xref: /netbsd-src/external/gpl3/gcc.old/dist/gcc/tree-ssa-threadupdate.c (revision b7b7574d3bf8eeb51a1fa3977b59142ec6434a55)
1 /* Thread edges through blocks and update the control flow and SSA graphs.
2    Copyright (C) 2004, 2005, 2006, 2007, 2008 Free Software Foundation,
3    Inc.
4 
5 This file is part of GCC.
6 
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11 
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 GNU General Public License for more details.
16 
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3.  If not see
19 <http://www.gnu.org/licenses/>.  */
20 
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "tree.h"
26 #include "flags.h"
27 #include "rtl.h"
28 #include "tm_p.h"
29 #include "ggc.h"
30 #include "basic-block.h"
31 #include "output.h"
32 #include "expr.h"
33 #include "function.h"
34 #include "diagnostic.h"
35 #include "tree-flow.h"
36 #include "tree-dump.h"
37 #include "tree-pass.h"
38 #include "cfgloop.h"
39 
40 /* Given a block B, update the CFG and SSA graph to reflect redirecting
41    one or more in-edges to B to instead reach the destination of an
42    out-edge from B while preserving any side effects in B.
43 
44    i.e., given A->B and B->C, change A->B to be A->C yet still preserve the
45    side effects of executing B.
46 
47      1. Make a copy of B (including its outgoing edges and statements).  Call
48 	the copy B'.  Note B' has no incoming edges or PHIs at this time.
49 
50      2. Remove the control statement at the end of B' and all outgoing edges
51 	except B'->C.
52 
53      3. Add a new argument to each PHI in C with the same value as the existing
54 	argument associated with edge B->C.  Associate the new PHI arguments
55 	with the edge B'->C.
56 
57      4. For each PHI in B, find or create a PHI in B' with an identical
58 	PHI_RESULT.  Add an argument to the PHI in B' which has the same
59 	value as the PHI in B associated with the edge A->B.  Associate
60 	the new argument in the PHI in B' with the edge A->B.
61 
62      5. Change the edge A->B to A->B'.
63 
64 	5a. This automatically deletes any PHI arguments associated with the
65 	    edge A->B in B.
66 
67 	5b. This automatically associates each new argument added in step 4
68 	    with the edge A->B'.
69 
70      6. Repeat for other incoming edges into B.
71 
72      7. Put the duplicated resources in B and all the B' blocks into SSA form.
73 
74    Note that block duplication can be minimized by first collecting the
75    set of unique destination blocks that the incoming edges should
76    be threaded to.  Block duplication can be further minimized by using
77    B instead of creating B' for one destination if all edges into B are
78    going to be threaded to a successor of B.
79 
80    We further reduce the number of edges and statements we create by
81    not copying all the outgoing edges and the control statement in
82    step #1.  We instead create a template block without the outgoing
83    edges and duplicate the template.  */
84 
85 
86 /* Steps #5 and #6 of the above algorithm are best implemented by walking
87    all the incoming edges which thread to the same destination edge at
88    the same time.  That avoids lots of table lookups to get information
89    for the destination edge.
90 
91    To realize that implementation we create a list of incoming edges
92    which thread to the same outgoing edge.  Thus to implement steps
93    #5 and #6 we traverse our hash table of outgoing edge information.
94    For each entry we walk the list of incoming edges which thread to
95    the current outgoing edge.  */
96 
97 struct el
98 {
99   edge e;
100   struct el *next;
101 };
102 
103 /* Main data structure recording information regarding B's duplicate
104    blocks.  */
105 
106 /* We need to efficiently record the unique thread destinations of this
107    block and specific information associated with those destinations.  We
108    may have many incoming edges threaded to the same outgoing edge.  This
109    can be naturally implemented with a hash table.  */
110 
111 struct redirection_data
112 {
113   /* A duplicate of B with the trailing control statement removed and which
114      targets a single successor of B.  */
115   basic_block dup_block;
116 
117   /* An outgoing edge from B.  DUP_BLOCK will have OUTGOING_EDGE->dest as
118      its single successor.  */
119   edge outgoing_edge;
120 
121   /* A list of incoming edges which we want to thread to
122      OUTGOING_EDGE->dest.  */
123   struct el *incoming_edges;
124 
125   /* Flag indicating whether or not we should create a duplicate block
126      for this thread destination.  This is only true if we are threading
127      all incoming edges and thus are using BB itself as a duplicate block.  */
128   bool do_not_duplicate;
129 };
130 
131 /* Main data structure to hold information for duplicates of BB.  */
132 static htab_t redirection_data;
133 
134 /* Data structure of information to pass to hash table traversal routines.  */
135 struct local_info
136 {
137   /* The current block we are working on.  */
138   basic_block bb;
139 
140   /* A template copy of BB with no outgoing edges or control statement that
141      we use for creating copies.  */
142   basic_block template_block;
143 
144   /* TRUE if we thread one or more jumps, FALSE otherwise.  */
145   bool jumps_threaded;
146 };
147 
148 /* Passes which use the jump threading code register jump threading
149    opportunities as they are discovered.  We keep the registered
150    jump threading opportunities in this vector as edge pairs
151    (original_edge, target_edge).  */
152 static VEC(edge,heap) *threaded_edges;
153 
154 
155 /* Jump threading statistics.  */
156 
157 struct thread_stats_d
158 {
159   unsigned long num_threaded_edges;
160 };
161 
162 struct thread_stats_d thread_stats;
