1 /* Tail merging for gimple. 2 Copyright (C) 2011-2020 Free Software Foundation, Inc. 3 Contributed by Tom de Vries (tom@codesourcery.com) 4 5 This file is part of GCC. 6 7 GCC is free software; you can redistribute it and/or modify 8 it under the terms of the GNU General Public License as published by 9 the Free Software Foundation; either version 3, or (at your option) 10 any later version. 11 12 GCC is distributed in the hope that it will be useful, 13 but WITHOUT ANY WARRANTY; without even the implied warranty of 14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 GNU General Public License for more details. 16 17 You should have received a copy of the GNU General Public License 18 along with GCC; see the file COPYING3. If not see 19 <http://www.gnu.org/licenses/>. */ 20 21 /* Pass overview. 22 23 24 MOTIVATIONAL EXAMPLE 25 26 gimple representation of gcc/testsuite/gcc.dg/pr43864.c at 27 28 hprofStartupp (charD.1 * outputFileNameD.2600, charD.1 * ctxD.2601) 29 { 30 struct FILED.1638 * fpD.2605; 31 charD.1 fileNameD.2604[1000]; 32 intD.0 D.3915; 33 const charD.1 * restrict outputFileName.0D.3914; 34 35 # BLOCK 2 freq:10000 36 # PRED: ENTRY [100.0%] (fallthru,exec) 37 # PT = nonlocal { D.3926 } (restr) 38 outputFileName.0D.3914_3 39 = (const charD.1 * restrict) outputFileNameD.2600_2(D); 40 # .MEMD.3923_13 = VDEF <.MEMD.3923_12(D)> 41 # USE = nonlocal null { fileNameD.2604 D.3926 } (restr) 42 # CLB = nonlocal null { fileNameD.2604 D.3926 } (restr) 43 sprintfD.759 (&fileNameD.2604, outputFileName.0D.3914_3); 44 # .MEMD.3923_14 = VDEF <.MEMD.3923_13> 45 # USE = nonlocal null { fileNameD.2604 D.3926 } (restr) 46 # CLB = nonlocal null { fileNameD.2604 D.3926 } (restr) 47 D.3915_4 = accessD.2606 (&fileNameD.2604, 1); 48 if (D.3915_4 == 0) 49 goto <bb 3>; 50 else 51 goto <bb 4>; 52 # SUCC: 3 [10.0%] (true,exec) 4 [90.0%] (false,exec) 53 54 # BLOCK 3 freq:1000 55 # PRED: 2 [10.0%] (true,exec) 56 # .MEMD.3923_15 = VDEF <.MEMD.3923_14> 57 # USE = nonlocal null { fileNameD.2604 D.3926 } (restr) 58 # CLB = nonlocal null { fileNameD.2604 D.3926 } (restr) 59 freeD.898 (ctxD.2601_5(D)); 60 goto <bb 7>; 61 # SUCC: 7 [100.0%] (fallthru,exec) 62 63 # BLOCK 4 freq:9000 64 # PRED: 2 [90.0%] (false,exec) 65 # .MEMD.3923_16 = VDEF <.MEMD.3923_14> 66 # PT = nonlocal escaped 67 # USE = nonlocal null { fileNameD.2604 D.3926 } (restr) 68 # CLB = nonlocal null { fileNameD.2604 D.3926 } (restr) 69 fpD.2605_8 = fopenD.1805 (&fileNameD.2604[0], 0B); 70 if (fpD.2605_8 == 0B) 71 goto <bb 5>; 72 else 73 goto <bb 6>; 74 # SUCC: 5 [1.9%] (true,exec) 6 [98.1%] (false,exec) 75 76 # BLOCK 5 freq:173 77 # PRED: 4 [1.9%] (true,exec) 78 # .MEMD.3923_17 = VDEF <.MEMD.3923_16> 79 # USE = nonlocal null { fileNameD.2604 D.3926 } (restr) 80 # CLB = nonlocal null { fileNameD.2604 D.3926 } (restr) 81 freeD.898 (ctxD.2601_5(D)); 82 goto <bb 7>; 83 # SUCC: 7 [100.0%] (fallthru,exec) 84 85 # BLOCK 6 freq:8827 86 # PRED: 4 [98.1%] (false,exec) 87 # .MEMD.3923_18 = VDEF <.MEMD.3923_16> 88 # USE = nonlocal null { fileNameD.2604 D.3926 } (restr) 89 # CLB = nonlocal null { fileNameD.2604 D.3926 } (restr) 90 fooD.2599 (outputFileNameD.2600_2(D), fpD.2605_8); 91 # SUCC: 7 [100.0%] (fallthru,exec) 92 93 # BLOCK 7 freq:10000 94 # PRED: 3 [100.0%] (fallthru,exec) 5 [100.0%] (fallthru,exec) 95 6 [100.0%] (fallthru,exec) 96 # PT = nonlocal null 97 98 # ctxD.2601_1 = PHI <0B(3), 0B(5), ctxD.2601_5(D)(6)> 99 # .MEMD.3923_11 = PHI <.MEMD.3923_15(3), .MEMD.3923_17(5), 100 .MEMD.3923_18(6)> 101 # VUSE <.MEMD.3923_11> 102 return ctxD.2601_1; 103 # SUCC: EXIT [100.0%] 104 } 105 106 bb 3 and bb 5 can be merged. The blocks have different predecessors, but the 107 same successors, and the same operations. 108 109 110 CONTEXT 111 112 A technique called tail merging (or cross jumping) can fix the example 113 above. For a block, we look for common code at the end (the tail) of the 114 predecessor blocks, and insert jumps from one block to the other. 115 The example is a special case for tail merging, in that 2 whole blocks 116 can be merged, rather than just the end parts of it. 117 We currently only focus on whole block merging, so in that sense 118 calling this pass tail merge is a bit of a misnomer. 119 120 We distinguish 2 kinds of situations in which blocks can be merged: 121 - same operations, same predecessors. The successor edges coming from one 122 block are redirected to come from the other block. 123 - same operations, same successors. The predecessor edges entering one block 124 are redirected to enter the other block. Note that this operation might 125 involve introducing phi operations. 126 127 For efficient implementation, we would like to value numbers the blocks, and 128 have a comparison operator that tells us whether the blocks are equal. 129 Besides being runtime efficient, block value numbering should also abstract 130 from irrelevant differences in order of operations, much like normal value 131 numbering abstracts from irrelevant order of operations. 132 133 For the first situation (same_operations, same predecessors), normal value 134 numbering fits well. We can calculate a block value number based on the 135 value numbers of the defs and vdefs. 136 137 For the second situation (same operations, same successors), this approach 138 doesn't work so well. We can illustrate this using the example. The calls 139 to free use different vdefs: MEMD.3923_16 and MEMD.3923_14, and these will 140 remain different in value numbering, since they represent different memory 141 states. So the resulting vdefs of the frees will be different in value 142 numbering, so the block value numbers will be different. 143 144 The reason why we call the blocks equal is not because they define the same 145 values, but because uses in the blocks use (possibly different) defs in the 146 same way. To be able to detect this efficiently, we need to do some kind of 147 reverse value numbering, meaning number the uses rather than the defs, and 148 calculate a block value number based on the value number of the uses. 149 Ideally, a block comparison operator will also indicate which phis are needed 150 to merge the blocks. 151 152 For the moment, we don't do block value numbering, but we do insn-by-insn 153 matching, using scc value numbers to match operations with results, and 154 structural comparison otherwise, while ignoring vop mismatches. 