xref: /netbsd-src/external/gpl3/gcc.old/dist/gcc/tree-ssa-tail-merge.c (revision bdc22b2e01993381dcefeff2bc9b56ca75a4235c)
1 /* Tail merging for gimple.
2    Copyright (C) 2011-2015 Free Software Foundation, Inc.
3    Contributed by Tom de Vries (tom@codesourcery.com)
4 
5 This file is part of GCC.
6 
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11 
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 GNU General Public License for more details.
16 
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3.  If not see
19 <http://www.gnu.org/licenses/>.  */
20 
21 /* Pass overview.
22 
23 
24    MOTIVATIONAL EXAMPLE
25 
26    gimple representation of gcc/testsuite/gcc.dg/pr43864.c at
27 
28    hprofStartupp (charD.1 * outputFileNameD.2600, charD.1 * ctxD.2601)
29    {
30      struct FILED.1638 * fpD.2605;
31      charD.1 fileNameD.2604[1000];
32      intD.0 D.3915;
33      const charD.1 * restrict outputFileName.0D.3914;
34 
35      # BLOCK 2 freq:10000
36      # PRED: ENTRY [100.0%]  (fallthru,exec)
37      # PT = nonlocal { D.3926 } (restr)
38      outputFileName.0D.3914_3
39        = (const charD.1 * restrict) outputFileNameD.2600_2(D);
40      # .MEMD.3923_13 = VDEF <.MEMD.3923_12(D)>
41      # USE = nonlocal null { fileNameD.2604 D.3926 } (restr)
42      # CLB = nonlocal null { fileNameD.2604 D.3926 } (restr)
43      sprintfD.759 (&fileNameD.2604, outputFileName.0D.3914_3);
44      # .MEMD.3923_14 = VDEF <.MEMD.3923_13>
45      # USE = nonlocal null { fileNameD.2604 D.3926 } (restr)
46      # CLB = nonlocal null { fileNameD.2604 D.3926 } (restr)
47      D.3915_4 = accessD.2606 (&fileNameD.2604, 1);
48      if (D.3915_4 == 0)
49        goto <bb 3>;
50      else
51        goto <bb 4>;
52      # SUCC: 3 [10.0%]  (true,exec) 4 [90.0%]  (false,exec)
53 
54      # BLOCK 3 freq:1000
55      # PRED: 2 [10.0%]  (true,exec)
56      # .MEMD.3923_15 = VDEF <.MEMD.3923_14>
57      # USE = nonlocal null { fileNameD.2604 D.3926 } (restr)
58      # CLB = nonlocal null { fileNameD.2604 D.3926 } (restr)
59      freeD.898 (ctxD.2601_5(D));
60      goto <bb 7>;
61      # SUCC: 7 [100.0%]  (fallthru,exec)
62 
63      # BLOCK 4 freq:9000
64      # PRED: 2 [90.0%]  (false,exec)
65      # .MEMD.3923_16 = VDEF <.MEMD.3923_14>
66      # PT = nonlocal escaped
67      # USE = nonlocal null { fileNameD.2604 D.3926 } (restr)
68      # CLB = nonlocal null { fileNameD.2604 D.3926 } (restr)
69      fpD.2605_8 = fopenD.1805 (&fileNameD.2604[0], 0B);
70      if (fpD.2605_8 == 0B)
71        goto <bb 5>;
72      else
73        goto <bb 6>;
74      # SUCC: 5 [1.9%]  (true,exec) 6 [98.1%]  (false,exec)
75 
76      # BLOCK 5 freq:173
77      # PRED: 4 [1.9%]  (true,exec)
78      # .MEMD.3923_17 = VDEF <.MEMD.3923_16>
79      # USE = nonlocal null { fileNameD.2604 D.3926 } (restr)
80      # CLB = nonlocal null { fileNameD.2604 D.3926 } (restr)
81      freeD.898 (ctxD.2601_5(D));
82      goto <bb 7>;
83      # SUCC: 7 [100.0%]  (fallthru,exec)
84 
85      # BLOCK 6 freq:8827
86      # PRED: 4 [98.1%]  (false,exec)
87      # .MEMD.3923_18 = VDEF <.MEMD.3923_16>
88      # USE = nonlocal null { fileNameD.2604 D.3926 } (restr)
89      # CLB = nonlocal null { fileNameD.2604 D.3926 } (restr)
90      fooD.2599 (outputFileNameD.2600_2(D), fpD.2605_8);
91      # SUCC: 7 [100.0%]  (fallthru,exec)
92 
93      # BLOCK 7 freq:10000
94      # PRED: 3 [100.0%]  (fallthru,exec) 5 [100.0%]  (fallthru,exec)
95              6 [100.0%]  (fallthru,exec)
96      # PT = nonlocal null
97 
98      # ctxD.2601_1 = PHI <0B(3), 0B(5), ctxD.2601_5(D)(6)>
99      # .MEMD.3923_11 = PHI <.MEMD.3923_15(3), .MEMD.3923_17(5),
100                             .MEMD.3923_18(6)>
101      # VUSE <.MEMD.3923_11>
102      return ctxD.2601_1;
103      # SUCC: EXIT [100.0%]
104    }
105 
106    bb 3 and bb 5 can be merged.  The blocks have different predecessors, but the
107    same successors, and the same operations.
108 
109 
110    CONTEXT
111 
112    A technique called tail merging (or cross jumping) can fix the example
113    above.  For a block, we look for common code at the end (the tail) of the
114    predecessor blocks, and insert jumps from one block to the other.
115    The example is a special case for tail merging, in that 2 whole blocks
116    can be merged, rather than just the end parts of it.
117    We currently only focus on whole block merging, so in that sense
118    calling this pass tail merge is a bit of a misnomer.
119 
120    We distinguish 2 kinds of situations in which blocks can be merged:
121    - same operations, same predecessors.  The successor edges coming from one
122      block are redirected to come from the other block.
123    - same operations, same successors.  The predecessor edges entering one block
124      are redirected to enter the other block.  Note that this operation might
125      involve introducing phi operations.
126 
127    For efficient implementation, we would like to value numbers the blocks, and
128    have a comparison operator that tells us whether the blocks are equal.
129    Besides being runtime efficient, block value numbering should also abstract
130    from irrelevant differences in order of operations, much like normal value
131    numbering abstracts from irrelevant order of operations.
132 
133    For the first situation (same_operations, same predecessors), normal value
134    numbering fits well.  We can calculate a block value number based on the
135    value numbers of the defs and vdefs.
136 
137    For the second situation (same operations, same successors), this approach
138    doesn't work so well.  We can illustrate this using the example.  The calls
139    to free use different vdefs: MEMD.3923_16 and MEMD.3923_14, and these will
140    remain different in value numbering, since they represent different memory
141    states.  So the resulting vdefs of the frees will be different in value
142    numbering, so the block value numbers will be different.
143 
144    The reason why we call the blocks equal is not because they define the same
145    values, but because uses in the blocks use (possibly different) defs in the
146    same way.  To be able to detect this efficiently, we need to do some kind of
147    reverse value numbering, meaning number the uses rather than the defs, and
148    calculate a block value number based on the value number of the uses.
149    Ideally, a block comparison operator will also indicate which phis are needed
150    to merge the blocks.
151 
152    For the moment, we don't do block value numbering, but we do insn-by-insn
153    matching, using scc value numbers to match operations with results, and
154    structural comparison otherwise, while ignoring vop mismatches.
155 
156 
157    IMPLEMENTATION
158 
159    1. The pass first determines all groups of blocks with the same successor
160       blocks.
161    2. Within each group, it tries to determine clusters of equal basic blocks.
162    3. The clusters are applied.
163    4. The same successor groups are updated.
164    5. This process is repeated from 2 onwards, until no more changes.
165 
166 
167    LIMITATIONS/TODO
168 
169    - block only
170    - handles only 'same operations, same successors'.
171      It handles same predecessors as a special subcase though.
172    - does not implement the reverse value numbering and block value numbering.
173    - improve memory allocation: use garbage collected memory, obstacks,
174      allocpools where appropriate.
175    - no insertion of gimple_reg phis,  We only introduce vop-phis.
176    - handle blocks with gimple_reg phi_nodes.
