1 /* Lower GIMPLE_SWITCH expressions to something more efficient than 2 a jump table. 3 Copyright (C) 2006-2013 Free Software Foundation, Inc. 4 5 This file is part of GCC. 6 7 GCC is free software; you can redistribute it and/or modify it 8 under the terms of the GNU General Public License as published by the 9 Free Software Foundation; either version 3, or (at your option) any 10 later version. 11 12 GCC is distributed in the hope that it will be useful, but WITHOUT 13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 15 for more details. 16 17 You should have received a copy of the GNU General Public License 18 along with GCC; see the file COPYING3. If not, write to the Free 19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 20 02110-1301, USA. */ 21 22 /* This file handles the lowering of GIMPLE_SWITCH to an indexed 23 load, or a series of bit-test-and-branch expressions. */ 24 25 #include "config.h" 26 #include "system.h" 27 #include "coretypes.h" 28 #include "tm.h" 29 #include "line-map.h" 30 #include "params.h" 31 #include "flags.h" 32 #include "tree.h" 33 #include "basic-block.h" 34 #include "tree-flow.h" 35 #include "tree-flow-inline.h" 36 #include "tree-ssa-operands.h" 37 #include "tree-pass.h" 38 #include "gimple-pretty-print.h" 39 40 /* ??? For lang_hooks.types.type_for_mode, but is there a word_mode 41 type in the GIMPLE type system that is language-independent? */ 42 #include "langhooks.h" 43 44 /* Need to include expr.h and optabs.h for lshift_cheap_p. */ 45 #include "expr.h" 46 #include "optabs.h" 47 48 /* Maximum number of case bit tests. 49 FIXME: This should be derived from PARAM_CASE_VALUES_THRESHOLD and 50 targetm.case_values_threshold(), or be its own param. */ 51 #define MAX_CASE_BIT_TESTS 3 52 53 /* Split the basic block at the statement pointed to by GSIP, and insert 54 a branch to the target basic block of E_TRUE conditional on tree 55 expression COND. 56 57 It is assumed that there is already an edge from the to-be-split 58 basic block to E_TRUE->dest block. This edge is removed, and the 59 profile information on the edge is re-used for the new conditional 60 jump. 61 62 The CFG is updated. The dominator tree will not be valid after 63 this transformation, but the immediate dominators are updated if 64 UPDATE_DOMINATORS is true. 65 66 Returns the newly created basic block. */ 67 68 static basic_block 69 hoist_edge_and_branch_if_true (gimple_stmt_iterator *gsip, 70 tree cond, edge e_true, 71 bool update_dominators) 72 { 73 tree tmp; 74 gimple cond_stmt; 75 edge e_false; 76 basic_block new_bb, split_bb = gsi_bb (*gsip); 77 bool dominated_e_true = false; 78 79 gcc_assert (e_true->src == split_bb); 80 81 if (update_dominators 82 && get_immediate_dominator (CDI_DOMINATORS, e_true->dest) == split_bb) 83 dominated_e_true = true; 84 85 tmp = force_gimple_operand_gsi (gsip, cond, /*simple=*/true, NULL, 86 /*before=*/true, GSI_SAME_STMT); 87 cond_stmt = gimple_build_cond_from_tree (tmp, NULL_TREE, NULL_TREE); 88 gsi_insert_before (gsip, cond_stmt, GSI_SAME_STMT); 89 90 e_false = split_block (split_bb, cond_stmt); 91 new_bb = e_false->dest; 92 redirect_edge_pred (e_true, split_bb); 93 94 e_true->flags &= ~EDGE_FALLTHRU; 95 e_true->flags |= EDGE_TRUE_VALUE; 96 97 e_false->flags &= ~EDGE_FALLTHRU; 98 e_false->flags |= EDGE_FALSE_VALUE; 99 e_false->probability = REG_BR_PROB_BASE - e_true->probability; 100 e_false->count = split_bb->count - e_true->count; 101 new_bb->count = e_false->count; 102 103 if (update_dominators) 104 { 105 if (dominated_e_true) 106 set_immediate_dominator (CDI_DOMINATORS, e_true->dest, split_bb); 107 set_immediate_dominator (CDI_DOMINATORS, e_false->dest, split_bb); 108 } 109 110 return new_bb; 111 } 112 113 114 /* Determine whether "1 << x" is relatively cheap in word_mode. */ 115 /* FIXME: This is the function that we need rtl.h and optabs.h for. 116 This function (and similar RTL-related cost code in e.g. IVOPTS) should 117 be moved to some kind of interface file for GIMPLE/RTL interactions. */ 118 static bool 119 lshift_cheap_p (void) 120 { 121 /* FIXME: This should be made target dependent via this "this_target" 122 mechanism, similar to e.g. can_copy_init_p in gcse.c. */ 123 static bool init[2] = {false, false}; 124 static bool cheap[2] = {true, true}; 125 bool speed_p; 126 127 /* If the targer has no lshift in word_mode, the operation will most 128 probably not be cheap. ??? Does GCC even work for such targets? */ 129 if (optab_handler (ashl_optab, word_mode) == CODE_FOR_nothing) 130 return false; 131 132 speed_p = optimize_insn_for_speed_p (); 133 134 if (!init[speed_p]) 135 { 136 rtx reg = gen_raw_REG (word_mode, 10000); 137 int cost = set_src_cost (gen_rtx_ASHIFT (word_mode, const1_rtx, reg), 138 speed_p); 139 cheap[speed_p] = cost < COSTS_N_INSNS (MAX_CASE_BIT_TESTS); 140 init[speed_p] = true; 141 } 142 143 return cheap[speed_p]; 144 } 145 146 /* Return true if a switch should be expanded as a bit test. 147 RANGE is the difference between highest and lowest case. 148 UNIQ is number of unique case node targets, not counting the default case. 149 COUNT is the number of comparisons needed, not counting the default case. */ 150 151 static bool 152 expand_switch_using_bit_tests_p (tree range, 153 unsigned int uniq, 154 unsigned int count) 155 { 156 return (((uniq == 1 && count >= 3) 157 || (uniq == 2 && count >= 5) 158 || (uniq == 3 && count >= 6)) 159 && lshift_cheap_p () 160 && compare_tree_int (range, GET_MODE_BITSIZE (word_mode)) < 0 161 && compare_tree_int (range, 0) > 0); 162 } 163 164 /* Implement switch statements with bit tests 165 166 A GIMPLE switch statement can be expanded to a short sequence of bit-wise 167 comparisons. "switch(x)" is converted into "if ((1 << (x-MINVAL)) & CST)" 168 where CST and MINVAL are integer constants. This is better than a series 169 of compare-and-banch insns in some cases, e.g. we can implement: 170 171 if ((x==4) || (x==6) || (x==9) || (x==11)) 172 173 as a single bit test: 174 175 if ((1<<x) & ((1<<4)|(1<<6)|(1<<9)|(1<<11))) 176 177 This transformation is only applied if the number of case targets is small, 178 if CST constains at least 3 bits, and "1 << x" is cheap. The bit tests are 179 performed in "word_mode". 