163 
164 
165 /* Remove the last statement in block BB if it is a control statement
166    Also remove all outgoing edges except the edge which reaches DEST_BB.
167    If DEST_BB is NULL, then remove all outgoing edges.  */
168 
169 static void
170 remove_ctrl_stmt_and_useless_edges (basic_block bb, basic_block dest_bb)
171 {
172   gimple_stmt_iterator gsi;
173   edge e;
174   edge_iterator ei;
175 
176   gsi = gsi_last_bb (bb);
177 
178   /* If the duplicate ends with a control statement, then remove it.
179 
180      Note that if we are duplicating the template block rather than the
181      original basic block, then the duplicate might not have any real
182      statements in it.  */
183   if (!gsi_end_p (gsi)
184       && gsi_stmt (gsi)
185       && (gimple_code (gsi_stmt (gsi)) == GIMPLE_COND
186 	  || gimple_code (gsi_stmt (gsi)) == GIMPLE_GOTO
187 	  || gimple_code (gsi_stmt (gsi)) == GIMPLE_SWITCH))
188     gsi_remove (&gsi, true);
189 
190   for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
191     {
192       if (e->dest != dest_bb)
193 	remove_edge (e);
194       else
195 	ei_next (&ei);
196     }
197 }
198 
199 /* Create a duplicate of BB which only reaches the destination of the edge
200    stored in RD.  Record the duplicate block in RD.  */
201 
202 static void
203 create_block_for_threading (basic_block bb, struct redirection_data *rd)
204 {
205   /* We can use the generic block duplication code and simply remove
206      the stuff we do not need.  */
207   rd->dup_block = duplicate_block (bb, NULL, NULL);
208 
209   /* Zero out the profile, since the block is unreachable for now.  */
210   rd->dup_block->frequency = 0;
211   rd->dup_block->count = 0;
212 
213   /* The call to duplicate_block will copy everything, including the
214      useless COND_EXPR or SWITCH_EXPR at the end of BB.  We just remove
215      the useless COND_EXPR or SWITCH_EXPR here rather than having a
216      specialized block copier.  We also remove all outgoing edges
217      from the duplicate block.  The appropriate edge will be created
218      later.  */
219   remove_ctrl_stmt_and_useless_edges (rd->dup_block, NULL);
220 }
221 
222 /* Hashing and equality routines for our hash table.  */
223 static hashval_t
224 redirection_data_hash (const void *p)
225 {
226   edge e = ((const struct redirection_data *)p)->outgoing_edge;
227   return e->dest->index;
228 }
229 
230 static int
231 redirection_data_eq (const void *p1, const void *p2)
232 {
233   edge e1 = ((const struct redirection_data *)p1)->outgoing_edge;
234   edge e2 = ((const struct redirection_data *)p2)->outgoing_edge;
235 
236   return e1 == e2;
237 }
238 
239 /* Given an outgoing edge E lookup and return its entry in our hash table.
240 
241    If INSERT is true, then we insert the entry into the hash table if
242    it is not already present.  INCOMING_EDGE is added to the list of incoming
243    edges associated with E in the hash table.  */
244 
245 static struct redirection_data *
246 lookup_redirection_data (edge e, edge incoming_edge, enum insert_option insert)
247 {
248   void **slot;
249   struct redirection_data *elt;
250 
251  /* Build a hash table element so we can see if E is already
252      in the table.  */
253   elt = XNEW (struct redirection_data);
254   elt->outgoing_edge = e;
255   elt->dup_block = NULL;
256   elt->do_not_duplicate = false;
257   elt->incoming_edges = NULL;
258 
259   slot = htab_find_slot (redirection_data, elt, insert);
260 
261   /* This will only happen if INSERT is false and the entry is not
262      in the hash table.  */
263   if (slot == NULL)
264     {
265       free (elt);
266       return NULL;
267     }
268 
269   /* This will only happen if E was not in the hash table and
270      INSERT is true.  */
271   if (*slot == NULL)
272     {
273       *slot = (void *)elt;
274       elt->incoming_edges = XNEW (struct el);
275       elt->incoming_edges->e = incoming_edge;
276       elt->incoming_edges->next = NULL;
277       return elt;
278     }
279   /* E was in the hash table.  */
280   else
281     {
282       /* Free ELT as we do not need it anymore, we will extract the
283 	 relevant entry from the hash table itself.  */
284       free (elt);
285 
286       /* Get the entry stored in the hash table.  */
287       elt = (struct redirection_data *) *slot;
288 
289       /* If insertion was requested, then we need to add INCOMING_EDGE
290 	 to the list of incoming edges associated with E.  */
291       if (insert)
292 	{
293           struct el *el = XNEW (struct el);
294 	  el->next = elt->incoming_edges;
295 	  el->e = incoming_edge;
296 	  elt->incoming_edges = el;
297 	}
298 
299       return elt;
300     }
301 }
302 
303 /* Given a duplicate block and its single destination (both stored
304    in RD).  Create an edge between the duplicate and its single
305    destination.
