1 /* Thread edges through blocks and update the control flow and SSA graphs. 2 Copyright (C) 2004, 2005, 2006, 2007, 2008 Free Software Foundation, 3 Inc. 4 5 This file is part of GCC. 6 7 GCC is free software; you can redistribute it and/or modify 8 it under the terms of the GNU General Public License as published by 9 the Free Software Foundation; either version 3, or (at your option) 10 any later version. 11 12 GCC is distributed in the hope that it will be useful, 13 but WITHOUT ANY WARRANTY; without even the implied warranty of 14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 GNU General Public License for more details. 16 17 You should have received a copy of the GNU General Public License 18 along with GCC; see the file COPYING3. If not see 19 <http://www.gnu.org/licenses/>. */ 20 21 #include "config.h" 22 #include "system.h" 23 #include "coretypes.h" 24 #include "tm.h" 25 #include "tree.h" 26 #include "flags.h" 27 #include "rtl.h" 28 #include "tm_p.h" 29 #include "ggc.h" 30 #include "basic-block.h" 31 #include "output.h" 32 #include "expr.h" 33 #include "function.h" 34 #include "diagnostic.h" 35 #include "tree-flow.h" 36 #include "tree-dump.h" 37 #include "tree-pass.h" 38 #include "cfgloop.h" 39 40 /* Given a block B, update the CFG and SSA graph to reflect redirecting 41 one or more in-edges to B to instead reach the destination of an 42 out-edge from B while preserving any side effects in B. 43 44 i.e., given A->B and B->C, change A->B to be A->C yet still preserve the 45 side effects of executing B. 46 47 1. Make a copy of B (including its outgoing edges and statements). Call 48 the copy B'. Note B' has no incoming edges or PHIs at this time. 49 50 2. Remove the control statement at the end of B' and all outgoing edges 51 except B'->C. 52 53 3. Add a new argument to each PHI in C with the same value as the existing 54 argument associated with edge B->C. Associate the new PHI arguments 55 with the edge B'->C. 56 57 4. For each PHI in B, find or create a PHI in B' with an identical 58 PHI_RESULT. Add an argument to the PHI in B' which has the same 59 value as the PHI in B associated with the edge A->B. Associate 60 the new argument in the PHI in B' with the edge A->B. 61 62 5. Change the edge A->B to A->B'. 63 64 5a. This automatically deletes any PHI arguments associated with the 65 edge A->B in B. 66 67 5b. This automatically associates each new argument added in step 4 68 with the edge A->B'. 69 70 6. Repeat for other incoming edges into B. 71 72 7. Put the duplicated resources in B and all the B' blocks into SSA form. 73 74 Note that block duplication can be minimized by first collecting the 75 set of unique destination blocks that the incoming edges should 76 be threaded to. Block duplication can be further minimized by using 77 B instead of creating B' for one destination if all edges into B are 78 going to be threaded to a successor of B. 79 80 We further reduce the number of edges and statements we create by 81 not copying all the outgoing edges and the control statement in 82 step #1. We instead create a template block without the outgoing 83 edges and duplicate the template. */ 84 85 86 /* Steps #5 and #6 of the above algorithm are best implemented by walking 87 all the incoming edges which thread to the same destination edge at 88 the same time. That avoids lots of table lookups to get information 89 for the destination edge. 90 91 To realize that implementation we create a list of incoming edges 92 which thread to the same outgoing edge. Thus to implement steps 93 #5 and #6 we traverse our hash table of outgoing edge information. 94 For each entry we walk the list of incoming edges which thread to 95 the current outgoing edge. */ 96 97 struct el 98 { 99 edge e; 100 struct el *next; 101 }; 102 103 /* Main data structure recording information regarding B's duplicate 104 blocks. */ 105 106 /* We need to efficiently record the unique thread destinations of this 107 block and specific information associated with those destinations. We 108 may have many incoming edges threaded to the same outgoing edge. This 109 can be naturally implemented with a hash table. */ 110 111 struct redirection_data 112 { 113 /* A duplicate of B with the trailing control statement removed and which 114 targets a single successor of B. */ 115 basic_block dup_block; 116 117 /* An outgoing edge from B. DUP_BLOCK will have