180 181 The following example shows the code the transformation generates: 182 183 int bar(int x) 184 { 185 switch (x) 186 { 187 case '0': case '1': case '2': case '3': case '4': 188 case '5': case '6': case '7': case '8': case '9': 189 case 'A': case 'B': case 'C': case 'D': case 'E': 190 case 'F': 191 return 1; 192 } 193 return 0; 194 } 195 196 ==> 197 198 bar (int x) 199 { 200 tmp1 = x - 48; 201 if (tmp1 > (70 - 48)) goto L2; 202 tmp2 = 1 << tmp1; 203 tmp3 = 0b11111100000001111111111; 204 if ((tmp2 & tmp3) != 0) goto L1 ; else goto L2; 205 L1: 206 return 1; 207 L2: 208 return 0; 209 } 210 211 TODO: There are still some improvements to this transformation that could 212 be implemented: 213 214 * A narrower mode than word_mode could be used if that is cheaper, e.g. 215 for x86_64 where a narrower-mode shift may result in smaller code. 216 217 * The compounded constant could be shifted rather than the one. The 218 test would be either on the sign bit or on the least significant bit, 219 depending on the direction of the shift. On some machines, the test 220 for the branch would be free if the bit to test is already set by the 221 shift operation. 222 223 This transformation was contributed by Roger Sayle, see this e-mail: 224 http://gcc.gnu.org/ml/gcc-patches/2003-01/msg01950.html 225 */ 226 227 /* A case_bit_test represents a set of case nodes that may be 228 selected from using a bit-wise comparison. HI and LO hold 229 the integer to be tested against, TARGET_EDGE contains the 230 edge to the basic block to jump to upon success and BITS 231 counts the number of case nodes handled by this test, 232 typically the number of bits set in HI:LO. The LABEL field 233 is used to quickly identify all cases in this set without 234 looking at label_to_block for every case label. */ 235 236 struct case_bit_test 237 { 238 HOST_WIDE_INT hi; 239 HOST_WIDE_INT lo; 240 edge target_edge; 241 tree label; 242 int bits; 243 }; 244 245 /* Comparison function for qsort to order bit tests by decreasing 246 probability of execution. Our best guess comes from a measured 247 profile. If the profile counts are equal, break even on the 248 number of case nodes, i.e. the node with the most cases gets 249 tested first. 250 251 TODO: Actually this currently runs before a profile is available. 252 Therefore the case-as-bit-tests transformation should be done 253 later in the pass pipeline, or something along the lines of 254 "Efficient and effective branch reordering using profile data" 255 (Yang et. al., 2002) should be implemented (although, how good 256 is a paper is called "Efficient and effective ..." when the 257 latter is implied by the former, but oh well...). */ 258 259 static int 260 case_bit_test_cmp (const void *p1, const void *p2) 261 { 262 const struct case_bit_test *const d1 = (const struct case_bit_test *) p1; 263 const struct case_bit_test *const d2 = (const struct case_bit_test *) p2; 264 265 if (d2->target_edge->count != d1->target_edge->count) 266 return d2->target_edge->count - d1->target_edge->count; 267 if (d2->bits != d1->bits) 268 return d2->bits - d1->bits; 269 270 /* Stabilize the sort. */ 271 return LABEL_DECL_UID (d2->label) - LABEL_DECL_UID (d1->label); 272 } 273 274 /* Expand a switch statement by a short sequence of bit-wise 275 comparisons. "switch(x)" is effectively converted into 276 "if ((1 << (x-MINVAL)) & CST)" where CST and MINVAL are 277 integer constants. 278 279 INDEX_EXPR is the value being switched on. 280 281 MINVAL is the lowest case value of in the case nodes, 282 and RANGE is highest value minus MINVAL. MINVAL and RANGE 283 are not guaranteed to be of the same type as INDEX_EXPR 284 (the gimplifier doesn't change the type of case label values, 285 and MINVAL and RANGE are derived from those values). 286 287 There *MUST* be MAX_CASE_BIT_TESTS or less unique case 288 node targets. */ 289 290 static void 291 emit_case_bit_tests (gimple swtch, tree index_expr, 292 tree minval, tree range) 293 { 294 struct case_bit_test test[MAX_CASE_BIT_TESTS]; 295 unsigned int i, j, k; 296 unsigned int count; 297 298 basic_block switch_bb = gimple_bb (swtch); 299 basic_block default_bb, new_default_bb, new_bb; 300 edge default_edge; 301 bool update_dom = dom_info_available_p (CDI_DOMINATORS); 302 303 vec<basic_block> bbs_to_fix_dom = vNULL; 304 305 tree index_type = TREE_TYPE (index_expr); 306 tree unsigned_index_type = unsigned_type_for (index_type); 307 unsigned int branch_num = gimple_switch_num_labels (swtch); 308 309 gimple_stmt_iterator gsi; 310 gimple shift_stmt; 311 312 tree idx, tmp, csui; 313 tree word_type_node = lang_hooks.types.type_for_mode (word_mode, 1); 314 tree word_mode_zero = fold_convert (word_type_node, integer_zero_node); 315 tree word_mode_one = fold_convert (word_type_node, integer_one_node); 316 317 memset (&test, 0, sizeof (test)); 318 319 /* Get the edge for the default case. */ 320 tmp = gimple_switch_default_label (swtch); 321 default_bb = label_to_block (CASE_LABEL (tmp)); 322 default_edge = find_edge (switch_bb, default_bb); 323 324 /* Go through all case labels, and collect the case labels, profile 325 counts, and other information we need to build the branch tests. */ 326 count = 0; 327 for (i = 1; i < branch_num; i++) 328 { 329 unsigned int lo, hi; 330 tree cs = gimple_switch_label (swtch, i); 331 tree label = CASE_LABEL (cs); 332 edge e = find_edge (switch_bb, label_to_block (label)); 333 for (k = 0; k < count; k++) 334 if (e == test[k].target_edge) 335 break; 336 337 if (k == count) 338 { 339 gcc_checking_assert (count < MAX_CASE_BIT_TESTS); 340 test[k].hi = 0; 341 test[k].lo = 0; 342 test[k].target_edge = e; 343 test[k].label = label; 344 test[k].bits = 1; 345 count++; 346 } 347 else 348 test[k].bits++; 349 350 lo = tree_low_cst (int_const_binop (MINUS_EXPR, 351 CASE_LOW (cs), minval), 352 1); 353 if (CASE_HIGH (cs) == NULL_TREE) 354 hi = lo; 355 else 356 hi = tree_low_cst (int_const_binop (MINUS_EXPR, 357 CASE_HIGH (cs), minval), 358 1); 359 360 for (j = lo; j <= hi; j++) 361 if (j >= HOST_BITS_PER_WIDE_INT) 362 test[k].hi |= (HOST_WIDE_INT) 1 << (j - HOST_BITS_PER_INT); 363 else 364 test[k].lo |= (HOST_WIDE_INT) 1 << j; 365 } 366 367 qsort (test, count, sizeof(*test), case_bit_test_cmp); 368 369 /* We generate two jumps to the default case label. 