306 
307    Add an additional argument to any PHI nodes at the single
308    destination.  */
309 
310 static void
311 create_edge_and_update_destination_phis (struct redirection_data *rd)
312 {
313   edge e = make_edge (rd->dup_block, rd->outgoing_edge->dest, EDGE_FALLTHRU);
314   gimple_stmt_iterator gsi;
315 
316   rescan_loop_exit (e, true, false);
317   e->probability = REG_BR_PROB_BASE;
318   e->count = rd->dup_block->count;
319   e->aux = rd->outgoing_edge->aux;
320 
321   /* If there are any PHI nodes at the destination of the outgoing edge
322      from the duplicate block, then we will need to add a new argument
323      to them.  The argument should have the same value as the argument
324      associated with the outgoing edge stored in RD.  */
325   for (gsi = gsi_start_phis (e->dest); !gsi_end_p (gsi); gsi_next (&gsi))
326     {
327       gimple phi = gsi_stmt (gsi);
328       source_location locus;
329       int indx = rd->outgoing_edge->dest_idx;
330 
331       locus = gimple_phi_arg_location (phi, indx);
332       add_phi_arg (phi, gimple_phi_arg_def (phi, indx), e, locus);
333     }
334 }
335 
336 /* Hash table traversal callback routine to create duplicate blocks.  */
337 
338 static int
339 create_duplicates (void **slot, void *data)
340 {
341   struct redirection_data *rd = (struct redirection_data *) *slot;
342   struct local_info *local_info = (struct local_info *)data;
343 
344   /* If this entry should not have a duplicate created, then there's
345      nothing to do.  */
346   if (rd->do_not_duplicate)
347     return 1;
348 
349   /* Create a template block if we have not done so already.  Otherwise
350      use the template to create a new block.  */
351   if (local_info->template_block == NULL)
352     {
353       create_block_for_threading (local_info->bb, rd);
354       local_info->template_block = rd->dup_block;
355 
356       /* We do not create any outgoing edges for the template.  We will
357 	 take care of that in a later traversal.  That way we do not
358 	 create edges that are going to just be deleted.  */
359     }
360   else
361     {
362       create_block_for_threading (local_info->template_block, rd);
363 
364       /* Go ahead and wire up outgoing edges and update PHIs for the duplicate
365          block.  */
366       create_edge_and_update_destination_phis (rd);
367     }
368 
369   /* Keep walking the hash table.  */
370   return 1;
371 }
372 
373 /* We did not create any outgoing edges for the template block during
374    block creation.  This hash table traversal callback creates the
375    outgoing edge for the template block.  */
376 
377 static int
378 fixup_template_block (void **slot, void *data)
379 {
380   struct redirection_data *rd = (struct redirection_data *) *slot;
381   struct local_info *local_info = (struct local_info *)data;
382 
383   /* If this is the template block, then create its outgoing edges
384      and halt the hash table traversal.  */
385   if (rd->dup_block && rd->dup_block == local_info->template_block)
386     {
387       create_edge_and_update_destination_phis (rd);
388       return 0;
389     }
390 
391   return 1;
392 }
393 
394 /* Hash table traversal callback to redirect each incoming edge
395    associated with this hash table element to its new destination.  */
396 
397 static int
398 redirect_edges (void **slot, void *data)
399 {
400   struct redirection_data *rd = (struct redirection_data *) *slot;
401   struct local_info *local_info = (struct local_info *)data;
402   struct el *next, *el;
403 
404   /* Walk over all the incoming edges associated associated with this
405      hash table entry.  */
406   for (el = rd->incoming_edges; el; el = next)
407     {
408       edge e = el->e;
409 
410       /* Go ahead and free this element from the list.  Doing this now
411 	 avoids the need for another list walk when we destroy the hash
412 	 table.  */
