (e, ei, bb->preds) 229 if (e->src->aux) 230 break; 231 gcc_assert (e); 232 233 expr = PHI_ARG_DEF_FROM_EDGE (at, e); 234 if (TREE_CODE (expr) != SSA_NAME) 235 { 236 /* The value is a constant. */ 237 break; 238 } 239 } 240 241 /* Unmark the blocks. */ 242 for (bb = call_bb; bb != at_bb; bb = single_succ (bb)) 243 bb->aux = NULL; 244 bb->aux = NULL; 245 246 return expr; 247 } 248 249 /* Simulates the effect of an assignment STMT on the return value of the tail 250 recursive CALL passed in ASS_VAR. M and A are the multiplicative and the 251 additive factor for the real return value. */ 252 253 static bool 254 process_assignment (gimple stmt, gimple_stmt_iterator call, tree *m, 255 tree *a, tree *ass_var) 256 { 257 tree op0, op1 = NULL_TREE, non_ass_var = NULL_TREE; 258 tree dest = gimple_assign_lhs (stmt); 259 enum tree_code code = gimple_assign_rhs_code (stmt); 260 enum gimple_rhs_class rhs_class = get_gimple_rhs_class (code); 261 tree src_var = gimple_assign_rhs1 (stmt); 262 263 /* See if this is a simple copy operation of an SSA name to the function 264 result. In that case we may have a simple tail call. Ignore type 265 conversions that can never produce extra code between the function 266 call and the function return. */ 267 if ((rhs_class == GIMPLE_SINGLE_RHS || gimple_assign_cast_p (stmt)) 268 && (TREE_CODE (src_var) == SSA_NAME)) 269 { 270 /* Reject a tailcall if the type conversion might need 271 additional code. */ 272 if (gimple_assign_cast_p (stmt) 273 && TYPE_MODE (TREE_TYPE (dest)) != TYPE_MODE (TREE_TYPE (src_var))) 274 return false; 275 276 if (src_var != *ass_var) 277 return false; 278 279 *ass_var = dest; 280 return true; 281 } 282 283 switch (rhs_class) 284 { 285 case GIMPLE_BINARY_RHS: 286 op1 = gimple_assign_rhs2 (stmt); 287 288 /* Fall through. */ 289 290 case GIMPLE_UNARY_RHS: 291 op0 = gimple_assign_rhs1 (stmt); 292 break; 293 294 default: 295 return false; 296 } 297 298 /* Accumulator optimizations will reverse the order of operations. 299 We can only do that for floating-point types if we're assuming 300 that addition and multiplication are associative. */ 301 if (!flag_associative_math) 302 if (FLOAT_TYPE_P (TREE_TYPE (DECL_RESULT (current_function_decl)))) 303 return false; 304 305 if (rhs_class == GIMPLE_UNARY_RHS) 306 ; 307 else if (op0 == *ass_var 308 && (non_ass_var = independent_of_stmt_p (op1, stmt, call))) 309 ; 310 else if (op1 == *ass_var 311 && (non_ass_var = independent_of_stmt_p (op0, stmt, call))) 312 ; 313 else 314 return false; 315 316 switch (code) 317 { 318 case PLUS_EXPR: 319 *a = non_ass_var; 320 *ass_var = dest; 321 return true; 322 323 case MULT_EXPR: 324 *m = non_ass_var; 325 *ass_var = dest; 326 return true; 327 328 case NEGATE_EXPR: 329 if (FLOAT_TYPE_P (TREE_TYPE (op0))) 330 *m = build_real (TREE_TYPE (op0), dconstm1); 331 else if (INTEGRAL_TYPE_P (TREE_TYPE (op0))) 332 *m = build_int_cst (TREE_TYPE (op0), -1); 333 else 334 return false; 335 336 *ass_var = dest; 337 return true; 338 339 case MINUS_EXPR: 340 if (*ass_var == op0) 341 *a = fold_build1 (NEGATE_EXPR, TREE_TYPE (non_ass_var), non_ass_var); 342 else 343 { 344 if (FLOAT_TYPE_P (TREE_TYPE (non_ass_var))) 345 *m = build_real (TREE_TYPE (non_ass_var), dconstm1); 346 else if (INTEGRAL_TYPE_P (TREE_TYPE (non_ass_var))) 347 *m = build_int_cst (TREE_TYPE (non_ass_var), -1); 348 else 349 return false; 350 351 *a = fold_build1 (NEGATE_EXPR, TREE_TYPE (non_ass_var), non_ass_var); 352 } 353 354 *ass_var = dest; 355 return true; 356 357 /* TODO -- Handle