155 156 157 IMPLEMENTATION 158 159 1. The pass first determines all groups of blocks with the same successor 160 blocks. 161 2. Within each group, it tries to determine clusters of equal basic blocks. 162 3. The clusters are applied. 163 4. The same successor groups are updated. 164 5. This process is repeated from 2 onwards, until no more changes. 165 166 167 LIMITATIONS/TODO 168 169 - block only 170 - handles only 'same operations, same successors'. 171 It handles same predecessors as a special subcase though. 172 - does not implement the reverse value numbering and block value numbering. 173 - improve memory allocation: use garbage collected memory, obstacks, 174 allocpools where appropriate. 175 - no insertion of gimple_reg phis, We only introduce vop-phis. 176 - handle blocks with gimple_reg phi_nodes. 177 178 179 PASS PLACEMENT 180 This 'pass' is not a stand-alone gimple pass, but runs as part of 181 pass_pre, in order to share the value numbering. 182 183 184 SWITCHES 185 186 - ftree-tail-merge. On at -O2. We may have to enable it only at -Os. */ 187 188 #include "config.h" 189 #include "system.h" 190 #include "coretypes.h" 191 #include "backend.h" 192 #include "tree.h" 193 #include "gimple.h" 194 #include "cfghooks.h" 195 #include "tree-pass.h" 196 #include "ssa.h" 197 #include "fold-const.h" 198 #include "trans-mem.h" 199 #include "cfganal.h" 200 #include "cfgcleanup.h" 201 #include "gimple-iterator.h" 202 #include "tree-cfg.h" 203 #include "tree-into-ssa.h" 204 #include "tree-ssa-sccvn.h" 205 #include "cfgloop.h" 206 #include "tree-eh.h" 207 #include "tree-cfgcleanup.h" 208 209 const int ignore_edge_flags = EDGE_DFS_BACK | EDGE_EXECUTABLE; 210 211 /* Describes a group of bbs with the same successors. The successor bbs are 212 cached in succs, and the successor edge flags are cached in succ_flags. 213 If a bb has the EDGE_TRUE/FALSE_VALUE flags swapped compared to succ_flags, 214 it's marked in inverse. 215 Additionally, the hash value for the struct is cached in hashval, and 216 in_worklist indicates whether it's currently part of worklist. */ 217 218 struct same_succ : pointer_hash <same_succ> 219 { 220 /* The bbs that have the same successor bbs. */ 221 bitmap bbs; 222 /* The successor bbs. */ 223 bitmap succs; 224 /* Indicates whether the EDGE_TRUE/FALSE_VALUEs of succ_flags are swapped for 225 bb. */ 226 bitmap inverse; 227 /* The edge flags for each of the successor bbs. */ 228 vec<int> succ_flags; 229 /* Indicates whether the struct is currently in the worklist. */ 230 bool in_worklist; 231 /* The hash value of the struct. */ 232 hashval_t hashval; 233 234 /* hash_table support. */ 235 static inline hashval_t hash (const same_succ *); 236 static int equal (const same_succ *, const same_succ *); 237 static void remove (same_succ *); 238 }; 239 240 /* hash routine for hash_table support, returns hashval of E. */ 241 242 inline hashval_t 243 same_succ::hash (const same_succ *e) 244 { 245 return e->hashval; 246 } 247 248 /* A group of bbs where 1 bb from bbs can replace the other bbs. */ 249 250 struct bb_cluster 251 { 252 /* The bbs in the cluster. */ 253 bitmap bbs; 254 /* The preds of the bbs in the cluster. */ 255 bitmap preds; 256 /* Index in all_clusters vector. */ 257 int index; 258 /* The bb to replace the cluster with. */ 259 basic_block rep_bb; 260 }; 261 262 /* Per bb-info. */ 263 264 struct aux_bb_info 265 { 266 /* The number of non-debug statements in the bb. */ 267 int size; 268 /* The same_succ that this bb is a member of. */ 269 same_succ *bb_same_succ; 270 /* The cluster that this bb is a member of. */ 271 bb_cluster *cluster; 272 /* The vop state at the exit of a bb. This is shortlived data, used to 273 communicate data between update_block_by and update_vuses. */ 274 tree vop_at_exit; 275 /* The bb that either contains or is dominated by the dependencies of the 276 bb. */ 277 basic_block dep_bb; 278 }; 279 280 /* Macros to access the fields of struct aux_bb_info. */ 281 282 #define BB_SIZE(bb) (((struct aux_bb_info *)bb->aux)->size) 283 #define BB_SAME_SUCC(bb) (((struct aux_bb_info *)bb->aux)->bb_same_succ) 284 #define BB_CLUSTER(bb) (((struct aux_bb_info *)bb->aux)->cluster) 285 #define BB_VOP_AT_EXIT(bb) (((struct aux_bb_info *)bb->aux)->vop_at_exit) 286 #define BB_DEP_BB(bb) (((struct aux_bb_info *)bb->aux)->dep_bb) 287 288 /* Valueization helper querying the VN lattice. */ 289 290 static tree 291 tail_merge_valueize (tree name) 292 { 293 if (TREE_CODE (name) == SSA_NAME 294 && has_VN_INFO (name)) 295 { 296 tree tem = VN_INFO (name)->valnum; 297 if (tem != VN_TOP) 298 return tem; 299 } 300 return name; 301 } 302 303 /* Returns true if the only effect a statement STMT has, is to define locally 304 used SSA_NAMEs. */ 305 306 static bool 307 stmt_local_def (gimple *stmt) 308 { 309 basic_block bb, def_bb; 310 imm_use_iterator iter; 311 use_operand_p use_p; 312 tree val; 313 def_operand_p def_p; 314 315 if (gimple_vdef (stmt) != NULL_TREE 316 || gimple_has_side_effects (stmt) 317 || gimple_could_trap_p_1 (stmt, false, false) 318 || gimple_vuse (stmt) != NULL_TREE 319 /* Copied from tree-ssa-ifcombine.c:bb_no_side_effects_p(): 320 const calls don't match any of the above, yet they could 321 still have some side-effects - they could contain 322 gimple_could_trap_p statements, like floating point 323 exceptions or integer division by zero. See PR70586. 324 FIXME: perhaps gimple_has_side_effects or gimple_could_trap_p 325 should handle this. */ 326 || is_gimple_call (stmt)) 327 return false; 328 329 def_p = SINGLE_SSA_DEF_OPERAND (stmt, SSA_OP_DEF); 330 if (def_p == NULL) 331 return false; 332 333 val = DEF_FROM_PTR (def_p); 334 if (val == NULL_TREE || TREE_CODE (val) != SSA_NAME) 335 return false; 336 337 def_bb = gimple_bb (stmt); 338 339 FOR_EACH_IMM_USE_FAST (use_p, iter, val) 340 { 341 if (is_gimple_debug (USE_STMT (use_p))) 342 continue; 343 bb = gimple_bb (USE_STMT (use_p)); 344 if (bb == def_bb) 345 continue; 346 347 if (gimple_code (USE_STMT (use_p)) == GIMPLE_PHI 348 && EDGE_PRED (bb, PHI_ARG_INDEX_FROM_USE (use_p))->src == def_bb) 349 continue; 350 351 return false; 352 } 353 354 return true; 355 } 356 357 /* Let GSI skip forwards over local defs. */ 358 359 static void 360 gsi_advance_fw_nondebug_nonlocal (gimple_stmt_iterator *gsi) 361 { 362 gimple *stmt; 363 364 while (true) 365 { 366 if (gsi_end_p (*gsi)) 367 return; 368 stmt = gsi_stmt (*gsi); 369 if (!stmt_local_def (stmt)) 370 return; 371 gsi_next_nondebug (gsi); 372 } 373 } 374 375 /* VAL1 and VAL2 are either: 376 - uses in BB1 and BB2, or 377 - phi alternatives for BB1 and BB2. 