413       next = el->next;
414       free (el);
415 
416       /* Go ahead and clear E->aux.  It's not needed anymore and failure
417          to clear it will cause all kinds of unpleasant problems later.  */
418       e->aux = NULL;
419 
420       thread_stats.num_threaded_edges++;
421 
422       if (rd->dup_block)
423 	{
424 	  edge e2;
425 
426 	  if (dump_file && (dump_flags & TDF_DETAILS))
427 	    fprintf (dump_file, "  Threaded jump %d --> %d to %d\n",
428 		     e->src->index, e->dest->index, rd->dup_block->index);
429 
430 	  rd->dup_block->count += e->count;
431 	  rd->dup_block->frequency += EDGE_FREQUENCY (e);
432 	  EDGE_SUCC (rd->dup_block, 0)->count += e->count;
433 	  /* Redirect the incoming edge to the appropriate duplicate
434 	     block.  */
435 	  e2 = redirect_edge_and_branch (e, rd->dup_block);
436 	  gcc_assert (e == e2);
437 	  flush_pending_stmts (e2);
438 	}
439       else
440 	{
441 	  if (dump_file && (dump_flags & TDF_DETAILS))
442 	    fprintf (dump_file, "  Threaded jump %d --> %d to %d\n",
443 		     e->src->index, e->dest->index, local_info->bb->index);
444 
445 	  /* We are using BB as the duplicate.  Remove the unnecessary
446 	     outgoing edges and statements from BB.  */
447 	  remove_ctrl_stmt_and_useless_edges (local_info->bb,
448 					      rd->outgoing_edge->dest);
449 
450 	  /* Fixup the flags on the single remaining edge.  */
451 	  single_succ_edge (local_info->bb)->flags
452 	    &= ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE | EDGE_ABNORMAL);
453 	  single_succ_edge (local_info->bb)->flags |= EDGE_FALLTHRU;
454 
455 	  /* And adjust count and frequency on BB.  */
456 	  local_info->bb->count = e->count;
457 	  local_info->bb->frequency = EDGE_FREQUENCY (e);
458 	}
459     }
460 
461   /* Indicate that we actually threaded one or more jumps.  */
462   if (rd->incoming_edges)
463     local_info->jumps_threaded = true;
464 
465   return 1;
466 }
467 
468 /* Return true if this block has no executable statements other than
469    a simple ctrl flow instruction.  When the number of outgoing edges
470    is one, this is equivalent to a "forwarder" block.  */
471 
472 static bool
473 redirection_block_p (basic_block bb)
474 {
475   gimple_stmt_iterator gsi;
476 
477   /* Advance to the first executable statement.  */
478   gsi = gsi_start_bb (bb);
479   while (!gsi_end_p (gsi)
480          && (gimple_code (gsi_stmt (gsi)) == GIMPLE_LABEL
481 	     || is_gimple_debug (gsi_stmt (gsi))
482              || gimple_nop_p (gsi_stmt (gsi))))
483     gsi_next (&gsi);
484 
485   /* Check if this is an empty block.  */
486   if (gsi_end_p (gsi))
487     return true;
488 
489   /* Test that we've reached the terminating control statement.  */
490   return gsi_stmt (gsi)
491          && (gimple_code (gsi_stmt (gsi)) == GIMPLE_COND
492              || gimple_code (gsi_stmt (gsi)) == GIMPLE_GOTO
493              || gimple_code (gsi_stmt (gsi)) == GIMPLE_SWITCH);
494 }
495 
496 /* BB is a block which ends with a COND_EXPR or SWITCH_EXPR and when BB
497    is reached via one or more specific incoming edges, we know which
498    outgoing edge from BB will be traversed.
499 
500    We want to redirect those incoming edges to the target of the
501    appropriate outgoing edge.  Doing so avoids a conditional branch
502    and may expose new optimization opportunities.  Note that we have
503    to update dominator tree and SSA graph after such changes.
504 
505    The key to keeping the SSA graph update manageable is to duplicate
506    the side effects occurring in BB so that those side effects still
507    occur on the paths which bypass BB after redirecting edges.
508 
509    We accomplish this by creating duplicates of BB and arranging for
510    the duplicates to unconditionally pass control to one specific
511    successor of BB.  We then revector the incoming edges into BB to
512    the appropriate duplicate of BB.
