1 /* Tail call optimization on trees. 2 Copyright (C) 2003-2018 Free Software Foundation, Inc. 3 4 This file is part of GCC. 5 6 GCC is free software; you can redistribute it and/or modify 7 it under the terms of the GNU General Public License as published by 8 the Free Software Foundation; either version 3, or (at your option) 9 any later version. 10 11 GCC is distributed in the hope that it will be useful, 12 but WITHOUT ANY WARRANTY; without even the implied warranty of 13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 GNU General Public License for more details. 15 16 You should have received a copy of the GNU General Public License 17 along with GCC; see the file COPYING3. If not see 18 <http://www.gnu.org/licenses/>. */ 19 20 #include "config.h" 21 #include "system.h" 22 #include "coretypes.h" 23 #include "backend.h" 24 #include "rtl.h" 25 #include "tree.h" 26 #include "gimple.h" 27 #include "cfghooks.h" 28 #include "tree-pass.h" 29 #include "ssa.h" 30 #include "cgraph.h" 31 #include "gimple-pretty-print.h" 32 #include "fold-const.h" 33 #include "stor-layout.h" 34 #include "gimple-iterator.h" 35 #include "gimplify-me.h" 36 #include "tree-cfg.h" 37 #include "tree-into-ssa.h" 38 #include "tree-dfa.h" 39 #include "except.h" 40 #include "tree-eh.h" 41 #include "dbgcnt.h" 42 #include "cfgloop.h" 43 #include "common/common-target.h" 44 #include "ipa-utils.h" 45 46 /* The file implements the tail recursion elimination. It is also used to 47 analyze the tail calls in general, passing the results to the rtl level 48 where they are used for sibcall optimization. 49 50 In addition to the standard tail recursion elimination, we handle the most 51 trivial cases of making the call tail recursive by creating accumulators. 52 For example the following function 53 54 int sum (int n) 55 { 56 if (n > 0) 57 return n + sum (n - 1); 58 else 59 return 0; 60 } 61 62 is transformed into 63 64 int sum (int n) 65 { 66 int acc = 0; 67 68 while (n > 0) 69 acc += n--; 70 71 return acc; 72 } 73 74 To do this, we maintain two accumulators (a_acc and m_acc) that indicate 75 when we reach the return x statement, we should return a_acc + x * m_acc 76 instead. They are initially initialized to 0 and 1, respectively, 77 so the semantics of the function is obviously preserved. If we are 78 guaranteed that the value of the accumulator never change, we 79 omit the accumulator. 80 81 There are three cases how the function may exit. The first one is 82 handled in adjust_return_value, the other two in adjust_accumulator_values 83 (the second case is actually a special case of the third one and we 84 present it separately just for clarity): 85 86 1) Just return x, where x is not in any of the remaining special shapes. 87 We rewrite this to a gimple equivalent of return m_acc * x + a_acc. 88 89 2) return f (...), where f is the current function, is rewritten in a 90 classical tail-recursion elimination way, into assignment of arguments 91 and jump to the start of the function. Values of the accumulators 92 are unchanged. 93 94 3) return a + m * f(...), where a and m do not depend on call to f. 95 To preserve the semantics described before we want this to be rewritten 96 in such a way that we finally return 97 98 a_acc + (a + m * f(...)) * m_acc = (a_acc + a * m_acc) + (m * m_acc) * f(...). 99 100 I.e. we increase a_acc by a * m_acc, multiply m_acc by m and 101 eliminate the tail call to f. Special cases when the value is just 102 added or just multiplied are obtained by setting a = 0 or m = 1. 103 104 TODO -- it is possible to do similar tricks for other operations. */ 105 106 /* A structure that describes the tailcall. */ 107 108 struct tailcall 109 { 110 /* The iterator pointing to the call statement. */ 111 gimple_stmt_iterator call_gsi; 112 113 /* True if it is a call to the current function. */ 114 bool tail_recursion; 115 116 /* The return value of the caller is mult * f + add, where f is the return 117 value of the call. */ 118 tree mult, add; 119 120 /* Next tailcall in the chain. */ 121 struct tailcall *next; 122 }; 123 124 /* The variables holding the value of multiplicative and additive 125 accumulator. */ 126 static tree m_acc, a_acc; 127 128 static bool optimize_tail_call (struct tailcall *, bool); 129 static void eliminate_tail_call (struct tailcall *); 130 131 /* Returns false when the function is not suitable for tail call optimization 132 from some reason (e.g. if it takes variable number of arguments). */ 133 134 static bool 135 suitable_for_tail_opt_p (void) 136 { 137 if (cfun->stdarg) 138 return false; 139 140 return true; 141 } 142 /* Returns false when the function is not suitable for tail call optimization 143 for some reason (e.g. if it takes variable number of arguments). 