1 /* Predicate aware uninitialized variable warning. 2 Copyright (C) 2001-2017 Free Software Foundation, Inc. 3 Contributed by Xinliang David Li <davidxl@google.com> 4 5 This file is part of GCC. 6 7 GCC is free software; you can redistribute it and/or modify 8 it under the terms of the GNU General Public License as published by 9 the Free Software Foundation; either version 3, or (at your option) 10 any later version. 11 12 GCC is distributed in the hope that it will be useful, 13 but WITHOUT ANY WARRANTY; without even the implied warranty of 14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 GNU General Public License for more details. 16 17 You should have received a copy of the GNU General Public License 18 along with GCC; see the file COPYING3. If not see 19 <http://www.gnu.org/licenses/>. */ 20 21 #include "config.h" 22 #include "system.h" 23 #include "coretypes.h" 24 #include "backend.h" 25 #include "tree.h" 26 #include "gimple.h" 27 #include "tree-pass.h" 28 #include "ssa.h" 29 #include "gimple-pretty-print.h" 30 #include "diagnostic-core.h" 31 #include "fold-const.h" 32 #include "gimple-iterator.h" 33 #include "tree-ssa.h" 34 #include "params.h" 35 #include "tree-cfg.h" 36 37 /* This implements the pass that does predicate aware warning on uses of 38 possibly uninitialized variables. The pass first collects the set of 39 possibly uninitialized SSA names. For each such name, it walks through 40 all its immediate uses. For each immediate use, it rebuilds the condition 41 expression (the predicate) that guards the use. The predicate is then 42 examined to see if the variable is always defined under that same condition. 43 This is done either by pruning the unrealizable paths that lead to the 44 default definitions or by checking if the predicate set that guards the 45 defining paths is a superset of the use predicate. */ 46 47 /* Max PHI args we can handle in pass. */ 48 const unsigned max_phi_args = 32; 49 50 /* Pointer set of potentially undefined ssa names, i.e., 51 ssa names that are defined by phi with operands that 52 are not defined or potentially undefined. */ 53 static hash_set<tree> *possibly_undefined_names = 0; 54 55 /* Bit mask handling macros. */ 56 #define MASK_SET_BIT(mask, pos) mask |= (1 << pos) 57 #define MASK_TEST_BIT(mask, pos) (mask & (1 << pos)) 58 #define MASK_EMPTY(mask) (mask == 0) 59 60 /* Returns the first bit position (starting from LSB) 61 in mask that is non zero. Returns -1 if the mask is empty. */ 62 static int 63 get_mask_first_set_bit (unsigned mask) 64 { 65 int pos = 0; 66 if (mask == 0) 67 return -1; 68 69 while ((mask & (1 << pos)) == 0) 70 pos++; 71 72 return pos; 73 } 74 #define MASK_FIRST_SET_BIT(mask) get_mask_first_set_bit (mask) 75 76 /* Return true if T, an SSA_NAME, has an undefined value. */ 77 static bool 78 has_undefined_value_p (tree t) 79 { 80 return (ssa_undefined_value_p (t) 81 || (possibly_undefined_names 82 && possibly_undefined_names->contains (t))); 83 } 84 85 /* Like has_undefined_value_p, but don't return true if TREE_NO_WARNING 86 is set on SSA_NAME_VAR. */ 87 88 static inline bool 89 uninit_undefined_value_p (tree t) 90 { 91 if (!has_undefined_value_p (t)) 92 return false; 93 if (SSA_NAME_VAR (t) && TREE_NO_WARNING (SSA_NAME_VAR (t))) 94 return false; 95 return true; 96 } 97 98 /* Emit warnings for uninitialized variables. This is done in two passes. 99 100 The first pass notices real uses of SSA names with undefined values. 101 Such uses are unconditionally uninitialized, and we can be certain that 102 such a use is a mistake. This pass is run before most optimizations, 103 so that we catch as many as we can. 104 105 The second pass follows PHI nodes to find uses that are potentially 106 uninitialized. In this case we can't necessarily prove that the use 107 is really uninitialized. This pass is run after most optimizations, 108 so that we thread as many jumps and possible, and delete as much dead 109 code as possible, in order to reduce false positives. We also look 110 again for plain uninitialized variables, since optimization may have 111 changed conditionally uninitialized to unconditionally uninitialized. */ 112 113 /* Emit a warning for EXPR based on variable VAR at the point in the 114 program T, an SSA_NAME, is used being uninitialized. The exact 115 warning text is in MSGID and DATA is the gimple stmt with info about 116 the location in source code. When DATA is a GIMPLE_PHI, PHIARG_IDX 117 gives which argument of the phi node to take the location from. WC 118 is the warning code. */ 119 120 static void 121 warn_uninit (enum opt_code wc, tree t, tree expr, tree var, 122 const char *gmsgid, void *data, location_t phiarg_loc) 123 { 124 gimple *context = (gimple *) data; 125 location_t location, cfun_loc; 126 expanded_location xloc, floc; 127 128 /* Ignore COMPLEX_EXPR as initializing only a part of a complex 129 turns in a COMPLEX_EXPR with the not initialized part being 130 set to its previous (undefined) value. */ 131 if (is_gimple_assign (context) 132 && gimple_assign_rhs_code (context) == COMPLEX_EXPR) 133 return; 134 if (!has_undefined_value_p (t)) 135 return; 136 137 /* Anonymous SSA_NAMEs shouldn't be uninitialized, but ssa_undefined_value_p 138 can return true if the def stmt of anonymous SSA_NAME is COMPLEX_EXPR 139 created for conversion from scalar to complex. Use the underlying var of 140 the COMPLEX_EXPRs real part in that case. See PR71581. */ 141 if (expr == NULL_TREE 142 && var == NULL_TREE 143 && SSA_NAME_VAR (t) == NULL_TREE 144 && is_gimple_assign (SSA_NAME_DEF_STMT (t)) 145 && gimple_assign_rhs_code (SSA_NAME_DEF_STMT (t)) == COMPLEX_EXPR) 146 { 147 tree v = gimple_assign_rhs1 (SSA_NAME_DEF_STMT (t)); 148 if (TREE_CODE (v) == SSA_NAME 149 && has_undefined_value_p (v) 150 && zerop (gimple_assign_rhs2 (SSA_NAME_DEF_STMT (t)))) 151 { 152 expr = SSA_NAME_VAR (v); 153 var = expr; 154 } 155 } 156 157 if (expr == NULL_TREE) 158 return; 159 160 /* TREE_NO_WARNING either means we already warned, or the front end 161 wishes to suppress the warning. */ 162 if ((context 163 && (gimple_no_warning_p (context) 164 || (gimple_assign_single_p (context) 165 && TREE_NO_WARNING (gimple_assign_rhs1 (context))))) 166 || TREE_NO_WARNING (expr)) 167 return; 168 169 if (context != NULL && gimple_has_location (context)) 170 location = gimple_location (context); 171 else if (phiarg_loc != UNKNOWN_LOCATION) 172 location = phiarg_loc; 173 else 174 location = DECL_SOURCE_LOCATION (var); 175 location = linemap_resolve_location (line_table, location, 176 LRK_SPELLING_LOCATION, NULL); 177 cfun_loc = DECL_SOURCE_LOCATION (cfun->decl); 178 xloc = expand_location (location); 179 floc = expand_location (cfun_loc); 180 if (warning_at (location, wc, gmsgid, expr)) 181 { 182 TREE_NO_WARNING (expr) = 1; 183 184 if (location == DECL_SOURCE_LOCATION (var)) 185 return; 186 if (xloc.file != floc.file 187 || linemap_location_before_p (line_table, location, cfun_loc) 188 || linemap_location_before_p (line_table, cfun->function_end_locus, 189 location)) 190 inform (DECL_SOURCE_LOCATION (var), "%qD was declared here", var); 191 } 192 } 193 194 struct check_defs_data 195 { 196 /* If we found any may-defs besides must-def clobbers. */ 197 bool found_may_defs; 198 }; 199 200 /* Callback for walk_aliased_vdefs. */ 201 202 static bool 203 check_defs (ao_ref *ref, tree vdef, void *data_) 204 { 205 check_defs_data *data = (check_defs_data *)data_; 206 gimple *def_stmt = SSA_NAME_DEF_STMT (vdef); 207 /* If this is a clobber then if it is not a kill walk past it. */ 208 if (gimple_clobber_p (def_stmt)) 209 { 210 if (stmt_kills_ref_p (def_stmt, ref)) 211 return true; 212 return false; 213 } 214 /* Found a may-def on this path. */ 215 data->found_may_defs = true; 216 return true; 217 } 218 219 static unsigned int 220 warn_uninitialized_vars (bool warn_possibly_uninitialized) 221 { 222 gimple_stmt_iterator gsi; 223 basic_block bb; 224 unsigned int vdef_cnt = 0; 225 unsigned int oracle_cnt = 0; 226 unsigned limit = 0; 227 228 FOR_EACH_BB_FN (bb, cfun) 229 { 230 basic_block succ = single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun)); 231 bool always_executed = dominated_by_p (CDI_POST_DOMINATORS, succ, bb); 232 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi)) 233 { 234 gimple *stmt = gsi_stmt (gsi); 235 use_operand_p use_p; 236 ssa_op_iter op_iter; 237 tree use; 238 239 if (is_gimple_debug (stmt)) 240 continue; 241 242 /* We only do data flow with SSA_NAMEs, so that's all we 243 can warn about. */ 244 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, op_iter, SSA_OP_USE) 245 { 246 /* BIT_INSERT_EXPR first operand should not be considered 247 a use for the purpose of uninit warnings. */ 248 if (gassign *ass = dyn_cast <gassign *> (stmt)) 249 { 250 if (gimple_assign_rhs_code (ass) == BIT_INSERT_EXPR 251 && use_p->use == gimple_assign_rhs1_ptr (ass)) 252 continue; 253 } 254 use = USE_FROM_PTR (use_p); 255 if (always_executed) 256 warn_uninit (OPT_Wuninitialized, use, SSA_NAME_VAR (use), 257 SSA_NAME_VAR (use), 258 "%qD is used uninitialized in this function", stmt, 259 UNKNOWN_LOCATION); 260 else if (warn_possibly_uninitialized) 261 warn_uninit (OPT_Wmaybe_uninitialized, use, SSA_NAME_VAR (use), 262 SSA_NAME_VAR (use), 263 "%qD may be used uninitialized in this function", 264 stmt, UNKNOWN_LOCATION); 265 } 266 267 /* For limiting the alias walk below we count all 268 vdefs in the function. */ 269 if (gimple_vdef (stmt)) 270 vdef_cnt++; 271 272 if (gimple_assign_load_p (stmt) 273 && gimple_has_location (stmt)) 274 { 275 tree rhs = gimple_assign_rhs1 (stmt); 276 if (TREE_NO_WARNING (rhs)) 277 continue; 278 279 ao_ref ref; 280 