513 
514    If NOLOOP_ONLY is true, we only perform the threading as long as it
515    does not affect the structure of the loops in a nontrivial way.  */
516 
517 static bool
518 thread_block (basic_block bb, bool noloop_only)
519 {
520   /* E is an incoming edge into BB that we may or may not want to
521      redirect to a duplicate of BB.  */
522   edge e, e2;
523   edge_iterator ei;
524   struct local_info local_info;
525   struct loop *loop = bb->loop_father;
526 
527   /* ALL indicates whether or not all incoming edges into BB should
528      be threaded to a duplicate of BB.  */
529   bool all = true;
530 
531   /* To avoid scanning a linear array for the element we need we instead
532      use a hash table.  For normal code there should be no noticeable
533      difference.  However, if we have a block with a large number of
534      incoming and outgoing edges such linear searches can get expensive.  */
535   redirection_data = htab_create (EDGE_COUNT (bb->succs),
536 				  redirection_data_hash,
537 				  redirection_data_eq,
538 				  free);
539 
540   /* If we thread the latch of the loop to its exit, the loop ceases to
541      exist.  Make sure we do not restrict ourselves in order to preserve
542      this loop.  */
543   if (loop->header == bb)
544     {
545       e = loop_latch_edge (loop);
546       e2 = (edge) e->aux;
547 
548       if (e2 && loop_exit_edge_p (loop, e2))
549 	{
550 	  loop->header = NULL;
551 	  loop->latch = NULL;
552 	}
553     }
554 
555   /* Record each unique threaded destination into a hash table for
556      efficient lookups.  */
557   FOR_EACH_EDGE (e, ei, bb->preds)
558     {
559       e2 = (edge) e->aux;
560 
561       if (!e2
562 	  /* If NOLOOP_ONLY is true, we only allow threading through the
563 	     header of a loop to exit edges.  */
564 	  || (noloop_only
565 	      && bb == bb->loop_father->header
566 	      && !loop_exit_edge_p (bb->loop_father, e2)))
567 	{
568 	  all = false;
569 	  continue;
570 	}
571 
572       update_bb_profile_for_threading (e->dest, EDGE_FREQUENCY (e),
573 				       e->count, (edge) e->aux);
574 
575       /* Insert the outgoing edge into the hash table if it is not
576 	 already in the hash table.  */
577       lookup_redirection_data (e2, e, INSERT);
578     }
579 
580   /* If we are going to thread all incoming edges to an outgoing edge, then
581      BB will become unreachable.  Rather than just throwing it away, use
582      it for one of the duplicates.  Mark the first incoming edge with the
583      DO_NOT_DUPLICATE attribute.  */
584   if (all)
585     {
586       edge e = (edge) EDGE_PRED (bb, 0)->aux;
587       lookup_redirection_data (e, NULL, NO_INSERT)->do_not_duplicate = true;
588     }
589 
590   /* We do not update dominance info.  */
591   free_dominance_info (CDI_DOMINATORS);
592 
593   /* Now create duplicates of BB.
594 
595      Note that for a block with a high outgoing degree we can waste
596      a lot of time and memory creating and destroying useless edges.
597 
598      So we first duplicate BB and remove the control structure at the
599      tail of the duplicate as well as all outgoing edges from the
600      duplicate.  We then use that duplicate block as a template for
601      the rest of the duplicates.  */
602   local_info.template_block = NULL;
603   local_info.bb = bb;
604   local_info.jumps_threaded = false;
605   htab_traverse (redirection_data, create_duplicates, &local_info);
606 
607   /* The template does not have an outgoing edge.  Create that outgoing
608      edge and update PHI nodes as the edge's target as necessary.
609 
610      We do this after creating all the duplicates to avoid creating
611      unnecessary edges.  */
612   htab_traverse (redirection_data, fixup_template_block, &local_info);
613 
614   /* The hash table traversals above created the duplicate blocks (and the
615      statements within the duplicate blocks).  This loop creates PHI nodes for
616      the duplicated blocks and redirects the incoming edges into BB to reach
617      the duplicates of BB.  */
618   htab_traverse (redirection_data, redirect_edges, &local_info);
619 
620   /* Done with this block.  Clear REDIRECTION_DATA.  */
621   htab_delete (redirection_data);
622   redirection_data = NULL;
623 
624   /* Indicate to our caller whether or not any jumps were threaded.  */
625   return local_info.jumps_threaded;
626 }
627 
628 /* Threads edge E through E->dest to the edge E->aux.  Returns the copy
629    of E->dest created during threading, or E->dest if it was not necessary
630    to copy it (E is its single predecessor).  */
631 
632 static basic_block
633 thread_single_edge (edge e)
634 {
635   basic_block bb = e->dest;
636   edge eto = (edge) e->aux;
637   struct redirection_data rd;
638 
639   e->aux = NULL;
640 
641   thread_stats.num_threaded_edges++;
642 
643   if (single_pred_p (bb))
644     {
645       /* If BB has just a single predecessor, we should only remove the
646 	 control statements at its end, and successors except for ETO.  */
