1 /* Generic routines for manipulating SSA_NAME expressions 2 Copyright (C) 2003-2020 Free Software Foundation, Inc. 3 4 This file is part of GCC. 5 6 GCC is free software; you can redistribute it and/or modify 7 it under the terms of the GNU General Public License as published by 8 the Free Software Foundation; either version 3, or (at your option) 9 any later version. 10 11 GCC is distributed in the hope that it will be useful, 12 but WITHOUT ANY WARRANTY; without even the implied warranty of 13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 GNU General Public License for more details. 15 16 You should have received a copy of the GNU General Public License 17 along with GCC; see the file COPYING3. If not see 18 <http://www.gnu.org/licenses/>. */ 19 20 #include "config.h" 21 #include "system.h" 22 #include "coretypes.h" 23 #include "backend.h" 24 #include "tree.h" 25 #include "gimple.h" 26 #include "tree-pass.h" 27 #include "ssa.h" 28 #include "gimple-iterator.h" 29 #include "stor-layout.h" 30 #include "tree-into-ssa.h" 31 #include "tree-ssa.h" 32 #include "cfgloop.h" 33 #include "tree-scalar-evolution.h" 34 35 /* Rewriting a function into SSA form can create a huge number of SSA_NAMEs, 36 many of which may be thrown away shortly after their creation if jumps 37 were threaded through PHI nodes. 38 39 While our garbage collection mechanisms will handle this situation, it 40 is extremely wasteful to create nodes and throw them away, especially 41 when the nodes can be reused. 42 43 For PR 8361, we can significantly reduce the number of nodes allocated 44 and thus the total amount of memory allocated by managing SSA_NAMEs a 45 little. This additionally helps reduce the amount of work done by the 46 garbage collector. Similar results have been seen on a wider variety 47 of tests (such as the compiler itself). 48 49 Right now we maintain our free list on a per-function basis. It may 50 or may not make sense to maintain the free list for the duration of 51 a compilation unit. 52 53 External code should rely solely upon HIGHEST_SSA_VERSION and the 54 externally defined functions. External code should not know about 55 the details of the free list management. 56 57 External code should also not assume the version number on nodes is 58 monotonically increasing. We reuse the version number when we 59 reuse an SSA_NAME expression. This helps keep arrays and bitmaps 60 more compact. */ 61 62 63 /* Version numbers with special meanings. We start allocating new version 64 numbers after the special ones. */ 65 #define UNUSED_NAME_VERSION 0 66 67 unsigned int ssa_name_nodes_reused; 68 unsigned int ssa_name_nodes_created; 69 70 #define FREE_SSANAMES(fun) (fun)->gimple_df->free_ssanames 71 #define FREE_SSANAMES_QUEUE(fun) (fun)->gimple_df->free_ssanames_queue 72 73 74 /* Initialize management of SSA_NAMEs to default SIZE. If SIZE is 75 zero use default. */ 76 77 void 78 init_ssanames (struct function *fn, int size) 79 { 80 if (size < 50) 81 size = 50; 82 83 vec_alloc (SSANAMES (fn), size); 84 85 /* Version 0 is special, so reserve the first slot in the table. Though 86 currently unused, we may use version 0 in alias analysis as part of 87 the heuristics used to group aliases when the alias sets are too 88 large. 89 90 We use vec::quick_push here because we know that SSA_NAMES has at 91 least 50 elements reserved in it. */ 92 SSANAMES (fn)->quick_push (NULL_TREE); 93 FREE_SSANAMES (fn) = NULL; 94 FREE_SSANAMES_QUEUE (fn) = NULL; 95 96 fn->gimple_df->ssa_renaming_needed = 0; 97 fn->gimple_df->rename_vops = 0; 98 } 99 100 /* Finalize management of SSA_NAMEs. */ 101 102 void 103 fini_ssanames (struct function *fn) 104 { 105 vec_free (SSANAMES (fn)); 106 vec_free (FREE_SSANAMES (fn)); 107 vec_free (FREE_SSANAMES_QUEUE (fn)); 108 } 109 110 /* Dump some simple statistics regarding the re-use of SSA_NAME nodes. */ 111 112 void 113 ssanames_print_statistics (void) 114 { 115 fprintf (stderr, "%-32s" PRsa (11) "\n", "SSA_NAME nodes allocated:", 116 SIZE_AMOUNT (ssa_name_nodes_created)); 117 fprintf (stderr, "%-32s" PRsa (11) "\n", "SSA_NAME nodes reused:", 118 SIZE_AMOUNT (ssa_name_nodes_reused)); 119 } 120 121 /* Verify the state of the SSA_NAME lists. 