1 /* Predicate aware uninitialized variable warning. 2 Copyright (C) 2001-2019 Free Software Foundation, Inc. 3 Contributed by Xinliang David Li <davidxl@google.com> 4 5 This file is part of GCC. 6 7 GCC is free software; you can redistribute it and/or modify 8 it under the terms of the GNU General Public License as published by 9 the Free Software Foundation; either version 3, or (at your option) 10 any later version. 11 12 GCC is distributed in the hope that it will be useful, 13 but WITHOUT ANY WARRANTY; without even the implied warranty of 14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 GNU General Public License for more details. 16 17 You should have received a copy of the GNU General Public License 18 along with GCC; see the file COPYING3. If not see 19 <http://www.gnu.org/licenses/>. */ 20 21 #include "config.h" 22 #include "system.h" 23 #include "coretypes.h" 24 #include "backend.h" 25 #include "tree.h" 26 #include "gimple.h" 27 #include "tree-pass.h" 28 #include "ssa.h" 29 #include "gimple-pretty-print.h" 30 #include "diagnostic-core.h" 31 #include "fold-const.h" 32 #include "gimple-iterator.h" 33 #include "tree-ssa.h" 34 #include "params.h" 35 #include "tree-cfg.h" 36 #include "cfghooks.h" 37 38 /* This implements the pass that does predicate aware warning on uses of 39 possibly uninitialized variables. The pass first collects the set of 40 possibly uninitialized SSA names. For each such name, it walks through 41 all its immediate uses. For each immediate use, it rebuilds the condition 42 expression (the predicate) that guards the use. The predicate is then 43 examined to see if the variable is always defined under that same condition. 44 This is done either by pruning the unrealizable paths that lead to the 45 default definitions or by checking if the predicate set that guards the 46 defining paths is a superset of the use predicate. */ 47 48 /* Max PHI args we can handle in pass. */ 49 const unsigned max_phi_args = 32; 50 51 /* Pointer set of potentially undefined ssa names, i.e., 52 ssa names that are defined by phi with operands that 53 are not defined or potentially undefined. */ 54 static hash_set<tree> *possibly_undefined_names = 0; 55 56 /* Bit mask handling macros. */ 57 #define MASK_SET_BIT(mask, pos) mask |= (1 << pos) 58 #define MASK_TEST_BIT(mask, pos) (mask & (1 << pos)) 59 #define MASK_EMPTY(mask) (mask == 0) 60 61 /* Returns the first bit position (starting from LSB) 62 in mask that is non zero. Returns -1 if the mask is empty. */ 63 static int 64 get_mask_first_set_bit (unsigned mask) 65 { 66 int pos = 0; 67 if (mask == 0) 68 return -1; 69 70 while ((mask & (1 << pos)) == 0) 71 pos++; 72 73 return pos; 74 } 75 #define MASK_FIRST_SET_BIT(mask) get_mask_first_set_bit (mask) 76 77 /* Return true if T, an SSA_NAME, has an undefined value. */ 78 static bool 79 has_undefined_value_p (tree t) 80 { 81 return (ssa_undefined_value_p (t) 82 || (possibly_undefined_names 83 && possibly_undefined_names->contains (t))); 84 } 85 86 /* Like has_undefined_value_p, but don't return true if TREE_NO_WARNING 87 is set on SSA_NAME_VAR. */ 88 89 static inline bool 90 uninit_undefined_value_p (tree t) 91 { 92 if (!has_undefined_value_p (t)) 93 return false; 94 if (SSA_NAME_VAR (t) && TREE_NO_WARNING (SSA_NAME_VAR (t))) 95 return false; 96 return true; 97 } 98 99 /* Emit warnings for uninitialized variables. This is done in two passes. 100 101 The first pass notices real uses of SSA names with undefined values. 102 Such uses are unconditionally uninitialized, and we can be certain that 103 such a use is a mistake. This pass is run before most optimizations, 104 so that we catch as many as we can. 105 106 The second pass follows PHI nodes to find uses that are potentially 107 uninitialized. In this case we can't necessarily prove that the use 108 is really uninitialized. This pass is run after most optimizations, 109 so that we thread as many jumps and possible, and delete as much dead 110 code as possible, in order to reduce false positives. We also look 111 again for plain uninitialized variables, since optimization may have 112 changed conditionally uninitialized to unconditionally uninitialized. */ 113 114 /* Emit a warning for EXPR based on variable VAR at the point in the 115 program T, an SSA_NAME, is used being uninitialized. The exact 116 warning text is in MSGID and DATA is the gimple stmt with info about 117 the location in source code. When DATA is a GIMPLE_PHI, PHIARG_IDX 118 gives which argument of the phi node to take the location from. WC 119 is the warning code. */ 120 121 static void 122 warn_uninit (enum opt_code wc, tree t, tree expr, tree var, 123 const char *gmsgid, void *data, location_t phiarg_loc) 124 { 125 gimple *context = (gimple *) data; 126 location_t location, cfun_loc; 127 expanded_location xloc, floc; 128 129 /* Ignore COMPLEX_EXPR as initializing only a part of a complex 130 turns in a COMPLEX_EXPR with the not initialized part being 131 set to its previous (undefined) value. */ 132 if (is_gimple_assign (context) 133 && gimple_assign_rhs_code (context) == COMPLEX_EXPR) 134 return; 135 if (!has_undefined_value_p (t)) 136 return; 137 138 /* Anonymous SSA_NAMEs shouldn't be uninitialized, but ssa_undefined_value_p 139 can return true if the def stmt of anonymous SSA_NAME is COMPLEX_EXPR 140 created for conversion from scalar to complex. Use the underlying var of 141 the COMPLEX_EXPRs real part in that case. See PR71581. */ 142 if (expr == NULL_TREE 143 && var == NULL_TREE 144 && SSA_NAME_VAR (t) == NULL_TREE 145 && is_gimple_assign (SSA_NAME_DEF_STMT (t)) 146 && gimple_assign_rhs_code (SSA_NAME_DEF_STMT (t)) == COMPLEX_EXPR) 147 { 148 tree v = gimple_assign_rhs1 (SSA_NAME_DEF_STMT (t)); 149 if (TREE_CODE (v) == SSA_NAME 150 && has_undefined_value_p (v) 151 && zerop (gimple_assign_rhs2 (SSA_NAME_DEF_STMT (t)))) 152 { 153 expr = SSA_NAME_VAR (v); 154 var = expr; 155 } 156 } 157 158 if (expr == NULL_TREE) 159 return; 160 161 /* TREE_NO_WARNING either means we already warned, or the front end 162 wishes to suppress the warning. */ 163 if ((context 164 && (gimple_no_warning_p (context) 165 || (gimple_assign_single_p (context) 166 && TREE_NO_WARNING (gimple_assign_rhs1 (context))))) 167 || TREE_NO_WARNING (expr)) 168 return; 169 170 if (context != NULL && gimple_has_location (context)) 171 location = gimple_location (context); 172 else if (phiarg_loc != UNKNOWN_LOCATION) 173 location = phiarg_loc; 174 else 175 location = DECL_SOURCE_LOCATION (var); 176 location = linemap_resolve_location (line_table, location, 177 LRK_SPELLING_LOCATION, NULL); 178 cfun_loc = DECL_SOURCE_LOCATION (cfun->decl); 179 xloc = expand_location (location); 180 floc = expand_location (cfun_loc); 181 auto_diagnostic_group d; 182 if (warning_at (location, wc, gmsgid, expr)) 183 { 184 TREE_NO_WARNING (expr) = 1; 185 186 if (location == DECL_SOURCE_LOCATION (var)) 187 return; 188 if (xloc.file != floc.file 189 || linemap_location_before_p (line_table, location, cfun_loc) 190 || linemap_location_before_p (line_table, cfun->function_end_locus, 191 location)) 192 inform (DECL_SOURCE_LOCATION (var), "%qD was declared here", var); 193 } 194 } 195 196 struct check_defs_data 197 { 198 /* If we found any may-defs besides must-def clobbers. */ 199 bool found_may_defs; 200 }; 201 202 /* Callback for walk_aliased_vdefs. */ 203 204 static bool 205 check_defs (ao_ref *ref, tree vdef, void *data_) 206 { 207 check_defs_data *data = (check_defs_data *)data_; 208 gimple *def_stmt = SSA_NAME_DEF_STMT (vdef); 209 /* If this is a clobber then if it is not a kill walk past it. */ 210 if (gimple_clobber_p (def_stmt)) 211 { 212 if (stmt_kills_ref_p (def_stmt, ref)) 213 return true; 214 return false; 215 } 216 /* Found a may-def on this path. */ 217 data->found_may_defs = true; 218 return true; 219 } 220 221 static unsigned int 222 warn_uninitialized_vars (bool warn_possibly_uninitialized) 223 { 224 gimple_stmt_iterator gsi; 225 basic_block bb; 226 unsigned int vdef_cnt = 0; 227 unsigned int oracle_cnt = 0; 228 unsigned limit = 0; 229 230 FOR_EACH_BB_FN (bb, cfun) 231 { 232 basic_block succ = single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun)); 233 bool always_executed = dominated_by_p (CDI_POST_DOMINATORS, succ, bb); 234 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi)) 235 { 236 gimple *stmt = gsi_stmt (gsi); 237 use_operand_p use_p; 238 ssa_op_iter op_iter; 239 tree use; 240 241 if (is_gimple_debug (stmt)) 242 continue; 243 244 /* We only do data flow with SSA_NAMEs, so that's all we 245 can warn about. */ 246 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, op_iter, SSA_OP_USE) 247 { 248 /* BIT_INSERT_EXPR first operand should not be considered 249 a use for the purpose of uninit warnings. */ 250 if (gassign *ass = dyn_cast <gassign *> (stmt)) 251 { 252 if (gimple_assign_rhs_code (ass) == BIT_INSERT_EXPR 253 && use_p->use == gimple_assign_rhs1_ptr (ass)) 254 continue; 255 } 256 use = USE_FROM_PTR (use_p); 257 if (always_executed) 258 warn_uninit (OPT_Wuninitialized, use, SSA_NAME_VAR (use), 259 SSA_NAME_VAR (use), 260 "%qD is used uninitialized in this function", stmt, 261 UNKNOWN_LOCATION); 262 else if (warn_possibly_uninitialized) 263 warn_uninit (OPT_Wmaybe_uninitialized, use, SSA_NAME_VAR (use), 264 SSA_NAME_VAR (use), 265 "%qD may be used uninitialized in this function", 266 stmt, UNKNOWN_LOCATION); 267 } 268 269 /* For limiting the alias walk below we count all 270 vdefs in the function. */ 271 if (gimple_vdef (stmt)) 272 vdef_cnt++; 273 274 if (gimple_assign_load_p (stmt) 275 && gimple_has_location (stmt)) 276 { 277 tree rhs = gimple_assign_rhs1 (stmt); 278 tree lhs = gimple_assign_lhs (stmt); 279 bool has_bit_insert = false; 280 use_operand_p luse_p; 281 imm_use_iterator liter; 282 283 if (TREE_NO_WARNING (rhs)) 284 continue; 285 286 ao_ref ref; 287 ao_ref_init (&ref, rhs); 288 289 /* Do not warn if the base was marked so or this is a 290 hard register var. */ 291 