177 
178 
179    PASS PLACEMENT
180    This 'pass' is not a stand-alone gimple pass, but runs as part of
181    pass_pre, in order to share the value numbering.
182 
183 
184    SWITCHES
185 
186    - ftree-tail-merge.  On at -O2.  We may have to enable it only at -Os.  */
187 
188 #include "config.h"
189 #include "system.h"
190 #include "coretypes.h"
191 #include "tm.h"
192 #include "hash-set.h"
193 #include "machmode.h"
194 #include "vec.h"
195 #include "double-int.h"
196 #include "input.h"
197 #include "alias.h"
198 #include "symtab.h"
199 #include "wide-int.h"
200 #include "inchash.h"
201 #include "real.h"
202 #include "tree.h"
203 #include "fold-const.h"
204 #include "stor-layout.h"
205 #include "trans-mem.h"
206 #include "inchash.h"
207 #include "tm_p.h"
208 #include "predict.h"
209 #include "hard-reg-set.h"
210 #include "input.h"
211 #include "function.h"
212 #include "dominance.h"
213 #include "cfg.h"
214 #include "cfganal.h"
215 #include "cfgcleanup.h"
216 #include "basic-block.h"
217 #include "flags.h"
218 #include "hash-table.h"
219 #include "tree-ssa-alias.h"
220 #include "internal-fn.h"
221 #include "tree-eh.h"
222 #include "gimple-expr.h"
223 #include "is-a.h"
224 #include "gimple.h"
225 #include "gimple-iterator.h"
226 #include "gimple-ssa.h"
227 #include "tree-cfg.h"
228 #include "tree-phinodes.h"
229 #include "ssa-iterators.h"
230 #include "tree-into-ssa.h"
231 #include "params.h"
232 #include "gimple-pretty-print.h"
233 #include "tree-ssa-sccvn.h"
234 #include "tree-dump.h"
235 #include "cfgloop.h"
236 #include "tree-pass.h"
237 #include "trans-mem.h"
238 #include "stringpool.h"
239 #include "tree-ssanames.h"
240 #include "tree-eh.h"
241 
242 /* Describes a group of bbs with the same successors.  The successor bbs are
243    cached in succs, and the successor edge flags are cached in succ_flags.
244    If a bb has the EDGE_TRUE/FALSE_VALUE flags swapped compared to succ_flags,
245    it's marked in inverse.
246    Additionally, the hash value for the struct is cached in hashval, and
247    in_worklist indicates whether it's currently part of worklist.  */
248 
249 struct same_succ_def
250 {
251   /* The bbs that have the same successor bbs.  */
252   bitmap bbs;
253   /* The successor bbs.  */
254   bitmap succs;
255   /* Indicates whether the EDGE_TRUE/FALSE_VALUEs of succ_flags are swapped for
256      bb.  */
257   bitmap inverse;
258   /* The edge flags for each of the successor bbs.  */
259   vec<int> succ_flags;
260   /* Indicates whether the struct is currently in the worklist.  */
261   bool in_worklist;
262   /* The hash value of the struct.  */
263   hashval_t hashval;
264 
265   /* hash_table support.  */
266   typedef same_succ_def value_type;
267   typedef same_succ_def compare_type;
268   static inline hashval_t hash (const value_type *);
269   static int equal (const value_type *, const compare_type *);
270   static void remove (value_type *);
271 };
272 typedef struct same_succ_def *same_succ;
273 typedef const struct same_succ_def *const_same_succ;
274 
275 /* hash routine for hash_table support, returns hashval of E.  */
276 
277 inline hashval_t
278 same_succ_def::hash (const value_type *e)
279 {
280   return e->hashval;
281 }
282 
283 /* A group of bbs where 1 bb from bbs can replace the other bbs.  */
284 
285 struct bb_cluster_def
286 {
287   /* The bbs in the cluster.  */
288   bitmap bbs;
289   /* The preds of the bbs in the cluster.  */
290   bitmap preds;
291   /* Index in all_clusters vector.  */
292   int index;
293   /* The bb to replace the cluster with.  */
294   basic_block rep_bb;
295 };
296 typedef struct bb_cluster_def *bb_cluster;
297 typedef const struct bb_cluster_def *const_bb_cluster;
298 
299 /* Per bb-info.  */
300 
301 struct aux_bb_info
302 {
303   /* The number of non-debug statements in the bb.  */
304   int size;
305   /* The same_succ that this bb is a member of.  */
306   same_succ bb_same_succ;
307   /* The cluster that this bb is a member of.  */
308   bb_cluster cluster;
309   /* The vop state at the exit of a bb.  This is shortlived data, used to
310      communicate data between update_block_by and update_vuses.  */
311   tree vop_at_exit;
312   /* The bb that either contains or is dominated by the dependencies of the
313      bb.  */
314   basic_block dep_bb;
315 };
316 
317 /* Macros to access the fields of struct aux_bb_info.  */
318 
319 #define BB_SIZE(bb) (((struct aux_bb_info *)bb->aux)->size)
320 #define BB_SAME_SUCC(bb) (((struct aux_bb_info *)bb->aux)->bb_same_succ)
321 #define BB_CLUSTER(bb) (((struct aux_bb_info *)bb->aux)->cluster)
322 #define BB_VOP_AT_EXIT(bb) (((struct aux_bb_info *)bb->aux)->vop_at_exit)
323 #define BB_DEP_BB(bb) (((struct aux_bb_info *)bb->aux)->dep_bb)
324 
325 /* Returns true if the only effect a statement STMT has, is to define locally
326    used SSA_NAMEs.  */
327 
328 static bool
329 stmt_local_def (gimple stmt)
330 {
331   basic_block bb, def_bb;
332   imm_use_iterator iter;
333   use_operand_p use_p;
334   tree val;
335   def_operand_p def_p;
336 
337   if (gimple_vdef (stmt) != NULL_TREE
338       || gimple_has_side_effects (stmt)
339       || gimple_could_trap_p_1 (stmt, false, false)
340       || gimple_vuse (stmt) != NULL_TREE)
341     return false;
342 
343   def_p = SINGLE_SSA_DEF_OPERAND (stmt, SSA_OP_DEF);
344   if (def_p == NULL)
345     return false;
346 
347   val = DEF_FROM_PTR (def_p);
348   if (val == NULL_TREE || TREE_CODE (val) != SSA_NAME)
349     return false;
350 
351   def_bb = gimple_bb (stmt);
352 
353   FOR_EACH_IMM_USE_FAST (use_p, iter, val)
354     {
355       if (is_gimple_debug (USE_STMT (use_p)))
356 	continue;
357       bb = gimple_bb (USE_STMT (use_p));
358       if (bb == def_bb)
359 	continue;
360 
361       if (gimple_code (USE_STMT (use_p)) == GIMPLE_PHI
362 	  && EDGE_PRED (bb, PHI_ARG_INDEX_FROM_USE (use_p))->src == def_bb)
363 	continue;
364 
365       return false;
366     }
367 
368   return true;
369 }
370 
371 /* Let GSI skip forwards over local defs.  */
372 
373 static void
374 gsi_advance_fw_nondebug_nonlocal (gimple_stmt_iterator *gsi)
375 {
376   gimple stmt;
377 
378   while (true)
379     {
380       if (gsi_end_p (*gsi))
381 	return;
382       stmt = gsi_stmt (*gsi);
383       if (!stmt_local_def (stmt))
384 	return;
385 	gsi_next_nondebug (gsi);
386     }
387 }
388 
389 /* VAL1 and VAL2 are either:
390    - uses in BB1 and BB2, or
391    - phi alternatives for BB1 and BB2.