144 This test must pass in addition to suitable_for_tail_opt_p in order to make 145 tail call discovery happen. */ 146 147 static bool 148 suitable_for_tail_call_opt_p (void) 149 { 150 tree param; 151 152 /* alloca (until we have stack slot life analysis) inhibits 153 sibling call optimizations, but not tail recursion. */ 154 if (cfun->calls_alloca) 155 return false; 156 157 /* If we are using sjlj exceptions, we may need to add a call to 158 _Unwind_SjLj_Unregister at exit of the function. Which means 159 that we cannot do any sibcall transformations. */ 160 if (targetm_common.except_unwind_info (&global_options) == UI_SJLJ 161 && current_function_has_exception_handlers ()) 162 return false; 163 164 /* Any function that calls setjmp might have longjmp called from 165 any called function. ??? We really should represent this 166 properly in the CFG so that this needn't be special cased. */ 167 if (cfun->calls_setjmp) 168 return false; 169 170 /* ??? It is OK if the argument of a function is taken in some cases, 171 but not in all cases. See PR15387 and PR19616. Revisit for 4.1. */ 172 for (param = DECL_ARGUMENTS (current_function_decl); 173 param; 174 param = DECL_CHAIN (param)) 175 if (TREE_ADDRESSABLE (param)) 176 return false; 177 178 return true; 179 } 180 181 /* Checks whether the expression EXPR in stmt AT is independent of the 182 statement pointed to by GSI (in a sense that we already know EXPR's value 183 at GSI). We use the fact that we are only called from the chain of 184 basic blocks that have only single successor. Returns the expression 185 containing the value of EXPR at GSI. */ 186 187 static tree 188 independent_of_stmt_p (tree expr, gimple *at, gimple_stmt_iterator gsi, 189 bitmap to_move) 190 { 191 basic_block bb, call_bb, at_bb; 192 edge e; 193 edge_iterator ei; 194 195 if (is_gimple_min_invariant (expr)) 196 return expr; 197 198 if (TREE_CODE (expr) != SSA_NAME) 199 return NULL_TREE; 200 201 if (bitmap_bit_p (to_move, SSA_NAME_VERSION (expr))) 202 return expr; 203 204 /* Mark the blocks in the chain leading to the end. */ 205 at_bb = gimple_bb (at); 206 call_bb = gimple_bb (gsi_stmt (gsi)); 207 for (bb = call_bb; bb != at_bb; bb = single_succ (bb)) 208 bb->aux = &bb->aux; 209 bb->aux = &bb->aux; 210 211 while (1) 212 { 213 at = SSA_NAME_DEF_STMT (expr); 214 bb = gimple_bb (at); 215 216 /* The default definition or defined before the chain. */ 217 if (!bb || !bb->aux) 218 break; 219 220 if (bb == call_bb) 221 { 222 for (; !gsi_end_p (gsi); gsi_next (&gsi)) 223 if (gsi_stmt (gsi) == at) 224 break; 225 226 if (!gsi_end_p (gsi)) 227 expr = NULL_TREE; 228 break; 229 } 230 231 if (gimple_code (at) != GIMPLE_PHI) 232 { 233 expr = NULL_TREE; 234 break; 235 } 236 237 FOR_EACH_EDGE (e, ei, bb->preds) 238 if (e->src->aux) 239 break; 240 gcc_assert (e); 241 242 expr = PHI_ARG_DEF_FROM_EDGE (at, e); 243 if (TREE_CODE (expr) != SSA_NAME) 244 { 245 /* The value is a constant. */ 246 break; 247 } 248 } 249 250 /* Unmark the blocks. */ 251 for (bb = call_bb; bb != at_bb; bb = single_succ (bb)) 252 bb->aux = NULL; 253 bb->aux = NULL; 254 255 return expr; 256 } 257 258 enum par { FAIL, OK, TRY_MOVE }; 259 260 /* Simulates the effect of an assignment STMT on the return value of the tail 261 recursive CALL passed in ASS_VAR. M and A are the multiplicative and the 262 additive factor for the real return value. */ 263 264 static par 265 process_assignment (gassign *stmt, 266 gimple_stmt_iterator call, tree *m, 267 tree *a, tree *ass_var, bitmap to_move) 268 { 269 tree op0, op1 = NULL_TREE, non_ass_var = NULL_TREE; 270 tree dest = gimple_assign_lhs (stmt); 271 enum tree_code code = gimple_assign_rhs_code (stmt); 272 enum gimple_rhs_class rhs_class = get_gimple_rhs_class (code); 273 tree src_var = gimple_assign_rhs1 (stmt); 274 275 /* See if this is a simple copy operation of an SSA name to the function 276 result. In that case we may have a simple tail call. Ignore type 277 conversions that can never produce extra code between the function 278 call and the function return. */ 279 if ((rhs_class == GIMPLE_SINGLE_RHS || gimple_assign_cast_p (stmt)) 280 && src_var == *ass_var) 281 { 282 /* Reject a tailcall if the type conversion might need 283 additional code. */ 284 if (gimple_assign_cast_p (stmt)) 285 { 286 if (TYPE_MODE (TREE_TYPE (dest)) != TYPE_MODE (TREE_TYPE (src_var))) 287 return FAIL; 288 289 /* Even if the type modes are the same, if the precision of the 290 type is smaller than mode's precision, 291 reduce_to_bit_field_precision would generate additional code. */ 292 if (INTEGRAL_TYPE_P (TREE_TYPE (dest)) 293 && !type_has_mode_precision_p (TREE_TYPE (dest))) 294 return FAIL; 295 } 296 297 *ass_var = dest; 298 return OK; 299 } 300 301 switch (rhs_class) 302 { 303 case GIMPLE_BINARY_RHS: 304 op1 = gimple_assign_rhs2 (stmt); 305 306 /* Fall through. */ 307 308 case GIMPLE_UNARY_RHS: 309 op0 = gimple_assign_rhs1 (stmt); 310 break; 311 312 default: 313 return FAIL; 314 } 315 316 /* Accumulator optimizations will reverse the order of operations. 