647       remove_ctrl_stmt_and_useless_edges (bb, eto->dest);
648 
649       /* And fixup the flags on the single remaining edge.  */
650       eto->flags &= ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE | EDGE_ABNORMAL);
651       eto->flags |= EDGE_FALLTHRU;
652 
653       return bb;
654     }
655 
656   /* Otherwise, we need to create a copy.  */
657   update_bb_profile_for_threading (bb, EDGE_FREQUENCY (e), e->count, eto);
658 
659   rd.outgoing_edge = eto;
660 
661   create_block_for_threading (bb, &rd);
662   create_edge_and_update_destination_phis (&rd);
663 
664   if (dump_file && (dump_flags & TDF_DETAILS))
665     fprintf (dump_file, "  Threaded jump %d --> %d to %d\n",
666 	     e->src->index, e->dest->index, rd.dup_block->index);
667 
668   rd.dup_block->count = e->count;
669   rd.dup_block->frequency = EDGE_FREQUENCY (e);
670   single_succ_edge (rd.dup_block)->count = e->count;
671   redirect_edge_and_branch (e, rd.dup_block);
672   flush_pending_stmts (e);
673 
674   return rd.dup_block;
675 }
676 
677 /* Callback for dfs_enumerate_from.  Returns true if BB is different
678    from STOP and DBDS_CE_STOP.  */
679 
680 static basic_block dbds_ce_stop;
681 static bool
682 dbds_continue_enumeration_p (const_basic_block bb, const void *stop)
683 {
684   return (bb != (const_basic_block) stop
685 	  && bb != dbds_ce_stop);
686 }
687 
688 /* Evaluates the dominance relationship of latch of the LOOP and BB, and
689    returns the state.  */
690 
691 enum bb_dom_status
692 {
693   /* BB does not dominate latch of the LOOP.  */
694   DOMST_NONDOMINATING,
695   /* The LOOP is broken (there is no path from the header to its latch.  */
696   DOMST_LOOP_BROKEN,
697   /* BB dominates the latch of the LOOP.  */
698   DOMST_DOMINATING
699 };
700 
701 static enum bb_dom_status
702 determine_bb_domination_status (struct loop *loop, basic_block bb)
703 {
704   basic_block *bblocks;
705   unsigned nblocks, i;
706   bool bb_reachable = false;
707   edge_iterator ei;
708   edge e;
709 
710 #ifdef ENABLE_CHECKING
711   /* This function assumes BB is a successor of LOOP->header.  */
712     {
713       bool ok = false;
714 
715       FOR_EACH_EDGE (e, ei, bb->preds)
716 	{
717      	  if (e->src == loop->header)
718 	    {
719 	      ok = true;
720 	      break;
721 	    }
722 	}
723 
724       gcc_assert (ok);
725     }
726 #endif
727 
728   if (bb == loop->latch)
729     return DOMST_DOMINATING;
730 
731   /* Check that BB dominates LOOP->latch, and that it is back-reachable
732      from it.  */
733 
734   bblocks = XCNEWVEC (basic_block, loop->num_nodes);
735   dbds_ce_stop = loop->header;
736   nblocks = dfs_enumerate_from (loop->latch, 1, dbds_continue_enumeration_p,
737 				bblocks, loop->num_nodes, bb);
738   for (i = 0; i < nblocks; i++)
739     FOR_EACH_EDGE (e, ei, bblocks[i]->preds)
740       {
741 	if (e->src == loop->header)
742 	  {
743 	    free (bblocks);
744 	    return DOMST_NONDOMINATING;
745 	  }
746 	if (e->src == bb)
747 	  bb_reachable = true;
748       }
749 
750   free (bblocks);
751   return (bb_reachable ? DOMST_DOMINATING : DOMST_LOOP_BROKEN);
752 }
753 
754 /* Thread jumps through the header of LOOP.  Returns true if cfg changes.
755    If MAY_PEEL_LOOP_HEADERS is false, we avoid threading from entry edges
756    to the inside of the loop.  */
757 
758 static bool
759 thread_through_loop_header (struct loop *loop, bool may_peel_loop_headers)
760 {
761   basic_block header = loop->header;
762   edge e, tgt_edge, latch = loop_latch_edge (loop);
763   edge_iterator ei;
764   basic_block tgt_bb, atgt_bb;
765   enum bb_dom_status domst;
766 
767   /* We have already threaded through headers to exits, so all the threading
768      requests now are to the inside of the loop.  We need to avoid creating
769      irreducible regions (i.e., loops with more than one entry block), and
770      also loop with several latch edges, or new subloops of the loop (although
771      there are cases where it might be appropriate, it is difficult to decide,
772      and doing it wrongly may confuse other optimizers).
773 
774      We could handle more general cases here.  However, the intention is to
775      preserve some information about the loop, which is impossible if its
776      structure changes significantly, in a way that is not well understood.
777      Thus we only handle few important special cases, in which also updating
778      of the loop-carried information should be feasible:
779 
780      1) Propagation of latch edge to a block that dominates the latch block
781 	of a loop.  This aims to handle the following idiom:
782 
783 	first = 1;
784 	while (1)
785 	  {
786 	    if (first)
787 	      initialize;
788 	    first = 0;
789 	    body;
790 	  }
791 
792 	After threading the latch edge, this becomes
793 
794 	first = 1;
795 	if (first)
796 	  initialize;
797 	while (1)
798 	  {
799 	    first = 0;
800 	    body;
801 	  }
802 
803 	The original header of the loop is moved out of it, and we may thread
804 	the remaining edges through it without further constraints.