392    Return true if the uses have the same gvn value.  */
393 
394 static bool
395 gvn_uses_equal (tree val1, tree val2)
396 {
397   gcc_checking_assert (val1 != NULL_TREE && val2 != NULL_TREE);
398 
399   if (val1 == val2)
400     return true;
401 
402   if (vn_valueize (val1) != vn_valueize (val2))
403     return false;
404 
405   return ((TREE_CODE (val1) == SSA_NAME || CONSTANT_CLASS_P (val1))
406 	  && (TREE_CODE (val2) == SSA_NAME || CONSTANT_CLASS_P (val2)));
407 }
408 
409 /* Prints E to FILE.  */
410 
411 static void
412 same_succ_print (FILE *file, const same_succ e)
413 {
414   unsigned int i;
415   bitmap_print (file, e->bbs, "bbs:", "\n");
416   bitmap_print (file, e->succs, "succs:", "\n");
417   bitmap_print (file, e->inverse, "inverse:", "\n");
418   fprintf (file, "flags:");
419   for (i = 0; i < e->succ_flags.length (); ++i)
420     fprintf (file, " %x", e->succ_flags[i]);
421   fprintf (file, "\n");
422 }
423 
424 /* Prints same_succ VE to VFILE.  */
425 
426 inline int
427 ssa_same_succ_print_traverse (same_succ *pe, FILE *file)
428 {
429   const same_succ e = *pe;
430   same_succ_print (file, e);
431   return 1;
432 }
433 
434 /* Update BB_DEP_BB (USE_BB), given a use of VAL in USE_BB.  */
435 
436 static void
437 update_dep_bb (basic_block use_bb, tree val)
438 {
439   basic_block dep_bb;
440 
441   /* Not a dep.  */
442   if (TREE_CODE (val) != SSA_NAME)
443     return;
444 
445   /* Skip use of global def.  */
446   if (SSA_NAME_IS_DEFAULT_DEF (val))
447     return;
448 
449   /* Skip use of local def.  */
450   dep_bb = gimple_bb (SSA_NAME_DEF_STMT (val));
451   if (dep_bb == use_bb)
452     return;
453 
454   if (BB_DEP_BB (use_bb) == NULL
455       || dominated_by_p (CDI_DOMINATORS, dep_bb, BB_DEP_BB (use_bb)))
456     BB_DEP_BB (use_bb) = dep_bb;
457 }
458 
459 /* Update BB_DEP_BB, given the dependencies in STMT.  */
460 
461 static void
462 stmt_update_dep_bb (gimple stmt)
463 {
464   ssa_op_iter iter;
465   use_operand_p use;
466 
467   FOR_EACH_SSA_USE_OPERAND (use, stmt, iter, SSA_OP_USE)
468     update_dep_bb (gimple_bb (stmt), USE_FROM_PTR (use));
469 }
470 
471 /* Calculates hash value for same_succ VE.  */
472 
473 static hashval_t
474 same_succ_hash (const_same_succ e)
475 {
476   inchash::hash hstate (bitmap_hash (e->succs));
477   int flags;
478   unsigned int i;
479   unsigned int first = bitmap_first_set_bit (e->bbs);
480   basic_block bb = BASIC_BLOCK_FOR_FN (cfun, first);
481   int size = 0;
482   gimple stmt;
483   tree arg;
484   unsigned int s;
485   bitmap_iterator bs;
486 
487   for (gimple_stmt_iterator gsi = gsi_start_nondebug_bb (bb);
488        !gsi_end_p (gsi); gsi_next_nondebug (&gsi))
489     {
490       stmt = gsi_stmt (gsi);
491       stmt_update_dep_bb (stmt);
492       if (stmt_local_def (stmt))
493 	continue;
494       size++;
495 
496       hstate.add_int (gimple_code (stmt));
497       if (is_gimple_assign (stmt))
498 	hstate.add_int (gimple_assign_rhs_code (stmt));
499       if (!is_gimple_call (stmt))
500 	continue;
501       if (gimple_call_internal_p (stmt))
502         hstate.add_int (gimple_call_internal_fn (stmt));
503       else
504 	{
505 	  inchash::add_expr (gimple_call_fn (stmt), hstate);
506 	  if (gimple_call_chain (stmt))
507 	    inchash::add_expr (gimple_call_chain (stmt), hstate);
508 	}
509       for (i = 0; i < gimple_call_num_args (stmt); i++)
510 	{
511 	  arg = gimple_call_arg (stmt, i);
512 	  arg = vn_valueize (arg);
513 	  inchash::add_expr (arg, hstate);
514 	}
515     }
516 
517   hstate.add_int (size);
518   BB_SIZE (bb) = size;
519 
520   for (i = 0; i < e->succ_flags.length (); ++i)
521     {
522       flags = e->succ_flags[i];
523       flags = flags & ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
524       hstate.add_int (flags);
525     }
526 
527   EXECUTE_IF_SET_IN_BITMAP (e->succs, 0, s, bs)
528     {
529       int n = find_edge (bb, BASIC_BLOCK_FOR_FN (cfun, s))->dest_idx;
530       for (gphi_iterator gsi = gsi_start_phis (BASIC_BLOCK_FOR_FN (cfun, s));
531 	   !gsi_end_p (gsi);
532 	   gsi_next (&gsi))
533 	{
534 	  gphi *phi = gsi.phi ();
535 	  tree lhs = gimple_phi_result (phi);
536 	  tree val = gimple_phi_arg_def (phi, n);
537 
538 	  if (virtual_operand_p (lhs))
539 	    continue;
540 	  update_dep_bb (bb, val);
541 	}
542     }
543 
544   return hstate.end ();
545 }
546 
547 /* Returns true if E1 and E2 have 2 successors, and if the successor flags
548    are inverse for the EDGE_TRUE_VALUE and EDGE_FALSE_VALUE flags, and equal for
549    the other edge flags.  */
550 
551 static bool
552 inverse_flags (const_same_succ e1, const_same_succ e2)
553 {
554   int f1a, f1b, f2a, f2b;
555   int mask = ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
556 
557   if (e1->succ_flags.length () != 2)
558     return false;
559 
560   f1a = e1->succ_flags[0];
561   f1b = e1->succ_flags[1];
562   f2a = e2->succ_flags[0];
563   f2b = e2->succ_flags[1];
564 
565   if (f1a == f2a && f1b == f2b)
566     return false;
567 
568   return (f1a & mask) == (f2a & mask) && (f1b & mask) == (f2b & mask);
569 }
570 
571 /* Compares SAME_SUCCs E1 and E2.  */
572 
573 int
574 same_succ_def::equal (const value_type *e1, const compare_type *e2)
575 {
576   unsigned int i, first1, first2;
577   gimple_stmt_iterator gsi1, gsi2;
578   gimple s1, s2;
579   basic_block bb1, bb2;
580 
581   if (e1->hashval != e2->hashval)
582     return 0;
583 
584   if (e1->succ_flags.length () != e2->succ_flags.length ())
585     return 0;
586 
587   if (!bitmap_equal_p (e1->succs, e2->succs))
588     return 0;
589 
590   if (!inverse_flags (e1, e2))
591     {
592       for (i = 0; i < e1->succ_flags.length (); ++i)
593 	if (e1->succ_flags[i] != e2->succ_flags[i])
594 	  return 0;
595     }
596 
597   first1 = bitmap_first_set_bit (e1->bbs);
598   first2 = bitmap_first_set_bit (e2->bbs);
599 
600   bb1 = BASIC_BLOCK_FOR_FN (cfun, first1);
601   bb2 = BASIC_BLOCK_FOR_FN (cfun, first2);
602 
603   if (BB_SIZE (bb1) != BB_SIZE (bb2))
604     return 0;
605 
606   gsi1 = gsi_start_nondebug_bb (bb1);
607   gsi2 = gsi_start_nondebug_bb (bb2);
608   gsi_advance_fw_nondebug_nonlocal (&gsi1);
609   gsi_advance_fw_nondebug_nonlocal (&gsi2);
610   while (!(gsi_end_p (gsi1) || gsi_end_p (gsi2)))
611     {
612       s1 = gsi_stmt (gsi1);
613       s2 = gsi_stmt (gsi2);
614       if (gimple_code (s1) != gimple_code (s2))
615 	return 0;
616       if (is_gimple_call (s1) && !gimple_call_same_target_p (s1, s2))