OUTGOING_EDGE->dest as 118 its single successor. */ 119 edge outgoing_edge; 120 121 /* A list of incoming edges which we want to thread to 122 OUTGOING_EDGE->dest. */ 123 struct el *incoming_edges; 124 125 /* Flag indicating whether or not we should create a duplicate block 126 for this thread destination. This is only true if we are threading 127 all incoming edges and thus are using BB itself as a duplicate block. */ 128 bool do_not_duplicate; 129 }; 130 131 /* Main data structure to hold information for duplicates of BB. */ 132 static htab_t redirection_data; 133 134 /* Data structure of information to pass to hash table traversal routines. */ 135 struct local_info 136 { 137 /* The current block we are working on. */ 138 basic_block bb; 139 140 /* A template copy of BB with no outgoing edges or control statement that 141 we use for creating copies. */ 142 basic_block template_block; 143 144 /* TRUE if we thread one or more jumps, FALSE otherwise. */ 145 bool jumps_threaded; 146 }; 147 148 /* Passes which use the jump threading code register jump threading 149 opportunities as they are discovered. We keep the registered 150 jump threading opportunities in this vector as edge pairs 151 (original_edge, target_edge). */ 152 static VEC(edge,heap) *threaded_edges; 153 154 155 /* Jump threading statistics. */ 156 157 struct thread_stats_d 158 { 159 unsigned long num_threaded_edges; 160 }; 161 162 struct thread_stats_d thread_stats; 163 164 165 /* Remove the last statement in block BB if it is a control statement 166 Also remove all outgoing edges except the edge which reaches DEST_BB. 167 If DEST_BB is NULL, then remove all outgoing edges. */ 168 169 static void 170 remove_ctrl_stmt_and_useless_edges (basic_block bb, basic_block dest_bb) 171 { 172 gimple_stmt_iterator gsi; 173 edge e; 174 edge_iterator ei; 175 176 gsi = gsi_last_bb (bb); 177 178 /* If the duplicate ends with a control statement, then remove it. 179 180 Note that if we are duplicating the template block rather than the 181 original basic block, then the duplicate might not have any real 182 statements in it. */ 183 if (!gsi_end_p (gsi) 184 && gsi_stmt (gsi) 185 && (gimple_code (gsi_stmt (gsi)) == GIMPLE_COND 186 || gimple_code (gsi_stmt (gsi)) == GIMPLE_GOTO 187 || gimple_code (gsi_stmt (gsi)) == GIMPLE_SWITCH)) 188 gsi_remove (&gsi, true); 189 190 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); ) 191 { 192 if (e->dest != dest_bb) 193 remove_edge (e); 194 else 195 ei_next (&ei); 196 } 197 } 198 199 /* Create a duplicate of BB which only reaches the destination of the edge 200 stored in RD. Record the duplicate block in RD. */ 201 202 static void 203 create_block_for_threading (basic_block bb, struct redirection_data *rd) 204 { 205 /* We can use the generic block duplication code and simply remove 206 the stuff we do not need. */ 207 rd->dup_block = duplicate_block (bb, NULL, NULL); 208 209 /* Zero out the profile, since the block is unreachable for now. */ 210 rd->dup_block->frequency = 0; 211 rd->dup_block->count = 0; 212 213 /* The call to duplicate_block will copy everything, including the 214 useless COND_EXPR or SWITCH_EXPR at the end of BB. We just remove 215 the useless COND_EXPR or SWITCH_EXPR here rather than having a 216 specialized block copier. We also remove all outgoing edges 217 from the duplicate block. The appropriate edge will be created 218 later. */ 219 remove_ctrl_stmt_and_useless_edges (rd->dup_block, NULL); 220 } 221 222 /* Hashing and equality routines for our hash table. */ 223 static hashval_t 224 redirection_data_hash (const void *p) 225 { 226 edge e = ((const struct redirection_data *)p)->outgoing_edge; 227 return e->dest->index; 228 } 229 230 static int 231 redirection_data_eq (const void *p1, const void *p2) 232 { 233 edge e1 = ((const struct redirection_data *)p1)->outgoing_edge; 234 edge e2 = ((const struct redirection_data *)p2)->outgoing_edge; 235 236 return e1 == e2; 237 } 238 239 /* Given an outgoing edge E lookup and return its entry in our hash table. 