370 Split the default edge, so that we don't have to do any PHI node 371 updating. */ 372 new_default_bb = split_edge (default_edge); 373 374 if (update_dom) 375 { 376 bbs_to_fix_dom.create (10); 377 bbs_to_fix_dom.quick_push (switch_bb); 378 bbs_to_fix_dom.quick_push (default_bb); 379 bbs_to_fix_dom.quick_push (new_default_bb); 380 } 381 382 /* Now build the test-and-branch code. */ 383 384 gsi = gsi_last_bb (switch_bb); 385 386 /* idx = (unsigned)x - minval. */ 387 idx = fold_convert (unsigned_index_type, index_expr); 388 idx = fold_build2 (MINUS_EXPR, unsigned_index_type, idx, 389 fold_convert (unsigned_index_type, minval)); 390 idx = force_gimple_operand_gsi (&gsi, idx, 391 /*simple=*/true, NULL_TREE, 392 /*before=*/true, GSI_SAME_STMT); 393 394 /* if (idx > range) goto default */ 395 range = force_gimple_operand_gsi (&gsi, 396 fold_convert (unsigned_index_type, range), 397 /*simple=*/true, NULL_TREE, 398 /*before=*/true, GSI_SAME_STMT); 399 tmp = fold_build2 (GT_EXPR, boolean_type_node, idx, range); 400 new_bb = hoist_edge_and_branch_if_true (&gsi, tmp, default_edge, update_dom); 401 if (update_dom) 402 bbs_to_fix_dom.quick_push (new_bb); 403 gcc_assert (gimple_bb (swtch) == new_bb); 404 gsi = gsi_last_bb (new_bb); 405 406 /* Any blocks dominated by the GIMPLE_SWITCH, but that are not successors 407 of NEW_BB, are still immediately dominated by SWITCH_BB. Make it so. */ 408 if (update_dom) 409 { 410 vec<basic_block> dom_bbs; 411 basic_block dom_son; 412 413 dom_bbs = get_dominated_by (CDI_DOMINATORS, new_bb); 414 FOR_EACH_VEC_ELT (dom_bbs, i, dom_son) 415 { 416 edge e = find_edge (new_bb, dom_son); 417 if (e && single_pred_p (e->dest)) 418 continue; 419 set_immediate_dominator (CDI_DOMINATORS, dom_son, switch_bb); 420 bbs_to_fix_dom.safe_push (dom_son); 421 } 422 dom_bbs.release (); 423 } 424 425 /* csui = (1 << (word_mode) idx) */ 426 csui = make_ssa_name (word_type_node, NULL); 427 tmp = fold_build2 (LSHIFT_EXPR, word_type_node, word_mode_one, 428 fold_convert (word_type_node, idx)); 429 tmp = force_gimple_operand_gsi (&gsi, tmp, 430 /*simple=*/false, NULL_TREE, 431 /*before=*/true, GSI_SAME_STMT); 432 shift_stmt = gimple_build_assign (csui, tmp); 433 gsi_insert_before (&gsi, shift_stmt, GSI_SAME_STMT); 434 update_stmt (shift_stmt); 435 436 /* for each unique set of cases: 437 if (const & csui) goto target */ 438 for (k = 0; k < count; k++) 439 { 440 tmp = build_int_cst_wide (word_type_node, test[k].lo, test[k].hi); 441 tmp = fold_build2 (BIT_AND_EXPR, word_type_node, csui, tmp); 442 tmp = force_gimple_operand_gsi (&gsi, tmp, 443 /*simple=*/true, NULL_TREE, 444 /*before=*/true, GSI_SAME_STMT); 445 tmp = fold_build2 (NE_EXPR, boolean_type_node, tmp, word_mode_zero); 446 new_bb = hoist_edge_and_branch_if_true (&gsi, tmp, test[k].target_edge, 447 update_dom); 448 if (update_dom) 449 bbs_to_fix_dom.safe_push (new_bb); 450 gcc_assert (gimple_bb (swtch) == new_bb); 451 gsi = gsi_last_bb (new_bb); 452 } 453 454 /* We should have removed all edges now. */ 455 gcc_assert (EDGE_COUNT (gsi_bb (gsi)->succs) == 0); 456 457 /* If nothing matched, go to the default label. */ 458 make_edge (gsi_bb (gsi), new_default_bb, EDGE_FALLTHRU); 459 460 /* The GIMPLE_SWITCH is now redundant. */ 461 gsi_remove (&gsi, true); 462 463 if (update_dom) 464 { 465 /* Fix up the dominator tree. */ 466 iterate_fix_dominators (CDI_DOMINATORS, bbs_to_fix_dom, true); 467 bbs_to_fix_dom.release (); 468 } 469 } 470 471 /* 472 Switch initialization conversion 473 474 The following pass changes simple initializations of scalars in a switch 475 statement into initializations from a static array. Obviously, the values 476 must be constant and known at compile time and a default branch must be 477 provided. For example, the following code: 478 479 int a,b; 480 481 switch (argc) 482 { 483 case 1: 484 case 2: 485 a_1 = 8; 486 b_1 = 6; 487 break; 488 case 3: 489 a_2 = 9; 490 b_2 = 5; 491 break; 492 case 12: 493 a_3 = 10; 494 b_3 = 4; 495 break; 496 default: 497 a_4 = 16; 498 b_4 = 1; 499 break; 500 } 501 a_5 = PHI <a_1, a_2, a_3, a_4> 502 b_5 = PHI <b_1, b_2, b_3, b_4> 503 504 505 is changed into: 506 507 static const int = CSWTCH01[] = {6, 6, 5, 1, 1, 1, 1, 1, 1, 1, 1, 4}; 508 static const int = CSWTCH02[] = {8, 8, 9, 16, 16, 16, 16, 16, 16, 16, 509 16, 16, 10}; 510 511 if (((unsigned) argc) - 1 < 11) 512 { 513 a_6 = CSWTCH02[argc - 1]; 514 b_6 = CSWTCH01[argc - 1]; 515 } 516 else 517 { 518 a_7 = 16; 519 b_7 = 1; 520 } 521 a_5 = PHI <a_6, a_7> 522 b_b = PHI <b_6, b_7> 523 524 There are further constraints. Specifically, the range of values across all 525 case labels must not be bigger than SWITCH_CONVERSION_BRANCH_RATIO (default 526 eight) times the number of the actual switch branches. 