617 	return 0;
618       gsi_next_nondebug (&gsi1);
619       gsi_next_nondebug (&gsi2);
620       gsi_advance_fw_nondebug_nonlocal (&gsi1);
621       gsi_advance_fw_nondebug_nonlocal (&gsi2);
622     }
623 
624   return 1;
625 }
626 
627 /* Alloc and init a new SAME_SUCC.  */
628 
629 static same_succ
630 same_succ_alloc (void)
631 {
632   same_succ same = XNEW (struct same_succ_def);
633 
634   same->bbs = BITMAP_ALLOC (NULL);
635   same->succs = BITMAP_ALLOC (NULL);
636   same->inverse = BITMAP_ALLOC (NULL);
637   same->succ_flags.create (10);
638   same->in_worklist = false;
639 
640   return same;
641 }
642 
643 /* Delete same_succ E.  */
644 
645 void
646 same_succ_def::remove (same_succ e)
647 {
648   BITMAP_FREE (e->bbs);
649   BITMAP_FREE (e->succs);
650   BITMAP_FREE (e->inverse);
651   e->succ_flags.release ();
652 
653   XDELETE (e);
654 }
655 
656 /* Reset same_succ SAME.  */
657 
658 static void
659 same_succ_reset (same_succ same)
660 {
661   bitmap_clear (same->bbs);
662   bitmap_clear (same->succs);
663   bitmap_clear (same->inverse);
664   same->succ_flags.truncate (0);
665 }
666 
667 static hash_table<same_succ_def> *same_succ_htab;
668 
669 /* Array that is used to store the edge flags for a successor.  */
670 
671 static int *same_succ_edge_flags;
672 
673 /* Bitmap that is used to mark bbs that are recently deleted.  */
674 
675 static bitmap deleted_bbs;
676 
677 /* Bitmap that is used to mark predecessors of bbs that are
678    deleted.  */
679 
680 static bitmap deleted_bb_preds;
681 
682 /* Prints same_succ_htab to stderr.  */
683 
684 extern void debug_same_succ (void);
685 DEBUG_FUNCTION void
686 debug_same_succ ( void)
687 {
688   same_succ_htab->traverse <FILE *, ssa_same_succ_print_traverse> (stderr);
689 }
690 
691 
692 /* Vector of bbs to process.  */
693 
694 static vec<same_succ> worklist;
695 
696 /* Prints worklist to FILE.  */
697 
698 static void
699 print_worklist (FILE *file)
700 {
701   unsigned int i;
702   for (i = 0; i < worklist.length (); ++i)
703     same_succ_print (file, worklist[i]);
704 }
705 
706 /* Adds SAME to worklist.  */
707 
708 static void
709 add_to_worklist (same_succ same)
710 {
711   if (same->in_worklist)
712     return;
713 
714   if (bitmap_count_bits (same->bbs) < 2)
715     return;
716 
717   same->in_worklist = true;
718   worklist.safe_push (same);
719 }
720 
721 /* Add BB to same_succ_htab.  */
722 
723 static void
724 find_same_succ_bb (basic_block bb, same_succ *same_p)
725 {
726   unsigned int j;
727   bitmap_iterator bj;
728   same_succ same = *same_p;
729   same_succ *slot;
730   edge_iterator ei;
731   edge e;
732 
733   if (bb == NULL
734       /* Be conservative with loop structure.  It's not evident that this test
735 	 is sufficient.  Before tail-merge, we've just called
736 	 loop_optimizer_finalize, and LOOPS_MAY_HAVE_MULTIPLE_LATCHES is now
737 	 set, so there's no guarantee that the loop->latch value is still valid.
738 	 But we assume that, since we've forced LOOPS_HAVE_SIMPLE_LATCHES at the
739 	 start of pre, we've kept that property intact throughout pre, and are
740 	 keeping it throughout tail-merge using this test.  */
741       || bb->loop_father->latch == bb)
742     return;
743   bitmap_set_bit (same->bbs, bb->index);
744   FOR_EACH_EDGE (e, ei, bb->succs)
745     {
746       int index = e->dest->index;
747       bitmap_set_bit (same->succs, index);
748       same_succ_edge_flags[index] = e->flags;
749     }
750   EXECUTE_IF_SET_IN_BITMAP (same->succs, 0, j, bj)
751     same->succ_flags.safe_push (same_succ_edge_flags[j]);
752 
753   same->hashval = same_succ_hash (same);
754 
755   slot = same_succ_htab->find_slot_with_hash (same, same->hashval, INSERT);
756   if (*slot == NULL)
757     {
758       *slot = same;
759       BB_SAME_SUCC (bb) = same;
760       add_to_worklist (same);
761       *same_p = NULL;
762     }
763   else
764     {
765       bitmap_set_bit ((*slot)->bbs, bb->index);
766       BB_SAME_SUCC (bb) = *slot;
767       add_to_worklist (*slot);
768       if (inverse_flags (same, *slot))
769 	bitmap_set_bit ((*slot)->inverse, bb->index);
770       same_succ_reset (same);
771     }
772 }
773 
774 /* Find bbs with same successors.  */
775 
776 static void
777 find_same_succ (void)
778 {
779   same_succ same = same_succ_alloc ();
780   basic_block bb;
781 
782   FOR_EACH_BB_FN (bb, cfun)
783     {
784       find_same_succ_bb (bb, &same);
785       if (same == NULL)
786 	same = same_succ_alloc ();
787     }
788 
789   same_succ_def::remove (same);
790 }
791 
792 /* Initializes worklist administration.  */
793 
794 static void
795 init_worklist (void)
796 {
797   alloc_aux_for_blocks (sizeof (struct aux_bb_info));
798   same_succ_htab = new hash_table<same_succ_def> (n_basic_blocks_for_fn (cfun));
799   same_succ_edge_flags = XCNEWVEC (int, last_basic_block_for_fn (cfun));
800   deleted_bbs = BITMAP_ALLOC (NULL);
801   deleted_bb_preds = BITMAP_ALLOC (NULL);
802   worklist.create (n_basic_blocks_for_fn (cfun));
803   find_same_succ ();
804 
805   if (dump_file && (dump_flags & TDF_DETAILS))
806     {
807       fprintf (dump_file, "initial worklist:\n");
808       print_worklist (dump_file);
809     }
810 }
811 
812 /* Deletes worklist administration.  */
813 
814 static void
815 delete_worklist (void)
816 {
817   free_aux_for_blocks ();
818   delete same_succ_htab;
819   same_succ_htab = NULL;
820   XDELETEVEC (same_succ_edge_flags);
821   same_succ_edge_flags = NULL;
822   BITMAP_FREE (deleted_bbs);
823   BITMAP_FREE (deleted_bb_preds);
824   worklist.release ();
825 }
826 
827 /* Mark BB as deleted, and mark its predecessors.  */
828 
829 static void
830 mark_basic_block_deleted (basic_block bb)
831 {
832   edge e;
833   edge_iterator ei;
834 
835   bitmap_set_bit (deleted_bbs, bb->index);
836 
837   FOR_EACH_EDGE (e, ei, bb->preds)
838     bitmap_set_bit (deleted_bb_preds, e->src->index);
839 }
840 
841 /* Removes BB from its corresponding same_succ.  */
842 
843 static void
844 same_succ_flush_bb (basic_block bb)
845 {
846   same_succ same = BB_SAME_SUCC (bb);
847   if (! same)
848     return;
849 
850   BB_SAME_SUCC (bb) = NULL;
851   if (bitmap_single_bit_set_p (same->bbs))
852     same_succ_htab->remove_elt_with_hash (same, same->hashval);
853   else
854     bitmap_clear_bit (same->bbs, bb->index);
855 }
856 
857 /* Removes all bbs in BBS from their corresponding same_succ.  */
858 
859 static void
860 same_succ_flush_bbs (bitmap bbs)