240 241 If INSERT is true, then we insert the entry into the hash table if 242 it is not already present. INCOMING_EDGE is added to the list of incoming 243 edges associated with E in the hash table. */ 244 245 static struct redirection_data * 246 lookup_redirection_data (edge e, edge incoming_edge, enum insert_option insert) 247 { 248 void **slot; 249 struct redirection_data *elt; 250 251 /* Build a hash table element so we can see if E is already 252 in the table. */ 253 elt = XNEW (struct redirection_data); 254 elt->outgoing_edge = e; 255 elt->dup_block = NULL; 256 elt->do_not_duplicate = false; 257 elt->incoming_edges = NULL; 258 259 slot = htab_find_slot (redirection_data, elt, insert); 260 261 /* This will only happen if INSERT is false and the entry is not 262 in the hash table. */ 263 if (slot == NULL) 264 { 265 free (elt); 266 return NULL; 267 } 268 269 /* This will only happen if E was not in the hash table and 270 INSERT is true. */ 271 if (*slot == NULL) 272 { 273 *slot = (void *)elt; 274 elt->incoming_edges = XNEW (struct el); 275 elt->incoming_edges->e = incoming_edge; 276 elt->incoming_edges->next = NULL; 277 return elt; 278 } 279 /* E was in the hash table. */ 280 else 281 { 282 /* Free ELT as we do not need it anymore, we will extract the 283 relevant entry from the hash table itself. */ 284 free (elt); 285 286 /* Get the entry stored in the hash table. */ 287 elt = (struct redirection_data *) *slot; 288 289 /* If insertion was requested, then we need to add INCOMING_EDGE 290 to the list of incoming edges associated with E. */ 291 if (insert) 292 { 293 struct el *el = XNEW (struct el); 294 el->next = elt->incoming_edges; 295 el->e = incoming_edge; 296 elt->incoming_edges = el; 297 } 298 299 return elt; 300 } 301 } 302 303 /* Given a duplicate block and its single destination (both stored 304 in RD). Create an edge between the duplicate and its single 305 destination. 306 307 Add an additional argument to any PHI nodes at the single 308 destination. */ 309 310 static void 311 create_edge_and_update_destination_phis (struct redirection_data *rd) 312 { 313 edge e = make_edge (rd->dup_block, rd->outgoing_edge->dest, EDGE_FALLTHRU); 314 gimple_stmt_iterator gsi; 315 316 rescan_loop_exit (e, true, false); 317 e->probability = REG_BR_PROB_BASE; 318 e->count = rd->dup_block->count; 319 e->aux = rd->outgoing_edge->aux; 320 321 /* If there are any PHI nodes at the destination of the outgoing edge 322 from the duplicate block, then we will need to add a new argument 323 to them. The argument should have the same value as the argument 324 associated with the outgoing edge stored in RD. */ 325 for (gsi = gsi_start_phis (e->dest); !gsi_end_p (gsi); gsi_next (&gsi)) 326 { 327 gimple phi = gsi_stmt (gsi); 328 source_location locus; 329 int indx = rd->outgoing_edge->dest_idx; 330 331 locus = gimple_phi_arg_location (phi, indx); 332 add_phi_arg (phi, gimple_phi_arg_def (phi, indx), e, locus); 333 } 334 } 335 336 /* Hash table traversal callback routine to create duplicate blocks. */ 337 338 static int 339 create_duplicates (void **slot, void *data) 340 { 341 struct redirection_data *rd = (struct redirection_data *) *slot; 342 struct local_info *local_info = (struct local_info *)data; 343 344 /* If this entry should not have a duplicate created, then there's 345 nothing to do. */ 346 if (rd->do_not_duplicate) 347 return 1; 348 349 /* Create a template block if we have not done so already. Otherwise 350 use the template to create a new block. */ 351 if (local_info->template_block == NULL) 352 { 353 create_block_for_threading (local_info->bb, rd); 354 local_info->template_block = rd->dup_block; 355 356 /* We do not create any outgoing edges for the template. We will 357 take care of that in a later traversal. That way we do not 358 create edges that are going to just be deleted. */ 359 } 360 else 361 { 362 create_block_for_threading (local_info->template_block, rd); 363 364 /* Go ahead and wire up outgoing edges and update PHIs for the duplicate 365 block. */ 366 create_edge_and_update_destination_phis (rd); 367 } 368 369 /* Keep walking the hash table. */ 370 return 1; 371 } 372 373 /* We did not create any outgoing edges for the template block during 374 block creation. This hash table traversal callback creates the 375 outgoing edge for the template block. */ 376 377 static int 378 fixup_template_block (void **slot, void *data) 379 { 380 struct redirection_data *rd = (struct redirection_data *) *slot; 381 struct local_info *local_info = (struct local_info *)data; 382 383 /* If this is the template block, then create its outgoing edges 384 and halt the hash table traversal. */ 385 if (rd->dup_block && rd->dup_block == local_info->template_block) 386 { 387 create_edge_and_update_destination_phis (rd); 388 return 0; 389 } 390 391 return 1; 392 } 393 394 /* Hash table traversal callback to redirect each incoming edge 395 associated with this hash table element to its new destination. */ 396 397 static int 398 redirect_edges (void **slot, void *data) 399 { 400 struct redirection_data *rd = (struct redirection_data *) *slot; 401 struct local_info *local_info = (struct local_info *)data; 402 struct el *next, *el; 403 404 /* Walk over all the incoming edges associated associated with this 405 hash table entry. */ 406 for (el = rd->incoming_edges; el; el = next) 407 { 408 edge e = el->e; 409 410 /* Go ahead and free this element from the list. Doing this now 411 avoids the need for another list walk when we destroy the hash 412 table. */ 413 next = el->next; 414 free (el); 415 416 /* Go ahead and clear E->aux. It's not needed anymore and failure 417 to clear it will cause all kinds of unpleasant problems later. */ 418 e->aux = NULL; 419 420 thread_stats.num_threaded_edges++; 421 422 if (rd->dup_block) 423 { 424 edge e2; 425 426 if (dump_file && (dump_flags & TDF_DETAILS)) 427 fprintf (dump_file, " Threaded jump %d --> %d to %d\n", 428 e->src->index, e->dest->index, rd->dup_block->index); 429 430 rd->dup_block->count += e->count; 431 rd->dup_block->frequency += EDGE_FREQUENCY (e); 432 EDGE_SUCC (rd->dup_block, 0)->count += e->count; 433 /* Redirect the incoming edge to the appropriate duplicate 434 block. */ 435 e2 = redirect_edge_and_branch (e, rd->dup_block); 436 gcc_assert (e == e2); 437 flush_pending_stmts (e2); 438 } 439 else 440 { 441 if (dump_file && (dump_flags & TDF_DETAILS)) 442 fprintf (dump_file, " Threaded jump %d --> %d to %d\n", 443 e->src->index, e->dest->index, local_info->bb->index); 444 445 /* We are using BB as the duplicate. Remove the unnecessary 446 outgoing edges and statements from BB. */ 447 remove_ctrl_stmt_and_useless_edges (local_info->bb, 448 rd->outgoing_edge->dest); 449 450 /* Fixup the flags on the single remaining edge. */ 451 single_succ_edge (local_info->bb)->flags 452 &= ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE | EDGE_ABNORMAL); 453 single_succ_edge (local_info->bb)->flags |= EDGE_FALLTHRU; 454 455 /* And adjust count and frequency on BB. */ 456 local_info->bb->count = e->count; 457 local_info->bb->frequency = EDGE_FREQUENCY (e); 458 } 459 } 460 461 /* Indicate that we actually threaded one or more jumps. */ 462 if (rd->incoming_edges) 463 local_info->jumps_threaded = true; 464 465 return 1; 466 } 467 468 /* Return true if this block has no executable statements other than 469 a simple ctrl flow instruction. When the number of outgoing edges 470 is one, this is equivalent to a "forwarder" block. */ 471 472 static bool 473 redirection_block_p (basic_block bb) 474 { 475 gimple_stmt_iterator gsi; 476 477 /* Advance to the first executable statement. */ 478 gsi = gsi_start_bb (bb); 479 while (!gsi_end_p (gsi) 480 && (gimple_code (gsi_stmt (gsi)) == GIMPLE_LABEL 481 || is_gimple_debug (gsi_stmt (gsi)) 482 || gimple_nop_p (gsi_stmt (gsi)))) 483 gsi_next (&gsi); 484 485 /* Check if this is an empty block. */ 486 if (gsi_end_p (gsi)) 487 return true; 488 489 /* Test that we've reached the terminating control statement. */ 490 return gsi_stmt (gsi) 491 && (gimple_code (gsi_stmt (gsi)) == GIMPLE_COND 492 || gimple_code (gsi_stmt (gsi)) == GIMPLE_GOTO 493 || gimple_code (gsi_stmt (gsi)) == GIMPLE_SWITCH); 494 } 495 496 /* BB is a block which ends with a COND_EXPR or SWITCH_EXPR and when BB 497 is reached via one or more specific incoming edges, we know which 498 outgoing edge from BB will be traversed. 499 500 We want to redirect those incoming edges to the target of the 501 appropriate outgoing edge. Doing so avoids a conditional branch 502 and may expose new optimization opportunities. Note that we have 503 to update dominator tree and SSA graph after such changes. 504 505 The key to keeping the SSA graph update manageable is to duplicate 506 the side effects occurring in BB so that those side effects still 507 occur on the paths which bypass BB after redirecting edges. 