xref: /netbsd-src/external/gpl3/gcc.old/dist/gcc/tree-ssa-threadedge.c (revision b7b7574d3bf8eeb51a1fa3977b59142ec6434a55)
1 /* SSA Jump Threading
2    Copyright (C) 2005, 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
3    Contributed by Jeff Law  <law@redhat.com>
4 
5 This file is part of GCC.
6 
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11 
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 GNU General Public License for more details.
16 
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3.  If not see
19 <http://www.gnu.org/licenses/>.  */
20 
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "tree.h"
26 #include "flags.h"
27 #include "rtl.h"
28 #include "tm_p.h"
29 #include "ggc.h"
30 #include "basic-block.h"
31 #include "cfgloop.h"
32 #include "output.h"
33 #include "expr.h"
34 #include "function.h"
35 #include "diagnostic.h"
36 #include "timevar.h"
37 #include "tree-dump.h"
38 #include "tree-flow.h"
39 #include "real.h"
40 #include "tree-pass.h"
41 #include "tree-ssa-propagate.h"
42 #include "langhooks.h"
43 #include "params.h"
44 
45 /* To avoid code explosion due to jump threading, we limit the
46    number of statements we are going to copy.  This variable
47    holds the number of statements currently seen that we'll have
48    to copy as part of the jump threading process.  */
49 static int stmt_count;
50 
51 /* Array to record value-handles per SSA_NAME.  */
52 VEC(tree,heap) *ssa_name_values;
53 
54 /* Set the value for the SSA name NAME to VALUE.  */
55 
56 void
57 set_ssa_name_value (tree name, tree value)
58 {
59   if (SSA_NAME_VERSION (name) >= VEC_length (tree, ssa_name_values))
60     VEC_safe_grow_cleared (tree, heap, ssa_name_values,
61 			   SSA_NAME_VERSION (name) + 1);
62   VEC_replace (tree, ssa_name_values, SSA_NAME_VERSION (name), value);
63 }
64 
65 /* Initialize the per SSA_NAME value-handles array.  Returns it.  */
66 void
67 threadedge_initialize_values (void)
68 {
69   gcc_assert (ssa_name_values == NULL);
70   ssa_name_values = VEC_alloc(tree, heap, num_ssa_names);
71 }
72 
73 /* Free the per SSA_NAME value-handle array.  */
74 void
75 threadedge_finalize_values (void)
76 {
77   VEC_free(tree, heap, ssa_name_values);
78 }
79 
80 /* Return TRUE if we may be able to thread an incoming edge into
81    BB to an outgoing edge from BB.  Return FALSE otherwise.  */
82 
83 bool
84 potentially_threadable_block (basic_block bb)
85 {
86   gimple_stmt_iterator gsi;
87 
88   /* If BB has a single successor or a single predecessor, then
89      there is no threading opportunity.  */
90   if (single_succ_p (bb) || single_pred_p (bb))
91     return false;
92 
93   /* If BB does not end with a conditional, switch or computed goto,
94      then there is no threading opportunity.  */
95   gsi = gsi_last_bb (bb);
96   if (gsi_end_p (gsi)
97       || ! gsi_stmt (gsi)
98       || (gimple_code (gsi_stmt (gsi)) != GIMPLE_COND
99 	  && gimple_code (gsi_stmt (gsi)) != GIMPLE_GOTO
100 	  && gimple_code (gsi_stmt (gsi)) != GIMPLE_SWITCH))
101     return false;
102 
103   return true;
104 }
105 
106 /* Return the LHS of any ASSERT_EXPR where OP appears as the first
107    argument to the ASSERT_EXPR and in which the ASSERT_EXPR dominates
108    BB.  If no such ASSERT_EXPR is found, return OP.  */
109 
110 static tree
111 lhs_of_dominating_assert (tree op, basic_block bb, gimple stmt)
112 {
113   imm_use_iterator imm_iter;
114   gimple use_stmt;
115   use_operand_p use_p;
116 
117   FOR_EACH_IMM_USE_FAST (use_p, imm_iter, op)
118     {
119       use_stmt = USE_STMT (use_p);
120       if (use_stmt != stmt
121           && gimple_assign_single_p (use_stmt)
122           && TREE_CODE (gimple_assign_rhs1 (use_stmt)) == ASSERT_EXPR
123           && TREE_OPERAND (gimple_assign_rhs1 (use_stmt), 0) == op
124 	  && dominated_by_p (CDI_DOMINATORS, bb, gimple_bb (use_stmt)))
125 	{
126 	  return gimple_assign_lhs (use_stmt);
127 	}
128     }
129   return op;
130 }
131 
132 /* We record temporary equivalences created by PHI nodes or
133    statements within the target block.  Doing so allows us to
134    identify more jump threading opportunities, even in blocks
135    with side effects.