527 528 This transformation was contributed by Martin Jambor, see this e-mail: 529 http://gcc.gnu.org/ml/gcc-patches/2008-07/msg00011.html */ 530 531 /* The main structure of the pass. */ 532 struct switch_conv_info 533 { 534 /* The expression used to decide the switch branch. */ 535 tree index_expr; 536 537 /* The following integer constants store the minimum and maximum value 538 covered by the case labels. */ 539 tree range_min; 540 tree range_max; 541 542 /* The difference between the above two numbers. Stored here because it 543 is used in all the conversion heuristics, as well as for some of the 544 transformation, and it is expensive to re-compute it all the time. */ 545 tree range_size; 546 547 /* Basic block that contains the actual GIMPLE_SWITCH. */ 548 basic_block switch_bb; 549 550 /* Basic block that is the target of the default case. */ 551 basic_block default_bb; 552 553 /* The single successor block of all branches out of the GIMPLE_SWITCH, 554 if such a block exists. Otherwise NULL. */ 555 basic_block final_bb; 556 557 /* The probability of the default edge in the replaced switch. */ 558 int default_prob; 559 560 /* The count of the default edge in the replaced switch. */ 561 gcov_type default_count; 562 563 /* Combined count of all other (non-default) edges in the replaced switch. */ 564 gcov_type other_count; 565 566 /* Number of phi nodes in the final bb (that we'll be replacing). */ 567 int phi_count; 568 569 /* Array of default values, in the same order as phi nodes. */ 570 tree *default_values; 571 572 /* Constructors of new static arrays. */ 573 vec<constructor_elt, va_gc> **constructors; 574 575 /* Array of ssa names that are initialized with a value from a new static 576 array. */ 577 tree *target_inbound_names; 578 579 /* Array of ssa names that are initialized with the default value if the 580 switch expression is out of range. */ 581 tree *target_outbound_names; 582 583 /* The first load statement that loads a temporary from a new static array. 584 */ 585 gimple arr_ref_first; 586 587 /* The last load statement that loads a temporary from a new static array. */ 588 gimple arr_ref_last; 589 590 /* String reason why the case wasn't a good candidate that is written to the 591 dump file, if there is one. */ 592 const char *reason; 593 594 /* Parameters for expand_switch_using_bit_tests. Should be computed 595 the same way as in expand_case. */ 596 unsigned int uniq; 597 unsigned int count; 598 }; 599 600 /* Collect information about GIMPLE_SWITCH statement SWTCH into INFO. */ 601 602 static void 603 collect_switch_conv_info (gimple swtch, struct switch_conv_info *info) 604 { 605 unsigned int branch_num = gimple_switch_num_labels (swtch); 606 tree min_case, max_case; 607 unsigned int count, i; 608 edge e, e_default; 609 edge_iterator ei; 610 611 memset (info, 0, sizeof (*info)); 612 613 /* The gimplifier has already sorted the cases by CASE_LOW and ensured there 614 is a default label which is the first in the vector. 615 Collect the bits we can deduce from the CFG. */ 616 info->index_expr = gimple_switch_index (swtch); 617 info->switch_bb = gimple_bb (swtch); 618 info->default_bb = 619 label_to_block (CASE_LABEL (gimple_switch_default_label (swtch))); 620 e_default = find_edge (info->switch_bb, info->default_bb); 621 info->default_prob = e_default->probability; 622 info->default_count = e_default->count; 623 FOR_EACH_EDGE (e, ei, info->switch_bb->succs) 624 if (e != e_default) 625 info->other_count += e->count; 626 627 /* See if there is one common successor block for all branch 628 targets. If it exists, record it in FINAL_BB. */ 629 FOR_EACH_EDGE (e, ei, info->switch_bb->succs) 630 { 631 if (! single_pred_p (e->dest)) 632 { 633 info->final_bb = e->dest; 634 break; 635 } 636 } 637 if (info->final_bb) 638 FOR_EACH_EDGE (e, ei, info->switch_bb->succs) 639 { 640 if (e->dest == info->final_bb) 641 continue; 642 643 if (single_pred_p (e->dest) 644 && single_succ_p (e->dest) 645 && single_succ (e->dest) == info->final_bb) 646 continue; 647 648 info->final_bb = NULL; 649 break; 650 } 651 652 /* Get upper and lower bounds of case values, and the covered range. */ 653 min_case = gimple_switch_label (swtch, 1); 654 max_case = gimple_switch_label (swtch, branch_num - 1); 655 656 info->range_min = CASE_LOW (min_case); 657 if (CASE_HIGH (max_case) != NULL_TREE) 658 info->range_max = CASE_HIGH (max_case); 659 else 660 info->range_max = CASE_LOW (max_case); 661 662 info->range_size = 663 int_const_binop (MINUS_EXPR, info->range_max, info->range_min); 664 665 /* Get a count of the number of case labels. Single-valued case labels 666 simply count as one, but a case range counts double, since it may 667 require two compares if it gets lowered as a branching tree. */ 668 count = 0; 669 for (i = 1; i < branch_num; i++) 670 { 671 tree elt = gimple_switch_label (swtch, i); 672 count++; 673 if (CASE_HIGH (elt) 674 && ! tree_int_cst_equal (CASE_LOW (elt), CASE_HIGH (elt))) 675 count++; 676 } 677 info->count = count; 678 679 /* Get the number of unique non-default targets out of the GIMPLE_SWITCH 680 block. Assume a CFG cleanup would have already removed degenerate 681 switch statements, this allows us to just use EDGE_COUNT. */ 682 info->uniq = EDGE_COUNT (gimple_bb (swtch)->succs) - 1; 683 } 684 685 /* Checks whether the range given by individual case statements of the SWTCH 686 switch statement isn't too big and whether the number of branches actually 687 satisfies the size of the new array. */ 688 689 static bool 690 check_range (struct switch_conv_info *info) 691 { 692 gcc_assert (info->range_size); 693 if (!host_integerp (info->range_size, 1)) 694 { 695 info->reason = "index range way too large or otherwise unusable"; 696 return false; 697 } 698 699 if ((unsigned HOST_WIDE_INT) tree_low_cst (info->range_size, 1) 700 > ((unsigned) info->count * SWITCH_CONVERSION_BRANCH_RATIO)) 701 { 702 info->reason = "the maximum range-branch ratio exceeded"; 703 return false; 704 } 705 706 return true; 707 } 708 709 /* Checks whether all but the FINAL_BB basic blocks are empty. */ 710 711 static bool 712 check_all_empty_except_final (struct switch_conv_info *info) 713 { 714 edge e; 715 edge_iterator ei; 716 717 FOR_EACH_EDGE (e, ei, info->switch_bb->succs) 718 { 719 if (e->dest == info->final_bb) 720 continue; 721 722 if (!empty_block_p (e->dest)) 723 { 724 info->reason = "bad case - a non-final BB not empty"; 725 return false; 726 } 727 } 728 729 return true; 730 } 731 732 /* This function