tree base = ao_ref_base (&ref); 292 if ((VAR_P (base) 293 && DECL_HARD_REGISTER (base)) 294 || TREE_NO_WARNING (base)) 295 continue; 296 297 /* Do not warn if the access is fully outside of the 298 variable. */ 299 poly_int64 decl_size; 300 if (DECL_P (base) 301 && known_size_p (ref.size) 302 && ((known_eq (ref.max_size, ref.size) 303 && known_le (ref.offset + ref.size, 0)) 304 || (known_ge (ref.offset, 0) 305 && DECL_SIZE (base) 306 && poly_int_tree_p (DECL_SIZE (base), &decl_size) 307 && known_le (decl_size, ref.offset)))) 308 continue; 309 310 /* Do not warn if the access is then used for a BIT_INSERT_EXPR. */ 311 if (TREE_CODE (lhs) == SSA_NAME) 312 FOR_EACH_IMM_USE_FAST (luse_p, liter, lhs) 313 { 314 gimple *use_stmt = USE_STMT (luse_p); 315 /* BIT_INSERT_EXPR first operand should not be considered 316 a use for the purpose of uninit warnings. */ 317 if (gassign *ass = dyn_cast <gassign *> (use_stmt)) 318 { 319 if (gimple_assign_rhs_code (ass) == BIT_INSERT_EXPR 320 && luse_p->use == gimple_assign_rhs1_ptr (ass)) 321 { 322 has_bit_insert = true; 323 break; 324 } 325 } 326 } 327 if (has_bit_insert) 328 continue; 329 330 /* Limit the walking to a constant number of stmts after 331 we overcommit quadratic behavior for small functions 332 and O(n) behavior. */ 333 if (oracle_cnt > 128 * 128 334 && oracle_cnt > vdef_cnt * 2) 335 limit = 32; 336 check_defs_data data; 337 bool fentry_reached = false; 338 data.found_may_defs = false; 339 use = gimple_vuse (stmt); 340 int res = walk_aliased_vdefs (&ref, use, 341 check_defs, &data, NULL, 342 &fentry_reached, limit); 343 if (res == -1) 344 { 345 oracle_cnt += limit; 346 continue; 347 } 348 oracle_cnt += res; 349 if (data.found_may_defs) 350 continue; 351 /* Do not warn if it can be initialized outside this function. 352 If we did not reach function entry then we found killing 353 clobbers on all paths to entry. */ 354 if (fentry_reached 355 /* ??? We'd like to use ref_may_alias_global_p but that 356 excludes global readonly memory and thus we get bougs 357 warnings from p = cond ? "a" : "b" for example. */ 358 && (!VAR_P (base) 359 || is_global_var (base))) 360 continue; 361 362 /* We didn't find any may-defs so on all paths either 363 reached function entry or a killing clobber. */ 364 location_t location 365 = linemap_resolve_location (line_table, gimple_location (stmt), 366 LRK_SPELLING_LOCATION, NULL); 367 if (always_executed) 368 { 369 if (warning_at (location, OPT_Wuninitialized, 370 "%qE is used uninitialized in this function", 371 rhs)) 372 /* ??? This is only effective for decls as in 373 gcc.dg/uninit-B-O0.c. Avoid doing this for 374 maybe-uninit uses as it may hide important 375 locations. */ 376 TREE_NO_WARNING (rhs) = 1; 377 } 378 else if (warn_possibly_uninitialized) 379 warning_at (location, OPT_Wmaybe_uninitialized, 380 "%qE may be used uninitialized in this function", 381 rhs); 382 } 383 } 384 } 385 386 return 0; 387 } 388 389 /* Checks if the operand OPND of PHI is defined by 390 another phi with one operand defined by this PHI, 391 but the rest operands are all defined. If yes, 392 returns true to skip this operand as being 393 redundant. Can be enhanced to be more general. */ 394 395 static bool 396 can_skip_redundant_opnd (tree opnd, gimple *phi) 397 { 398 gimple *op_def; 399 tree phi_def; 400 int i, n; 401 402 phi_def = gimple_phi_result (phi); 403 op_def = SSA_NAME_DEF_STMT (opnd); 404 if (gimple_code (op_def) != GIMPLE_PHI) 405 return false; 406 n = gimple_phi_num_args (op_def); 407 for (i = 0; i < n; ++i) 408 { 409 tree op = gimple_phi_arg_def (op_def, i); 410 if (TREE_CODE (op) != SSA_NAME) 411 continue; 412 if (op != phi_def && uninit_undefined_value_p (op)) 413 return false; 414 } 415 416 return true; 417 } 418 419 /* Returns a bit mask holding the positions of arguments in PHI 420 that have empty (or possibly empty) definitions. */ 421 422 static unsigned 423 compute_uninit_opnds_pos (gphi *phi) 424 { 425 size_t i, n; 426 unsigned uninit_opnds = 0; 427 428 n = gimple_phi_num_args (phi); 429 /* Bail out for phi with too many args. */ 430 if (n > max_phi_args) 431 return 0; 432 433 for (i = 0; i < n; ++i) 434 { 435 tree op = gimple_phi_arg_def (phi, i); 436 if (TREE_CODE (op) == SSA_NAME 437 && uninit_undefined_value_p (op) 438 && !can_skip_redundant_opnd (op, phi)) 439 { 440 if (cfun->has_nonlocal_label || cfun->calls_setjmp) 441 { 442 /* Ignore SSA_NAMEs that appear on abnormal edges 443 somewhere. */ 444 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op)) 445 continue; 446 } 447 MASK_SET_BIT (uninit_opnds, i); 448 } 449 } 450 return uninit_opnds; 451 } 452 453 /* Find the immediate postdominator PDOM of the specified 454 basic block BLOCK. */ 455 456 static inline basic_block 457 find_pdom (basic_block block) 458 { 459 if (block == EXIT_BLOCK_PTR_FOR_FN (cfun)) 460 return EXIT_BLOCK_PTR_FOR_FN (cfun); 461 else 462 { 463 basic_block bb = get_immediate_dominator (CDI_POST_DOMINATORS, block); 464 if (!bb) 465 return EXIT_BLOCK_PTR_FOR_FN (cfun); 466 return bb; 467 } 468 } 469 470 /* Find the immediate DOM of the specified basic block BLOCK. */ 471 472 static inline basic_block 473 find_dom (basic_block block) 474 { 475 if (block == ENTRY_BLOCK_PTR_FOR_FN (cfun)) 476 return ENTRY_BLOCK_PTR_FOR_FN (cfun); 477 else 478 { 479 basic_block bb = get_immediate_dominator (CDI_DOMINATORS, block); 480 if (!bb) 481 return ENTRY_BLOCK_PTR_FOR_FN (cfun); 482 return bb; 483 } 484 } 485 486 /* Returns true if BB1 is postdominating BB2 and BB1 is 487 not a loop exit bb. The loop exit bb check is simple and does 488 not cover all cases. */ 489 490 static bool 491 is_non_loop_exit_postdominating (basic_block bb1, basic_block bb2) 492 { 493 if (!dominated_by_p (CDI_POST_DOMINATORS, bb2, bb1)) 494 return false; 495 496 if (single_pred_p (bb1) && !single_succ_p (bb2)) 497 return false; 498 499 return true; 500 } 501 502 /* Find the closest postdominator of a specified BB, which is control 503 equivalent to BB. */ 504 505 static inline basic_block 506 find_control_equiv_block (basic_block bb) 507 { 508 basic_block pdom; 509 510 pdom = find_pdom (bb); 511 512 /* Skip the postdominating bb that is also loop exit. */ 513 if (!is_non_loop_exit_postdominating (pdom, bb)) 514 return NULL; 515 516 if (dominated_by_p (CDI_DOMINATORS, pdom, bb)) 517 return pdom; 518 519 return NULL; 520 } 521 522 #define MAX_NUM_CHAINS 8 523 #define MAX_CHAIN_LEN 5 524 #define MAX_POSTDOM_CHECK 8 525 #define MAX_SWITCH_CASES 40 526 527 /* Computes the control dependence chains (paths of edges) 528 for DEP_BB up to the dominating basic block BB (the head node of a 529 chain should be dominated by it). CD_CHAINS is pointer to an 530 array holding the result chains. CUR_CD_CHAIN is the current 531 chain being computed. *NUM_CHAINS is total number of chains. The 532 function returns true if the information is successfully computed, 533 return false if there is no control dependence or not computed. */ 534 535 static bool 536 compute_control_dep_chain (basic_block bb, basic_block dep_bb, 537 vec<edge> *cd_chains, 538 size_t *num_chains, 539 vec<edge> *cur_cd_chain, 540 int *num_calls) 541 { 542 edge_iterator ei; 543 edge e; 544 size_t i; 545 bool found_cd_chain = false; 546 size_t cur_chain_len = 0; 547 548 if (*num_calls > PARAM_VALUE (PARAM_UNINIT_CONTROL_DEP_ATTEMPTS)) 549 return false; 550 ++*num_calls; 551 552 /* Could use a set instead. */ 553 cur_chain_len = cur_cd_chain->length (); 554 if (cur_chain_len > MAX_CHAIN_LEN) 555 return false; 556 557 for (i = 0; i < cur_chain_len; i++) 558 { 559 edge e = (*cur_cd_chain)[i]; 560 /* Cycle detected. */ 561 if (e->src == bb) 562 return false; 563 } 564 565 FOR_EACH_EDGE (e, ei, bb->succs) 566 { 567 basic_block cd_bb; 568 int post_dom_check = 0; 569 if (e->flags & (EDGE_FAKE | EDGE_ABNORMAL)) 570 continue; 571 572 cd_bb = e->dest; 573 cur_cd_chain->safe_push (e); 574 while (!is_non_loop_exit_postdominating (cd_bb, bb)) 575 { 576 if (cd_bb == dep_bb) 577 { 578 /* Found a direct control dependence. */ 579 if (*num_chains < MAX_NUM_CHAINS) 580 { 581 cd_chains[*num_chains] = cur_cd_chain->copy (); 582 (*num_chains)++; 583 } 584 found_cd_chain = true; 585 /* Check path from next edge. */ 586 break; 587 } 588 589 /* Now check if DEP_BB is indirectly control dependent on BB. */ 590 if (compute_control_dep_chain (cd_bb, dep_bb, cd_chains, num_chains, 591 cur_cd_chain, num_calls)) 592 { 593 found_cd_chain = true; 594 break; 595 } 596 597 cd_bb = find_pdom (cd_bb); 598 post_dom_check++; 599 if (cd_bb == EXIT_BLOCK_PTR_FOR_FN (cfun) 600 || post_dom_check > MAX_POSTDOM_CHECK) 601 break; 602 } 603 cur_cd_chain->pop (); 604 gcc_assert (cur_cd_chain->length () == cur_chain_len); 605 } 606 gcc_assert (cur_cd_chain->length () == cur_chain_len); 607 608 return found_cd_chain; 609 } 610 611 /* The type to represent a simple predicate. */ 612 613 struct pred_info 614 { 615 tree pred_lhs; 616 tree pred_rhs; 617 enum tree_code cond_code; 618 bool invert; 619 }; 620 621 /* The type to represent a sequence of predicates grouped 622 with .AND. operation. */ 623 624 typedef vec<pred_info, va_heap, vl_ptr> pred_chain; 625 626 /* The type to represent a sequence of pred_chains grouped 627 with .OR. operation. */ 628 629 typedef vec<pred_chain, va_heap, vl_ptr> pred_chain_union; 630 631 /* Converts the chains of control dependence edges into a set of 632 predicates. A control dependence chain is represented by a vector 633 edges. DEP_CHAINS points to an array of dependence chains. 634 NUM_CHAINS is the size of the chain array. One edge in a dependence 635 chain is mapped to predicate expression represented by pred_info 636 type. One dependence chain is converted to a composite predicate that 637 is the result of AND operation of pred_info mapped to each edge. 638 A composite predicate is presented by a vector of pred_info. On 639 return, *PREDS points to the resulting array of composite predicates. 