ao_ref_init (&ref, rhs); 281 282 /* Do not warn if it can be initialized outside this function. */ 283 tree base = ao_ref_base (&ref); 284 if (!VAR_P (base) 285 || DECL_HARD_REGISTER (base) 286 || is_global_var (base) 287 || TREE_NO_WARNING (base)) 288 continue; 289 290 /* Do not warn if the access is fully outside of the 291 variable. */ 292 if (ref.size != -1 293 && ((ref.max_size == ref.size 294 && ref.offset + ref.size <= 0) 295 || (ref.offset >= 0 296 && TREE_CODE (DECL_SIZE (base)) == INTEGER_CST 297 && compare_tree_int (DECL_SIZE (base), 298 ref.offset) <= 0))) 299 continue; 300 301 /* Limit the walking to a constant number of stmts after 302 we overcommit quadratic behavior for small functions 303 and O(n) behavior. */ 304 if (oracle_cnt > 128 * 128 305 && oracle_cnt > vdef_cnt * 2) 306 limit = 32; 307 check_defs_data data; 308 data.found_may_defs = false; 309 use = gimple_vuse (stmt); 310 int res = walk_aliased_vdefs (&ref, use, 311 check_defs, &data, NULL, 312 NULL, limit); 313 if (res == -1) 314 { 315 oracle_cnt += limit; 316 continue; 317 } 318 oracle_cnt += res; 319 if (data.found_may_defs) 320 continue; 321 322 /* We didn't find any may-defs so on all paths either 323 reached function entry or a killing clobber. */ 324 location_t location 325 = linemap_resolve_location (line_table, gimple_location (stmt), 326 LRK_SPELLING_LOCATION, NULL); 327 if (always_executed) 328 { 329 if (warning_at (location, OPT_Wuninitialized, 330 "%qE is used uninitialized in this function", 331 rhs)) 332 /* ??? This is only effective for decls as in 333 gcc.dg/uninit-B-O0.c. Avoid doing this for 334 maybe-uninit uses as it may hide important 335 locations. */ 336 TREE_NO_WARNING (rhs) = 1; 337 } 338 else if (warn_possibly_uninitialized) 339 warning_at (location, OPT_Wmaybe_uninitialized, 340 "%qE may be used uninitialized in this function", 341 rhs); 342 } 343 } 344 } 345 346 return 0; 347 } 348 349 /* Checks if the operand OPND of PHI is defined by 350 another phi with one operand defined by this PHI, 351 but the rest operands are all defined. If yes, 352 returns true to skip this operand as being 353 redundant. Can be enhanced to be more general. */ 354 355 static bool 356 can_skip_redundant_opnd (tree opnd, gimple *phi) 357 { 358 gimple *op_def; 359 tree phi_def; 360 int i, n; 361 362 phi_def = gimple_phi_result (phi); 363 op_def = SSA_NAME_DEF_STMT (opnd); 364 if (gimple_code (op_def) != GIMPLE_PHI) 365 return false; 366 n = gimple_phi_num_args (op_def); 367 for (i = 0; i < n; ++i) 368 { 369 tree op = gimple_phi_arg_def (op_def, i); 370 if (TREE_CODE (op) != SSA_NAME) 371 continue; 372 if (op != phi_def && uninit_undefined_value_p (op)) 373 return false; 374 } 375 376 return true; 377 } 378 379 /* Returns a bit mask holding the positions of arguments in PHI 380 that have empty (or possibly empty) definitions. */ 381 382 static unsigned 383 compute_uninit_opnds_pos (gphi *phi) 384 { 385 size_t i, n; 386 unsigned uninit_opnds = 0; 387 388 n = gimple_phi_num_args (phi); 389 /* Bail out for phi with too many args. */ 390 if (n > max_phi_args) 391 return 0; 392 393 for (i = 0; i < n; ++i) 394 { 395 tree op = gimple_phi_arg_def (phi, i); 396 if (TREE_CODE (op) == SSA_NAME 397 && uninit_undefined_value_p (op) 398 && !can_skip_redundant_opnd (op, phi)) 399 { 400 if (cfun->has_nonlocal_label || cfun->calls_setjmp) 401 { 402 /* Ignore SSA_NAMEs that appear on abnormal edges 403 somewhere. */ 404 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op)) 405 continue; 406 } 407 MASK_SET_BIT (uninit_opnds, i); 408 } 409 } 410 return uninit_opnds; 411 } 412 413 /* Find the immediate postdominator PDOM of the specified 414 basic block BLOCK. */ 415 416 static inline basic_block 417 find_pdom (basic_block block) 418 { 419 if (block == EXIT_BLOCK_PTR_FOR_FN (cfun)) 420 return EXIT_BLOCK_PTR_FOR_FN (cfun); 421 else 422 { 423 basic_block bb = get_immediate_dominator (CDI_POST_DOMINATORS, block); 424 if (!bb) 425 return EXIT_BLOCK_PTR_FOR_FN (cfun); 426 return bb; 427 } 428 } 429 430 /* Find the immediate DOM of the specified basic block BLOCK. */ 431 432 static inline basic_block 433 find_dom (basic_block block) 434 { 435 if (block == ENTRY_BLOCK_PTR_FOR_FN (cfun)) 436 return ENTRY_BLOCK_PTR_FOR_FN (cfun); 437 else 438 { 439 basic_block bb = get_immediate_dominator (CDI_DOMINATORS, block); 440 if (!bb) 441 return ENTRY_BLOCK_PTR_FOR_FN (cfun); 442 return bb; 443 } 444 } 445 446 /* Returns true if BB1 is postdominating BB2 and BB1 is 447 not a loop exit bb. The loop exit bb check is simple and does 448 not cover all cases. */ 449 450 static bool 451 is_non_loop_exit_postdominating (basic_block bb1, basic_block bb2) 452 { 453 if (!dominated_by_p (CDI_POST_DOMINATORS, bb2, bb1)) 454 return false; 455 456 if (single_pred_p (bb1) && !single_succ_p (bb2)) 457 return false; 458 459 return true; 460 } 461 462 /* Find the closest postdominator of a specified BB, which is control 463 equivalent to BB. */ 464 465 static inline basic_block 466 find_control_equiv_block (basic_block bb) 467 { 468 basic_block pdom; 469 470 pdom = find_pdom (bb); 471 472 /* Skip the postdominating bb that is also loop exit. */ 473 if (!is_non_loop_exit_postdominating (pdom, bb)) 474 return NULL; 475 476 if (dominated_by_p (CDI_DOMINATORS, pdom, bb)) 477 return pdom; 478 479 return NULL; 480 } 481 482 #define MAX_NUM_CHAINS 8 483 #define MAX_CHAIN_LEN 5 484 #define MAX_POSTDOM_CHECK 8 485 #define MAX_SWITCH_CASES 40 486 487 /* Computes the control dependence chains (paths of edges) 488 for DEP_BB up to the dominating basic block BB (the head node of a 489 chain should be dominated by it). CD_CHAINS is pointer to an 490 array holding the result chains. CUR_CD_CHAIN is the current 491 chain being computed. *NUM_CHAINS is total number of chains. The 492 function returns true if the information is successfully computed, 493 return false if there is no control dependence or not computed. */ 494 495 static bool 496 compute_control_dep_chain (basic_block bb, basic_block dep_bb, 497 vec<edge> *cd_chains, 498 size_t *num_chains, 499 vec<edge> *cur_cd_chain, 500 int *num_calls) 501 { 502 edge_iterator ei; 503 edge e; 504 size_t i; 505 bool found_cd_chain = false; 506 size_t cur_chain_len = 0; 507 508 if (EDGE_COUNT (bb->succs) < 2) 509 return false; 510 511 if (*num_calls > PARAM_VALUE (PARAM_UNINIT_CONTROL_DEP_ATTEMPTS)) 512 return false; 513 ++*num_calls; 514 515 /* Could use a set instead. */ 516 cur_chain_len = cur_cd_chain->length (); 517 if (cur_chain_len > MAX_CHAIN_LEN) 518 return false; 519 520 for (i = 0; i < cur_chain_len; i++) 521 { 522 edge e = (*cur_cd_chain)[i]; 523 /* Cycle detected. */ 524 if (e->src == bb) 525 return false; 526 } 527 528 FOR_EACH_EDGE (e, ei, bb->succs) 529 { 530 basic_block cd_bb; 531 int post_dom_check = 0; 532 if (e->flags & (EDGE_FAKE | EDGE_ABNORMAL)) 533 continue; 534 535 cd_bb = e->dest; 536 cur_cd_chain->safe_push (e); 537 while (!is_non_loop_exit_postdominating (cd_bb, bb)) 538 { 539 if (cd_bb == dep_bb) 540 { 541 /* Found a direct control dependence. */ 542 if (*num_chains < MAX_NUM_CHAINS) 543 { 544 cd_chains[*num_chains] = cur_cd_chain->copy (); 545 (*num_chains)++; 546 } 547 found_cd_chain = true; 548 /* Check path from next edge. */ 549 break; 550 } 551 552 /* Now check if DEP_BB is indirectly control dependent on BB. */ 553 if (compute_control_dep_chain (cd_bb, dep_bb, cd_chains, num_chains, 554 cur_cd_chain, num_calls)) 555 { 556 found_cd_chain = true; 557 break; 558 } 559 560 cd_bb = find_pdom (cd_bb); 561 post_dom_check++; 562 if (cd_bb == EXIT_BLOCK_PTR_FOR_FN (cfun) 563 || post_dom_check > MAX_POSTDOM_CHECK) 564 break; 565 } 566 cur_cd_chain->pop (); 567 gcc_assert (cur_cd_chain->length () == cur_chain_len); 568 } 569 gcc_assert (cur_cd_chain->length () == cur_chain_len); 570 571 return found_cd_chain; 572 } 573 574 /* The type to represent a simple predicate. */ 575 576 struct pred_info 577 { 578 tree pred_lhs; 579 tree pred_rhs; 580 enum tree_code cond_code; 581 bool invert; 582 }; 583 584 /* The type to represent a sequence of predicates grouped 585 with .AND. operation. */ 586 587 typedef vec<pred_info, va_heap, vl_ptr> pred_chain; 588 589 /* The type to represent a sequence of pred_chains grouped 590 with .OR. operation. */ 591 592 typedef vec<pred_chain, va_heap, vl_ptr> pred_chain_union; 593 594 /* Converts the chains of control dependence edges into a set of 595 predicates. A control dependence chain is represented by a vector 596 edges. DEP_CHAINS points to an array of dependence chains. 597 NUM_CHAINS is the size of the chain array. One edge in a dependence 598 chain is mapped to predicate expression represented by pred_info 599 type. One dependence chain is converted to a composite predicate that 600 is the result of AND operation of pred_info mapped to each edge. 601 A composite predicate is presented by a vector of pred_info. On 602 return, *PREDS points to the resulting array of composite predicates. 