508 509 We accomplish this by creating duplicates of BB and arranging for 510 the duplicates to unconditionally pass control to one specific 511 successor of BB. We then revector the incoming edges into BB to 512 the appropriate duplicate of BB. 513 514 If NOLOOP_ONLY is true, we only perform the threading as long as it 515 does not affect the structure of the loops in a nontrivial way. */ 516 517 static bool 518 thread_block (basic_block bb, bool noloop_only) 519 { 520 /* E is an incoming edge into BB that we may or may not want to 521 redirect to a duplicate of BB. */ 522 edge e, e2; 523 edge_iterator ei; 524 struct local_info local_info; 525 struct loop *loop = bb->loop_father; 526 527 /* ALL indicates whether or not all incoming edges into BB should 528 be threaded to a duplicate of BB. */ 529 bool all = true; 530 531 /* To avoid scanning a linear array for the element we need we instead 532 use a hash table. For normal code there should be no noticeable 533 difference. However, if we have a block with a large number of 534 incoming and outgoing edges such linear searches can get expensive. */ 535 redirection_data = htab_create (EDGE_COUNT (bb->succs), 536 redirection_data_hash, 537 redirection_data_eq, 538 free); 539 540 /* If we thread the latch of the loop to its exit, the loop ceases to 541 exist. Make sure we do not restrict ourselves in order to preserve 542 this loop. */ 543 if (loop->header == bb) 544 { 545 e = loop_latch_edge (loop); 546 e2 = (edge) e->aux; 547 548 if (e2 && loop_exit_edge_p (loop, e2)) 549 { 550 loop->header = NULL; 551 loop->latch = NULL; 552 } 553 } 554 555 /* Record each unique threaded destination into a hash table for 556 efficient lookups. */ 557 FOR_EACH_EDGE (e, ei, bb->preds) 558 { 559 e2 = (edge) e->aux; 560 561 if (!e2 562 /* If NOLOOP_ONLY is true, we only allow threading through the 563 header of a loop to exit edges. */ 564 || (noloop_only 565 && bb == bb->loop_father->header 566 && !loop_exit_edge_p (bb->loop_father, e2))) 567 { 568 all = false; 569 continue; 570 } 571 572 update_bb_profile_for_threading (e->dest, EDGE_FREQUENCY (e), 573 e->count, (edge) e->aux); 574 575 /* Insert the outgoing edge into the hash table if it is not 576 already in the hash table. */ 577 lookup_redirection_data (e2, e, INSERT); 578 } 579 580 /* If we are going to thread all incoming edges to an outgoing edge, then 581 BB will become unreachable. Rather than just throwing it away, use 582 it for one of the duplicates. Mark the first incoming edge with the 583 DO_NOT_DUPLICATE attribute. */ 584 if (all) 585 { 586 edge e = (edge) EDGE_PRED (bb, 0)->aux; 587 lookup_redirection_data (e, NULL, NO_INSERT)->do_not_duplicate = true; 588 } 589 590 /* We do not update dominance info. */ 591 free_dominance_info (CDI_DOMINATORS); 592 593 /* Now create duplicates of BB. 594 595 Note that for a block with a high outgoing degree we can waste 596 a lot of time and memory creating and destroying useless edges. 597 598 So we first duplicate BB and remove the control structure at the 599 tail of the duplicate as well as all outgoing edges from the 600 duplicate. We then use that duplicate block as a template for 601 the rest of the duplicates. */ 602 local_info.template_block = NULL; 603 local_info.bb = bb; 604 local_info.jumps_threaded = false; 605 htab_traverse (redirection_data, create_duplicates, &local_info); 606 607 /* The template does not have an outgoing edge. Create that outgoing 608 edge and update PHI nodes as the edge's target as necessary. 609 610 We do this after creating all the duplicates to avoid creating 611 unnecessary edges. */ 612 htab_traverse (redirection_data, fixup_template_block, &local_info); 613 614 /* The hash table traversals above created the duplicate blocks (and the 615 statements within the duplicate blocks). This loop creates PHI nodes for 616 the duplicated blocks and redirects the incoming edges into BB to reach 617 the duplicates of BB. */ 618 htab_traverse (redirection_data, redirect_edges, &local_info); 619 620 /* Done with this block. Clear REDIRECTION_DATA. */ 621 htab_delete (redirection_data); 622 redirection_data = NULL; 623 624 /* Indicate to our caller whether or not any jumps were threaded. */ 625 return local_info.jumps_threaded; 626 } 627 628 /* Threads edge E through E->dest to the edge E->aux. Returns the copy 629 of E->dest created during threading, or E->dest if it was not necessary 630 to copy it (E is its single predecessor). */ 631 632 static basic_block 633 thread_single_edge (edge e) 634 { 635 basic_block bb = e->dest; 636 edge eto = (edge) e->aux; 637 struct redirection_data rd; 638 639 e->aux = NULL; 640 641 thread_stats.num_threaded_edges++; 