1 /* Lower GIMPLE_SWITCH expressions to something more efficient than 2 a jump table. 3 Copyright (C) 2006-2019 Free Software Foundation, Inc. 4 5 This file is part of GCC. 6 7 GCC is free software; you can redistribute it and/or modify it 8 under the terms of the GNU General Public License as published by the 9 Free Software Foundation; either version 3, or (at your option) any 10 later version. 11 12 GCC is distributed in the hope that it will be useful, but WITHOUT 13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 15 for more details. 16 17 You should have received a copy of the GNU General Public License 18 along with GCC; see the file COPYING3. If not, write to the Free 19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 20 02110-1301, USA. */ 21 22 /* This file handles the lowering of GIMPLE_SWITCH to an indexed 23 load, or a series of bit-test-and-branch expressions. */ 24 25 #include "config.h" 26 #include "system.h" 27 #include "coretypes.h" 28 #include "backend.h" 29 #include "insn-codes.h" 30 #include "rtl.h" 31 #include "tree.h" 32 #include "gimple.h" 33 #include "cfghooks.h" 34 #include "tree-pass.h" 35 #include "ssa.h" 36 #include "optabs-tree.h" 37 #include "cgraph.h" 38 #include "gimple-pretty-print.h" 39 #include "params.h" 40 #include "fold-const.h" 41 #include "varasm.h" 42 #include "stor-layout.h" 43 #include "cfganal.h" 44 #include "gimplify.h" 45 #include "gimple-iterator.h" 46 #include "gimplify-me.h" 47 #include "gimple-fold.h" 48 #include "tree-cfg.h" 49 #include "cfgloop.h" 50 #include "alloc-pool.h" 51 #include "target.h" 52 #include "tree-into-ssa.h" 53 #include "omp-general.h" 54 55 /* ??? For lang_hooks.types.type_for_mode, but is there a word_mode 56 type in the GIMPLE type system that is language-independent? */ 57 #include "langhooks.h" 58 59 #include "tree-switch-conversion.h" 60 61 using namespace tree_switch_conversion; 62 63 /* Constructor. */ 64 65 switch_conversion::switch_conversion (): m_final_bb (NULL), m_other_count (), 66 m_constructors (NULL), m_default_values (NULL), 67 m_arr_ref_first (NULL), m_arr_ref_last (NULL), 68 m_reason (NULL), m_default_case_nonstandard (false), m_cfg_altered (false) 69 { 70 } 71 72 /* Collection information about SWTCH statement. */ 73 74 void 75 switch_conversion::collect (gswitch *swtch) 76 { 77 unsigned int branch_num = gimple_switch_num_labels (swtch); 78 tree min_case, max_case; 79 unsigned int i; 80 edge e, e_default, e_first; 81 edge_iterator ei; 82 83 m_switch = swtch; 84 85 /* The gimplifier has already sorted the cases by CASE_LOW and ensured there 86 is a default label which is the first in the vector. 87 Collect the bits we can deduce from the CFG. */ 88 m_index_expr = gimple_switch_index (swtch); 89 m_switch_bb = gimple_bb (swtch); 90 e_default = gimple_switch_default_edge (cfun, swtch); 91 m_default_bb = e_default->dest; 92 m_default_prob = e_default->probability; 93 m_default_count = e_default->count (); 94 FOR_EACH_EDGE (e, ei, m_switch_bb->succs) 95 if (e != e_default) 96 m_other_count += e->count (); 97 98 /* Get upper and lower bounds of case values, and the covered range. */ 99 min_case = gimple_switch_label (swtch, 1); 100 max_case = gimple_switch_label (swtch, branch_num - 1); 101 102 m_range_min = CASE_LOW (min_case); 103 if (CASE_HIGH (max_case) != NULL_TREE) 104 m_range_max = CASE_HIGH (max_case); 105 else 106 m_range_max = CASE_LOW (max_case); 107 108 m_contiguous_range = true; 109 tree last = CASE_HIGH (min_case) ? CASE_HIGH (min_case) : m_range_min; 110 for (i = 2; i < branch_num; i++) 111 { 112 tree elt = gimple_switch_label (swtch, i); 113 if (wi::to_wide (last) + 1 != wi::to_wide (CASE_LOW (elt))) 114 { 115 m_contiguous_range = false; 116 break; 117 } 118 last = CASE_HIGH (elt) ? CASE_HIGH (elt) : CASE_LOW (elt); 119 } 120 121 if (m_contiguous_range) 122 e_first = gimple_switch_edge (cfun, swtch, 1); 123 else 124 e_first = e_default; 125 126 /* See if there is one common successor block for all branch 127 targets. If it exists, record it in FINAL_BB. 128 Start with the destination of the first non-default case 129 if the range is contiguous and default case otherwise as 130 guess or its destination in case it is a forwarder block. */ 131 if (! single_pred_p (e_first->dest)) 132 m_final_bb = e_first->dest; 133 else if (single_succ_p (e_first->dest) 134 && ! single_pred_p (single_succ (e_first->dest))) 135 m_final_bb = single_succ (e_first->dest); 136 /* Require that all switch destinations are either that common 137 FINAL_BB or a forwarder to it, except for the default 138 case if contiguous range. */ 139 if (m_final_bb) 140 FOR_EACH_EDGE (e, ei, m_switch_bb->succs) 141 { 142 if (e->dest == m_final_bb) 143 continue; 144 145 if (single_pred_p (e->dest) 146 && single_succ_p (e->dest) 147 && single_succ (e->dest) == m_final_bb) 148 continue; 149 150 if (e == e_default && m_contiguous_range) 151 { 152 m_default_case_nonstandard = true; 153 continue; 154 } 155 156 m_final_bb = NULL; 157 break; 158 } 159 160 m_range_size 161 = int_const_binop (MINUS_EXPR, m_range_max, m_range_min); 162 163 /* Get a count of the number of case labels. Single-valued case labels 164 simply count as one, but a case range counts double, since it may 165 require two compares if it gets lowered as a branching tree. */ 166 m_count = 0; 167 for (i = 1; i < branch_num; i++) 168 { 169 tree elt = gimple_switch_label (swtch, i); 170 m_count++; 171 if (CASE_HIGH (elt) 172 && ! tree_int_cst_equal (CASE_LOW (elt), CASE_HIGH (elt))) 173 m_count++; 174 } 175 176 /* Get the number of unique non-default targets out of the GIMPLE_SWITCH 177 block. Assume a CFG cleanup would have already removed degenerate 178 switch statements, this allows us to just use EDGE_COUNT. */ 179 m_uniq = EDGE_COUNT (gimple_bb (swtch)->succs) - 1; 180 } 181 182 /* Checks whether the range given by individual case statements of the switch 183 switch statement isn't too big and whether the number of branches actually 184 satisfies the size of the new array. */ 185 186 bool 187 switch_conversion::check_range () 188 { 189 gcc_assert (m_range_size); 190 if (!tree_fits_uhwi_p (m_range_size)) 191 { 192 m_reason = "index range way too large or otherwise unusable"; 193 return false; 194 } 195 196 if (tree_to_uhwi (m_range_size) 197 > ((unsigned) m_count * SWITCH_CONVERSION_BRANCH_RATIO)) 198 { 199 m_reason = "the maximum range-branch ratio exceeded"; 200 return false; 201 } 202 203 return true; 204 } 205 206 /* Checks whether all but the final BB basic blocks are empty. */ 207 208 bool 209 switch_conversion::check_all_empty_except_final () 210 { 211 edge e, e_default = find_edge (m_switch_bb, m_default_bb); 212 edge_iterator ei; 213 214 FOR_EACH_EDGE (e, ei, m_switch_bb->succs) 215 { 216 if (e->dest == m_final_bb) 217 continue; 218 219 if (!empty_block_p (e->dest)) 220 { 221 if (m_contiguous_range && e == e_default) 222 { 223 m_default_case_nonstandard = true; 224 continue; 225 } 226 227 m_reason = "bad case - a non-final BB not empty"; 228 return false; 229 } 230 } 231 232 return true; 233 } 234 235 /* This function checks whether all required values in phi nodes in final_bb 236 are constants. Required values are those that correspond to a basic block 237 which is a part of the examined switch statement. It returns true if the 238 phi nodes are OK, otherwise false. */ 239 240 bool 241 switch_conversion::check_final_bb () 242 { 243 gphi_iterator gsi; 244 245 m_phi_count = 0; 246 for (gsi = gsi_start_phis (m_final_bb); !gsi_end_p (gsi); gsi_next (&gsi)) 247 { 248 gphi *phi = gsi.phi (); 249 unsigned int i; 250 251 if (virtual_operand_p (gimple_phi_result (phi))) 252 continue; 253 254 m_phi_count++; 255 256 for (i = 0; i < gimple_phi_num_args (phi); i++) 257 { 258 basic_block bb = gimple_phi_arg_edge (phi, i)->src; 259 260 if (bb == m_switch_bb 261 || (single_pred_p (bb) 262 && single_pred (bb) == m_switch_bb 263 && (!m_default_case_nonstandard 264 || empty_block_p (bb)))) 265 { 266 tree reloc, val; 267 const char *reason = NULL; 268 269 val = gimple_phi_arg_def (phi, i); 270 if (!is_gimple_ip_invariant (val)) 271 reason = "non-invariant value from a case"; 272 else 273 { 274 reloc = initializer_constant_valid_p (val, TREE_TYPE (val)); 275 if ((flag_pic && reloc != null_pointer_node) 276 || (!flag_pic && reloc == NULL_TREE)) 277 { 278 if (reloc) 279 reason 280 = "value from a case would need runtime relocations"; 281 else 282 reason 283 = "value from a case is not a valid initializer"; 284 } 285 } 286 if (reason) 287 { 288 /* For contiguous range, we can allow non-constant 289 or one that needs relocation, as long as it is 290 only reachable from the default case. */ 291 if (bb == m_switch_bb) 292 bb = m_final_bb; 293 if (!m_contiguous_range || bb != m_default_bb) 294 { 295 m_reason = reason; 296 return false; 297 } 298 299 unsigned int branch_num = gimple_switch_num_labels (m_switch); 300 for (unsigned int i = 1; i < branch_num; i++) 301 { 302 if (gimple_switch_label_bb (cfun, m_switch, i) == bb) 303 { 304 m_reason = reason; 305 return false; 306 } 307 } 308 m_default_case_nonstandard = true; 309 } 310 } 311 } 312 } 313 314 return true; 315 } 316 317 /* The following function allocates default_values, target_{in,out}_names and 318 constructors arrays. The last one is also populated with pointers to 319 vectors that will become constructors of new arrays. */ 320 321 void 322 switch_conversion::create_temp_arrays () 323 { 324 int i; 325 326 m_default_values = XCNEWVEC (tree, m_phi_count * 3); 327 /* ??? Macros do not support multi argument templates in their 328 argument list. We create a typedef to work around that problem. */ 329 typedef vec<constructor_elt, va_gc> *vec_constructor_elt_gc; 330 m_constructors = XCNEWVEC (vec_constructor_elt_gc, m_phi_count); 331 m_target_inbound_names = m_default_values + m_phi_count; 332 m_target_outbound_names = m_target_inbound_names + m_phi_count; 333 for (i = 0; i < m_phi_count; i++) 334 vec_alloc (m_constructors[i], tree_to_uhwi (m_range_size) + 1); 335 } 336 337 /* Populate the array of default values in the order of phi nodes. 