378 Return true if the uses have the same gvn value. */ 379 380 static bool 381 gvn_uses_equal (tree val1, tree val2) 382 { 383 gcc_checking_assert (val1 != NULL_TREE && val2 != NULL_TREE); 384 385 if (val1 == val2) 386 return true; 387 388 if (tail_merge_valueize (val1) != tail_merge_valueize (val2)) 389 return false; 390 391 return ((TREE_CODE (val1) == SSA_NAME || CONSTANT_CLASS_P (val1)) 392 && (TREE_CODE (val2) == SSA_NAME || CONSTANT_CLASS_P (val2))); 393 } 394 395 /* Prints E to FILE. */ 396 397 static void 398 same_succ_print (FILE *file, const same_succ *e) 399 { 400 unsigned int i; 401 bitmap_print (file, e->bbs, "bbs:", "\n"); 402 bitmap_print (file, e->succs, "succs:", "\n"); 403 bitmap_print (file, e->inverse, "inverse:", "\n"); 404 fprintf (file, "flags:"); 405 for (i = 0; i < e->succ_flags.length (); ++i) 406 fprintf (file, " %x", e->succ_flags[i]); 407 fprintf (file, "\n"); 408 } 409 410 /* Prints same_succ VE to VFILE. */ 411 412 inline int 413 ssa_same_succ_print_traverse (same_succ **pe, FILE *file) 414 { 415 const same_succ *e = *pe; 416 same_succ_print (file, e); 417 return 1; 418 } 419 420 /* Update BB_DEP_BB (USE_BB), given a use of VAL in USE_BB. */ 421 422 static void 423 update_dep_bb (basic_block use_bb, tree val) 424 { 425 basic_block dep_bb; 426 427 /* Not a dep. */ 428 if (TREE_CODE (val) != SSA_NAME) 429 return; 430 431 /* Skip use of global def. */ 432 if (SSA_NAME_IS_DEFAULT_DEF (val)) 433 return; 434 435 /* Skip use of local def. */ 436 dep_bb = gimple_bb (SSA_NAME_DEF_STMT (val)); 437 if (dep_bb == use_bb) 438 return; 439 440 if (BB_DEP_BB (use_bb) == NULL 441 || dominated_by_p (CDI_DOMINATORS, dep_bb, BB_DEP_BB (use_bb))) 442 BB_DEP_BB (use_bb) = dep_bb; 443 } 444 445 /* Update BB_DEP_BB, given the dependencies in STMT. */ 446 447 static void 448 stmt_update_dep_bb (gimple *stmt) 449 { 450 ssa_op_iter iter; 451 use_operand_p use; 452 453 FOR_EACH_SSA_USE_OPERAND (use, stmt, iter, SSA_OP_USE) 454 update_dep_bb (gimple_bb (stmt), USE_FROM_PTR (use)); 455 } 456 457 /* Calculates hash value for same_succ VE. */ 458 459 static hashval_t 460 same_succ_hash (const same_succ *e) 461 { 462 inchash::hash hstate (bitmap_hash (e->succs)); 463 int flags; 464 unsigned int i; 465 unsigned int first = bitmap_first_set_bit (e->bbs); 466 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, first); 467 int size = 0; 468 gimple *stmt; 469 tree arg; 470 unsigned int s; 471 bitmap_iterator bs; 472 473 for (gimple_stmt_iterator gsi = gsi_start_nondebug_bb (bb); 474 !gsi_end_p (gsi); gsi_next_nondebug (&gsi)) 475 { 476 stmt = gsi_stmt (gsi); 477 stmt_update_dep_bb (stmt); 478 if (stmt_local_def (stmt)) 479 continue; 480 size++; 481 482 hstate.add_int (gimple_code (stmt)); 483 if (is_gimple_assign (stmt)) 484 hstate.add_int (gimple_assign_rhs_code (stmt)); 485 if (!is_gimple_call (stmt)) 486 continue; 487 if (gimple_call_internal_p (stmt)) 488 hstate.add_int (gimple_call_internal_fn (stmt)); 489 else 490 { 491 inchash::add_expr (gimple_call_fn (stmt), hstate); 492 if (gimple_call_chain (stmt)) 493 inchash::add_expr (gimple_call_chain (stmt), hstate); 494 } 495 for (i = 0; i < gimple_call_num_args (stmt); i++) 496 { 497 arg = gimple_call_arg (stmt, i); 498 arg = tail_merge_valueize (arg); 499 inchash::add_expr (arg, hstate); 500 } 501 } 502 503 hstate.add_int (size); 504 BB_SIZE (bb) = size; 505 506 hstate.add_int (bb->loop_father->num); 507 508 for (i = 0; i < e->succ_flags.length (); ++i) 509 { 510 flags = e->succ_flags[i]; 511 flags = flags & ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE); 512 hstate.add_int (flags); 513 } 514 515 EXECUTE_IF_SET_IN_BITMAP (e->succs, 0, s, bs) 516 { 517 int n = find_edge (bb, BASIC_BLOCK_FOR_FN (cfun, s))->dest_idx; 518 for (gphi_iterator gsi = gsi_start_phis (BASIC_BLOCK_FOR_FN (cfun, s)); 519 !gsi_end_p (gsi); 520 gsi_next (&gsi)) 521 { 522 gphi *phi = gsi.phi (); 523 tree lhs = gimple_phi_result (phi); 524 tree val = gimple_phi_arg_def (phi, n); 525 526 if (virtual_operand_p (lhs)) 527 continue; 528 update_dep_bb (bb, val); 529 } 530 } 531 532 return hstate.end (); 533 } 534 535 /* Returns true if E1 and E2 have 2 successors, and if the successor flags 536 are inverse for the EDGE_TRUE_VALUE and EDGE_FALSE_VALUE flags, and equal for 537 the other edge flags. */ 538 539 static bool 540 inverse_flags (const same_succ *e1, const same_succ *e2) 541 { 542 int f1a, f1b, f2a, f2b; 543 int mask = ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE); 544 545 if (e1->succ_flags.length () != 2) 546 return false; 547 548 f1a = e1->succ_flags[0]; 549 f1b = e1->succ_flags[1]; 550 f2a = e2->succ_flags[0]; 551 f2b = e2->succ_flags[1]; 552 553 if (f1a == f2a && f1b == f2b) 554 return false; 555 556 return (f1a & mask) == (f2a & mask) && (f1b & mask) == (f2b & mask); 557 } 558 559 /* Compares SAME_SUCCs E1 and E2. */ 560 561 int 562 same_succ::equal (const same_succ *e1, const same_succ *e2) 563 { 564 unsigned int i, first1, first2; 565 gimple_stmt_iterator gsi1, gsi2; 566 gimple *s1, *s2; 567 basic_block bb1, bb2; 568 569 if (e1 == e2) 570 return 1; 571 572 if (e1->hashval != e2->hashval) 573 return 0; 574 575 if (e1->succ_flags.length () != e2->succ_flags.length ()) 576 return 0; 577 578 if (!bitmap_equal_p (e1->succs, e2->succs)) 579 return 0; 580 581 if (!inverse_flags (e1, e2)) 582 { 583 for (i = 0; i < e1->succ_flags.length (); ++i) 584 if (e1->succ_flags[i] != e2->succ_flags[i]) 585 return 0; 586 } 587 588 first1 = bitmap_first_set_bit (e1->bbs); 589 first2 = bitmap_first_set_bit (e2->bbs); 590 591 bb1 = BASIC_BLOCK_FOR_FN (cfun, first1); 592 bb2 = BASIC_BLOCK_FOR_FN (cfun, first2); 593 594 if (BB_SIZE (bb1) != BB_SIZE (bb2)) 595 return 0; 596 597 if (bb1->loop_father != bb2->loop_father) 598 return 0; 599 600 gsi1 = gsi_start_nondebug_bb (bb1); 601 gsi2 = gsi_start_nondebug_bb (bb2); 602 gsi_advance_fw_nondebug_nonlocal (&gsi1); 603 gsi_advance_fw_nondebug_nonlocal (&gsi2); 604 while (!