805 
806      2) All entry edges are propagated to a single basic block that dominates
807 	the latch block of the loop.  This aims to handle the following idiom
808 	(normally created for "for" loops):
809 
810 	i = 0;
811 	while (1)
812 	  {
813 	    if (i >= 100)
814 	      break;
815 	    body;
816 	    i++;
817 	  }
818 
819 	This becomes
820 
821 	i = 0;
822 	while (1)
823 	  {
824 	    body;
825 	    i++;
826 	    if (i >= 100)
827 	      break;
828 	  }
829      */
830 
831   /* Threading through the header won't improve the code if the header has just
832      one successor.  */
833   if (single_succ_p (header))
834     goto fail;
835 
836   if (latch->aux)
837     {
838       tgt_edge = (edge) latch->aux;
839       tgt_bb = tgt_edge->dest;
840     }
841   else if (!may_peel_loop_headers
842 	   && !redirection_block_p (loop->header))
843     goto fail;
844   else
845     {
846       tgt_bb = NULL;
847       tgt_edge = NULL;
848       FOR_EACH_EDGE (e, ei, header->preds)
849 	{
850 	  if (!e->aux)
851 	    {
852 	      if (e == latch)
853 		continue;
854 
855 	      /* If latch is not threaded, and there is a header
856 		 edge that is not threaded, we would create loop
857 		 with multiple entries.  */
858 	      goto fail;
859 	    }
860 
861 	  tgt_edge = (edge) e->aux;
862 	  atgt_bb = tgt_edge->dest;
863 	  if (!tgt_bb)
864 	    tgt_bb = atgt_bb;
865 	  /* Two targets of threading would make us create loop
866 	     with multiple entries.  */
867 	  else if (tgt_bb != atgt_bb)
868 	    goto fail;
869 	}
870 
871       if (!tgt_bb)
872 	{
873 	  /* There are no threading requests.  */
874 	  return false;
875 	}
876 
877       /* Redirecting to empty loop latch is useless.  */
878       if (tgt_bb == loop->latch
879 	  && empty_block_p (loop->latch))
880 	goto fail;
881     }
882 
883   /* The target block must dominate the loop latch, otherwise we would be
884      creating a subloop.  */
885   domst = determine_bb_domination_status (loop, tgt_bb);
886   if (domst == DOMST_NONDOMINATING)
887     goto fail;
888   if (domst == DOMST_LOOP_BROKEN)
889     {
890       /* If the loop ceased to exist, mark it as such, and thread through its
891 	 original header.  */
892       loop->header = NULL;
893       loop->latch = NULL;
894       return thread_block (header, false);
895     }
896 
897   if (tgt_bb->loop_father->header == tgt_bb)
898     {
899       /* If the target of the threading is a header of a subloop, we need
900 	 to create a preheader for it, so that the headers of the two loops
901 	 do not merge.  */
902       if (EDGE_COUNT (tgt_bb->preds) > 2)
903 	{
904 	  tgt_bb = create_preheader (tgt_bb->loop_father, 0);
905 	  gcc_assert (tgt_bb != NULL);
906 	}
907       else
908 	tgt_bb = split_edge (tgt_edge);
909     }
910 
911   if (latch->aux)
912     {
913       /* First handle the case latch edge is redirected.  */
914       loop->latch = thread_single_edge (latch);
915       gcc_assert (single_succ (loop->latch) == tgt_bb);
916       loop->header = tgt_bb;
917 
918       /* Thread the remaining edges through the former header.  */
919       thread_block (header, false);
920     }
921   else
922     {
923       basic_block new_preheader;
924 
925       /* Now consider the case entry edges are redirected to the new entry
926 	 block.  Remember one entry edge, so that we can find the new
927 	preheader (its destination after threading).  */
928       FOR_EACH_EDGE (e, ei, header->preds)
929 	{
930 	  if (e->aux)
931 	    break;
932 	}
933 
934       /* The duplicate of the header is the new preheader of the loop.  Ensure
935 	 that it is placed correctly in the loop hierarchy.  */
936       set_loop_copy (loop, loop_outer (loop));
937 
938       thread_block (header, false);
939       set_loop_copy (loop, NULL);
940       new_preheader = e->dest;
941 
942       /* Create the new latch block.  This is always necessary, as the latch
943 	 must have only a single successor, but the original header had at
944 	 least two successors.  */
945       loop->latch = NULL;
946       mfb_kj_edge = single_succ_edge (new_preheader);
947       loop->header = mfb_kj_edge->dest;
948       latch = make_forwarder_block (tgt_bb, mfb_keep_just, NULL);
949       loop->header = latch->dest;
950       loop->latch = latch->src;
951     }
952 
953   return true;
954 
955 fail:
956   /* We failed to thread anything.  Cancel the requests.  */
957   FOR_EACH_EDGE (e, ei, header->preds)
958     {
959       e->aux = NULL;
960     }
961   return false;
962 }
963 
964 /* Walk through the registered jump threads and convert them into a
965    form convenient for this pass.
966 
967    Any block which has incoming edges threaded to outgoing edges
968    will have its entry in THREADED_BLOCK set.
969 
970    Any threaded edge will have its new outgoing edge stored in the
971    original edge's AUX field.