642 643 if (single_pred_p (bb)) 644 { 645 /* If BB has just a single predecessor, we should only remove the 646 control statements at its end, and successors except for ETO. */ 647 remove_ctrl_stmt_and_useless_edges (bb, eto->dest); 648 649 /* And fixup the flags on the single remaining edge. */ 650 eto->flags &= ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE | EDGE_ABNORMAL); 651 eto->flags |= EDGE_FALLTHRU; 652 653 return bb; 654 } 655 656 /* Otherwise, we need to create a copy. */ 657 update_bb_profile_for_threading (bb, EDGE_FREQUENCY (e), e->count, eto); 658 659 rd.outgoing_edge = eto; 660 661 create_block_for_threading (bb, &rd); 662 create_edge_and_update_destination_phis (&rd); 663 664 if (dump_file && (dump_flags & TDF_DETAILS)) 665 fprintf (dump_file, " Threaded jump %d --> %d to %d\n", 666 e->src->index, e->dest->index, rd.dup_block->index); 667 668 rd.dup_block->count = e->count; 669 rd.dup_block->frequency = EDGE_FREQUENCY (e); 670 single_succ_edge (rd.dup_block)->count = e->count; 671 redirect_edge_and_branch (e, rd.dup_block); 672 flush_pending_stmts (e); 673 674 return rd.dup_block; 675 } 676 677 /* Callback for dfs_enumerate_from. Returns true if BB is different 678 from STOP and DBDS_CE_STOP. */ 679 680 static basic_block dbds_ce_stop; 681 static bool 682 dbds_continue_enumeration_p (const_basic_block bb, const void *stop) 683 { 684 return (bb != (const_basic_block) stop 685 && bb != dbds_ce_stop); 686 } 687 688 /* Evaluates the dominance relationship of latch of the LOOP and BB, and 689 returns the state. */ 690 691 enum bb_dom_status 692 { 693 /* BB does not dominate latch of the LOOP. */ 694 DOMST_NONDOMINATING, 695 /* The LOOP is broken (there is no path from the header to its latch. */ 696 DOMST_LOOP_BROKEN, 697 /* BB dominates the latch of the LOOP. */ 698 DOMST_DOMINATING 699 }; 700 701 static enum bb_dom_status 702 determine_bb_domination_status (struct loop *loop, basic_block bb) 703 { 704 basic_block *bblocks; 705 unsigned nblocks, i; 706 bool bb_reachable = false; 707 edge_iterator ei; 708 edge e; 709 710 #ifdef ENABLE_CHECKING 711 /* This function assumes BB is a successor of LOOP->header. */ 712 { 713 bool ok = false; 714 715 FOR_EACH_EDGE (e, ei, bb->preds) 716 { 717 if (e->src == loop->header) 718 { 719 ok = true; 720 break; 721 } 722 } 723 724 gcc_assert (ok); 725 } 726 #endif 727 728 if (bb == loop->latch) 729 return DOMST_DOMINATING; 730 731 /* Check that BB dominates LOOP->latch, and that it is back-reachable 732 from it. */ 733 734 bblocks = XCNEWVEC (basic_block, loop->num_nodes); 735 dbds_ce_stop = loop->header; 736 nblocks = dfs_enumerate_from (loop->latch, 1, dbds_continue_enumeration_p, 737 bblocks, loop->num_nodes, bb); 738 for (i = 0; i < nblocks; i++) 739 FOR_EACH_EDGE (e, ei, bblocks[i]->preds) 740 { 741 if (e->src == loop->header) 742 { 743 free (bblocks); 744 return DOMST_NONDOMINATING; 745 } 746 if (e->src == bb) 747 bb_reachable = true; 748 } 749 750 free (bblocks); 751 return (bb_reachable ? DOMST_DOMINATING : DOMST_LOOP_BROKEN); 752 } 753 754 /* Thread jumps through the header of LOOP. Returns true if cfg changes. 755 If MAY_PEEL_LOOP_HEADERS is false, we avoid threading from entry edges 756 to the inside of the loop. */ 757 758 static bool 759 thread_through_loop_header (struct loop *loop, bool may_peel_loop_headers) 760 { 761 basic_block header = loop->header; 762 edge e, tgt_edge, latch = loop_latch_edge (loop); 763 edge_iterator ei; 764 basic_block tgt_bb, atgt_bb; 765 enum bb_dom_status domst; 766 767 /* We have already threaded through headers to exits, so all the threading 768 requests now are to the inside of the loop. We need to avoid creating 769 irreducible regions (i.e., loops with more than one entry block), and 770 also loop with several latch edges, or new subloops of the loop (although 771 there are cases where it might be appropriate, it is difficult to decide, 772 and doing it wrongly may confuse other optimizers). 773 774 We could handle more general cases here. However, the intention is to 775 preserve some information about the loop, which is impossible if its 776 structure changes significantly, in a way that is not well understood. 