(gsi_end_p (gsi1) || gsi_end_p (gsi2))) 605 { 606 s1 = gsi_stmt (gsi1); 607 s2 = gsi_stmt (gsi2); 608 if (gimple_code (s1) != gimple_code (s2)) 609 return 0; 610 if (is_gimple_call (s1) && !gimple_call_same_target_p (s1, s2)) 611 return 0; 612 gsi_next_nondebug (&gsi1); 613 gsi_next_nondebug (&gsi2); 614 gsi_advance_fw_nondebug_nonlocal (&gsi1); 615 gsi_advance_fw_nondebug_nonlocal (&gsi2); 616 } 617 618 return 1; 619 } 620 621 /* Alloc and init a new SAME_SUCC. */ 622 623 static same_succ * 624 same_succ_alloc (void) 625 { 626 same_succ *same = XNEW (struct same_succ); 627 628 same->bbs = BITMAP_ALLOC (NULL); 629 same->succs = BITMAP_ALLOC (NULL); 630 same->inverse = BITMAP_ALLOC (NULL); 631 same->succ_flags.create (10); 632 same->in_worklist = false; 633 634 return same; 635 } 636 637 /* Delete same_succ E. */ 638 639 void 640 same_succ::remove (same_succ *e) 641 { 642 BITMAP_FREE (e->bbs); 643 BITMAP_FREE (e->succs); 644 BITMAP_FREE (e->inverse); 645 e->succ_flags.release (); 646 647 XDELETE (e); 648 } 649 650 /* Reset same_succ SAME. */ 651 652 static void 653 same_succ_reset (same_succ *same) 654 { 655 bitmap_clear (same->bbs); 656 bitmap_clear (same->succs); 657 bitmap_clear (same->inverse); 658 same->succ_flags.truncate (0); 659 } 660 661 static hash_table<same_succ> *same_succ_htab; 662 663 /* Array that is used to store the edge flags for a successor. */ 664 665 static int *same_succ_edge_flags; 666 667 /* Bitmap that is used to mark bbs that are recently deleted. */ 668 669 static bitmap deleted_bbs; 670 671 /* Bitmap that is used to mark predecessors of bbs that are 672 deleted. */ 673 674 static bitmap deleted_bb_preds; 675 676 /* Prints same_succ_htab to stderr. */ 677 678 extern void debug_same_succ (void); 679 DEBUG_FUNCTION void 680 debug_same_succ ( void) 681 { 682 same_succ_htab->traverse <FILE *, ssa_same_succ_print_traverse> (stderr); 683 } 684 685 686 /* Vector of bbs to process. */ 687 688 static vec<same_succ *> worklist; 689 690 /* Prints worklist to FILE. */ 691 692 static void 693 print_worklist (FILE *file) 694 { 695 unsigned int i; 696 for (i = 0; i < worklist.length (); ++i) 697 same_succ_print (file, worklist[i]); 698 } 699 700 /* Adds SAME to worklist. */ 701 702 static void 703 add_to_worklist (same_succ *same) 704 { 705 if (same->in_worklist) 706 return; 707 708 if (bitmap_count_bits (same->bbs) < 2) 709 return; 710 711 same->in_worklist = true; 712 worklist.safe_push (same); 713 } 714 715 /* Add BB to same_succ_htab. */ 716 717 static void 718 find_same_succ_bb (basic_block bb, same_succ **same_p) 719 { 720 unsigned int j; 721 bitmap_iterator bj; 722 same_succ *same = *same_p; 723 same_succ **slot; 724 edge_iterator ei; 725 edge e; 726 727 if (bb == NULL) 728 return; 729 bitmap_set_bit (same->bbs, bb->index); 730 FOR_EACH_EDGE (e, ei, bb->succs) 731 { 732 int index = e->dest->index; 733 bitmap_set_bit (same->succs, index); 734 same_succ_edge_flags[index] = (e->flags & ~ignore_edge_flags); 735 } 736 EXECUTE_IF_SET_IN_BITMAP (same->succs, 0, j, bj) 737 same->succ_flags.safe_push (same_succ_edge_flags[j]); 738 739 same->hashval = same_succ_hash (same); 740 741 slot = same_succ_htab->find_slot_with_hash (same, same->hashval, INSERT); 742 if (*slot == NULL) 743 { 744 *slot = same; 745 BB_SAME_SUCC (bb) = same; 746 add_to_worklist (same); 747 *same_p = NULL; 748 } 749 else 750 { 751 bitmap_set_bit ((*slot)->bbs, bb->index); 752 BB_SAME_SUCC (bb) = *slot; 753 add_to_worklist (*slot); 754 if (inverse_flags (same, *slot)) 755 bitmap_set_bit ((*slot)->inverse, bb->index); 756 same_succ_reset (same); 757 } 758 } 759 760 /* Find bbs with same successors. */ 761 762 static void 763 find_same_succ (void) 764 { 765 same_succ *same = same_succ_alloc (); 766 basic_block bb; 767 768 FOR_EACH_BB_FN (bb, cfun) 769 { 770 find_same_succ_bb (bb, &same); 771 if (same == NULL) 772 same = same_succ_alloc (); 773 } 774 775 same_succ::remove (same); 776 } 777 778 /* Initializes worklist administration. */ 779 780 static void 781 init_worklist (void) 782 { 783 alloc_aux_for_blocks (sizeof (struct aux_bb_info)); 784 same_succ_htab = new hash_table<same_succ> (n_basic_blocks_for_fn (cfun)); 785 same_succ_edge_flags = XCNEWVEC (int, last_basic_block_for_fn (cfun)); 786 deleted_bbs = BITMAP_ALLOC (NULL); 787 deleted_bb_preds = BITMAP_ALLOC (NULL); 788 worklist.create (n_basic_blocks_for_fn (cfun)); 789 find_same_succ (); 790 791 if (dump_file && (dump_flags & TDF_DETAILS)) 792 { 793 fprintf (dump_file, "initial worklist:\n"); 794 print_worklist (dump_file); 795 } 796 } 797 798 /* Deletes worklist administration. */ 799 800 static void 801 delete_worklist (void) 802 { 803 free_aux_for_blocks (); 804 delete same_succ_htab; 805 same_succ_htab = NULL; 806 XDELETEVEC (same_succ_edge_flags); 807 same_succ_edge_flags = NULL; 808 BITMAP_FREE (deleted_bbs); 809 BITMAP_FREE (deleted_bb_preds); 810 worklist.release (); 811 } 812 813 /* Mark BB as deleted, and mark its predecessors. */ 814 815 static void 816 mark_basic_block_deleted (basic_block bb) 817 { 818 edge e; 819 edge_iterator ei; 820 821 bitmap_set_bit (deleted_bbs, bb->index); 822 823 FOR_EACH_EDGE (e, ei, bb->preds) 824 bitmap_set_bit (deleted_bb_preds, e->src->index); 825 } 826 827 /* Removes BB from its corresponding same_succ. */ 828 829 static void 830 same_succ_flush_bb (basic_block bb) 831 { 832 same_succ *same = BB_SAME_SUCC (bb); 833 if (! same) 834 return; 835 836 BB_SAME_SUCC (bb) = NULL; 837 if (bitmap_single_bit_set_p (same->bbs)) 838 same_succ_htab->remove_elt_with_hash (same, same->hashval); 839 else 840 bitmap_clear_bit (same->bbs, bb->index); 841 } 842 843 /* Removes all bbs in BBS from their corresponding same_succ. */ 844 845 static void 846 same_succ_flush_bbs (bitmap bbs) 847 { 848 unsigned int i; 849 bitmap_iterator bi; 850 851 EXECUTE_IF_SET_IN_BITMAP (bbs, 0, i, bi) 852 same_succ_flush_bb (BASIC_BLOCK_FOR_FN (cfun, i)); 853 } 854 855 /* Release the last vdef in BB, either normal or phi result. */ 856 857 static void 858 release_last_vdef (basic_block bb) 859 { 860 for (gimple_stmt_iterator i = gsi_last_bb (bb); !gsi_end_p (i); 861 gsi_prev_nondebug (&i)) 862 { 863 gimple *stmt = gsi_stmt (i); 864 if (gimple_vdef (stmt) == NULL_TREE) 865 continue; 866 867 mark_virtual_operand_for_renaming (gimple_vdef (stmt)); 868 return; 869 } 870 871 for (gphi_iterator i = gsi_start_phis (bb); !gsi_end_p (i); 872 gsi_next (&i)) 873 { 874 gphi *phi = i.phi (); 875 tree res = gimple_phi_result (phi); 876 877 if (!virtual_operand_p (res)) 878 continue; 879 880 mark_virtual_phi_result_for_renaming (phi); 881 return; 882 } 883 } 884 885 /* For deleted_bb_preds, find bbs with same successors. */ 886 887 static