972 
973    This form avoids the need to walk all the edges in the CFG to
974    discover blocks which need processing and avoids unnecessary
975    hash table lookups to map from threaded edge to new target.  */
976 
977 static void
978 mark_threaded_blocks (bitmap threaded_blocks)
979 {
980   unsigned int i;
981   bitmap_iterator bi;
982   bitmap tmp = BITMAP_ALLOC (NULL);
983   basic_block bb;
984   edge e;
985   edge_iterator ei;
986 
987   for (i = 0; i < VEC_length (edge, threaded_edges); i += 2)
988     {
989       edge e = VEC_index (edge, threaded_edges, i);
990       edge e2 = VEC_index (edge, threaded_edges, i + 1);
991 
992       e->aux = e2;
993       bitmap_set_bit (tmp, e->dest->index);
994     }
995 
996   /* If optimizing for size, only thread through block if we don't have
997      to duplicate it or it's an otherwise empty redirection block.  */
998   if (optimize_function_for_size_p (cfun))
999     {
1000       EXECUTE_IF_SET_IN_BITMAP (tmp, 0, i, bi)
1001 	{
1002 	  bb = BASIC_BLOCK (i);
1003 	  if (EDGE_COUNT (bb->preds) > 1
1004 	      && !redirection_block_p (bb))
1005 	    {
1006 	      FOR_EACH_EDGE (e, ei, bb->preds)
1007 		      e->aux = NULL;
1008 	    }
1009 	  else
1010 	    bitmap_set_bit (threaded_blocks, i);
1011 	}
1012     }
1013   else
1014     bitmap_copy (threaded_blocks, tmp);
1015 
1016   BITMAP_FREE(tmp);
1017 }
1018 
1019 
1020 /* Walk through all blocks and thread incoming edges to the appropriate
1021    outgoing edge for each edge pair recorded in THREADED_EDGES.
1022 
1023    It is the caller's responsibility to fix the dominance information
1024    and rewrite duplicated SSA_NAMEs back into SSA form.
1025 
1026    If MAY_PEEL_LOOP_HEADERS is false, we avoid threading edges through
1027    loop headers if it does not simplify the loop.
1028 
1029    Returns true if one or more edges were threaded, false otherwise.  */
1030 
1031 bool
1032 thread_through_all_blocks (bool may_peel_loop_headers)
1033 {
1034   bool retval = false;
1035   unsigned int i;
1036   bitmap_iterator bi;
1037   bitmap threaded_blocks;
1038   struct loop *loop;
1039   loop_iterator li;
1040 
1041   /* We must know about loops in order to preserve them.  */
1042   gcc_assert (current_loops != NULL);
1043 
1044   if (threaded_edges == NULL)
1045     return false;
1046 
1047   threaded_blocks = BITMAP_ALLOC (NULL);
1048   memset (&thread_stats, 0, sizeof (thread_stats));
1049 
1050   mark_threaded_blocks (threaded_blocks);
1051 
1052   initialize_original_copy_tables ();
1053 
1054   /* First perform the threading requests that do not affect
1055      loop structure.  */
1056   EXECUTE_IF_SET_IN_BITMAP (threaded_blocks, 0, i, bi)
1057     {
1058       basic_block bb = BASIC_BLOCK (i);
1059 
1060       if (EDGE_COUNT (bb->preds) > 0)
1061 	retval |= thread_block (bb, true);
1062     }
1063 
1064   /* Then perform the threading through loop headers.  We start with the
1065      innermost loop, so that the changes in cfg we perform won't affect
1066      further threading.  */
1067   FOR_EACH_LOOP (li, loop, LI_FROM_INNERMOST)
1068     {
1069       if (!loop->header
1070 	  || !bitmap_bit_p (threaded_blocks, loop->header->index))
1071 	continue;
1072 
1073       retval |= thread_through_loop_header (loop, may_peel_loop_headers);
1074     }
1075 
1076   statistics_counter_event (cfun, "Jumps threaded",
1077 			    thread_stats.num_threaded_edges);
1078 
1079   free_original_copy_tables ();
1080 
1081   BITMAP_FREE (threaded_blocks);
1082   threaded_blocks = NULL;
1083   VEC_free (edge, heap, threaded_edges);
1084   threaded_edges = NULL;
1085 
1086   if (retval)
1087     loops_state_set (LOOPS_NEED_FIXUP);
1088 
1089   return retval;
1090 }
1091 
1092 /* Register a jump threading opportunity.  We queue up all the jump
1093    threading opportunities discovered by a pass and update the CFG
1094    and SSA form all at once.
1095 
1096    E is the edge we can thread, E2 is the new target edge, i.e., we
1097    are effectively recording that E->dest can be changed to E2->dest
1098    after fixing the SSA graph.  */
1099 
1100 void
1101 register_jump_thread (edge e, edge e2)
1102 {
1103   if (threaded_edges == NULL)
1104     threaded_edges = VEC_alloc (edge, heap, 10);
1105 
1106   VEC_safe_push (edge, heap, threaded_edges, e);
1107   VEC_safe_push (edge, heap, threaded_edges, e2);
1108 }
1109