861 {
862   unsigned int i;
863   bitmap_iterator bi;
864 
865   EXECUTE_IF_SET_IN_BITMAP (bbs, 0, i, bi)
866     same_succ_flush_bb (BASIC_BLOCK_FOR_FN (cfun, i));
867 }
868 
869 /* Release the last vdef in BB, either normal or phi result.  */
870 
871 static void
872 release_last_vdef (basic_block bb)
873 {
874   for (gimple_stmt_iterator i = gsi_last_bb (bb); !gsi_end_p (i);
875        gsi_prev_nondebug (&i))
876     {
877       gimple stmt = gsi_stmt (i);
878       if (gimple_vdef (stmt) == NULL_TREE)
879 	continue;
880 
881       mark_virtual_operand_for_renaming (gimple_vdef (stmt));
882       return;
883     }
884 
885   for (gphi_iterator i = gsi_start_phis (bb); !gsi_end_p (i);
886        gsi_next (&i))
887     {
888       gphi *phi = i.phi ();
889       tree res = gimple_phi_result (phi);
890 
891       if (!virtual_operand_p (res))
892 	continue;
893 
894       mark_virtual_phi_result_for_renaming (phi);
895       return;
896     }
897 
898 }
899 
900 /* For deleted_bb_preds, find bbs with same successors.  */
901 
902 static void
903 update_worklist (void)
904 {
905   unsigned int i;
906   bitmap_iterator bi;
907   basic_block bb;
908   same_succ same;
909 
910   bitmap_and_compl_into (deleted_bb_preds, deleted_bbs);
911   bitmap_clear (deleted_bbs);
912 
913   bitmap_clear_bit (deleted_bb_preds, ENTRY_BLOCK);
914   same_succ_flush_bbs (deleted_bb_preds);
915 
916   same = same_succ_alloc ();
917   EXECUTE_IF_SET_IN_BITMAP (deleted_bb_preds, 0, i, bi)
918     {
919       bb = BASIC_BLOCK_FOR_FN (cfun, i);
920       gcc_assert (bb != NULL);
921       find_same_succ_bb (bb, &same);
922       if (same == NULL)
923 	same = same_succ_alloc ();
924     }
925   same_succ_def::remove (same);
926   bitmap_clear (deleted_bb_preds);
927 }
928 
929 /* Prints cluster C to FILE.  */
930 
931 static void
932 print_cluster (FILE *file, bb_cluster c)
933 {
934   if (c == NULL)
935     return;
936   bitmap_print (file, c->bbs, "bbs:", "\n");
937   bitmap_print (file, c->preds, "preds:", "\n");
938 }
939 
940 /* Prints cluster C to stderr.  */
941 
942 extern void debug_cluster (bb_cluster);
943 DEBUG_FUNCTION void
944 debug_cluster (bb_cluster c)
945 {
946   print_cluster (stderr, c);
947 }
948 
949 /* Update C->rep_bb, given that BB is added to the cluster.  */
950 
951 static void
952 update_rep_bb (bb_cluster c, basic_block bb)
953 {
954   /* Initial.  */
955   if (c->rep_bb == NULL)
956     {
957       c->rep_bb = bb;
958       return;
959     }
960 
961   /* Current needs no deps, keep it.  */
962   if (BB_DEP_BB (c->rep_bb) == NULL)
963     return;
964 
965   /* Bb needs no deps, change rep_bb.  */
966   if (BB_DEP_BB (bb) == NULL)
967     {
968       c->rep_bb = bb;
969       return;
970     }
971 
972   /* Bb needs last deps earlier than current, change rep_bb.  A potential
973      problem with this, is that the first deps might also be earlier, which
974      would mean we prefer longer lifetimes for the deps.  To be able to check
975      for this, we would have to trace BB_FIRST_DEP_BB as well, besides
976      BB_DEP_BB, which is really BB_LAST_DEP_BB.
977      The benefit of choosing the bb with last deps earlier, is that it can
978      potentially be used as replacement for more bbs.  */
979   if (dominated_by_p (CDI_DOMINATORS, BB_DEP_BB (c->rep_bb), BB_DEP_BB (bb)))
980     c->rep_bb = bb;
981 }
982 
983 /* Add BB to cluster C.  Sets BB in C->bbs, and preds of BB in C->preds.  */
984 
985 static void
986 add_bb_to_cluster (bb_cluster c, basic_block bb)
987 {
988   edge e;
989   edge_iterator ei;
990 
991   bitmap_set_bit (c->bbs, bb->index);
992 
993   FOR_EACH_EDGE (e, ei, bb->preds)
994     bitmap_set_bit (c->preds, e->src->index);
995 
996   update_rep_bb (c, bb);
997 }
998 
999 /* Allocate and init new cluster.  */
1000 
1001 static bb_cluster
1002 new_cluster (void)
1003 {
1004   bb_cluster c;
1005   c = XCNEW (struct bb_cluster_def);
1006   c->bbs = BITMAP_ALLOC (NULL);
1007   c->preds = BITMAP_ALLOC (NULL);
1008   c->rep_bb = NULL;
1009   return c;
1010 }
1011 
1012 /* Delete clusters.  */
1013 
1014 static void
1015 delete_cluster (bb_cluster c)
1016 {
1017   if (c == NULL)
1018     return;
1019   BITMAP_FREE (c->bbs);
1020   BITMAP_FREE (c->preds);
1021   XDELETE (c);
1022 }
1023 
1024 
1025 /* Array that contains all clusters.  */
1026 
1027 static vec<bb_cluster> all_clusters;
1028 
1029 /* Allocate all cluster vectors.  */
1030 
1031 static void
1032 alloc_cluster_vectors (void)
1033 {
1034   all_clusters.create (n_basic_blocks_for_fn (cfun));
1035 }
1036 
1037 /* Reset all cluster vectors.  */
1038 
1039 static void
1040 reset_cluster_vectors (void)
1041 {
1042   unsigned int i;
1043   basic_block bb;
1044   for (i = 0; i < all_clusters.length (); ++i)
1045     delete_cluster (all_clusters[i]);
1046   all_clusters.truncate (0);
1047   FOR_EACH_BB_FN (bb, cfun)
1048     BB_CLUSTER (bb) = NULL;
1049 }
1050 
1051 /* Delete all cluster vectors.  */
1052 
1053 static void
1054 delete_cluster_vectors (void)
1055 {
1056   unsigned int i;
1057   for (i = 0; i < all_clusters.length (); ++i)
1058     delete_cluster (all_clusters[i]);
1059   all_clusters.release ();
1060 }
1061 
1062 /* Merge cluster C2 into C1.  */
1063 
1064 static void
1065 merge_clusters (bb_cluster c1, bb_cluster c2)
1066 {
1067   bitmap_ior_into (c1->bbs, c2->bbs);
1068   bitmap_ior_into (c1->preds, c2->preds);
1069 }
1070 
1071 /* Register equivalence of BB1 and BB2 (members of cluster C).  Store c in
1072    all_clusters, or merge c with existing cluster.  */
1073 
1074 static void
1075 set_cluster (basic_block bb1, basic_block bb2)
1076 {
1077   basic_block merge_bb, other_bb;
1078   bb_cluster merge, old, c;
1079 
1080   if (BB_CLUSTER (bb1) == NULL && BB_CLUSTER (bb2) == NULL)
1081     {
1082       c = new_cluster ();
1083       add_bb_to_cluster (c, bb1);
1084       add_bb_to_cluster (c, bb2);
1085       BB_CLUSTER (bb1) = c;
1086       BB_CLUSTER (bb2) = c;
1087       c->index = all_clusters.length ();
1088       all_clusters.safe_push (c);
1089     }
1090   else if (BB_CLUSTER (bb1) == NULL || BB_CLUSTER (bb2) == NULL)
1091     {
1092       merge_bb = BB_CLUSTER (bb1) == NULL ? bb2 : bb1;
1093       other_bb = BB_CLUSTER (bb1) == NULL ? bb1 : bb2;
1094       merge = BB_CLUSTER (merge_bb);
1095       add_bb_to_cluster (merge, other_bb);
1096       BB_CLUSTER (other_bb) = merge;
1097     }
1098   else if (BB_CLUSTER (bb1) != BB_CLUSTER (bb2))