640 *NUM_PREDS is the number of composite predictes. */ 641 642 static bool 643 convert_control_dep_chain_into_preds (vec<edge> *dep_chains, 644 size_t num_chains, 645 pred_chain_union *preds) 646 { 647 bool has_valid_pred = false; 648 size_t i, j; 649 if (num_chains == 0 || num_chains >= MAX_NUM_CHAINS) 650 return false; 651 652 /* Now convert the control dep chain into a set 653 of predicates. */ 654 preds->reserve (num_chains); 655 656 for (i = 0; i < num_chains; i++) 657 { 658 vec<edge> one_cd_chain = dep_chains[i]; 659 660 has_valid_pred = false; 661 pred_chain t_chain = vNULL; 662 for (j = 0; j < one_cd_chain.length (); j++) 663 { 664 gimple *cond_stmt; 665 gimple_stmt_iterator gsi; 666 basic_block guard_bb; 667 pred_info one_pred; 668 edge e; 669 670 e = one_cd_chain[j]; 671 guard_bb = e->src; 672 gsi = gsi_last_bb (guard_bb); 673 /* Ignore empty forwarder blocks. */ 674 if (empty_block_p (guard_bb) && single_succ_p (guard_bb)) 675 continue; 676 /* An empty basic block here is likely a PHI, and is not one 677 of the cases we handle below. */ 678 if (gsi_end_p (gsi)) 679 { 680 has_valid_pred = false; 681 break; 682 } 683 cond_stmt = gsi_stmt (gsi); 684 if (is_gimple_call (cond_stmt) && EDGE_COUNT (e->src->succs) >= 2) 685 /* Ignore EH edge. Can add assertion on the other edge's flag. */ 686 continue; 687 /* Skip if there is essentially one succesor. */ 688 if (EDGE_COUNT (e->src->succs) == 2) 689 { 690 edge e1; 691 edge_iterator ei1; 692 bool skip = false; 693 694 FOR_EACH_EDGE (e1, ei1, e->src->succs) 695 { 696 if (EDGE_COUNT (e1->dest->succs) == 0) 697 { 698 skip = true; 699 break; 700 } 701 } 702 if (skip) 703 continue; 704 } 705 if (gimple_code (cond_stmt) == GIMPLE_COND) 706 { 707 one_pred.pred_lhs = gimple_cond_lhs (cond_stmt); 708 one_pred.pred_rhs = gimple_cond_rhs (cond_stmt); 709 one_pred.cond_code = gimple_cond_code (cond_stmt); 710 one_pred.invert = !!(e->flags & EDGE_FALSE_VALUE); 711 t_chain.safe_push (one_pred); 712 has_valid_pred = true; 713 } 714 else if (gswitch *gs = dyn_cast<gswitch *> (cond_stmt)) 715 { 716 /* Avoid quadratic behavior. */ 717 if (gimple_switch_num_labels (gs) > MAX_SWITCH_CASES) 718 { 719 has_valid_pred = false; 720 break; 721 } 722 /* Find the case label. */ 723 tree l = NULL_TREE; 724 unsigned idx; 725 for (idx = 0; idx < gimple_switch_num_labels (gs); ++idx) 726 { 727 tree tl = gimple_switch_label (gs, idx); 728 if (e->dest == label_to_block (cfun, CASE_LABEL (tl))) 729 { 730 if (!l) 731 l = tl; 732 else 733 { 734 l = NULL_TREE; 735 break; 736 } 737 } 738 } 739 /* If more than one label reaches this block or the case 740 label doesn't have a single value (like the default one) 741 fail. */ 742 if (!l 743 || !CASE_LOW (l) 744 || (CASE_HIGH (l) 745 && !operand_equal_p (CASE_LOW (l), CASE_HIGH (l), 0))) 746 { 747 has_valid_pred = false; 748 break; 749 } 750 one_pred.pred_lhs = gimple_switch_index (gs); 751 one_pred.pred_rhs = CASE_LOW (l); 752 one_pred.cond_code = EQ_EXPR; 753 one_pred.invert = false; 754 t_chain.safe_push (one_pred); 755 has_valid_pred = true; 756 } 757 else 758 { 759 has_valid_pred = false; 760 break; 761 } 762 } 763 764 if (!has_valid_pred) 765 break; 766 else 767 preds->safe_push (t_chain); 768 } 769 return has_valid_pred; 770 } 771 772 /* Computes all control dependence chains for USE_BB. The control 773 dependence chains are then converted to an array of composite 774 predicates pointed to by PREDS. PHI_BB is the basic block of 775 the phi whose result is used in USE_BB. */ 776 777 static bool 778 find_predicates (pred_chain_union *preds, 779 basic_block phi_bb, 780 basic_block use_bb) 781 { 782 size_t num_chains = 0, i; 783 int num_calls = 0; 784 vec<edge> dep_chains[MAX_NUM_CHAINS]; 785 auto_vec<edge, MAX_CHAIN_LEN + 1> cur_chain; 786 bool has_valid_pred = false; 787 basic_block cd_root = 0; 788 789 /* First find the closest bb that is control equivalent to PHI_BB 790 that also dominates USE_BB. */ 791 cd_root = phi_bb; 792 while (dominated_by_p (CDI_DOMINATORS, use_bb, cd_root)) 793 { 794 basic_block ctrl_eq_bb = find_control_equiv_block (cd_root); 795 if (ctrl_eq_bb && dominated_by_p (CDI_DOMINATORS, use_bb, ctrl_eq_bb)) 796 cd_root = ctrl_eq_bb; 797 else 798 break; 799 } 800 801 compute_control_dep_chain (cd_root, use_bb, dep_chains, &num_chains, 802 &cur_chain, &num_calls); 803 804 has_valid_pred 805 = convert_control_dep_chain_into_preds (dep_chains, num_chains, preds); 806 for (i = 0; i < num_chains; i++) 807 dep_chains[i].release (); 808 return has_valid_pred; 809 } 810 811 /* Computes the set of incoming edges of PHI that have non empty 812 definitions of a phi chain. The collection will be done 813 recursively on operands that are defined by phis. CD_ROOT 814 is the control dependence root. *EDGES holds the result, and 815 VISITED_PHIS is a pointer set for detecting cycles. */ 816 817 static void 818 collect_phi_def_edges (gphi *phi, basic_block cd_root, 819 auto_vec<edge> *edges, 820 hash_set<gimple *> *visited_phis) 821 { 822 size_t i, n; 823 edge opnd_edge; 824 tree opnd; 825 826 if (visited_phis->add (phi)) 827 return; 828 829 n = gimple_phi_num_args (phi); 830 for (i = 0; i < n; i++) 831 { 832 opnd_edge = gimple_phi_arg_edge (phi, i); 833 opnd = gimple_phi_arg_def (phi, i); 834 835 if (TREE_CODE (opnd) != SSA_NAME) 836 { 837 if (dump_file && (dump_flags & TDF_DETAILS)) 838 { 839 fprintf (dump_file, "\n[CHECK] Found def edge %d in ", (int) i); 840 print_gimple_stmt (dump_file, phi, 0); 841 } 842 edges->safe_push (opnd_edge); 843 } 844 else 845 { 846 gimple *def = SSA_NAME_DEF_STMT (opnd); 847 848 if (gimple_code (def) == GIMPLE_PHI 849 && dominated_by_p (CDI_DOMINATORS, gimple_bb (def), cd_root)) 850 collect_phi_def_edges (as_a<gphi *> (def), cd_root, edges, 851 visited_phis); 852 else if (!uninit_undefined_value_p (opnd)) 853 { 854 if (dump_file && (dump_flags & TDF_DETAILS)) 855 { 856 fprintf (dump_file, "\n[CHECK] Found def edge %d in ", 857 (int) i); 858 print_gimple_stmt (dump_file, phi, 0); 859 } 860 edges->safe_push (opnd_edge); 861 } 862 } 863 } 864 } 865 866 /* For each use edge of PHI, computes all control dependence chains. 867 The control dependence chains are then converted to an array of 868 composite predicates pointed to by PREDS. */ 869 870 static bool 871 find_def_preds (pred_chain_union *preds, gphi *phi) 872 { 873 size_t num_chains = 0, i, n; 874 vec<edge> dep_chains[MAX_NUM_CHAINS]; 875 auto_vec<edge, MAX_CHAIN_LEN + 1> cur_chain; 876 auto_vec<edge> def_edges; 877 bool has_valid_pred = false; 878 basic_block phi_bb, cd_root = 0; 879 880 phi_bb = gimple_bb (phi); 881 /* First find the closest dominating bb to be 882 the control dependence root. */ 883 cd_root = find_dom (phi_bb); 884 if (!cd_root) 885 return false; 886 887 hash_set<gimple *> visited_phis; 888 collect_phi_def_edges (phi, cd_root, &def_edges, &visited_phis); 889 890 n = def_edges.length (); 891 if (n == 0) 892 return false; 893 894 for (i = 0; i < n; i++) 895 { 896 size_t prev_nc, j; 897 int num_calls = 0; 898 edge opnd_edge; 899 900 opnd_edge = def_edges[i]; 901 prev_nc = num_chains; 902 compute_control_dep_chain (cd_root, opnd_edge->src, dep_chains, 903 &num_chains, &cur_chain, &num_calls); 904 905 /* Now update the newly added chains with 906 the phi operand edge: */ 907 if (EDGE_COUNT (opnd_edge->src->succs) > 1) 908 { 909 if (prev_nc == num_chains && num_chains < MAX_NUM_CHAINS) 910 dep_chains[num_chains++] = vNULL; 911 for (j = prev_nc; j < num_chains; j++) 912 dep_chains[j].safe_push (opnd_edge); 913 } 914 } 915 916 has_valid_pred 917 = convert_control_dep_chain_into_preds (dep_chains, num_chains, preds); 918 for (i = 0; i < num_chains; i++) 919 dep_chains[i].release (); 920 return has_valid_pred; 921 } 922 923 /* Dump a pred_info. */ 924 925 static void 926 dump_pred_info (pred_info one_pred) 927 { 928 if (one_pred.invert) 929 fprintf (dump_file, " (.NOT.) "); 930 print_generic_expr (dump_file, one_pred.pred_lhs); 931 fprintf (dump_file, " %s ", op_symbol_code (one_pred.cond_code)); 932 print_generic_expr (dump_file, one_pred.pred_rhs); 933 } 934 935 /* Dump a pred_chain. */ 936 937 static void 938 dump_pred_chain (pred_chain one_pred_chain) 939 { 940 size_t np = one_pred_chain.length (); 941 for (size_t j = 0; j < np; j++) 942 { 943 dump_pred_info (one_pred_chain[j]); 944 if (j < np - 1) 945 fprintf (dump_file, " (.AND.) "); 946 else 947 fprintf (dump_file, "\n"); 948 } 949 } 950 951 /* Dumps the predicates (PREDS) for USESTMT. */ 952 953 static void 954 dump_predicates (gimple *usestmt, pred_chain_union preds, const char *msg) 955 { 956 fprintf (dump_file, "%s", msg); 957 if (usestmt) 958 { 959 print_gimple_stmt (dump_file, usestmt, 0); 960 fprintf (dump_file, "is guarded by :\n\n"); 961 } 962 size_t num_preds = preds.length (); 963 for (size_t i = 0; i < num_preds; i++) 964 { 965 dump_pred_chain (preds[i]); 966 if (i < num_preds - 1) 967 fprintf (dump_file, "(.OR.)