136 
137    We keep track of those temporary equivalences in a stack
138    structure so that we can unwind them when we're done processing
139    a particular edge.  This routine handles unwinding the data
140    structures.  */
141 
142 static void
143 remove_temporary_equivalences (VEC(tree, heap) **stack)
144 {
145   while (VEC_length (tree, *stack) > 0)
146     {
147       tree prev_value, dest;
148 
149       dest = VEC_pop (tree, *stack);
150 
151       /* A NULL value indicates we should stop unwinding, otherwise
152 	 pop off the next entry as they're recorded in pairs.  */
153       if (dest == NULL)
154 	break;
155 
156       prev_value = VEC_pop (tree, *stack);
157       set_ssa_name_value (dest, prev_value);
158     }
159 }
160 
161 /* Record a temporary equivalence, saving enough information so that
162    we can restore the state of recorded equivalences when we're
163    done processing the current edge.  */
164 
165 static void
166 record_temporary_equivalence (tree x, tree y, VEC(tree, heap) **stack)
167 {
168   tree prev_x = SSA_NAME_VALUE (x);
169 
170   if (TREE_CODE (y) == SSA_NAME)
171     {
172       tree tmp = SSA_NAME_VALUE (y);
173       y = tmp ? tmp : y;
174     }
175 
176   set_ssa_name_value (x, y);
177   VEC_reserve (tree, heap, *stack, 2);
178   VEC_quick_push (tree, *stack, prev_x);
179   VEC_quick_push (tree, *stack, x);
180 }
181 
182 /* Record temporary equivalences created by PHIs at the target of the
183    edge E.  Record unwind information for the equivalences onto STACK.
184 
185    If a PHI which prevents threading is encountered, then return FALSE
186    indicating we should not thread this edge, else return TRUE.  */
187 
188 static bool
189 record_temporary_equivalences_from_phis (edge e, VEC(tree, heap) **stack)
190 {
191   gimple_stmt_iterator gsi;
192 
193   /* Each PHI creates a temporary equivalence, record them.
194      These are context sensitive equivalences and will be removed
195      later.  */
196   for (gsi = gsi_start_phis (e->dest); !gsi_end_p (gsi); gsi_next (&gsi))
197     {
198       gimple phi = gsi_stmt (gsi);
199       tree src = PHI_ARG_DEF_FROM_EDGE (phi, e);
200       tree dst = gimple_phi_result (phi);
201 
202       /* If the desired argument is not the same as this PHI's result
203 	 and it is set by a PHI in E->dest, then we can not thread
204 	 through E->dest.  */
205       if (src != dst
206 	  && TREE_CODE (src) == SSA_NAME
207 	  && gimple_code (SSA_NAME_DEF_STMT (src)) == GIMPLE_PHI
208 	  && gimple_bb (SSA_NAME_DEF_STMT (src)) == e->dest)
209 	return false;
210 
211       /* We consider any non-virtual PHI as a statement since it
212 	 count result in a constant assignment or copy operation.  */
213       if (is_gimple_reg (dst))
214 	stmt_count++;
215 
216       record_temporary_equivalence (dst, src, stack);
217     }
218   return true;
219 }
220 
221 /* Fold the RHS of an assignment statement and return it as a tree.