1099     {
1100       unsigned int i;
1101       bitmap_iterator bi;
1102 
1103       old = BB_CLUSTER (bb2);
1104       merge = BB_CLUSTER (bb1);
1105       merge_clusters (merge, old);
1106       EXECUTE_IF_SET_IN_BITMAP (old->bbs, 0, i, bi)
1107 	BB_CLUSTER (BASIC_BLOCK_FOR_FN (cfun, i)) = merge;
1108       all_clusters[old->index] = NULL;
1109       update_rep_bb (merge, old->rep_bb);
1110       delete_cluster (old);
1111     }
1112   else
1113     gcc_unreachable ();
1114 }
1115 
1116 /* Return true if gimple operands T1 and T2 have the same value.  */
1117 
1118 static bool
1119 gimple_operand_equal_value_p (tree t1, tree t2)
1120 {
1121   if (t1 == t2)
1122     return true;
1123 
1124   if (t1 == NULL_TREE
1125       || t2 == NULL_TREE)
1126     return false;
1127 
1128   if (operand_equal_p (t1, t2, 0))
1129     return true;
1130 
1131   return gvn_uses_equal (t1, t2);
1132 }
1133 
1134 /* Return true if gimple statements S1 and S2 are equal.  Gimple_bb (s1) and
1135    gimple_bb (s2) are members of SAME_SUCC.  */
1136 
1137 static bool
1138 gimple_equal_p (same_succ same_succ, gimple s1, gimple s2)
1139 {
1140   unsigned int i;
1141   tree lhs1, lhs2;
1142   basic_block bb1 = gimple_bb (s1), bb2 = gimple_bb (s2);
1143   tree t1, t2;
1144   bool inv_cond;
1145   enum tree_code code1, code2;
1146 
1147   if (gimple_code (s1) != gimple_code (s2))
1148     return false;
1149 
1150   switch (gimple_code (s1))
1151     {
1152     case GIMPLE_CALL:
1153       if (!gimple_call_same_target_p (s1, s2))
1154         return false;
1155 
1156       t1 = gimple_call_chain (s1);
1157       t2 = gimple_call_chain (s2);
1158       if (!gimple_operand_equal_value_p (t1, t2))
1159 	return false;
1160 
1161       if (gimple_call_num_args (s1) != gimple_call_num_args (s2))
1162 	return false;
1163 
1164       for (i = 0; i < gimple_call_num_args (s1); ++i)
1165 	{
1166 	  t1 = gimple_call_arg (s1, i);
1167 	  t2 = gimple_call_arg (s2, i);
1168 	  if (!gimple_operand_equal_value_p (t1, t2))
1169 	    return false;
1170 	}
1171 
1172       lhs1 = gimple_get_lhs (s1);
1173       lhs2 = gimple_get_lhs (s2);
1174       if (lhs1 == NULL_TREE && lhs2 == NULL_TREE)
1175 	return true;
1176       if (lhs1 == NULL_TREE || lhs2 == NULL_TREE)
1177 	return false;
1178       if (TREE_CODE (lhs1) == SSA_NAME && TREE_CODE (lhs2) == SSA_NAME)
1179 	return vn_valueize (lhs1) == vn_valueize (lhs2);
1180       return operand_equal_p (lhs1, lhs2, 0);
1181 
1182     case GIMPLE_ASSIGN:
1183       lhs1 = gimple_get_lhs (s1);
1184       lhs2 = gimple_get_lhs (s2);
1185       if (TREE_CODE (lhs1) != SSA_NAME
1186 	  && TREE_CODE (lhs2) != SSA_NAME)
1187 	return (operand_equal_p (lhs1, lhs2, 0)
1188 		&& gimple_operand_equal_value_p (gimple_assign_rhs1 (s1),
1189 						 gimple_assign_rhs1 (s2)));
1190       else if (TREE_CODE (lhs1) == SSA_NAME
1191 	       && TREE_CODE (lhs2) == SSA_NAME)
1192 	return operand_equal_p (gimple_assign_rhs1 (s1),
1193 				gimple_assign_rhs1 (s2), 0);
1194       return false;
1195 
1196     case GIMPLE_COND:
1197       t1 = gimple_cond_lhs (s1);
1198       t2 = gimple_cond_lhs (s2);
1199       if (!gimple_operand_equal_value_p (t1, t2))
1200 	return false;
1201 
1202       t1 = gimple_cond_rhs (s1);
1203       t2 = gimple_cond_rhs (s2);
1204       if (!gimple_operand_equal_value_p (t1, t2))
1205 	return false;
1206 
1207       code1 = gimple_expr_code (s1);
1208       code2 = gimple_expr_code (s2);
1209       inv_cond = (bitmap_bit_p (same_succ->inverse, bb1->index)
1210 		  != bitmap_bit_p (same_succ->inverse, bb2->index));
1211       if (inv_cond)
1212 	{
1213 	  bool honor_nans = HONOR_NANS (t1);
1214 	  code2 = invert_tree_comparison (code2, honor_nans);
1215 	}
1216       return code1 == code2;
1217 
1218     default:
1219       return false;
1220     }
1221 }
1222 
1223 /* Let GSI skip backwards over local defs.  Return the earliest vuse in VUSE.
1224    Return true in VUSE_ESCAPED if the vuse influenced a SSA_OP_DEF of one of the
1225    processed statements.  */
1226 
1227 static void
1228 gsi_advance_bw_nondebug_nonlocal (gimple_stmt_iterator *gsi, tree *vuse,
1229 				  bool *vuse_escaped)
1230 {
1231   gimple stmt;
1232   tree lvuse;
1233 
1234   while (true)
1235     {
1236       if (gsi_end_p (*gsi))
1237 	return;
1238       stmt = gsi_stmt (*gsi);
1239 
1240       lvuse = gimple_vuse (stmt);
1241       if (lvuse != NULL_TREE)
1242 	{
1243 	  *vuse = lvuse;
1244 	  if (!ZERO_SSA_OPERANDS (stmt, SSA_OP_DEF))
1245 	    *vuse_escaped = true;
1246 	}
1247 
1248       if (!stmt_local_def (stmt))
1249 	return;
1250       gsi_prev_nondebug (gsi);
1251     }
1252 }
1253 
1254 /* Determines whether BB1 and BB2 (members of same_succ) are duplicates.  If so,
1255    clusters them.  */
1256 
1257 static void
1258 find_duplicate (same_succ same_succ, basic_block bb1, basic_block bb2)
1259 {
1260   gimple_stmt_iterator gsi1 = gsi_last_nondebug_bb (bb1);
1261   gimple_stmt_iterator gsi2 = gsi_last_nondebug_bb (bb2);
1262   tree vuse1 = NULL_TREE, vuse2 = NULL_TREE;
1263   bool vuse_escaped = false;
1264 
1265   gsi_advance_bw_nondebug_nonlocal (&gsi1, &vuse1, &vuse_escaped);
1266   gsi_advance_bw_nondebug_nonlocal (&gsi2, &vuse2, &vuse_escaped);
1267 
1268   while (!gsi_end_p (gsi1) && !gsi_end_p (gsi2))
1269     {
1270       gimple stmt1 = gsi_stmt (gsi1);
1271       gimple stmt2 = gsi_stmt (gsi2);
1272 
1273       /* What could be better than to this this here is to blacklist the bb
1274 	 containing the stmt, when encountering the stmt f.i. in
1275 	 same_succ_hash.  */
1276       if (is_tm_ending (stmt1)
1277 	  || is_tm_ending (stmt2))
1278 	return;
1279 
1280       /* Verify EH landing pads.  */
1281       if (lookup_stmt_eh_lp_fn (cfun, stmt1)
1282 	  != lookup_stmt_eh_lp_fn (cfun, stmt2))
1283 	return;
1284 
1285       if (!gimple_equal_p (same_succ, stmt1, stmt2))
1286 	return;
1287 
1288       gsi_prev_nondebug (&gsi1);
1289       gsi_prev_nondebug (&gsi2);
1290       gsi_advance_bw_nondebug_nonlocal (&gsi1, &vuse1, &vuse_escaped);
1291       gsi_advance_bw_nondebug_nonlocal (&gsi2, &vuse2, &vuse_escaped);
1292     }
1293 
1294   if (!(gsi_end_p (gsi1) && gsi_end_p (gsi2)))
1295     return;
1296 
1297   /* If the incoming vuses are not the same, and the vuse escaped into an
1298      SSA_OP_DEF, then merging the 2 blocks will change the value of the def,
1299      which potentially means the semantics of one of the blocks will be changed.