\n"); 968 else 969 fprintf (dump_file, "\n\n"); 970 } 971 } 972 973 /* Destroys the predicate set *PREDS. */ 974 975 static void 976 destroy_predicate_vecs (pred_chain_union *preds) 977 { 978 size_t i; 979 980 size_t n = preds->length (); 981 for (i = 0; i < n; i++) 982 (*preds)[i].release (); 983 preds->release (); 984 } 985 986 /* Computes the 'normalized' conditional code with operand 987 swapping and condition inversion. */ 988 989 static enum tree_code 990 get_cmp_code (enum tree_code orig_cmp_code, bool swap_cond, bool invert) 991 { 992 enum tree_code tc = orig_cmp_code; 993 994 if (swap_cond) 995 tc = swap_tree_comparison (orig_cmp_code); 996 if (invert) 997 tc = invert_tree_comparison (tc, false); 998 999 switch (tc) 1000 { 1001 case LT_EXPR: 1002 case LE_EXPR: 1003 case GT_EXPR: 1004 case GE_EXPR: 1005 case EQ_EXPR: 1006 case NE_EXPR: 1007 break; 1008 default: 1009 return ERROR_MARK; 1010 } 1011 return tc; 1012 } 1013 1014 /* Returns true if VAL falls in the range defined by BOUNDARY and CMPC, i.e. 1015 all values in the range satisfies (x CMPC BOUNDARY) == true. */ 1016 1017 static bool 1018 is_value_included_in (tree val, tree boundary, enum tree_code cmpc) 1019 { 1020 bool inverted = false; 1021 bool is_unsigned; 1022 bool result; 1023 1024 /* Only handle integer constant here. */ 1025 if (TREE_CODE (val) != INTEGER_CST || TREE_CODE (boundary) != INTEGER_CST) 1026 return true; 1027 1028 is_unsigned = TYPE_UNSIGNED (TREE_TYPE (val)); 1029 1030 if (cmpc == GE_EXPR || cmpc == GT_EXPR || cmpc == NE_EXPR) 1031 { 1032 cmpc = invert_tree_comparison (cmpc, false); 1033 inverted = true; 1034 } 1035 1036 if (is_unsigned) 1037 { 1038 if (cmpc == EQ_EXPR) 1039 result = tree_int_cst_equal (val, boundary); 1040 else if (cmpc == LT_EXPR) 1041 result = tree_int_cst_lt (val, boundary); 1042 else 1043 { 1044 gcc_assert (cmpc == LE_EXPR); 1045 result = tree_int_cst_le (val, boundary); 1046 } 1047 } 1048 else 1049 { 1050 if (cmpc == EQ_EXPR) 1051 result = tree_int_cst_equal (val, boundary); 1052 else if (cmpc == LT_EXPR) 1053 result = tree_int_cst_lt (val, boundary); 1054 else 1055 { 1056 gcc_assert (cmpc == LE_EXPR); 1057 result = (tree_int_cst_equal (val, boundary) 1058 || tree_int_cst_lt (val, boundary)); 1059 } 1060 } 1061 1062 if (inverted) 1063 result ^= 1; 1064 1065 return result; 1066 } 1067 1068 /* Returns true if PRED is common among all the predicate 1069 chains (PREDS) (and therefore can be factored out). 1070 NUM_PRED_CHAIN is the size of array PREDS. */ 1071 1072 static bool 1073 find_matching_predicate_in_rest_chains (pred_info pred, 1074 pred_chain_union preds, 1075 size_t num_pred_chains) 1076 { 1077 size_t i, j, n; 1078 1079 /* Trival case. */ 1080 if (num_pred_chains == 1) 1081 return true; 1082 1083 for (i = 1; i < num_pred_chains; i++) 1084 { 1085 bool found = false; 1086 pred_chain one_chain = preds[i]; 1087 n = one_chain.length (); 1088 for (j = 0; j < n; j++) 1089 { 1090 pred_info pred2 = one_chain[j]; 1091 /* Can relax the condition comparison to not 1092 use address comparison. However, the most common 1093 case is that multiple control dependent paths share 1094 a common path prefix, so address comparison should 1095 be ok. */ 1096 1097 if (operand_equal_p (pred2.pred_lhs, pred.pred_lhs, 0) 1098 && operand_equal_p (pred2.pred_rhs, pred.pred_rhs, 0) 1099 && pred2.invert == pred.invert) 1100 { 1101 found = true; 1102 break; 1103 } 1104 } 1105 if (!found) 1106 return false; 1107 } 1108 return true; 1109 } 1110 1111 /* Forward declaration. */ 1112 static bool is_use_properly_guarded (gimple *use_stmt, 1113 basic_block use_bb, 1114 gphi *phi, 1115 unsigned uninit_opnds, 1116 pred_chain_union *def_preds, 1117 hash_set<gphi *> *visited_phis); 1118 1119 /* Returns true if all uninitialized opnds are pruned. Returns false 1120 otherwise. PHI is the phi node with uninitialized operands, 1121 UNINIT_OPNDS is the bitmap of the uninitialize operand positions, 1122 FLAG_DEF is the statement defining the flag guarding the use of the 1123 PHI output, BOUNDARY_CST is the const value used in the predicate 1124 associated with the flag, CMP_CODE is the comparison code used in 1125 the predicate, VISITED_PHIS is the pointer set of phis visited, and 1126 VISITED_FLAG_PHIS is the pointer to the pointer set of flag definitions 1127 that are also phis. 1128 1129 Example scenario: 1130 1131 BB1: 1132 flag_1 = phi <0, 1> // (1) 1133 var_1 = phi <undef, some_val> 1134 1135 1136 BB2: 1137 flag_2 = phi <0, flag_1, flag_1> // (2) 1138 var_2 = phi <undef, var_1, var_1> 1139 if (flag_2 == 1) 1140 goto BB3; 1141 1142 BB3: 1143 use of var_2 // (3) 1144 1145 Because some flag arg in (1) is not constant, if we do not look into the 1146 flag phis recursively, it is conservatively treated as unknown and var_1 1147 is thought to be flowed into use at (3). Since var_1 is potentially 1148 uninitialized a false warning will be emitted. 1149 Checking recursively into (1), the compiler can find out that only some_val 1150 (which is defined) can flow into (3) which is OK. */ 1151 1152 static bool 1153 prune_uninit_phi_opnds (gphi *phi, unsigned uninit_opnds, gphi *flag_def, 1154 tree boundary_cst, enum tree_code cmp_code, 1155 hash_set<gphi *> *visited_phis, 1156 bitmap *visited_flag_phis) 1157 { 1158 unsigned i; 1159 1160 for (i = 0; i < MIN (max_phi_args, gimple_phi_num_args (flag_def)); i++) 1161 { 1162 tree flag_arg; 1163 1164 if (!MASK_TEST_BIT (uninit_opnds, i)) 1165 continue; 1166 1167 flag_arg = gimple_phi_arg_def (flag_def, i); 1168 if (!is_gimple_constant (flag_arg)) 1169 { 1170 gphi *flag_arg_def, *phi_arg_def; 1171 tree phi_arg; 1172 unsigned uninit_opnds_arg_phi; 1173 1174 if (TREE_CODE (flag_arg) != SSA_NAME) 1175 return false; 1176 flag_arg_def = dyn_cast<gphi *> (SSA_NAME_DEF_STMT (flag_arg)); 1177 if (!flag_arg_def) 1178 return false; 1179 1180 phi_arg = gimple_phi_arg_def (phi, i); 1181 if (TREE_CODE (phi_arg) != SSA_NAME) 1182 return false; 1183 1184 phi_arg_def = dyn_cast<gphi *> (SSA_NAME_DEF_STMT (phi_arg)); 1185 if (!phi_arg_def) 1186 return false; 1187 1188 if (gimple_bb (phi_arg_def) != gimple_bb (flag_arg_def)) 1189 return false; 1190 1191 if (!*visited_flag_phis) 1192 *visited_flag_phis = BITMAP_ALLOC (NULL); 1193 1194 tree phi_result = gimple_phi_result (flag_arg_def); 1195 if (bitmap_bit_p (*visited_flag_phis, SSA_NAME_VERSION (phi_result))) 1196 return false; 1197 1198 bitmap_set_bit (*visited_flag_phis, 1199 SSA_NAME_VERSION (gimple_phi_result (flag_arg_def))); 1200 1201 /* Now recursively prune the uninitialized phi args. */ 1202 uninit_opnds_arg_phi = compute_uninit_opnds_pos (phi_arg_def); 1203 if (!prune_uninit_phi_opnds 1204 (phi_arg_def, uninit_opnds_arg_phi, flag_arg_def, boundary_cst, 1205 cmp_code, visited_phis, visited_flag_phis)) 1206 return false; 1207 1208 phi_result = gimple_phi_result (flag_arg_def); 1209 bitmap_clear_bit (*visited_flag_phis, SSA_NAME_VERSION (phi_result)); 1210 continue; 1211 } 1212 1213 /* Now check if the constant is in the guarded range. */ 1214 if (is_value_included_in (flag_arg, boundary_cst, cmp_code)) 1215 { 1216 tree opnd; 1217 gimple *opnd_def; 1218 1219 /* Now that we know that this undefined edge is not 1220 pruned. If the operand is defined by another phi, 1221 we can further prune the incoming edges of that 1222 phi by checking the predicates of this operands. */ 1223 1224 opnd = gimple_phi_arg_def (phi, i); 1225 opnd_def = SSA_NAME_DEF_STMT (opnd); 1226 if (gphi *opnd_def_phi = dyn_cast <gphi *> (opnd_def)) 1227 { 1228 edge opnd_edge; 1229 unsigned uninit_opnds2 = compute_uninit_opnds_pos (opnd_def_phi); 1230 if (!MASK_EMPTY (uninit_opnds2)) 1231 { 1232 pred_chain_union def_preds = vNULL; 1233 bool ok; 1234 opnd_edge = gimple_phi_arg_edge (phi, i); 1235 ok = is_use_properly_guarded (phi, 1236 opnd_edge->src, 1237 opnd_def_phi, 1238 uninit_opnds2, 1239 &def_preds, 1240 visited_phis); 1241 destroy_predicate_vecs (&def_preds); 1242 if (!ok) 1243 return false; 1244 } 1245 } 1246 else 1247 return false; 1248 } 1249 } 1250 1251 return true; 1252 } 1253 1254 /* A helper function that determines if the predicate set 1255 of the use is not overlapping with that of the uninit paths. 1256 The most common senario of guarded use is in Example 1: 1257 Example 1: 1258 if (some_cond) 1259 { 1260 x = ...; 1261 flag = true; 1262 } 1263 1264 ... some code ... 1265 1266 if (flag) 1267 use (x); 1268 1269 The real world examples are usually more complicated, but similar 1270 and usually result from inlining: 1271 1272 bool init_func (int * x) 1273 { 1274 if (some_cond) 1275 return false; 1276 *x = .. 1277 return true; 1278 } 1279 1280 void foo (..) 1281 { 1282 int x; 1283 1284 if (!init_func (&x)) 1285 return; 1286 1287 .. some_code ... 1288 use (x); 1289 } 1290 1291 Another possible use scenario is in the following trivial example: 1292 1293 Example 2: 1294 if (n > 0) 1295 x = 1; 1296 ... 1297 if (n > 0) 1298 { 1299 if (m < 2) 1300 .. = x; 1301 } 1302 1303 Predicate analysis needs to compute the composite predicate: 1304 1305 1) 'x' use predicate: (n > 0) .AND. (m < 2) 1306 2) 'x' default value (non-def) predicate: .NOT. (n > 0) 1307 (the predicate chain for phi operand defs can be computed 1308 starting from a bb that is control equivalent to the phi's 1309 bb and is dominating the operand def.) 1310 1311 and check overlapping: 1312 (n > 0) .AND. (m < 2) .AND. (.NOT. (n > 0)) 1313 <==> false 1314 1315 This implementation provides framework that can handle 1316 scenarios. (Note that many simple cases are handled properly 1317 without the predicate analysis -- this is due to jump threading 1318 transformation which eliminates the merge point thus makes 1319 path sensitive analysis unnecessary.) 