777 Thus we only handle few important special cases, in which also updating 778 of the loop-carried information should be feasible: 779 780 1) Propagation of latch edge to a block that dominates the latch block 781 of a loop. This aims to handle the following idiom: 782 783 first = 1; 784 while (1) 785 { 786 if (first) 787 initialize; 788 first = 0; 789 body; 790 } 791 792 After threading the latch edge, this becomes 793 794 first = 1; 795 if (first) 796 initialize; 797 while (1) 798 { 799 first = 0; 800 body; 801 } 802 803 The original header of the loop is moved out of it, and we may thread 804 the remaining edges through it without further constraints. 805 806 2) All entry edges are propagated to a single basic block that dominates 807 the latch block of the loop. This aims to handle the following idiom 808 (normally created for "for" loops): 809 810 i = 0; 811 while (1) 812 { 813 if (i >= 100) 814 break; 815 body; 816 i++; 817 } 818 819 This becomes 820 821 i = 0; 822 while (1) 823 { 824 body; 825 i++; 826 if (i >= 100) 827 break; 828 } 829 */ 830 831 /* Threading through the header won't improve the code if the header has just 832 one successor. */ 833 if (single_succ_p (header)) 834 goto fail; 835 836 if (latch->aux) 837 { 838 tgt_edge = (edge) latch->aux; 839 tgt_bb = tgt_edge->dest; 840 } 841 else if (!may_peel_loop_headers 842 && !redirection_block_p (loop->header)) 843 goto fail; 844 else 845 { 846 tgt_bb = NULL; 847 tgt_edge = NULL; 848 FOR_EACH_EDGE (e, ei, header->preds) 849 { 850 if (!e->aux) 851 { 852 if (e == latch) 853 continue; 854 855 /* If latch is not threaded, and there is a header 856 edge that is not threaded, we would create loop 857 with multiple entries. */ 858 goto fail; 859 } 860 861 tgt_edge = (edge) e->aux; 862 atgt_bb = tgt_edge->dest; 863 if (!tgt_bb) 864 tgt_bb = atgt_bb; 865 /* Two targets of threading would make us create loop 866 with multiple entries. */ 867 else if (tgt_bb != atgt_bb) 868 goto fail; 869 } 870 871 if (!tgt_bb) 872 { 873 /* There are no threading requests. */ 874 return false; 875 } 876 877 /* Redirecting to empty loop latch is useless. */ 878 if (tgt_bb == loop->latch 879 && empty_block_p (loop->latch)) 880 goto fail; 881 } 882 883 /* The target block must dominate the loop latch, otherwise we would be 884 creating a subloop. */ 885 domst = determine_bb_domination_status (loop, tgt_bb); 886 if (domst == DOMST_NONDOMINATING) 887 goto fail; 888 if (domst == DOMST_LOOP_BROKEN) 889 { 890 /* If the loop ceased to exist, mark it as such, and thread through its 891 original header. */ 892 loop->header = NULL; 893 loop->latch = NULL; 894 return thread_block (header, false); 895 } 896 897 if (tgt_bb->loop_father->header == tgt_bb) 898 { 899 /* If the target of the threading is a header of a subloop, we need 900 to create a preheader for it, so that the headers of the two loops 901 do not merge. */ 902 if (EDGE_COUNT (tgt_bb->preds) > 2) 903 { 904 tgt_bb = create_preheader (tgt_bb->loop_father, 0); 905 gcc_assert (tgt_bb != NULL); 906 } 907 else 908 tgt_bb = split_edge (tgt_edge); 909 } 910 911 if (latch->aux) 912 { 913 /* First handle the case latch edge is redirected. */ 914 loop->latch = thread_single_edge (latch); 915 gcc_assert (single_succ (loop->latch) == tgt_bb); 916 loop->header = tgt_bb; 917 918 /* Thread the remaining edges through the former header. */ 919 thread_block (header, false); 920 } 921 else 922 { 923 basic_block new_preheader; 924 925 /* Now consider the case entry edges are redirected to the new entry 926 block. Remember one entry edge, so that we can find the new 927 preheader (its destination after threading). */ 928 FOR_EACH_EDGE (e, ei, header->preds) 929 { 930 if (e->aux) 931 break; 932 } 933 934 /* The duplicate of the header is the new preheader of the loop. Ensure 935 that it is placed correctly in the loop hierarchy. */ 936 set_loop_copy (loop, loop_outer (loop)); 937 938 thread_block (header, false); 939 set_loop_copy (loop, NULL); 940 new_preheader = e->dest; 941 942 /* Create the new latch block. This is always necessary, as the latch 943 must have only a single successor, but the original header had at 944 least two successors. */ 945 loop->latch = NULL; 946 mfb_kj_edge = single_succ_edge (new_preheader); 947 loop->header = mfb_kj_edge->dest; 948 latch = make_forwarder_block (tgt_bb, mfb_keep_just, NULL); 949 loop->header = latch->dest; 950 loop->latch = latch->src; 951 } 952 953 return true; 954 955 fail: 956 /* We failed to thread anything. Cancel the requests. */ 957 FOR_EACH_EDGE (e, ei, header->preds) 958 { 959 e->aux = NULL; 960 } 961 return false; 962 } 963 964 /* Walk through the registered jump threads and convert them into a 965 form convenient for this pass. 966 967 Any block which has incoming edges threaded to outgoing edges 968 will have its entry in THREADED_BLOCK set. 969 970 Any threaded edge will have its new outgoing edge stored in the 971 original edge's AUX field. 