void 888 update_worklist (void) 889 { 890 unsigned int i; 891 bitmap_iterator bi; 892 basic_block bb; 893 same_succ *same; 894 895 bitmap_and_compl_into (deleted_bb_preds, deleted_bbs); 896 bitmap_clear (deleted_bbs); 897 898 bitmap_clear_bit (deleted_bb_preds, ENTRY_BLOCK); 899 same_succ_flush_bbs (deleted_bb_preds); 900 901 same = same_succ_alloc (); 902 EXECUTE_IF_SET_IN_BITMAP (deleted_bb_preds, 0, i, bi) 903 { 904 bb = BASIC_BLOCK_FOR_FN (cfun, i); 905 gcc_assert (bb != NULL); 906 find_same_succ_bb (bb, &same); 907 if (same == NULL) 908 same = same_succ_alloc (); 909 } 910 same_succ::remove (same); 911 bitmap_clear (deleted_bb_preds); 912 } 913 914 /* Prints cluster C to FILE. */ 915 916 static void 917 print_cluster (FILE *file, bb_cluster *c) 918 { 919 if (c == NULL) 920 return; 921 bitmap_print (file, c->bbs, "bbs:", "\n"); 922 bitmap_print (file, c->preds, "preds:", "\n"); 923 } 924 925 /* Prints cluster C to stderr. */ 926 927 extern void debug_cluster (bb_cluster *); 928 DEBUG_FUNCTION void 929 debug_cluster (bb_cluster *c) 930 { 931 print_cluster (stderr, c); 932 } 933 934 /* Update C->rep_bb, given that BB is added to the cluster. */ 935 936 static void 937 update_rep_bb (bb_cluster *c, basic_block bb) 938 { 939 /* Initial. */ 940 if (c->rep_bb == NULL) 941 { 942 c->rep_bb = bb; 943 return; 944 } 945 946 /* Current needs no deps, keep it. */ 947 if (BB_DEP_BB (c->rep_bb) == NULL) 948 return; 949 950 /* Bb needs no deps, change rep_bb. */ 951 if (BB_DEP_BB (bb) == NULL) 952 { 953 c->rep_bb = bb; 954 return; 955 } 956 957 /* Bb needs last deps earlier than current, change rep_bb. A potential 958 problem with this, is that the first deps might also be earlier, which 959 would mean we prefer longer lifetimes for the deps. To be able to check 960 for this, we would have to trace BB_FIRST_DEP_BB as well, besides 961 BB_DEP_BB, which is really BB_LAST_DEP_BB. 962 The benefit of choosing the bb with last deps earlier, is that it can 963 potentially be used as replacement for more bbs. */ 964 if (dominated_by_p (CDI_DOMINATORS, BB_DEP_BB (c->rep_bb), BB_DEP_BB (bb))) 965 c->rep_bb = bb; 966 } 967 968 /* Add BB to cluster C. Sets BB in C->bbs, and preds of BB in C->preds. */ 969 970 static void 971 add_bb_to_cluster (bb_cluster *c, basic_block bb) 972 { 973 edge e; 974 edge_iterator ei; 975 976 bitmap_set_bit (c->bbs, bb->index); 977 978 FOR_EACH_EDGE (e, ei, bb->preds) 979 bitmap_set_bit (c->preds, e->src->index); 980 981 update_rep_bb (c, bb); 982 } 983 984 /* Allocate and init new cluster. */ 985 986 static bb_cluster * 987 new_cluster (void) 988 { 989 bb_cluster *c; 990 c = XCNEW (bb_cluster); 991 c->bbs = BITMAP_ALLOC (NULL); 992 c->preds = BITMAP_ALLOC (NULL); 993 c->rep_bb = NULL; 994 return c; 995 } 996 997 /* Delete clusters. */ 998 999 static void 1000 delete_cluster (bb_cluster *c) 1001 { 1002 if (c == NULL) 1003 return; 1004 BITMAP_FREE (c->bbs); 1005 BITMAP_FREE (c->preds); 1006 XDELETE (c); 1007 } 1008 1009 1010 /* Array that contains all clusters. */ 1011 1012 static vec<bb_cluster *> all_clusters; 1013 1014 /* Allocate all cluster vectors. */ 1015 1016 static void 1017 alloc_cluster_vectors (void) 1018 { 1019 all_clusters.create (n_basic_blocks_for_fn (cfun)); 1020 } 1021 1022 /* Reset all cluster vectors. */ 1023 1024 static void 1025 reset_cluster_vectors (void) 1026 { 1027 unsigned int i; 1028 basic_block bb; 1029 for (i = 0; i < all_clusters.length (); ++i) 1030 delete_cluster (all_clusters[i]); 1031 all_clusters.truncate (0); 1032 FOR_EACH_BB_FN (bb, cfun) 1033 BB_CLUSTER (bb) = NULL; 1034 } 1035 1036 /* Delete all cluster vectors. */ 1037 1038 static void 1039 delete_cluster_vectors (void) 1040 { 1041 unsigned int i; 1042 for (i = 0; i < all_clusters.length (); ++i) 1043 delete_cluster (all_clusters[i]); 1044 all_clusters.release (); 1045 } 1046 1047 /* Merge cluster C2 into C1. */ 1048 1049 static void 1050 merge_clusters (bb_cluster *c1, bb_cluster *c2) 1051 { 1052 bitmap_ior_into (c1->bbs, c2->bbs); 1053 bitmap_ior_into (c1->preds, c2->preds); 1054 } 1055 1056 /* Register equivalence of BB1 and BB2 (members of cluster C). Store c in 1057 all_clusters, or merge c with existing cluster. */ 1058 1059 static void 1060 set_cluster (basic_block bb1, basic_block bb2) 1061 { 1062 basic_block merge_bb, other_bb; 1063 bb_cluster *merge, *old, *c; 1064 1065 if (BB_CLUSTER (bb1) == NULL && BB_CLUSTER (bb2) == NULL) 1066 { 1067 c = new_cluster (); 1068 add_bb_to_cluster (c, bb1); 1069 add_bb_to_cluster (c, bb2); 1070 BB_CLUSTER (bb1) = c; 1071 BB_CLUSTER (bb2) = c; 1072 c->index = all_clusters.length (); 1073 all_clusters.safe_push (c); 1074 } 1075 else if (BB_CLUSTER (bb1) == NULL || BB_CLUSTER (bb2) == NULL) 1076 { 1077 merge_bb = BB_CLUSTER (bb1) == NULL ? bb2 : bb1; 1078 other_bb = BB_CLUSTER (bb1) == NULL ? bb1 : bb2; 1079 merge = BB_CLUSTER (merge_bb); 1080 add_bb_to_cluster (merge, other_bb); 1081 BB_CLUSTER (other_bb) = merge; 1082 } 1083 else if (BB_CLUSTER (bb1) != BB_CLUSTER (bb2)) 1084 { 1085 unsigned int i; 1086 bitmap_iterator bi; 1087 1088 old = BB_CLUSTER (bb2); 1089 merge = BB_CLUSTER (bb1); 1090 merge_clusters (merge, old); 1091 EXECUTE_IF_SET_IN_BITMAP (old->bbs, 0, i, bi) 1092 BB_CLUSTER (BASIC_BLOCK_FOR_FN (cfun, i)) = merge; 1093 all_clusters[old->index] = NULL; 1094 update_rep_bb (merge, old->rep_bb); 1095 delete_cluster (old); 1096 } 1097 else 1098 gcc_unreachable (); 1099 } 1100 1101 /* Return true if gimple operands T1 and T2 have the same value. */ 1102 1103 static bool 1104 gimple_operand_equal_value_p (tree t1, tree t2) 1105 { 1106 if (t1 == t2) 1107 return true; 1108 1109 if (t1 == NULL_TREE 1110 || t2 == NULL_TREE) 1111 return false; 1112 1113 if (operand_equal_p (t1, t2, OEP_MATCH_SIDE_EFFECTS)) 1114 return true; 1115 1116 return gvn_uses_equal (t1, t2); 1117 } 1118 1119 /* Return true if gimple statements S1 and S2 are equal. Gimple_bb (s1) and 1120 gimple_bb (s2) are members of SAME_SUCC. */ 1121 1122 static bool 1123 gimple_equal_p (same_succ *same_succ, gimple *s1, gimple *s2) 1124 { 1125 unsigned int i; 1126 tree lhs1, lhs2; 1127 basic_block bb1 = gimple_bb (s1), bb2 = gimple_bb (s2); 1128 tree t1, t2; 1129 bool inv_cond; 1130 enum tree_code code1, code2; 1131 1132 if (gimple_code (s1) != gimple_code (s2)) 1133 return false; 1134 1135 switch (gimple_code (s1)) 1136 { 1137 case GIMPLE_CALL: 1138 if (!gimple_call_same_target_p (s1, s2)) 