603 *NUM_PREDS is the number of composite predictes. */ 604 605 static bool 606 convert_control_dep_chain_into_preds (vec<edge> *dep_chains, 607 size_t num_chains, 608 pred_chain_union *preds) 609 { 610 bool has_valid_pred = false; 611 size_t i, j; 612 if (num_chains == 0 || num_chains >= MAX_NUM_CHAINS) 613 return false; 614 615 /* Now convert the control dep chain into a set 616 of predicates. */ 617 preds->reserve (num_chains); 618 619 for (i = 0; i < num_chains; i++) 620 { 621 vec<edge> one_cd_chain = dep_chains[i]; 622 623 has_valid_pred = false; 624 pred_chain t_chain = vNULL; 625 for (j = 0; j < one_cd_chain.length (); j++) 626 { 627 gimple *cond_stmt; 628 gimple_stmt_iterator gsi; 629 basic_block guard_bb; 630 pred_info one_pred; 631 edge e; 632 633 e = one_cd_chain[j]; 634 guard_bb = e->src; 635 gsi = gsi_last_bb (guard_bb); 636 if (gsi_end_p (gsi)) 637 { 638 has_valid_pred = false; 639 break; 640 } 641 cond_stmt = gsi_stmt (gsi); 642 if (is_gimple_call (cond_stmt) && EDGE_COUNT (e->src->succs) >= 2) 643 /* Ignore EH edge. Can add assertion on the other edge's flag. */ 644 continue; 645 /* Skip if there is essentially one succesor. */ 646 if (EDGE_COUNT (e->src->succs) == 2) 647 { 648 edge e1; 649 edge_iterator ei1; 650 bool skip = false; 651 652 FOR_EACH_EDGE (e1, ei1, e->src->succs) 653 { 654 if (EDGE_COUNT (e1->dest->succs) == 0) 655 { 656 skip = true; 657 break; 658 } 659 } 660 if (skip) 661 continue; 662 } 663 if (gimple_code (cond_stmt) == GIMPLE_COND) 664 { 665 one_pred.pred_lhs = gimple_cond_lhs (cond_stmt); 666 one_pred.pred_rhs = gimple_cond_rhs (cond_stmt); 667 one_pred.cond_code = gimple_cond_code (cond_stmt); 668 one_pred.invert = !!(e->flags & EDGE_FALSE_VALUE); 669 t_chain.safe_push (one_pred); 670 has_valid_pred = true; 671 } 672 else if (gswitch *gs = dyn_cast<gswitch *> (cond_stmt)) 673 { 674 /* Avoid quadratic behavior. */ 675 if (gimple_switch_num_labels (gs) > MAX_SWITCH_CASES) 676 { 677 has_valid_pred = false; 678 break; 679 } 680 /* Find the case label. */ 681 tree l = NULL_TREE; 682 unsigned idx; 683 for (idx = 0; idx < gimple_switch_num_labels (gs); ++idx) 684 { 685 tree tl = gimple_switch_label (gs, idx); 686 if (e->dest == label_to_block (CASE_LABEL (tl))) 687 { 688 if (!l) 689 l = tl; 690 else 691 { 692 l = NULL_TREE; 693 break; 694 } 695 } 696 } 697 /* If more than one label reaches this block or the case 698 label doesn't have a single value (like the default one) 699 fail. */ 700 if (!l 701 || !CASE_LOW (l) 702 || (CASE_HIGH (l) 703 && !operand_equal_p (CASE_LOW (l), CASE_HIGH (l), 0))) 704 { 705 has_valid_pred = false; 706 break; 707 } 708 one_pred.pred_lhs = gimple_switch_index (gs); 709 one_pred.pred_rhs = CASE_LOW (l); 710 one_pred.cond_code = EQ_EXPR; 711 one_pred.invert = false; 712 t_chain.safe_push (one_pred); 713 has_valid_pred = true; 714 } 715 else 716 { 717 has_valid_pred = false; 718 break; 719 } 720 } 721 722 if (!has_valid_pred) 723 break; 724 else 725 preds->safe_push (t_chain); 726 } 727 return has_valid_pred; 728 } 729 730 /* Computes all control dependence chains for USE_BB. The control 731 dependence chains are then converted to an array of composite 732 predicates pointed to by PREDS. PHI_BB is the basic block of 733 the phi whose result is used in USE_BB. */ 734 735 static bool 736 find_predicates (pred_chain_union *preds, 737 basic_block phi_bb, 738 basic_block use_bb) 739 { 740 size_t num_chains = 0, i; 741 int num_calls = 0; 742 vec<edge> dep_chains[MAX_NUM_CHAINS]; 743 auto_vec<edge, MAX_CHAIN_LEN + 1> cur_chain; 744 bool has_valid_pred = false; 745 basic_block cd_root = 0; 746 747 /* First find the closest bb that is control equivalent to PHI_BB 748 that also dominates USE_BB. */ 749 cd_root = phi_bb; 750 while (dominated_by_p (CDI_DOMINATORS, use_bb, cd_root)) 751 { 752 basic_block ctrl_eq_bb = find_control_equiv_block (cd_root); 753 if (ctrl_eq_bb && dominated_by_p (CDI_DOMINATORS, use_bb, ctrl_eq_bb)) 754 cd_root = ctrl_eq_bb; 755 else 756 break; 757 } 758 759 compute_control_dep_chain (cd_root, use_bb, dep_chains, &num_chains, 760 &cur_chain, &num_calls); 761 762 has_valid_pred 763 = convert_control_dep_chain_into_preds (dep_chains, num_chains, preds); 764 for (i = 0; i < num_chains; i++) 765 dep_chains[i].release (); 766 return has_valid_pred; 767 } 768 769 /* Computes the set of incoming edges of PHI that have non empty 770 definitions of a phi chain. The collection will be done 771 recursively on operands that are defined by phis. CD_ROOT 772 is the control dependence root. *EDGES holds the result, and 773 VISITED_PHIS is a pointer set for detecting cycles. */ 774 775 static void 776 collect_phi_def_edges (gphi *phi, basic_block cd_root, 777 auto_vec<edge> *edges, 778 hash_set<gimple *> *visited_phis) 779 { 780 size_t i, n; 781 edge opnd_edge; 782 tree opnd; 783 784 if (visited_phis->add (phi)) 785 return; 786 787 n = gimple_phi_num_args (phi); 788 for (i = 0; i < n; i++) 789 { 790 opnd_edge = gimple_phi_arg_edge (phi, i); 791 opnd = gimple_phi_arg_def (phi, i); 792 793 if (TREE_CODE (opnd) != SSA_NAME) 794 { 795 if (dump_file && (dump_flags & TDF_DETAILS)) 796 { 797 fprintf (dump_file, "\n[CHECK] Found def edge %d in ", (int) i); 798 print_gimple_stmt (dump_file, phi, 0, 0); 799 } 800 edges->safe_push (opnd_edge); 801 } 802 else 803 { 804 gimple *def = SSA_NAME_DEF_STMT (opnd); 805 806 if (gimple_code (def) == GIMPLE_PHI 807 && dominated_by_p (CDI_DOMINATORS, gimple_bb (def), cd_root)) 808 collect_phi_def_edges (as_a<gphi *> (def), cd_root, edges, 809 visited_phis); 810 else if (!uninit_undefined_value_p (opnd)) 811 { 812 if (dump_file && (dump_flags & TDF_DETAILS)) 813 { 814 fprintf (dump_file, "\n[CHECK] Found def edge %d in ", 815 (int) i); 816 print_gimple_stmt (dump_file, phi, 0, 0); 817 } 818 edges->safe_push (opnd_edge); 819 } 820 } 821 } 822 } 823 824 /* For each use edge of PHI, computes all control dependence chains. 825 The control dependence chains are then converted to an array of 826 composite predicates pointed to by PREDS. */ 827 828 static bool 829 find_def_preds (pred_chain_union *preds, gphi *phi) 830 { 831 size_t num_chains = 0, i, n; 832 vec<edge> dep_chains[MAX_NUM_CHAINS]; 833 auto_vec<edge, MAX_CHAIN_LEN + 1> cur_chain; 834 auto_vec<edge> def_edges; 835 bool has_valid_pred = false; 836 basic_block phi_bb, cd_root = 0; 837 838 phi_bb = gimple_bb (phi); 839 /* First find the closest dominating bb to be 840 the control dependence root. */ 841 cd_root = find_dom (phi_bb); 842 if (!cd_root) 843 return false; 844 845 hash_set<gimple *> visited_phis; 846 collect_phi_def_edges (phi, cd_root, &def_edges, &visited_phis); 847 848 n = def_edges.length (); 849 if (n == 0) 850 return false; 851 852 for (i = 0; i < n; i++) 853 { 854 size_t prev_nc, j; 855 int num_calls = 0; 856 edge opnd_edge; 857 858 opnd_edge = def_edges[i]; 859 prev_nc = num_chains; 860 compute_control_dep_chain (cd_root, opnd_edge->src, dep_chains, 861 &num_chains, &cur_chain, &num_calls); 862 863 /* Now update the newly added chains with 864 the phi operand edge: */ 865 if (EDGE_COUNT (opnd_edge->src->succs) > 1) 866 { 867 if (prev_nc == num_chains && num_chains < MAX_NUM_CHAINS) 868 dep_chains[num_chains++] = vNULL; 869 for (j = prev_nc; j < num_chains; j++) 870 dep_chains[j].safe_push (opnd_edge); 871 } 872 } 873 874 has_valid_pred 875 = convert_control_dep_chain_into_preds (dep_chains, num_chains, preds); 876 for (i = 0; i < num_chains; i++) 877 dep_chains[i].release (); 878 return has_valid_pred; 879 } 880 881 /* Dumps the predicates (PREDS) for USESTMT. */ 882 883 static void 884 dump_predicates (gimple *usestmt, pred_chain_union preds, const char *msg) 885 { 886 size_t i, j; 887 pred_chain one_pred_chain = vNULL; 888 fprintf (dump_file, "%s", msg); 889 print_gimple_stmt (dump_file, usestmt, 0, 0); 890 fprintf (dump_file, "is guarded by :\n\n"); 891 size_t num_preds = preds.length (); 892 /* Do some dumping here: */ 893 for (i = 0; i < num_preds; i++) 894 { 895 size_t np; 896 897 one_pred_chain = preds[i]; 898 np = one_pred_chain.length (); 899 900 for (j = 0; j < np; j++) 901 { 902 pred_info one_pred = one_pred_chain[j]; 903 if (one_pred.invert) 904 fprintf (dump_file, " (.NOT.) "); 905 print_generic_expr (dump_file, one_pred.pred_lhs, 0); 906 fprintf (dump_file, " %s ", op_symbol_code (one_pred.cond_code)); 907 print_generic_expr (dump_file, one_pred.pred_rhs, 0); 908 if (j < np - 1) 909 fprintf (dump_file, " (.AND.) "); 910 else 911 fprintf (dump_file, "\n"); 912 } 913 if (i < num_preds - 1) 914 fprintf (dump_file, "(.OR.)\n"); 915 else 916 fprintf (dump_file, "\n\n"); 917 } 918 } 919 920 /* Destroys the predicate set *PREDS. */ 921 922 static void 923 destroy_predicate_vecs (pred_chain_union *preds) 924 { 925 size_t i; 926 927 size_t n = preds->length (); 928 for (i = 0; i < n; i++) 929 (*preds)[i].release (); 930 preds->release (); 931 } 932 933 /* Computes the 'normalized' conditional code with operand 934 swapping and condition inversion. */ 935 936 static enum tree_code 937 get_cmp_code (enum tree_code orig_cmp_code, bool swap_cond, bool invert) 938 { 939 enum tree_code tc = orig_cmp_code; 940 941 if (swap_cond) 942 tc = swap_tree_comparison (orig_cmp_code); 943 if (invert) 944 tc = invert_tree_comparison (tc, false); 945 946 switch (tc) 947 { 948 case LT_EXPR: 949 case LE_EXPR: 950 case GT_EXPR: 951 case GE_EXPR: 952 case EQ_EXPR: 953 case NE_EXPR: 954 break; 955 default: 956 return ERROR_MARK; 957 } 958 return tc; 959 } 960 961 /* Returns true if VAL falls in the range defined by BOUNDARY and CMPC, i.e. 962 all values in the range satisfies (x CMPC BOUNDARY) == true. */ 963 964 static bool 965 is_value_included_in (tree val, tree boundary, enum tree_code cmpc) 966 { 967 bool inverted = false; 968 bool is_unsigned; 969 bool result; 970 971 /* Only handle integer constant here. */ 972 if (TREE_CODE (val) != INTEGER_CST || TREE_CODE (boundary) != INTEGER_CST) 973 return true; 974 975 is_unsigned = TYPE_UNSIGNED (TREE_TYPE (val)); 976 977 if (cmpc == GE_EXPR || cmpc == GT_EXPR || cmpc == NE_EXPR) 978 { 979 cmpc = invert_tree_comparison (cmpc, false); 980 inverted = true; 981 } 982 983 if (is_unsigned) 984 { 985 if (cmpc == EQ_EXPR) 986 result = tree_int_cst_equal (val, boundary); 987 else if (cmpc == LT_EXPR) 988 result = tree_int_cst_lt (val, boundary); 989 else 990 { 991 gcc_assert (cmpc == LE_EXPR); 992 result = tree_int_cst_le (val, boundary); 993 } 994 } 995 else 996 { 997 if (cmpc == EQ_EXPR) 998 result = tree_int_cst_equal (val, boundary); 999 else if (cmpc == LT_EXPR) 1000 result = tree_int_cst_lt (val, boundary); 1001 else 1002 { 1003 gcc_assert (cmpc == LE_EXPR); 1004 result = (tree_int_cst_equal (val, boundary) 1005 || tree_int_cst_lt (val, boundary)); 1006 } 1007 } 1008 1009 if (inverted) 1010 result ^= 1; 1011 1012 return result; 1013 } 1014 1015 /* Returns true if PRED is common among all the predicate 1016 chains (PREDS) (and therefore can be factored out). 