1 /* Routines for discovering and unpropagating edge equivalences. 2 Copyright (C) 2005-2019 Free Software Foundation, Inc. 3 4 This file is part of GCC. 5 6 GCC is free software; you can redistribute it and/or modify 7 it under the terms of the GNU General Public License as published by 8 the Free Software Foundation; either version 3, or (at your option) 9 any later version. 10 11 GCC is distributed in the hope that it will be useful, 12 but WITHOUT ANY WARRANTY; without even the implied warranty of 13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 GNU General Public License for more details. 15 16 You should have received a copy of the GNU General Public License 17 along with GCC; see the file COPYING3. If not see 18 <http://www.gnu.org/licenses/>. */ 19 20 #include "config.h" 21 #include "system.h" 22 #include "coretypes.h" 23 #include "backend.h" 24 #include "tree.h" 25 #include "gimple.h" 26 #include "tree-pass.h" 27 #include "ssa.h" 28 #include "fold-const.h" 29 #include "cfganal.h" 30 #include "gimple-iterator.h" 31 #include "tree-cfg.h" 32 #include "domwalk.h" 33 #include "tree-hash-traits.h" 34 #include "tree-ssa-live.h" 35 #include "tree-ssa-coalesce.h" 36 37 /* The basic structure describing an equivalency created by traversing 38 an edge. Traversing the edge effectively means that we can assume 39 that we've seen an assignment LHS = RHS. */ 40 struct edge_equivalency 41 { 42 tree rhs; 43 tree lhs; 44 }; 45 46 /* This routine finds and records edge equivalences for every edge 47 in the CFG. 48 49 When complete, each edge that creates an equivalency will have an 50 EDGE_EQUIVALENCY structure hanging off the edge's AUX field. 51 The caller is responsible for freeing the AUX fields. */ 52 53 static void 54 associate_equivalences_with_edges (void) 55 { 56 basic_block bb; 57 58 /* Walk over each block. If the block ends with a control statement, 59 then it might create a useful equivalence. */ 60 FOR_EACH_BB_FN (bb, cfun) 61 { 62 gimple_stmt_iterator gsi = gsi_last_bb (bb); 63 gimple *stmt; 64 65 /* If the block does not end with a COND_EXPR or SWITCH_EXPR 66 then there is nothing to do. */ 67 if (gsi_end_p (gsi)) 68 continue; 69 70 stmt = gsi_stmt (gsi); 71 72 if (!stmt) 73 continue; 74 75 /* A COND_EXPR may create an equivalency in a variety of different 76 ways. */ 77 if (gimple_code (stmt) == GIMPLE_COND) 78 { 79 edge true_edge; 80 edge false_edge; 81 struct edge_equivalency *equivalency; 82 enum tree_code code = gimple_cond_code (stmt); 83 84 extract_true_false_edges_from_block (bb, &true_edge, &false_edge); 85 86 /* Equality tests may create one or two equivalences. */ 87 if (code == EQ_EXPR || code == NE_EXPR) 88 { 89 tree op0 = gimple_cond_lhs (stmt); 90 tree op1 = gimple_cond_rhs (stmt); 91 92 /* Special case comparing booleans against a constant as we 93 know the value of OP0 on both arms of the branch. i.e., we 94 can record an equivalence for OP0 rather than COND. */ 95 if (TREE_CODE (op0) == SSA_NAME 96 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op0) 97 && ssa_name_has_boolean_range (op0) 98 && is_gimple_min_invariant (op1) 99 && (integer_zerop (op1) || integer_onep (op1))) 100 { 101 tree true_val = constant_boolean_node (true, TREE_TYPE (op0)); 102 tree false_val = constant_boolean_node (false, 103 TREE_TYPE (op0)); 104 if (code == EQ_EXPR) 105 { 106 equivalency = XNEW (struct edge_equivalency); 107 equivalency->lhs = op0; 108 equivalency->rhs = (integer_zerop (op1) 109 ? false_val 110 : true_val); 111 true_edge->aux = equivalency; 112 113 equivalency = XNEW (struct edge_equivalency); 114 equivalency->lhs = op0; 115 equivalency->rhs = (integer_zerop (op1) 116 ? true_val 117 : false_val); 118 false_edge->aux = equivalency; 119 } 120 else 121 { 122 equivalency = XNEW (struct edge_equivalency); 123 equivalency->lhs = op0; 124 equivalency->rhs = (integer_zerop (op1) 125 ? true_val 126 : false_val); 127 true_edge->aux = equivalency; 128 