338 DEFAULT_CASE is the CASE_LABEL_EXPR for the default switch branch 339 if the range is non-contiguous or the default case has standard 340 structure, otherwise it is the first non-default case instead. */ 341 342 void 343 switch_conversion::gather_default_values (tree default_case) 344 { 345 gphi_iterator gsi; 346 basic_block bb = label_to_block (cfun, CASE_LABEL (default_case)); 347 edge e; 348 int i = 0; 349 350 gcc_assert (CASE_LOW (default_case) == NULL_TREE 351 || m_default_case_nonstandard); 352 353 if (bb == m_final_bb) 354 e = find_edge (m_switch_bb, bb); 355 else 356 e = single_succ_edge (bb); 357 358 for (gsi = gsi_start_phis (m_final_bb); !gsi_end_p (gsi); gsi_next (&gsi)) 359 { 360 gphi *phi = gsi.phi (); 361 if (virtual_operand_p (gimple_phi_result (phi))) 362 continue; 363 tree val = PHI_ARG_DEF_FROM_EDGE (phi, e); 364 gcc_assert (val); 365 m_default_values[i++] = val; 366 } 367 } 368 369 /* The following function populates the vectors in the constructors array with 370 future contents of the static arrays. The vectors are populated in the 371 order of phi nodes. */ 372 373 void 374 switch_conversion::build_constructors () 375 { 376 unsigned i, branch_num = gimple_switch_num_labels (m_switch); 377 tree pos = m_range_min; 378 tree pos_one = build_int_cst (TREE_TYPE (pos), 1); 379 380 for (i = 1; i < branch_num; i++) 381 { 382 tree cs = gimple_switch_label (m_switch, i); 383 basic_block bb = label_to_block (cfun, CASE_LABEL (cs)); 384 edge e; 385 tree high; 386 gphi_iterator gsi; 387 int j; 388 389 if (bb == m_final_bb) 390 e = find_edge (m_switch_bb, bb); 391 else 392 e = single_succ_edge (bb); 393 gcc_assert (e); 394 395 while (tree_int_cst_lt (pos, CASE_LOW (cs))) 396 { 397 int k; 398 for (k = 0; k < m_phi_count; k++) 399 { 400 constructor_elt elt; 401 402 elt.index = int_const_binop (MINUS_EXPR, pos, m_range_min); 403 elt.value 404 = unshare_expr_without_location (m_default_values[k]); 405 m_constructors[k]->quick_push (elt); 406 } 407 408 pos = int_const_binop (PLUS_EXPR, pos, pos_one); 409 } 410 gcc_assert (tree_int_cst_equal (pos, CASE_LOW (cs))); 411 412 j = 0; 413 if (CASE_HIGH (cs)) 414 high = CASE_HIGH (cs); 415 else 416 high = CASE_LOW (cs); 417 for (gsi = gsi_start_phis (m_final_bb); 418 !gsi_end_p (gsi); gsi_next (&gsi)) 419 { 420 gphi *phi = gsi.phi (); 421 if (virtual_operand_p (gimple_phi_result (phi))) 422 continue; 423 tree val = PHI_ARG_DEF_FROM_EDGE (phi, e); 424 tree low = CASE_LOW (cs); 425 pos = CASE_LOW (cs); 426 427 do 428 { 429 constructor_elt elt; 430 431 elt.index = int_const_binop (MINUS_EXPR, pos, m_range_min); 432 elt.value = unshare_expr_without_location (val); 433 m_constructors[j]->quick_push (elt); 434 435 pos = int_const_binop (PLUS_EXPR, pos, pos_one); 436 } while (!tree_int_cst_lt (high, pos) 437 && tree_int_cst_lt (low, pos)); 438 j++; 439 } 440 } 441 } 442 443 /* If all values in the constructor vector are products of a linear function 444 a * x + b, then return true. When true, COEFF_A and COEFF_B and 445 coefficients of the linear function. Note that equal values are special 446 case of a linear function with a and b equal to zero. */ 447 448 bool 449 switch_conversion::contains_linear_function_p (vec<constructor_elt, va_gc> *vec, 450 wide_int *coeff_a, 451 wide_int *coeff_b) 452 { 453 unsigned int i; 454 constructor_elt *elt; 455 456 gcc_assert (vec->length () >= 2); 457 458 /* Let's try to find any linear function a * x + y that can apply to 459 given values. 'a' can be calculated as follows: 460 461 a = (y2 - y1) / (x2 - x1) where x2 - x1 = 1 (consecutive case indices) 462 a = y2 - y1 463 464 and 465 466 b = y2 - a * x2 467 468 */ 469 470 tree elt0 = (*vec)[0].value; 471 tree elt1 = (*vec)[1].value; 472 473 if (TREE_CODE (elt0) != INTEGER_CST || TREE_CODE (elt1) != INTEGER_CST) 474 return false; 475 476 wide_int range_min 477 = wide_int::from (wi::to_wide (m_range_min), 478 TYPE_PRECISION (TREE_TYPE (elt0)), 479 TYPE_SIGN (TREE_TYPE (m_range_min))); 480 wide_int y1 = wi::to_wide (elt0); 481 wide_int y2 = wi::to_wide (elt1); 482 wide_int a = y2 - y1; 483 wide_int b = y2 - a * (range_min + 1); 484 485 /* Verify that all values fulfill the linear function. */ 486 FOR_EACH_VEC_SAFE_ELT (vec, i, elt) 487 { 488 if (TREE_CODE (elt->value) != INTEGER_CST) 489 return false; 490 491 wide_int value = wi::to_wide (elt->value); 492 if (a * range_min + b != value) 493 return false; 494 495 ++range_min; 496 } 497 498 *coeff_a = a; 499 *coeff_b = b; 500 501 return true; 502 } 503 504 /* Return type which should be used for array elements, either TYPE's 505 main variant or, for integral types, some smaller integral type 506 that can still hold all the constants. */ 507 508 tree 509 switch_conversion::array_value_type (tree type, int num) 510 { 511 unsigned int i, len = vec_safe_length (m_constructors[num]); 512 constructor_elt *elt; 513 int sign = 0; 514 tree smaller_type; 515 516 /* Types with alignments greater than their size can reach here, e.g. out of 517 SRA. We couldn't use these as an array component type so get back to the 518 main variant first, which, for our purposes, is fine for other types as 519 well. */ 520 521 type = TYPE_MAIN_VARIANT (type); 522 523 if (!INTEGRAL_TYPE_P (type)) 524 return type; 525 526 scalar_int_mode type_mode = SCALAR_INT_TYPE_MODE (type); 527 scalar_int_mode mode = get_narrowest_mode (type_mode); 528 if (GET_MODE_SIZE (type_mode) <= GET_MODE_SIZE (mode)) 529 return type; 530 531 if (len < (optimize_bb_for_size_p (gimple_bb (m_switch)) ? 2 : 32)) 532 return type; 533 534 FOR_EACH_VEC_SAFE_ELT (m_constructors[num], i, elt) 535 { 536 wide_int cst; 537 538 if (TREE_CODE (elt->value) != INTEGER_CST) 539 return type; 540 541 cst = wi::to_wide (elt->value); 542 while (1) 543 { 544 unsigned int prec = GET_MODE_BITSIZE (mode); 545 if (prec > HOST_BITS_PER_WIDE_INT) 546 return type; 547 548 if (sign >= 0 && cst == wi::zext (cst, prec)) 549 { 550 if (sign == 0 && cst == wi::sext (cst, prec)) 551 break; 552 sign = 1; 553 break; 554 } 555 if (sign <= 0 && cst == wi::sext (cst, prec)) 556 { 557 sign = -1; 558 break; 559 } 560 561 if (sign == 1) 562 sign = 0; 563 564 if (!GET_MODE_WIDER_MODE (mode).exists (&mode) 565 || GET_MODE_SIZE (mode) >= GET_MODE_SIZE (type_mode)) 566 return type; 567 } 568 } 569 570 if (sign == 0) 571 sign = TYPE_UNSIGNED (type) ? 1 : -1; 572 smaller_type = lang_hooks.types.type_for_mode (mode, sign >= 0); 573 if (GET_MODE_SIZE (type_mode) 574 <= GET_MODE_SIZE (SCALAR_INT_TYPE_MODE (smaller_type))) 575 return type; 576 577 return smaller_type; 578 } 579 580 /* Create an appropriate array type and declaration and assemble a static 581 array variable. Also create a load statement that initializes 582 the variable in question with a value from the static array. SWTCH is 583 the switch statement being converted, NUM is the index to 584 arrays of constructors, default values and target SSA names 585 for this particular array. ARR_INDEX_TYPE is the type of the index 586 of the new array, PHI is the phi node of the final BB that corresponds 587 to the value that will be loaded from the created array. TIDX 588 is an ssa name of a temporary variable holding the index for loads from the 589 new array. */ 590 591 void 592 switch_conversion::build_one_array (int num, tree arr_index_type, 593 gphi *phi, tree tidx) 594 { 595 tree name; 596 gimple *load; 597 gimple_stmt_iterator gsi = gsi_for_stmt (m_switch); 598 location_t loc = gimple_location (m_switch); 599 600 gcc_assert (m_default_values[num]); 601 602 name = copy_ssa_name (PHI_RESULT (phi)); 603 m_target_inbound_names[num] = name; 604 605 vec<constructor_elt, va_gc> *constructor = m_constructors[num]; 606 wide_int coeff_a, coeff_b; 607 bool linear_p = contains_linear_function_p (constructor, &coeff_a, &coeff_b); 608 tree type; 609 if (linear_p 610 && (type = range_check_type (TREE_TYPE ((*constructor)[0].value)))) 611 { 612 if (dump_file && coeff_a.to_uhwi () > 0) 613 fprintf (dump_file, "Linear transformation with A = %" PRId64 614 " and B = %" PRId64 "\n", coeff_a.to_shwi (), 615 coeff_b.to_shwi ()); 616 617 /* We must use type of constructor values. */ 618 gimple_seq seq = NULL; 619 tree tmp = gimple_convert (&seq, type, m_index_expr); 620 tree tmp2 = gimple_build (&seq, MULT_EXPR, type, 621 wide_int_to_tree (type, coeff_a), tmp); 622 tree tmp3 = gimple_build (&seq, PLUS_EXPR, type, tmp2, 623 wide_int_to_tree (type, coeff_b)); 624 tree tmp4 = gimple_convert (&seq, TREE_TYPE (name), tmp3); 625 gsi_insert_seq_before (&gsi, seq, GSI_SAME_STMT); 626 load = gimple_build_assign (name, tmp4); 627 } 628 else 629 { 630 tree array_type, ctor, decl, value_type, fetch, default_type; 631 632 default_type = TREE_TYPE (m_default_values[num]); 633 value_type = array_value_type (default_type, num); 634 array_type = build_array_type (value_type, arr_index_type); 635 if (default_type != value_type) 636 { 637 unsigned int i; 638 constructor_elt *elt; 639 640 FOR_EACH_VEC_SAFE_ELT (constructor, i, elt) 641 elt->value = fold_convert (value_type, elt->value); 642 } 643 ctor = build_constructor (array_type, constructor); 644 TREE_CONSTANT (ctor) = true; 645 TREE_STATIC (ctor) = true; 646 647 decl = build_decl (loc, VAR_DECL, NULL_TREE, array_type); 648 TREE_STATIC (decl) = 1; 649 DECL_INITIAL (decl) = ctor; 650 651 DECL_NAME (decl) = create_tmp_var_name ("CSWTCH"); 652 DECL_ARTIFICIAL (decl) = 1; 653 DECL_IGNORED_P (decl) = 1; 654 TREE_CONSTANT (decl) = 1; 655 TREE_READONLY (decl) = 1; 656 DECL_IGNORED_P (decl) = 1; 657 if (offloading_function_p (cfun->decl)) 658 DECL_ATTRIBUTES (decl) 659 = tree_cons (get_identifier ("omp declare target"), NULL_TREE, 660 NULL_TREE); 661 varpool_node::finalize_decl (decl); 662 663 fetch = build4 (ARRAY_REF, value_type, decl, tidx, NULL_TREE, 664 NULL_TREE); 665 if (default_type != value_type) 666 { 667 fetch = fold_convert (default_type, fetch); 668 fetch = force_gimple_operand_gsi (&gsi, fetch, true, NULL_TREE, 669 true, GSI_SAME_STMT); 670 } 671 load = gimple_build_assign (name, fetch); 672 } 673 674 gsi_insert_before (&gsi, load, GSI_SAME_STMT); 675 update_stmt (load); 676 m_arr_ref_last = load; 677 } 678 679 /* Builds and initializes static arrays initialized with values gathered from 680 the switch statement. Also creates statements that load values from 681 them. */ 682 683 void 684 switch_conversion::build_arrays () 685 { 686 tree arr_index_type; 687 tree tidx, sub, utype; 688 gimple *stmt; 689 gimple_stmt_iterator gsi; 690 gphi_iterator gpi; 691 int i; 692 location_t loc = gimple_location (m_switch); 693 694 gsi = gsi_for_stmt (m_switch); 695 696 /* Make sure we do not generate arithmetics in a subrange. */ 697 utype = TREE_TYPE (m_index_expr); 698 if (TREE_TYPE (utype)) 699 utype = lang_hooks.types.type_for_mode (TYPE_MODE (TREE_TYPE (utype)), 1); 700 else 701 utype = lang_hooks.types.type_for_mode (TYPE_MODE (utype), 1); 702 703 arr_index_type = build_index_type (m_range_size); 704 tidx = make_ssa_name (utype); 705 sub = fold_build2_loc (loc, MINUS_EXPR, utype, 706 fold_convert_loc (loc, utype, m_index_expr), 707 fold_convert_loc (loc, utype, m_range_min)); 708 sub = force_gimple_operand_gsi (&gsi, sub, 709 false, NULL, true, GSI_SAME_STMT); 710 stmt = gimple_build_assign (tidx, sub); 711 712 gsi_insert_before (&gsi, stmt, GSI_SAME_STMT); 713 update_stmt (stmt); 714 m_arr_ref_first = stmt; 715 716 for (gpi = gsi_start_phis (m_final_bb), i = 0; 717 !gsi_end_p (gpi); gsi_next (&gpi)) 718 { 719 gphi *phi = gpi.phi (); 720 if (!virtual_operand_p (gimple_phi_result (phi))) 721 build_one_array (i++, arr_index_type, phi, tidx); 722 else 723 { 724 edge e; 725 edge_iterator ei; 726 FOR_EACH_EDGE (e, ei, m_switch_bb->succs) 727 { 728 if (e->dest == m_final_bb) 729 break; 730 if (!m_default_case_nonstandard 731 || e->dest != m_default_bb) 732 { 733 e = single_succ_edge (e->dest); 734 break; 735 } 736 } 737 gcc_assert (e && e->dest == m_final_bb); 738 m_target_vop = PHI_ARG_DEF_FROM_EDGE (phi, e); 739 } 740 } 741 } 742 743 /* Generates and appropriately inserts loads of default values at the position 744 given by GSI. Returns the last inserted statement. */ 745 746 gassign * 747 switch_conversion::gen_def_assigns (gimple_stmt_iterator *gsi) 748 { 749 int i; 750 gassign *assign = NULL; 751 752 for (i = 0; i < m_phi_count; i++) 753 { 754 tree name = copy_ssa_name (m_target_inbound_names[i]); 755 m_target_outbound_names[i] = name; 756 assign = gimple_build_assign (name, m_default_values[i]); 757 gsi_insert_before (gsi, assign, GSI_SAME_STMT); 758 update_stmt (assign); 759 } 760 return assign; 761 } 762 763 /* Deletes the unused bbs and edges that now contain the switch statement and 764 its empty branch bbs. BBD is the now dead BB containing 765 the original switch statement, FINAL is the last BB of the converted 766 switch statement (in terms of succession). */ 767 768 void 769 switch_conversion::prune_bbs (basic_block bbd, basic_block final, 770 basic_block default_bb) 771 { 772 edge_iterator ei; 773 edge e; 774 775 for (ei = ei_start (bbd->succs); (e = ei_safe_edge (ei)); ) 776 { 777 basic_block bb; 778 bb = e->dest; 779 remove_edge (e); 780 if (bb != final && bb != default_bb) 781 delete_basic_block (bb); 782 } 783 delete_basic_block (bbd); 784 } 785 786 /* Add values to phi nodes in final_bb for the two new edges. E1F is the edge 787 from the basic block loading values from an array and E2F from the basic 788 block loading default values. BBF is the last switch basic block (see the 789 bbf description in the comment below). */ 790 791 void 792 switch_conversion::fix_phi_nodes (edge e1f, edge e2f, basic_block bbf) 793 { 794 gphi_iterator gsi; 795 int i; 796 797 for (gsi = gsi_start_phis (bbf), i = 0; 798 !gsi_end_p (gsi); gsi_next (&gsi)) 799 { 800 gphi *phi = gsi.phi (); 801 tree inbound, outbound; 802 if (virtual_operand_p (gimple_phi_result (phi))) 803 inbound = outbound = m_target_vop; 804 else 805 { 806 inbound = m_target_inbound_names[i]; 807 outbound = m_target_outbound_names[i++]; 808 } 809 add_phi_arg (phi, inbound, e1f, UNKNOWN_LOCATION); 810 if (!m_default_case_nonstandard) 811 add_phi_arg (phi, outbound, e2f, UNKNOWN_LOCATION); 812 } 813 } 814 815 /* Creates a check whether the switch expression value actually falls into the 816 range given by all the cases. If it does not, the temporaries are loaded 817 with default values instead. */ 818 819 void 820 switch_conversion::gen_inbound_check () 821 { 822 tree label_decl1 = create_artificial_label (UNKNOWN_LOCATION); 823 tree label_decl2 = create_artificial_label (UNKNOWN_LOCATION); 824 tree label_decl3 = create_artificial_label (UNKNOWN_LOCATION); 825 glabel *label1, *label2, *label3; 826 tree utype, tidx; 827 tree bound; 828 829 gcond *cond_stmt; 830 831 gassign *last_assign = NULL; 832 gimple_stmt_iterator gsi; 833 basic_block bb0, bb1, bb2, bbf, bbd; 834 edge e01 = NULL, e02, e21, e1d, e1f, e2f; 835 location_t loc = gimple_location (m_switch); 836 837 gcc_assert (m_default_values); 838 839 bb0 = gimple_bb (m_switch); 840 841 tidx = gimple_assign_lhs (m_arr_ref_first); 842 utype = TREE_TYPE (tidx); 843 844 /* (end of) block 0 */ 845 gsi = gsi_for_stmt (m_arr_ref_first); 846 gsi_next (&gsi); 847 848 bound = fold_convert_loc (loc, utype, m_range_size); 849 cond_stmt = gimple_build_cond (LE_EXPR, tidx, bound, NULL_TREE, NULL_TREE); 850 gsi_insert_before (&gsi, cond_stmt, GSI_SAME_STMT); 851 update_stmt (cond_stmt); 852 853 /* block 2 */ 854 if (!m_default_case_nonstandard) 855 { 856 label2 = gimple_build_label (label_decl2); 857 gsi_insert_before (&gsi, label2, GSI_SAME_STMT); 858 last_assign = gen_def_assigns (&gsi); 859 } 860 861 /* block 1 */ 862 label1 = gimple_build_label (label_decl1); 863 gsi_insert_before (&gsi, label1, GSI_SAME_STMT); 864 865 /* block F */ 866 gsi = gsi_start_bb (m_final_bb); 867 label3 = gimple_build_label (label_decl3); 868 gsi_insert_before (&gsi, label3, GSI_SAME_STMT); 869 870 /* cfg fix */ 871 e02 = split_block (bb0, cond_stmt); 872 bb2 = e02->dest; 873 874 if (m_default_case_nonstandard) 875 { 876 bb1 = bb2; 877 bb2 = m_default_bb; 878 e01 = e02; 879 e01->flags = EDGE_TRUE_VALUE; 880 e02 = make_edge (bb0, bb2, EDGE_FALSE_VALUE); 881 edge e_default = find_edge (bb1, bb2); 882 for (gphi_iterator gsi = gsi_start_phis (bb2); 883 !gsi_end_p (gsi); gsi_next (&gsi)) 884 { 885 gphi *phi = gsi.phi (); 886 tree arg = PHI_ARG_DEF_FROM_EDGE (phi, e_default); 887 add_phi_arg (phi, arg, e02, 888 gimple_phi_arg_location_from_edge (phi, e_default)); 889 } 890 /* Partially fix the dominator tree, if it is available. */ 891 if (dom_info_available_p (CDI_DOMINATORS)) 892 redirect_immediate_dominators (CDI_DOMINATORS, bb1, bb0); 893 } 894 else 895 { 896 e21 = split_block (bb2, last_assign); 897 bb1 = e21->dest; 898 remove_edge (e21); 899 } 900 901 e1d = split_block (bb1, m_arr_ref_last); 902 bbd = e1d->dest; 903 remove_edge (e1d); 904 905 /* Flags and profiles of the edge for in-range values. */ 906 if (!m_default_case_nonstandard) 907 e01 = make_edge (bb0, bb1, EDGE_TRUE_VALUE); 908 e01->probability = m_default_prob.invert (); 909 910 /* Flags and profiles of the edge taking care of out-of-range values. */ 911 e02->flags &= ~EDGE_FALLTHRU; 912 e02->flags |= EDGE_FALSE_VALUE; 913 e02->probability = m_default_prob; 914 915 bbf = m_final_bb; 916 917 e1f = make_edge (bb1, bbf, EDGE_FALLTHRU); 918 e1f->probability = profile_probability::always (); 919 920 if (m_default_case_nonstandard) 921 e2f = NULL; 922 else 923 { 924 e2f = make_edge (bb2, bbf, EDGE_FALLTHRU); 925 e2f->probability = profile_probability::always (); 926 } 927 928 /* frequencies of the new BBs */ 929 bb1->count = e01->count (); 930 bb2->count = e02->count (); 931 if (!m_default_case_nonstandard) 932 bbf->count = e1f->count () + e2f->count (); 933 934 /* Tidy blocks that have become unreachable. */ 935 prune_bbs (bbd, m_final_bb, 936 m_default_case_nonstandard ? m_default_bb : NULL); 937 938 /* Fixup the PHI nodes in bbF. */ 939 fix_phi_nodes (e1f, e2f, bbf); 940 941 /* Fix the dominator tree, if it is available. */ 942 if (dom_info_available_p (CDI_DOMINATORS)) 943 { 944 vec<basic_block> bbs_to_fix_dom; 945 946 set_immediate_dominator (CDI_DOMINATORS, bb1, bb0); 947 if (!m_default_case_nonstandard) 948 set_immediate_dominator (CDI_DOMINATORS, bb2, bb0); 949 if (! get_immediate_dominator (CDI_DOMINATORS, bbf)) 950 /* If bbD was the immediate dominator ... */ 951 set_immediate_dominator (CDI_DOMINATORS, bbf, bb0); 952 953 bbs_to_fix_dom.create (3 + (bb2 != bbf)); 954 bbs_to_fix_dom.quick_push (bb0); 955 bbs_to_fix_dom.quick_push (bb1); 956 if (bb2 != bbf) 957 bbs_to_fix_dom.quick_push (bb2); 958 bbs_to_fix_dom.quick_push (bbf); 959 960 iterate_fix_dominators (CDI_DOMINATORS, bbs_to_fix_dom, true); 961 bbs_to_fix_dom.release (); 962 } 963 } 964 965 /* The following function is invoked on every switch statement (the current 966 one is given in SWTCH) and runs the individual phases of switch 967 conversion on it one after another until one fails or the conversion 968 is completed. On success, NULL is in m_reason, otherwise points 969 to a string with the reason why the conversion failed. */ 970 971 void 972 switch_conversion::expand (gswitch *swtch) 973 { 974 /* Group case labels so that we get the right results from the heuristics 975 that decide on the code generation approach for this switch. */ 976 m_cfg_altered |= group_case_labels_stmt (swtch); 977 978 /* If this switch is now a degenerate case with only a default label, 979 there is nothing left for us to do. */ 980 if (gimple_switch_num_labels (swtch) < 2) 981 { 