1017 NUM_PRED_CHAIN is the size of array PREDS. */ 1018 1019 static bool 1020 find_matching_predicate_in_rest_chains (pred_info pred, 1021 pred_chain_union preds, 1022 size_t num_pred_chains) 1023 { 1024 size_t i, j, n; 1025 1026 /* Trival case. */ 1027 if (num_pred_chains == 1) 1028 return true; 1029 1030 for (i = 1; i < num_pred_chains; i++) 1031 { 1032 bool found = false; 1033 pred_chain one_chain = preds[i]; 1034 n = one_chain.length (); 1035 for (j = 0; j < n; j++) 1036 { 1037 pred_info pred2 = one_chain[j]; 1038 /* Can relax the condition comparison to not 1039 use address comparison. However, the most common 1040 case is that multiple control dependent paths share 1041 a common path prefix, so address comparison should 1042 be ok. */ 1043 1044 if (operand_equal_p (pred2.pred_lhs, pred.pred_lhs, 0) 1045 && operand_equal_p (pred2.pred_rhs, pred.pred_rhs, 0) 1046 && pred2.invert == pred.invert) 1047 { 1048 found = true; 1049 break; 1050 } 1051 } 1052 if (!found) 1053 return false; 1054 } 1055 return true; 1056 } 1057 1058 /* Forward declaration. */ 1059 static bool is_use_properly_guarded (gimple *use_stmt, 1060 basic_block use_bb, 1061 gphi *phi, 1062 unsigned uninit_opnds, 1063 pred_chain_union *def_preds, 1064 hash_set<gphi *> *visited_phis); 1065 1066 /* Returns true if all uninitialized opnds are pruned. Returns false 1067 otherwise. PHI is the phi node with uninitialized operands, 1068 UNINIT_OPNDS is the bitmap of the uninitialize operand positions, 1069 FLAG_DEF is the statement defining the flag guarding the use of the 1070 PHI output, BOUNDARY_CST is the const value used in the predicate 1071 associated with the flag, CMP_CODE is the comparison code used in 1072 the predicate, VISITED_PHIS is the pointer set of phis visited, and 1073 VISITED_FLAG_PHIS is the pointer to the pointer set of flag definitions 1074 that are also phis. 1075 1076 Example scenario: 1077 1078 BB1: 1079 flag_1 = phi <0, 1> // (1) 1080 var_1 = phi <undef, some_val> 1081 1082 1083 BB2: 1084 flag_2 = phi <0, flag_1, flag_1> // (2) 1085 var_2 = phi <undef, var_1, var_1> 1086 if (flag_2 == 1) 1087 goto BB3; 1088 1089 BB3: 1090 use of var_2 // (3) 1091 1092 Because some flag arg in (1) is not constant, if we do not look into the 1093 flag phis recursively, it is conservatively treated as unknown and var_1 1094 is thought to be flowed into use at (3). Since var_1 is potentially 1095 uninitialized a false warning will be emitted. 1096 Checking recursively into (1), the compiler can find out that only some_val 1097 (which is defined) can flow into (3) which is OK. */ 1098 1099 static bool 1100 prune_uninit_phi_opnds (gphi *phi, unsigned uninit_opnds, gphi *flag_def, 1101 tree boundary_cst, enum tree_code cmp_code, 1102 hash_set<gphi *> *visited_phis, 1103 bitmap *visited_flag_phis) 1104 { 1105 unsigned i; 1106 1107 for (i = 0; i < MIN (max_phi_args, gimple_phi_num_args (flag_def)); i++) 1108 { 1109 tree flag_arg; 1110 1111 if (!MASK_TEST_BIT (uninit_opnds, i)) 1112 continue; 1113 1114 flag_arg = gimple_phi_arg_def (flag_def, i); 1115 if (!is_gimple_constant (flag_arg)) 1116 { 1117 gphi *flag_arg_def, *phi_arg_def; 1118 tree phi_arg; 1119 unsigned uninit_opnds_arg_phi; 1120 1121 if (TREE_CODE (flag_arg) != SSA_NAME) 1122 return false; 1123 flag_arg_def = dyn_cast<gphi *> (SSA_NAME_DEF_STMT (flag_arg)); 1124 if (!flag_arg_def) 1125 return false; 1126 1127 phi_arg = gimple_phi_arg_def (phi, i); 1128 if (TREE_CODE (phi_arg) != SSA_NAME) 1129 return false; 1130 1131 phi_arg_def = dyn_cast<gphi *> (SSA_NAME_DEF_STMT (phi_arg)); 1132 if (!phi_arg_def) 1133 return false; 1134 1135 if (gimple_bb (phi_arg_def) != gimple_bb (flag_arg_def)) 1136 return false; 1137 1138 if (!*visited_flag_phis) 1139 *visited_flag_phis = BITMAP_ALLOC (NULL); 1140 1141 tree phi_result = gimple_phi_result (flag_arg_def); 1142 if (bitmap_bit_p (*visited_flag_phis, SSA_NAME_VERSION (phi_result))) 1143 return false; 1144 1145 bitmap_set_bit (*visited_flag_phis, 1146 SSA_NAME_VERSION (gimple_phi_result (flag_arg_def))); 1147 1148 /* Now recursively prune the uninitialized phi args. */ 1149 uninit_opnds_arg_phi = compute_uninit_opnds_pos (phi_arg_def); 1150 if (!prune_uninit_phi_opnds 1151 (phi_arg_def, uninit_opnds_arg_phi, flag_arg_def, boundary_cst, 1152 cmp_code, visited_phis, visited_flag_phis)) 1153 return false; 1154 1155 phi_result = gimple_phi_result (flag_arg_def); 1156 bitmap_clear_bit (*visited_flag_phis, SSA_NAME_VERSION (phi_result)); 1157 continue; 1158 } 1159 1160 /* Now check if the constant is in the guarded range. */ 1161 if (is_value_included_in (flag_arg, boundary_cst, cmp_code)) 1162 { 1163 tree opnd; 1164 gimple *opnd_def; 1165 1166 /* Now that we know that this undefined edge is not 1167 pruned. If the operand is defined by another phi, 1168 we can further prune the incoming edges of that 1169 phi by checking the predicates of this operands. */ 1170 1171 opnd = gimple_phi_arg_def (phi, i); 1172 opnd_def = SSA_NAME_DEF_STMT (opnd); 1173 if (gphi *opnd_def_phi = dyn_cast <gphi *> (opnd_def)) 1174 { 1175 edge opnd_edge; 1176 unsigned uninit_opnds2 = compute_uninit_opnds_pos (opnd_def_phi); 1177 if (!MASK_EMPTY (uninit_opnds2)) 1178 { 1179 pred_chain_union def_preds = vNULL; 1180 bool ok; 1181 opnd_edge = gimple_phi_arg_edge (phi, i); 1182 ok = is_use_properly_guarded (phi, 1183 opnd_edge->src, 1184 opnd_def_phi, 1185 uninit_opnds2, 1186 &def_preds, 1187 visited_phis); 1188 destroy_predicate_vecs (&def_preds); 1189 if (!ok) 1190 return false; 1191 } 1192 } 1193 else 1194 return false; 1195 } 1196 } 1197 1198 return true; 1199 } 1200 1201 /* A helper function that determines if the predicate set 1202 of the use is not overlapping with that of the uninit paths. 1203 The most common senario of guarded use is in Example 1: 1204 Example 1: 1205 if (some_cond) 1206 { 1207 x = ...; 1208 flag = true; 1209 } 1210 1211 ... some code ... 1212 1213 if (flag) 1214 use (x); 1215 1216 The real world examples are usually more complicated, but similar 1217 and usually result from inlining: 1218 1219 bool init_func (int * x) 1220 { 1221 if (some_cond) 1222 return false; 1223 *x = .. 1224 return true; 1225 } 1226 1227 void foo (..) 1228 { 1229 int x; 1230 1231 if (!init_func (&x)) 1232 return; 1233 1234 .. some_code ... 1235 use (x); 1236 } 1237 1238 Another possible use scenario is in the following trivial example: 1239 1240 Example 2: 1241 if (n > 0) 1242 x = 1; 1243 ... 1244 if (n > 0) 1245 { 1246 if (m < 2) 1247 .. = x; 1248 } 1249 1250 Predicate analysis needs to compute the composite predicate: 1251 1252 1) 'x' use predicate: (n > 0) .AND. (m < 2) 1253 2) 'x' default value (non-def) predicate: .NOT. (n > 0) 1254 (the predicate chain for phi operand defs can be computed 1255 starting from a bb that is control equivalent to the phi's 1256 bb and is dominating the operand def.) 1257 1258 and check overlapping: 1259 (n > 0) .AND. (m < 2) .AND. (.NOT. (n > 0)) 1260 <==> false 1261 1262 This implementation provides framework that can handle 1263 scenarios. (Note that many simple cases are handled properly 1264 without the predicate analysis -- this is due to jump threading 1265 transformation which eliminates the merge point thus makes 1266 path sensitive analysis unnecessary.) 1267 1268 PHI is the phi node whose incoming (undefined) paths need to be 1269 pruned, and UNINIT_OPNDS is the bitmap holding uninit operand 1270 positions. VISITED_PHIS is the pointer set of phi stmts being 1271 checked. */ 1272 1273 static bool 1274 use_pred_not_overlap_with_undef_path_pred (pred_chain_union preds, 1275 gphi *phi, unsigned uninit_opnds, 1276 hash_set<gphi *> *visited_phis) 1277 { 1278 unsigned int i, n; 1279 gimple *flag_def = 0; 1280 tree boundary_cst = 0; 1281 enum tree_code cmp_code; 1282 bool swap_cond = false; 1283 bool invert = false; 1284 pred_chain the_pred_chain = vNULL; 1285 bitmap visited_flag_phis = NULL; 1286 bool all_pruned = false; 1287 size_t num_preds = preds.length (); 1288 1289 gcc_assert (num_preds > 0); 1290 /* Find within the common prefix of multiple predicate chains 1291 a predicate that is a comparison of a flag variable against 1292 a constant. */ 1293 the_pred_chain = preds[0]; 1294 n = the_pred_chain.length (); 1295 for (i = 0; i < n; i++) 1296 { 1297 tree cond_lhs, cond_rhs, flag = 0; 1298 1299 pred_info the_pred = the_pred_chain[i]; 1300 1301 invert = the_pred.invert; 1302 cond_lhs = the_pred.pred_lhs; 1303 cond_rhs = the_pred.pred_rhs; 1304 cmp_code = the_pred.cond_code; 1305 1306 if (cond_lhs != NULL_TREE && TREE_CODE (cond_lhs) == SSA_NAME 1307 && cond_rhs != NULL_TREE && is_gimple_constant (cond_rhs)) 1308 { 1309 boundary_cst = cond_rhs; 1310 flag = cond_lhs; 1311 } 1312 else if (cond_rhs != NULL_TREE && TREE_CODE (cond_rhs) == SSA_NAME 1313 && cond_lhs != NULL_TREE && is_gimple_constant (cond_lhs)) 1314 { 1315 boundary_cst = cond_lhs; 1316 flag = cond_rhs; 1317 swap_cond = true; 1318 } 1319 1320 if (!flag) 1321 continue; 1322 1323 flag_def = SSA_NAME_DEF_STMT (flag); 1324 1325 if (!flag_def) 1326 continue; 1327 1328 if ((gimple_code (flag_def) == GIMPLE_PHI) 