checks whether all required values in phi nodes in final_bb 733 are constants. Required values are those that correspond to a basic block 734 which is a part of the examined switch statement. It returns true if the 735 phi nodes are OK, otherwise false. */ 736 737 static bool 738 check_final_bb (struct switch_conv_info *info) 739 { 740 gimple_stmt_iterator gsi; 741 742 info->phi_count = 0; 743 for (gsi = gsi_start_phis (info->final_bb); !gsi_end_p (gsi); gsi_next (&gsi)) 744 { 745 gimple phi = gsi_stmt (gsi); 746 unsigned int i; 747 748 info->phi_count++; 749 750 for (i = 0; i < gimple_phi_num_args (phi); i++) 751 { 752 basic_block bb = gimple_phi_arg_edge (phi, i)->src; 753 754 if (bb == info->switch_bb 755 || (single_pred_p (bb) && single_pred (bb) == info->switch_bb)) 756 { 757 tree reloc, val; 758 759 val = gimple_phi_arg_def (phi, i); 760 if (!is_gimple_ip_invariant (val)) 761 { 762 info->reason = "non-invariant value from a case"; 763 return false; /* Non-invariant argument. */ 764 } 765 reloc = initializer_constant_valid_p (val, TREE_TYPE (val)); 766 if ((flag_pic && reloc != null_pointer_node) 767 || (!flag_pic && reloc == NULL_TREE)) 768 { 769 if (reloc) 770 info->reason 771 = "value from a case would need runtime relocations"; 772 else 773 info->reason 774 = "value from a case is not a valid initializer"; 775 return false; 776 } 777 } 778 } 779 } 780 781 return true; 782 } 783 784 /* The following function allocates default_values, target_{in,out}_names and 785 constructors arrays. The last one is also populated with pointers to 786 vectors that will become constructors of new arrays. */ 787 788 static void 789 create_temp_arrays (struct switch_conv_info *info) 790 { 791 int i; 792 793 info->default_values = XCNEWVEC (tree, info->phi_count * 3); 794 /* ??? Macros do not support multi argument templates in their 795 argument list. We create a typedef to work around that problem. */ 796 typedef vec<constructor_elt, va_gc> *vec_constructor_elt_gc; 797 info->constructors = XCNEWVEC (vec_constructor_elt_gc, info->phi_count); 798 info->target_inbound_names = info->default_values + info->phi_count; 799 info->target_outbound_names = info->target_inbound_names + info->phi_count; 800 for (i = 0; i < info->phi_count; i++) 801 vec_alloc (info->constructors[i], tree_low_cst (info->range_size, 1) + 1); 802 } 803 804 /* Free the arrays created by create_temp_arrays(). The vectors that are 805 created by that function are not freed here, however, because they have 806 already become constructors and must be preserved. */ 807 808 static void 809 free_temp_arrays (struct switch_conv_info *info) 810 { 811 XDELETEVEC (info->constructors); 812 XDELETEVEC (info->default_values); 813 } 814 815 /* Populate the array of default values in the order of phi nodes. 816 DEFAULT_CASE is the CASE_LABEL_EXPR for the default switch branch. */ 817 818 static void 819 gather_default_values (tree default_case, struct switch_conv_info *info) 820 { 821 gimple_stmt_iterator gsi; 822 basic_block bb = label_to_block (CASE_LABEL (default_case)); 823 edge e; 824 int i = 0; 825 826 gcc_assert (CASE_LOW (default_case) == NULL_TREE); 827 828 if (bb == info->final_bb) 829 e = find_edge (info->switch_bb, bb); 830 else 831 e = single_succ_edge (bb); 832 833 for (gsi = gsi_start_phis (info->final_bb); !gsi_end_p (gsi); gsi_next (&gsi)) 834 { 835 gimple phi = gsi_stmt (gsi); 836 tree val = PHI_ARG_DEF_FROM_EDGE (phi, e); 837 gcc_assert (val); 838 info->default_values[i++] = val; 839 } 840 } 841 842 /* The following function populates the vectors in the constructors array with 843 future contents of the static arrays. The vectors are populated in the 844 order of phi nodes. SWTCH is the switch statement being converted. */ 845 846 static void 847 build_constructors (gimple swtch, struct switch_conv_info *info) 848 { 849 unsigned i, branch_num = gimple_switch_num_labels (swtch); 850 tree pos = info->range_min; 851 852 for (i = 1; i < branch_num; i++) 853 { 854 tree cs = gimple_switch_label (swtch, i); 855 basic_block bb = label_to_block (CASE_LABEL (cs)); 856 edge e; 857 tree high; 858 gimple_stmt_iterator gsi; 859 int j; 860 861 if (bb == info->final_bb) 862 e = find_edge (info->switch_bb, bb); 863 else 864 e = single_succ_edge (bb); 865 gcc_assert (e); 866 867 while (tree_int_cst_lt (pos, CASE_LOW (cs))) 868 { 869 int k; 870 for (k = 0; k < info->phi_count; k++) 871 { 872 constructor_elt elt; 873 874 elt.index = int_const_binop (MINUS_EXPR, pos, info->range_min); 875 elt.value 876 = unshare_expr_without_location (info->default_values[k]); 877 info->constructors[k]->quick_push (elt); 878 } 879 880 pos = int_const_binop (PLUS_EXPR, pos, integer_one_node); 881 } 882 gcc_assert (tree_int_cst_equal (pos, CASE_LOW (cs))); 883 884 j = 0; 885 if (CASE_HIGH (cs)) 886 high = CASE_HIGH (cs); 887 else 888 high = CASE_LOW (cs); 889 for (gsi = gsi_start_phis (info->final_bb); 890 !gsi_end_p (gsi); gsi_next (&gsi)) 891 { 892 gimple phi = gsi_stmt (gsi); 893 tree val = PHI_ARG_DEF_FROM_EDGE (phi, e); 894 tree low = CASE_LOW (cs); 895 pos = CASE_LOW (cs); 896 897 do 898 { 899 constructor_elt elt; 900 901 elt.index = int_const_binop (MINUS_EXPR, pos, info->range_min); 902 elt.value = unshare_expr_without_location (val); 903 info->constructors[j]->quick_push (elt); 904 905 pos = int_const_binop (PLUS_EXPR, pos, integer_one_node); 906 } while (!tree_int_cst_lt (high, pos) 907 && tree_int_cst_lt (low, pos)); 908 j++; 909 } 910 } 911 } 912 913 /* If all values in the constructor vector are the same, return the value. 