222    May return NULL_TREE if no simplification is possible.  */
223 
224 static tree
225 fold_assignment_stmt (gimple stmt)
226 {
227   enum tree_code subcode = gimple_assign_rhs_code (stmt);
228 
229   switch (get_gimple_rhs_class (subcode))
230     {
231     case GIMPLE_SINGLE_RHS:
232       {
233         tree rhs = gimple_assign_rhs1 (stmt);
234 
235         if (TREE_CODE (rhs) == COND_EXPR)
236           {
237             /* Sadly, we have to handle conditional assignments specially
238                here, because fold expects all the operands of an expression
239                to be folded before the expression itself is folded, but we
240                can't just substitute the folded condition here.  */
241             tree cond = fold (COND_EXPR_COND (rhs));
242             if (cond == boolean_true_node)
243               rhs = COND_EXPR_THEN (rhs);
244             else if (cond == boolean_false_node)
245               rhs = COND_EXPR_ELSE (rhs);
246           }
247 
248         return fold (rhs);
249       }
250       break;
251     case GIMPLE_UNARY_RHS:
252       {
253         tree lhs = gimple_assign_lhs (stmt);
254         tree op0 = gimple_assign_rhs1 (stmt);
255         return fold_unary (subcode, TREE_TYPE (lhs), op0);
256       }
257       break;
258     case GIMPLE_BINARY_RHS:
259       {
260         tree lhs = gimple_assign_lhs (stmt);
261         tree op0 = gimple_assign_rhs1 (stmt);
262         tree op1 = gimple_assign_rhs2 (stmt);
263         return fold_binary (subcode, TREE_TYPE (lhs), op0, op1);
264       }
265       break;
266     default:
267       gcc_unreachable ();
268     }
269 }
270 
271 /* Try to simplify each statement in E->dest, ultimately leading to
272    a simplification of the COND_EXPR at the end of E->dest.
273 
274    Record unwind information for temporary equivalences onto STACK.
275 
276    Use SIMPLIFY (a pointer to a callback function) to further simplify
277    statements using pass specific information.
278 
279    We might consider marking just those statements which ultimately
280    feed the COND_EXPR.  It's not clear if the overhead of bookkeeping
281    would be recovered by trying to simplify fewer statements.
282 
283    If we are able to simplify a statement into the form
284    SSA_NAME = (SSA_NAME | gimple invariant), then we can record
285    a context sensitive equivalence which may help us simplify
286    later statements in E->dest.  */
287 
288 static gimple
289 record_temporary_equivalences_from_stmts_at_dest (edge e,
290 						  VEC(tree, heap) **stack,
291 						  tree (*simplify) (gimple,
292 								    gimple))
293 {
294   gimple stmt = NULL;
295   gimple_stmt_iterator gsi;
296   int max_stmt_count;
297 
298   max_stmt_count = PARAM_VALUE (PARAM_MAX_JUMP_THREAD_DUPLICATION_STMTS);
299 
300   /* Walk through each statement in the block recording equivalences
301      we discover.  Note any equivalences we discover are context
302      sensitive (ie, are dependent on traversing E) and must be unwound
303      when we're finished processing E.  */
304   for (gsi = gsi_start_bb (e->dest); !gsi_end_p (gsi); gsi_next (&gsi))
305     {
306       tree cached_lhs = NULL;
307 
308       stmt = gsi_stmt (gsi);
309 
310       /* Ignore empty statements and labels.  */
311       if (gimple_code (stmt) == GIMPLE_NOP
312 	  || gimple_code (stmt) == GIMPLE_LABEL
313 	  || is_gimple_debug (stmt))
314 	continue;
315 
316       /* If the statement has volatile operands, then we assume we
317 	 can not thread through this block.  This is overly
318 	 conservative in some ways.  */
319       if (gimple_code (stmt) == GIMPLE_ASM && gimple_asm_volatile_p (stmt))
320 	return NULL;
321 
322       /* If duplicating this block is going to cause too much code
323 	 expansion, then do not thread through this block.  */
324       stmt_count++;
325       if (stmt_count > max_stmt_count)
326 	return NULL;
327 
328       /* If this is not a statement that sets an SSA_NAME to a new
329 	 value, then do not try to simplify this statement as it will
330 	 not simplify in any way that is helpful for jump threading.  */
331       if ((gimple_code (stmt) != GIMPLE_ASSIGN
332            || TREE_CODE (gimple_assign_lhs (stmt)) != SSA_NAME)
333           && (gimple_code (stmt) != GIMPLE_CALL
334               || gimple_call_lhs (stmt) == NULL_TREE
335               || TREE_CODE (gimple_call_lhs (stmt)) != SSA_NAME))
336 	continue;
337 
338       /* The result of __builtin_object_size depends on all the arguments
339 	 of a phi node. Temporarily using only one edge produces invalid
340 	 results. For example
341 
342 	 if (x < 6)
343 	   goto l;
344 	 else
345 	   goto l;
346 
347 	 l:
348 	 r = PHI <&w[2].a[1](2), &a.a[6](3)>
349 	 __builtin_object_size (r, 0)
350 
351 	 The result of __builtin_object_size is defined to be the maximum of
352 	 remaining bytes. If we use only one edge on the phi, the result will
353 	 change to be the remaining bytes for the corresponding phi argument.