1329 && (gimple_bb (flag_def) == gimple_bb (phi)) 1330 && find_matching_predicate_in_rest_chains (the_pred, preds, 1331 num_preds)) 1332 break; 1333 1334 flag_def = 0; 1335 } 1336 1337 if (!flag_def) 1338 return false; 1339 1340 /* Now check all the uninit incoming edge has a constant flag value 1341 that is in conflict with the use guard/predicate. */ 1342 cmp_code = get_cmp_code (cmp_code, swap_cond, invert); 1343 1344 if (cmp_code == ERROR_MARK) 1345 return false; 1346 1347 all_pruned = prune_uninit_phi_opnds 1348 (phi, uninit_opnds, as_a<gphi *> (flag_def), boundary_cst, cmp_code, 1349 visited_phis, &visited_flag_phis); 1350 1351 if (visited_flag_phis) 1352 BITMAP_FREE (visited_flag_phis); 1353 1354 return all_pruned; 1355 } 1356 1357 /* The helper function returns true if two predicates X1 and X2 1358 are equivalent. It assumes the expressions have already 1359 properly re-associated. */ 1360 1361 static inline bool 1362 pred_equal_p (pred_info x1, pred_info x2) 1363 { 1364 enum tree_code c1, c2; 1365 if (!operand_equal_p (x1.pred_lhs, x2.pred_lhs, 0) 1366 || !operand_equal_p (x1.pred_rhs, x2.pred_rhs, 0)) 1367 return false; 1368 1369 c1 = x1.cond_code; 1370 if (x1.invert != x2.invert 1371 && TREE_CODE_CLASS (x2.cond_code) == tcc_comparison) 1372 c2 = invert_tree_comparison (x2.cond_code, false); 1373 else 1374 c2 = x2.cond_code; 1375 1376 return c1 == c2; 1377 } 1378 1379 /* Returns true if the predication is testing !=. */ 1380 1381 static inline bool 1382 is_neq_relop_p (pred_info pred) 1383 { 1384 1385 return ((pred.cond_code == NE_EXPR && !pred.invert) 1386 || (pred.cond_code == EQ_EXPR && pred.invert)); 1387 } 1388 1389 /* Returns true if pred is of the form X != 0. */ 1390 1391 static inline bool 1392 is_neq_zero_form_p (pred_info pred) 1393 { 1394 if (!is_neq_relop_p (pred) || !integer_zerop (pred.pred_rhs) 1395 || TREE_CODE (pred.pred_lhs) != SSA_NAME) 1396 return false; 1397 return true; 1398 } 1399 1400 /* The helper function returns true if two predicates X1 1401 is equivalent to X2 != 0. */ 1402 1403 static inline bool 1404 pred_expr_equal_p (pred_info x1, tree x2) 1405 { 1406 if (!is_neq_zero_form_p (x1)) 1407 return false; 1408 1409 return operand_equal_p (x1.pred_lhs, x2, 0); 1410 } 1411 1412 /* Returns true of the domain of single predicate expression 1413 EXPR1 is a subset of that of EXPR2. Returns false if it 1414 can not be proved. */ 1415 1416 static bool 1417 is_pred_expr_subset_of (pred_info expr1, pred_info expr2) 1418 { 1419 enum tree_code code1, code2; 1420 1421 if (pred_equal_p (expr1, expr2)) 1422 return true; 1423 1424 if ((TREE_CODE (expr1.pred_rhs) != INTEGER_CST) 1425 || (TREE_CODE (expr2.pred_rhs) != INTEGER_CST)) 1426 return false; 1427 1428 if (!operand_equal_p (expr1.pred_lhs, expr2.pred_lhs, 0)) 1429 return false; 1430 1431 code1 = expr1.cond_code; 1432 if (expr1.invert) 1433 code1 = invert_tree_comparison (code1, false); 1434 code2 = expr2.cond_code; 1435 if (expr2.invert) 1436 code2 = invert_tree_comparison (code2, false); 1437 1438 if ((code1 == EQ_EXPR || code1 == BIT_AND_EXPR) && code2 == BIT_AND_EXPR) 1439 return wi::eq_p (expr1.pred_rhs, 1440 wi::bit_and (expr1.pred_rhs, expr2.pred_rhs)); 1441 1442 if (code1 != code2 && code2 != NE_EXPR) 1443 return false; 1444 1445 if (is_value_included_in (expr1.pred_rhs, expr2.pred_rhs, code2)) 1446 return true; 1447 1448 return false; 1449 } 1450 1451 /* Returns true if the domain of PRED1 is a subset 1452 of that of PRED2. Returns false if it can not be proved so. */ 1453 1454 static bool 1455 is_pred_chain_subset_of (pred_chain pred1, pred_chain pred2) 1456 { 1457 size_t np1, np2, i1, i2; 1458 1459 np1 = pred1.length (); 1460 np2 = pred2.length (); 1461 1462 for (i2 = 0; i2 < np2; i2++) 1463 { 1464 bool found = false; 1465 pred_info info2 = pred2[i2]; 1466 for (i1 = 0; i1 < np1; i1++) 1467 { 1468 pred_info info1 = pred1[i1]; 1469 if (is_pred_expr_subset_of (info1, info2)) 1470 { 1471 found = true; 1472 break; 1473 } 1474 } 1475 if (!found) 1476 return false; 1477 } 1478 return true; 1479 } 1480 1481 /* Returns true if the domain defined by 1482 one pred chain ONE_PRED is a subset of the domain 1483 of *PREDS. It returns false if ONE_PRED's domain is 1484 not a subset of any of the sub-domains of PREDS 1485 (corresponding to each individual chains in it), even 1486 though it may be still be a subset of whole domain 1487 of PREDS which is the union (ORed) of all its subdomains. 1488 In other words, the result is conservative. */ 1489 1490 static bool 1491 is_included_in (pred_chain one_pred, pred_chain_union preds) 1492 { 1493 size_t i; 1494 size_t n = preds.length (); 1495 1496 for (i = 0; i < n; i++) 1497 { 1498 if (is_pred_chain_subset_of (one_pred, preds[i])) 1499 return true; 1500 } 1501 1502 return false; 1503 } 1504 1505 /* Compares two predicate sets PREDS1 and PREDS2 and returns 1506 true if the domain defined by PREDS1 is a superset 1507 of PREDS2's domain. N1 and N2 are array sizes of PREDS1 and 1508 PREDS2 respectively. The implementation chooses not to build 1509 generic trees (and relying on the folding capability of the 1510 compiler), but instead performs brute force comparison of 1511 individual predicate chains (won't be a compile time problem 1512 as the chains are pretty short). When the function returns 1513 false, it does not necessarily mean *PREDS1 is not a superset 1514 of *PREDS2, but mean it may not be so since the analysis can 1515 not prove it. In such cases, false warnings may still be 1516 emitted. */ 1517 1518 static bool 1519 is_superset_of (pred_chain_union preds1, pred_chain_union preds2) 1520 { 1521 size_t i, n2; 1522 pred_chain one_pred_chain = vNULL; 1523 1524 n2 = preds2.length (); 1525 1526 for (i = 0; i < n2; i++) 1527 { 1528 one_pred_chain = preds2[i]; 1529 if (!is_included_in (one_pred_chain, preds1)) 1530 return false; 1531 } 1532 1533 return true; 1534 } 1535 1536 /* Returns true if TC is AND or OR. */ 1537 1538 static inline bool 1539 is_and_or_or_p (enum tree_code tc, tree type) 1540 { 1541 return (tc == BIT_IOR_EXPR 1542 || (tc == BIT_AND_EXPR 1543 && (type == 0 || TREE_CODE (type) == BOOLEAN_TYPE))); 1544 } 1545 1546 /* Returns true if X1 is the negate of X2. */ 1547 1548 static inline bool 1549 pred_neg_p (pred_info x1, pred_info x2) 1550 { 1551 enum tree_code c1, c2; 1552 if (!operand_equal_p (x1.pred_lhs, x2.pred_lhs, 0) 1553 || !operand_equal_p (x1.pred_rhs, x2.pred_rhs, 0)) 1554 return false; 1555 1556 c1 = x1.cond_code; 1557 if (x1.invert == x2.invert) 1558 c2 = invert_tree_comparison (x2.cond_code, false); 1559 else 1560 c2 = x2.cond_code; 1561 1562 return c1 == c2; 1563 } 1564 1565 /* 1) ((x IOR y) != 0) AND (x != 0) is equivalent to (x != 0); 1566 2) (X AND Y) OR (!X AND Y) is equivalent to Y; 1567 3) X OR (!X AND Y) is equivalent to (X OR Y); 1568 4) ((x IAND y) != 0) || (x != 0 AND y != 0)) is equivalent to 1569 (x != 0 AND y != 0) 1570 5) (X AND Y) OR (!X AND Z) OR (!Y AND Z) is equivalent to 1571 (X AND Y) OR Z 1572 1573 PREDS is the predicate chains, and N is the number of chains. */ 1574 1575 /* Helper function to implement rule 1 above. ONE_CHAIN is 1576 the AND predication to be simplified. */ 1577 1578 static void 1579 simplify_pred (pred_chain *one_chain) 1580 { 1581 size_t i, j, n; 1582 bool simplified = false; 1583 pred_chain s_chain = vNULL; 1584 1585 n = one_chain->length (); 1586 1587 for (i = 0; i < n; i++) 1588 { 1589 pred_info *a_pred = &(*one_chain)[i]; 1590 1591 if (!a_pred->pred_lhs) 1592 continue; 1593 if (!is_neq_zero_form_p (*a_pred)) 1594 continue; 1595 1596 gimple *def_stmt = SSA_NAME_DEF_STMT (a_pred->pred_lhs); 1597 if (gimple_code (def_stmt) != GIMPLE_ASSIGN) 1598 continue; 1599 if (gimple_assign_rhs_code (def_stmt) == BIT_IOR_EXPR) 1600 { 1601 for (j = 0; j < n; j++) 1602 { 1603 pred_info *b_pred = &(*one_chain)[j]; 1604 1605 if (!b_pred->pred_lhs) 1606 continue; 1607 if (!is_neq_zero_form_p (*b_pred)) 1608 continue; 1609 1610 if (pred_expr_equal_p (*b_pred, gimple_assign_rhs1 (def_stmt)) 1611 || pred_expr_equal_p (*b_pred, gimple_assign_rhs2 (def_stmt))) 1612 { 1613 /* Mark a_pred for removal. */ 1614 a_pred->pred_lhs = NULL; 1615 a_pred->pred_rhs = NULL; 1616 simplified = true; 1617 break; 1618 } 1619 } 1620 } 1621 } 1622 1623 if (!simplified) 1624 return; 1625 1626 for (i = 0; i < n; i++) 1627 { 1628 pred_info *a_pred = &(*one_chain)[i]; 1629 if (!a_pred->pred_lhs) 1630 continue; 1631 s_chain.safe_push (*a_pred); 1632 } 1633 1634 one_chain->release (); 1635 *one_chain = s_chain; 1636 } 1637 1638 /* The helper function implements the rule 2 for the 1639 OR predicate PREDS. 1640 1641 2) (X AND Y) OR (!X AND Y) is equivalent to Y. */ 1642 1643 static bool 1644 simplify_preds_2 (pred_chain_union *preds) 1645 { 1646 size_t i, j, n; 1647 bool simplified = false; 1648 pred_chain_union s_preds = vNULL; 1649 1650 /* (X AND Y) OR (!X AND Y) is equivalent to Y. 1651 (X AND Y) OR (X AND !Y) is equivalent to X. */ 1652 1653 n = preds->length (); 1654 for (i = 0; i < n; i++) 1655 { 1656 pred_info x, y; 1657 pred_chain *a_chain = &(*preds)[i]; 1658 1659 if (a_chain->length () != 2) 1660 continue; 1661 1662 x = (*a_chain)[0]; 1663 y = (*a_chain)[1]; 1664 1665 for (j = 0; j < n; j++) 1666 { 1667 pred_chain *b_chain; 1668 pred_info x2, y2; 1669 1670 if (j == i) 1671 continue; 1672 1673 b_chain = &(*preds)[j]; 1674 if (b_chain->length () != 2) 1675 continue; 1676 1677 x2 = (*b_chain)[0]; 1678 y2 = (*b_chain)[1]; 1679 1680 if (pred_equal_p (x, x2) && pred_neg_p (y, y2)) 1681 { 1682 /* Kill a_chain. */ 1683 a_chain->release (); 1684 b_chain->release (); 1685 b_chain->safe_push (x); 1686 simplified = true; 1687 break; 1688 } 1689 if (pred_neg_p (x, x2) && pred_equal_p (y, y2)) 1690 { 1691 /* Kill a_chain. */ 1692 a_chain->release (); 1693 b_chain->release (); 1694 b_chain->safe_push (y); 1695 simplified = true; 1696 break; 1697 } 1698 } 1699 } 1700 /* Now clean up the chain. */ 1701 if (simplified) 1702 { 1703 for (i = 0; i < n; i++) 1704 { 1705 if ((*preds)[i].is_empty ()) 1706 continue; 1707 s_preds.safe_push ((*preds)[i]); 1708 } 1709 preds->release (); 1710 (*preds) = s_preds; 1711 s_preds = vNULL; 1712 } 1713 1714 return simplified; 1715 } 1716 1717 /* The helper function implements the rule 2 for the 1718 OR predicate PREDS. 