POINTER_PLUS_EXPR. */ 358 359 default: 360 return false; 361 } 362 } 363 364 /* Propagate VAR through phis on edge E. */ 365 366 static tree 367 propagate_through_phis (tree var, edge e) 368 { 369 basic_block dest = e->dest; 370 gimple_stmt_iterator gsi; 371 372 for (gsi = gsi_start_phis (dest); !gsi_end_p (gsi); gsi_next (&gsi)) 373 { 374 gimple phi = gsi_stmt (gsi); 375 if (PHI_ARG_DEF_FROM_EDGE (phi, e) == var) 376 return PHI_RESULT (phi); 377 } 378 return var; 379 } 380 381 /* Finds tailcalls falling into basic block BB. The list of found tailcalls is 382 added to the start of RET. */ 383 384 static void 385 find_tail_calls (basic_block bb, struct tailcall **ret) 386 { 387 tree ass_var = NULL_TREE, ret_var, func, param; 388 gimple stmt, call = NULL; 389 gimple_stmt_iterator gsi, agsi; 390 bool tail_recursion; 391 struct tailcall *nw; 392 edge e; 393 tree m, a; 394 basic_block abb; 395 size_t idx; 396 tree var; 397 398 if (!single_succ_p (bb)) 399 return; 400 401 for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi); gsi_prev (&gsi)) 402 { 403 stmt = gsi_stmt (gsi); 404 405 /* Ignore labels, returns, clobbers and debug stmts. */ 406 if (gimple_code (stmt) == GIMPLE_LABEL 407 || gimple_code (stmt) == GIMPLE_RETURN 408 || gimple_clobber_p (stmt) 409 || is_gimple_debug (stmt)) 410 continue; 411 412 /* Check for a call. */ 413 if (is_gimple_call (stmt)) 414 { 415 call = stmt; 416 ass_var = gimple_call_lhs (stmt); 417 break; 418 } 419 420 /* If the statement references memory or volatile operands, fail. */ 421 if (gimple_references_memory_p (stmt) 422 || gimple_has_volatile_ops (stmt)) 423 return; 424 } 425 426 if (gsi_end_p (gsi)) 427 { 428 edge_iterator ei; 429 /* Recurse to the predecessors. */ 430 FOR_EACH_EDGE (e, ei, bb->preds) 431 find_tail_calls (e->src, ret); 432 433 return; 434 } 435 436 /* If the LHS of our call is not just a simple register, we can't 437 transform this into a tail or sibling call. This situation happens, 438 in (e.g.) "*p = foo()" where foo returns a struct. In this case 439 we won't have a temporary here, but we need to carry out the side 440 effect anyway, so tailcall is impossible. 441 442 ??? In some situations (when the struct is returned in memory via 443 invisible argument) we could deal with this, e.g. by passing 'p' 444 itself as that argument to foo, but it's too early to do this here, 445 and expand_call() will not handle it anyway. If it ever can, then 446 we need to revisit this here, to allow that situation. */ 447 if (ass_var && !is_gimple_reg (ass_var)) 448 return; 449 450 /* We found the call, check whether it is suitable. */ 451 tail_recursion = false; 452 func = gimple_call_fndecl (call); 453 if (func == current_function_decl) 454 { 455 tree arg; 456 457 for (param = DECL_ARGUMENTS (func), idx = 0; 458 param && idx < gimple_call_num_args (call); 459 param = DECL_CHAIN (param), idx ++) 460 { 461 arg = gimple_call_arg (call, idx); 462 if (param != arg) 463 { 464 /* Make sure there are no problems with copying. The parameter 465 have a copyable type and the two arguments must have reasonably 466 equivalent types. The latter requirement could be relaxed if 467 we emitted a suitable type conversion statement. */ 468 if (!is_gimple_reg_type (TREE_TYPE (param)) 469 || !useless_type_conversion_p (TREE_TYPE (param), 470 TREE_TYPE (arg))) 471 break; 472 473 /* The parameter should be a real operand, so that phi node 474 created for it at the start of the function has the meaning 475 of copying the