122 123 There must be no duplicates on the free list. 124 Every name on the free list must be marked as on the free list. 125 Any name on the free list must not appear in the IL. 126 No names can be leaked. */ 127 128 DEBUG_FUNCTION void 129 verify_ssaname_freelists (struct function *fun) 130 { 131 if (!gimple_in_ssa_p (fun)) 132 return; 133 134 auto_bitmap names_in_il; 135 136 /* Walk the entire IL noting every SSA_NAME we see. */ 137 basic_block bb; 138 FOR_EACH_BB_FN (bb, fun) 139 { 140 tree t; 141 /* First note the result and arguments of PHI nodes. */ 142 for (gphi_iterator gsi = gsi_start_phis (bb); 143 !gsi_end_p (gsi); 144 gsi_next (&gsi)) 145 { 146 gphi *phi = gsi.phi (); 147 t = gimple_phi_result (phi); 148 bitmap_set_bit (names_in_il, SSA_NAME_VERSION (t)); 149 150 for (unsigned int i = 0; i < gimple_phi_num_args (phi); i++) 151 { 152 t = gimple_phi_arg_def (phi, i); 153 if (TREE_CODE (t) == SSA_NAME) 154 bitmap_set_bit (names_in_il, SSA_NAME_VERSION (t)); 155 } 156 } 157 158 /* Then note the operands of each statement. */ 159 for (gimple_stmt_iterator gsi = gsi_start_bb (bb); 160 !gsi_end_p (gsi); 161 gsi_next (&gsi)) 162 { 163 ssa_op_iter iter; 164 gimple *stmt = gsi_stmt (gsi); 165 FOR_EACH_SSA_TREE_OPERAND (t, stmt, iter, SSA_OP_ALL_OPERANDS) 166 bitmap_set_bit (names_in_il, SSA_NAME_VERSION (t)); 167 } 168 } 169 170 /* Now walk the free list noting what we find there and verifying 171 there are no duplicates. */ 172 auto_bitmap names_in_freelists; 173 if (FREE_SSANAMES (fun)) 174 { 175 for (unsigned int i = 0; i < FREE_SSANAMES (fun)->length (); i++) 176 { 177 tree t = (*FREE_SSANAMES (fun))[i]; 178 179 /* Verify that the name is marked as being in the free list. */ 180 gcc_assert (SSA_NAME_IN_FREE_LIST (t)); 181 182 /* Verify the name has not already appeared in the free list and 183 note it in the list of names found in the free list. */ 184 gcc_assert (!bitmap_bit_p (names_in_freelists, SSA_NAME_VERSION (t))); 185 bitmap_set_bit (names_in_freelists, SSA_NAME_VERSION (t)); 186 } 187 } 188 189 /* Similarly for the names in the pending free list. */ 190 if (FREE_SSANAMES_QUEUE (fun)) 191 { 192 for (unsigned int i = 0; i < FREE_SSANAMES_QUEUE (fun)->length (); i++) 193 { 194 tree t = (*FREE_SSANAMES_QUEUE (fun))[i]; 195 196 /* Verify that the name is marked as being in the free list. */ 197 gcc_assert (SSA_NAME_IN_FREE_LIST (t)); 198 199 /* Verify the name has not already appeared in the free list and 200 note it in the list of names found in the free list. */ 201 gcc_assert (!bitmap_bit_p (names_in_freelists, SSA_NAME_VERSION (t))); 202 bitmap_set_bit (names_in_freelists, SSA_NAME_VERSION (t)); 203 } 204 } 205 206 /* If any name appears in both the IL and the freelists, then 207 something horrible has happened. */ 208 bool intersect_p = bitmap_intersect_p (names_in_il, names_in_freelists); 209 gcc_assert (!intersect_p); 210 211 /* Names can be queued up for release if there is an ssa update 212 pending. Pretend we saw them in the IL. */ 213 if (names_to_release) 214 bitmap_ior_into (names_in_il, names_to_release); 215 216 /* Function splitting can "lose" SSA_NAMEs in an effort to ensure that 217 debug/non-debug compilations have the same SSA_NAMEs. So for each 218 lost SSA_NAME, see if it's likely one