972 973 This form avoids the need to walk all the edges in the CFG to 974 discover blocks which need processing and avoids unnecessary 975 hash table lookups to map from threaded edge to new target. */ 976 977 static void 978 mark_threaded_blocks (bitmap threaded_blocks) 979 { 980 unsigned int i; 981 bitmap_iterator bi; 982 bitmap tmp = BITMAP_ALLOC (NULL); 983 basic_block bb; 984 edge e; 985 edge_iterator ei; 986 987 for (i = 0; i < VEC_length (edge, threaded_edges); i += 2) 988 { 989 edge e = VEC_index (edge, threaded_edges, i); 990 edge e2 = VEC_index (edge, threaded_edges, i + 1); 991 992 e->aux = e2; 993 bitmap_set_bit (tmp, e->dest->index); 994 } 995 996 /* If optimizing for size, only thread through block if we don't have 997 to duplicate it or it's an otherwise empty redirection block. */ 998 if (optimize_function_for_size_p (cfun)) 999 { 1000 EXECUTE_IF_SET_IN_BITMAP (tmp, 0, i, bi) 1001 { 1002 bb = BASIC_BLOCK (i); 1003 if (EDGE_COUNT (bb->preds) > 1 1004 && !redirection_block_p (bb)) 1005 { 1006 FOR_EACH_EDGE (e, ei, bb->preds) 1007 e->aux = NULL; 1008 } 1009 else 1010 bitmap_set_bit (threaded_blocks, i); 1011 } 1012 } 1013 else 1014 bitmap_copy (threaded_blocks, tmp); 1015 1016 BITMAP_FREE(tmp); 1017 } 1018 1019 1020 /* Walk through all blocks and thread incoming edges to the appropriate 1021 outgoing edge for each edge pair recorded in THREADED_EDGES. 1022 1023 It is the caller's responsibility to fix the dominance information 1024 and rewrite duplicated SSA_NAMEs back into SSA form. 1025 1026 If MAY_PEEL_LOOP_HEADERS is false, we avoid threading edges through 1027 loop headers if it does not simplify the loop. 1028 1029 Returns true if one or more edges were threaded, false otherwise. */ 1030 1031 bool 1032 thread_through_all_blocks (bool may_peel_loop_headers) 1033 { 1034 bool retval = false; 1035 unsigned int i; 1036 bitmap_iterator bi; 1037 bitmap threaded_blocks; 1038 struct loop *loop; 1039 loop_iterator li; 1040 1041 /* We must know about loops in order to preserve them. */ 1042 gcc_assert (current_loops != NULL); 1043 1044 if (threaded_edges == NULL) 1045 return false; 1046 1047 threaded_blocks = BITMAP_ALLOC (NULL); 1048 memset (&thread_stats, 0, sizeof (thread_stats)); 1049 1050 mark_threaded_blocks (threaded_blocks); 1051 1052 initialize_original_copy_tables (); 1053 1054 /* First perform the threading requests that do not affect 1055 loop structure. */ 1056 EXECUTE_IF_SET_IN_BITMAP (threaded_blocks, 0, i, bi) 1057 { 1058 basic_block bb = BASIC_BLOCK (i); 1059 1060 if (EDGE_COUNT (bb->preds) > 0) 1061 retval |= thread_block (bb, true); 1062 } 1063 1064 /* Then perform the threading through loop headers. We start with the 1065 innermost loop, so that the changes in cfg we perform won't affect 1066 further threading. */ 1067 FOR_EACH_LOOP (li, loop, LI_FROM_INNERMOST) 1068 { 1069 if (!loop->header 1070 || !bitmap_bit_p (threaded_blocks, loop->header->index)) 1071 continue; 1072 1073 retval |= thread_through_loop_header (loop, may_peel_loop_headers); 1074 } 1075 1076 statistics_counter_event (cfun, "Jumps threaded", 1077 thread_stats.num_threaded_edges); 1078 1079 free_original_copy_tables (); 1080 1081 BITMAP_FREE (threaded_blocks); 1082 threaded_blocks = NULL; 1083 VEC_free (edge, heap, threaded_edges); 1084 threaded_edges = NULL; 1085 1086 if (retval) 1087 loops_state_set (LOOPS_NEED_FIXUP); 1088 1089 return retval; 1090 } 1091 1092 /* Register a jump threading opportunity. We queue up all the jump 1093 threading opportunities discovered by a pass and update the CFG 1094 and SSA form all at once. 1095 1096 E is the edge we can thread, E2 is the new target edge, i.e., we 1097 are effectively recording that E->dest can be changed to E2->dest 1098 after fixing the SSA graph. */ 1099 1100 void 1101 register_jump_thread (edge e, edge e2) 1102 { 1103 if (threaded_edges == NULL) 1104 threaded_edges = VEC_alloc (edge, heap, 10); 1105 1106 VEC_safe_push (edge, heap, threaded_edges, e); 1107 VEC_safe_push (edge, heap, threaded_edges, e2); 1108 } 1109