914 Otherwise return NULL_TREE. Not supposed to be called for empty 915 vectors. */ 916 917 static tree 918 constructor_contains_same_values_p (vec<constructor_elt, va_gc> *vec) 919 { 920 unsigned int i; 921 tree prev = NULL_TREE; 922 constructor_elt *elt; 923 924 FOR_EACH_VEC_SAFE_ELT (vec, i, elt) 925 { 926 if (!prev) 927 prev = elt->value; 928 else if (!operand_equal_p (elt->value, prev, OEP_ONLY_CONST)) 929 return NULL_TREE; 930 } 931 return prev; 932 } 933 934 /* Return type which should be used for array elements, either TYPE, 935 or for integral type some smaller integral type that can still hold 936 all the constants. */ 937 938 static tree 939 array_value_type (gimple swtch, tree type, int num, 940 struct switch_conv_info *info) 941 { 942 unsigned int i, len = vec_safe_length (info->constructors[num]); 943 constructor_elt *elt; 944 enum machine_mode mode; 945 int sign = 0; 946 tree smaller_type; 947 948 if (!INTEGRAL_TYPE_P (type)) 949 return type; 950 951 mode = GET_CLASS_NARROWEST_MODE (GET_MODE_CLASS (TYPE_MODE (type))); 952 if (GET_MODE_SIZE (TYPE_MODE (type)) <= GET_MODE_SIZE (mode)) 953 return type; 954 955 if (len < (optimize_bb_for_size_p (gimple_bb (swtch)) ? 2 : 32)) 956 return type; 957 958 FOR_EACH_VEC_SAFE_ELT (info->constructors[num], i, elt) 959 { 960 double_int cst; 961 962 if (TREE_CODE (elt->value) != INTEGER_CST) 963 return type; 964 965 cst = TREE_INT_CST (elt->value); 966 while (1) 967 { 968 unsigned int prec = GET_MODE_BITSIZE (mode); 969 if (prec > HOST_BITS_PER_WIDE_INT) 970 return type; 971 972 if (sign >= 0 && cst == cst.zext (prec)) 973 { 974 if (sign == 0 && cst == cst.sext (prec)) 975 break; 976 sign = 1; 977 break; 978 } 979 if (sign <= 0 && cst == cst.sext (prec)) 980 { 981 sign = -1; 982 break; 983 } 984 985 if (sign == 1) 986 sign = 0; 987 988 mode = GET_MODE_WIDER_MODE (mode); 989 if (mode == VOIDmode 990 || GET_MODE_SIZE (mode) >= GET_MODE_SIZE (TYPE_MODE (type))) 991 return type; 992 } 993 } 994 995 if (sign == 0) 996 sign = TYPE_UNSIGNED (type) ? 1 : -1; 997 smaller_type = lang_hooks.types.type_for_mode (mode, sign >= 0); 998 if (GET_MODE_SIZE (TYPE_MODE (type)) 999 <= GET_MODE_SIZE (TYPE_MODE (smaller_type))) 1000 return type; 1001 1002 return smaller_type; 1003 } 1004 1005 /* Create an appropriate array type and declaration and assemble a static array 1006 variable. Also create a load statement that initializes the variable in 1007 question with a value from the static array. SWTCH is the switch statement 1008 being converted, NUM is the index to arrays of constructors, default values 1009 and target SSA names for this particular array. ARR_INDEX_TYPE is the type 1010 of the index of the new array, PHI is the phi node of the final BB that 1011 corresponds to the value that will be loaded from the created array. TIDX 1012 is an ssa name of a temporary variable holding the index for loads from the 1013 new array. */ 1014 1015 static void 1016 build_one_array (gimple swtch, int num, tree arr_index_type, gimple phi, 1017 tree tidx, struct switch_conv_info *info) 1018 { 1019 tree name, cst; 1020 gimple load; 1021 gimple_stmt_iterator gsi = gsi_for_stmt (swtch); 1022 location_t loc = gimple_location (swtch); 1023 1024 gcc_assert (info->default_values[num]); 1025 1026 name = copy_ssa_name (PHI_RESULT (phi), NULL); 1027 info->target_inbound_names[num] = name; 1028 1029 cst = constructor_contains_same_values_p (info->constructors[num]); 1030 if (cst) 1031 load = gimple_build_assign (name, cst); 1032 else 1033 { 1034 tree array_type, ctor, decl, value_type, fetch, default_type; 1035 1036 default_type = TREE_TYPE (info->default_values[num]); 1037 value_type = array_value_type (swtch, default_type, num, info); 1038 array_type = build_array_type (value_type, arr_index_type); 1039 if (default_type != value_type) 1040 { 1041 unsigned int i; 1042 constructor_elt *elt; 1043 1044 FOR_EACH_VEC_SAFE_ELT (info->constructors[num], i, elt) 1045 elt->value = fold_convert (value_type, elt->value); 1046 } 1047 ctor = build_constructor (array_type, info->constructors[num]); 1048 TREE_CONSTANT (ctor) = true; 1049 TREE_STATIC (ctor) = true; 1050 1051 decl = build_decl (loc, VAR_DECL, NULL_TREE, array_type); 1052 TREE_STATIC (decl) = 1; 1053 DECL_INITIAL (decl) = ctor; 1054 1055 DECL_NAME (decl) = create_tmp_var_name ("CSWTCH"); 1056 DECL_ARTIFICIAL (decl) = 1; 1057 TREE_CONSTANT (decl) = 1; 1058 TREE_READONLY (decl) = 1; 1059 varpool_finalize_decl (decl); 1060 1061 fetch = build4 (ARRAY_REF, value_type, decl, tidx, NULL_TREE, 1062 NULL_TREE); 1063 if (default_type != value_type) 1064 { 1065 fetch = fold_convert (default_type, fetch); 1066 fetch = force_gimple_operand_gsi (&gsi, fetch, true, NULL_TREE, 1067 true, GSI_SAME_STMT); 1068 } 1069 load = gimple_build_assign (name, fetch); 1070 } 1071 1072 gsi_insert_before (&gsi, load, GSI_SAME_STMT); 1073 update_stmt (load); 1074 info->arr_ref_last = load; 1075 } 1076 1077 /* Builds and initializes static arrays initialized with values gathered from 1078 the SWTCH switch statement. Also creates statements that load values from 1079 them. */ 1080 1081 static void 1082 build_arrays (gimple swtch, struct switch_conv_info *info) 1083 { 1084 tree arr_index_type; 1085 tree tidx, sub, utype; 1086 gimple stmt; 1087 gimple_stmt_iterator gsi; 1088 int i; 1089 location_t loc = gimple_location (swtch); 1090 1091 gsi = gsi_for_stmt (swtch); 1092 1093 /* Make sure we do not generate arithmetics in a subrange. */ 1094 utype = TREE_TYPE (info->index_expr); 1095 if (TREE_TYPE (utype)) 1096 utype = lang_hooks.types.type_for_mode (TYPE_MODE (TREE_TYPE (utype)), 1); 1097 else 1098 utype = lang_hooks.types.type_for_mode (TYPE_MODE (utype), 1); 1099 1100 arr_index_type = build_index_type (info->range_size); 1101 tidx = make_ssa_name (utype, NULL); 1102 sub = fold_build2_loc (loc, MINUS_EXPR, utype, 1103 fold_convert_loc (loc, utype, info->index_expr), 1104 fold_convert_loc (loc, utype, info->range_min)); 1105 sub = force_gimple_operand_gsi (&gsi, sub, 1106 false, NULL, true, GSI_SAME_STMT); 1107 stmt = gimple_build_assign (tidx, sub); 1108 1109 gsi_insert_before (&gsi, stmt, GSI_SAME_STMT); 1110 update_stmt (stmt); 1111 info->arr_ref_first = stmt; 1112 1113 for (gsi = gsi_start_phis (info->final_bb), i = 0; 1114 !gsi_end_p (gsi); gsi_next (&gsi), i++) 1115 