1300      TODO: make this check more precise.  */
1301   if (vuse_escaped && vuse1 != vuse2)
1302     return;
1303 
1304   if (dump_file)
1305     fprintf (dump_file, "find_duplicates: <bb %d> duplicate of <bb %d>\n",
1306 	     bb1->index, bb2->index);
1307 
1308   set_cluster (bb1, bb2);
1309 }
1310 
1311 /* Returns whether for all phis in DEST the phi alternatives for E1 and
1312    E2 are equal.  */
1313 
1314 static bool
1315 same_phi_alternatives_1 (basic_block dest, edge e1, edge e2)
1316 {
1317   int n1 = e1->dest_idx, n2 = e2->dest_idx;
1318   gphi_iterator gsi;
1319 
1320   for (gsi = gsi_start_phis (dest); !gsi_end_p (gsi); gsi_next (&gsi))
1321     {
1322       gphi *phi = gsi.phi ();
1323       tree lhs = gimple_phi_result (phi);
1324       tree val1 = gimple_phi_arg_def (phi, n1);
1325       tree val2 = gimple_phi_arg_def (phi, n2);
1326 
1327       if (virtual_operand_p (lhs))
1328 	continue;
1329 
1330       if (operand_equal_for_phi_arg_p (val1, val2))
1331         continue;
1332       if (gvn_uses_equal (val1, val2))
1333 	continue;
1334 
1335       return false;
1336     }
1337 
1338   return true;
1339 }
1340 
1341 /* Returns whether for all successors of BB1 and BB2 (members of SAME_SUCC), the
1342    phi alternatives for BB1 and BB2 are equal.  */
1343 
1344 static bool
1345 same_phi_alternatives (same_succ same_succ, basic_block bb1, basic_block bb2)
1346 {
1347   unsigned int s;
1348   bitmap_iterator bs;
1349   edge e1, e2;
1350   basic_block succ;
1351 
1352   EXECUTE_IF_SET_IN_BITMAP (same_succ->succs, 0, s, bs)
1353     {
1354       succ = BASIC_BLOCK_FOR_FN (cfun, s);
1355       e1 = find_edge (bb1, succ);
1356       e2 = find_edge (bb2, succ);
1357       if (e1->flags & EDGE_COMPLEX
1358 	  || e2->flags & EDGE_COMPLEX)
1359 	return false;
1360 
1361       /* For all phis in bb, the phi alternatives for e1 and e2 need to have
1362 	 the same value.  */
1363       if (!same_phi_alternatives_1 (succ, e1, e2))
1364 	return false;
1365     }
1366 
1367   return true;
1368 }
1369 
1370 /* Return true if BB has non-vop phis.  */
1371 
1372 static bool
1373 bb_has_non_vop_phi (basic_block bb)
1374 {
1375   gimple_seq phis = phi_nodes (bb);
1376   gimple phi;
1377 
1378   if (phis == NULL)
1379     return false;
1380 
1381   if (!gimple_seq_singleton_p (phis))
1382     return true;
1383 
1384   phi = gimple_seq_first_stmt (phis);
1385   return !virtual_operand_p (gimple_phi_result (phi));
1386 }
1387 
1388 /* Returns true if redirecting the incoming edges of FROM to TO maintains the
1389    invariant that uses in FROM are dominates by their defs.  */
1390 
1391 static bool
1392 deps_ok_for_redirect_from_bb_to_bb (basic_block from, basic_block to)
1393 {
1394   basic_block cd, dep_bb = BB_DEP_BB (to);
1395   edge_iterator ei;
1396   edge e;
1397   bitmap from_preds = BITMAP_ALLOC (NULL);
1398 
1399   if (dep_bb == NULL)
1400     return true;
1401 
1402   FOR_EACH_EDGE (e, ei, from->preds)
1403     bitmap_set_bit (from_preds, e->src->index);
1404   cd = nearest_common_dominator_for_set (CDI_DOMINATORS, from_preds);
1405   BITMAP_FREE (from_preds);
1406 
1407   return dominated_by_p (CDI_DOMINATORS, dep_bb, cd);
1408 }
1409 
1410 /* Returns true if replacing BB1 (or its replacement bb) by BB2 (or its
1411    replacement bb) and vice versa maintains the invariant that uses in the
1412    replacement are dominates by their defs.  */
1413 
1414 static bool
1415 deps_ok_for_redirect (basic_block bb1, basic_block bb2)
1416 {
1417   if (BB_CLUSTER (bb1) != NULL)
1418     bb1 = BB_CLUSTER (bb1)->rep_bb;
1419 
1420   if (BB_CLUSTER (bb2) != NULL)
1421     bb2 = BB_CLUSTER (bb2)->rep_bb;
1422 
1423   return (deps_ok_for_redirect_from_bb_to_bb (bb1, bb2)
1424 	  && deps_ok_for_redirect_from_bb_to_bb (bb2, bb1));
1425 }
1426 
1427 /* Within SAME_SUCC->bbs, find clusters of bbs which can be merged.  */
1428 
1429 static void
1430 find_clusters_1 (same_succ same_succ)
1431 {
1432   basic_block bb1, bb2;
1433   unsigned int i, j;
1434   bitmap_iterator bi, bj;
1435   int nr_comparisons;
1436   int max_comparisons = PARAM_VALUE (PARAM_MAX_TAIL_MERGE_COMPARISONS);
1437 
1438   EXECUTE_IF_SET_IN_BITMAP (same_succ->bbs, 0, i, bi)
1439     {
1440       bb1 = BASIC_BLOCK_FOR_FN (cfun, i);
1441 
1442       /* TODO: handle blocks with phi-nodes.  We'll have to find corresponding
1443 	 phi-nodes in bb1 and bb2, with the same alternatives for the same
1444 	 preds.  */
1445       if (bb_has_non_vop_phi (bb1))
1446 	continue;
1447 
1448       nr_comparisons = 0;
1449       EXECUTE_IF_SET_IN_BITMAP (same_succ->bbs, i + 1, j, bj)
1450 	{
1451 	  bb2 = BASIC_BLOCK_FOR_FN (cfun, j);
1452 
1453 	  if (bb_has_non_vop_phi (bb2))
1454 	    continue;
1455 
1456 	  if (BB_CLUSTER (bb1) != NULL && BB_CLUSTER (bb1) == BB_CLUSTER (bb2))
1457 	    continue;
1458 
1459 	  /* Limit quadratic behaviour.  */
1460 	  nr_comparisons++;
1461 	  if (nr_comparisons > max_comparisons)
1462 	    break;
1463 
1464 	  /* This is a conservative dependency check.  We could test more
1465 	     precise for allowed replacement direction.  */
1466 	  if (!deps_ok_for_redirect (bb1, bb2))
1467 	    continue;
1468 
1469 	  if (!(same_phi_alternatives (same_succ, bb1, bb2)))
1470 	    continue;
1471 
1472 	  find_duplicate (same_succ, bb1, bb2);
1473         }
1474     }
1475 }
1476 
1477 /* Find clusters of bbs which can be merged.  */
1478 
1479 static void
1480 find_clusters (void)
1481 {
1482   same_succ same;
1483 
1484   while (!worklist.is_empty ())
1485     {
1486       same = worklist.pop ();
1487       same->in_worklist = false;
1488       if (dump_file && (dump_flags & TDF_DETAILS))
1489 	{
1490 	  fprintf (dump_file, "processing worklist entry\n");
1491 	  same_succ_print (dump_file, same);
1492 	}
1493       find_clusters_1 (same);
1494     }
1495 }
1496 
1497 /* Returns the vop phi of BB, if any.  */
1498 
1499 static gphi *
1500 vop_phi (basic_block bb)
1501 {
1502   gphi *stmt;
1503   gphi_iterator gsi;
1504   for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1505     {
1506       stmt = gsi.phi ();
1507       if (! virtual_operand_p (gimple_phi_result (stmt)))
1508 	continue;
1509       return stmt;
1510     }
1511   return NULL;
1512 }
1513 
1514 /* Redirect all edges from BB1 to BB2, removes BB1 and marks it as removed.  */
1515 
1516 static void
1517 replace_block_by (basic_block bb1, basic_block bb2)
1518 {
1519   edge pred_edge;
1520   edge e1, e2;
1521   edge_iterator ei;
1522   unsigned int i;
1523   gphi *bb2_phi;
1524 
1525   bb2_phi = vop_phi (bb2);
1526 
1527   /* Mark the basic block as deleted.  */
1528   mark_basic_block_deleted (bb1);
1529 
1530   /* Redirect the incoming edges of bb1 to bb2.  */
1531   for (i = EDGE_COUNT (bb1->preds); i > 0 ; --i)
1532     {
1533       pred_edge = EDGE_PRED (bb1, i - 1);
1534       pred_edge = redirect_edge_and_branch (pred_edge, bb2);
1535       gcc_assert (pred_edge != NULL);
1536 
1537       if (bb2_phi == NULL)
1538 	continue;
1539 
1540       /* The phi might have run out of capacity when the redirect added an
1541 	 argument, which means it could have been replaced.  Refresh it.  */
1542       bb2_phi = vop_phi (bb2);
1543 
1544       add_phi_arg (bb2_phi, SSA_NAME_VAR (gimple_phi_result (bb2_phi)),
1545 		   pred_edge, UNKNOWN_LOCATION);
1546     }
1547 
1548   bb2->frequency += bb1->frequency;
1549   if (bb2->frequency > BB_FREQ_MAX)
1550     bb2->frequency = BB_FREQ_MAX;
1551 
1552   bb2->count += bb1->count;
1553 
1554   /* Merge the outgoing edge counts from bb1 onto bb2.  */
1555   gcov_type out_sum = 0;
1556   FOR_EACH_EDGE (e1, ei, bb1->succs)
1557     {
1558       e2 = find_edge (bb2, e1->dest);
1559       gcc_assert (e2);
1560       e2->count += e1->count;
1561       out_sum += e2->count;
1562     }
1563   /* Recompute the edge probabilities from the new merged edge count.