354 
355 	 Similarly for __builtin_constant_p:
356 
357 	 r = PHI <1(2), 2(3)>
358 	 __builtin_constant_p (r)
359 
360 	 Both PHI arguments are constant, but x ? 1 : 2 is still not
361 	 constant.  */
362 
363       if (is_gimple_call (stmt))
364 	{
365 	  tree fndecl = gimple_call_fndecl (stmt);
366 	  if (fndecl
367 	      && (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_OBJECT_SIZE
368 		  || DECL_FUNCTION_CODE (fndecl) == BUILT_IN_CONSTANT_P))
369 	    continue;
370 	}
371 
372       /* At this point we have a statement which assigns an RHS to an
373 	 SSA_VAR on the LHS.  We want to try and simplify this statement
374 	 to expose more context sensitive equivalences which in turn may
375 	 allow us to simplify the condition at the end of the loop.
376 
377 	 Handle simple copy operations as well as implied copies from
378 	 ASSERT_EXPRs.  */
379       if (gimple_assign_single_p (stmt)
380           && TREE_CODE (gimple_assign_rhs1 (stmt)) == SSA_NAME)
381 	cached_lhs = gimple_assign_rhs1 (stmt);
382       else if (gimple_assign_single_p (stmt)
383                && TREE_CODE (gimple_assign_rhs1 (stmt)) == ASSERT_EXPR)
384 	cached_lhs = TREE_OPERAND (gimple_assign_rhs1 (stmt), 0);
385       else
386 	{
387 	  /* A statement that is not a trivial copy or ASSERT_EXPR.
388 	     We're going to temporarily copy propagate the operands
389 	     and see if that allows us to simplify this statement.  */
390 	  tree *copy;
391 	  ssa_op_iter iter;
392 	  use_operand_p use_p;
393 	  unsigned int num, i = 0;
394 
395 	  num = NUM_SSA_OPERANDS (stmt, (SSA_OP_USE | SSA_OP_VUSE));
396 	  copy = XCNEWVEC (tree, num);
397 
398 	  /* Make a copy of the uses & vuses into USES_COPY, then cprop into
399 	     the operands.  */
400 	  FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_USE | SSA_OP_VUSE)
401 	    {
402 	      tree tmp = NULL;
403 	      tree use = USE_FROM_PTR (use_p);
404 
405 	      copy[i++] = use;
406 	      if (TREE_CODE (use) == SSA_NAME)
407 		tmp = SSA_NAME_VALUE (use);
408 	      if (tmp)
409 		SET_USE (use_p, tmp);
410 	    }
411 
412 	  /* Try to fold/lookup the new expression.  Inserting the
413 	     expression into the hash table is unlikely to help.  */
414           if (is_gimple_call (stmt))
415             cached_lhs = fold_call_stmt (stmt, false);
416 	  else
417             cached_lhs = fold_assignment_stmt (stmt);
418 
419           if (!cached_lhs
420               || (TREE_CODE (cached_lhs) != SSA_NAME
421                   && !is_gimple_min_invariant (cached_lhs)))
422             cached_lhs = (*simplify) (stmt, stmt);
423 
424 	  /* Restore the statement's original uses/defs.  */
425 	  i = 0;
426 	  FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_USE | SSA_OP_VUSE)
427 	    SET_USE (use_p, copy[i++]);
428 
429 	  free (copy);
430 	}
431 
432       /* Record the context sensitive equivalence if we were able
433 	 to simplify this statement.  */
434       if (cached_lhs
435 	  && (TREE_CODE (cached_lhs) == SSA_NAME
436 	      || is_gimple_min_invariant (cached_lhs)))
437 	record_temporary_equivalence (gimple_get_lhs (stmt), cached_lhs, stack);
438     }
439   return stmt;
440 }
441 
442 /* Simplify the control statement at the end of the block E->dest.
443 
444    To avoid allocating memory unnecessarily, a scratch GIMPLE_COND
445    is available to use/clobber in DUMMY_COND.
446 
447    Use SIMPLIFY (a pointer to a callback function) to further simplify
448    a condition using pass specific information.