317 We can only do that for floating-point types if we're assuming 318 that addition and multiplication are associative. */ 319 if (!flag_associative_math) 320 if (FLOAT_TYPE_P (TREE_TYPE (DECL_RESULT (current_function_decl)))) 321 return FAIL; 322 323 if (rhs_class == GIMPLE_UNARY_RHS 324 && op0 == *ass_var) 325 ; 326 else if (op0 == *ass_var 327 && (non_ass_var = independent_of_stmt_p (op1, stmt, call, 328 to_move))) 329 ; 330 else if (op1 == *ass_var 331 && (non_ass_var = independent_of_stmt_p (op0, stmt, call, 332 to_move))) 333 ; 334 else 335 return TRY_MOVE; 336 337 switch (code) 338 { 339 case PLUS_EXPR: 340 *a = non_ass_var; 341 *ass_var = dest; 342 return OK; 343 344 case POINTER_PLUS_EXPR: 345 if (op0 != *ass_var) 346 return FAIL; 347 *a = non_ass_var; 348 *ass_var = dest; 349 return OK; 350 351 case MULT_EXPR: 352 *m = non_ass_var; 353 *ass_var = dest; 354 return OK; 355 356 case NEGATE_EXPR: 357 *m = build_minus_one_cst (TREE_TYPE (op0)); 358 *ass_var = dest; 359 return OK; 360 361 case MINUS_EXPR: 362 if (*ass_var == op0) 363 *a = fold_build1 (NEGATE_EXPR, TREE_TYPE (non_ass_var), non_ass_var); 364 else 365 { 366 *m = build_minus_one_cst (TREE_TYPE (non_ass_var)); 367 *a = fold_build1 (NEGATE_EXPR, TREE_TYPE (non_ass_var), non_ass_var); 368 } 369 370 *ass_var = dest; 371 return OK; 372 373 default: 374 return FAIL; 375 } 376 } 377 378 /* Propagate VAR through phis on edge E. */ 379 380 static tree 381 propagate_through_phis (tree var, edge e) 382 { 383 basic_block dest = e->dest; 384 gphi_iterator gsi; 385 386 for (gsi = gsi_start_phis (dest); !gsi_end_p (gsi); gsi_next (&gsi)) 387 { 388 gphi *phi = gsi.phi (); 389 if (PHI_ARG_DEF_FROM_EDGE (phi, e) == var) 390 return PHI_RESULT (phi); 391 } 392 return var; 393 } 394 395 /* Finds tailcalls falling into basic block BB. The list of found tailcalls is 396 added to the start of RET. */ 397 398 static void 399 find_tail_calls (basic_block bb, struct tailcall **ret) 400 { 401 tree ass_var = NULL_TREE, ret_var, func, param; 402 gimple *stmt; 403 gcall *call = NULL; 404 gimple_stmt_iterator gsi, agsi; 405 bool tail_recursion; 406 struct tailcall *nw; 407 edge e; 408 tree m, a; 409 basic_block abb; 410 size_t idx; 411 tree var; 412 413 if (!single_succ_p (bb)) 414 return; 415 416 for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi); gsi_prev (&gsi)) 417 { 418 stmt = gsi_stmt (gsi); 419 420 /* Ignore labels, returns, nops, clobbers and debug stmts. */ 421 if (gimple_code (stmt) == GIMPLE_LABEL 422 || gimple_code (stmt) == GIMPLE_RETURN 423 || gimple_code (stmt) == GIMPLE_NOP 424 || gimple_code (stmt) == GIMPLE_PREDICT 425 || gimple_clobber_p (stmt) 426 || is_gimple_debug (stmt)) 427 continue; 428 429 /* Check for a call. */ 430 if (is_gimple_call (stmt)) 431 { 432 call = as_a <gcall *> (stmt); 433 ass_var = gimple_call_lhs (call); 434 break; 435 } 436 437 /* Allow simple copies between local variables, even if they're 438 aggregates. */ 439 if (is_gimple_assign (stmt) 440 && auto_var_in_fn_p (gimple_assign_lhs (stmt), cfun->decl) 441 && auto_var_in_fn_p (gimple_assign_rhs1 (stmt), cfun->decl)) 442 continue; 443 444 /* If the statement references memory or volatile operands, fail. */ 445 if (gimple_references_memory_p (stmt) 446 || gimple_has_volatile_ops (stmt)) 447 return; 448 } 449 450 if (gsi_end_p (gsi)) 451 { 452 edge_iterator ei; 453 /* Recurse to the predecessors. */ 454 FOR_EACH_EDGE (e, ei, bb->preds) 455 find_tail_calls (e->src, ret); 456 457 return; 458 } 459 460 /* If the LHS of our call is not just a simple register or local 461 variable, we can't transform this into a tail or sibling call. 462 This situation happens, in (e.g.) "*p = foo()" where foo returns a 463 struct. In this case we won't have a temporary here, but we need 464 to carry out the side effect anyway, so tailcall is impossible. 