build_one_array (swtch, i, arr_index_type, gsi_stmt (gsi), tidx, info); 1116 } 1117 1118 /* Generates and appropriately inserts loads of default values at the position 1119 given by BSI. Returns the last inserted statement. */ 1120 1121 static gimple 1122 gen_def_assigns (gimple_stmt_iterator *gsi, struct switch_conv_info *info) 1123 { 1124 int i; 1125 gimple assign = NULL; 1126 1127 for (i = 0; i < info->phi_count; i++) 1128 { 1129 tree name = copy_ssa_name (info->target_inbound_names[i], NULL); 1130 info->target_outbound_names[i] = name; 1131 assign = gimple_build_assign (name, info->default_values[i]); 1132 gsi_insert_before (gsi, assign, GSI_SAME_STMT); 1133 update_stmt (assign); 1134 } 1135 return assign; 1136 } 1137 1138 /* Deletes the unused bbs and edges that now contain the switch statement and 1139 its empty branch bbs. BBD is the now dead BB containing the original switch 1140 statement, FINAL is the last BB of the converted switch statement (in terms 1141 of succession). */ 1142 1143 static void 1144 prune_bbs (basic_block bbd, basic_block final) 1145 { 1146 edge_iterator ei; 1147 edge e; 1148 1149 for (ei = ei_start (bbd->succs); (e = ei_safe_edge (ei)); ) 1150 { 1151 basic_block bb; 1152 bb = e->dest; 1153 remove_edge (e); 1154 if (bb != final) 1155 delete_basic_block (bb); 1156 } 1157 delete_basic_block (bbd); 1158 } 1159 1160 /* Add values to phi nodes in final_bb for the two new edges. E1F is the edge 1161 from the basic block loading values from an array and E2F from the basic 1162 block loading default values. BBF is the last switch basic block (see the 1163 bbf description in the comment below). */ 1164 1165 static void 1166 fix_phi_nodes (edge e1f, edge e2f, basic_block bbf, 1167 struct switch_conv_info *info) 1168 { 1169 gimple_stmt_iterator gsi; 1170 int i; 1171 1172 for (gsi = gsi_start_phis (bbf), i = 0; 1173 !gsi_end_p (gsi); gsi_next (&gsi), i++) 1174 { 1175 gimple phi = gsi_stmt (gsi); 1176 add_phi_arg (phi, info->target_inbound_names[i], e1f, UNKNOWN_LOCATION); 1177 add_phi_arg (phi, info->target_outbound_names[i], e2f, UNKNOWN_LOCATION); 1178 } 1179 } 1180 1181 /* Creates a check whether the switch expression value actually falls into the 1182 range given by all the cases. If it does not, the temporaries are loaded 1183 with default values instead. SWTCH is the switch statement being converted. 1184 1185 bb0 is the bb with the switch statement, however, we'll end it with a 1186 condition instead. 1187 1188 bb1 is the bb to be used when the range check went ok. It is derived from 1189 the switch BB 1190 1191 bb2 is the bb taken when the expression evaluated outside of the range 1192 covered by the created arrays. It is populated by loads of default 1193 values. 1194 1195 bbF is a fall through for both bb1 and bb2 and contains exactly what 1196 originally followed the switch statement. 1197 1198 bbD contains the switch statement (in the end). It is unreachable but we 1199 still need to strip off its edges. 1200 */ 1201 1202 static void 1203 gen_inbound_check (gimple swtch, struct switch_conv_info *info) 1204 { 1205 tree label_decl1 = create_artificial_label (UNKNOWN_LOCATION); 1206 tree label_decl2 = create_artificial_label (UNKNOWN_LOCATION); 1207 tree label_decl3 = create_artificial_label (UNKNOWN_LOCATION); 1208 gimple label1, label2, label3; 1209 tree utype, tidx; 1210 tree bound; 1211 1212 gimple cond_stmt; 1213 1214 gimple last_assign; 1215 gimple_stmt_iterator gsi; 1216 basic_block bb0, bb1, bb2, bbf, bbd; 1217 edge e01, e02, e21, e1d, e1f, e2f; 1218 location_t loc = gimple_location (swtch); 1219 1220 gcc_assert (info->default_values); 1221 1222 bb0 = gimple_bb (swtch); 1223 1224 tidx = gimple_assign_lhs (info->arr_ref_first); 1225 utype = TREE_TYPE (tidx); 1226 1227 /* (end of) block 0 */ 1228 gsi = gsi_for_stmt (info->arr_ref_first); 1229 gsi_next (&gsi); 1230 1231 bound = fold_convert_loc (loc, utype, info->range_size); 1232 cond_stmt = gimple_build_cond (LE_EXPR, tidx, bound, NULL_TREE, NULL_TREE); 1233 gsi_insert_before (&gsi, cond_stmt, GSI_SAME_STMT); 1234 update_stmt (cond_stmt); 1235 1236 /* block 2 */ 1237 label2 = gimple_build_label (label_decl2); 1238 gsi_insert_before (&gsi, label2, GSI_SAME_STMT); 1239 last_assign = gen_def_assigns (&gsi, info); 1240 1241 /* block 1 */ 1242 label1 = gimple_build_label (label_decl1); 1243 gsi_insert_before (&gsi, label1, GSI_SAME_STMT); 1244 1245 /* block F */ 1246 gsi = gsi_start_bb (info->final_bb); 1247 label3 = gimple_build_label (label_decl3); 1248 gsi_insert_before (&gsi, label3, GSI_SAME_STMT); 1249 1250 /* cfg fix */ 1251 e02 = split_block (bb0, cond_stmt); 1252 bb2 = e02->dest; 1253 1254 e21 = split_block (bb2, last_assign); 1255 bb1 = e21->dest; 1256 remove_edge (e21); 1257 1258 e1d = split_block (bb1, info->arr_ref_last); 1259 bbd = e1d->dest; 1260 remove_edge (e1d); 1261 1262 /* flags and profiles of the edge for in-range values */ 1263 e01 = make_edge (bb0, bb1, EDGE_TRUE_VALUE); 1264 e01->probability = REG_BR_PROB_BASE - info->default_prob; 1265 e01->count = info->other_count; 1266 1267 /* flags and profiles of the edge taking care of out-of-range values */ 1268 e02->flags &= ~EDGE_FALLTHRU; 1269 e02->flags |= EDGE_FALSE_VALUE; 1270 e02->probability = info->default_prob; 1271 e02->count = info->default_count; 1272 1273 bbf = info->final_bb; 1274 1275 e1f = make_edge (bb1, bbf, EDGE_FALLTHRU); 1276 e1f->probability = REG_BR_PROB_BASE; 1277 e1f->count = info->other_count; 1278 1279 e2f = make_edge (bb2, bbf, EDGE_FALLTHRU); 1280 e2f->probability = REG_BR_PROB_BASE; 1281 e2f->count = info->default_count; 1282 1283 /* frequencies of the new BBs */ 1284 bb1->frequency = EDGE_FREQUENCY (e01); 1285 bb2->frequency = EDGE_FREQUENCY (e02); 1286 bbf->frequency = EDGE_FREQUENCY (e1f) + EDGE_FREQUENCY (e2f); 1287 1288 /* Tidy blocks that have become unreachable. */ 1289 prune_bbs (bbd, info->final_bb); 1290 1291 /* Fixup the PHI nodes in bbF. */ 1292 