449 
450    Return the simplified condition or NULL if simplification could
451    not be performed.  */
452 
453 static tree
454 simplify_control_stmt_condition (edge e,
455 				 gimple stmt,
456 				 gimple dummy_cond,
457 				 tree (*simplify) (gimple, gimple),
458 				 bool handle_dominating_asserts)
459 {
460   tree cond, cached_lhs;
461   enum gimple_code code = gimple_code (stmt);
462 
463   /* For comparisons, we have to update both operands, then try
464      to simplify the comparison.  */
465   if (code == GIMPLE_COND)
466     {
467       tree op0, op1;
468       enum tree_code cond_code;
469 
470       op0 = gimple_cond_lhs (stmt);
471       op1 = gimple_cond_rhs (stmt);
472       cond_code = gimple_cond_code (stmt);
473 
474       /* Get the current value of both operands.  */
475       if (TREE_CODE (op0) == SSA_NAME)
476 	{
477           tree tmp = SSA_NAME_VALUE (op0);
478 	  if (tmp)
479 	    op0 = tmp;
480 	}
481 
482       if (TREE_CODE (op1) == SSA_NAME)
483 	{
484 	  tree tmp = SSA_NAME_VALUE (op1);
485 	  if (tmp)
486 	    op1 = tmp;
487 	}
488 
489       if (handle_dominating_asserts)
490 	{
491 	  /* Now see if the operand was consumed by an ASSERT_EXPR
492 	     which dominates E->src.  If so, we want to replace the
493 	     operand with the LHS of the ASSERT_EXPR.  */
494 	  if (TREE_CODE (op0) == SSA_NAME)
495 	    op0 = lhs_of_dominating_assert (op0, e->src, stmt);
496 
497 	  if (TREE_CODE (op1) == SSA_NAME)
498 	    op1 = lhs_of_dominating_assert (op1, e->src, stmt);
499 	}
500 
501       /* We may need to canonicalize the comparison.  For
502 	 example, op0 might be a constant while op1 is an
503 	 SSA_NAME.  Failure to canonicalize will cause us to
504 	 miss threading opportunities.  */
505       if (tree_swap_operands_p (op0, op1, false))
506 	{
507 	  tree tmp;
508 	  cond_code = swap_tree_comparison (cond_code);
509 	  tmp = op0;
510 	  op0 = op1;
511 	  op1 = tmp;
512 	}
513 
514       /* Stuff the operator and operands into our dummy conditional
515 	 expression.  */
516       gimple_cond_set_code (dummy_cond, cond_code);
517       gimple_cond_set_lhs (dummy_cond, op0);
518       gimple_cond_set_rhs (dummy_cond, op1);
519 
520       /* We absolutely do not care about any type conversions
521          we only care about a zero/nonzero value.  */
522       fold_defer_overflow_warnings ();
523 
524       cached_lhs = fold_binary (cond_code, boolean_type_node, op0, op1);
525       if (cached_lhs)
526 	while (CONVERT_EXPR_P (cached_lhs))
527           cached_lhs = TREE_OPERAND (cached_lhs, 0);
528 
529       fold_undefer_overflow_warnings ((cached_lhs
530                                        && is_gimple_min_invariant (cached_lhs)),
531 				      stmt, WARN_STRICT_OVERFLOW_CONDITIONAL);
532 
533       /* If we have not simplified the condition down to an invariant,
534 	 then use the pass specific callback to simplify the condition.  */
535       if (!cached_lhs
536           || !is_gimple_min_invariant (cached_lhs))
537         cached_lhs = (*simplify) (dummy_cond, stmt);
538 
539       return cached_lhs;
540     }
541 
542   if (code == GIMPLE_SWITCH)
543     cond = gimple_switch_index (stmt);
544   else if (code == GIMPLE_GOTO)
545     cond = gimple_goto_dest (stmt);
546   else
547     gcc_unreachable ();
548 
549   /* We can have conditionals which just test the state of a variable
550      rather than use a relational operator.  These are simpler to handle.  */
551   if (TREE_CODE (cond) == SSA_NAME)
552     {
553       cached_lhs = cond;
554 
555       /* Get the variable's current value from the equivalence chains.
