1 /* Code sinking for trees 2 Copyright (C) 2001-2013 Free Software Foundation, Inc. 3 Contributed by Daniel Berlin <dan@dberlin.org> 4 5 This file is part of GCC. 6 7 GCC is free software; you can redistribute it and/or modify 8 it under the terms of the GNU General Public License as published by 9 the Free Software Foundation; either version 3, or (at your option) 10 any later version. 11 12 GCC is distributed in the hope that it will be useful, 13 but WITHOUT ANY WARRANTY; without even the implied warranty of 14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 GNU General Public License for more details. 16 17 You should have received a copy of the GNU General Public License 18 along with GCC; see the file COPYING3. If not see 19 <http://www.gnu.org/licenses/>. */ 20 21 #include "config.h" 22 #include "system.h" 23 #include "coretypes.h" 24 #include "tm.h" 25 #include "tree.h" 26 #include "basic-block.h" 27 #include "gimple-pretty-print.h" 28 #include "tree-inline.h" 29 #include "tree-flow.h" 30 #include "gimple.h" 31 #include "hashtab.h" 32 #include "tree-iterator.h" 33 #include "alloc-pool.h" 34 #include "tree-pass.h" 35 #include "flags.h" 36 #include "bitmap.h" 37 #include "cfgloop.h" 38 #include "params.h" 39 40 /* TODO: 41 1. Sinking store only using scalar promotion (IE without moving the RHS): 42 43 *q = p; 44 p = p + 1; 45 if (something) 46 *q = <not p>; 47 else 48 y = *q; 49 50 51 should become 52 sinktemp = p; 53 p = p + 1; 54 if (something) 55 *q = <not p>; 56 else 57 { 58 *q = sinktemp; 59 y = *q 60 } 61 Store copy propagation will take care of the store elimination above. 62 63 64 2. Sinking using Partial Dead Code Elimination. */ 65 66 67 static struct 68 { 69 /* The number of statements sunk down the flowgraph by code sinking. */ 70 int sunk; 71 72 } sink_stats; 73 74 75 /* Given a PHI, and one of its arguments (DEF), find the edge for 76 that argument and return it. If the argument occurs twice in the PHI node, 77 we return NULL. */ 78 79 static basic_block 80 find_bb_for_arg (gimple phi, tree def) 81 { 82 size_t i; 83 bool foundone = false; 84 basic_block result = NULL; 85 for (i = 0; i < gimple_phi_num_args (phi); i++) 86 if (PHI_ARG_DEF (phi, i) == def) 87 { 88 if (foundone) 89 return NULL; 90 foundone = true; 91 result = gimple_phi_arg_edge (phi, i)->src; 92 } 93 return result; 94 } 95 96 /* When the first immediate use is in a statement, then return true if all 97 immediate uses in IMM are in the same statement. 98 We could also do the case where the first immediate use is in a phi node, 99 and all the other uses are in phis in the same basic block, but this 100 requires some expensive checking later (you have to make sure no def/vdef 101 in the statement occurs for multiple edges in the various phi nodes it's 102 used in, so that you only have one place you can sink it to. */ 103 104 static bool 105 all_immediate_uses_same_place (gimple stmt) 106 { 107 gimple firstuse = NULL; 108 ssa_op_iter op_iter; 109 imm_use_iterator imm_iter; 110 use_operand_p use_p; 111 tree var; 112 113 FOR_EACH_SSA_TREE_OPERAND (var, stmt, op_iter, SSA_OP_ALL_DEFS) 114 { 115 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, var) 116 { 117 if (is_gimple_debug (USE_STMT (use_p))) 118 continue; 119 if (firstuse == NULL) 120 firstuse = USE_STMT (use_p); 121 else 122 if (firstuse != USE_STMT (use_p)) 123 return