1719 1720 3) x OR (!x AND y) is equivalent to x OR y. */ 1721 1722 static bool 1723 simplify_preds_3 (pred_chain_union *preds) 1724 { 1725 size_t i, j, n; 1726 bool simplified = false; 1727 1728 /* Now iteratively simplify X OR (!X AND Z ..) 1729 into X OR (Z ...). */ 1730 1731 n = preds->length (); 1732 if (n < 2) 1733 return false; 1734 1735 for (i = 0; i < n; i++) 1736 { 1737 pred_info x; 1738 pred_chain *a_chain = &(*preds)[i]; 1739 1740 if (a_chain->length () != 1) 1741 continue; 1742 1743 x = (*a_chain)[0]; 1744 1745 for (j = 0; j < n; j++) 1746 { 1747 pred_chain *b_chain; 1748 pred_info x2; 1749 size_t k; 1750 1751 if (j == i) 1752 continue; 1753 1754 b_chain = &(*preds)[j]; 1755 if (b_chain->length () < 2) 1756 continue; 1757 1758 for (k = 0; k < b_chain->length (); k++) 1759 { 1760 x2 = (*b_chain)[k]; 1761 if (pred_neg_p (x, x2)) 1762 { 1763 b_chain->unordered_remove (k); 1764 simplified = true; 1765 break; 1766 } 1767 } 1768 } 1769 } 1770 return simplified; 1771 } 1772 1773 /* The helper function implements the rule 4 for the 1774 OR predicate PREDS. 1775 1776 2) ((x AND y) != 0) OR (x != 0 AND y != 0) is equivalent to 1777 (x != 0 ANd y != 0). */ 1778 1779 static bool 1780 simplify_preds_4 (pred_chain_union *preds) 1781 { 1782 size_t i, j, n; 1783 bool simplified = false; 1784 pred_chain_union s_preds = vNULL; 1785 gimple *def_stmt; 1786 1787 n = preds->length (); 1788 for (i = 0; i < n; i++) 1789 { 1790 pred_info z; 1791 pred_chain *a_chain = &(*preds)[i]; 1792 1793 if (a_chain->length () != 1) 1794 continue; 1795 1796 z = (*a_chain)[0]; 1797 1798 if (!is_neq_zero_form_p (z)) 1799 continue; 1800 1801 def_stmt = SSA_NAME_DEF_STMT (z.pred_lhs); 1802 if (gimple_code (def_stmt) != GIMPLE_ASSIGN) 1803 continue; 1804 1805 if (gimple_assign_rhs_code (def_stmt) != BIT_AND_EXPR) 1806 continue; 1807 1808 for (j = 0; j < n; j++) 1809 { 1810 pred_chain *b_chain; 1811 pred_info x2, y2; 1812 1813 if (j == i) 1814 continue; 1815 1816 b_chain = &(*preds)[j]; 1817 if (b_chain->length () != 2) 1818 continue; 1819 1820 x2 = (*b_chain)[0]; 1821 y2 = (*b_chain)[1]; 1822 if (!is_neq_zero_form_p (x2) || !is_neq_zero_form_p (y2)) 1823 continue; 1824 1825 if ((pred_expr_equal_p (x2, gimple_assign_rhs1 (def_stmt)) 1826 && pred_expr_equal_p (y2, gimple_assign_rhs2 (def_stmt))) 1827 || (pred_expr_equal_p (x2, gimple_assign_rhs2 (def_stmt)) 1828 && pred_expr_equal_p (y2, gimple_assign_rhs1 (def_stmt)))) 1829 { 1830 /* Kill a_chain. */ 1831 a_chain->release (); 1832 simplified = true; 1833 break; 1834 } 1835 } 1836 } 1837 /* Now clean up the chain. */ 1838 if (simplified) 1839 { 1840 for (i = 0; i < n; i++) 1841 { 1842 if ((*preds)[i].is_empty ()) 1843 continue; 1844 s_preds.safe_push ((*preds)[i]); 1845 } 1846 1847 preds->release (); 1848 (*preds) = s_preds; 1849 s_preds = vNULL; 1850 } 1851 1852 return simplified; 1853 } 1854 1855 /* This function simplifies predicates in PREDS. */ 1856 1857 static void 1858 simplify_preds (pred_chain_union *preds, gimple *use_or_def, bool is_use) 1859 { 1860 size_t i, n; 1861 bool changed = false; 1862 1863 if (dump_file && dump_flags & TDF_DETAILS) 1864 { 1865 fprintf (dump_file, "[BEFORE SIMPLICATION -- "); 1866 dump_predicates (use_or_def, *preds, is_use ? "[USE]:\n" : "[DEF]:\n"); 1867 } 1868 1869 for (i = 0; i < preds->length (); i++) 1870 simplify_pred (&(*preds)[i]); 1871 1872 n = preds->length (); 1873 if (n < 2) 1874 return; 1875 1876 do 1877 { 1878 changed = false; 1879 if (simplify_preds_2 (preds)) 1880 changed = true; 1881 1882 /* Now iteratively simplify X OR (!X AND Z ..) 1883 into X OR (Z ...). */ 1884 if (simplify_preds_3 (preds)) 1885 changed = true; 1886 1887 if (simplify_preds_4 (preds)) 1888 changed = true; 1889 } 1890 while (changed); 1891 1892 return; 1893 } 1894 1895 /* This is a helper function which attempts to normalize predicate chains 1896 by following UD chains. It basically builds up a big tree of either IOR 1897 operations or AND operations, and convert the IOR tree into a 1898 pred_chain_union or BIT_AND tree into a pred_chain. 1899 Example: 1900 1901 _3 = _2 RELOP1 _1; 1902 _6 = _5 RELOP2 _4; 1903 _9 = _8 RELOP3 _7; 1904 _10 = _3 | _6; 1905 _12 = _9 | _0; 1906 _t = _10 | _12; 1907 1908 then _t != 0 will be normalized into a pred_chain_union 1909 1910 (_2 RELOP1 _1) OR (_5 RELOP2 _4) OR (_8 RELOP3 _7) OR (_0 != 0) 1911 1912 Similarly given, 1913 1914 _3 = _2 RELOP1 _1; 1915 _6 = _5 RELOP2 _4; 1916 _9 = _8 RELOP3 _7; 1917 _10 = _3 & _6; 1918 _12 = _9 & _0; 1919 1920 then _t != 0 will be normalized into a pred_chain: 1921 (_2 RELOP1 _1) AND (_5 RELOP2 _4) AND (_8 RELOP3 _7) AND (_0 != 0) 1922 1923 */ 1924 1925 /* This is a helper function that stores a PRED into NORM_PREDS. */ 1926 1927 inline static void 1928 push_pred (pred_chain_union *norm_preds, pred_info pred) 1929 { 1930 pred_chain pred_chain = vNULL; 1931 pred_chain.safe_push (pred); 1932 norm_preds->safe_push (pred_chain); 1933 } 1934 1935 /* A helper function that creates a predicate of the form 1936 OP != 0 and push it WORK_LIST. */ 1937 1938 inline static void 1939 push_to_worklist (tree op, vec<pred_info, va_heap, vl_ptr> *work_list, 1940 hash_set<tree> *mark_set) 1941 { 1942 if (mark_set->contains (op)) 1943 return; 1944 mark_set->add (op); 1945 1946 pred_info arg_pred; 1947 arg_pred.pred_lhs = op; 1948 arg_pred.pred_rhs = integer_zero_node; 1949 arg_pred.cond_code = NE_EXPR; 1950 arg_pred.invert = false; 1951 work_list->safe_push (arg_pred); 1952 } 1953 1954 /* A helper that generates a pred_info from a gimple assignment 1955 CMP_ASSIGN with comparison rhs. */ 1956 1957 static pred_info 1958 get_pred_info_from_cmp (gimple *cmp_assign) 1959 { 1960 pred_info n_pred; 1961 n_pred.pred_lhs = gimple_assign_rhs1 (cmp_assign); 1962 n_pred.pred_rhs = gimple_assign_rhs2 (cmp_assign); 1963 n_pred.cond_code = gimple_assign_rhs_code (cmp_assign); 1964 n_pred.invert = false; 1965 return n_pred; 1966 } 1967 1968 /* Returns true if the PHI is a degenerated phi with 1969 all args with the same value (relop). In that case, *PRED 1970 will be updated to that value. */ 1971 1972 static bool 1973 is_degenerated_phi (gimple *phi, pred_info *pred_p) 1974 { 1975 int i, n; 1976 tree op0; 1977 gimple *def0; 1978 pred_info pred0; 1979 1980 n = gimple_phi_num_args (phi); 1981 op0 = gimple_phi_arg_def (phi, 0); 1982 1983 if (TREE_CODE (op0) != SSA_NAME) 1984 return false; 1985 1986 def0 = SSA_NAME_DEF_STMT (op0); 1987 if (gimple_code (def0) != GIMPLE_ASSIGN) 1988 return false; 1989 if (TREE_CODE_CLASS (gimple_assign_rhs_code (def0)) != tcc_comparison) 1990 return false; 1991 pred0 = get_pred_info_from_cmp (def0); 1992 1993 for (i = 1; i < n; ++i) 1994 { 1995 gimple *def; 1996 pred_info pred; 1997 tree op = gimple_phi_arg_def (phi, i); 1998 1999 if (TREE_CODE (op) != SSA_NAME) 2000 return false; 2001 2002 def = SSA_NAME_DEF_STMT (op); 2003 if (gimple_code (def) != GIMPLE_ASSIGN) 2004 return false; 2005 if (TREE_CODE_CLASS (gimple_assign_rhs_code (def)) != tcc_comparison) 2006 return false; 2007 pred = get_pred_info_from_cmp (def); 2008 if (!pred_equal_p (pred, pred0)) 2009 return false; 2010 } 2011 2012 *pred_p = pred0; 2013 return true; 2014 } 2015 2016 /* Normalize one predicate PRED 2017 1) if PRED can no longer be normlized, put it into NORM_PREDS. 2018 2) otherwise if PRED is of the form x != 0, follow x's definition 2019 and put normalized predicates into WORK_LIST. */ 2020 2021 static void 2022 normalize_one_pred_1 (pred_chain_union *norm_preds, 2023 pred_chain *norm_chain, 2024 pred_info pred, 2025 enum tree_code and_or_code, 2026 vec<pred_info, va_heap, vl_ptr> *work_list, 2027 hash_set<tree> *mark_set) 2028 { 2029 if (!is_neq_zero_form_p (pred)) 2030 { 2031 if (and_or_code == BIT_IOR_EXPR) 2032 push_pred (norm_preds, pred); 2033 else 2034 norm_chain->safe_push (pred); 2035 return; 2036 } 2037 2038 gimple *def_stmt = SSA_NAME_DEF_STMT (pred.pred_lhs); 2039 2040 if (gimple_code (def_stmt) == GIMPLE_PHI 2041 && is_degenerated_phi (def_stmt, &pred)) 2042 work_list->safe_push (pred); 2043 else if (gimple_code (def_stmt) == GIMPLE_PHI && and_or_code == BIT_IOR_EXPR) 2044 { 2045 int i, n; 2046 n = gimple_phi_num_args (def_stmt); 2047 2048 /* If we see non zero constant, we should punt. The predicate 2049 * should be one guarding the phi edge. */ 2050 for (i = 0; i < n; ++i) 2051 { 2052 tree op = gimple_phi_arg_def (def_stmt, i); 2053 if (TREE_CODE (op) == INTEGER_CST && !integer_zerop (op)) 2054 { 2055 push_pred (norm_preds, pred); 2056 return; 2057 } 2058 } 2059 2060 for (i = 0; i < n; ++i) 2061 { 2062 tree op = gimple_phi_arg_def (def_stmt, i); 2063 if (integer_zerop (op)) 2064 continue; 2065 2066 push_to_worklist (op, work_list, mark_set); 2067 } 2068 } 2069 else if (gimple_code (def_stmt) != GIMPLE_ASSIGN) 2070 { 2071 if (and_or_code == BIT_IOR_EXPR) 2072 push_pred (norm_preds, pred); 2073 else 2074 norm_chain->safe_push (pred); 2075 } 2076 else if (gimple_assign_rhs_code (def_stmt) == and_or_code) 2077 { 2078 /* Avoid splitting up bit manipulations like x & 3 or y | 1. */ 2079 if (is_gimple_min_invariant (gimple_assign_rhs2 (def_stmt))) 2080 { 2081 /* But treat x & 3 as condition. */ 2082 if (and_or_code == BIT_AND_EXPR) 2083 { 2084 pred_info n_pred; 2085 n_pred.pred_lhs = gimple_assign_rhs1 (def_stmt); 2086 n_pred.pred_rhs = gimple_assign_rhs2 (def_stmt); 2087 n_pred.cond_code = and_or_code; 2088 n_pred.invert = false; 2089 norm_chain->safe_push (n_pred); 2090 } 2091 } 2092 else 2093 { 2094 push_to_worklist (gimple_assign_rhs1 (def_stmt), work_list, mark_set); 2095 push_to_worklist (gimple_assign_rhs2 (def_stmt), work_list, mark_set); 2096 } 2097 } 2098 else if (TREE_CODE_CLASS (gimple_assign_rhs_code (def_stmt)) 2099 == tcc_comparison) 2100 { 2101 pred_info n_pred = get_pred_info_from_cmp (def_stmt); 2102 if (and_or_code == BIT_IOR_EXPR) 2103 push_pred (norm_preds, n_pred); 2104 else 2105 norm_chain->safe_push (n_pred); 2106 } 2107 else 2108 { 2109 if (and_or_code == BIT_IOR_EXPR) 2110 push_pred (norm_preds, pred); 2111 else 2112 norm_chain->safe_push (pred); 2113 } 2114 } 2115 2116 /* Normalize PRED and store the normalized predicates into NORM_PREDS. */ 2117 2118 static void 2119 normalize_one_pred (pred_chain_union *norm_preds, pred_info pred) 2120 { 2121 vec<pred_info, va_heap, vl_ptr> work_list = vNULL; 2122 enum tree_code and_or_code = ERROR_MARK; 2123 pred_chain norm_chain = vNULL; 2124 2125 if (!is_neq_zero_form_p (pred)) 2126 { 2127 push_pred (norm_preds, pred); 2128 return; 2129 } 2130 2131 gimple *def_stmt = SSA_NAME_DEF_STMT (pred.pred_lhs); 2132 if (gimple_code (def_stmt) == GIMPLE_ASSIGN) 2133 and_or_code = gimple_assign_rhs_code (def_stmt); 2134 if (and_or_code != BIT_IOR_EXPR && and_or_code != BIT_AND_EXPR) 2135 { 2136 if (TREE_CODE_CLASS (and_or_code) == tcc_comparison) 2137 { 2138 pred_info n_pred = get_pred_info_from_cmp (def_stmt); 2139 push_pred (norm_preds, n_pred); 2140 } 2141 else 2142 push_pred (norm_preds, pred); 2143 return; 2144 } 2145 2146 work_list.safe_push (pred); 2147 hash_set<tree> mark_set; 2148 2149 while (!work_list.is_empty ()) 2150 { 2151 pred_info a_pred = work_list.pop (); 2152 normalize_one_pred_1 (norm_preds, &norm_chain, a_pred, and_or_code, 2153 &work_list, &mark_set); 2154 } 2155 if (and_or_code == BIT_AND_EXPR) 2156 norm_preds->safe_push (norm_chain); 2157 2158 work_list.release (); 2159 } 2160 2161 static void 2162 normalize_one_pred_chain (pred_chain_union *norm_preds, pred_chain one_chain) 2163 { 2164 vec<pred_info, va_heap, vl_ptr> work_list = vNULL; 2165 hash_set<tree> mark_set; 2166 pred_chain norm_chain = vNULL; 2167 size_t i; 2168 2169 for (i = 0; i < one_chain.length (); i++) 2170 { 2171 work_list.safe_push (one_chain[i]); 2172 mark_set.add (one_chain[i].pred_lhs); 2173 } 2174 2175 while (!work_list.is_empty ()) 2176 { 2177 pred_info a_pred = work_list.pop (); 2178 normalize_one_pred_1 (0, &norm_chain, a_pred, BIT_AND_EXPR, &work_list, 2179 &mark_set); 2180 } 2181 2182 norm_preds->safe_push (norm_chain); 2183 work_list.release (); 2184 } 2185 2186 /* Normalize predicate chains PREDS and returns the normalized one. */ 2187 2188 static pred_chain_union 2189 normalize_preds (pred_chain_union preds, gimple *use_or_def, bool is_use) 2190 { 2191 pred_chain_union norm_preds = vNULL; 2192 size_t n = preds.length (); 2193 size_t i; 2194 2195 if (dump_file && dump_flags & TDF_DETAILS) 2196 { 2197 fprintf (dump_file, "[BEFORE NORMALIZATION --"); 2198 dump_predicates (use_or_def, preds, is_use ? "[USE]:\n" : "[DEF]:\n"); 2199 } 2200 2201 for (i = 0; i < n; i++) 2202 { 2203 if (preds[i].length () != 1) 2204 normalize_one_pred_chain (&norm_preds, preds[i]); 2205 else 2206 { 2207 normalize_one_pred (&norm_preds, preds[i][0]); 2208 preds[i].release (); 2209 } 2210 } 2211 2212 if (dump_file) 2213 { 2214 fprintf (dump_file, "[AFTER NORMALIZATION -- "); 2215 dump_predicates (use_or_def, norm_preds, 2216 is_use ? "[USE]:\n" : "[DEF]:\n"); 2217 } 2218 2219 destroy_predicate_vecs (&preds); 2220 return norm_preds; 2221 } 2222 2223 /* Return TRUE if PREDICATE can be invalidated by any individual 2224 predicate in WORKLIST. */ 2225 2226 static bool 2227 can_one_predicate_be_invalidated_p (pred_info predicate, 2228 pred_chain use_guard) 2229 { 2230 for (size_t i = 0; i < use_guard.length (); ++i) 2231 { 2232 /* NOTE: This is a very simple check, and only understands an 2233 exact opposite. So, [i == 0] is currently only invalidated 2234 by [.NOT. i == 0] or [i != 0]. Ideally we should also 2235 invalidate with say [i > 5] or [i == 8]. There is certainly 2236 room for improvement here. */ 2237 if (pred_neg_p (predicate, use_guard[i])) 2238 return true; 2239 } 2240 return false; 2241 } 2242 2243 /* Return TRUE if all predicates in UNINIT_PRED are invalidated by 2244 USE_GUARD being true. */ 2245 2246 static bool 2247 can_chain_union_be_invalidated_p (pred_chain_union uninit_pred, 2248 pred_chain use_guard) 2249 { 2250 if (uninit_pred.is_empty ()) 2251 return false; 2252 for (size_t i = 0; i < uninit_pred.length (); ++i) 2253 { 2254 pred_chain c = uninit_pred[i]; 2255 for (size_t j = 0; j < c.length (); ++j) 2256 if (!can_one_predicate_be_invalidated_p (c[j], use_guard)) 2257 return false; 2258 } 2259 return true; 2260 } 2261 2262 /* Return TRUE if none of the uninitialized operands in UNINT_OPNDS 2263 can actually happen if we arrived at a use for PHI. 2264 2265 PHI_USE_GUARDS are the guard conditions for the use of the PHI. */ 2266 2267 static bool 2268 uninit_uses_cannot_happen (gphi *phi, unsigned uninit_opnds, 2269 pred_chain_union phi_use_guards) 2270 { 2271 unsigned phi_args = gimple_phi_num_args (phi); 2272 if (phi_args > max_phi_args) 2273 return false; 2274 2275 /* PHI_USE_GUARDS are OR'ed together. If we have more than one 2276 possible guard, there's no way of knowing which guard was true. 2277 Since we need to be absolutely sure that the uninitialized 2278 operands will be invalidated, bail. */ 2279 if (phi_use_guards.length () != 1) 2280 return false; 2281 2282 /* Look for the control dependencies of all the uninitialized 2283 operands and build guard predicates describing them. */ 2284 pred_chain_union uninit_preds; 2285 bool ret = true; 2286 for (unsigned i = 0; i < phi_args; ++i) 2287 { 2288 if (!MASK_TEST_BIT (uninit_opnds, i)) 2289 continue; 2290 2291 edge e = gimple_phi_arg_edge (phi, i); 2292 vec<edge> dep_chains[MAX_NUM_CHAINS]; 2293 auto_vec<edge, MAX_CHAIN_LEN + 1> cur_chain; 2294 size_t num_chains = 0; 2295 int num_calls = 0; 2296 2297 /* Build the control dependency chain for uninit operand `i'... */ 2298 uninit_preds = vNULL; 2299 if (!compute_control_dep_chain (find_dom (e->src), 2300 e->src, dep_chains, &num_chains, 2301 &cur_chain, &num_calls)) 2302 { 2303 ret = false; 2304 break; 2305 } 2306 /* ...and convert it into a set of predicates. */ 2307 convert_control_dep_chain_into_preds (dep_chains, num_chains, 2308 &uninit_preds); 2309 for (size_t j = 0; j < num_chains; ++j) 2310 dep_chains[j].release (); 2311 simplify_preds (&uninit_preds, NULL, false); 2312 uninit_preds = normalize_preds (uninit_preds, NULL, false); 2313 2314 /* Can the guard for this uninitialized operand be invalidated 2315 by the PHI use? */ 2316 if (!can_chain_union_be_invalidated_p (uninit_preds, phi_use_guards[0])) 2317 { 2318 ret = false; 2319 break; 2320 } 2321 } 2322 destroy_predicate_vecs (&uninit_preds); 2323 return ret; 2324 } 2325 2326 /* Computes the predicates that guard the use and checks 2327 if the incoming paths that have empty (or possibly 2328 empty) definition can be pruned/filtered. The function returns 2329 true if it can be determined that the use of PHI's def in 2330 USE_STMT is guarded with a predicate set not overlapping with 2331 predicate sets of all runtime paths that do not have a definition. 2332 2333 Returns false if it is not or it can not be determined. USE_BB is 2334 the bb of the use (for phi operand use, the bb is not the bb of 2335 the phi stmt, but the src bb of the operand edge). 2336 2337 UNINIT_OPNDS is a bit vector. If an operand of PHI is uninitialized, the 2338 corresponding bit in the vector is 1. VISITED_PHIS is a pointer 2339 set of phis being visited. 2340 2341 *DEF_PREDS contains the (memoized) defining predicate chains of PHI. 2342 If *DEF_PREDS is the empty vector, the defining predicate chains of 2343 PHI will be computed and stored into *DEF_PREDS as needed. 