982 m_reason = "switch is a degenerate case"; 983 return; 984 } 985 986 collect (swtch); 987 988 /* No error markers should reach here (they should be filtered out 989 during gimplification). */ 990 gcc_checking_assert (TREE_TYPE (m_index_expr) != error_mark_node); 991 992 /* A switch on a constant should have been optimized in tree-cfg-cleanup. */ 993 gcc_checking_assert (!TREE_CONSTANT (m_index_expr)); 994 995 /* Prefer bit test if possible. */ 996 if (tree_fits_uhwi_p (m_range_size) 997 && bit_test_cluster::can_be_handled (tree_to_uhwi (m_range_size), m_uniq) 998 && bit_test_cluster::is_beneficial (m_count, m_uniq)) 999 { 1000 m_reason = "expanding as bit test is preferable"; 1001 return; 1002 } 1003 1004 if (m_uniq <= 2) 1005 { 1006 /* This will be expanded as a decision tree . */ 1007 m_reason = "expanding as jumps is preferable"; 1008 return; 1009 } 1010 1011 /* If there is no common successor, we cannot do the transformation. */ 1012 if (!m_final_bb) 1013 { 1014 m_reason = "no common successor to all case label target blocks found"; 1015 return; 1016 } 1017 1018 /* Check the case label values are within reasonable range: */ 1019 if (!check_range ()) 1020 { 1021 gcc_assert (m_reason); 1022 return; 1023 } 1024 1025 /* For all the cases, see whether they are empty, the assignments they 1026 represent constant and so on... */ 1027 if (!check_all_empty_except_final ()) 1028 { 1029 gcc_assert (m_reason); 1030 return; 1031 } 1032 if (!check_final_bb ()) 1033 { 1034 gcc_assert (m_reason); 1035 return; 1036 } 1037 1038 /* At this point all checks have passed and we can proceed with the 1039 transformation. */ 1040 1041 create_temp_arrays (); 1042 gather_default_values (m_default_case_nonstandard 1043 ? gimple_switch_label (swtch, 1) 1044 : gimple_switch_default_label (swtch)); 1045 build_constructors (); 1046 1047 build_arrays (); /* Build the static arrays and assignments. */ 1048 gen_inbound_check (); /* Build the bounds check. */ 1049 1050 m_cfg_altered = true; 1051 } 1052 1053 /* Destructor. */ 1054 1055 switch_conversion::~switch_conversion () 1056 { 1057 XDELETEVEC (m_constructors); 1058 XDELETEVEC (m_default_values); 1059 } 1060 1061 /* Constructor. */ 1062 1063 group_cluster::group_cluster (vec<cluster *> &clusters, 1064 unsigned start, unsigned end) 1065 { 1066 gcc_checking_assert (end - start + 1 >= 1); 1067 m_prob = profile_probability::never (); 1068 m_cases.create (end - start + 1); 1069 for (unsigned i = start; i <= end; i++) 1070 { 1071 m_cases.quick_push (static_cast<simple_cluster *> (clusters[i])); 1072 m_prob += clusters[i]->m_prob; 1073 } 1074 m_subtree_prob = m_prob; 1075 } 1076 1077 /* Destructor. */ 1078 1079 group_cluster::~group_cluster () 1080 { 1081 for (unsigned i = 0; i < m_cases.length (); i++) 1082 delete m_cases[i]; 1083 1084 m_cases.release (); 1085 } 1086 1087 /* Dump content of a cluster. */ 1088 1089 void 1090 group_cluster::dump (FILE *f, bool details) 1091 { 1092 unsigned total_values = 0; 1093 for (unsigned i = 0; i < m_cases.length (); i++) 1094 total_values += m_cases[i]->get_range (m_cases[i]->get_low (), 1095 m_cases[i]->get_high ()); 1096 1097 unsigned comparison_count = 0; 1098 for (unsigned i = 0; i < m_cases.length (); i++) 1099 { 1100 simple_cluster *sc = static_cast<simple_cluster *> (m_cases[i]); 1101 comparison_count += sc->m_range_p ? 2 : 1; 1102 } 1103 1104 unsigned HOST_WIDE_INT range = get_range (get_low (), get_high ()); 1105 fprintf (f, "%s", get_type () == JUMP_TABLE ? "JT" : "BT"); 1106 1107 if (details) 1108 fprintf (f, "(values:%d comparisons:%d range:" HOST_WIDE_INT_PRINT_DEC 1109 " density: %.2f%%)", total_values, comparison_count, range, 1110 100.0f * comparison_count / range); 1111 1112 fprintf (f, ":"); 1113 PRINT_CASE (f, get_low ()); 1114 fprintf (f, "-"); 1115 PRINT_CASE (f, get_high ()); 1116 fprintf (f, " "); 1117 } 1118 1119 /* Emit GIMPLE code to handle the cluster. */ 1120 1121 void 1122 jump_table_cluster::emit (tree index_expr, tree, 1123 tree default_label_expr, basic_block default_bb) 1124 { 1125 unsigned HOST_WIDE_INT range = get_range (get_low (), get_high ()); 1126 unsigned HOST_WIDE_INT nondefault_range = 0; 1127 1128 /* For jump table we just emit a new gswitch statement that will 1129 be latter lowered to jump table. */ 1130 auto_vec <tree> labels; 1131 labels.create (m_cases.length ()); 1132 1133 make_edge (m_case_bb, default_bb, 0); 1134 for (unsigned i = 0; i < m_cases.length (); i++) 1135 { 1136 labels.quick_push (unshare_expr (m_cases[i]->m_case_label_expr)); 1137 make_edge (m_case_bb, m_cases[i]->m_case_bb, 0); 1138 } 1139 1140 gswitch *s = gimple_build_switch (index_expr, 1141 unshare_expr (default_label_expr), labels); 1142 gimple_stmt_iterator gsi = gsi_start_bb (m_case_bb); 1143 gsi_insert_after (&gsi, s, GSI_NEW_STMT); 1144 1145 /* Set up even probabilities for all cases. */ 1146 for (unsigned i = 0; i < m_cases.length (); i++) 1147 { 1148 simple_cluster *sc = static_cast<simple_cluster *> (m_cases[i]); 1149 edge case_edge = find_edge (m_case_bb, sc->m_case_bb); 1150 unsigned HOST_WIDE_INT case_range 1151 = sc->get_range (sc->get_low (), sc->get_high ()); 1152 nondefault_range += case_range; 1153 1154 /* case_edge->aux is number of values in a jump-table that are covered 1155 by the case_edge. */ 1156 case_edge->aux = (void *) ((intptr_t) (case_edge->aux) + case_range); 1157 } 1158 1159 edge default_edge = gimple_switch_default_edge (cfun, s); 1160 default_edge->probability = profile_probability::never (); 1161 1162 for (unsigned i = 0; i < m_cases.length (); i++) 1163 { 1164 simple_cluster *sc = static_cast<simple_cluster *> (m_cases[i]); 1165 edge case_edge = find_edge (m_case_bb, sc->m_case_bb); 1166 case_edge->probability 1167 = profile_probability::always ().apply_scale ((intptr_t)case_edge->aux, 1168 range); 1169 } 1170 1171 /* Number of non-default values is probability of default edge. */ 1172 default_edge->probability 1173 += profile_probability::always ().apply_scale (nondefault_range, 1174 range).invert (); 1175 1176 switch_decision_tree::reset_out_edges_aux (s); 1177 } 1178 1179 /* Find jump tables of given CLUSTERS, where all members of the vector 1180 are of type simple_cluster. New clusters are returned. */ 1181 1182 vec<cluster *> 1183 jump_table_cluster::find_jump_tables (vec<cluster *> &clusters) 1184 { 1185 if (!is_enabled ()) 1186 return clusters.copy (); 1187 1188 unsigned l = clusters.length (); 1189 auto_vec<min_cluster_item> min; 1190 min.reserve (l + 1); 1191 1192 min.quick_push (min_cluster_item (0, 0, 0)); 1193 1194 for (unsigned i = 1; i <= l; i++) 1195 { 1196 /* Set minimal # of clusters with i-th item to infinite. */ 1197 min.quick_push (min_cluster_item (INT_MAX, INT_MAX, INT_MAX)); 1198 1199 for (unsigned j = 0; j < i; j++) 1200 { 1201 unsigned HOST_WIDE_INT s = min[j].m_non_jt_cases; 1202 if (i - j < case_values_threshold ()) 1203 s += i - j; 1204 1205 /* Prefer clusters with smaller number of numbers covered. */ 1206 if ((min[j].m_count + 1 < min[i].m_count 1207 || (min[j].m_count + 1 == min[i].m_count 1208 && s < min[i].m_non_jt_cases)) 1209 && can_be_handled (clusters, j, i - 1)) 1210 min[i] = min_cluster_item (min[j].m_count + 1, j, s); 1211 } 1212 1213 gcc_checking_assert (min[i].m_count != INT_MAX); 1214 } 1215 1216 /* No result. */ 1217 if (min[l].m_count == INT_MAX) 1218 return clusters.copy (); 1219 1220 vec<cluster *> output; 1221 output.create (4); 1222 1223 /* Find and build the clusters. */ 1224 for (int end = l;;) 1225 { 1226 int start = min[end].m_start; 1227 1228 /* Do not allow clusters with small number of cases. */ 1229 if (is_beneficial (clusters, start, end - 1)) 1230 output.safe_push (new jump_table_cluster (clusters, start, end - 1)); 1231 else 1232 for (int i = end - 1; i >= start; i--) 1233 output.safe_push (clusters[i]); 1234 1235 end = start; 1236 1237 if (start <= 0) 1238 break; 1239 } 1240 1241 output.reverse (); 1242 return output; 1243 } 1244 1245 /* Return true when cluster starting at START and ending at END (inclusive) 1246 can build a jump-table. */ 1247 1248 bool 1249 jump_table_cluster::can_be_handled (const vec<cluster *> &clusters, 1250 unsigned start, unsigned end) 1251 { 1252 /* If the switch is relatively small such that the cost of one 1253 indirect jump on the target are higher than the cost of a 1254 decision tree, go with the decision tree. 1255 1256 If range of values is much bigger than number of values, 1257 or if it is too large to represent in a HOST_WIDE_INT, 1258 make a sequence of conditional branches instead of a dispatch. 1259 1260 The definition of "much bigger" depends on whether we are 1261 optimizing for size or for speed. */ 1262 if (!flag_jump_tables) 1263 return false; 1264 1265 /* For algorithm correctness, jump table for a single case must return 1266 true. We bail out in is_beneficial if it's called just for 1267 a single case. */ 1268 if (start == end) 1269 return true; 1270 1271 unsigned HOST_WIDE_INT max_ratio 1272 = optimize_insn_for_size_p () ? max_ratio_for_size : max_ratio_for_speed; 1273 unsigned HOST_WIDE_INT range = get_range (clusters[start]->get_low (), 1274 clusters[end]->get_high ()); 1275 /* Check overflow. */ 1276 if (range == 0) 1277 return false; 1278 1279 unsigned HOST_WIDE_INT comparison_count = 0; 1280 for (unsigned i = start; i <= end; i++) 1281 { 1282 simple_cluster *sc = static_cast<simple_cluster *> (clusters[i]); 1283 comparison_count += sc->m_range_p ? 