1320 1321 PHI is the phi node whose incoming (undefined) paths need to be 1322 pruned, and UNINIT_OPNDS is the bitmap holding uninit operand 1323 positions. VISITED_PHIS is the pointer set of phi stmts being 1324 checked. */ 1325 1326 static bool 1327 use_pred_not_overlap_with_undef_path_pred (pred_chain_union preds, 1328 gphi *phi, unsigned uninit_opnds, 1329 hash_set<gphi *> *visited_phis) 1330 { 1331 unsigned int i, n; 1332 gimple *flag_def = 0; 1333 tree boundary_cst = 0; 1334 enum tree_code cmp_code; 1335 bool swap_cond = false; 1336 bool invert = false; 1337 pred_chain the_pred_chain = vNULL; 1338 bitmap visited_flag_phis = NULL; 1339 bool all_pruned = false; 1340 size_t num_preds = preds.length (); 1341 1342 gcc_assert (num_preds > 0); 1343 /* Find within the common prefix of multiple predicate chains 1344 a predicate that is a comparison of a flag variable against 1345 a constant. */ 1346 the_pred_chain = preds[0]; 1347 n = the_pred_chain.length (); 1348 for (i = 0; i < n; i++) 1349 { 1350 tree cond_lhs, cond_rhs, flag = 0; 1351 1352 pred_info the_pred = the_pred_chain[i]; 1353 1354 invert = the_pred.invert; 1355 cond_lhs = the_pred.pred_lhs; 1356 cond_rhs = the_pred.pred_rhs; 1357 cmp_code = the_pred.cond_code; 1358 1359 if (cond_lhs != NULL_TREE && TREE_CODE (cond_lhs) == SSA_NAME 1360 && cond_rhs != NULL_TREE && is_gimple_constant (cond_rhs)) 1361 { 1362 boundary_cst = cond_rhs; 1363 flag = cond_lhs; 1364 } 1365 else if (cond_rhs != NULL_TREE && TREE_CODE (cond_rhs) == SSA_NAME 1366 && cond_lhs != NULL_TREE && is_gimple_constant (cond_lhs)) 1367 { 1368 boundary_cst = cond_lhs; 1369 flag = cond_rhs; 1370 swap_cond = true; 1371 } 1372 1373 if (!flag) 1374 continue; 1375 1376 flag_def = SSA_NAME_DEF_STMT (flag); 1377 1378 if (!flag_def) 1379 continue; 1380 1381 if ((gimple_code (flag_def) == GIMPLE_PHI) 1382 && (gimple_bb (flag_def) == gimple_bb (phi)) 1383 && find_matching_predicate_in_rest_chains (the_pred, preds, 1384 num_preds)) 1385 break; 1386 1387 flag_def = 0; 1388 } 1389 1390 if (!flag_def) 1391 return false; 1392 1393 /* Now check all the uninit incoming edge has a constant flag value 1394 that is in conflict with the use guard/predicate. */ 1395 cmp_code = get_cmp_code (cmp_code, swap_cond, invert); 1396 1397 if (cmp_code == ERROR_MARK) 1398 return false; 1399 1400 all_pruned = prune_uninit_phi_opnds 1401 (phi, uninit_opnds, as_a<gphi *> (flag_def), boundary_cst, cmp_code, 1402 visited_phis, &visited_flag_phis); 1403 1404 if (visited_flag_phis) 1405 BITMAP_FREE (visited_flag_phis); 1406 1407 return all_pruned; 1408 } 1409 1410 /* The helper function returns true if two predicates X1 and X2 1411 are equivalent. It assumes the expressions have already 1412 properly re-associated. */ 1413 1414 static inline bool 1415 pred_equal_p (pred_info x1, pred_info x2) 1416 { 1417 enum tree_code c1, c2; 1418 if (!operand_equal_p (x1.pred_lhs, x2.pred_lhs, 0) 1419 || !operand_equal_p (x1.pred_rhs, x2.pred_rhs, 0)) 1420 return false; 1421 1422 c1 = x1.cond_code; 1423 if (x1.invert != x2.invert 1424 && TREE_CODE_CLASS (x2.cond_code) == tcc_comparison) 1425 c2 = invert_tree_comparison (x2.cond_code, false); 1426 else 1427 c2 = x2.cond_code; 1428 1429 return c1 == c2; 1430 } 1431 1432 /* Returns true if the predication is testing !=. */ 1433 1434 static inline bool 1435 is_neq_relop_p (pred_info pred) 1436 { 1437 1438 return ((pred.cond_code == NE_EXPR && !pred.invert) 1439 || (pred.cond_code == EQ_EXPR && pred.invert)); 1440 } 1441 1442 /* Returns true if pred is of the form X != 0. */ 1443 1444 static inline bool 1445 is_neq_zero_form_p (pred_info pred) 1446 { 1447 if (!is_neq_relop_p (pred) || !integer_zerop (pred.pred_rhs) 1448 || TREE_CODE (pred.pred_lhs) != SSA_NAME) 1449 return false; 1450 return true; 1451 } 1452 1453 /* The helper function returns true if two predicates X1 1454 is equivalent to X2 != 0. */ 1455 1456 static inline bool 1457 pred_expr_equal_p (pred_info x1, tree x2) 1458 { 1459 if (!is_neq_zero_form_p (x1)) 1460 return false; 1461 1462 return operand_equal_p (x1.pred_lhs, x2, 0); 1463 } 1464 1465 /* Returns true of the domain of single predicate expression 1466 EXPR1 is a subset of that of EXPR2. Returns false if it 1467 cannot be proved. */ 1468 1469 static bool 1470 is_pred_expr_subset_of (pred_info expr1, pred_info expr2) 1471 { 1472 enum tree_code code1, code2; 1473 1474 if (pred_equal_p (expr1, expr2)) 1475 return true; 1476 1477 if ((TREE_CODE (expr1.pred_rhs) != INTEGER_CST) 1478 || (TREE_CODE (expr2.pred_rhs) != INTEGER_CST)) 1479 return false; 1480 1481 if (!operand_equal_p (expr1.pred_lhs, expr2.pred_lhs, 0)) 1482 return false; 1483 1484 code1 = expr1.cond_code; 1485 if (expr1.invert) 1486 code1 = invert_tree_comparison (code1, false); 1487 code2 = expr2.cond_code; 1488 if (expr2.invert) 1489 code2 = invert_tree_comparison (code2, false); 1490 1491 if ((code1 == EQ_EXPR || code1 == BIT_AND_EXPR) && code2 == BIT_AND_EXPR) 1492 return (wi::to_wide (expr1.pred_rhs) 1493 == (wi::to_wide (expr1.pred_rhs) & wi::to_wide (expr2.pred_rhs))); 1494 1495 if (code1 != code2 && code2 != NE_EXPR) 1496 return false; 1497 1498 if (is_value_included_in (expr1.pred_rhs, expr2.pred_rhs, code2)) 1499 return true; 1500 1501 return false; 1502 } 1503 1504 /* Returns true if the domain of PRED1 is a subset 1505 of that of PRED2. Returns false if it cannot be proved so. */ 1506 1507 static bool 1508 is_pred_chain_subset_of (pred_chain pred1, pred_chain pred2) 1509 { 1510 size_t np1, np2, i1, i2; 1511 1512 np1 = pred1.length (); 1513 np2 = pred2.length (); 1514 1515 for (i2 = 0; i2 < np2; i2++) 1516 { 1517 bool found = false; 1518 pred_info info2 = pred2[i2]; 1519 for (i1 = 0; i1 < np1; i1++) 1520 { 1521 pred_info info1 = pred1[i1]; 1522 if (is_pred_expr_subset_of (info1, info2)) 1523 { 1524 found = true; 1525 break; 1526 } 1527 } 1528 if (!found) 1529 return false; 1530 } 1531 return true; 1532 } 1533 1534 /* Returns true if the domain defined by 1535 one pred chain ONE_PRED is a subset of the domain 1536 of *PREDS. It returns false if ONE_PRED's domain is 1537 not a subset of any of the sub-domains of PREDS 1538 (corresponding to each individual chains in it), even 1539 though it may be still be a subset of whole domain 1540 of PREDS which is the union (ORed) of all its subdomains. 1541 In other words, the result is conservative. */ 1542 1543 static bool 1544 is_included_in (pred_chain one_pred, pred_chain_union preds) 1545 { 1546 size_t i; 1547 size_t n = preds.length (); 1548 1549 for (i = 0; i < n; i++) 1550 { 1551 if (is_pred_chain_subset_of (one_pred, preds[i])) 1552 return true; 1553 } 1554 1555 return false; 1556 } 1557 1558 /* Compares two predicate sets PREDS1 and PREDS2 and returns 1559 true if the domain defined by PREDS1 is a superset 1560 of PREDS2's domain. N1 and N2 are array sizes of PREDS1 and 1561 PREDS2 respectively. The implementation chooses not to build 1562 generic trees (and relying on the folding capability of the 1563 compiler), but instead performs brute force comparison of 1564 individual predicate chains (won't be a compile time problem 1565 as the chains are pretty short). When the function returns 1566 false, it does not necessarily mean *PREDS1 is not a superset 1567 of *PREDS2, but mean it may not be so since the analysis cannot 1568 prove it. In such cases, false warnings may still be 1569 emitted. */ 1570 1571 static bool 1572 is_superset_of (pred_chain_union preds1, pred_chain_union preds2) 1573 { 1574 size_t i, n2; 1575 pred_chain one_pred_chain = vNULL; 1576 1577 n2 = preds2.length (); 1578 1579 for (i = 0; i < n2; i++) 1580 { 1581 one_pred_chain = preds2[i]; 1582 if (!is_included_in (one_pred_chain, preds1)) 1583 return false; 1584 } 1585 1586 return true; 1587 } 1588 1589 /* Returns true if X1 is the negate of X2. */ 1590 1591 static inline bool 1592 pred_neg_p (pred_info x1, pred_info x2) 1593 { 1594 enum tree_code c1, c2; 1595 if (!operand_equal_p (x1.pred_lhs, x2.pred_lhs, 0) 1596 || !operand_equal_p (x1.pred_rhs, x2.pred_rhs, 0)) 1597 return false; 1598 1599 c1 = x1.cond_code; 1600 if (x1.invert == x2.invert) 1601 c2 = invert_tree_comparison (x2.cond_code, false); 1602 else 1603 c2 = x2.cond_code; 1604 1605 return c1 == c2; 1606 } 1607 1608 /* 1) ((x IOR y) != 0) AND (x != 0) is equivalent to (x != 0); 1609 2) (X AND Y) OR (!X AND Y) is equivalent to Y; 1610 3) X OR (!X AND Y) is equivalent to (X OR Y); 1611 4) ((x IAND y) != 0) || (x != 0 AND y != 0)) is equivalent to 1612 (x != 0 AND y != 0) 1613 5) (X AND Y) OR (!X AND Z) OR (!Y AND Z) is equivalent to 1614 (X AND Y) OR Z 1615 1616 PREDS is the predicate chains, and N is the number of chains. */ 1617 1618 /* Helper function to implement rule 1 above. ONE_CHAIN is 1619 the AND predication to be simplified. */ 1620 1621 static void 1622 simplify_pred (pred_chain *one_chain) 1623 { 1624 size_t i, j, n; 1625 bool simplified = false; 1626 pred_chain s_chain = vNULL; 1627 1628 n = one_chain->length (); 1629 1630 for (i = 0; i < n; i++) 1631 { 1632 pred_info *a_pred = &(*one_chain)[i]; 1633 1634 if (!a_pred->pred_lhs) 1635 continue; 1636 if (!is_neq_zero_form_p (*a_pred)) 1637 continue; 1638 1639 gimple *def_stmt = SSA_NAME_DEF_STMT (a_pred->pred_lhs); 1640 if (gimple_code (def_stmt) != GIMPLE_ASSIGN) 1641 continue; 1642 if (gimple_assign_rhs_code (def_stmt) == BIT_IOR_EXPR) 1643 { 1644 for (j = 0; j < n; j++) 1645 { 1646 pred_info *b_pred = &(*one_chain)[j]; 1647 1648 if (!b_pred->pred_lhs) 1649 continue; 1650 if (!is_neq_zero_form_p (*b_pred)) 1651 continue; 1652 1653 if (pred_expr_equal_p (*b_pred, gimple_assign_rhs1 (def_stmt)) 1654 || pred_expr_equal_p (*b_pred, gimple_assign_rhs2 (def_stmt))) 1655 { 1656 /* Mark a_pred for removal. */ 1657 a_pred->pred_lhs = NULL; 1658 a_pred->pred_rhs = NULL; 1659 simplified = true; 1660 break; 1661 } 1662 } 1663 } 1664 } 1665 1666 if (!simplified) 1667 return; 1668 1669 for (i = 0; i < n; i++) 1670 { 1671 pred_info *a_pred = &(*one_chain)[i]; 1672 if (!a_pred->pred_lhs) 1673 continue; 1674 s_chain.safe_push (*a_pred); 1675 } 1676 1677 one_chain->release (); 1678 *one_chain = s_chain; 1679 } 1680 1681 /* The helper function implements the rule 2 for the 1682 OR predicate PREDS. 1683 1684 2) (X AND Y) OR (!X AND Y) is equivalent to Y. */ 1685 1686 static bool 1687 simplify_preds_2 (pred_chain_union *preds) 1688 { 1689 size_t i, j, n; 1690 bool simplified = false; 1691 pred_chain_union s_preds = vNULL; 1692 1693 /* (X AND Y) OR (!X AND Y) is equivalent to Y. 1694 (X AND Y) OR (X AND !Y) is equivalent to X. */ 1695 1696 n = preds->length (); 1697 for (i = 0; i < n; i++) 1698 { 1699 pred_info x, y; 1700 pred_chain *a_chain = &(*preds)[i]; 1701 1702 if (a_chain->length () != 2) 1703 continue; 1704 1705 x = (*a_chain)[0]; 1706 y = (*a_chain)[1]; 1707 1708 for (j = 0; j < n; j++) 1709 { 1710 pred_chain *b_chain; 1711 pred_info x2, y2; 1712 1713 if (j == i) 1714 continue; 1715 1716 b_chain = &(*preds)[j]; 1717 if (b_chain->length () != 2) 1718 continue; 1719 1720 x2 = (*b_chain)[0]; 1721 y2 = (*b_chain)[1]; 1722 1723 if (pred_equal_p (x, x2) && pred_neg_p (y, y2)) 1724 { 1725 /* Kill a_chain. */ 1726 a_chain->release (); 1727 b_chain->release (); 1728 b_chain->safe_push (x); 1729 simplified = true; 1730 break; 1731 } 1732 if (pred_neg_p (x, x2) && pred_equal_p (y, y2)) 1733 { 1734 /* Kill a_chain. */ 1735 a_chain->release (); 1736 b_chain->release (); 1737 b_chain->safe_push (y); 1738 simplified = true; 1739 break; 1740 } 1741 } 1742 } 1743 /* Now clean up the chain. */ 1744 if (simplified) 1745 { 1746 for (i = 0; i < n; i++) 1747 { 1748 if ((*preds)[i].is_empty ()) 1749 continue; 1750 s_preds.safe_push ((*preds)[i]); 1751 } 1752 preds->release (); 1753 (*preds) = s_preds; 1754 s_preds = vNULL; 1755 } 1756 1757 return simplified; 1758 } 1759 1760 /* The helper function implements the rule 2 for the 1761 OR predicate PREDS. 