465 466 ??? In some situations (when the struct is returned in memory via 467 invisible argument) we could deal with this, e.g. by passing 'p' 468 itself as that argument to foo, but it's too early to do this here, 469 and expand_call() will not handle it anyway. If it ever can, then 470 we need to revisit this here, to allow that situation. */ 471 if (ass_var 472 && !is_gimple_reg (ass_var) 473 && !auto_var_in_fn_p (ass_var, cfun->decl)) 474 return; 475 476 /* If the call might throw an exception that wouldn't propagate out of 477 cfun, we can't transform to a tail or sibling call (82081). */ 478 if (stmt_could_throw_p (stmt) 479 && !stmt_can_throw_external (stmt)) 480 return; 481 482 /* If the function returns a value, then at present, the tail call 483 must return the same type of value. There is conceptually a copy 484 between the object returned by the tail call candidate and the 485 object returned by CFUN itself. 486 487 This means that if we have: 488 489 lhs = f (&<retval>); // f reads from <retval> 490 // (lhs is usually also <retval>) 491 492 there is a copy between the temporary object returned by f and lhs, 493 meaning that any use of <retval> in f occurs before the assignment 494 to lhs begins. Thus the <retval> that is live on entry to the call 495 to f is really an independent local variable V that happens to be 496 stored in the RESULT_DECL rather than a local VAR_DECL. 497 498 Turning this into a tail call would remove the copy and make the 499 lifetimes of the return value and V overlap. The same applies to 500 tail recursion, since if f can read from <retval>, we have to assume 501 that CFUN might already have written to <retval> before the call. 502 503 The problem doesn't apply when <retval> is passed by value, but that 504 isn't a case we handle anyway. */ 505 tree result_decl = DECL_RESULT (cfun->decl); 506 if (result_decl 507 && may_be_aliased (result_decl) 508 && ref_maybe_used_by_stmt_p (call, result_decl)) 509 return; 510 511 /* We found the call, check whether it is suitable. */ 512 tail_recursion = false; 513 func = gimple_call_fndecl (call); 514 if (func 515 && !DECL_BUILT_IN (func) 516 && recursive_call_p (current_function_decl, func)) 517 { 518 tree arg; 519 520 for (param = DECL_ARGUMENTS (current_function_decl), idx = 0; 521 param && idx < gimple_call_num_args (call); 522 param = DECL_CHAIN (param), idx ++) 523 { 524 arg = gimple_call_arg (call, idx); 525 if (param != arg) 526 { 527 /* Make sure there are no problems with copying. The parameter 528 have a copyable type and the two arguments must have reasonably 529 equivalent types. The latter requirement could be relaxed if 530 we emitted a suitable type conversion statement. */ 531 if (!is_gimple_reg_type (TREE_TYPE (param)) 532 || !useless_type_conversion_p (TREE_TYPE (param), 533 TREE_TYPE (arg))) 534 break; 535 536 /* The parameter should be a real operand, so that phi node 537 created for it at the start of the function has the meaning 538 of copying the value. This test implies is_gimple_reg_type 539 from the previous condition, however this one could be 540 relaxed by being more careful with copying the new value 541 of the parameter (emitting appropriate GIMPLE_ASSIGN and 542 updating the virtual operands). */ 543 if (!is_gimple_reg (param)) 544 break; 545 } 546 } 547 if (idx == gimple_call_num_args (call) && !param) 548 tail_recursion = true; 549 } 550 551 /* Make sure the tail invocation of this function does not indirectly 552 refer to local variables. (Passing variables directly by value 553 is OK.) */ 554 FOR_EACH_LOCAL_DECL (cfun, idx, var) 555 { 556 if (TREE_CODE (var) != PARM_DECL 557 && auto_var_in_fn_p (var, cfun->decl) 558 && may_be_aliased (var) 559 && (ref_maybe_used_by_stmt_p (call, var) 560 || call_may_clobber_ref_p (call, var))) 561 return; 562 } 563 564 /* Now check the statements after the call. None of them has virtual 565 operands, so they may only depend on the call through its return 566 value. The return value should also be dependent on each of them, 567 since we are running after dce. */ 568 m = NULL_TREE; 569 a = NULL_TREE; 570 auto_bitmap to_move_defs; 571 auto_vec<gimple *> to_move_stmts; 572 573 abb = bb; 574 agsi = gsi; 575 while (1) 576 { 577 tree tmp_a = NULL_TREE; 578 tree tmp_m = NULL_TREE; 579 gsi_next (&agsi); 580 581 while (gsi_end_p (agsi)) 582 { 583 ass_var = propagate_through_phis (ass_var, single_succ_edge (abb)); 584 abb = single_succ (abb); 585 agsi = gsi_start_bb (abb); 586 } 587 588 stmt = gsi_stmt (agsi); 589 if (gimple_code (stmt) == GIMPLE_RETURN) 590 break; 591 592 if (gimple_code (stmt) == GIMPLE_LABEL 593 || gimple_code (stmt) == GIMPLE_NOP 594 || gimple_code (stmt) == GIMPLE_PREDICT 595 || gimple_clobber_p (stmt) 596 || is_gimple_debug (stmt)) 597 continue; 598 599 if (gimple_code (stmt) != GIMPLE_ASSIGN) 600 return; 601 602 /* This is a gimple assign. */ 