from that wart. These will always 219 be marked as default definitions. So we loosely assume that anything 220 marked as a default definition isn't leaked by pretending they are 221 in the IL. */ 222 for (unsigned int i = UNUSED_NAME_VERSION + 1; i < num_ssa_names; i++) 223 if (ssa_name (i) && SSA_NAME_IS_DEFAULT_DEF (ssa_name (i))) 224 bitmap_set_bit (names_in_il, i); 225 226 unsigned int i; 227 bitmap_iterator bi; 228 auto_bitmap all_names; 229 bitmap_set_range (all_names, UNUSED_NAME_VERSION + 1, num_ssa_names - 1); 230 bitmap_ior_into (names_in_il, names_in_freelists); 231 232 /* Any name not mentioned in the IL and not in the feelists 233 has been leaked. */ 234 EXECUTE_IF_AND_COMPL_IN_BITMAP(all_names, names_in_il, 235 UNUSED_NAME_VERSION + 1, i, bi) 236 gcc_assert (!ssa_name (i)); 237 } 238 239 /* Move all SSA_NAMEs from FREE_SSA_NAMES_QUEUE to FREE_SSA_NAMES. 240 241 We do not, but should have a mode to verify the state of the SSA_NAMEs 242 lists. In particular at this point every name must be in the IL, 243 on the free list or in the queue. Anything else is an error. */ 244 245 void 246 flush_ssaname_freelist (void) 247 { 248 /* If there were any SSA names released reset the SCEV cache. */ 249 if (! vec_safe_is_empty (FREE_SSANAMES_QUEUE (cfun))) 250 scev_reset_htab (); 251 vec_safe_splice (FREE_SSANAMES (cfun), FREE_SSANAMES_QUEUE (cfun)); 252 vec_safe_truncate (FREE_SSANAMES_QUEUE (cfun), 0); 253 } 254 255 /* Initialize SSA_NAME_IMM_USE_NODE of a SSA NAME. */ 256 257 void 258 init_ssa_name_imm_use (tree name) 259 { 260 use_operand_p imm; 261 imm = &(SSA_NAME_IMM_USE_NODE (name)); 262 imm->use = NULL; 263 imm->prev = imm; 264 imm->next = imm; 265 imm->loc.ssa_name = name; 266 } 267 268 /* Return an SSA_NAME node for variable VAR defined in statement STMT 269 in function FN. STMT may be an empty statement for artificial 270 references (e.g., default definitions created when a variable is 271 used without a preceding definition). If VERISON is not zero then 272 allocate the SSA name with that version. */ 273 274 tree 275 make_ssa_name_fn (struct function *fn, tree var, gimple *stmt, 276 unsigned int version) 277 { 278 tree t; 279 gcc_assert (VAR_P (var) 280 || TREE_CODE (var) == PARM_DECL 281 || TREE_CODE (var) == RESULT_DECL 282 || (TYPE_P (var) && is_gimple_reg_type (var))); 283 284 /* Get the specified SSA name version. */ 285 if (version != 0) 286 { 287 t = make_node (SSA_NAME); 288 SSA_NAME_VERSION (t) = version; 289 if (version >= SSANAMES (fn)->length ()) 290 vec_safe_grow_cleared (SSANAMES (fn), version + 1); 291 gcc_assert ((*SSANAMES (fn))[version] == NULL); 292 (*SSANAMES (fn))[version] = t; 293 ssa_name_nodes_created++; 294 } 295 /* If our free list has an element, then use it. */ 296 else if (!vec_safe_is_empty (FREE_SSANAMES (fn))) 297 { 298 t = FREE_SSANAMES (fn)->pop (); 299 ssa_name_nodes_reused++; 300 301 /* The node was cleared out when we put it on the free list, so 302 there is no need to do so again here. */ 303 gcc_assert ((*SSANAMES (fn))[SSA_NAME_VERSION (t)] == NULL); 304 (*SSANAMES (fn))[SSA_NAME_VERSION (t)] = t; 305 } 306 else 307 { 308 t = make_node (SSA_NAME); 309 SSA_NAME_VERSION (t) = SSANAMES (fn)->length (); 310 vec_safe_push (SSANAMES (fn), t); 311 ssa_name_nodes_created++; 312 } 313 314 if (TYPE_P (var)) 315 { 316 TREE_TYPE (t) = TYPE_MAIN_VARIANT (var); 317 SET_SSA_NAME_VAR_OR_IDENTIFIER (t, NULL_TREE); 318 } 319 else 320 { 321 TREE_TYPE (t) = TREE_TYPE (var); 322 SET_SSA_NAME_VAR_OR_IDENTIFIER (t, var); 323 } 324 SSA_NAME_DEF_STMT (t) = stmt; 325 if (POINTER_TYPE_P (TREE_TYPE (t))) 326 SSA_NAME_PTR_INFO (t) = NULL; 327 else 328 SSA_NAME_RANGE_INFO (t) = NULL; 329 330 SSA_NAME_IN_FREE_LIST (t) = 0; 331 SSA_NAME_IS_DEFAULT_DEF (t) = 0; 332 init_ssa_name_imm_use (t); 333 334 return t; 335 } 336 337 /* Helper function for set_range_info. 338 339 Store range information RANGE_TYPE, MIN, and MAX to tree ssa_name 340 NAME. */ 341 342 void 343 set_range_info_raw (tree name, enum value_range_kind range_type, 344 const wide_int_ref &min, const wide_int_ref &max) 345 { 346 gcc_assert (!POINTER_TYPE_P (TREE_TYPE (name))); 347 gcc_assert (range_type == VR_RANGE || range_type == VR_ANTI_RANGE); 348 range_info_def *ri = SSA_NAME_RANGE_INFO (name); 349 unsigned int precision = TYPE_PRECISION (TREE_TYPE (name)); 350 351 /* Allocate if not available. */ 352 if (ri == NULL) 353 { 354 size_t size = (sizeof (range_info_def) 355 + trailing_wide_ints <3>::extra_size (precision)); 356 ri = static_cast<range_info_def *> (ggc_internal_alloc (size)); 357 ri->ints.set_precision (precision); 358 SSA_NAME_RANGE_INFO (name) = ri; 359 ri->set_nonzero_bits (wi::shwi (-1, precision)); 360 } 361 362 /* Record the range type. */ 363 if (SSA_NAME_RANGE_TYPE (name) != range_type) 364 SSA_NAME_ANTI_RANGE_P (name) = (range_type == VR_ANTI_RANGE); 365 366 /* Set the values. */ 367 ri->set_min (min); 368 ri->set_max (max); 369 370 /* If it is a range, try to improve nonzero_bits from the min/max. */ 371 if (range_type == VR_RANGE) 372 { 373 wide_int xorv = ri->get_min () ^ ri->get_max (); 374 if (xorv != 0) 375 xorv = wi::mask (precision - wi::clz (xorv), false, precision); 376 ri->set_nonzero_bits (ri->get_nonzero_bits () & (ri->get_min () | xorv)); 377 } 378 } 379 380 /* Store range information RANGE_TYPE, MIN, and MAX to tree ssa_name 381 NAME while making sure we don't store useless range info. */ 382 383 void 384 set_range_info (tree name, enum value_range_kind range_type, 385 const wide_int_ref &min, const wide_int_ref &max) 386 { 387 gcc_assert (!POINTER_TYPE_P (TREE_TYPE (name))); 388 389 /* A range of the entire domain is really no range at all. */ 390 tree type = TREE_TYPE (name); 391 if (min == wi::min_value (TYPE_PRECISION (type), TYPE_SIGN (type)) 392 && max == wi::max_value (TYPE_PRECISION (type), TYPE_SIGN (type))) 393 { 394 range_info_def *ri = SSA_NAME_RANGE_INFO (name); 395 if (ri == NULL) 396 return; 397 if (ri->get_nonzero_bits () == -1) 398 { 399 ggc_free (ri); 400 SSA_NAME_RANGE_INFO (name) = NULL; 401 return; 402 } 403 } 404 405 set_range_info_raw (name, range_type, min, max); 406 } 407 408 /* Store range information for NAME from a value_range. */ 409 410 void 411 set_range_info (tree name, const value_range &vr) 412 { 413 wide_int min = wi::to_wide (vr.min ()); 414 wide_int max = wi::to_wide (vr.max ()); 415 set_range_info (name, vr.kind (), min, max); 416 } 417 418 /* Gets range information MIN, MAX and returns enum value_range_kind 419 corresponding to tree ssa_name NAME. enum value_range_kind returned 420 is used to determine if MIN and MAX are valid values. */ 421 422 enum value_range_kind 423 get_range_info (const_tree name, wide_int *min, wide_int *max) 424 { 425 gcc_assert (!POINTER_TYPE_P (TREE_TYPE (name))); 426 gcc_assert (min && max); 427 range_info_def *ri = SSA_NAME_RANGE_INFO (name); 428 429 /* Return VR_VARYING for SSA_NAMEs with NULL RANGE_INFO or SSA_NAMEs 430 with integral types width > 2 * HOST_BITS_PER_WIDE_INT precision. */ 431 if (!ri || (GET_MODE_PRECISION (SCALAR_INT_TYPE_MODE (TREE_TYPE (name))) 432 > 2 * HOST_BITS_PER_WIDE_INT)) 433 return VR_VARYING; 434 435 *min = ri->get_min (); 436 *max = ri->get_max (); 437 return SSA_NAME_RANGE_TYPE (name); 438 } 439 440 /* Gets range information corresponding to ssa_name NAME and stores it 441 in a value_range VR. Returns the value_range_kind. */ 442 443 enum value_range_kind 444 get_range_info (const_tree name, value_range &vr) 445 { 446 tree