2 : 1; 1284 } 1285 1286 return range <= max_ratio * comparison_count; 1287 } 1288 1289 /* Return true if cluster starting at START and ending at END (inclusive) 1290 is profitable transformation. */ 1291 1292 bool 1293 jump_table_cluster::is_beneficial (const vec<cluster *> &, 1294 unsigned start, unsigned end) 1295 { 1296 /* Single case bail out. */ 1297 if (start == end) 1298 return false; 1299 1300 return end - start + 1 >= case_values_threshold (); 1301 } 1302 1303 /* Definition of jump_table_cluster constants. */ 1304 1305 const unsigned HOST_WIDE_INT jump_table_cluster::max_ratio_for_size; 1306 const unsigned HOST_WIDE_INT jump_table_cluster::max_ratio_for_speed; 1307 1308 /* Find bit tests of given CLUSTERS, where all members of the vector 1309 are of type simple_cluster. New clusters are returned. */ 1310 1311 vec<cluster *> 1312 bit_test_cluster::find_bit_tests (vec<cluster *> &clusters) 1313 { 1314 vec<cluster *> output; 1315 output.create (4); 1316 1317 unsigned l = clusters.length (); 1318 auto_vec<min_cluster_item> min; 1319 min.reserve (l + 1); 1320 1321 min.quick_push (min_cluster_item (0, 0, 0)); 1322 1323 for (unsigned i = 1; i <= l; i++) 1324 { 1325 /* Set minimal # of clusters with i-th item to infinite. */ 1326 min.quick_push (min_cluster_item (INT_MAX, INT_MAX, INT_MAX)); 1327 1328 for (unsigned j = 0; j < i; j++) 1329 { 1330 if (min[j].m_count + 1 < min[i].m_count 1331 && can_be_handled (clusters, j, i - 1)) 1332 min[i] = min_cluster_item (min[j].m_count + 1, j, INT_MAX); 1333 } 1334 1335 gcc_checking_assert (min[i].m_count != INT_MAX); 1336 } 1337 1338 /* No result. */ 1339 if (min[l].m_count == INT_MAX) 1340 return clusters.copy (); 1341 1342 /* Find and build the clusters. */ 1343 for (unsigned end = l;;) 1344 { 1345 int start = min[end].m_start; 1346 1347 if (is_beneficial (clusters, start, end - 1)) 1348 { 1349 bool entire = start == 0 && end == clusters.length (); 1350 output.safe_push (new bit_test_cluster (clusters, start, end - 1, 1351 entire)); 1352 } 1353 else 1354 for (int i = end - 1; i >= start; i--) 1355 output.safe_push (clusters[i]); 1356 1357 end = start; 1358 1359 if (start <= 0) 1360 break; 1361 } 1362 1363 output.reverse (); 1364 return output; 1365 } 1366 1367 /* Return true when RANGE of case values with UNIQ labels 1368 can build a bit test. */ 1369 1370 bool 1371 bit_test_cluster::can_be_handled (unsigned HOST_WIDE_INT range, 1372 unsigned int uniq) 1373 { 1374 /* Check overflow. */ 1375 if (range == 0) 1376 return 0; 1377 1378 if (range >= GET_MODE_BITSIZE (word_mode)) 1379 return false; 1380 1381 return uniq <= 3; 1382 } 1383 1384 /* Return true when cluster starting at START and ending at END (inclusive) 1385 can build a bit test. */ 1386 1387 bool 1388 bit_test_cluster::can_be_handled (const vec<cluster *> &clusters, 1389 unsigned start, unsigned end) 1390 { 1391 /* For algorithm correctness, bit test for a single case must return 1392 true. We bail out in is_beneficial if it's called just for 1393 a single case. */ 1394 if (start == end) 1395 return true; 1396 1397 unsigned HOST_WIDE_INT range = get_range (clusters[start]->get_low (), 1398 clusters[end]->get_high ()); 1399 auto_bitmap dest_bbs; 1400 1401 for (unsigned i = start; i <= end; i++) 1402 { 1403 simple_cluster *sc = static_cast<simple_cluster *> (clusters[i]); 1404 bitmap_set_bit (dest_bbs, sc->m_case_bb->index); 1405 } 1406 1407 return can_be_handled (range, bitmap_count_bits (dest_bbs)); 1408 } 1409 1410 /* Return true when COUNT of cases of UNIQ labels is beneficial for bit test 1411 transformation. */ 1412 1413 bool 1414 bit_test_cluster::is_beneficial (unsigned count, unsigned uniq) 1415 { 1416 return (((uniq == 1 && count >= 3) 1417 || (uniq == 2 && count >= 5) 1418 || (uniq == 3 && count >= 6))); 1419 } 1420 1421 /* Return true if cluster starting at START and ending at END (inclusive) 1422 is profitable transformation. */ 1423 1424 bool 1425 bit_test_cluster::is_beneficial (const vec<cluster *> &clusters, 1426 unsigned start, unsigned end) 1427 { 1428 /* Single case bail out. */ 1429 if (start == end) 1430 return false; 1431 1432 auto_bitmap dest_bbs; 1433 1434 for (unsigned i = start; i <= end; i++) 1435 { 1436 simple_cluster *sc = static_cast<simple_cluster *> (clusters[i]); 1437 bitmap_set_bit (dest_bbs, sc->m_case_bb->index); 1438 } 1439 1440 unsigned uniq = bitmap_count_bits (dest_bbs); 1441 unsigned count = end - start + 1; 1442 return is_beneficial (count, uniq); 1443 } 1444 1445 /* Comparison function for qsort to order bit tests by decreasing 1446 probability of execution. */ 1447 1448 int 1449 case_bit_test::cmp (const void *p1, const void *p2) 1450 { 1451 const struct case_bit_test *const d1 = (const struct case_bit_test *) p1; 1452 const struct case_bit_test *const d2 = (const struct case_bit_test *) p2; 1453 1454 if (d2->bits != d1->bits) 1455 return d2->bits - d1->bits; 1456 1457 /* Stabilize the sort. */ 1458 return (LABEL_DECL_UID (CASE_LABEL (d2->label)) 1459 - LABEL_DECL_UID (CASE_LABEL (d1->label))); 1460 } 1461 1462 /* Expand a switch statement by a short sequence of bit-wise 1463 comparisons. "switch(x)" is effectively converted into 1464 "if ((1 << (x-MINVAL)) & CST)" where CST and MINVAL are 1465 integer constants. 1466 1467 INDEX_EXPR is the value being switched on. 1468 1469 MINVAL is the lowest case value of in the case nodes, 1470 and RANGE is highest value minus MINVAL. MINVAL and RANGE 1471 are not guaranteed to be of the same type as INDEX_EXPR 1472 (the gimplifier doesn't change the type of case label values, 1473 and MINVAL and RANGE are derived from those values). 1474 MAXVAL is MINVAL + RANGE. 1475 1476 There *MUST* be max_case_bit_tests or less unique case 1477 node targets. */ 1478 1479 void 1480 bit_test_cluster::emit (tree index_expr, tree index_type, 1481 tree, basic_block default_bb) 1482 { 1483 struct case_bit_test test[m_max_case_bit_tests] = { {} }; 1484 unsigned int i, j, k; 1485 unsigned int count; 1486 1487 tree unsigned_index_type = range_check_type (index_type); 1488 1489 gimple_stmt_iterator gsi; 1490 gassign *shift_stmt; 1491 1492 tree idx, tmp, csui; 1493 tree word_type_node = lang_hooks.types.type_for_mode (word_mode, 1); 1494 tree word_mode_zero = fold_convert (word_type_node, integer_zero_node); 1495 tree word_mode_one = fold_convert (word_type_node, integer_one_node); 1496 int prec = TYPE_PRECISION (word_type_node); 1497 wide_int wone = wi::one (prec); 1498 1499 tree minval = get_low (); 1500 tree maxval = get_high (); 1501 tree range = int_const_binop (MINUS_EXPR, maxval, minval); 1502 unsigned HOST_WIDE_INT bt_range = get_range (minval, maxval); 1503 1504 /* Go through all case labels, and collect the case labels, profile 1505 counts, and other information we need to build the branch tests. */ 1506 count = 0; 1507 for (i = 0; i < m_cases.length (); i++) 1508 { 1509 unsigned int lo, hi; 1510 simple_cluster *n = static_cast<simple_cluster *> (m_cases[i]); 1511 for (k = 0; k < count; k++) 1512 if (n->m_case_bb == test[k].target_bb) 1513 break; 1514 1515 if (k == count) 1516 { 1517 gcc_checking_assert (count < m_max_case_bit_tests); 1518 test[k].mask = wi::zero (prec); 1519 test[k].target_bb = n->m_case_bb; 1520 test[k].label = n->m_case_label_expr; 1521 test[k].bits = 0; 1522 count++; 1523 } 1524 1525 test[k].bits += n->get_range (n->get_low (), n->get_high ()); 1526 1527 lo = tree_to_uhwi (int_const_binop (MINUS_EXPR, n->get_low (), minval)); 1528 if (n->get_high () == NULL_TREE) 1529 hi = lo; 1530 else 1531 hi = tree_to_uhwi (int_const_binop (MINUS_EXPR, n->get_high (), 1532 minval)); 1533 1534 for (j = lo; j <= hi; j++) 1535 test[k].mask |= wi::lshift (wone, j); 1536 } 1537 1538 qsort (test, count, sizeof (*test), case_bit_test::cmp); 1539 1540 /* If all values are in the 0 .. BITS_PER_WORD-1 range, we can get rid of 1541 the minval subtractions, but it might make the mask constants more 1542 expensive. So, compare the costs. */ 1543 if (compare_tree_int (minval, 0) > 0 1544 && compare_tree_int (maxval, GET_MODE_BITSIZE (word_mode)) < 0) 1545 { 1546 int cost_diff; 1547 HOST_WIDE_INT m = tree_to_uhwi (minval); 1548 rtx reg = gen_raw_REG (word_mode, 10000); 1549 bool speed_p = optimize_insn_for_speed_p (); 1550 cost_diff = set_rtx_cost (gen_rtx_PLUS (word_mode, reg, 1551 GEN_INT (-m)), speed_p); 1552 for (i = 0; i < count; i++) 1553 { 1554 rtx r = immed_wide_int_const (test[i].mask, word_mode); 1555 cost_diff += set_src_cost (gen_rtx_AND (word_mode, reg, r), 1556 word_mode, speed_p); 1557 r = immed_wide_int_const (wi::lshift (test[i].mask, m), word_mode); 1558 cost_diff -= set_src_cost (gen_rtx_AND (word_mode, reg, r), 1559 word_mode, speed_p); 1560 } 1561 if (cost_diff > 0) 1562 { 1563 for (i = 0; i < count; i++) 1564 test[i].mask = wi::lshift (test[i].mask, m); 1565 minval = build_zero_cst (TREE_TYPE (minval)); 1566 range = maxval; 1567 } 1568 } 1569 1570 /* Now build the test-and-branch code. */ 1571 1572 gsi = gsi_last_bb (m_case_bb); 1573 1574 /* idx = (unsigned)x - minval. */ 1575 idx = fold_convert (unsigned_index_type, index_expr); 1576 idx = fold_build2 (MINUS_EXPR, unsigned_index_type, idx, 1577 fold_convert (unsigned_index_type, minval)); 1578 idx = force_gimple_operand_gsi (&gsi, idx, 1579 /*simple=*/true, NULL_TREE, 1580 /*before=*/true, GSI_SAME_STMT); 1581 1582 if (m_handles_entire_switch) 1583 { 1584 /* if (idx > range) goto default */ 1585 range 1586 = force_gimple_operand_gsi (&gsi, 1587 fold_convert (unsigned_index_type, range), 1588 /*simple=*/true, NULL_TREE, 1589 /*before=*/true, GSI_SAME_STMT); 1590 tmp = fold_build2 (GT_EXPR, boolean_type_node, idx, range); 1591 basic_block new_bb 1592 = hoist_edge_and_branch_if_true (&gsi, tmp, default_bb, 1593 profile_probability::unlikely ()); 1594 gsi = gsi_last_bb (new_bb); 1595 } 1596 1597 /* csui = (1 << (word_mode) idx) */ 1598 csui = make_ssa_name (word_type_node); 1599 tmp = fold_build2 (LSHIFT_EXPR, word_type_node, word_mode_one, 1600 fold_convert (word_type_node, idx)); 1601 tmp = force_gimple_operand_gsi (&gsi, tmp, 1602 /*simple=*/false, NULL_TREE, 1603 /*before=*/true, GSI_SAME_STMT); 1604 shift_stmt = gimple_build_assign (csui, tmp); 1605 gsi_insert_before (&gsi, shift_stmt, GSI_SAME_STMT); 1606 update_stmt (shift_stmt); 1607 1608 profile_probability prob = profile_probability::always (); 