603 par ret = process_assignment (as_a <gassign *> (stmt), gsi, 604 &tmp_m, &tmp_a, &ass_var, to_move_defs); 605 if (ret == FAIL) 606 return; 607 else if (ret == TRY_MOVE) 608 { 609 if (! tail_recursion) 610 return; 611 /* Do not deal with checking dominance, the real fix is to 612 do path isolation for the transform phase anyway, removing 613 the need to compute the accumulators with new stmts. */ 614 if (abb != bb) 615 return; 616 for (unsigned opno = 1; opno < gimple_num_ops (stmt); ++opno) 617 { 618 tree op = gimple_op (stmt, opno); 619 if (independent_of_stmt_p (op, stmt, gsi, to_move_defs) != op) 620 return; 621 } 622 bitmap_set_bit (to_move_defs, 623 SSA_NAME_VERSION (gimple_assign_lhs (stmt))); 624 to_move_stmts.safe_push (stmt); 625 continue; 626 } 627 628 if (tmp_a) 629 { 630 tree type = TREE_TYPE (tmp_a); 631 if (a) 632 a = fold_build2 (PLUS_EXPR, type, fold_convert (type, a), tmp_a); 633 else 634 a = tmp_a; 635 } 636 if (tmp_m) 637 { 638 tree type = TREE_TYPE (tmp_m); 639 if (m) 640 m = fold_build2 (MULT_EXPR, type, fold_convert (type, m), tmp_m); 641 else 642 m = tmp_m; 643 644 if (a) 645 a = fold_build2 (MULT_EXPR, type, fold_convert (type, a), tmp_m); 646 } 647 } 648 649 /* See if this is a tail call we can handle. */ 650 ret_var = gimple_return_retval (as_a <greturn *> (stmt)); 651 652 /* We may proceed if there either is no return value, or the return value 653 is identical to the call's return. */ 654 if (ret_var 655 && (ret_var != ass_var)) 656 return; 657 658 /* If this is not a tail recursive call, we cannot handle addends or 659 multiplicands. */ 660 if (!tail_recursion && (m || a)) 661 return; 662 663 /* For pointers only allow additions. */ 664 if (m && POINTER_TYPE_P (TREE_TYPE (DECL_RESULT (current_function_decl)))) 665 return; 666 667 /* Move queued defs. */ 668 if (tail_recursion) 669 { 670 unsigned i; 671 FOR_EACH_VEC_ELT (to_move_stmts, i, stmt) 672 { 673 gimple_stmt_iterator mgsi = gsi_for_stmt (stmt); 674 gsi_move_before (&mgsi, &gsi); 675 } 676 } 677 678 nw = XNEW (struct tailcall); 679 680 nw->call_gsi = gsi; 681 682 nw->tail_recursion = tail_recursion; 683 684 nw->mult = m; 685 nw->add = a; 686 687 nw->next = *ret; 688 *ret = nw; 689 } 690 691 /* Helper to insert PHI_ARGH to the phi of VAR in the destination of edge E. */ 692 693 static void 694 add_successor_phi_arg (edge e, tree var, tree phi_arg) 695 { 696 gphi_iterator gsi; 697 698 for (gsi = gsi_start_phis (e->dest); !gsi_end_p (gsi); gsi_next (&gsi)) 699 if (PHI_RESULT (gsi.phi ()) == var) 700 break; 701 702 gcc_assert (!gsi_end_p (gsi)); 703 add_phi_arg (gsi.phi (), phi_arg, e, UNKNOWN_LOCATION); 704 } 705 706 /* Creates a GIMPLE statement which computes the operation specified by 707 CODE, ACC and OP1 to a new variable with name LABEL and inserts the 708 statement in the position specified by GSI. Returns the 709 tree node of the statement's result. */ 710 711 static tree 712 adjust_return_value_with_ops (enum tree_code code, const char *label, 713 tree acc, tree op1, gimple_stmt_iterator gsi) 714 { 715 716 tree ret_type = TREE_TYPE (DECL_RESULT (current_function_decl)); 717 tree result = make_temp_ssa_name (ret_type, NULL, label); 718 gassign *stmt; 719 720 if (POINTER_TYPE_P (ret_type)) 721 { 722 gcc_assert (code == PLUS_EXPR && TREE_TYPE (acc) == sizetype); 723 code = POINTER_PLUS_EXPR; 724 } 725 if (types_compatible_p (TREE_TYPE (acc), TREE_TYPE (op1)) 726 && code != POINTER_PLUS_EXPR) 727 stmt = gimple_build_assign (result, code, acc, op1); 728 else 729 { 730 tree tem; 731 if (code == POINTER_PLUS_EXPR) 732 tem = fold_build2 (code, TREE_TYPE (op1), op1, acc); 733 else 734 tem = fold_build2 (code, TREE_TYPE (op1), 735 fold_convert (TREE_TYPE (op1), acc), op1); 736 tree rhs = fold_convert (ret_type, tem); 737 rhs = force_gimple_operand_gsi (&gsi, rhs, 738 false, NULL, true, GSI_SAME_STMT); 739 stmt = gimple_build_assign (result, rhs); 740 } 741 742 gsi_insert_before (&gsi, stmt, GSI_NEW_STMT); 743 return result; 744 } 745 746 /* Creates a new GIMPLE statement that adjusts the value of accumulator ACC by 747 the computation specified by CODE and OP1 and insert the statement 748 at the position specified by GSI as a new statement. Returns new SSA name 749 of updated accumulator. */ 750 751 static tree 752 update_accumulator_with_ops (enum tree_code code, tree acc, tree op1, 753 gimple_stmt_iterator gsi) 754 { 755 gassign *stmt; 756 tree var = copy_ssa_name (acc); 757 if (types_compatible_p (TREE_TYPE (acc), TREE_TYPE (op1))) 758 stmt = gimple_build_assign (var, code, acc, op1); 759 else 760 { 761 tree rhs = fold_convert (TREE_TYPE (acc), 762 fold_build2 (code, 763 TREE_TYPE (op1), 764 fold_convert (TREE_TYPE (op1), acc), 765 op1)); 766 rhs = force_gimple_operand_gsi (&gsi, rhs, 767 false, NULL, false, GSI_CONTINUE_LINKING); 768 stmt = gimple_build_assign (var, rhs); 769 } 770 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT); 771 return var; 772 } 773 774 /* Adjust the accumulator values according to A and M after GSI, and update 775 the phi nodes on edge BACK. */ 776 777 static void 778 adjust_accumulator_values (gimple_stmt_iterator gsi, tree m, tree a, edge back) 779 { 780 tree var, a_acc_arg, m_acc_arg; 781 782 if (m) 783 m = force_gimple_operand_gsi (&gsi, m, true, NULL, true, GSI_SAME_STMT); 784 if (a) 785 a = force_gimple_operand_gsi (&gsi, a, true, NULL, true, GSI_SAME_STMT); 786 787 a_acc_arg = a_acc; 788 m_acc_arg = m_acc; 789 if (a) 790 { 791 if (m_acc) 792 { 793 if (integer_onep (a)) 794 var = m_acc; 795 else 796 var = adjust_return_value_with_ops (MULT_EXPR, "acc_tmp", m_acc, 797 a, gsi); 798 } 799 else 800 var = a; 801 802 a_acc_arg = update_accumulator_with_ops (PLUS_EXPR, a_acc, var, gsi); 803 } 804 805 if (m) 806 m_acc_arg = update_accumulator_with_ops (MULT_EXPR, m_acc, m, gsi); 807 808 if (a_acc) 809 add_successor_phi_arg (back, a_acc, a_acc_arg); 810 811 if (m_acc) 812 add_successor_phi_arg (back, m_acc, m_acc_arg); 813 } 814 815 /* Adjust value of the return at the end of BB according to M and A 816 accumulators. */ 817 818 static void 819 adjust_return_value (basic_block bb, tree m, tree a) 820 { 821 tree retval; 822 greturn *ret_stmt = as_a <greturn *> (gimple_seq_last_stmt (bb_seq (bb))); 823 gimple_stmt_iterator gsi = gsi_last_bb (bb); 824 825 gcc_assert (gimple_code (ret_stmt) == GIMPLE_RETURN); 826 827 retval = gimple_return_retval (ret_stmt); 828 if (!retval || retval == error_mark_node) 829 return; 830 831 if (m) 832 retval = adjust_return_value_with_ops (MULT_EXPR, "mul_tmp", m_acc, retval, 833 gsi); 834 if (a) 835 retval = adjust_return_value_with_ops (PLUS_EXPR, "acc_tmp", a_acc, retval, 836 gsi); 837 gimple_return_set_retval (ret_stmt, retval); 838 update_stmt (ret_stmt); 839 } 840 841 /* Subtract COUNT and FREQUENCY from the basic block and it's 842 outgoing edge. */ 843 static void 844 decrease_profile (basic_block bb, profile_count count) 845 { 846 bb->count = bb->count - count; 847 if (!single_succ_p (bb)) 848 { 849 gcc_assert (!EDGE_COUNT (bb->succs)); 850 return; 851 } 852 } 853 854 /* Returns true if argument PARAM of the tail recursive call needs to be copied 855 when the call is eliminated. */ 856 857 static bool 858 arg_needs_copy_p (tree param) 859 { 860 tree def; 861 862 if (!is_gimple_reg (param)) 863 return false; 864 865 /* Parameters that are only defined but never used need not be copied. */ 866 def = ssa_default_def (cfun, param); 867 if (!def) 868 return false; 869 870 return true; 871 } 872 873 /* Eliminates tail call described by T. TMP_VARS is a list of 874 temporary variables used to copy the function arguments. */ 875 876 static void 877 eliminate_tail_call (struct tailcall *t) 878 { 879 tree param, rslt; 880 gimple *stmt, *call; 881 tree arg; 882 size_t idx; 883 basic_block bb, first; 884 edge e; 885 gphi *phi; 886 gphi_iterator gpi; 887 gimple_stmt_iterator gsi; 888 gimple *orig_stmt; 889 890 stmt = orig_stmt = gsi_stmt (t->call_gsi); 891 bb = gsi_bb (t->call_gsi); 892 893 if (dump_file && (dump_flags & TDF_DETAILS)) 894 { 895 fprintf (dump_file, "Eliminated tail recursion in bb %d : ", 896 bb->index); 897 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM); 898 fprintf (dump_file, "\n"); 899 } 900 901 gcc_assert (is_gimple_call (stmt)); 902 903 first = single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun)); 904 905 /* Remove the code after call_gsi that will become unreachable. The 906 possibly unreachable code in other blocks is removed later in 907 cfg cleanup. */ 908 gsi = t->call_gsi; 909 gimple_stmt_iterator gsi2 = gsi_last_bb (gimple_bb (gsi_stmt (gsi))); 910 while (gsi_stmt (gsi2) != gsi_stmt (gsi)) 911 { 912 gimple *t = gsi_stmt (gsi2); 913 /* Do not remove the return statement, so that redirect_edge_and_branch 914 sees how the block ends. */ 915 if (gimple_code (t) != GIMPLE_RETURN) 916 { 917 gimple_stmt_iterator gsi3 = gsi2; 918 gsi_prev (&gsi2); 919 gsi_remove (&gsi3, true); 920 release_defs (t); 921 } 922 else 923 gsi_prev (&gsi2); 924 } 925 926 /* Number of executions of function has reduced by the tailcall. */ 927 e = single_succ_edge (gsi_bb (t->call_gsi)); 928 929 profile_count count = e->count (); 930 931 /* When profile is inconsistent and the recursion edge is more frequent 932 than number