2344 2345 VISITED_PHIS is a pointer set of phis being visited. */ 2346 2347 static bool 2348 is_use_properly_guarded (gimple *use_stmt, 2349 basic_block use_bb, 2350 gphi *phi, 2351 unsigned uninit_opnds, 2352 pred_chain_union *def_preds, 2353 hash_set<gphi *> *visited_phis) 2354 { 2355 basic_block phi_bb; 2356 pred_chain_union preds = vNULL; 2357 bool has_valid_preds = false; 2358 bool is_properly_guarded = false; 2359 2360 if (visited_phis->add (phi)) 2361 return false; 2362 2363 phi_bb = gimple_bb (phi); 2364 2365 if (is_non_loop_exit_postdominating (use_bb, phi_bb)) 2366 return false; 2367 2368 has_valid_preds = find_predicates (&preds, phi_bb, use_bb); 2369 2370 if (!has_valid_preds) 2371 { 2372 destroy_predicate_vecs (&preds); 2373 return false; 2374 } 2375 2376 /* Try to prune the dead incoming phi edges. */ 2377 is_properly_guarded 2378 = use_pred_not_overlap_with_undef_path_pred (preds, phi, uninit_opnds, 2379 visited_phis); 2380 2381 /* We might be able to prove that if the control dependencies 2382 for UNINIT_OPNDS are true, that the control dependencies for 2383 USE_STMT can never be true. */ 2384 if (!is_properly_guarded) 2385 is_properly_guarded |= uninit_uses_cannot_happen (phi, uninit_opnds, 2386 preds); 2387 2388 if (is_properly_guarded) 2389 { 2390 destroy_predicate_vecs (&preds); 2391 return true; 2392 } 2393 2394 if (def_preds->is_empty ()) 2395 { 2396 has_valid_preds = find_def_preds (def_preds, phi); 2397 2398 if (!has_valid_preds) 2399 { 2400 destroy_predicate_vecs (&preds); 2401 return false; 2402 } 2403 2404 simplify_preds (def_preds, phi, false); 2405 *def_preds = normalize_preds (*def_preds, phi, false); 2406 } 2407 2408 simplify_preds (&preds, use_stmt, true); 2409 preds = normalize_preds (preds, use_stmt, true); 2410 2411 is_properly_guarded = is_superset_of (*def_preds, preds); 2412 2413 destroy_predicate_vecs (&preds); 2414 return is_properly_guarded; 2415 } 2416 2417 /* Searches through all uses of a potentially 2418 uninitialized variable defined by PHI and returns a use 2419 statement if the use is not properly guarded. It returns 2420 NULL if all uses are guarded. UNINIT_OPNDS is a bitvector 2421 holding the position(s) of uninit PHI operands. WORKLIST 2422 is the vector of candidate phis that may be updated by this 2423 function. ADDED_TO_WORKLIST is the pointer set tracking 2424 if the new phi is already in the worklist. */ 2425 2426 static gimple * 2427 find_uninit_use (gphi *phi, unsigned uninit_opnds, 2428 vec<gphi *> *worklist, 2429 hash_set<gphi *> *added_to_worklist) 2430 { 2431 tree phi_result; 2432 use_operand_p use_p; 2433 gimple *use_stmt; 2434 imm_use_iterator iter; 2435 pred_chain_union def_preds = vNULL; 2436 gimple *ret = NULL; 2437 2438 phi_result = gimple_phi_result (phi); 2439 2440 FOR_EACH_IMM_USE_FAST (use_p, iter, phi_result) 2441 { 2442 basic_block use_bb; 2443 2444 use_stmt = USE_STMT (use_p); 2445 if (is_gimple_debug (use_stmt)) 2446 continue; 2447 2448 if (gphi *use_phi = dyn_cast<gphi *> (use_stmt)) 2449 use_bb = gimple_phi_arg_edge (use_phi, 2450 PHI_ARG_INDEX_FROM_USE (use_p))->src; 2451 else 2452 use_bb = gimple_bb (use_stmt); 2453 2454 hash_set<gphi *> visited_phis; 2455 if (is_use_properly_guarded (use_stmt, use_bb, phi, uninit_opnds, 2456 &def_preds, &visited_phis)) 2457 continue; 2458 2459 if (dump_file && (dump_flags & TDF_DETAILS)) 2460 { 2461 fprintf (dump_file, "[CHECK]: Found unguarded use: "); 2462 print_gimple_stmt (dump_file, use_stmt, 0, 0); 2463 } 2464 /* Found one real use, return. */ 2465 if (gimple_code (use_stmt) != GIMPLE_PHI) 2466 { 2467 ret = use_stmt; 2468 break; 2469 } 2470 2471 /* Found a phi use that is not guarded, 2472 add the phi to the worklist. */ 2473 if (!added_to_worklist->add (as_a<gphi *> (use_stmt))) 2474 { 2475 if (dump_file && (dump_flags & TDF_DETAILS)) 2476 { 2477 fprintf (dump_file, "[WORKLIST]: Update worklist with phi: "); 2478 print_gimple_stmt (dump_file, use_stmt, 0, 0); 2479 } 2480 2481 worklist->safe_push (as_a<gphi *> (use_stmt)); 2482 possibly_undefined_names->add (phi_result); 2483 } 2484 } 2485 2486 destroy_predicate_vecs (&def_preds); 2487 return ret; 2488 } 2489 2490 /* Look for inputs to PHI that are SSA_NAMEs that have empty definitions 2491 and gives warning if there exists a runtime path from the entry to a 2492 use of the PHI def that does not contain a definition. In other words, 2493 the warning is on the real use. The more dead paths that can be pruned 2494 by the compiler, the fewer false positives the warning is. WORKLIST 2495 is a vector of candidate phis to be examined. ADDED_TO_WORKLIST is 2496 a pointer set tracking if the new phi is added to the worklist or not. */ 2497 2498 static void 2499 warn_uninitialized_phi (gphi *phi, vec<gphi *> *worklist, 2500 hash_set<gphi *> *added_to_worklist) 2501 { 2502 unsigned uninit_opnds; 2503 gimple *uninit_use_stmt = 0; 2504 tree uninit_op; 2505 int phiarg_index; 2506 location_t loc; 2507 2508 /* Don't look at virtual operands. */ 2509 if (virtual_operand_p (gimple_phi_result (phi))) 2510 return; 2511 2512 uninit_opnds = compute_uninit_opnds_pos (phi); 2513 2514 if (MASK_EMPTY (uninit_opnds)) 2515 return; 2516 2517 if (dump_file && (dump_flags & TDF_DETAILS)) 2518 { 2519 fprintf (dump_file, "[CHECK]: examining phi: "); 2520 print_gimple_stmt (dump_file, phi, 0, 0); 2521 } 2522 2523 /* Now check if we have any use of the value without proper guard. */ 2524 uninit_use_stmt = find_uninit_use (phi, uninit_opnds, 2525 worklist, added_to_worklist); 2526 2527 /* All uses are properly guarded. */ 2528 if (!uninit_use_stmt) 2529 return; 2530 2531 phiarg_index = MASK_FIRST_SET_BIT (uninit_opnds); 2532 uninit_op = gimple_phi_arg_def (phi, phiarg_index); 2533 if (SSA_NAME_VAR (uninit_op) == NULL_TREE) 2534 return; 2535 if (gimple_phi_arg_has_location (phi, phiarg_index)) 2536 loc = gimple_phi_arg_location (phi, phiarg_index); 2537 else 2538 loc = UNKNOWN_LOCATION; 2539 warn_uninit (OPT_Wmaybe_uninitialized, uninit_op, SSA_NAME_VAR (uninit_op), 2540 SSA_NAME_VAR (uninit_op), 2541 "%qD may be used uninitialized in this function", 2542 uninit_use_stmt, loc); 2543 } 2544 2545 static bool 2546 gate_warn_uninitialized (void) 2547 { 2548 return warn_uninitialized || warn_maybe_uninitialized; 2549 } 2550 2551 namespace { 2552 2553 const pass_data pass_data_late_warn_uninitialized = 2554 { 2555 GIMPLE_PASS, /* type */ 2556 "uninit", /* name */ 2557 OPTGROUP_NONE, /* optinfo_flags */ 2558 TV_NONE, /* tv_id */ 2559 PROP_ssa, /* properties_required */ 2560 0, /* properties_provided */ 2561 0, /* properties_destroyed */ 2562 0, /* todo_flags_start */ 2563 0, /* todo_flags_finish */ 2564 }; 2565 2566 class pass_late_warn_uninitialized : public gimple_opt_pass 2567 { 2568 public: 2569 pass_late_warn_uninitialized (gcc::context *ctxt) 2570 : gimple_opt_pass (pass_data_late_warn_uninitialized, ctxt) 2571 {} 2572 2573 /* opt_pass methods: */ 2574 opt_pass *clone () { return new pass_late_warn_uninitialized (m_ctxt); } 2575 virtual bool gate (function *) { return gate_warn_uninitialized (); } 2576 virtual unsigned int execute (function *); 2577 2578 }; // class pass_late_warn_uninitialized 2579 2580 unsigned int 2581 pass_late_warn_uninitialized::execute (function *fun) 2582 { 2583 basic_block bb; 2584 gphi_iterator gsi; 2585 vec<gphi *> worklist = vNULL; 2586 2587 calculate_dominance_info (CDI_DOMINATORS); 2588 calculate_dominance_info (CDI_POST_DOMINATORS); 2589 /* Re-do the plain uninitialized variable check, as optimization may have 2590 straightened control flow. Do this first so that we don't accidentally 2591 get a "may be" warning when we'd have seen an "is" warning later. */ 2592 warn_uninitialized_vars (/*warn_possibly_uninitialized=*/1); 2593 2594 timevar_push (TV_TREE_UNINIT); 2595 2596 possibly_undefined_names = new hash_set<tree>; 2597 hash_set<gphi *> added_to_worklist; 2598 2599 /* Initialize worklist */ 2600 FOR_EACH_BB_FN (bb, fun) 2601 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi)) 2602 { 2603 gphi *phi = gsi.phi (); 2604 size_t n, i; 2605 2606 n = gimple_phi_num_args (phi); 2607 2608 /* Don't look at virtual operands. */ 2609 if (virtual_operand_p (gimple_phi_result (phi))) 2610 continue; 2611 2612 for (i = 0; i < n; ++i) 2613 { 2614 tree op = gimple_phi_arg_def (phi, i); 2615 if (TREE_CODE (op) == SSA_NAME && uninit_undefined_value_p (op)) 2616 { 2617 worklist.safe_push (phi); 2618 added_to_worklist.add (phi); 2619 if (dump_file && (dump_flags & TDF_DETAILS)) 2620 { 2621 fprintf (dump_file, "[WORKLIST]: add to initial list: "); 2622 print_gimple_stmt (dump_file, phi, 0, 0); 2623 } 2624 break; 2625 } 2626 } 2627 } 2628 2629 while (worklist.length () != 0) 2630 { 2631 gphi *cur_phi = 0; 2632 cur_phi = worklist.pop (); 2633 warn_uninitialized_phi (cur_phi, &worklist, &added_to_worklist); 2634 } 2635 2636 worklist.release (); 2637 delete possibly_undefined_names; 2638 possibly_undefined_names = NULL; 2639 free_dominance_info (CDI_POST_DOMINATORS); 2640 timevar_pop (TV_TREE_UNINIT); 2641 return 0; 2642 } 2643 2644 } // anon namespace 2645 2646 gimple_opt_pass * 2647 make_pass_late_warn_uninitialized (gcc::context *ctxt) 2648 { 2649 return new pass_late_warn_uninitialized (ctxt); 2650 } 2651 2652 static unsigned int 2653 execute_early_warn_uninitialized (void) 2654 { 2655 /* Currently, this pass runs always but 2656 execute_late_warn_uninitialized only runs with optimization. With 2657 optimization we want to warn about possible uninitialized as late 2658 as possible, thus don't do it here. However, without 2659 optimization we need to warn here about "may be uninitialized". */ 2660 calculate_dominance_info (CDI_POST_DOMINATORS); 2661 2662 warn_uninitialized_vars (/*warn_possibly_uninitialized=*/!optimize); 2663 2664 /* Post-dominator information can not be reliably updated. Free it 2665 after the use. */ 2666 2667 free_dominance_info (CDI_POST_DOMINATORS); 2668 return 0; 2669 } 2670 2671 namespace { 2672 2673 const pass_data pass_data_early_warn_uninitialized = 2674 { 2675 GIMPLE_PASS, /* type */ 2676 "*early_warn_uninitialized", /* name */ 2677 OPTGROUP_NONE, /* optinfo_flags */ 2678 TV_TREE_UNINIT, /* tv_id */ 2679 PROP_ssa, /* properties_required */ 2680 0, /* properties_provided */ 2681 0, /* properties_destroyed */ 2682 0, /* todo_flags_start */ 2683 0, /* todo_flags_finish */ 2684 }; 2685 2686 class pass_early_warn_uninitialized : public gimple_opt_pass 2687 { 2688 public: 2689 pass_early_warn_uninitialized (gcc::context *ctxt) 2690 : gimple_opt_pass (pass_data_early_warn_uninitialized, ctxt) 2691 {} 2692 2693 /* opt_pass methods: */ 2694 virtual bool gate (function *) { return gate_warn_uninitialized (); } 2695 virtual unsigned int execute (function *) 2696 { 2697 return execute_early_warn_uninitialized (); 2698 } 2699 2700 }; // class pass_early_warn_uninitialized 2701 2702 } // anon namespace 2703 2704 gimple_opt_pass * 2705 make_pass_early_warn_uninitialized (gcc::context *ctxt) 2706 { 2707 return new pass_early_warn_uninitialized (ctxt); 2708 } 2709