1762 1763 3) x OR (!x AND y) is equivalent to x OR y. */ 1764 1765 static bool 1766 simplify_preds_3 (pred_chain_union *preds) 1767 { 1768 size_t i, j, n; 1769 bool simplified = false; 1770 1771 /* Now iteratively simplify X OR (!X AND Z ..) 1772 into X OR (Z ...). */ 1773 1774 n = preds->length (); 1775 if (n < 2) 1776 return false; 1777 1778 for (i = 0; i < n; i++) 1779 { 1780 pred_info x; 1781 pred_chain *a_chain = &(*preds)[i]; 1782 1783 if (a_chain->length () != 1) 1784 continue; 1785 1786 x = (*a_chain)[0]; 1787 1788 for (j = 0; j < n; j++) 1789 { 1790 pred_chain *b_chain; 1791 pred_info x2; 1792 size_t k; 1793 1794 if (j == i) 1795 continue; 1796 1797 b_chain = &(*preds)[j]; 1798 if (b_chain->length () < 2) 1799 continue; 1800 1801 for (k = 0; k < b_chain->length (); k++) 1802 { 1803 x2 = (*b_chain)[k]; 1804 if (pred_neg_p (x, x2)) 1805 { 1806 b_chain->unordered_remove (k); 1807 simplified = true; 1808 break; 1809 } 1810 } 1811 } 1812 } 1813 return simplified; 1814 } 1815 1816 /* The helper function implements the rule 4 for the 1817 OR predicate PREDS. 1818 1819 2) ((x AND y) != 0) OR (x != 0 AND y != 0) is equivalent to 1820 (x != 0 ANd y != 0). */ 1821 1822 static bool 1823 simplify_preds_4 (pred_chain_union *preds) 1824 { 1825 size_t i, j, n; 1826 bool simplified = false; 1827 pred_chain_union s_preds = vNULL; 1828 gimple *def_stmt; 1829 1830 n = preds->length (); 1831 for (i = 0; i < n; i++) 1832 { 1833 pred_info z; 1834 pred_chain *a_chain = &(*preds)[i]; 1835 1836 if (a_chain->length () != 1) 1837 continue; 1838 1839 z = (*a_chain)[0]; 1840 1841 if (!is_neq_zero_form_p (z)) 1842 continue; 1843 1844 def_stmt = SSA_NAME_DEF_STMT (z.pred_lhs); 1845 if (gimple_code (def_stmt) != GIMPLE_ASSIGN) 1846 continue; 1847 1848 if (gimple_assign_rhs_code (def_stmt) != BIT_AND_EXPR) 1849 continue; 1850 1851 for (j = 0; j < n; j++) 1852 { 1853 pred_chain *b_chain; 1854 pred_info x2, y2; 1855 1856 if (j == i) 1857 continue; 1858 1859 b_chain = &(*preds)[j]; 1860 if (b_chain->length () != 2) 1861 continue; 1862 1863 x2 = (*b_chain)[0]; 1864 y2 = (*b_chain)[1]; 1865 if (!is_neq_zero_form_p (x2) || !is_neq_zero_form_p (y2)) 1866 continue; 1867 1868 if ((pred_expr_equal_p (x2, gimple_assign_rhs1 (def_stmt)) 1869 && pred_expr_equal_p (y2, gimple_assign_rhs2 (def_stmt))) 1870 || (pred_expr_equal_p (x2, gimple_assign_rhs2 (def_stmt)) 1871 && pred_expr_equal_p (y2, gimple_assign_rhs1 (def_stmt)))) 1872 { 1873 /* Kill a_chain. */ 1874 a_chain->release (); 1875 simplified = true; 1876 break; 1877 } 1878 } 1879 } 1880 /* Now clean up the chain. */ 1881 if (simplified) 1882 { 1883 for (i = 0; i < n; i++) 1884 { 1885 if ((*preds)[i].is_empty ()) 1886 continue; 1887 s_preds.safe_push ((*preds)[i]); 1888 } 1889 1890 preds->release (); 1891 (*preds) = s_preds; 1892 s_preds = vNULL; 1893 } 1894 1895 return simplified; 1896 } 1897 1898 /* This function simplifies predicates in PREDS. */ 1899 1900 static void 1901 simplify_preds (pred_chain_union *preds, gimple *use_or_def, bool is_use) 1902 { 1903 size_t i, n; 1904 bool changed = false; 1905 1906 if (dump_file && dump_flags & TDF_DETAILS) 1907 { 1908 fprintf (dump_file, "[BEFORE SIMPLICATION -- "); 1909 dump_predicates (use_or_def, *preds, is_use ? "[USE]:\n" : "[DEF]:\n"); 1910 } 1911 1912 for (i = 0; i < preds->length (); i++) 1913 simplify_pred (&(*preds)[i]); 1914 1915 n = preds->length (); 1916 if (n < 2) 1917 return; 1918 1919 do 1920 { 1921 changed = false; 1922 if (simplify_preds_2 (preds)) 1923 changed = true; 1924 1925 /* Now iteratively simplify X OR (!X AND Z ..) 1926 into X OR (Z ...). */ 1927 if (simplify_preds_3 (preds)) 1928 changed = true; 1929 1930 if (simplify_preds_4 (preds)) 1931 changed = true; 1932 } 1933 while (changed); 1934 1935 return; 1936 } 1937 1938 /* This is a helper function which attempts to normalize predicate chains 1939 by following UD chains. It basically builds up a big tree of either IOR 1940 operations or AND operations, and convert the IOR tree into a 1941 pred_chain_union or BIT_AND tree into a pred_chain. 1942 Example: 1943 1944 _3 = _2 RELOP1 _1; 1945 _6 = _5 RELOP2 _4; 1946 _9 = _8 RELOP3 _7; 1947 _10 = _3 | _6; 1948 _12 = _9 | _0; 1949 _t = _10 | _12; 1950 1951 then _t != 0 will be normalized into a pred_chain_union 1952 1953 (_2 RELOP1 _1) OR (_5 RELOP2 _4) OR (_8 RELOP3 _7) OR (_0 != 0) 1954 1955 Similarly given, 1956 1957 _3 = _2 RELOP1 _1; 1958 _6 = _5 RELOP2 _4; 1959 _9 = _8 RELOP3 _7; 1960 _10 = _3 & _6; 1961 _12 = _9 & _0; 1962 1963 then _t != 0 will be normalized into a pred_chain: 1964 (_2 RELOP1 _1) AND (_5 RELOP2 _4) AND (_8 RELOP3 _7) AND (_0 != 0) 1965 1966 */ 1967 1968 /* This is a helper function that stores a PRED into NORM_PREDS. */ 1969 1970 inline static void 1971 push_pred (pred_chain_union *norm_preds, pred_info pred) 1972 { 1973 pred_chain pred_chain = vNULL; 1974 pred_chain.safe_push (pred); 1975 norm_preds->safe_push (pred_chain); 1976 } 1977 1978 /* A helper function that creates a predicate of the form 1979 OP != 0 and push it WORK_LIST. */ 1980 1981 inline static void 1982 push_to_worklist (tree op, vec<pred_info, va_heap, vl_ptr> *work_list, 1983 hash_set<tree> *mark_set) 1984 { 1985 if (mark_set->contains (op)) 1986 return; 1987 mark_set->add (op); 1988 1989 pred_info arg_pred; 1990 arg_pred.pred_lhs = op; 1991 arg_pred.pred_rhs = integer_zero_node; 1992 arg_pred.cond_code = NE_EXPR; 1993 arg_pred.invert = false; 1994 work_list->safe_push (arg_pred); 1995 } 1996 1997 /* A helper that generates a pred_info from a gimple assignment 1998 CMP_ASSIGN with comparison rhs. */ 1999 2000 static pred_info 2001 get_pred_info_from_cmp (gimple *cmp_assign) 2002 { 2003 pred_info n_pred; 2004 n_pred.pred_lhs = gimple_assign_rhs1 (cmp_assign); 2005 n_pred.pred_rhs = gimple_assign_rhs2 (cmp_assign); 2006 n_pred.cond_code = gimple_assign_rhs_code (cmp_assign); 2007 n_pred.invert = false; 2008 return n_pred; 2009 } 2010 2011 /* Returns true if the PHI is a degenerated phi with 2012 all args with the same value (relop). In that case, *PRED 2013 will be updated to that value. */ 2014 2015 static bool 2016 is_degenerated_phi (gimple *phi, pred_info *pred_p) 2017 { 2018 int i, n; 2019 tree op0; 2020 gimple *def0; 2021 pred_info pred0; 2022 2023 n = gimple_phi_num_args (phi); 2024 op0 = gimple_phi_arg_def (phi, 0); 2025 2026 if (TREE_CODE (op0) != SSA_NAME) 2027 return false; 2028 2029 def0 = SSA_NAME_DEF_STMT (op0); 2030 if (gimple_code (def0) != GIMPLE_ASSIGN) 2031 return false; 2032 if (TREE_CODE_CLASS (gimple_assign_rhs_code (def0)) != tcc_comparison) 2033 return false; 2034 pred0 = get_pred_info_from_cmp (def0); 2035 2036 for (i = 1; i < n; ++i) 2037 { 2038 gimple *def; 2039 pred_info pred; 2040 tree op = gimple_phi_arg_def (phi, i); 2041 2042 if (TREE_CODE (op) != SSA_NAME) 2043 return false; 2044 2045 def = SSA_NAME_DEF_STMT (op); 2046 if (gimple_code (def) != GIMPLE_ASSIGN) 2047 return false; 2048 if (TREE_CODE_CLASS (gimple_assign_rhs_code (def)) != tcc_comparison) 2049 return false; 2050 pred = get_pred_info_from_cmp (def); 2051 if (!pred_equal_p (pred, pred0)) 2052 return false; 2053 } 2054 2055 *pred_p = pred0; 2056 return true; 2057 } 2058 2059 /* Normalize one predicate PRED 2060 1) if PRED can no longer be normlized, put it into NORM_PREDS. 2061 2) otherwise if PRED is of the form x != 0, follow x's definition 2062 and put normalized predicates into WORK_LIST. */ 2063 2064 static void 2065 normalize_one_pred_1 (pred_chain_union *norm_preds, 2066 pred_chain *norm_chain, 2067 pred_info pred, 2068 enum tree_code and_or_code, 2069 vec<pred_info, va_heap, vl_ptr> *work_list, 2070 hash_set<tree> *mark_set) 2071 { 2072 if (!is_neq_zero_form_p (pred)) 2073 { 2074 if (and_or_code == BIT_IOR_EXPR) 2075 push_pred (norm_preds, pred); 2076 else 2077 norm_chain->safe_push (pred); 2078 return; 2079 } 2080 2081 gimple *def_stmt = SSA_NAME_DEF_STMT (pred.pred_lhs); 2082 2083 if (gimple_code (def_stmt) == GIMPLE_PHI 2084 && is_degenerated_phi (def_stmt, &pred)) 2085 work_list->safe_push (pred); 2086 else if (gimple_code (def_stmt) == GIMPLE_PHI && and_or_code == BIT_IOR_EXPR) 2087 { 2088 int i, n; 2089 n = gimple_phi_num_args (def_stmt); 2090 2091 /* If we see non zero constant, we should punt. The predicate 2092 * should be one guarding the phi edge. */ 2093 for (i = 0; i < n; ++i) 2094 { 2095 tree op = gimple_phi_arg_def (def_stmt, i); 2096 if (TREE_CODE (op) == INTEGER_CST && !integer_zerop (op)) 2097 { 2098 push_pred (norm_preds, pred); 2099 return; 2100 } 2101 } 2102 2103 for (i = 0; i < n; ++i) 2104 { 2105 tree op = gimple_phi_arg_def (def_stmt, i); 2106 if (integer_zerop (op)) 2107 continue; 2108 2109 push_to_worklist (op, work_list, mark_set); 2110 } 2111 } 2112 else if (gimple_code (def_stmt) != GIMPLE_ASSIGN) 2113 { 2114 if (and_or_code == BIT_IOR_EXPR) 2115 push_pred (norm_preds, pred); 2116 else 2117 norm_chain->safe_push (pred); 2118 } 2119 else if (gimple_assign_rhs_code (def_stmt) == and_or_code) 2120 { 2121 /* Avoid splitting up bit manipulations like x & 3 or y | 1. */ 2122 if (is_gimple_min_invariant (gimple_assign_rhs2 (def_stmt))) 2123 { 2124 /* But treat x & 3 as condition. */ 2125 if (and_or_code == BIT_AND_EXPR) 2126 { 2127 pred_info n_pred; 2128 n_pred.pred_lhs = gimple_assign_rhs1 (def_stmt); 2129 n_pred.pred_rhs = gimple_assign_rhs2 (def_stmt); 2130 n_pred.cond_code = and_or_code; 2131 n_pred.invert = false; 2132 norm_chain->safe_push (n_pred); 2133 } 2134 } 2135 else 2136 { 2137 push_to_worklist (gimple_assign_rhs1 (def_stmt), work_list, mark_set); 2138 push_to_worklist (gimple_assign_rhs2 (def_stmt), work_list, mark_set); 2139 } 2140 } 2141 else if (TREE_CODE_CLASS (gimple_assign_rhs_code (def_stmt)) 2142 == tcc_comparison) 2143 { 2144 pred_info n_pred = get_pred_info_from_cmp (def_stmt); 2145 if (and_or_code == BIT_IOR_EXPR) 2146 push_pred (norm_preds, n_pred); 2147 else 2148 norm_chain->safe_push (n_pred); 2149 } 2150 else 2151 { 2152 if (and_or_code == BIT_IOR_EXPR) 2153 push_pred (norm_preds, pred); 2154 else 2155 norm_chain->safe_push (pred); 2156 } 2157 } 2158 2159 /* Normalize PRED and store the normalized predicates into NORM_PREDS. */ 2160 2161 static void 2162 normalize_one_pred (pred_chain_union *norm_preds, pred_info pred) 2163 { 2164 vec<pred_info, va_heap, vl_ptr> work_list = vNULL; 2165 enum tree_code and_or_code = ERROR_MARK; 2166 pred_chain norm_chain = vNULL; 2167 2168 if (!is_neq_zero_form_p (pred)) 2169 { 2170 push_pred (norm_preds, pred); 2171 return; 2172 } 2173 2174 gimple *def_stmt = SSA_NAME_DEF_STMT (pred.pred_lhs); 2175 if (gimple_code (def_stmt) == GIMPLE_ASSIGN) 2176 and_or_code = gimple_assign_rhs_code (def_stmt); 2177 if (and_or_code != BIT_IOR_EXPR && and_or_code != BIT_AND_EXPR) 2178 { 2179 if (TREE_CODE_CLASS (and_or_code) == tcc_comparison) 2180 { 2181 pred_info n_pred = get_pred_info_from_cmp (def_stmt); 2182 push_pred (norm_preds, n_pred); 2183 } 2184 else 2185 push_pred (norm_preds, pred); 2186 return; 2187 } 2188 2189 work_list.safe_push (pred); 2190 hash_set<tree> mark_set; 2191 2192 while (!work_list.is_empty ()) 2193 { 2194 pred_info a_pred = work_list.pop (); 2195 normalize_one_pred_1 (norm_preds, &norm_chain, a_pred, and_or_code, 2196 &work_list, &mark_set); 2197 } 2198 if (and_or_code == BIT_AND_EXPR) 2199 norm_preds->safe_push (norm_chain); 2200 2201 work_list.release (); 2202 } 2203 2204 static void 2205 normalize_one_pred_chain (pred_chain_union *norm_preds, pred_chain one_chain) 2206 { 2207 vec<pred_info, va_heap, vl_ptr> work_list = vNULL; 2208 hash_set<tree> mark_set; 2209 pred_chain norm_chain = vNULL; 2210 size_t i; 2211 2212 for (i = 0; i < one_chain.length (); i++) 2213 { 2214 work_list.safe_push (one_chain[i]); 2215 mark_set.add (one_chain[i].pred_lhs); 2216 } 2217 2218 while (!work_list.is_empty ()) 2219 { 2220 pred_info a_pred = work_list.pop (); 2221 normalize_one_pred_1 (0, &norm_chain, a_pred, BIT_AND_EXPR, &work_list, 2222 &mark_set); 2223 } 2224 2225 norm_preds->safe_push (norm_chain); 2226 work_list.release (); 2227 } 2228 2229 /* Normalize predicate chains PREDS and returns the normalized one. */ 2230 2231 static pred_chain_union 2232 normalize_preds (pred_chain_union preds, gimple *use_or_def, bool is_use) 2233 { 2234 pred_chain_union norm_preds = vNULL; 2235 size_t n = preds.length (); 2236 size_t i; 2237 2238 if (dump_file && dump_flags & TDF_DETAILS) 2239 { 2240 fprintf (dump_file, "[BEFORE NORMALIZATION --"); 2241 dump_predicates (use_or_def, preds, is_use ? "[USE]:\n" : "[DEF]:\n"); 2242 } 2243 2244 for (i = 0; i < n; i++) 2245 { 2246 if (preds[i].length () != 1) 2247 normalize_one_pred_chain (&norm_preds, preds[i]); 2248 else 2249 { 2250 normalize_one_pred (&norm_preds, preds[i][0]); 2251 preds[i].release (); 2252 } 2253 } 2254 2255 if (dump_file) 2256 { 2257 fprintf (dump_file, "[AFTER NORMALIZATION -- "); 2258 dump_predicates (use_or_def, norm_preds, 2259 is_use ? "[USE]:\n" : "[DEF]:\n"); 2260 } 2261 2262 destroy_predicate_vecs (&preds); 2263 return norm_preds; 2264 } 2265 2266 /* Return TRUE if PREDICATE can be invalidated by any individual 2267 predicate in USE_GUARD. */ 2268 2269 static bool 2270 can_one_predicate_be_invalidated_p (pred_info predicate, 2271 pred_chain use_guard) 2272 { 2273 if (dump_file && dump_flags & TDF_DETAILS) 2274 { 2275 fprintf (dump_file, "Testing if this predicate: "); 2276 dump_pred_info (predicate); 2277 fprintf (dump_file, "\n...can be invalidated by a USE guard of: "); 2278 dump_pred_chain (use_guard); 2279 } 2280 for (size_t i = 0; i < use_guard.length (); ++i) 2281 { 2282 /* NOTE: This is a very simple check, and only understands an 2283 exact opposite. So, [i == 0] is currently only invalidated 2284 by [.NOT. i == 0] or [i != 0]. Ideally we should also 2285 invalidate with say [i > 5] or [i == 8]. There is certainly 2286 room for improvement here. */ 2287 if (pred_neg_p (predicate, use_guard[i])) 2288 { 2289 if (dump_file && dump_flags & TDF_DETAILS) 2290 { 2291 fprintf (dump_file, " Predicate was invalidated by: "); 2292 dump_pred_info (use_guard[i]); 2293 fputc ('\n', dump_file); 2294 } 2295 return true; 2296 } 2297 } 2298 return false; 2299 } 2300 2301 /* Return TRUE if all predicates in UNINIT_PRED are invalidated by 2302 USE_GUARD being true. */ 2303 2304 static bool 2305 can_chain_union_be_invalidated_p (pred_chain_union uninit_pred, 2306 pred_chain use_guard) 2307 { 2308 if (uninit_pred.is_empty ()) 2309 return false; 2310 if (dump_file && dump_flags & TDF_DETAILS) 2311 dump_predicates (NULL, uninit_pred, 2312 "Testing if anything here can be invalidated: "); 2313 for (size_t i = 0; i < uninit_pred.length (); ++i) 2314 { 2315 pred_chain c = uninit_pred[i]; 2316 size_t j; 2317 for (j = 0; j < c.length (); ++j) 2318 if (can_one_predicate_be_invalidated_p (c[j], use_guard)) 2319 break; 2320 2321 /* If we were unable to invalidate any predicate in C, then there 2322 is a viable path from entry to the PHI where the PHI takes 2323 an uninitialized value and continues to a use of the PHI. */ 2324 if (j == c.length ()) 2325 return false; 2326 } 2327 return true; 2328 } 2329 2330 /* Return TRUE if none of the uninitialized operands in UNINT_OPNDS 2331 can actually happen if we arrived at a use for PHI. 2332 2333 PHI_USE_GUARDS are the guard conditions for the use of the PHI. */ 2334 2335 static bool 2336 uninit_uses_cannot_happen (gphi *phi, unsigned uninit_opnds, 2337 pred_chain_union phi_use_guards) 2338 { 2339 unsigned phi_args = gimple_phi_num_args (phi); 2340 if (phi_args > max_phi_args) 2341 return false; 2342 2343 /* PHI_USE_GUARDS are OR'ed together. If we have more than one 2344 possible guard, there's no way of knowing which guard was true. 2345 Since we need to be absolutely sure that the uninitialized 2346 operands will be invalidated, bail. */ 2347 if (phi_use_guards.length () != 1) 2348 return false; 2349 2350 /* Look for the control dependencies of all the uninitialized 2351 operands and build guard predicates describing them. */ 2352 pred_chain_union uninit_preds; 2353 bool ret = true; 2354 for (unsigned i = 0; i < phi_args; ++i) 2355 { 2356 if (!MASK_TEST_BIT (uninit_opnds, i)) 2357 continue; 2358 2359 edge e = gimple_phi_arg_edge (phi, i); 2360 vec<edge> dep_chains[MAX_NUM_CHAINS]; 2361 auto_vec<edge, MAX_CHAIN_LEN + 1> cur_chain; 2362 size_t num_chains = 0; 2363 int num_calls = 0; 2364 2365 /* Build the control dependency chain for uninit operand `i'... */ 2366 uninit_preds = vNULL; 2367 if (!compute_control_dep_chain (ENTRY_BLOCK_PTR_FOR_FN (cfun), 2368 e->src, dep_chains, &num_chains, 2369 &cur_chain, &num_calls)) 2370 { 2371 ret = false; 2372 break; 2373 } 2374 /* ...and convert it into a set of predicates. */ 2375 bool has_valid_preds 2376 = convert_control_dep_chain_into_preds (dep_chains, num_chains, 2377 &uninit_preds); 2378 for (size_t j = 0; j < num_chains; ++j) 2379 dep_chains[j].release (); 2380 if (!has_valid_preds) 2381 { 2382 ret = false; 2383 break; 2384 } 2385 simplify_preds (&uninit_preds, NULL, false); 2386 uninit_preds = normalize_preds (uninit_preds, NULL, false); 2387 2388 /* Can the guard for this uninitialized operand be invalidated 2389 by the PHI use? */ 2390 if (!can_chain_union_be_invalidated_p (uninit_preds, phi_use_guards[0])) 2391 { 2392 ret = false; 2393 break; 2394 } 2395 } 2396 destroy_predicate_vecs (&uninit_preds); 2397 return ret; 2398 } 2399 2400 /* Computes the predicates that guard the use and checks 2401 if the incoming paths that have empty (or possibly 2402 empty) definition can be pruned/filtered. The function returns 2403 true if it can be determined that the use of PHI's def in 2404 USE_STMT is guarded with a predicate set not overlapping with 2405 predicate sets of all runtime paths that do not have a definition. 2406 2407 Returns false if it is not or it cannot be determined. USE_BB is 2408 the bb of the use (for phi operand use, the bb is not the bb of 2409 the phi stmt, but the src bb of the operand edge). 2410 2411 UNINIT_OPNDS is a bit vector. If an operand of PHI is uninitialized, the 2412 corresponding bit in the vector is 1. VISITED_PHIS is a pointer 2413 set of phis being visited. 2414 2415 *DEF_PREDS contains the (memoized) defining predicate chains of PHI. 2416 If *DEF_PREDS is the empty vector, the defining predicate chains of 2417 PHI will be computed and stored into *DEF_PREDS as needed. 