min, max; 447 wide_int wmin, wmax; 448 enum value_range_kind kind = get_range_info (name, &wmin, &wmax); 449 450 if (kind == VR_VARYING) 451 vr.set_varying (TREE_TYPE (name)); 452 else if (kind == VR_UNDEFINED) 453 vr.set_undefined (); 454 else 455 { 456 min = wide_int_to_tree (TREE_TYPE (name), wmin); 457 max = wide_int_to_tree (TREE_TYPE (name), wmax); 458 vr.set (min, max, kind); 459 } 460 return kind; 461 } 462 463 /* Set nonnull attribute to pointer NAME. */ 464 465 void 466 set_ptr_nonnull (tree name) 467 { 468 gcc_assert (POINTER_TYPE_P (TREE_TYPE (name))); 469 struct ptr_info_def *pi = get_ptr_info (name); 470 pi->pt.null = 0; 471 } 472 473 /* Return nonnull attribute of pointer NAME. */ 474 bool 475 get_ptr_nonnull (const_tree name) 476 { 477 gcc_assert (POINTER_TYPE_P (TREE_TYPE (name))); 478 struct ptr_info_def *pi = SSA_NAME_PTR_INFO (name); 479 if (pi == NULL) 480 return false; 481 /* TODO Now pt->null is conservatively set to true in PTA 482 analysis. vrp is the only pass (including ipa-vrp) 483 that clears pt.null via set_ptr_nonull when it knows 484 for sure. PTA will preserves the pt.null value set by VRP. 485 486 When PTA analysis is improved, pt.anything, pt.nonlocal 487 and pt.escaped may also has to be considered before 488 deciding that pointer cannot point to NULL. */ 489 return !pi->pt.null; 490 } 491 492 /* Change non-zero bits bitmask of NAME. */ 493 494 void 495 set_nonzero_bits (tree name, const wide_int_ref &mask) 496 { 497 gcc_assert (!POINTER_TYPE_P (TREE_TYPE (name))); 498 if (SSA_NAME_RANGE_INFO (name) == NULL) 499 { 500 if (mask == -1) 501 return; 502 set_range_info_raw (name, VR_RANGE, 503 wi::to_wide (TYPE_MIN_VALUE (TREE_TYPE (name))), 504 wi::to_wide (TYPE_MAX_VALUE (TREE_TYPE (name)))); 505 } 506 range_info_def *ri = SSA_NAME_RANGE_INFO (name); 507 ri->set_nonzero_bits (mask); 508 } 509 510 /* Return a widest_int with potentially non-zero bits in SSA_NAME 511 NAME, the constant for INTEGER_CST, or -1 if unknown. */ 512 513 wide_int 514 get_nonzero_bits (const_tree name) 515 { 516 if (TREE_CODE (name) == INTEGER_CST) 517 return wi::to_wide (name); 518 519 /* Use element_precision instead of TYPE_PRECISION so complex and 520 vector types get a non-zero precision. */ 521 unsigned int precision = element_precision (TREE_TYPE (name)); 522 if (POINTER_TYPE_P (TREE_TYPE (name))) 523 { 524 struct ptr_info_def *pi = SSA_NAME_PTR_INFO (name); 525 if (pi && pi->align) 526 return wi::shwi (-(HOST_WIDE_INT) pi->align 527 | (HOST_WIDE_INT) pi->misalign, precision); 528 return wi::shwi (-1, precision); 529 } 530 531 range_info_def *ri = SSA_NAME_RANGE_INFO (name); 532 if (!ri) 533 return wi::shwi (-1, precision); 534 535 return ri->get_nonzero_bits (); 536 } 537 538 /* Return TRUE is OP, an SSA_NAME has a range of values [0..1], false 539 otherwise. 540 541 This can be because it is a boolean type, any unsigned integral 542 type with a single bit of precision, or has known range of [0..1] 543 via VRP analysis. */ 544 545 bool 546 ssa_name_has_boolean_range (tree op) 547 { 548 gcc_assert (TREE_CODE (op) == SSA_NAME); 549 550 /* Boolean types always have a range [0..1]. */ 551 if (TREE_CODE (TREE_TYPE (op)) == BOOLEAN_TYPE) 552 return true; 553 554 /* An integral type with a single bit of precision. */ 555 if (INTEGRAL_TYPE_P (TREE_TYPE (op)) 556 && TYPE_UNSIGNED (TREE_TYPE (op)) 557 && TYPE_PRECISION (TREE_TYPE (op)) == 1) 558 return true; 559 560 /* An integral type with more precision, but the object 561 only takes on values [0..1] as determined by VRP 562 analysis. */ 563 if (INTEGRAL_TYPE_P (TREE_TYPE (op)) 564 && (TYPE_PRECISION (TREE_TYPE (op)) > 1) 565 && wi::eq_p (get_nonzero_bits (op), 1)) 566 return true; 567 568 return false; 569 } 570 571 /* We no longer need the SSA_NAME expression VAR, release it so that 572 it may be reused. 