556 
557 	 It is possible to get loops in the SSA_NAME_VALUE chains
558 	 (consider threading the backedge of a loop where we have
559 	 a loop invariant SSA_NAME used in the condition.  */
560       if (cached_lhs
561 	  && TREE_CODE (cached_lhs) == SSA_NAME
562 	  && SSA_NAME_VALUE (cached_lhs))
563 	cached_lhs = SSA_NAME_VALUE (cached_lhs);
564 
565       /* If we're dominated by a suitable ASSERT_EXPR, then
566 	 update CACHED_LHS appropriately.  */
567       if (handle_dominating_asserts && TREE_CODE (cached_lhs) == SSA_NAME)
568 	cached_lhs = lhs_of_dominating_assert (cached_lhs, e->src, stmt);
569 
570       /* If we haven't simplified to an invariant yet, then use the
571 	 pass specific callback to try and simplify it further.  */
572       if (cached_lhs && ! is_gimple_min_invariant (cached_lhs))
573         cached_lhs = (*simplify) (stmt, stmt);
574     }
575   else
576     cached_lhs = NULL;
577 
578   return cached_lhs;
579 }
580 
581 /* We are exiting E->src, see if E->dest ends with a conditional
582    jump which has a known value when reached via E.
583 
584    Special care is necessary if E is a back edge in the CFG as we
585    may have already recorded equivalences for E->dest into our
586    various tables, including the result of the conditional at
587    the end of E->dest.  Threading opportunities are severely
588    limited in that case to avoid short-circuiting the loop
589    incorrectly.
590 
591    Note it is quite common for the first block inside a loop to
592    end with a conditional which is either always true or always
593    false when reached via the loop backedge.  Thus we do not want
594    to blindly disable threading across a loop backedge.
595 
596    DUMMY_COND is a shared cond_expr used by condition simplification as scratch,
597    to avoid allocating memory.
598 
599    HANDLE_DOMINATING_ASSERTS is true if we should try to replace operands of
600    the simplified condition with left-hand sides of ASSERT_EXPRs they are
601    used in.
602 
603    STACK is used to undo temporary equivalences created during the walk of
604    E->dest.
605 
606    SIMPLIFY is a pass-specific function used to simplify statements.  */
607 
608 void
609 thread_across_edge (gimple dummy_cond,
610 		    edge e,
611 		    bool handle_dominating_asserts,
612 		    VEC(tree, heap) **stack,
613 		    tree (*simplify) (gimple, gimple))
614 {
615   gimple stmt;
616 
617   /* If E is a backedge, then we want to verify that the COND_EXPR,
618      SWITCH_EXPR or GOTO_EXPR at the end of e->dest is not affected
619      by any statements in e->dest.  If it is affected, then it is not
620      safe to thread this edge.  */
621   if (e->flags & EDGE_DFS_BACK)
622     {
623       ssa_op_iter iter;
624       use_operand_p use_p;
625       gimple last = gsi_stmt (gsi_last_bb (e->dest));
626 
627       FOR_EACH_SSA_USE_OPERAND (use_p, last, iter, SSA_OP_USE | SSA_OP_VUSE)
628 	{
629 	  tree use = USE_FROM_PTR (use_p);
630 
631           if (TREE_CODE (use) == SSA_NAME
632 	      && gimple_code (SSA_NAME_DEF_STMT (use)) != GIMPLE_PHI
633 	      && gimple_bb (SSA_NAME_DEF_STMT (use)) == e->dest)
634 	    goto fail;
635 	}
636     }
637 
638   stmt_count = 0;
639 
640   /* PHIs create temporary equivalences.  */
641   if (!record_temporary_equivalences_from_phis (e, stack))
642     goto fail;
643 
644   /* Now walk each statement recording any context sensitive
645      temporary equivalences we can detect.  */
646   stmt = record_temporary_equivalences_from_stmts_at_dest (e, stack, simplify);
647   if (!stmt)
648     goto fail;
649 
650   /* If we stopped at a COND_EXPR or SWITCH_EXPR, see if we know which arm
651      will be taken.  */
652   if (gimple_code (stmt) == GIMPLE_COND
653       || gimple_code (stmt) == GIMPLE_GOTO
654       || gimple_code (stmt) == GIMPLE_SWITCH)
655     {
656       tree cond;
657 
658       /* Extract and simplify the condition.  */
659       cond = simplify_control_stmt_condition (e, stmt, dummy_cond, simplify, handle_dominating_asserts);
660 
661       if (cond && is_gimple_min_invariant (cond))
662 	{
663 	  edge taken_edge = find_taken_edge (e->dest, cond);
664 	  basic_block dest = (taken_edge ? taken_edge->dest : NULL);
665 
666 	  if (dest == e->dest)
667 	    goto fail;
668 
669 	  remove_temporary_equivalences (stack);
670 	  register_jump_thread (e, taken_edge);
671 	}
672     }
673 
674  fail:
675   remove_temporary_equivalences (stack);
676 }
677