value. This test implies is_gimple_reg_type 476 from the previous condition, however this one could be 477 relaxed by being more careful with copying the new value 478 of the parameter (emitting appropriate GIMPLE_ASSIGN and 479 updating the virtual operands). */ 480 if (!is_gimple_reg (param)) 481 break; 482 } 483 } 484 if (idx == gimple_call_num_args (call) && !param) 485 tail_recursion = true; 486 } 487 488 /* Make sure the tail invocation of this function does not refer 489 to local variables. */ 490 FOR_EACH_LOCAL_DECL (cfun, idx, var) 491 { 492 if (TREE_CODE (var) != PARM_DECL 493 && auto_var_in_fn_p (var, cfun->decl) 494 && (ref_maybe_used_by_stmt_p (call, var) 495 || call_may_clobber_ref_p (call, var))) 496 return; 497 } 498 499 /* Now check the statements after the call. None of them has virtual 500 operands, so they may only depend on the call through its return 501 value. The return value should also be dependent on each of them, 502 since we are running after dce. */ 503 m = NULL_TREE; 504 a = NULL_TREE; 505 506 abb = bb; 507 agsi = gsi; 508 while (1) 509 { 510 tree tmp_a = NULL_TREE; 511 tree tmp_m = NULL_TREE; 512 gsi_next (&agsi); 513 514 while (gsi_end_p (agsi)) 515 { 516 ass_var = propagate_through_phis (ass_var, single_succ_edge (abb)); 517 abb = single_succ (abb); 518 agsi = gsi_start_bb (abb); 519 } 520 521 stmt = gsi_stmt (agsi); 522 523 if (gimple_code (stmt) == GIMPLE_LABEL) 524 continue; 525 526 if (gimple_code (stmt) == GIMPLE_RETURN) 527 break; 528 529 if (gimple_clobber_p (stmt)) 530 continue; 531 532 if (is_gimple_debug (stmt)) 533 continue; 534 535 if (gimple_code (stmt) != GIMPLE_ASSIGN) 536 return; 537 538 /* This is a gimple assign. */ 539 if (! process_assignment (stmt, gsi, &tmp_m, &tmp_a, &ass_var)) 540 return; 541 542 if (tmp_a) 543 { 544 tree type = TREE_TYPE (tmp_a); 545 if (a) 546 a = fold_build2 (PLUS_EXPR, type, fold_convert (type, a), tmp_a); 547 else 548 a = tmp_a; 549 } 550 if (tmp_m) 551 { 552 tree type = TREE_TYPE (tmp_m); 553 if (m) 554 m = fold_build2 (MULT_EXPR, type, fold_convert (type, m), tmp_m); 555 else 556 m = tmp_m; 557 558 if (a) 559 a = fold_build2 (MULT_EXPR, type, fold_convert (type, a), tmp_m); 560 } 561 } 562 563 /* See if this is a tail call we can handle. */ 564 ret_var = gimple_return_retval (stmt); 565 566 /* We may proceed if there either is no return value, or the return value 567 is identical to the call's return. */ 568 if (ret_var 569 && (ret_var != ass_var)) 570 return; 571 572 /* If this is not a tail recursive call, we cannot handle addends or 573 multiplicands. */ 574 if (!tail_recursion && (m || a)) 575 return; 576 577 /* For pointers don't allow additions or multiplications. */ 578 if ((m || a) 579 && POINTER_TYPE_P (TREE_TYPE (DECL_RESULT (current_function_decl)))) 580 return; 581 582 nw = XNEW (struct tailcall); 583 584 nw->call_gsi = gsi; 585 586 nw->tail_recursion = tail_recursion; 587 588 nw->mult = m; 589 nw->add = a; 590 591 nw->next = *ret; 592 *ret = nw; 593 } 594 595 /* Helper to insert PHI_ARGH to the phi of VAR in the destination of edge E. */ 596 597 static void 598 add_successor_phi_arg (edge e, tree var, tree phi_arg) 599 { 600 gimple_stmt_iterator gsi; 601 602 for (gsi = gsi_start_phis (e->dest); !gsi_end_p (gsi); gsi_next (&gsi)) 603 if (PHI_RESULT (gsi_stmt (gsi)) == var) 604 break; 605 606 gcc_assert (!gsi_end_p (gsi)); 607 add_phi_arg (gsi_stmt (gsi), phi_arg, e, UNKNOWN_LOCATION); 608 } 609 610 /* Creates a GIMPLE statement which computes the operation