573 574 Note it is assumed that no calls to make_ssa_name will be made 575 until all uses of the ssa name are released and that the only 576 use of the SSA_NAME expression is to check its SSA_NAME_VAR. All 577 other fields must be assumed clobbered. */ 578 579 void 580 release_ssa_name_fn (struct function *fn, tree var) 581 { 582 if (!var) 583 return; 584 585 /* Never release the default definition for a symbol. It's a 586 special SSA name that should always exist once it's created. */ 587 if (SSA_NAME_IS_DEFAULT_DEF (var)) 588 return; 589 590 /* If VAR has been registered for SSA updating, don't remove it. 591 After update_ssa has run, the name will be released. */ 592 if (name_registered_for_update_p (var)) 593 { 594 release_ssa_name_after_update_ssa (var); 595 return; 596 } 597 598 /* release_ssa_name can be called multiple times on a single SSA_NAME. 599 However, it should only end up on our free list one time. We 600 keep a status bit in the SSA_NAME node itself to indicate it has 601 been put on the free list. 602 603 Note that once on the freelist you cannot reference the SSA_NAME's 604 defining statement. */ 605 if (! SSA_NAME_IN_FREE_LIST (var)) 606 { 607 int saved_ssa_name_version = SSA_NAME_VERSION (var); 608 use_operand_p imm = &(SSA_NAME_IMM_USE_NODE (var)); 609 610 if (MAY_HAVE_DEBUG_BIND_STMTS) 611 insert_debug_temp_for_var_def (NULL, var); 612 613 if (flag_checking) 614 verify_imm_links (stderr, var); 615 while (imm->next != imm) 616 delink_imm_use (imm->next); 617 618 (*SSANAMES (fn))[SSA_NAME_VERSION (var)] = NULL_TREE; 619 memset (var, 0, tree_size (var)); 620 621 imm->prev = imm; 622 imm->next = imm; 623 imm->loc.ssa_name = var; 624 625 /* First put back the right tree node so that the tree checking 626 macros do not complain. */ 627 TREE_SET_CODE (var, SSA_NAME); 628 629 /* Restore the version number. */ 630 SSA_NAME_VERSION (var) = saved_ssa_name_version; 631 632 /* Note this SSA_NAME is now in the first list. */ 633 SSA_NAME_IN_FREE_LIST (var) = 1; 634 635 /* Put in a non-NULL TREE_TYPE so dumping code will not ICE 636 if it happens to come along a released SSA name and tries 637 to inspect its type. */ 638 TREE_TYPE (var) = error_mark_node; 639 640 /* And finally queue it so that it will be put on the free list. */ 641 vec_safe_push (FREE_SSANAMES_QUEUE (fn), var); 642 } 643 } 644 645 /* If the alignment of the pointer described by PI is known, return true and 646 store the alignment and the deviation from it into *ALIGNP and *MISALIGNP 647 respectively. Otherwise return false. */ 648 649 bool 650 get_ptr_info_alignment (struct ptr_info_def *pi, unsigned int *alignp, 651 unsigned int *misalignp) 652 { 653 if (pi->align) 654 { 655 *alignp = pi->align; 656 *misalignp = pi->misalign; 657 return true; 658 } 659 else 660 return false; 661 } 662 663 /* State that the pointer described by PI has unknown alignment. */ 664 665 void 666 mark_ptr_info_alignment_unknown (struct ptr_info_def *pi) 667 { 668 pi->align = 0; 669 pi->misalign = 0; 670 } 671 672 /* Store the power-of-two byte alignment and the deviation from that 673 alignment of pointer described by PI to ALIOGN and MISALIGN 674 respectively. */ 675 676 void 677 set_ptr_info_alignment (struct ptr_info_def *pi, unsigned int align, 678 unsigned int misalign) 679 { 680 gcc_checking_assert (align != 0); 681 gcc_assert ((align & (align - 1)) == 0); 682 gcc_assert ((misalign & ~(align - 1)) == 0); 683 684 pi->align = align; 685 pi->misalign = misalign; 686 } 687 688 /* If pointer described by PI has known alignment, increase its known 689 misalignment by INCREMENT modulo its current alignment. */ 690 691 void 692 