1564      Use the sum of the new merged edge counts computed above instead
1565      of bb2's merged count, in case there are profile count insanities
1566      making the bb count inconsistent with the edge weights.  */
1567   FOR_EACH_EDGE (e2, ei, bb2->succs)
1568     {
1569       e2->probability = GCOV_COMPUTE_SCALE (e2->count, out_sum);
1570     }
1571 
1572   /* Clear range info from all stmts in BB2 -- this transformation
1573      could make them out of date.  */
1574   reset_flow_sensitive_info_in_bb (bb2);
1575 
1576   /* Do updates that use bb1, before deleting bb1.  */
1577   release_last_vdef (bb1);
1578   same_succ_flush_bb (bb1);
1579 
1580   delete_basic_block (bb1);
1581 }
1582 
1583 /* Bbs for which update_debug_stmt need to be called.  */
1584 
1585 static bitmap update_bbs;
1586 
1587 /* For each cluster in all_clusters, merge all cluster->bbs.  Returns
1588    number of bbs removed.  */
1589 
1590 static int
1591 apply_clusters (void)
1592 {
1593   basic_block bb1, bb2;
1594   bb_cluster c;
1595   unsigned int i, j;
1596   bitmap_iterator bj;
1597   int nr_bbs_removed = 0;
1598 
1599   for (i = 0; i < all_clusters.length (); ++i)
1600     {
1601       c = all_clusters[i];
1602       if (c == NULL)
1603 	continue;
1604 
1605       bb2 = c->rep_bb;
1606       bitmap_set_bit (update_bbs, bb2->index);
1607 
1608       bitmap_clear_bit (c->bbs, bb2->index);
1609       EXECUTE_IF_SET_IN_BITMAP (c->bbs, 0, j, bj)
1610 	{
1611 	  bb1 = BASIC_BLOCK_FOR_FN (cfun, j);
1612 	  bitmap_clear_bit (update_bbs, bb1->index);
1613 
1614 	  replace_block_by (bb1, bb2);
1615 	  nr_bbs_removed++;
1616 	}
1617     }
1618 
1619   return nr_bbs_removed;
1620 }
1621 
1622 /* Resets debug statement STMT if it has uses that are not dominated by their
1623    defs.  */
1624 
1625 static void
1626 update_debug_stmt (gimple stmt)
1627 {
1628   use_operand_p use_p;
1629   ssa_op_iter oi;
1630   basic_block bbuse;
1631 
1632   if (!gimple_debug_bind_p (stmt))
1633     return;
1634 
1635   bbuse = gimple_bb (stmt);
1636   FOR_EACH_PHI_OR_STMT_USE (use_p, stmt, oi, SSA_OP_USE)
1637     {
1638       tree name = USE_FROM_PTR (use_p);
1639       gimple def_stmt = SSA_NAME_DEF_STMT (name);
1640       basic_block bbdef = gimple_bb (def_stmt);
1641       if (bbdef == NULL || bbuse == bbdef
1642 	  || dominated_by_p (CDI_DOMINATORS, bbuse, bbdef))
1643 	continue;
1644 
1645       gimple_debug_bind_reset_value (stmt);
1646       update_stmt (stmt);
1647       break;
1648     }
1649 }
1650 
1651 /* Resets all debug statements that have uses that are not
1652    dominated by their defs.  */
1653 
1654 static void
1655 update_debug_stmts (void)
1656 {
1657   basic_block bb;
1658   bitmap_iterator bi;
1659   unsigned int i;
1660 
1661   EXECUTE_IF_SET_IN_BITMAP (update_bbs, 0, i, bi)
1662     {
1663       gimple stmt;
1664       gimple_stmt_iterator gsi;
1665 
1666       bb = BASIC_BLOCK_FOR_FN (cfun, i);
1667       for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1668 	{
1669 	  stmt = gsi_stmt (gsi);
1670 	  if (!is_gimple_debug (stmt))
1671 	    continue;
1672 	  update_debug_stmt (stmt);
1673 	}
1674     }
1675 }
1676 
1677 /* Runs tail merge optimization.  */
1678 
1679 unsigned int
1680 tail_merge_optimize (unsigned int todo)
1681 {
1682   int nr_bbs_removed_total = 0;
1683   int nr_bbs_removed;
1684   bool loop_entered = false;
1685   int iteration_nr = 0;
1686   int max_iterations = PARAM_VALUE (PARAM_MAX_TAIL_MERGE_ITERATIONS);
1687 
1688   if (!flag_tree_tail_merge
1689       || max_iterations == 0)
1690     return 0;
1691 
1692   timevar_push (TV_TREE_TAIL_MERGE);
1693 
1694   if (!dom_info_available_p (CDI_DOMINATORS))
1695     {
1696       /* PRE can leave us with unreachable blocks, remove them now.  */
1697       delete_unreachable_blocks ();
1698       calculate_dominance_info (CDI_DOMINATORS);
1699     }
1700   init_worklist ();
1701 
1702   while (!worklist.is_empty ())
1703     {
1704       if (!loop_entered)
1705 	{
1706 	  loop_entered = true;
1707 	  alloc_cluster_vectors ();
1708 	  update_bbs = BITMAP_ALLOC (NULL);
1709 	}
1710       else
1711 	reset_cluster_vectors ();
1712 
1713       iteration_nr++;
1714       if (dump_file && (dump_flags & TDF_DETAILS))
1715 	fprintf (dump_file, "worklist iteration #%d\n", iteration_nr);
1716 
1717       find_clusters ();
1718       gcc_assert (worklist.is_empty ());
1719       if (all_clusters.is_empty ())
1720 	break;
1721 
1722       nr_bbs_removed = apply_clusters ();
1723       nr_bbs_removed_total += nr_bbs_removed;
1724       if (nr_bbs_removed == 0)
1725 	break;
1726 
1727       free_dominance_info (CDI_DOMINATORS);
1728 
1729       if (iteration_nr == max_iterations)
1730 	break;
1731 
1732       calculate_dominance_info (CDI_DOMINATORS);
1733       update_worklist ();
1734     }
1735 
1736   if (dump_file && (dump_flags & TDF_DETAILS))
1737     fprintf (dump_file, "htab collision / search: %f\n",
1738 	     same_succ_htab->collisions ());
1739 
1740   if (nr_bbs_removed_total > 0)
1741     {
1742       if (MAY_HAVE_DEBUG_STMTS)
1743 	{
1744 	  calculate_dominance_info (CDI_DOMINATORS);
1745 	  update_debug_stmts ();
1746 	}
1747 
1748       if (dump_file && (dump_flags & TDF_DETAILS))
1749 	{
1750 	  fprintf (dump_file, "Before TODOs.\n");
1751 	  dump_function_to_file (current_function_decl, dump_file, dump_flags);
1752 	}
1753 
1754       mark_virtual_operands_for_renaming (cfun);
1755     }
1756 
1757   delete_worklist ();
1758   if (loop_entered)
1759     {
1760       delete_cluster_vectors ();
1761       BITMAP_FREE (update_bbs);
1762     }
1763 
1764   timevar_pop (TV_TREE_TAIL_MERGE);
1765 
1766   return todo;
1767 }
1768