129 equivalency = XNEW (struct edge_equivalency); 130 equivalency->lhs = op0; 131 equivalency->rhs = (integer_zerop (op1) 132 ? false_val 133 : true_val); 134 false_edge->aux = equivalency; 135 } 136 } 137 138 else if (TREE_CODE (op0) == SSA_NAME 139 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op0) 140 && (is_gimple_min_invariant (op1) 141 || (TREE_CODE (op1) == SSA_NAME 142 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op1)))) 143 { 144 /* For IEEE, -0.0 == 0.0, so we don't necessarily know 145 the sign of a variable compared against zero. If 146 we're honoring signed zeros, then we cannot record 147 this value unless we know that the value is nonzero. */ 148 if (HONOR_SIGNED_ZEROS (op0) 149 && (TREE_CODE (op1) != REAL_CST 150 || real_equal (&dconst0, &TREE_REAL_CST (op1)))) 151 continue; 152 153 equivalency = XNEW (struct edge_equivalency); 154 equivalency->lhs = op0; 155 equivalency->rhs = op1; 156 if (code == EQ_EXPR) 157 true_edge->aux = equivalency; 158 else 159 false_edge->aux = equivalency; 160 161 } 162 } 163 164 /* ??? TRUTH_NOT_EXPR can create an equivalence too. */ 165 } 166 167 /* For a SWITCH_EXPR, a case label which represents a single 168 value and which is the only case label which reaches the 169 target block creates an equivalence. */ 170 else if (gimple_code (stmt) == GIMPLE_SWITCH) 171 { 172 gswitch *switch_stmt = as_a <gswitch *> (stmt); 173 tree cond = gimple_switch_index (switch_stmt); 174 175 if (TREE_CODE (cond) == SSA_NAME 176 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (cond)) 177 { 178 int i, n_labels = gimple_switch_num_labels (switch_stmt); 179 tree *info = XCNEWVEC (tree, last_basic_block_for_fn (cfun)); 180 181 /* Walk over the case label vector. Record blocks 182 which are reached by a single case label which represents 183 a single value. */ 184 for (i = 0; i < n_labels; i++) 185 { 186 tree label = gimple_switch_label (switch_stmt, i); 187 basic_block bb = label_to_block (cfun, CASE_LABEL (label)); 188 189 if (CASE_HIGH (label) 190 || !CASE_LOW (label) 191 || info[bb->index]) 192 info[bb->index] = error_mark_node; 193 else 194 info[bb->index] = label; 195 } 196 197 /* Now walk over the blocks to determine which ones were 198 marked as being reached by a useful case label. */ 199 for (i = 0; i < n_basic_blocks_for_fn (cfun); i++) 200 { 201 tree node = info[i]; 202 203 if (node != NULL 204 && node != error_mark_node) 205 { 206 tree x = fold_convert (TREE_TYPE (cond), CASE_LOW (node)); 207 struct edge_equivalency *equivalency; 208 209 /* Record an equivalency on the edge from BB to basic 210 block I. */ 211 equivalency = XNEW (struct edge_equivalency); 212 equivalency->rhs = x; 213 equivalency->lhs = cond; 214 find_edge (bb, BASIC_BLOCK_FOR_FN (cfun, i))->aux = 215 equivalency; 216 } 217 } 218 free (info); 219 } 220 } 221 222 } 223 } 224 225 226 /* Translating out of SSA sometimes requires inserting copies and 227 constant initializations on edges to eliminate PHI nodes. 228 229 In some cases those copies and constant initializations are 230 redundant because the target already has the value on the 231 RHS of the assignment. 232 233 We previously tried to catch these cases after translating 234 out of SSA form. However, that code often missed cases. Worse 235 yet, the cases it missed were also often missed by the RTL 236 optimizers. Thus the resulting code had redundant instructions. 237 238 This pass attempts to detect these situations before translating 239 out of SSA form. 240 241 The key concept that this pass is built upon is that these 242 redundant copies and constant initializations often occur 243 due to constant/copy propagating equivalences resulting from 244 COND_EXPRs and SWITCH_EXPRs. 245 246 We want to do those propagations as they can sometimes allow 247 the SSA optimizers to do a better job. However, in the cases 248 where such propagations do not result in further optimization, 249 we would like to "undo" the propagation to avoid the redundant 250 copies and constant initializations. 