fix_phi_nodes (e1f, e2f, bbf, info); 1293 1294 /* Fix the dominator tree, if it is available. */ 1295 if (dom_info_available_p (CDI_DOMINATORS)) 1296 { 1297 vec<basic_block> bbs_to_fix_dom; 1298 1299 set_immediate_dominator (CDI_DOMINATORS, bb1, bb0); 1300 set_immediate_dominator (CDI_DOMINATORS, bb2, bb0); 1301 if (! get_immediate_dominator (CDI_DOMINATORS, bbf)) 1302 /* If bbD was the immediate dominator ... */ 1303 set_immediate_dominator (CDI_DOMINATORS, bbf, bb0); 1304 1305 bbs_to_fix_dom.create (4); 1306 bbs_to_fix_dom.quick_push (bb0); 1307 bbs_to_fix_dom.quick_push (bb1); 1308 bbs_to_fix_dom.quick_push (bb2); 1309 bbs_to_fix_dom.quick_push (bbf); 1310 1311 iterate_fix_dominators (CDI_DOMINATORS, bbs_to_fix_dom, true); 1312 bbs_to_fix_dom.release (); 1313 } 1314 } 1315 1316 /* The following function is invoked on every switch statement (the current one 1317 is given in SWTCH) and runs the individual phases of switch conversion on it 1318 one after another until one fails or the conversion is completed. 1319 Returns NULL on success, or a pointer to a string with the reason why the 1320 conversion failed. */ 1321 1322 static const char * 1323 process_switch (gimple swtch) 1324 { 1325 struct switch_conv_info info; 1326 1327 /* Group case labels so that we get the right results from the heuristics 1328 that decide on the code generation approach for this switch. */ 1329 group_case_labels_stmt (swtch); 1330 1331 /* If this switch is now a degenerate case with only a default label, 1332 there is nothing left for us to do. */ 1333 if (gimple_switch_num_labels (swtch) < 2) 1334 return "switch is a degenerate case"; 1335 1336 collect_switch_conv_info (swtch, &info); 1337 1338 /* No error markers should reach here (they should be filtered out 1339 during gimplification). */ 1340 gcc_checking_assert (TREE_TYPE (info.index_expr) != error_mark_node); 1341 1342 /* A switch on a constant should have been optimized in tree-cfg-cleanup. */ 1343 gcc_checking_assert (! TREE_CONSTANT (info.index_expr)); 1344 1345 if (info.uniq <= MAX_CASE_BIT_TESTS) 1346 { 1347 if (expand_switch_using_bit_tests_p (info.range_size, 1348 info.uniq, info.count)) 1349 { 1350 if (dump_file) 1351 fputs (" expanding as bit test is preferable\n", dump_file); 1352 emit_case_bit_tests (swtch, info.index_expr, 1353 info.range_min, info.range_size); 1354 return NULL; 1355 } 1356 1357 if (info.uniq <= 2) 1358 /* This will be expanded as a decision tree in stmt.c:expand_case. */ 1359 return " expanding as jumps is preferable"; 1360 } 1361 1362 /* If there is no common successor, we cannot do the transformation. */ 1363 if (! info.final_bb) 1364 return "no common successor to all case label target blocks found"; 1365 1366 /* Check the case label values are within reasonable range: */ 1367 if (!check_range (&info)) 1368 { 1369 gcc_assert (info.reason); 1370 return info.reason; 1371 } 1372 1373 /* For all the cases, see whether they are empty, the assignments they 1374 represent constant and so on... */ 1375 if (! check_all_empty_except_final (&info)) 1376 { 1377 gcc_assert (info.reason); 1378 return info.reason; 1379 } 1380 if (!check_final_bb (&info)) 1381 { 1382 gcc_assert (info.reason); 1383 return info.reason; 1384 } 1385 1386 /* At this point all checks have passed and we can proceed with the 1387 transformation. */ 1388 1389 create_temp_arrays (&info); 1390 gather_default_values (gimple_switch_default_label (swtch), &info); 1391 build_constructors (swtch, &info); 1392 1393 build_arrays (swtch, &info); /* Build the static arrays and assignments. */ 1394 gen_inbound_check (swtch, &info); /* Build the bounds check. */ 1395 1396 /* Cleanup: */ 1397 free_temp_arrays (&info); 1398 return NULL; 1399 } 1400 1401 /* The main function of the pass scans statements for switches and invokes 1402 process_switch on them. */ 1403 1404 static unsigned int 1405 do_switchconv (void) 1406 { 1407 basic_block bb; 1408 1409 FOR_EACH_BB (bb) 1410 { 1411 const char *failure_reason; 1412 gimple stmt = last_stmt (bb); 1413 if (stmt && gimple_code (stmt) == GIMPLE_SWITCH) 1414 { 1415 if (dump_file) 1416 { 1417 expanded_location loc = expand_location (gimple_location (stmt)); 1418 1419 fprintf (dump_file, "beginning to process the following " 1420 "SWITCH statement (%s:%d) : ------- \n", 1421 loc.file, loc.line); 1422 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM); 1423 putc ('\n', dump_file); 1424 } 1425 1426 failure_reason = process_switch (stmt); 1427 if (! failure_reason) 1428 { 1429 if (dump_file) 1430 { 1431 fputs ("Switch converted\n", dump_file); 1432 fputs ("--------------------------------\n", dump_file); 1433 } 1434 1435 /* Make no effort to update the post-dominator tree. It is actually not 1436 that hard for the transformations we have performed, but it is not 1437 supported by iterate_fix_dominators. */ 1438 free_dominance_info (CDI_POST_DOMINATORS); 1439 } 1440 else 1441 { 1442 if (dump_file) 1443 { 1444 fputs ("Bailing out - ", dump_file); 1445 fputs (failure_reason, dump_file); 1446 fputs ("\n--------------------------------\n", dump_file); 1447 } 1448 } 1449 } 1450 } 1451 1452 return 0; 1453 } 1454 1455 /* The pass gate. */ 1456 1457 static bool 1458 switchconv_gate (void) 1459 { 1460 return flag_tree_switch_conversion != 0; 1461 } 1462 1463 struct gimple_opt_pass pass_convert_switch = 1464 { 1465 { 1466 GIMPLE_PASS, 1467 "switchconv", /* name */ 1468 OPTGROUP_NONE, /* optinfo_flags */ 1469 switchconv_gate, /* gate */ 1470 do_switchconv, /* execute */ 1471 NULL, /* sub */ 1472 NULL, /* next */ 1473 0, /* static_pass_number */ 1474 TV_TREE_SWITCH_CONVERSION, /* tv_id */ 1475 PROP_cfg | PROP_ssa, /* properties_required */ 1476 0, /* properties_provided */ 1477 0, /* properties_destroyed */ 1478 0, /* todo_flags_start */ 1479 TODO_update_ssa 1480 | TODO_ggc_collect | TODO_verify_ssa 1481 | TODO_verify_stmts 1482 | TODO_verify_flow /* todo_flags_finish */ 1483 } 1484 }; 1485