2418 2419 VISITED_PHIS is a pointer set of phis being visited. */ 2420 2421 static bool 2422 is_use_properly_guarded (gimple *use_stmt, 2423 basic_block use_bb, 2424 gphi *phi, 2425 unsigned uninit_opnds, 2426 pred_chain_union *def_preds, 2427 hash_set<gphi *> *visited_phis) 2428 { 2429 basic_block phi_bb; 2430 pred_chain_union preds = vNULL; 2431 bool has_valid_preds = false; 2432 bool is_properly_guarded = false; 2433 2434 if (visited_phis->add (phi)) 2435 return false; 2436 2437 phi_bb = gimple_bb (phi); 2438 2439 if (is_non_loop_exit_postdominating (use_bb, phi_bb)) 2440 return false; 2441 2442 has_valid_preds = find_predicates (&preds, phi_bb, use_bb); 2443 2444 if (!has_valid_preds) 2445 { 2446 destroy_predicate_vecs (&preds); 2447 return false; 2448 } 2449 2450 /* Try to prune the dead incoming phi edges. */ 2451 is_properly_guarded 2452 = use_pred_not_overlap_with_undef_path_pred (preds, phi, uninit_opnds, 2453 visited_phis); 2454 2455 /* We might be able to prove that if the control dependencies 2456 for UNINIT_OPNDS are true, that the control dependencies for 2457 USE_STMT can never be true. */ 2458 if (!is_properly_guarded) 2459 is_properly_guarded |= uninit_uses_cannot_happen (phi, uninit_opnds, 2460 preds); 2461 2462 if (is_properly_guarded) 2463 { 2464 destroy_predicate_vecs (&preds); 2465 return true; 2466 } 2467 2468 if (def_preds->is_empty ()) 2469 { 2470 has_valid_preds = find_def_preds (def_preds, phi); 2471 2472 if (!has_valid_preds) 2473 { 2474 destroy_predicate_vecs (&preds); 2475 return false; 2476 } 2477 2478 simplify_preds (def_preds, phi, false); 2479 *def_preds = normalize_preds (*def_preds, phi, false); 2480 } 2481 2482 simplify_preds (&preds, use_stmt, true); 2483 preds = normalize_preds (preds, use_stmt, true); 2484 2485 is_properly_guarded = is_superset_of (*def_preds, preds); 2486 2487 destroy_predicate_vecs (&preds); 2488 return is_properly_guarded; 2489 } 2490 2491 /* Searches through all uses of a potentially 2492 uninitialized variable defined by PHI and returns a use 2493 statement if the use is not properly guarded. It returns 2494 NULL if all uses are guarded. UNINIT_OPNDS is a bitvector 2495 holding the position(s) of uninit PHI operands. WORKLIST 2496 is the vector of candidate phis that may be updated by this 2497 function. ADDED_TO_WORKLIST is the pointer set tracking 2498 if the new phi is already in the worklist. */ 2499 2500 static gimple * 2501 find_uninit_use (gphi *phi, unsigned uninit_opnds, 2502 vec<gphi *> *worklist, 2503 hash_set<gphi *> *added_to_worklist) 2504 { 2505 tree phi_result; 2506 use_operand_p use_p; 2507 gimple *use_stmt; 2508 imm_use_iterator iter; 2509 pred_chain_union def_preds = vNULL; 2510 gimple *ret = NULL; 2511 2512 phi_result = gimple_phi_result (phi); 2513 2514 FOR_EACH_IMM_USE_FAST (use_p, iter, phi_result) 2515 { 2516 basic_block use_bb; 2517 2518 use_stmt = USE_STMT (use_p); 2519 if (is_gimple_debug (use_stmt)) 2520 continue; 2521 2522 if (gphi *use_phi = dyn_cast<gphi *> (use_stmt)) 2523 use_bb = gimple_phi_arg_edge (use_phi, 2524 PHI_ARG_INDEX_FROM_USE (use_p))->src; 2525 else 2526 use_bb = gimple_bb (use_stmt); 2527 2528 hash_set<gphi *> visited_phis; 2529 if (is_use_properly_guarded (use_stmt, use_bb, phi, uninit_opnds, 2530 &def_preds, &visited_phis)) 2531 continue; 2532 2533 if (dump_file && (dump_flags & TDF_DETAILS)) 2534 { 2535 fprintf (dump_file, "[CHECK]: Found unguarded use: "); 2536 print_gimple_stmt (dump_file, use_stmt, 0); 2537 } 2538 /* Found one real use, return. */ 2539 if (gimple_code (use_stmt) != GIMPLE_PHI) 2540 { 2541 ret = use_stmt; 2542 break; 2543 } 2544 2545 /* Found a phi use that is not guarded, 2546 add the phi to the worklist. */ 2547 if (!added_to_worklist->add (as_a<gphi *> (use_stmt))) 2548 { 2549 if (dump_file && (dump_flags & TDF_DETAILS)) 2550 { 2551 fprintf (dump_file, "[WORKLIST]: Update worklist with phi: "); 2552 print_gimple_stmt (dump_file, use_stmt, 0); 2553 } 2554 2555 worklist->safe_push (as_a<gphi *> (use_stmt)); 2556 possibly_undefined_names->add (phi_result); 2557 } 2558 } 2559 2560 destroy_predicate_vecs (&def_preds); 2561 return ret; 2562 } 2563 2564 /* Look for inputs to PHI that are SSA_NAMEs that have empty definitions 2565 and gives warning if there exists a runtime path from the entry to a 2566 use of the PHI def that does not contain a definition. In other words, 2567 the warning is on the real use. The more dead paths that can be pruned 2568 by the compiler, the fewer false positives the warning is. WORKLIST 2569 is a vector of candidate phis to be examined. ADDED_TO_WORKLIST is 2570 a pointer set tracking if the new phi is added to the worklist or not. */ 2571 2572 static void 2573 warn_uninitialized_phi (gphi *phi, vec<gphi *> *worklist, 2574 hash_set<gphi *> *added_to_worklist) 2575 { 2576 unsigned uninit_opnds; 2577 gimple *uninit_use_stmt = 0; 2578 tree uninit_op; 2579 int phiarg_index; 2580 location_t loc; 2581 2582 /* Don't look at virtual operands. */ 2583 if (virtual_operand_p (gimple_phi_result (phi))) 2584 return; 2585 2586 uninit_opnds = compute_uninit_opnds_pos (phi); 2587 2588 if (MASK_EMPTY (uninit_opnds)) 2589 return; 2590 2591 if (dump_file && (dump_flags & TDF_DETAILS)) 2592 { 2593 fprintf (dump_file, "[CHECK]: examining phi: "); 2594 print_gimple_stmt (dump_file, phi, 0); 2595 } 2596 2597 /* Now check if we have any use of the value without proper guard. */ 2598 uninit_use_stmt = find_uninit_use (phi, uninit_opnds, 2599 worklist, added_to_worklist); 2600 2601 /* All uses are properly guarded. */ 2602 if (!uninit_use_stmt) 2603 return; 2604 2605 phiarg_index = MASK_FIRST_SET_BIT (uninit_opnds); 2606 uninit_op = gimple_phi_arg_def (phi, phiarg_index); 2607 if (SSA_NAME_VAR (uninit_op) == NULL_TREE) 2608 return; 2609 if (gimple_phi_arg_has_location (phi, phiarg_index)) 2610 loc = gimple_phi_arg_location (phi, phiarg_index); 2611 else 2612 loc = UNKNOWN_LOCATION; 2613 warn_uninit (OPT_Wmaybe_uninitialized, uninit_op, SSA_NAME_VAR (uninit_op), 2614 SSA_NAME_VAR (uninit_op), 2615 "%qD may be used uninitialized in this function", 2616 uninit_use_stmt, loc); 2617 } 2618 2619 static bool 2620 gate_warn_uninitialized (void) 2621 { 2622 return warn_uninitialized || warn_maybe_uninitialized; 2623 } 2624 2625 namespace { 2626 2627 const pass_data pass_data_late_warn_uninitialized = 2628 { 2629 GIMPLE_PASS, /* type */ 2630 "uninit", /* name */ 2631 OPTGROUP_NONE, /* optinfo_flags */ 2632 TV_NONE, /* tv_id */ 2633 PROP_ssa, /* properties_required */ 2634 0, /* properties_provided */ 2635 0, /* properties_destroyed */ 2636 0, /* todo_flags_start */ 2637 0, /* todo_flags_finish */ 2638 }; 2639 2640 class pass_late_warn_uninitialized : public gimple_opt_pass 2641 { 2642 public: 2643 pass_late_warn_uninitialized (gcc::context *ctxt) 2644 : gimple_opt_pass (pass_data_late_warn_uninitialized, ctxt) 2645 {} 2646 2647 /* opt_pass methods: */ 2648 opt_pass *clone () { return new pass_late_warn_uninitialized (m_ctxt); } 2649 virtual bool gate (function *) { return gate_warn_uninitialized (); } 2650 virtual unsigned int execute (function *); 2651 2652 }; // class pass_late_warn_uninitialized 2653 2654 unsigned int 2655 pass_late_warn_uninitialized::execute (function *fun) 2656 { 2657 basic_block bb; 2658 gphi_iterator gsi; 2659 vec<gphi *> worklist = vNULL; 2660 2661 calculate_dominance_info (CDI_DOMINATORS); 2662 calculate_dominance_info (CDI_POST_DOMINATORS); 2663 /* Re-do the plain uninitialized variable check, as optimization may have 2664 straightened control flow. Do this first so that we don't accidentally 2665 get a "may be" warning when we'd have seen an "is" warning later. */ 2666 warn_uninitialized_vars (/*warn_possibly_uninitialized=*/1); 2667 2668 timevar_push (TV_TREE_UNINIT); 2669 2670 possibly_undefined_names = new hash_set<tree>; 2671 hash_set<gphi *> added_to_worklist; 2672 2673 /* Initialize worklist */ 2674 FOR_EACH_BB_FN (bb, fun) 2675 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi)) 2676 { 2677 gphi *phi = gsi.phi (); 2678 size_t n, i; 2679 2680 n = gimple_phi_num_args (phi); 2681 2682 /* Don't look at virtual operands. */ 2683 if (virtual_operand_p (gimple_phi_result (phi))) 2684 continue; 2685 2686 for (i = 0; i < n; ++i) 2687 { 2688 tree op = gimple_phi_arg_def (phi, i); 2689 if (TREE_CODE (op) == SSA_NAME && uninit_undefined_value_p (op)) 2690 { 2691 worklist.safe_push (phi); 2692 added_to_worklist.add (phi); 2693 if (dump_file && (dump_flags & TDF_DETAILS)) 2694 { 2695 fprintf (dump_file, "[WORKLIST]: add to initial list: "); 2696 print_gimple_stmt (dump_file, phi, 0); 2697 } 2698 break; 2699 } 2700 } 2701 } 2702 2703 while (worklist.length () != 0) 2704 { 2705 gphi *cur_phi = 0; 2706 cur_phi = worklist.pop (); 2707 warn_uninitialized_phi (cur_phi, &worklist, &added_to_worklist); 2708 } 2709 2710 worklist.release (); 2711 delete possibly_undefined_names; 2712 possibly_undefined_names = NULL; 2713 free_dominance_info (CDI_POST_DOMINATORS); 2714 timevar_pop (TV_TREE_UNINIT); 2715 return 0; 2716 } 2717 2718 } // anon namespace 2719 2720 gimple_opt_pass * 2721 make_pass_late_warn_uninitialized (gcc::context *ctxt) 2722 { 2723 return new pass_late_warn_uninitialized (ctxt); 2724 } 2725 2726 static unsigned int 2727 execute_early_warn_uninitialized (void) 2728 { 2729 /* Currently, this pass runs always but 2730 execute_late_warn_uninitialized only runs with optimization. With 2731 optimization we want to warn about possible uninitialized as late 2732 as possible, thus don't do it here. However, without 2733 optimization we need to warn here about "may be uninitialized". */ 2734 calculate_dominance_info (CDI_POST_DOMINATORS); 2735 2736 warn_uninitialized_vars (/*warn_possibly_uninitialized=*/!optimize); 2737 2738 /* Post-dominator information cannot be reliably updated. Free it 2739 after the use. */ 2740 2741 free_dominance_info (CDI_POST_DOMINATORS); 2742 return 0; 2743 } 2744 2745 namespace { 2746 2747 const pass_data pass_data_early_warn_uninitialized = 2748 { 2749 GIMPLE_PASS, /* type */ 2750 "*early_warn_uninitialized", /* name */ 2751 OPTGROUP_NONE, /* optinfo_flags */ 2752 TV_TREE_UNINIT, /* tv_id */ 2753 PROP_ssa, /* properties_required */ 2754 0, /* properties_provided */ 2755 0, /* properties_destroyed */ 2756 0, /* todo_flags_start */ 2757 0, /* todo_flags_finish */ 2758 }; 2759 2760 class pass_early_warn_uninitialized : public gimple_opt_pass 2761 { 2762 public: 2763 pass_early_warn_uninitialized (gcc::context *ctxt) 2764 : gimple_opt_pass (pass_data_early_warn_uninitialized, ctxt) 2765 {} 2766 2767 /* opt_pass methods: */ 2768 virtual bool gate (function *) { return gate_warn_uninitialized (); } 2769 virtual unsigned int execute (function *) 2770 { 2771 return execute_early_warn_uninitialized (); 2772 } 2773 2774 }; // class pass_early_warn_uninitialized 2775 2776 } // anon namespace 2777 2778 gimple_opt_pass * 2779 make_pass_early_warn_uninitialized (gcc::context *ctxt) 2780 { 2781 return new pass_early_warn_uninitialized (ctxt); 2782 } 2783