specified by 611 CODE, ACC and OP1 to a new variable with name LABEL and inserts the 612 statement in the position specified by GSI. Returns the 613 tree node of the statement's result. */ 614 615 static tree 616 adjust_return_value_with_ops (enum tree_code code, const char *label, 617 tree acc, tree op1, gimple_stmt_iterator gsi) 618 { 619 620 tree ret_type = TREE_TYPE (DECL_RESULT (current_function_decl)); 621 tree result = make_temp_ssa_name (ret_type, NULL, label); 622 gimple stmt; 623 624 if (types_compatible_p (TREE_TYPE (acc), TREE_TYPE (op1))) 625 stmt = gimple_build_assign_with_ops (code, result, acc, op1); 626 else 627 { 628 tree rhs = fold_convert (TREE_TYPE (acc), 629 fold_build2 (code, 630 TREE_TYPE (op1), 631 fold_convert (TREE_TYPE (op1), acc), 632 op1)); 633 rhs = force_gimple_operand_gsi (&gsi, rhs, 634 false, NULL, true, GSI_SAME_STMT); 635 stmt = gimple_build_assign (result, rhs); 636 } 637 638 gsi_insert_before (&gsi, stmt, GSI_NEW_STMT); 639 return result; 640 } 641 642 /* Creates a new GIMPLE statement that adjusts the value of accumulator ACC by 643 the computation specified by CODE and OP1 and insert the statement 644 at the position specified by GSI as a new statement. Returns new SSA name 645 of updated accumulator. */ 646 647 static tree 648 update_accumulator_with_ops (enum tree_code code, tree acc, tree op1, 649 gimple_stmt_iterator gsi) 650 { 651 gimple stmt; 652 tree var = copy_ssa_name (acc, NULL); 653 if (types_compatible_p (TREE_TYPE (acc), TREE_TYPE (op1))) 654 stmt = gimple_build_assign_with_ops (code, var, acc, op1); 655 else 656 { 657 tree rhs = fold_convert (TREE_TYPE (acc), 658 fold_build2 (code, 659 TREE_TYPE (op1), 660 fold_convert (TREE_TYPE (op1), acc), 661 op1)); 662 rhs = force_gimple_operand_gsi (&gsi, rhs, 663 false, NULL, false, GSI_CONTINUE_LINKING); 664 stmt = gimple_build_assign (var, rhs); 665 } 666 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT); 667 return var; 668 } 669 670 /* Adjust the accumulator values according to A and M after GSI, and update 671 the phi nodes on edge BACK. */ 672 673 static void 674 adjust_accumulator_values (gimple_stmt_iterator gsi, tree m, tree a, edge back) 675 { 676 tree var, a_acc_arg, m_acc_arg; 677 678 if (m) 679 m = force_gimple_operand_gsi (&gsi, m, true, NULL, true, GSI_SAME_STMT); 680 if (a) 681 a = force_gimple_operand_gsi (&gsi, a, true, NULL, true, GSI_SAME_STMT); 682 683 a_acc_arg = a_acc; 684 m_acc_arg = m_acc; 685 if (a) 686 { 687 if (m_acc) 688 { 689 if (integer_onep (a)) 690 var = m_acc; 691 else 692 var = adjust_return_value_with_ops (MULT_EXPR, "acc_tmp", m_acc, 693 a, gsi); 694 } 695 else 696 var = a; 697 698 a_acc_arg = update_accumulator_with_ops (PLUS_EXPR, a_acc, var, gsi); 699 } 700 701 if (m) 702 m_acc_arg = update_accumulator_with_ops (MULT_EXPR, m_acc, m, gsi); 703 704 if (a_acc) 705 add_successor_phi_arg (back, a_acc, a_acc_arg); 706 707 if (m_acc) 708 add_successor_phi_arg (back, m_acc, m_acc_arg); 709 } 710 711 /* Adjust value of the return at the end of BB according to M and A 712 accumulators. */ 713 714 static void 715 adjust_return_value (basic_block bb, tree m, tree a) 716 { 717 tree retval; 718 gimple ret_stmt = gimple_seq_last_stmt (bb_seq (bb)); 719 gimple_stmt_iterator gsi = gsi_last_bb (bb); 720 721 gcc_assert (gimple_code (ret_stmt) == GIMPLE_RETURN); 722 723 retval = gimple_return_retval (ret_stmt); 724 if (!retval || retval == error_mark_node) 725 return; 726 727 if (m) 728 retval = adjust_return_value_with_ops (MULT_EXPR, "mul_tmp", m_acc, retval, 729 gsi); 730 if (a) 731 retval = adjust_return_value_with_ops (PLUS_EXPR, "acc_tmp", a_acc, retval, 732 gsi); 733 gimple_return_set_retval (ret_stmt, retval); 734 update_stmt (ret_stmt); 735 } 736 737 /* Subtract COUNT and FREQUENCY from the basic block and it's 738 outgoing edge. */ 739 static void 740 decrease_profile (basic_block bb, gcov_type count, int frequency) 741 { 742 edge e; 743 bb->count -= count; 744 if (bb->count < 0) 745 bb->count = 0; 746 bb->frequency -= frequency; 747 if (bb->frequency < 0) 748 bb->frequency = 0; 749 if (!single_succ_p (bb)) 750 { 751 gcc_assert (!EDGE_COUNT (bb->succs)); 752 return; 753 } 754 e = single_succ_edge (bb); 755 e->count -= count; 756 if (e->count < 0) 757 e->count = 0; 758 } 759 760 /* Returns true if argument PARAM of the tail recursive call needs to be copied 761 when the call is eliminated. */ 762 763 static bool 764 arg_needs_copy_p (tree param) 765 { 766 tree def; 767 768 if (!is_gimple_reg (param)) 769 return false; 770 771 /* Parameters that are only defined but never used need not be copied. */ 772 def = ssa_default_def (cfun, param); 773 if (!def) 774 return false; 775 776 return true; 777 } 778 779 /* Eliminates tail call described by T. TMP_VARS is a list of 780 temporary variables used to copy the function arguments. */ 781 782 static void 783 eliminate_tail_call (struct tailcall *t) 784 { 785 tree param, rslt; 786 gimple stmt, call; 787 tree arg; 788 size_t idx; 789 basic_block bb, first; 790 edge e; 791 gimple phi; 792 gimple_stmt_iterator gsi; 793 gimple orig_stmt; 794 795 stmt = orig_stmt = gsi_stmt (t->call_gsi); 796 bb = gsi_bb (t->call_gsi); 797 798 if (dump_file && (dump_flags & TDF_DETAILS)) 799 { 800 fprintf (dump_file, "Eliminated tail recursion in bb %d : ", 801 bb->index); 802 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM); 803 fprintf (dump_file, "\n"); 804 } 805 806 gcc_assert (is_gimple_call (stmt)); 807 808 first = single_succ (ENTRY_BLOCK_PTR); 809 810 /* Remove the code after call_gsi that will become unreachable. The 811 possibly unreachable code in other blocks is removed later in 812 cfg cleanup. */ 813 gsi = t->call_gsi; 814 gsi_next (&gsi); 815 while (!gsi_end_p (gsi)) 816 { 817 gimple t = gsi_stmt (gsi); 818 /* Do not remove the return statement, so that redirect_edge_and_branch 819 sees how the block ends. */ 820 if (gimple_code (t) == GIMPLE_RETURN) 821 break; 822 823 gsi_remove (&gsi, true); 824 release_defs (t); 825 } 826 827 /* Number of executions of function has reduced by the tailcall. */ 828 e = single_succ_edge (gsi_bb (t->call_gsi)); 829 decrease_profile (EXIT_BLOCK_PTR, e->count, EDGE_FREQUENCY (e)); 830 decrease_profile (ENTRY_BLOCK_PTR, e->count, EDGE_FREQUENCY (e)); 831 if (e->dest != EXIT_BLOCK_PTR) 832 decrease_profile (e->dest, e->count, EDGE_FREQUENCY (e)); 833 834 /* Replace the call by a jump to the start of function. */ 835 e = redirect_edge_and_branch (single_succ_edge (gsi_bb (t->call_gsi)), 836 first); 837 gcc_assert (e); 838 PENDING_STMT (e) = NULL; 839 840 /* Add phi node entries for arguments. The ordering of the phi nodes should 841 be the same as the ordering of the arguments. */ 842 for (param = DECL_ARGUMENTS (current_function_decl), 843 idx = 0, gsi = gsi_start_phis (first); 844 param; 845 param = DECL_CHAIN (param), idx++) 846 { 847 if (!arg_needs_copy_p (param)) 848 continue; 849 850 arg = gimple_call_arg (stmt, idx); 851 phi = gsi_stmt (gsi); 852 gcc_assert (param == SSA_NAME_VAR (PHI_RESULT (phi))); 853 854 add_phi_arg (phi, arg, e, gimple_location (stmt)); 855 gsi_next (&gsi); 856 } 857 858 /* Update the values of accumulators. */ 859 adjust_accumulator_values (t->call_gsi, t->mult, t->add, e); 860 861 call = gsi_stmt (t->call_gsi); 862 rslt = gimple_call_lhs (call); 863 if (rslt != NULL_TREE) 864 { 865 /* Result of the call will no longer be defined. So adjust the 866 SSA_NAME_DEF_STMT accordingly. */ 867 SSA_NAME_DEF_STMT (rslt) = gimple_build_nop (); 868 } 869 870 gsi_remove (&t->call_gsi, true); 871 release_defs (call); 872 } 873 874 /* Optimizes the tailcall described by T. If OPT_TAILCALLS is true, also 875 mark the tailcalls for the sibcall optimization. */ 876 877 static bool 878 optimize_tail_call (struct tailcall *t, bool opt_tailcalls) 879 { 880 if (t->tail_recursion) 881 { 882 eliminate_tail_call (t); 883 return true; 884 } 885 886 if (opt_tailcalls) 887 { 888 gimple stmt = gsi_stmt (t->call_gsi); 889 890 gimple_call_set_tail (stmt, true); 891 if (dump_file && (dump_flags & TDF_DETAILS)) 892 { 893 fprintf (dump_file, "Found tail call "); 894 print_gimple_stmt (dump_file, stmt, 0, dump_flags); 895 fprintf (dump_file, " in bb %i\n", (gsi_bb (t->call_gsi))->index); 896 } 897 } 898 899 return false; 900 } 901 902 /* Creates a tail-call accumulator of the same type as the return type of the 903 current function. LABEL is the name used to creating the temporary 904 variable for the accumulator. The accumulator will be inserted in the 905 phis of a basic block BB with single predecessor with an initial value 906 INIT converted to the current function return type. */ 907 908 static tree 909 create_tailcall_accumulator (const char *label, basic_block bb, tree init) 910 { 911 tree ret_type = TREE_TYPE (DECL_RESULT (current_function_decl)); 912 tree tmp = make_temp_ssa_name (ret_type, NULL, label); 913 gimple phi; 914 915 phi = create_phi_node (tmp, bb); 916 /* RET_TYPE can be a float when -ffast-maths is enabled. */ 917 add_phi_arg (phi, fold_convert (ret_type, init), single_pred_edge (bb), 918 UNKNOWN_LOCATION); 919 return PHI_RESULT (phi); 920 } 921 922 /* Optimizes tail calls in the function, turning the tail recursion 923 into iteration. */ 924 925 static unsigned int 926 tree_optimize_tail_calls_1 (bool opt_tailcalls) 927 { 928 edge e; 929 bool phis_constructed = false; 930 struct tailcall *tailcalls = NULL, *act, *next; 931 bool changed = false; 932 basic_block first = single_succ (ENTRY_BLOCK_PTR); 933 tree param; 934 gimple stmt; 935 edge_iterator ei; 936 937 if (!suitable_for_tail_opt_p ()) 938 return 0; 939 if (opt_tailcalls) 940 opt_tailcalls = suitable_for_tail_call_opt_p (); 941 942 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds) 943 { 944 /* Only traverse the normal exits, i.e. those that end with return 945 statement. */ 946 stmt = last_stmt (e->src); 947 948 if (stmt 949 && gimple_code (stmt) == GIMPLE_RETURN) 950 find_tail_calls (e->src, &tailcalls); 951 } 952 953 /* Construct the phi nodes and accumulators if necessary. */ 954 a_acc = m_acc = NULL_TREE; 955 for (act = tailcalls; act; act = act->next) 956 { 957 if (!act->tail_recursion) 958 continue; 959 960 if (!phis_constructed) 961 { 962 /* Ensure that there is only one predecessor of the block 963 or if there are existing degenerate PHI nodes. */ 964 if (!single_pred_p (first) 965 || !gimple_seq_empty_p (phi_nodes (first))) 966 first = split_edge (single_succ_edge (ENTRY_BLOCK_PTR)); 967 968 /* Copy the args if needed. */ 969 for (param = DECL_ARGUMENTS (current_function_decl); 970 param; 971 param = DECL_CHAIN (param)) 972 if (arg_needs_copy_p (param)) 973 { 974 tree name = ssa_default_def (cfun, param); 975 tree new_name = make_ssa_name (param, SSA_NAME_DEF_STMT (name)); 976 gimple phi; 977 978 set_ssa_default_def (cfun, param, new_name); 979 phi = create_phi_node (name, first); 980 add_phi_arg (phi, new_name, single_pred_edge (first), 981 EXPR_LOCATION (param)); 982 } 983 phis_constructed = true; 984 } 985 986 if (act->add && !a_acc) 987 a_acc = create_tailcall_accumulator ("add_acc", first, 988 integer_zero_node); 989 990 if (act->mult && !m_acc) 991 m_acc = create_tailcall_accumulator ("mult_acc", first, 992 integer_one_node); 993 } 994 995 if (a_acc || m_acc) 996 { 997 /* When the tail call elimination using accumulators is performed, 998 statements adding the accumulated value are inserted at all exits. 999 This turns all other tail calls to non-tail ones. */ 1000 opt_tailcalls = false; 1001 } 1002 1003 for (; tailcalls; tailcalls = next) 1004 { 1005 next = tailcalls->next; 1006 changed |= optimize_tail_call (tailcalls, opt_tailcalls); 1007 free (tailcalls); 1008 } 1009 1010 if (a_acc || m_acc) 1011 { 1012 /* Modify the remaining return statements. */ 1013 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds) 1014 { 1015 stmt = last_stmt (e->src); 1016 1017 if (stmt 1018 && gimple_code (stmt) == GIMPLE_RETURN) 1019 adjust_return_value (e->src, m_acc, a_acc); 1020 } 1021 } 1022 1023 if (changed) 1024 { 1025 /* We may have created new loops. Make them magically appear. */ 1026 if (current_loops) 1027 loops_state_set (LOOPS_NEED_FIXUP); 1028 free_dominance_info (CDI_DOMINATORS); 1029 } 1030 1031 /* Add phi nodes for the virtual operands defined in the function to the 1032 header of the loop created by tail recursion elimination. Do so 1033 by triggering the SSA renamer. */ 1034 if (phis_constructed) 1035 mark_virtual_operands_for_renaming (cfun); 1036 1037 if (changed) 1038 return TODO_cleanup_cfg | TODO_update_ssa_only_virtuals; 1039 return 0; 1040 } 1041 1042 static unsigned int 1043 execute_tail_recursion (void) 1044 { 1045 return tree_optimize_tail_calls_1 (false); 1046 } 1047 1048 static bool 1049 gate_tail_calls (void) 1050 { 1051 return flag_optimize_sibling_calls != 0 && dbg_cnt (tail_call); 1052 } 1053 1054 static unsigned int 1055 execute_tail_calls (void) 1056 { 1057 return tree_optimize_tail_calls_1 (true); 1058 } 1059 1060 struct gimple_opt_pass pass_tail_recursion = 1061 { 1062 { 1063 GIMPLE_PASS, 1064 "tailr", /* name */ 1065 OPTGROUP_NONE, /* optinfo_flags */ 1066 gate_tail_calls, /* gate */ 1067 execute_tail_recursion, /* execute */ 1068 NULL, /* sub */ 1069 NULL, /* next */ 1070 0, /* static_pass_number */ 1071 TV_NONE, /* tv_id */ 1072 PROP_cfg | PROP_ssa, /* properties_required */ 1073 0, /* properties_provided */ 1074 0, /* properties_destroyed */ 1075 0, /* todo_flags_start */ 1076 TODO_verify_ssa /* todo_flags_finish */ 1077 } 1078 }; 1079 1080 struct gimple_opt_pass pass_tail_calls = 1081 { 1082 { 1083 GIMPLE_PASS, 1084 "tailc", /* name */ 1085 OPTGROUP_NONE, /* optinfo_flags */ 1086 gate_tail_calls, /* gate */ 1087 execute_tail_calls, /* execute */ 1088 NULL, /* sub */ 1089 NULL, /* next */ 1090 0, /* static_pass_number */ 1091 TV_NONE, /* tv_id */ 1092 PROP_cfg | PROP_ssa, /* properties_required */ 1093 0, /* properties_provided */ 1094 0, /* properties_destroyed */ 1095 0, /* todo_flags_start */ 1096 TODO_verify_ssa /* todo_flags_finish */ 1097 } 1098 }; 1099