1609 1610 /* for each unique set of cases: 1611 if (const & csui) goto target */ 1612 for (k = 0; k < count; k++) 1613 { 1614 prob = profile_probability::always ().apply_scale (test[k].bits, 1615 bt_range); 1616 bt_range -= test[k].bits; 1617 tmp = wide_int_to_tree (word_type_node, test[k].mask); 1618 tmp = fold_build2 (BIT_AND_EXPR, word_type_node, csui, tmp); 1619 tmp = force_gimple_operand_gsi (&gsi, tmp, 1620 /*simple=*/true, NULL_TREE, 1621 /*before=*/true, GSI_SAME_STMT); 1622 tmp = fold_build2 (NE_EXPR, boolean_type_node, tmp, word_mode_zero); 1623 basic_block new_bb 1624 = hoist_edge_and_branch_if_true (&gsi, tmp, test[k].target_bb, prob); 1625 gsi = gsi_last_bb (new_bb); 1626 } 1627 1628 /* We should have removed all edges now. */ 1629 gcc_assert (EDGE_COUNT (gsi_bb (gsi)->succs) == 0); 1630 1631 /* If nothing matched, go to the default label. */ 1632 edge e = make_edge (gsi_bb (gsi), default_bb, EDGE_FALLTHRU); 1633 e->probability = profile_probability::always (); 1634 } 1635 1636 /* Split the basic block at the statement pointed to by GSIP, and insert 1637 a branch to the target basic block of E_TRUE conditional on tree 1638 expression COND. 1639 1640 It is assumed that there is already an edge from the to-be-split 1641 basic block to E_TRUE->dest block. This edge is removed, and the 1642 profile information on the edge is re-used for the new conditional 1643 jump. 1644 1645 The CFG is updated. The dominator tree will not be valid after 1646 this transformation, but the immediate dominators are updated if 1647 UPDATE_DOMINATORS is true. 1648 1649 Returns the newly created basic block. */ 1650 1651 basic_block 1652 bit_test_cluster::hoist_edge_and_branch_if_true (gimple_stmt_iterator *gsip, 1653 tree cond, basic_block case_bb, 1654 profile_probability prob) 1655 { 1656 tree tmp; 1657 gcond *cond_stmt; 1658 edge e_false; 1659 basic_block new_bb, split_bb = gsi_bb (*gsip); 1660 1661 edge e_true = make_edge (split_bb, case_bb, EDGE_TRUE_VALUE); 1662 e_true->probability = prob; 1663 gcc_assert (e_true->src == split_bb); 1664 1665 tmp = force_gimple_operand_gsi (gsip, cond, /*simple=*/true, NULL, 1666 /*before=*/true, GSI_SAME_STMT); 1667 cond_stmt = gimple_build_cond_from_tree (tmp, NULL_TREE, NULL_TREE); 1668 gsi_insert_before (gsip, cond_stmt, GSI_SAME_STMT); 1669 1670 e_false = split_block (split_bb, cond_stmt); 1671 new_bb = e_false->dest; 1672 redirect_edge_pred (e_true, split_bb); 1673 1674 e_false->flags &= ~EDGE_FALLTHRU; 1675 e_false->flags |= EDGE_FALSE_VALUE; 1676 e_false->probability = e_true->probability.invert (); 1677 new_bb->count = e_false->count (); 1678 1679 return new_bb; 1680 } 1681 1682 /* Compute the number of case labels that correspond to each outgoing edge of 1683 switch statement. Record this information in the aux field of the edge. */ 1684 1685 void 1686 switch_decision_tree::compute_cases_per_edge () 1687 { 1688 reset_out_edges_aux (m_switch); 1689 int ncases = gimple_switch_num_labels (m_switch); 1690 for (int i = ncases - 1; i >= 1; --i) 1691 { 1692 edge case_edge = gimple_switch_edge (cfun, m_switch, i); 1693 case_edge->aux = (void *) ((intptr_t) (case_edge->aux) + 1); 1694 } 1695 } 1696 1697 /* Analyze switch statement and return true when the statement is expanded 1698 as decision tree. */ 1699 1700 bool 1701 switch_decision_tree::analyze_switch_statement () 1702 { 1703 unsigned l = gimple_switch_num_labels (m_switch); 1704 basic_block bb = gimple_bb (m_switch); 1705 auto_vec<cluster *> clusters; 1706 clusters.create (l - 1); 1707 1708 basic_block default_bb = gimple_switch_default_bb (cfun, m_switch); 1709 m_case_bbs.reserve (l); 1710 m_case_bbs.quick_push (default_bb); 1711 1712 compute_cases_per_edge (); 1713 1714 for (unsigned i = 1; i < l; i++) 1715 { 1716 tree elt = gimple_switch_label (m_switch, i); 1717 tree lab = CASE_LABEL (elt); 1718 basic_block case_bb = label_to_block (cfun, lab); 1719 edge case_edge = find_edge (bb, case_bb); 1720 tree low = CASE_LOW (elt); 1721 tree high = CASE_HIGH (elt); 1722 1723 profile_probability p 1724 = case_edge->probability.apply_scale (1, (intptr_t) (case_edge->aux)); 1725 clusters.quick_push (new simple_cluster (low, high, elt, case_edge->dest, 1726 p)); 1727 m_case_bbs.quick_push (case_edge->dest); 1728 } 1729 1730 reset_out_edges_aux (m_switch); 1731 1732 /* Find jump table clusters. */ 1733 vec<cluster *> output = jump_table_cluster::find_jump_tables (clusters); 1734 1735 /* Find bit test clusters. */ 1736 vec<cluster *> output2; 1737 auto_vec<cluster *> tmp; 1738 output2.create (1); 1739 tmp.create (1); 1740 1741 for (unsigned i = 0; i < output.length (); i++) 1742 { 1743 cluster *c = output[i]; 1744 if (c->get_type () != SIMPLE_CASE) 1745 { 1746 if (!tmp.is_empty ()) 1747 { 1748 vec<cluster *> n = bit_test_cluster::find_bit_tests (tmp); 1749 output2.safe_splice (n); 1750 n.release (); 1751 tmp.truncate (0); 1752 } 1753 output2.safe_push (c); 1754 } 1755 else 1756 tmp.safe_push (c); 1757 } 1758 1759 /* We still can have a temporary vector to test. */ 1760 if (!tmp.is_empty ()) 1761 { 1762 vec<cluster *> n = bit_test_cluster::find_bit_tests (tmp); 1763 output2.safe_splice (n); 1764 n.release (); 1765 } 1766 1767 if (dump_file) 1768 { 1769 fprintf (dump_file, ";; GIMPLE switch case clusters: "); 1770 for (unsigned i = 0; i < output2.length (); i++) 1771 output2[i]->dump (dump_file, dump_flags & TDF_DETAILS); 1772 fprintf (dump_file, "\n"); 1773 } 1774 1775 output.release (); 1776 1777 bool expanded = try_switch_expansion (output2); 1778 1779 for (unsigned i = 0; i < output2.length (); i++) 1780 delete output2[i]; 1781 1782 output2.release (); 1783 1784 return expanded; 1785 } 1786 1787 /* Attempt to expand CLUSTERS as a decision tree. Return true when 1788 expanded. */ 1789 1790 bool 1791 switch_decision_tree::try_switch_expansion (vec<cluster *> &clusters) 1792 { 1793 tree index_expr = gimple_switch_index (m_switch); 1794 tree index_type = TREE_TYPE (index_expr); 1795 basic_block bb = gimple_bb (m_switch); 1796 1797 if (gimple_switch_num_labels (m_switch) == 1 1798 || range_check_type (index_type) == NULL_TREE) 1799 return false; 1800 1801 /* Find the default case target label. */ 1802 edge default_edge = gimple_switch_default_edge (cfun, m_switch); 1803 m_default_bb = default_edge->dest; 1804 1805 /* Do the insertion of a case label into m_case_list. The labels are 1806 fed to us in descending order from the sorted vector of case labels used 1807 in the tree part of the middle end. So the list we construct is 1808 sorted in ascending order. */ 1809 1810 for (int i = clusters.length () - 1; i >= 0; i--) 1811 { 1812 case_tree_node *r = m_case_list; 1813 m_case_list = m_case_node_pool.allocate (); 1814 m_case_list->m_right = r; 1815 m_case_list->m_c = clusters[i]; 1816 } 1817 1818 record_phi_operand_mapping (); 1819 1820 /* Split basic block that contains the gswitch statement. */ 1821 gimple_stmt_iterator gsi = gsi_last_bb (bb); 1822 edge e; 1823 if (gsi_end_p (gsi)) 1824 e = split_block_after_labels (bb); 1825 else 1826 { 1827 gsi_prev (&gsi); 1828 e = split_block (bb, gsi_stmt (gsi)); 1829 } 1830 bb = split_edge (e); 1831 1832 /* Create new basic blocks for non-case clusters where specific expansion 1833 needs to happen. */ 1834 for (unsigned i = 0; i < clusters.length (); i++) 1835 if (clusters[i]->get_type () != SIMPLE_CASE) 1836 { 1837 clusters[i]->m_case_bb = create_empty_bb (bb); 1838 clusters[i]->m_case_bb->loop_father = bb->loop_father; 1839 } 1840 1841 /* Do not do an extra work for a single cluster. */ 1842 if (clusters.length () == 1 1843 && clusters[0]->get_type () != SIMPLE_CASE) 1844 { 1845 cluster *c = clusters[0]; 1846 c->emit (index_expr, index_type, 1847 gimple_switch_default_label (m_switch), m_default_bb); 1848 redirect_edge_succ (single_succ_edge (bb), c->m_case_bb); 1849 } 1850 else 1851 { 1852 emit (bb, index_expr, default_edge->probability, index_type); 1853 1854 /* Emit cluster-specific switch handling. */ 1855 for (unsigned i = 0; i < clusters.length (); i++) 1856 if (clusters[i]->get_type () != SIMPLE_CASE) 1857 clusters[i]->emit (index_expr, index_type, 1858 gimple_switch_default_label (m_switch), 1859 m_default_bb); 1860 } 1861 1862 fix_phi_operands_for_edges (); 1863 1864 return true; 1865 } 1866 1867 /* Before switch transformation, record all SSA_NAMEs defined in switch BB 1868 and used in a label basic block. */ 1869 1870 void 1871 switch_decision_tree::record_phi_operand_mapping () 1872 { 1873 basic_block switch_bb = gimple_bb (m_switch); 1874 /* Record all PHI nodes that have to be fixed after conversion. */ 1875 for (unsigned i = 0; i < m_case_bbs.length (); i++) 1876 { 1877 gphi_iterator gsi; 1878 basic_block bb = m_case_bbs[i]; 1879 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi)) 1880 { 1881 gphi *phi = gsi.phi (); 1882 1883 for (unsigned i = 0; i < gimple_phi_num_args (phi); i++) 1884 { 1885 basic_block phi_src_bb = gimple_phi_arg_edge (phi, i)->src; 1886 if (phi_src_bb == switch_bb) 1887 { 1888 tree def = gimple_phi_arg_def (phi, i); 1889 tree result = gimple_phi_result (phi); 1890 m_phi_mapping.put (result, def); 1891 break; 1892 } 1893 } 1894 } 1895 } 1896 } 1897 1898 /* Append new operands to PHI statements that were introduced due to 1899 addition of new edges to case labels. */ 1900 1901 void 1902 switch_decision_tree::fix_phi_operands_for_edges () 1903 { 1904 gphi_iterator gsi; 1905 1906 for (unsigned i = 0; i < m_case_bbs.length (); i++) 1907 { 1908 basic_block bb = m_case_bbs[i]; 1909 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi)) 1910 { 1911 gphi *phi = gsi.phi (); 1912 for (unsigned j = 0; j < gimple_phi_num_args (phi); j++) 1913 { 1914 tree def = gimple_phi_arg_def (phi, j); 1915 if (def == NULL_TREE) 1916 { 1917 edge e = gimple_phi_arg_edge (phi, j); 1918 tree *definition 1919 = m_phi_mapping.get (gimple_phi_result (phi)); 1920 gcc_assert (definition); 1921 add_phi_arg (phi, *definition, e, UNKNOWN_LOCATION); 1922 } 1923 } 1924 } 1925 } 1926 } 1927 1928 /* Generate a decision tree, switching on INDEX_EXPR and jumping to 1929 one of the labels in CASE_LIST or to the DEFAULT_LABEL. 