adjust_ptr_info_misalignment (struct ptr_info_def *pi, poly_uint64 increment) 693 { 694 if (pi->align != 0) 695 { 696 increment += pi->misalign; 697 if (!known_misalignment (increment, pi->align, &pi->misalign)) 698 { 699 pi->align = known_alignment (increment); 700 pi->misalign = 0; 701 } 702 } 703 } 704 705 /* Return the alias information associated with pointer T. It creates a 706 new instance if none existed. */ 707 708 struct ptr_info_def * 709 get_ptr_info (tree t) 710 { 711 struct ptr_info_def *pi; 712 713 gcc_assert (POINTER_TYPE_P (TREE_TYPE (t))); 714 715 pi = SSA_NAME_PTR_INFO (t); 716 if (pi == NULL) 717 { 718 pi = ggc_cleared_alloc<ptr_info_def> (); 719 pt_solution_reset (&pi->pt); 720 mark_ptr_info_alignment_unknown (pi); 721 SSA_NAME_PTR_INFO (t) = pi; 722 } 723 724 return pi; 725 } 726 727 728 /* Creates a new SSA name using the template NAME tobe defined by 729 statement STMT in function FN. */ 730 731 tree 732 copy_ssa_name_fn (struct function *fn, tree name, gimple *stmt) 733 { 734 tree new_name; 735 736 if (SSA_NAME_VAR (name)) 737 new_name = make_ssa_name_fn (fn, SSA_NAME_VAR (name), stmt); 738 else 739 { 740 new_name = make_ssa_name_fn (fn, TREE_TYPE (name), stmt); 741 SET_SSA_NAME_VAR_OR_IDENTIFIER (new_name, SSA_NAME_IDENTIFIER (name)); 742 } 743 744 return new_name; 745 } 746 747 748 /* Creates a duplicate of the ptr_info_def at PTR_INFO for use by 749 the SSA name NAME. */ 750 751 void 752 duplicate_ssa_name_ptr_info (tree name, struct ptr_info_def *ptr_info) 753 { 754 struct ptr_info_def *new_ptr_info; 755 756 gcc_assert (POINTER_TYPE_P (TREE_TYPE (name))); 757 gcc_assert (!SSA_NAME_PTR_INFO (name)); 758 759 if (!ptr_info) 760 return; 761 762 new_ptr_info = ggc_alloc<ptr_info_def> (); 763 *new_ptr_info = *ptr_info; 764 765 SSA_NAME_PTR_INFO (name) = new_ptr_info; 766 } 767 768 /* Creates a duplicate of the range_info_def at RANGE_INFO of type 769 RANGE_TYPE for use by the SSA name NAME. */ 770 void 771 duplicate_ssa_name_range_info (tree name, enum value_range_kind range_type, 772 struct range_info_def *range_info) 773 { 774 struct range_info_def *new_range_info; 775 776 gcc_assert (!POINTER_TYPE_P (TREE_TYPE (name))); 777 gcc_assert (!SSA_NAME_RANGE_INFO (name)); 778 779 if (!range_info) 780 return; 781 782 unsigned int precision = TYPE_PRECISION (TREE_TYPE (name)); 783 size_t size = (sizeof (range_info_def) 784 + trailing_wide_ints <3>::extra_size (precision)); 785 new_range_info = static_cast<range_info_def *> (ggc_internal_alloc (size)); 786 memcpy (new_range_info, range_info, size); 787 788 gcc_assert (range_type == VR_RANGE || range_type == VR_ANTI_RANGE); 789 SSA_NAME_ANTI_RANGE_P (name) = (range_type == VR_ANTI_RANGE); 790 SSA_NAME_RANGE_INFO (name) = new_range_info; 791 } 792 793 794 795 /* Creates a duplicate of a ssa name NAME tobe defined by statement STMT 796 in function FN. */ 797 798 tree 799 duplicate_ssa_name_fn (struct function *fn, tree name, gimple *stmt) 800 { 801 tree new_name = copy_ssa_name_fn (fn, name, stmt); 802 if (POINTER_TYPE_P (TREE_TYPE (name))) 803 { 804 struct ptr_info_def *old_ptr_info = SSA_NAME_PTR_INFO (name); 805 806 if (old_ptr_info) 807 duplicate_ssa_name_ptr_info (new_name, old_ptr_info); 808 } 809 else 810 { 811 struct range_info_def *old_range_info = SSA_NAME_RANGE_INFO (name); 812 813 if (old_range_info) 814 duplicate_ssa_name_range_info (new_name, SSA_NAME_RANGE_TYPE (name), 815 old_range_info); 816 } 817 818 return new_name; 819 } 820 821 822 /* Reset all flow sensitive data on NAME such as range-info, nonzero 823 bits and alignment. */ 824 825 void 826 reset_flow_sensitive_info (tree name) 827 { 828 if (POINTER_TYPE_P (TREE_TYPE (name))) 829 { 830 /* points-to info is not flow-sensitive. */ 831 if (SSA_NAME_PTR_INFO (name)) 832 { 833 /* [E]VRP can derive context sensitive alignment info and 834 non-nullness properties. We must reset both. */ 835 mark_ptr_info_alignment_unknown (SSA_NAME_PTR_INFO (name)); 836 SSA_NAME_PTR_INFO (name)->pt.null = 1; 837 } 838 } 839 else 840 SSA_NAME_RANGE_INFO (name) = NULL; 841 } 842 843 /* Clear all flow sensitive data from all statements and PHI definitions 844 in BB. */ 845 846 void 847 reset_flow_sensitive_info_in_bb (basic_block bb) 848 { 849 for (gimple_stmt_iterator gsi = gsi_start_bb (bb); !gsi_end_p (gsi); 850 gsi_next (&gsi)) 851 { 852 gimple *stmt = gsi_stmt (gsi); 853 ssa_op_iter i; 854 tree op; 855 FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_DEF) 856 reset_flow_sensitive_info (op); 857 } 858 859 for (gphi_iterator gsi = gsi_start_phis (bb); !gsi_end_p (gsi); 860 gsi_next (&gsi)) 861 { 862 tree phi_def = gimple_phi_result (gsi.phi ()); 863 reset_flow_sensitive_info (phi_def); 864 } 865 } 866 867 /* Release all the SSA_NAMEs created by STMT. */ 868 869 void 870 release_defs (gimple *stmt) 871 { 872 tree def; 873 ssa_op_iter iter; 874 875 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_ALL_DEFS) 876 if (TREE_CODE (def) == SSA_NAME) 877 release_ssa_name (def); 878 } 879 880 881 /* Replace the symbol associated with SSA_NAME with SYM. */ 882 883 void 884 replace_ssa_name_symbol (tree ssa_name, tree sym) 885 { 886 SET_SSA_NAME_VAR_OR_IDENTIFIER (ssa_name, sym); 887 TREE_TYPE (ssa_name) = TREE_TYPE (sym); 888 } 889 890 /* Release the vector of free SSA_NAMEs and compact the vector of SSA_NAMEs 891 that are live. */ 892 893 static void 894 release_free_names_and_compact_live_names (function *fun) 895 { 896 unsigned i, j; 897 int n = vec_safe_length (FREE_SSANAMES (fun)); 898 899 /* Now release the freelist. */ 900 vec_free (FREE_SSANAMES (fun)); 901 902 /* And compact the SSA number space. We make sure to not change the 903 relative order of SSA versions. */ 904 for (i = 1, j = 1; i < fun->gimple_df->ssa_names->length (); ++i) 905 { 906 tree name = ssa_name (i); 907 if (name) 908 { 909 if (i != j) 910 { 911 SSA_NAME_VERSION (name) = j; 912 (*fun->gimple_df->ssa_names)[j] = name; 913 } 914 j++; 915 } 916 } 917 fun->gimple_df->ssa_names->truncate (j); 918 919 statistics_counter_event (fun, "SSA names released", n); 920 statistics_counter_event (fun, "SSA name holes removed", i - j); 921 if (dump_file) 922 fprintf (dump_file, "Released %i names, %.2f%%, removed %i holes\n", 923 n, n * 100.0 / num_ssa_names, i - j); 924 } 925 926 /* Return SSA names that are unused to GGC memory and compact the SSA 927 version namespace. This is used to keep footprint of compiler during 928 interprocedural optimization. */ 929 930 namespace { 931 932 const pass_data pass_data_release_ssa_names = 933 { 934 GIMPLE_PASS, /* type */ 935 "release_ssa", /* name */ 936 OPTGROUP_NONE, /* optinfo_flags */ 937 TV_TREE_SSA_OTHER, /* tv_id */ 938 PROP_ssa, /* properties_required */ 939 0, /* properties_provided */ 940 0, /* properties_destroyed */ 941 TODO_remove_unused_locals, /* todo_flags_start */ 942 0, /* todo_flags_finish */ 943 }; 944 945 class pass_release_ssa_names : public gimple_opt_pass 946 { 947 public: 948 pass_release_ssa_names (gcc::context *ctxt) 949 : gimple_opt_pass (pass_data_release_ssa_names, ctxt) 950 {} 951 952 /* opt_pass methods: */ 953 virtual unsigned int execute (function *); 954 955 }; // class pass_release_ssa_names 956 957 unsigned int 958 pass_release_ssa_names::execute (function *fun) 959 { 960 release_free_names_and_compact_live_names (fun); 961 return 0; 962 } 963 964 } // anon namespace 965 966 gimple_opt_pass * 967 make_pass_release_ssa_names (gcc::context *ctxt) 968 { 969 return new pass_release_ssa_names (ctxt); 970 } 971