of executions of functions, scale it down, so we do not end 933 up with 0 executions of entry block. */ 934 if (count >= ENTRY_BLOCK_PTR_FOR_FN (cfun)->count) 935 count = ENTRY_BLOCK_PTR_FOR_FN (cfun)->count.apply_scale (7, 8); 936 decrease_profile (EXIT_BLOCK_PTR_FOR_FN (cfun), count); 937 decrease_profile (ENTRY_BLOCK_PTR_FOR_FN (cfun), count); 938 if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)) 939 decrease_profile (e->dest, count); 940 941 /* Replace the call by a jump to the start of function. */ 942 e = redirect_edge_and_branch (single_succ_edge (gsi_bb (t->call_gsi)), 943 first); 944 gcc_assert (e); 945 PENDING_STMT (e) = NULL; 946 947 /* Add phi node entries for arguments. The ordering of the phi nodes should 948 be the same as the ordering of the arguments. */ 949 for (param = DECL_ARGUMENTS (current_function_decl), 950 idx = 0, gpi = gsi_start_phis (first); 951 param; 952 param = DECL_CHAIN (param), idx++) 953 { 954 if (!arg_needs_copy_p (param)) 955 continue; 956 957 arg = gimple_call_arg (stmt, idx); 958 phi = gpi.phi (); 959 gcc_assert (param == SSA_NAME_VAR (PHI_RESULT (phi))); 960 961 add_phi_arg (phi, arg, e, gimple_location (stmt)); 962 gsi_next (&gpi); 963 } 964 965 /* Update the values of accumulators. */ 966 adjust_accumulator_values (t->call_gsi, t->mult, t->add, e); 967 968 call = gsi_stmt (t->call_gsi); 969 rslt = gimple_call_lhs (call); 970 if (rslt != NULL_TREE && TREE_CODE (rslt) == SSA_NAME) 971 { 972 /* Result of the call will no longer be defined. So adjust the 973 SSA_NAME_DEF_STMT accordingly. */ 974 SSA_NAME_DEF_STMT (rslt) = gimple_build_nop (); 975 } 976 977 gsi_remove (&t->call_gsi, true); 978 release_defs (call); 979 } 980 981 /* Optimizes the tailcall described by T. If OPT_TAILCALLS is true, also 982 mark the tailcalls for the sibcall optimization. */ 983 984 static bool 985 optimize_tail_call (struct tailcall *t, bool opt_tailcalls) 986 { 987 if (t->tail_recursion) 988 { 989 eliminate_tail_call (t); 990 return true; 991 } 992 993 if (opt_tailcalls) 994 { 995 gcall *stmt = as_a <gcall *> (gsi_stmt (t->call_gsi)); 996 997 gimple_call_set_tail (stmt, true); 998 cfun->tail_call_marked = true; 999 if (dump_file && (dump_flags & TDF_DETAILS)) 1000 { 1001 fprintf (dump_file, "Found tail call "); 1002 print_gimple_stmt (dump_file, stmt, 0, dump_flags); 1003 fprintf (dump_file, " in bb %i\n", (gsi_bb (t->call_gsi))->index); 1004 } 1005 } 1006 1007 return false; 1008 } 1009 1010 /* Creates a tail-call accumulator of the same type as the return type of the 1011 current function. LABEL is the name used to creating the temporary 1012 variable for the accumulator. The accumulator will be inserted in the 1013 phis of a basic block BB with single predecessor with an initial value 1014 INIT converted to the current function return type. */ 1015 1016 static tree 1017 create_tailcall_accumulator (const char *label, basic_block bb, tree init) 1018 { 1019 tree ret_type = TREE_TYPE (DECL_RESULT (current_function_decl)); 1020 if (POINTER_TYPE_P (ret_type)) 1021 ret_type = sizetype; 1022 1023 tree tmp = make_temp_ssa_name (ret_type, NULL, label); 1024 gphi *phi; 1025 1026 phi = create_phi_node (tmp, bb); 1027 /* RET_TYPE can be a float when -ffast-maths is enabled. */ 1028 add_phi_arg (phi, fold_convert (ret_type, init), single_pred_edge (bb), 1029 UNKNOWN_LOCATION); 1030 return PHI_RESULT (phi); 1031 } 1032 1033 /* Optimizes tail calls in the function, turning the tail recursion 1034 into iteration. */ 1035 1036 static unsigned int 1037 tree_optimize_tail_calls_1 (bool opt_tailcalls) 1038 { 1039 edge e; 1040 bool phis_constructed = false; 1041 struct tailcall *tailcalls = NULL, *act, *next; 1042 bool changed = false; 1043 basic_block first = single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun)); 1044 tree param; 1045 gimple *stmt; 1046 edge_iterator ei; 1047 1048 if (!suitable_for_tail_opt_p ()) 1049 return 0; 1050 if (opt_tailcalls) 1051 opt_tailcalls = suitable_for_tail_call_opt_p (); 1052 1053 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds) 1054 { 1055 /* Only traverse the normal exits, i.e. those that end with return 1056 statement. */ 1057 stmt = last_stmt (e->src); 1058 1059 if (stmt 1060 && gimple_code (stmt) == GIMPLE_RETURN) 1061 find_tail_calls (e->src, &tailcalls); 1062 } 1063 1064 /* Construct the phi nodes and accumulators if necessary. */ 1065 a_acc = m_acc = NULL_TREE; 1066 for (act = tailcalls; act; act = act->next) 1067 { 1068 if (!act->tail_recursion) 1069 continue; 1070 1071 if (!phis_constructed) 1072 { 1073 /* Ensure that there is only one predecessor of the block 1074 or if there