1930 1931 We generate a binary decision tree to select the appropriate target 1932 code. */ 1933 1934 void 1935 switch_decision_tree::emit (basic_block bb, tree index_expr, 1936 profile_probability default_prob, tree index_type) 1937 { 1938 balance_case_nodes (&m_case_list, NULL); 1939 1940 if (dump_file) 1941 dump_function_to_file (current_function_decl, dump_file, dump_flags); 1942 if (dump_file && (dump_flags & TDF_DETAILS)) 1943 { 1944 int indent_step = ceil_log2 (TYPE_PRECISION (index_type)) + 2; 1945 fprintf (dump_file, ";; Expanding GIMPLE switch as decision tree:\n"); 1946 gcc_assert (m_case_list != NULL); 1947 dump_case_nodes (dump_file, m_case_list, indent_step, 0); 1948 } 1949 1950 bb = emit_case_nodes (bb, index_expr, m_case_list, default_prob, index_type, 1951 gimple_location (m_switch)); 1952 1953 if (bb) 1954 emit_jump (bb, m_default_bb); 1955 1956 /* Remove all edges and do just an edge that will reach default_bb. */ 1957 bb = gimple_bb (m_switch); 1958 gimple_stmt_iterator gsi = gsi_last_bb (bb); 1959 gsi_remove (&gsi, true); 1960 1961 delete_basic_block (bb); 1962 } 1963 1964 /* Take an ordered list of case nodes 1965 and transform them into a near optimal binary tree, 1966 on the assumption that any target code selection value is as 1967 likely as any other. 1968 1969 The transformation is performed by splitting the ordered 1970 list into two equal sections plus a pivot. The parts are 1971 then attached to the pivot as left and right branches. Each 1972 branch is then transformed recursively. */ 1973 1974 void 1975 switch_decision_tree::balance_case_nodes (case_tree_node **head, 1976 case_tree_node *parent) 1977 { 1978 case_tree_node *np; 1979 1980 np = *head; 1981 if (np) 1982 { 1983 int i = 0; 1984 int ranges = 0; 1985 case_tree_node **npp; 1986 case_tree_node *left; 1987 profile_probability prob = profile_probability::never (); 1988 1989 /* Count the number of entries on branch. Also count the ranges. */ 1990 1991 while (np) 1992 { 1993 if (!tree_int_cst_equal (np->m_c->get_low (), np->m_c->get_high ())) 1994 ranges++; 1995 1996 i++; 1997 prob += np->m_c->m_prob; 1998 np = np->m_right; 1999 } 2000 2001 if (i > 2) 2002 { 2003 /* Split this list if it is long enough for that to help. */ 2004 npp = head; 2005 left = *npp; 2006 profile_probability pivot_prob = prob.apply_scale (1, 2); 2007 2008 /* Find the place in the list that bisects the list's total cost, 2009 where ranges count as 2. */ 2010 while (1) 2011 { 2012 /* Skip nodes while their probability does not reach 2013 that amount. */ 2014 prob -= (*npp)->m_c->m_prob; 2015 if ((prob.initialized_p () && prob < pivot_prob) 2016 || ! (*npp)->m_right) 2017 break; 2018 npp = &(*npp)->m_right; 2019 } 2020 2021 np = *npp; 2022 *npp = 0; 2023 *head = np; 2024 np->m_parent = parent; 2025 np->m_left = left == np ? NULL : left; 2026 2027 /* Optimize each of the two split parts. */ 2028 balance_case_nodes (&np->m_left, np); 2029 balance_case_nodes (&np->m_right, np); 2030 np->m_c->m_subtree_prob = np->m_c->m_prob; 2031 if (np->m_left) 2032 np->m_c->m_subtree_prob += np->m_left->m_c->m_subtree_prob; 2033 if (np->m_right) 2034 np->m_c->m_subtree_prob += np->m_right->m_c->m_subtree_prob; 2035 } 2036 else 2037 { 2038 /* Else leave this branch as one level, 2039 but fill in `parent' fields. */ 2040 np = *head; 2041 np->m_parent = parent; 2042 np->m_c->m_subtree_prob = np->m_c->m_prob; 2043 for (; np->m_right; np = np->m_right) 2044 { 2045 np->m_right->m_parent = np; 2046 (*head)->m_c->m_subtree_prob += np->m_right->m_c->m_subtree_prob; 2047 } 2048 } 2049 } 2050 } 2051 2052 /* Dump ROOT, a list or tree of case nodes, to file. */ 2053 2054 void 2055 switch_decision_tree::dump_case_nodes (FILE *f, case_tree_node *root, 2056 int indent_step, int indent_level) 2057 { 2058 if (root == 0) 2059 return; 2060 indent_level++; 2061 2062 dump_case_nodes (f, root->m_left, indent_step, indent_level); 2063 2064 fputs (";; ", f); 2065 fprintf (f, "%*s", indent_step * indent_level, ""); 2066 root->m_c->dump (f); 2067 root->m_c->m_prob.dump (f); 2068 fputs (" subtree: ", f); 2069 root->m_c->m_subtree_prob.dump (f); 2070 fputs (")\n", f); 2071 2072 dump_case_nodes (f, root->m_right, indent_step, indent_level); 2073 } 2074 2075 2076 /* Add an unconditional jump to CASE_BB that happens in basic block BB. */ 2077 2078 void 2079 switch_decision_tree::emit_jump (basic_block bb, basic_block case_bb) 2080 { 2081 edge e = single_succ_edge (bb); 2082 redirect_edge_succ (e, case_bb); 2083 } 2084 2085 /* Generate code to compare OP0 with OP1 so that the condition codes are 2086 set and to jump to LABEL_BB if the condition is true. 2087 COMPARISON is the GIMPLE comparison (EQ, NE, GT, etc.). 2088 PROB is the probability of jumping to LABEL_BB. */ 2089 2090 basic_block 2091 switch_decision_tree::emit_cmp_and_jump_insns (basic_block bb, tree op0, 2092 tree op1, tree_code comparison, 2093 basic_block label_bb, 2094 profile_probability prob, 2095 location_t loc) 2096 { 2097 // TODO: it's once called with lhs != index. 2098 op1 = fold_convert (TREE_TYPE (op0), op1); 2099 2100 gcond *cond = gimple_build_cond (comparison, op0, op1, NULL_TREE, NULL_TREE); 2101 gimple_set_location (cond, loc); 2102 gimple_stmt_iterator gsi = gsi_last_bb (bb); 2103 gsi_insert_after (&gsi, cond, GSI_NEW_STMT); 2104 2105 gcc_assert (single_succ_p (bb)); 2106 2107 /* Make a new basic block where false branch will take place. */ 2108 edge false_edge = split_block (bb, cond); 2109 false_edge->flags = EDGE_FALSE_VALUE; 2110 false_edge->probability = prob.invert (); 2111 2112 edge true_edge = make_edge (bb, label_bb, EDGE_TRUE_VALUE); 2113 true_edge->probability = prob; 2114 2115 return false_edge->dest; 2116 } 2117 2118 /* Generate code to jump to LABEL if OP0 and OP1 are equal. 2119 PROB is the probability of jumping to LABEL_BB. 2120 BB is a basic block where the new condition will be placed. */ 2121 2122 basic_block 2123 switch_decision_tree::do_jump_if_equal (basic_block bb, tree op0, tree op1, 2124 basic_block label_bb, 2125 profile_probability prob, 2126 location_t loc) 2127 { 2128 op1 = fold_convert (TREE_TYPE (op0), op1); 2129 2130 gcond *cond = gimple_build_cond (EQ_EXPR, op0, op1, NULL_TREE, NULL_TREE); 2131 gimple_set_location (cond, loc); 2132 gimple_stmt_iterator gsi = gsi_last_bb (bb); 2133 gsi_insert_before (&gsi, cond, GSI_SAME_STMT); 2134 2135 gcc_assert (single_succ_p (bb)); 2136 2137 /* Make a new basic block where false branch will take place. */ 2138 edge false_edge = split_block (bb, cond); 2139 false_edge->flags = EDGE_FALSE_VALUE; 2140 false_edge->probability = prob.invert (); 2141 2142 edge true_edge = make_edge (bb, label_bb, EDGE_TRUE_VALUE); 2143 true_edge->probability = prob; 2144 2145 return false_edge->dest; 2146 } 2147 2148 /* Emit step-by-step code to select a case for the value of INDEX. 2149 The thus generated decision tree follows the form of the 2150 case-node binary tree NODE, whose nodes represent test conditions. 2151 DEFAULT_PROB is probability of cases leading to default BB. 2152 INDEX_TYPE is the type of the index of the switch. */ 2153 2154 basic_block 2155 switch_decision_tree::emit_case_nodes (basic_block bb, tree index, 2156 case_tree_node *node, 2157 profile_probability default_prob, 2158 tree index_type, location_t loc) 2159 { 2160 profile_probability p; 2161 2162 /* If node is null, we are done. */ 2163 if (node == NULL) 2164 return bb; 2165 2166 /* Single value case. */ 2167 if (node->m_c->is_single_value_p ()) 2168 { 2169 /* Node is single valued. First see if the index expression matches 2170 this node and then check our children, if any. */ 2171 p = node->m_c->m_prob / (node->m_c->m_subtree_prob + default_prob); 2172 bb = do_jump_if_equal (bb, index, node->m_c->get_low (), 2173 node->m_c->m_case_bb, p, loc); 2174 /* Since this case is taken at this point, reduce its weight from 2175 subtree_weight. */ 2176 node->m_c->m_subtree_prob -= p; 2177 2178 if (node->m_left != NULL && node->m_right != NULL) 2179 { 2180 /* 1) the node has both children 2181 2182 If both children are single-valued cases with no 2183 children, finish up all the work. This way, we can save 2184 one ordered comparison. */ 2185 2186 if (!node->m_left->has_child () 2187 && node->m_left->m_c->is_single_value_p () 2188 && !node->m_right->has_child () 2189 && node->m_right->m_c->is_single_value_p ()) 2190 { 2191 p = (node->m_right->m_c->m_prob 2192 / (node->m_c->m_subtree_prob + default_prob)); 2193 bb = do_jump_if_equal (bb, index, node->m_right->m_c->get_low (), 2194 node->m_right->m_c->m_case_bb, p, loc); 2195 2196 p = (node->m_left->m_c->m_prob 2197 / (node->m_c->m_subtree_prob + default_prob)); 2198 bb = do_jump_if_equal (bb, index, node->m_left->m_c->get_low (), 2199 node->m_left->m_c->m_case_bb, p, loc); 2200 } 2201 else 2202 { 2203 /* Branch to a label where we will handle it later. */ 2204 basic_block test_bb = split_edge (single_succ_edge (bb)); 2205 redirect_edge_succ (single_pred_edge (test_bb), 2206 single_succ_edge (bb)->dest); 2207 2208 p = ((node->m_right->m_c->m_subtree_prob 2209 + default_prob.apply_scale (1, 2)) 2210 / (node->m_c->m_subtree_prob + default_prob)); 2211 bb = emit_cmp_and_jump_insns (bb, index, node->m_c->get_high (), 2212 GT_EXPR, test_bb, p, loc); 2213 default_prob = default_prob.apply_scale (1, 2); 2214 2215 /* Handle the left-hand subtree. */ 2216 bb = emit_case_nodes (bb, index, node->m_left, 2217 default_prob, index_type, loc); 2218 2219 /* If the left-hand subtree fell through, 2220 don't let it fall into the right-hand subtree. */ 2221 if (bb && m_default_bb) 2222 emit_jump (bb, m_default_bb); 2223 2224 bb = emit_case_nodes (test_bb, index, node->m_right, 2225 default_prob, index_type, loc); 2226 } 2227 } 2228 else if (node->m_left == NULL && node->m_right != NULL) 2229 { 2230 /* 2) the node has only right child. */ 2231 2232 /* Here we have a right child but no left so we issue a conditional 2233 branch to default and process the right child. 