1139 return false; 1140 1141 t1 = gimple_call_chain (s1); 1142 t2 = gimple_call_chain (s2); 1143 if (!gimple_operand_equal_value_p (t1, t2)) 1144 return false; 1145 1146 if (gimple_call_num_args (s1) != gimple_call_num_args (s2)) 1147 return false; 1148 1149 for (i = 0; i < gimple_call_num_args (s1); ++i) 1150 { 1151 t1 = gimple_call_arg (s1, i); 1152 t2 = gimple_call_arg (s2, i); 1153 if (!gimple_operand_equal_value_p (t1, t2)) 1154 return false; 1155 } 1156 1157 lhs1 = gimple_get_lhs (s1); 1158 lhs2 = gimple_get_lhs (s2); 1159 if (lhs1 == NULL_TREE && lhs2 == NULL_TREE) 1160 return true; 1161 if (lhs1 == NULL_TREE || lhs2 == NULL_TREE) 1162 return false; 1163 if (TREE_CODE (lhs1) == SSA_NAME && TREE_CODE (lhs2) == SSA_NAME) 1164 return tail_merge_valueize (lhs1) == tail_merge_valueize (lhs2); 1165 return operand_equal_p (lhs1, lhs2, 0); 1166 1167 case GIMPLE_ASSIGN: 1168 lhs1 = gimple_get_lhs (s1); 1169 lhs2 = gimple_get_lhs (s2); 1170 if (TREE_CODE (lhs1) != SSA_NAME 1171 && TREE_CODE (lhs2) != SSA_NAME) 1172 return (operand_equal_p (lhs1, lhs2, 0) 1173 && gimple_operand_equal_value_p (gimple_assign_rhs1 (s1), 1174 gimple_assign_rhs1 (s2))); 1175 else if (TREE_CODE (lhs1) == SSA_NAME 1176 && TREE_CODE (lhs2) == SSA_NAME) 1177 return operand_equal_p (gimple_assign_rhs1 (s1), 1178 gimple_assign_rhs1 (s2), 0); 1179 return false; 1180 1181 case GIMPLE_COND: 1182 t1 = gimple_cond_lhs (s1); 1183 t2 = gimple_cond_lhs (s2); 1184 if (!gimple_operand_equal_value_p (t1, t2)) 1185 return false; 1186 1187 t1 = gimple_cond_rhs (s1); 1188 t2 = gimple_cond_rhs (s2); 1189 if (!gimple_operand_equal_value_p (t1, t2)) 1190 return false; 1191 1192 code1 = gimple_expr_code (s1); 1193 code2 = gimple_expr_code (s2); 1194 inv_cond = (bitmap_bit_p (same_succ->inverse, bb1->index) 1195 != bitmap_bit_p (same_succ->inverse, bb2->index)); 1196 if (inv_cond) 1197 { 1198 bool honor_nans = HONOR_NANS (t1); 1199 code2 = invert_tree_comparison (code2, honor_nans); 1200 } 1201 return code1 == code2; 1202 1203 default: 1204 return false; 1205 } 1206 } 1207 1208 /* Let GSI skip backwards over local defs. Return the earliest vuse in VUSE. 1209 Return true in VUSE_ESCAPED if the vuse influenced a SSA_OP_DEF of one of the 1210 processed statements. */ 1211 1212 static void 1213 gsi_advance_bw_nondebug_nonlocal (gimple_stmt_iterator *gsi, tree *vuse, 1214 bool *vuse_escaped) 1215 { 1216 gimple *stmt; 1217 tree lvuse; 1218 1219 while (true) 1220 { 1221 if (gsi_end_p (*gsi)) 1222 return; 1223 stmt = gsi_stmt (*gsi); 1224 1225 lvuse = gimple_vuse (stmt); 1226 if (lvuse != NULL_TREE) 1227 { 1228 *vuse = lvuse; 1229 if (!ZERO_SSA_OPERANDS (stmt, SSA_OP_DEF)) 1230 *vuse_escaped = true; 1231 } 1232 1233 if (!stmt_local_def (stmt)) 1234 return; 1235 gsi_prev_nondebug (gsi); 1236 } 1237 } 1238 1239 /* Return true if equal (in the sense of gimple_equal_p) statements STMT1 and 1240 STMT2 are allowed to be merged. */ 1241 1242 static bool 1243 merge_stmts_p (gimple *stmt1, gimple *stmt2) 1244 { 1245 /* What could be better than this here is to blacklist the bb 1246 containing the stmt, when encountering the stmt f.i. in 1247 same_succ_hash. */ 1248 if (is_tm_ending (stmt1)) 1249 return false; 1250 1251 /* Verify EH landing pads. */ 1252 if (lookup_stmt_eh_lp_fn (cfun, stmt1) != lookup_stmt_eh_lp_fn (cfun, stmt2)) 1253 return false; 1254 1255 if (is_gimple_call (stmt1) 1256 && gimple_call_internal_p (stmt1)) 1257 switch (gimple_call_internal_fn (stmt1)) 1258 { 1259 case IFN_UBSAN_NULL: 1260 case IFN_UBSAN_BOUNDS: 1261 case IFN_UBSAN_VPTR: 1262 case IFN_UBSAN_CHECK_ADD: 1263 case IFN_UBSAN_CHECK_SUB: 1264 case IFN_UBSAN_CHECK_MUL: 1265 case IFN_UBSAN_OBJECT_SIZE: 1266 case IFN_UBSAN_PTR: 1267 case IFN_ASAN_CHECK: 1268 /* For these internal functions, gimple_location is an implicit 1269 parameter, which will be used explicitly after expansion. 1270 Merging these statements may cause confusing line numbers in 1271 sanitizer messages. */ 1272 return gimple_location (stmt1) == gimple_location (stmt2); 1273 default: 1274 break; 1275 } 1276 1277 return true; 1278 } 1279 1280 /* Determines whether BB1 and BB2 (members of same_succ) are duplicates. If so, 1281 clusters them. */ 1282 1283 static void 1284 find_duplicate (same_succ *same_succ, basic_block bb1, basic_block bb2) 1285 { 1286 gimple_stmt_iterator gsi1 = gsi_last_nondebug_bb (bb1); 1287 gimple_stmt_iterator gsi2 = gsi_last_nondebug_bb (bb2); 1288 tree vuse1 = NULL_TREE, vuse2 = NULL_TREE; 1289 bool vuse_escaped = false; 1290 1291 gsi_advance_bw_nondebug_nonlocal (&gsi1, &vuse1, &vuse_escaped); 1292 gsi_advance_bw_nondebug_nonlocal (&gsi2, &vuse2, &vuse_escaped); 1293 1294 while (!gsi_end_p (gsi1) && !gsi_end_p (gsi2)) 1295 { 1296 gimple *stmt1 = gsi_stmt (gsi1); 1297 gimple *stmt2 = gsi_stmt (gsi2); 1298 1299 if (gimple_code (stmt1) == GIMPLE_LABEL 1300 && gimple_code (stmt2) == GIMPLE_LABEL) 1301 break; 1302 1303 if (!gimple_equal_p (same_succ, stmt1, stmt2)) 1304 return; 1305 1306 if (!merge_stmts_p (stmt1, stmt2)) 1307 return; 1308 1309 gsi_prev_nondebug (&gsi1); 1310 gsi_prev_nondebug (&gsi2); 1311 gsi_advance_bw_nondebug_nonlocal (&gsi1, &vuse1, &vuse_escaped); 1312 gsi_advance_bw_nondebug_nonlocal (&gsi2, &vuse2, &vuse_escaped); 1313 } 1314 1315 while (!gsi_end_p (gsi1) && gimple_code (gsi_stmt (gsi1)) == GIMPLE_LABEL) 1316 { 1317 tree label = gimple_label_label (as_a <glabel *> (gsi_stmt (gsi1))); 1318 if (DECL_NONLOCAL (label) || FORCED_LABEL (label)) 1319 return; 1320 gsi_prev (&gsi1); 1321 } 1322 while (!gsi_end_p (gsi2) && gimple_code (gsi_stmt (gsi2)) == GIMPLE_LABEL) 1323 { 1324 tree label = gimple_label_label (as_a <glabel *> (gsi_stmt (gsi2))); 1325 if (DECL_NONLOCAL (label) || FORCED_LABEL (label)) 1326 return; 1327 gsi_prev (&gsi2); 1328 } 1329 if (!(gsi_end_p (gsi1) && gsi_end_p (gsi2))) 1330 return; 1331 1332 /* If the incoming vuses are not the same, and the vuse escaped into an 1333 SSA_OP_DEF, then merging the 2 blocks will change the value of the def, 1334 which potentially means the semantics of one of the blocks will be changed. 