are existing degenerate PHI nodes. */ 1075 if (!single_pred_p (first) 1076 || !gimple_seq_empty_p (phi_nodes (first))) 1077 first = 1078 split_edge (single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun))); 1079 1080 /* Copy the args if needed. */ 1081 for (param = DECL_ARGUMENTS (current_function_decl); 1082 param; 1083 param = DECL_CHAIN (param)) 1084 if (arg_needs_copy_p (param)) 1085 { 1086 tree name = ssa_default_def (cfun, param); 1087 tree new_name = make_ssa_name (param, SSA_NAME_DEF_STMT (name)); 1088 gphi *phi; 1089 1090 set_ssa_default_def (cfun, param, new_name); 1091 phi = create_phi_node (name, first); 1092 add_phi_arg (phi, new_name, single_pred_edge (first), 1093 EXPR_LOCATION (param)); 1094 } 1095 phis_constructed = true; 1096 } 1097 1098 if (act->add && !a_acc) 1099 a_acc = create_tailcall_accumulator ("add_acc", first, 1100 integer_zero_node); 1101 1102 if (act->mult && !m_acc) 1103 m_acc = create_tailcall_accumulator ("mult_acc", first, 1104 integer_one_node); 1105 } 1106 1107 if (a_acc || m_acc) 1108 { 1109 /* When the tail call elimination using accumulators is performed, 1110 statements adding the accumulated value are inserted at all exits. 1111 This turns all other tail calls to non-tail ones. */ 1112 opt_tailcalls = false; 1113 } 1114 1115 for (; tailcalls; tailcalls = next) 1116 { 1117 next = tailcalls->next; 1118 changed |= optimize_tail_call (tailcalls, opt_tailcalls); 1119 free (tailcalls); 1120 } 1121 1122 if (a_acc || m_acc) 1123 { 1124 /* Modify the remaining return statements. */ 1125 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds) 1126 { 1127 stmt = last_stmt (e->src); 1128 1129 if (stmt 1130 && gimple_code (stmt) == GIMPLE_RETURN) 1131 adjust_return_value (e->src, m_acc, a_acc); 1132 } 1133 } 1134 1135 if (changed) 1136 { 1137 /* We may have created new loops. Make them magically appear. */ 1138 loops_state_set (LOOPS_NEED_FIXUP); 1139 free_dominance_info (CDI_DOMINATORS); 1140 } 1141 1142 /* Add phi nodes for the virtual operands defined in the function to the 1143 header of the loop created by tail recursion elimination. Do so 1144 by triggering the SSA renamer. */ 1145 if (phis_constructed) 1146 mark_virtual_operands_for_renaming (cfun); 1147 1148 if (changed) 1149 return TODO_cleanup_cfg | TODO_update_ssa_only_virtuals; 1150 return 0; 1151 } 1152 1153 static bool 1154 gate_tail_calls (void) 1155 { 1156 return flag_optimize_sibling_calls != 0 && dbg_cnt (tail_call); 1157 } 1158 1159 static unsigned int 1160 execute_tail_calls (void) 1161 { 1162 return tree_optimize_tail_calls_1 (true); 1163 } 1164 1165 namespace { 1166 1167 const pass_data pass_data_tail_recursion = 1168 { 1169 GIMPLE_PASS, /* type */ 1170 "tailr", /* name */ 1171 OPTGROUP_NONE, /* optinfo_flags */ 1172 TV_NONE, /* tv_id */ 1173 ( PROP_cfg | PROP_ssa ), /* properties_required */ 1174 0, /* properties_provided */ 1175 0, /* properties_destroyed */ 1176 0, /* todo_flags_start */ 1177 0, /* todo_flags_finish */ 1178 }; 1179 1180 class pass_tail_recursion : public gimple_opt_pass 1181 { 1182 public: 1183 pass_tail_recursion (gcc::context *ctxt) 1184 : gimple_opt_pass (pass_data_tail_recursion, ctxt) 1185 {} 1186 1187 /* opt_pass methods: */ 1188 opt_pass * clone () { return new pass_tail_recursion (m_ctxt); } 1189 virtual bool gate (function *) { return gate_tail_calls (); } 1190 virtual unsigned int execute (function *) 1191 { 1192 return tree_optimize_tail_calls_1 (false); 1193 } 1194 1195 }; // class pass_tail_recursion 1196 1197 } // anon namespace 1198 1199 gimple_opt_pass * 1200 make_pass_tail_recursion (gcc::context *ctxt) 1201 { 1202 return new pass_tail_recursion (ctxt); 1203 } 1204 1205 namespace { 1206 1207 const pass_data pass_data_tail_calls = 1208 { 1209 GIMPLE_PASS, /* type */ 1210 "tailc", /* name */ 1211 OPTGROUP_NONE, /* optinfo_flags */ 1212 TV_NONE, /* tv_id */ 1213 ( PROP_cfg | PROP_ssa ), /* properties_required */ 1214 0, /* properties_provided */ 1215 0, /* properties_destroyed */ 1216 0, /* todo_flags_start */ 1217 0, /* todo_flags_finish */ 1218 }; 1219 1220 class pass_tail_calls : public gimple_opt_pass 1221 { 1222 public: 1223 pass_tail_calls (gcc::context *ctxt) 1224 : gimple_opt_pass (pass_data_tail_calls, ctxt) 1225 {} 1226 1227 /* opt_pass methods: */ 1228 virtual bool gate (function *) { return gate_tail_calls (); } 1229 virtual unsigned int execute (function *) { return execute_tail_calls (); } 1230 1231 }; // class pass_tail_calls 1232 1233 } // anon namespace 1234 1235 gimple_opt_pass * 1236 make_pass_tail_calls (gcc::context *ctxt) 1237 { 1238 return new pass_tail_calls (ctxt); 1239 } 1240