2234 2235 Omit the conditional branch to default if the right child 2236 does not have any children and is single valued; it would 2237 cost too much space to save so little time. */ 2238 2239 if (node->m_right->has_child () 2240 || !node->m_right->m_c->is_single_value_p ()) 2241 { 2242 p = (default_prob.apply_scale (1, 2) 2243 / (node->m_c->m_subtree_prob + default_prob)); 2244 bb = emit_cmp_and_jump_insns (bb, index, node->m_c->get_low (), 2245 LT_EXPR, m_default_bb, p, loc); 2246 default_prob = default_prob.apply_scale (1, 2); 2247 2248 bb = emit_case_nodes (bb, index, node->m_right, default_prob, 2249 index_type, loc); 2250 } 2251 else 2252 { 2253 /* We cannot process node->right normally 2254 since we haven't ruled out the numbers less than 2255 this node's value. So handle node->right explicitly. */ 2256 p = (node->m_right->m_c->m_subtree_prob 2257 / (node->m_c->m_subtree_prob + default_prob)); 2258 bb = do_jump_if_equal (bb, index, node->m_right->m_c->get_low (), 2259 node->m_right->m_c->m_case_bb, p, loc); 2260 } 2261 } 2262 else if (node->m_left != NULL && node->m_right == NULL) 2263 { 2264 /* 3) just one subtree, on the left. Similar case as previous. */ 2265 2266 if (node->m_left->has_child () 2267 || !node->m_left->m_c->is_single_value_p ()) 2268 { 2269 p = (default_prob.apply_scale (1, 2) 2270 / (node->m_c->m_subtree_prob + default_prob)); 2271 bb = emit_cmp_and_jump_insns (bb, index, node->m_c->get_high (), 2272 GT_EXPR, m_default_bb, p, loc); 2273 default_prob = default_prob.apply_scale (1, 2); 2274 2275 bb = emit_case_nodes (bb, index, node->m_left, default_prob, 2276 index_type, loc); 2277 } 2278 else 2279 { 2280 /* We cannot process node->left normally 2281 since we haven't ruled out the numbers less than 2282 this node's value. So handle node->left explicitly. */ 2283 p = (node->m_left->m_c->m_subtree_prob 2284 / (node->m_c->m_subtree_prob + default_prob)); 2285 bb = do_jump_if_equal (bb, index, node->m_left->m_c->get_low (), 2286 node->m_left->m_c->m_case_bb, p, loc); 2287 } 2288 } 2289 } 2290 else 2291 { 2292 /* Node is a range. These cases are very similar to those for a single 2293 value, except that we do not start by testing whether this node 2294 is the one to branch to. */ 2295 if (node->has_child () || node->m_c->get_type () != SIMPLE_CASE) 2296 { 2297 /* Branch to a label where we will handle it later. */ 2298 basic_block test_bb = split_edge (single_succ_edge (bb)); 2299 redirect_edge_succ (single_pred_edge (test_bb), 2300 single_succ_edge (bb)->dest); 2301 2302 2303 profile_probability right_prob = profile_probability::never (); 2304 if (node->m_right) 2305 right_prob = node->m_right->m_c->m_subtree_prob; 2306 p = ((right_prob + default_prob.apply_scale (1, 2)) 2307 / (node->m_c->m_subtree_prob + default_prob)); 2308 2309 bb = emit_cmp_and_jump_insns (bb, index, node->m_c->get_high (), 2310 GT_EXPR, test_bb, p, loc); 2311 default_prob = default_prob.apply_scale (1, 2); 2312 2313 /* Value belongs to this node or to the left-hand subtree. */ 2314 p = node->m_c->m_prob / (node->m_c->m_subtree_prob + default_prob); 2315 bb = emit_cmp_and_jump_insns (bb, index, node->m_c->get_low (), 2316 GE_EXPR, node->m_c->m_case_bb, p, loc); 2317 2318 /* Handle the left-hand subtree. */ 2319 bb = emit_case_nodes (bb, index, node->m_left, 2320 default_prob, index_type, loc); 2321 2322 /* If the left-hand subtree fell through, 2323 don't let it fall into the right-hand subtree. */ 2324 if (bb && m_default_bb) 2325 emit_jump (bb, m_default_bb); 2326 2327 bb = emit_case_nodes (test_bb, index, node->m_right, 2328 default_prob, index_type, loc); 2329 } 2330 else 2331 { 2332 /* Node has no children so we check low and high bounds to remove 2333 redundant tests. Only one of the bounds can exist, 2334 since otherwise this node is bounded--a case tested already. */ 2335 tree lhs, rhs; 2336 generate_range_test (bb, index, node->m_c->get_low (), 2337 node->m_c->get_high (), &lhs, &rhs); 2338 p = default_prob / (node->m_c->m_subtree_prob + default_prob); 2339 2340 bb = emit_cmp_and_jump_insns (bb, lhs, rhs, GT_EXPR, 2341 m_default_bb, p, loc); 2342 2343 emit_jump (bb, node->m_c->m_case_bb); 2344 return NULL; 2345 } 2346 } 2347 2348 return bb; 2349 } 2350 2351 /* The main function of the pass scans statements for switches and invokes 2352 process_switch on them. */ 2353 2354 namespace { 2355 2356 const pass_data pass_data_convert_switch = 2357 { 2358 GIMPLE_PASS, /* type */ 2359 "switchconv", /* name */ 2360 OPTGROUP_NONE, /* optinfo_flags */ 2361 TV_TREE_SWITCH_CONVERSION, /* tv_id */ 2362 ( PROP_cfg | PROP_ssa ), /* properties_required */ 2363 0, /* properties_provided */ 2364 0, /* properties_destroyed */ 2365 0, /* todo_flags_start */ 2366 TODO_update_ssa, /* todo_flags_finish */ 2367 }; 2368 2369 class pass_convert_switch : public gimple_opt_pass 2370 { 2371 public: 2372 pass_convert_switch (gcc::context *ctxt) 2373 : gimple_opt_pass (pass_data_convert_switch, ctxt) 2374 {} 2375 2376 /* opt_pass methods: */ 2377 virtual bool gate (function *) { return flag_tree_switch_conversion != 0; } 2378 virtual unsigned int execute (function *); 2379 2380 }; // class pass_convert_switch 2381 2382 unsigned int 2383 pass_convert_switch::execute (function *fun) 2384 { 2385 basic_block bb; 2386 bool cfg_altered = false; 2387 2388 FOR_EACH_BB_FN (bb, fun) 2389 { 2390 gimple *stmt = last_stmt (bb); 2391 if (stmt && gimple_code (stmt) == GIMPLE_SWITCH) 2392 { 2393 if (dump_file) 2394 { 2395 expanded_location loc = expand_location (gimple_location (stmt)); 2396 2397 fprintf (dump_file, "beginning to process the following " 2398 "SWITCH statement (%s:%d) : ------- \n", 2399 loc.file, loc.line); 2400 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM); 2401 putc ('\n', dump_file); 2402 } 2403 2404 switch_conversion sconv; 2405 sconv.expand (as_a <gswitch *> (stmt)); 2406 cfg_altered |= sconv.m_cfg_altered; 2407 if (!sconv.m_reason) 2408 { 2409 if (dump_file) 2410 { 2411 fputs ("Switch converted\n", dump_file); 2412 fputs ("--------------------------------\n", dump_file); 2413 } 2414 2415 /* Make no effort to update the post-dominator tree. 2416 It is actually not that hard for the transformations 2417 we have performed, but it is not supported 2418 by iterate_fix_dominators. */ 2419 free_dominance_info (CDI_POST_DOMINATORS); 2420 } 2421 else 2422 { 2423 if (dump_file) 2424 { 2425 fputs ("Bailing out - ", dump_file); 2426 fputs (sconv.m_reason, dump_file); 2427 fputs ("\n--------------------------------\n", dump_file); 2428 } 2429 } 2430 } 2431 } 2432 2433 return cfg_altered ? TODO_cleanup_cfg : 0;; 2434 } 2435 2436 } // anon namespace 2437 2438 gimple_opt_pass * 2439 make_pass_convert_switch (gcc::context *ctxt) 2440 { 2441 return new pass_convert_switch (ctxt); 2442 } 2443 2444 /* The main function of the pass scans statements for switches and invokes 2445 process_switch on them. */ 2446 2447 namespace { 2448 2449 template <bool O0> class pass_lower_switch: public gimple_opt_pass 2450 { 2451 public: 2452 pass_lower_switch (gcc::context *ctxt) : gimple_opt_pass (data, ctxt) {} 2453 2454 static const pass_data data; 2455 opt_pass * 2456 clone () 2457 { 2458 return new pass_lower_switch<O0> (m_ctxt); 2459 } 2460 2461 virtual bool 2462 gate (function *) 2463 { 2464 return !O0 || !optimize; 2465 } 2466 2467 virtual unsigned int execute (function *fun); 2468 }; // class pass_lower_switch 2469 2470 template <bool O0> 2471 const pass_data pass_lower_switch<O0>::data = { 2472 GIMPLE_PASS, /* type */ 2473 O0 ? "switchlower_O0" : "switchlower", /* name */ 2474 OPTGROUP_NONE, /* optinfo_flags */ 2475 TV_TREE_SWITCH_LOWERING, /* tv_id */ 2476 ( PROP_cfg | PROP_ssa ), /* properties_required */ 2477 0, /* properties_provided */ 2478 0, /* properties_destroyed */ 2479 0, /* todo_flags_start */ 2480 TODO_update_ssa | TODO_cleanup_cfg, /* todo_flags_finish */ 2481 }; 2482 2483 template <bool O0> 2484 unsigned int 2485 pass_lower_switch<O0>::execute (function *fun) 2486 { 2487 basic_block bb; 2488 bool expanded = false; 2489 2490 auto_vec<gimple *> switch_statements; 2491 switch_statements.create (1); 2492 2493 FOR_EACH_BB_FN (bb, fun) 2494 { 2495 gimple *stmt = last_stmt (bb); 2496 gswitch *swtch; 2497 if (stmt && (swtch = dyn_cast<gswitch *> (stmt))) 2498 { 2499 if (!O0) 2500 group_case_labels_stmt (swtch); 2501 switch_statements.safe_push (swtch); 2502 } 2503 } 2504 2505 for (unsigned i = 0; i < switch_statements.length (); i++) 2506 { 2507 gimple *stmt = switch_statements[i]; 2508 if (dump_file) 2509 { 2510 expanded_location loc = expand_location (gimple_location (stmt)); 2511 2512 fprintf (dump_file, "beginning to process the following " 2513 "SWITCH statement (%s:%d) : ------- \n", 2514 loc.file, loc.line); 2515 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM); 2516 putc ('\n', dump_file); 2517 } 2518 2519 gswitch *swtch = dyn_cast<gswitch *> (stmt); 2520 if (swtch) 2521 { 2522 switch_decision_tree dt (swtch); 2523 expanded |= dt.analyze_switch_statement (); 2524 } 2525 } 2526 2527 if (expanded) 2528 { 2529 free_dominance_info (CDI_DOMINATORS); 2530 free_dominance_info (CDI_POST_DOMINATORS); 2531 mark_virtual_operands_for_renaming (cfun); 2532 } 2533 2534 return 0; 2535 } 2536 2537 } // anon namespace 2538 2539 gimple_opt_pass * 2540 make_pass_lower_switch_O0 (gcc::context *ctxt) 2541 { 2542 return new pass_lower_switch<true> (ctxt); 2543 } 2544 gimple_opt_pass * 2545 make_pass_lower_switch (gcc::context *ctxt) 2546 { 2547 return new pass_lower_switch<false> (ctxt); 2548 } 2549 2550 2551