1335 TODO: make this check more precise. */ 1336 if (vuse_escaped && vuse1 != vuse2) 1337 return; 1338 1339 if (dump_file) 1340 fprintf (dump_file, "find_duplicates: <bb %d> duplicate of <bb %d>\n", 1341 bb1->index, bb2->index); 1342 1343 set_cluster (bb1, bb2); 1344 } 1345 1346 /* Returns whether for all phis in DEST the phi alternatives for E1 and 1347 E2 are equal. */ 1348 1349 static bool 1350 same_phi_alternatives_1 (basic_block dest, edge e1, edge e2) 1351 { 1352 int n1 = e1->dest_idx, n2 = e2->dest_idx; 1353 gphi_iterator gsi; 1354 1355 for (gsi = gsi_start_phis (dest); !gsi_end_p (gsi); gsi_next (&gsi)) 1356 { 1357 gphi *phi = gsi.phi (); 1358 tree lhs = gimple_phi_result (phi); 1359 tree val1 = gimple_phi_arg_def (phi, n1); 1360 tree val2 = gimple_phi_arg_def (phi, n2); 1361 1362 if (virtual_operand_p (lhs)) 1363 continue; 1364 1365 if (operand_equal_for_phi_arg_p (val1, val2)) 1366 continue; 1367 if (gvn_uses_equal (val1, val2)) 1368 continue; 1369 1370 return false; 1371 } 1372 1373 return true; 1374 } 1375 1376 /* Returns whether for all successors of BB1 and BB2 (members of SAME_SUCC), the 1377 phi alternatives for BB1 and BB2 are equal. */ 1378 1379 static bool 1380 same_phi_alternatives (same_succ *same_succ, basic_block bb1, basic_block bb2) 1381 { 1382 unsigned int s; 1383 bitmap_iterator bs; 1384 edge e1, e2; 1385 basic_block succ; 1386 1387 EXECUTE_IF_SET_IN_BITMAP (same_succ->succs, 0, s, bs) 1388 { 1389 succ = BASIC_BLOCK_FOR_FN (cfun, s); 1390 e1 = find_edge (bb1, succ); 1391 e2 = find_edge (bb2, succ); 1392 if (e1->flags & EDGE_COMPLEX 1393 || e2->flags & EDGE_COMPLEX) 1394 return false; 1395 1396 /* For all phis in bb, the phi alternatives for e1 and e2 need to have 1397 the same value. */ 1398 if (!same_phi_alternatives_1 (succ, e1, e2)) 1399 return false; 1400 } 1401 1402 return true; 1403 } 1404 1405 /* Return true if BB has non-vop phis. */ 1406 1407 static bool 1408 bb_has_non_vop_phi (basic_block bb) 1409 { 1410 gimple_seq phis = phi_nodes (bb); 1411 gimple *phi; 1412 1413 if (phis == NULL) 1414 return false; 1415 1416 if (!gimple_seq_singleton_p (phis)) 1417 return true; 1418 1419 phi = gimple_seq_first_stmt (phis); 1420 return !virtual_operand_p (gimple_phi_result (phi)); 1421 } 1422 1423 /* Returns true if redirecting the incoming edges of FROM to TO maintains the 1424 invariant that uses in FROM are dominates by their defs. */ 1425 1426 static bool 1427 deps_ok_for_redirect_from_bb_to_bb (basic_block from, basic_block to) 1428 { 1429 basic_block cd, dep_bb = BB_DEP_BB (to); 1430 edge_iterator ei; 1431 edge e; 1432 1433 if (dep_bb == NULL) 1434 return true; 1435 1436 bitmap from_preds = BITMAP_ALLOC (NULL); 1437 FOR_EACH_EDGE (e, ei, from->preds) 1438 bitmap_set_bit (from_preds, e->src->index); 1439 cd = nearest_common_dominator_for_set (CDI_DOMINATORS, from_preds); 1440 BITMAP_FREE (from_preds); 1441 1442 return dominated_by_p (CDI_DOMINATORS, dep_bb, cd); 1443 } 1444 1445 /* Returns true if replacing BB1 (or its replacement bb) by BB2 (or its 1446 replacement bb) and vice versa maintains the invariant that uses in the 1447 replacement are dominates by their defs. */ 1448 1449 static bool 1450 deps_ok_for_redirect (basic_block bb1, basic_block bb2) 1451 { 1452 if (BB_CLUSTER (bb1) != NULL) 1453 bb1 = BB_CLUSTER (bb1)->rep_bb; 1454 1455 if (BB_CLUSTER (bb2) != NULL) 1456 bb2 = BB_CLUSTER (bb2)->rep_bb; 1457 1458 return (deps_ok_for_redirect_from_bb_to_bb (bb1, bb2) 1459 && deps_ok_for_redirect_from_bb_to_bb (bb2, bb1)); 1460 } 1461 1462 /* Within SAME_SUCC->bbs, find clusters of bbs which can be merged. */ 1463 1464 static void 1465 find_clusters_1 (same_succ *same_succ) 1466 { 1467 basic_block bb1, bb2; 1468 unsigned int i, j; 1469 bitmap_iterator bi, bj; 1470 int nr_comparisons; 1471 int max_comparisons = param_max_tail_merge_comparisons; 1472 1473 EXECUTE_IF_SET_IN_BITMAP (same_succ->bbs, 0, i, bi) 1474 { 1475 bb1 = BASIC_BLOCK_FOR_FN (cfun, i); 1476 1477 /* TODO: handle blocks with phi-nodes. We'll have to find corresponding 1478 phi-nodes in bb1 and bb2, with the same alternatives for the same 1479 preds. */ 1480 if (bb_has_non_vop_phi (bb1) || bb_has_eh_pred (bb1) 1481 || bb_has_abnormal_pred (bb1)) 1482 continue; 1483 1484 nr_comparisons = 0; 1485 EXECUTE_IF_SET_IN_BITMAP (same_succ->bbs, i + 1, j, bj) 1486 { 1487 bb2 = BASIC_BLOCK_FOR_FN (cfun, j); 1488 1489 if (bb_has_non_vop_phi (bb2) || bb_has_eh_pred (bb2) 1490 || bb_has_abnormal_pred (bb2)) 1491 continue; 1492 1493 if (BB_CLUSTER (bb1) != NULL && BB_CLUSTER (bb1) == BB_CLUSTER (bb2)) 1494 continue; 1495 1496 /* Limit quadratic behavior. */ 1497 nr_comparisons++; 1498 if (nr_comparisons > max_comparisons) 1499 break; 1500 1501 /* This is a conservative dependency check. We could test more 1502 precise for allowed replacement direction. */ 1503 if (!deps_ok_for_redirect (bb1, bb2)) 1504 continue; 1505 1506 if (!(same_phi_alternatives (same_succ, bb1, bb2))) 1507 continue; 1508 1509 find_duplicate (same_succ, bb1, bb2); 1510 } 1511 } 1512 } 1513 1514 /* Find clusters of bbs which can be merged. */ 1515 1516 static void 1517 find_clusters (void) 1518 { 1519 same_succ *same; 1520 1521 while (!worklist.is_empty ()) 1522 { 1523 same = worklist.pop (); 1524 same->in_worklist = false; 1525 if (dump_file && (dump_flags & TDF_DETAILS)) 1526 { 1527 fprintf (dump_file, "processing worklist entry\n"); 1528 same_succ_print (dump_file, same); 1529 } 1530 find_clusters_1 (same); 1531 } 1532 } 1533 1534 /* Returns the vop phi of BB, if any. */ 1535 1536 static gphi * 1537 vop_phi (basic_block bb) 1538 { 1539 gphi *stmt; 1540 gphi_iterator gsi; 1541 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi)) 1542 { 1543 stmt = gsi.phi (); 1544 if (! virtual_operand_p (gimple_phi_result (stmt))) 1545 continue; 1546 return stmt; 1547 } 1548 return NULL; 1549 } 1550 1551 /* Redirect all edges from BB1 to BB2, removes BB1 and marks it as removed. */ 1552 1553 static void 1554 replace_block_by (basic_block bb1, basic_block bb2) 1555 { 1556 edge pred_edge; 1557 unsigned int i; 1558 gphi *bb2_phi; 1559 1560 bb2_phi = vop_phi (bb2); 1561 1562 /* Mark the basic block as deleted. */ 1563 mark_basic_block_deleted (bb1); 1564 1565 /* Redirect the incoming edges of bb1 to bb2. */ 1566 for (i = EDGE_COUNT (bb1->preds); i > 0 ; --i) 1567 { 1568 pred_edge = EDGE_PRED (bb1, i - 1); 1569 pred_edge = redirect_edge_and_branch (pred_edge, bb2); 1570 gcc_assert (pred_edge != NULL); 1571 1572 if (bb2_phi == NULL) 1573 continue; 1574 1575 /* The phi might have run out of capacity when the redirect added an 1576 argument, which means it could have been replaced. Refresh it. */ 1577 bb2_phi = vop_phi (bb2); 1578 1579 add_phi_arg (bb2_phi, SSA_NAME_VAR (gimple_phi_result (bb2_phi)), 1580 pred_edge, UNKNOWN_LOCATION); 1581 } 1582 1583 1584 /* Merge the outgoing edge counts from bb1 onto bb2. */ 1585 edge e1, e2; 1586 edge_iterator ei; 1587 1588 if (bb2->count.initialized_p ()) 1589 FOR_EACH_EDGE (e1, ei, bb1->succs) 1590 { 1591 e2 = find_edge (bb2, e1->dest); 1592 gcc_assert (e2); 1593 1594 /* If probabilities are same, we are done. 1595 If counts are nonzero we can distribute accordingly. In remaining 1596 cases just avreage the values and hope for the best. */ 1597 e2->probability = e1->probability.combine_with_count 1598 (bb1->count, e2->probability, bb2->count); 1599 } 1600 bb2->count += bb1->count; 1601 1602 /* Move over any user labels from bb1 after the bb2 labels. */ 1603 gimple_stmt_iterator gsi1 = gsi_start_bb (bb1); 1604 if (!gsi_end_p (gsi1) && gimple_code (gsi_stmt (gsi1)) == GIMPLE_LABEL) 1605 { 1606 gimple_stmt_iterator gsi2 = gsi_after_labels (bb2); 1607 while (!gsi_end_p (gsi1) 1608 && gimple_code (gsi_stmt (gsi1)) == GIMPLE_LABEL) 1609 { 1610 tree label = gimple_label_label (as_a <glabel *> (gsi_stmt (gsi1))); 1611 gcc_assert (!DECL_NONLOCAL (label) && !FORCED_LABEL (label)); 1612 if (DECL_ARTIFICIAL (label)) 1613 gsi_next (&gsi1); 1614 else 1615 gsi_move_before (&gsi1, &gsi2); 1616 } 1617 } 1618 1619 /* Clear range info from all stmts in BB2 -- this transformation 1620 could make them out of date. */ 1621 reset_flow_sensitive_info_in_bb (bb2); 1622 1623 /* Do updates that use bb1, before deleting bb1. */ 1624 release_last_vdef (bb1); 1625 same_succ_flush_bb (bb1); 1626 1627 delete_basic_block (bb1); 1628 } 1629 1630 /* Bbs for which update_debug_stmt need to be called. */ 1631 1632 static bitmap update_bbs; 1633 1634 /* For each cluster in all_clusters, merge all cluster->bbs. Returns 1635 number of bbs removed. */ 1636 1637 static int 1638 apply_clusters (void) 1639 { 1640 basic_block bb1, bb2; 1641 bb_cluster *c; 1642 unsigned int i, j; 1643 bitmap_iterator bj; 1644 int nr_bbs_removed = 0; 1645 1646 for (i = 0; i < all_clusters.length (); ++i) 1647 { 1648 c = all_clusters[i]; 1649 if (c == NULL) 1650 continue; 1651 1652 bb2 = c->rep_bb; 1653 bitmap_set_bit (update_bbs, bb2->index); 1654 1655 bitmap_clear_bit (c->bbs, bb2->index); 1656 EXECUTE_IF_SET_IN_BITMAP (c->bbs, 0, j, bj) 1657 { 1658 bb1 = BASIC_BLOCK_FOR_FN (cfun, j); 1659 bitmap_clear_bit (update_bbs, bb1->index); 1660 1661 replace_block_by (bb1, bb2); 1662 nr_bbs_removed++; 1663 } 1664 } 1665 1666 return nr_bbs_removed; 1667 } 1668 1669 /* Resets debug statement STMT if it has uses that are not dominated by their 1670 defs. */ 1671 1672 static void 1673 update_debug_stmt (gimple *stmt) 1674 { 1675 use_operand_p use_p; 1676 ssa_op_iter oi; 1677 basic_block bbuse; 1678 1679 if (!gimple_debug_bind_p (stmt)) 1680 return; 1681 1682 bbuse = gimple_bb (stmt); 1683 FOR_EACH_PHI_OR_STMT_USE (use_p, stmt, oi, SSA_OP_USE) 1684 { 1685 tree name = USE_FROM_PTR (use_p); 1686 gimple *def_stmt = SSA_NAME_DEF_STMT (name); 1687 basic_block bbdef = gimple_bb (def_stmt); 1688 if (bbdef == NULL || bbuse == bbdef 1689 || dominated_by_p (CDI_DOMINATORS, bbuse, bbdef)) 1690 continue; 1691 1692 gimple_debug_bind_reset_value (stmt); 1693 update_stmt (stmt); 1694 break; 1695 } 1696 } 1697 1698 /* Resets all debug statements that have uses that are not 1699 dominated by their defs. */ 1700 1701 static void 1702 update_debug_stmts (void) 1703 { 1704 basic_block bb; 1705 bitmap_iterator bi; 1706 unsigned int i; 1707 1708 EXECUTE_IF_SET_IN_BITMAP (update_bbs, 0, i, bi) 1709 { 1710 gimple *stmt; 1711 gimple_stmt_iterator gsi; 1712 1713 bb = BASIC_BLOCK_FOR_FN (cfun, i); 1714 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi)) 1715 { 1716 stmt = gsi_stmt (gsi); 1717 if (!is_gimple_debug (stmt)) 1718 continue; 1719 update_debug_stmt (stmt); 1720 } 1721 } 1722 } 1723 1724 /* Runs tail merge optimization. */ 1725 1726 unsigned int 1727 tail_merge_optimize (unsigned int todo) 1728 { 1729 int nr_bbs_removed_total = 0; 1730 int nr_bbs_removed; 1731 bool loop_entered = false; 1732 int iteration_nr = 0; 1733 int max_iterations = param_max_tail_merge_iterations; 1734 1735 if (!flag_tree_tail_merge 1736 || max_iterations == 0) 1737 return 0; 1738 1739 timevar_push (TV_TREE_TAIL_MERGE); 1740 1741 /* We enter from PRE which has critical edges split. Elimination 1742 does not process trivially dead code so cleanup the CFG if we 1743 are told so. And re-split critical edges then. */ 1744 if (todo & TODO_cleanup_cfg) 1745 { 1746 cleanup_tree_cfg (); 1747 todo &= ~TODO_cleanup_cfg; 1748 split_edges_for_insertion (); 1749 } 1750 1751 if (!dom_info_available_p (CDI_DOMINATORS)) 1752 { 1753 /* PRE can leave us with unreachable blocks, remove them now. */ 1754 delete_unreachable_blocks (); 1755 calculate_dominance_info (CDI_DOMINATORS); 1756 } 1757 init_worklist (); 1758 1759 while (!worklist.is_empty ()) 1760 { 1761 if (!loop_entered) 1762 { 1763 loop_entered = true; 1764 alloc_cluster_vectors (); 1765 update_bbs = BITMAP_ALLOC (NULL); 1766 } 1767 else 1768 reset_cluster_vectors (); 1769 1770 iteration_nr++; 1771 if (dump_file && (dump_flags & TDF_DETAILS)) 1772 fprintf (dump_file, "worklist iteration #%d\n", iteration_nr); 1773 1774 find_clusters (); 1775 gcc_assert (worklist.is_empty ()); 1776 if (all_clusters.is_empty ()) 1777 break; 1778 1779 nr_bbs_removed = apply_clusters (); 1780 nr_bbs_removed_total += nr_bbs_removed; 1781 if (nr_bbs_removed == 0) 1782 break; 1783 1784 free_dominance_info (CDI_DOMINATORS); 1785 1786 if (iteration_nr == max_iterations) 1787 break; 1788 1789 calculate_dominance_info (CDI_DOMINATORS); 1790 update_worklist (); 1791 } 1792 1793 if (dump_file && (dump_flags & TDF_DETAILS)) 1794 fprintf (dump_file, "htab collision / search: %f\n", 1795 same_succ_htab->collisions ()); 1796 1797 if (nr_bbs_removed_total > 0) 1798 { 1799 if (MAY_HAVE_DEBUG_BIND_STMTS) 1800 { 1801 calculate_dominance_info (CDI_DOMINATORS); 1802 update_debug_stmts (); 1803 } 1804 1805 if (dump_file && (dump_flags & TDF_DETAILS)) 1806 { 1807 fprintf (dump_file, "Before TODOs.\n"); 1808 dump_function_to_file (current_function_decl, dump_file, dump_flags); 1809 } 1810 1811 mark_virtual_operands_for_renaming (cfun); 1812 } 1813 1814 delete_worklist (); 1815 if (loop_entered) 1816 { 1817 delete_cluster_vectors (); 1818 BITMAP_FREE (update_bbs); 1819 } 1820 1821 timevar_pop (TV_TREE_TAIL_MERGE); 1822 1823 return todo; 1824 } 1825