251 252 This pass works by first associating equivalences with edges in 253 the CFG. For example, the edge leading from a SWITCH_EXPR to 254 its associated CASE_LABEL will have an equivalency between 255 SWITCH_COND and the value in the case label. 256 257 Once we have found the edge equivalences, we proceed to walk 258 the CFG in dominator order. As we traverse edges we record 259 equivalences associated with those edges we traverse. 260 261 When we encounter a PHI node, we walk its arguments to see if we 262 have an equivalence for the PHI argument. If so, then we replace 263 the argument. 264 265 Equivalences are looked up based on their value (think of it as 266 the RHS of an assignment). A value may be an SSA_NAME or an 267 invariant. We may have several SSA_NAMEs with the same value, 268 so with each value we have a list of SSA_NAMEs that have the 269 same value. */ 270 271 typedef hash_map<tree_operand_hash, auto_vec<tree> > val_ssa_equiv_t; 272 273 /* Global hash table implementing a mapping from invariant values 274 to a list of SSA_NAMEs which have the same value. We might be 275 able to reuse tree-vn for this code. */ 276 val_ssa_equiv_t *val_ssa_equiv; 277 278 static void uncprop_into_successor_phis (basic_block); 279 280 /* Remove the most recently recorded equivalency for VALUE. */ 281 282 static void 283 remove_equivalence (tree value) 284 { 285 val_ssa_equiv->get (value)->pop (); 286 } 287 288 /* Record EQUIVALENCE = VALUE into our hash table. */ 289 290 static void 291 record_equiv (tree value, tree equivalence) 292 { 293 val_ssa_equiv->get_or_insert (value).safe_push (equivalence); 294 } 295 296 class uncprop_dom_walker : public dom_walker 297 { 298 public: 299 uncprop_dom_walker (cdi_direction direction) : dom_walker (direction) {} 300 301 virtual edge before_dom_children (basic_block); 302 virtual void after_dom_children (basic_block); 303 304 private: 305 306 /* As we enter each block we record the value for any edge equivalency 307 leading to this block. If no such edge equivalency exists, then we 308 record NULL. These equivalences are live until we leave the dominator 309 subtree rooted at the block where we record the equivalency. */ 310 auto_vec<tree, 2> m_equiv_stack; 311 }; 312 313 /* We have finished processing the dominator children of BB, perform 314 any finalization actions in preparation for leaving this node in 315 the dominator tree. */ 316 317 void 318 uncprop_dom_walker::after_dom_children (basic_block bb ATTRIBUTE_UNUSED) 319 { 320 /* Pop the topmost value off the equiv stack. */ 321 tree value = m_equiv_stack.pop (); 322 323 /* If that value was non-null, then pop the topmost equivalency off 324 its equivalency stack. */ 325 if (value != NULL) 326 remove_equivalence (value); 327 } 328 329 /* Unpropagate values from PHI nodes in successor blocks of BB. */ 330 331 static void 332 uncprop_into_successor_phis (basic_block bb) 333 { 334 edge e; 335 edge_iterator ei; 336 337 /* For each successor edge, first temporarily record any equivalence 338 on that edge. Then unpropagate values in any PHI nodes at the 339 destination of the edge. Then remove the temporary equivalence. */ 340 FOR_EACH_EDGE (e, ei, bb->succs) 341 { 342 gimple_seq phis = phi_nodes (e->dest); 343 gimple_stmt_iterator gsi; 344 345 /* If there are no PHI nodes in this destination, then there is 346 no sense in recording any equivalences. */ 347 if (gimple_seq_empty_p (phis)) 348 continue; 349 350 /* Record any equivalency associated with E. */ 351 if (e->aux) 352 { 353 struct edge_equivalency *equiv = (struct edge_equivalency *) e->aux; 354 record_equiv (equiv->rhs, equiv->lhs); 355 } 356 357 /* Walk over the PHI nodes, unpropagating values. */ 358 for (gsi = gsi_start (phis) ; !gsi_end_p (gsi); gsi_next (&gsi)) 359 { 360 gimple *phi = gsi_stmt (gsi); 361 tree arg = PHI_ARG_DEF (phi, e->dest_idx); 362 tree res = PHI_RESULT (phi); 363 364 /* If the argument is not an invariant and can be potentially 365 coalesced with the result, then there's no point in 366 un-propagating the argument. */ 367 if (!is_gimple_min_invariant (arg) 368 && gimple_can_coalesce_p (arg, res)) 369 continue; 370 371 /* Lookup this argument's value in the hash table. */ 372 vec<tree> *equivalences = val_ssa_equiv->get (arg); 373 if (equivalences) 374 { 375 /* Walk every equivalence with the same value. If we find 376 one that can potentially coalesce with the PHI rsult, 377 then replace the value in the argument with its equivalent 378 SSA_NAME. Use the most recent equivalence as hopefully 379 that results in shortest lifetimes. */ 380 for (int j = equivalences->length () - 1; j >= 0; j--) 381 { 382 tree equiv = (*equivalences)[j]; 383 384 if (gimple_can_coalesce_p (equiv, res)) 385 { 386 SET_PHI_ARG_DEF (phi, e->dest_idx, equiv); 387 break; 388 } 389 } 390 } 391 } 392 393 /* If we had an equivalence associated with this edge, remove it. */ 394 if (e->aux) 395 { 396 struct edge_equivalency *equiv = (struct edge_equivalency *) e->aux; 397 remove_equivalence (equiv->rhs); 398 } 399 } 400 } 401 402 edge 403 uncprop_dom_walker::before_dom_children (basic_block bb) 404 { 405 basic_block parent; 406 bool recorded = false; 407 408 /* If this block is dominated by a single incoming edge and that edge 409 has an equivalency, then record the equivalency and push the 410 VALUE onto EQUIV_STACK. Else push a NULL entry on EQUIV_STACK. */ 411 parent = get_immediate_dominator (CDI_DOMINATORS, bb); 412 if (parent) 413 { 414 edge e = single_pred_edge_ignoring_loop_edges (bb, false); 415 416 if (e && e->src == parent && e->aux) 417 { 418 struct edge_equivalency *equiv = (struct edge_equivalency *) e->aux; 419 420 record_equiv (equiv->rhs, equiv->lhs); 421 m_equiv_stack.safe_push (equiv->rhs); 422 recorded = true; 423 } 424 } 425 426 if (!recorded) 427 m_equiv_stack.safe_push (NULL_TREE); 428 429 uncprop_into_successor_phis (bb); 430 return NULL; 431 } 432 433 namespace { 434 435 const pass_data pass_data_uncprop = 436 { 437 GIMPLE_PASS, /* type */ 438 "uncprop", /* name */ 439 OPTGROUP_NONE, /* optinfo_flags */ 440 TV_TREE_SSA_UNCPROP, /* tv_id */ 441 ( PROP_cfg | PROP_ssa ), /* properties_required */ 442 0, /* properties_provided */ 443 0, /* properties_destroyed */ 444 0, /* todo_flags_start */ 445 0, /* todo_flags_finish */ 446 }; 447 448 class pass_uncprop : public gimple_opt_pass 449 { 450 public: 451 pass_uncprop (gcc::context *ctxt) 452 : gimple_opt_pass (pass_data_uncprop, ctxt) 453 {} 454 455 /* opt_pass methods: */ 456 opt_pass * clone () { return new pass_uncprop (m_ctxt); } 457 virtual bool gate (function *) { return flag_tree_dom != 0; } 458 virtual unsigned int execute (function *); 459 460 }; // class pass_uncprop 461 462 unsigned int 463 pass_uncprop::execute (function *fun) 464 { 465 basic_block bb; 466 467 associate_equivalences_with_edges (); 468 469 /* Create our global data structures. */ 470 val_ssa_equiv = new val_ssa_equiv_t (1024); 471 472 /* We're going to do a dominator walk, so ensure that we have 473 dominance information. */ 474 calculate_dominance_info (CDI_DOMINATORS); 475 476 /* Recursively walk the dominator tree undoing unprofitable 477 constant/copy propagations. */ 478 uncprop_dom_walker (CDI_DOMINATORS).walk (fun->cfg->x_entry_block_ptr); 479 480 /* we just need to empty elements out of the hash table, and cleanup the 481 AUX field on the edges. */ 482 delete val_ssa_equiv; 483 val_ssa_equiv = NULL; 484 FOR_EACH_BB_FN (bb, fun) 485 { 486 edge e; 487 edge_iterator ei; 488 489 FOR_EACH_EDGE (e, ei, bb->succs) 490 { 491 if (e->aux) 492 { 493 free (e->aux); 494 e->aux = NULL; 495 } 496 } 497 } 498 return 0; 499 } 500 501 } // anon namespace 502 503 gimple_opt_pass * 504 make_pass_uncprop (gcc::context *ctxt) 505 { 506 return new pass_uncprop (ctxt); 507 } 508