false; 124 } 125 } 126 127 return true; 128 } 129 130 /* Find the nearest common dominator of all of the immediate uses in IMM. */ 131 132 static basic_block 133 nearest_common_dominator_of_uses (gimple stmt, bool *debug_stmts) 134 { 135 bitmap blocks = BITMAP_ALLOC (NULL); 136 basic_block commondom; 137 unsigned int j; 138 bitmap_iterator bi; 139 ssa_op_iter op_iter; 140 imm_use_iterator imm_iter; 141 use_operand_p use_p; 142 tree var; 143 144 bitmap_clear (blocks); 145 FOR_EACH_SSA_TREE_OPERAND (var, stmt, op_iter, SSA_OP_ALL_DEFS) 146 { 147 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, var) 148 { 149 gimple usestmt = USE_STMT (use_p); 150 basic_block useblock; 151 152 if (gimple_code (usestmt) == GIMPLE_PHI) 153 { 154 int idx = PHI_ARG_INDEX_FROM_USE (use_p); 155 156 useblock = gimple_phi_arg_edge (usestmt, idx)->src; 157 } 158 else if (is_gimple_debug (usestmt)) 159 { 160 *debug_stmts = true; 161 continue; 162 } 163 else 164 { 165 useblock = gimple_bb (usestmt); 166 } 167 168 /* Short circuit. Nothing dominates the entry block. */ 169 if (useblock == ENTRY_BLOCK_PTR) 170 { 171 BITMAP_FREE (blocks); 172 return NULL; 173 } 174 bitmap_set_bit (blocks, useblock->index); 175 } 176 } 177 commondom = BASIC_BLOCK (bitmap_first_set_bit (blocks)); 178 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, j, bi) 179 commondom = nearest_common_dominator (CDI_DOMINATORS, commondom, 180 BASIC_BLOCK (j)); 181 BITMAP_FREE (blocks); 182 return commondom; 183 } 184 185 /* Given EARLY_BB and LATE_BB, two blocks in a path through the dominator 186 tree, return the best basic block between them (inclusive) to place 187 statements. 188 189 We want the most control dependent block in the shallowest loop nest. 190 191 If the resulting block is in a shallower loop nest, then use it. Else 192 only use the resulting block if it has significantly lower execution 193 frequency than EARLY_BB to avoid gratutious statement movement. We 194 consider statements with VOPS more desirable to move. 195 196 This pass would obviously benefit from PDO as it utilizes block 197 frequencies. It would also benefit from recomputing frequencies 198 if profile data is not available since frequencies often get out 199 of sync with reality. */ 200 201 static basic_block 202 select_best_block (basic_block early_bb, 203 basic_block late_bb, 204 gimple stmt) 205 { 206 basic_block best_bb = late_bb; 207 basic_block temp_bb = late_bb; 208 int threshold; 209 210 while (temp_bb != early_bb) 211 { 212 /* If we've moved into a lower loop nest, then that becomes 213 our best block. */ 214 if (bb_loop_depth (temp_bb) < bb_loop_depth (best_bb)) 215 best_bb = temp_bb; 216 217 /* Walk up the dominator tree, hopefully we'll find a shallower 218 loop nest. */ 219 temp_bb = get_immediate_dominator (CDI_DOMINATORS, temp_bb); 220 } 221 222 /* If we found a shallower loop nest, then we always consider that 223 a win. This will always give us the most control dependent block 224 within that loop nest. */ 225 if (bb_loop_depth (best_bb) < bb_loop_depth (early_bb)) 226 return best_bb; 227 228 /* Get the sinking threshold. If the statement to be moved has memory 229 operands, then increase the threshold by 7% as those are even more 230 profitable to avoid, clamping at 100%. */ 231 threshold = PARAM_VALUE (PARAM_SINK_FREQUENCY_THRESHOLD); 232 if (gimple_vuse (stmt) || gimple_vdef (stmt)) 233 { 234 threshold += 7; 235 if (threshold > 100) 236 threshold = 100; 237 } 238 239 /* If BEST_BB is at the same nesting level, then require it to have 240 significantly lower execution frequency to avoid gratutious movement. */ 241 if (bb_loop_depth (best_bb) == bb_loop_depth (early_bb) 242 && best_bb->frequency < (early_bb->frequency * threshold / 100.0)) 243 return best_bb; 244 245 /* No better block found, so return EARLY_BB, which happens to be the 246 statement's original block. */ 247 return early_bb; 248 } 249 250 /* Given a statement (STMT) and the basic block it is currently in (FROMBB), 251 determine the location to sink the statement to, if any. 252 Returns true if there is such location; in that case, TOGSI points to the 253 statement before that STMT should be moved. */ 254 255 static bool 256 statement_sink_location (gimple stmt, basic_block frombb, 257 gimple_stmt_iterator *togsi) 258 { 259 gimple use; 260 use_operand_p one_use = NULL_USE_OPERAND_P; 261 basic_block sinkbb; 262 use_operand_p use_p; 263 def_operand_p def_p; 264 ssa_op_iter iter; 265 imm_use_iterator imm_iter; 266 267 /* We only can sink assignments. */ 268 if (!is_gimple_assign (stmt)) 269 return false; 270 271 /* We only can sink stmts with a single definition. */ 272 def_p = single_ssa_def_operand (stmt, SSA_OP_ALL_DEFS); 273 if (def_p == NULL_DEF_OPERAND_P) 274 return false; 275 276 /* Return if there are no immediate uses of this stmt. */ 277 if (has_zero_uses (DEF_FROM_PTR (def_p))) 278 return false; 279 280 /* There are a few classes of things we can't or don't move, some because we 281 don't have code to handle it, some because it's not profitable and some 282 because it's not legal. 283 284 We can't sink things that may be global stores, at least not without 285 calculating a lot more information, because we may cause it to no longer 286 be seen by an external routine that needs it depending on where it gets 287 moved to. 288 289 We don't want to sink loads from memory. 290 291 We can't sink statements that end basic blocks without splitting the 292 incoming edge for the sink location to place it there. 293 294 We can't sink statements that have volatile operands. 295 296 We don't want to sink dead code, so anything with 0 immediate uses is not 297 sunk. 298 299 Don't sink BLKmode assignments if current function has any local explicit 300 register variables, as BLKmode assignments may involve memcpy or memset 301 calls or, on some targets, inline expansion thereof that sometimes need 302 to use specific hard registers. 303 304 */ 305 if (stmt_ends_bb_p (stmt) 306 || gimple_has_side_effects (stmt) 307 || gimple_has_volatile_ops (stmt) 308 || (gimple_vuse (stmt) && !gimple_vdef (stmt)) 309 || (cfun->has_local_explicit_reg_vars 310 && TYPE_MODE (TREE_TYPE (gimple_assign_lhs (stmt))) == BLKmode)) 311 return false; 312 313 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (DEF_FROM_PTR (def_p))) 314 return false; 315 316 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_ALL_USES) 317 { 318 tree use = USE_FROM_PTR (use_p); 319 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (use)) 320 return false; 321 } 322 323 use = NULL; 324 325 /* If stmt is a store the one and only use needs to be the VOP 326 merging PHI node. */ 327 if (gimple_vdef (stmt)) 328 { 329 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, DEF_FROM_PTR (def_p)) 330 { 331 gimple use_stmt = USE_STMT (use_p); 332 333 /* A killing definition is not a use. */ 334 if (gimple_assign_single_p (use_stmt) 335 && gimple_vdef (use_stmt) 336 && operand_equal_p (gimple_assign_lhs (stmt), 337 gimple_assign_lhs (use_stmt), 0)) 338 { 339 /* If use_stmt is or might be a nop assignment then USE_STMT 340 acts as a use as well as definition. */ 341 if (stmt != use_stmt 342 && ref_maybe_used_by_stmt_p (use_stmt, 343 gimple_assign_lhs (stmt))) 344 return false; 345 continue; 346 } 347 348 if (gimple_code (use_stmt) != GIMPLE_PHI) 349 return false; 350 351 if (use 352 && use != use_stmt) 353 return false; 354 355 use = use_stmt; 356 } 357 if (!use) 358 return false; 359 } 360 /* If all the immediate uses are not in the same place, find the nearest 361 common dominator of all the immediate uses. For PHI nodes, we have to 362 find the nearest common dominator of all of the predecessor blocks, since 363 that is where insertion would have to take place. */ 364 else if (!all_immediate_uses_same_place (stmt)) 365 { 366 bool debug_stmts = false; 367 basic_block commondom = nearest_common_dominator_of_uses (stmt, 368 &debug_stmts); 369 370 if (commondom == frombb) 371 return false; 372 373 /* Our common dominator has to be dominated by frombb in order to be a 374 trivially safe place to put this statement, since it has multiple 375 uses. */ 376 if (!dominated_by_p (CDI_DOMINATORS, commondom, frombb)) 377 return false; 378 379 commondom = select_best_block (frombb, commondom, stmt); 380 381 if (commondom == frombb) 382 return false; 383 384 *togsi = gsi_after_labels (commondom); 385 386 return true; 387 } 388 else 389 { 390 FOR_EACH_IMM_USE_FAST (one_use, imm_iter, DEF_FROM_PTR (def_p)) 391 { 392 if (is_gimple_debug (USE_STMT (one_use))) 393 continue; 394 break; 395 } 396 use = USE_STMT (one_use); 397 398 if (gimple_code (use) != GIMPLE_PHI) 399 { 400 sinkbb = gimple_bb (use); 401 sinkbb = select_best_block (frombb, gimple_bb (use), stmt); 402 403 if (sinkbb == frombb) 404 return false; 405 406 *togsi = gsi_for_stmt (use); 407 408 return true; 409 } 410 } 411 412 sinkbb = find_bb_for_arg (use, DEF_FROM_PTR (def_p)); 413 414 /* This can happen if there are multiple uses in a PHI. */ 415 if (!sinkbb) 416 return false; 417 418 sinkbb = select_best_block (frombb, sinkbb, stmt); 419 if (!sinkbb || sinkbb == frombb) 420 return false; 421 422 /* If the latch block is empty, don't make it non-empty by sinking 423 something into it. */ 424 if (sinkbb == frombb->loop_father->latch 425 && empty_block_p (sinkbb)) 426 return false; 427 428 *togsi = gsi_after_labels (sinkbb); 429 430 return true; 431 } 432 433 /* Perform code sinking on BB */ 434 435 static void 436 sink_code_in_bb (basic_block bb) 437 { 438 basic_block son; 439 gimple_stmt_iterator gsi; 440 edge_iterator ei; 441 edge e; 442 bool last = true; 443 444 /* If this block doesn't dominate anything, there can't be any place to sink 445 the statements to. */ 446 if (first_dom_son (CDI_DOMINATORS, bb) == NULL) 447 goto earlyout; 448 449 /* We can't move things across abnormal edges, so don't try. */ 450 FOR_EACH_EDGE (e, ei, bb->succs) 451 if (e->flags & EDGE_ABNORMAL) 452 goto earlyout; 453 454 for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi);) 455 { 456 gimple stmt = gsi_stmt (gsi); 457 gimple_stmt_iterator togsi; 458 459 if (!statement_sink_location (stmt, bb, &togsi)) 460 { 461 if (!gsi_end_p (gsi)) 462 gsi_prev (&gsi); 463 last = false; 464 continue; 465 } 466 if (dump_file) 467 { 468 fprintf (dump_file, "Sinking "); 469 print_gimple_stmt (dump_file, stmt, 0, TDF_VOPS); 470 fprintf (dump_file, " from bb %d to bb %d\n", 471 bb->index, (gsi_bb (togsi))->index); 472 } 473 474 /* Update virtual operands of statements in the path we 475 do not sink to. */ 476 if (gimple_vdef (stmt)) 477 { 478 imm_use_iterator iter; 479 use_operand_p use_p; 480 gimple vuse_stmt; 481 482 FOR_EACH_IMM_USE_STMT (vuse_stmt, iter, gimple_vdef (stmt)) 483 if (gimple_code (vuse_stmt) != GIMPLE_PHI) 484 FOR_EACH_IMM_USE_ON_STMT (use_p, iter) 485 SET_USE (use_p, gimple_vuse (stmt)); 486 } 487 488 /* If this is the end of the basic block, we need to insert at the end 489 of the basic block. */ 490 if (gsi_end_p (togsi)) 491 gsi_move_to_bb_end (&gsi, gsi_bb (togsi)); 492 else 493 gsi_move_before (&gsi, &togsi); 494 495 sink_stats.sunk++; 496 497 /* If we've just removed the last statement of the BB, the 498 gsi_end_p() test below would fail, but gsi_prev() would have 499 succeeded, and we want it to succeed. So we keep track of 500 whether we're at the last statement and pick up the new last 501 statement. */ 502 if (last) 503 { 504 gsi = gsi_last_bb (bb); 505 continue; 506 } 507 508 last = false; 509 if (!gsi_end_p (gsi)) 510 gsi_prev (&gsi); 511 512 } 513 earlyout: 514 for (son = first_dom_son (CDI_POST_DOMINATORS, bb); 515 son; 516 son = next_dom_son (CDI_POST_DOMINATORS, son)) 517 { 518 sink_code_in_bb (son); 519 } 520 } 521 522 /* Perform code sinking. 523 This moves code down the flowgraph when we know it would be 524 profitable to do so, or it wouldn't increase the number of 525 executions of the statement. 526 527 IE given 528 529 a_1 = b + c; 530 if (<something>) 531 { 532 } 533 else 534 { 535 foo (&b, &c); 536 a_5 = b + c; 537 } 538 a_6 = PHI (a_5, a_1); 539 USE a_6. 540 541 we'll transform this into: 542 543 if (<something>) 544 { 545 a_1 = b + c; 546 } 547 else 548 { 549 foo (&b, &c); 550 a_5 = b + c; 551 } 552 a_6 = PHI (a_5, a_1); 553 USE a_6. 554 555 Note that this reduces the number of computations of a = b + c to 1 556 when we take the else edge, instead of 2. 557 */ 558 static void 559 execute_sink_code (void) 560 { 561 loop_optimizer_init (LOOPS_NORMAL); 562 split_critical_edges (); 563 connect_infinite_loops_to_exit (); 564 memset (&sink_stats, 0, sizeof (sink_stats)); 565 calculate_dominance_info (CDI_DOMINATORS); 566 calculate_dominance_info (CDI_POST_DOMINATORS); 567 sink_code_in_bb (EXIT_BLOCK_PTR); 568 statistics_counter_event (cfun, "Sunk statements", sink_stats.sunk); 569 free_dominance_info (CDI_POST_DOMINATORS); 570 remove_fake_exit_edges (); 571 loop_optimizer_finalize (); 572 } 573 574 /* Gate and execute functions for PRE. */ 575 576 static unsigned int 577 do_sink (void) 578 { 579 execute_sink_code (); 580 return 0; 581 } 582 583 static bool 584 gate_sink (void) 585 { 586 return flag_tree_sink != 0; 587 } 588 589 struct gimple_opt_pass pass_sink_code = 590 { 591 { 592 GIMPLE_PASS, 593 "sink", /* name */ 594 OPTGROUP_NONE, /* optinfo_flags */ 595 gate_sink, /* gate */ 596 do_sink, /* execute */ 597 NULL, /* sub */ 598 NULL, /* next */ 599 0, /* static_pass_number */ 600 TV_TREE_SINK, /* tv_id */ 601 PROP_no_crit_edges | PROP_cfg 602 | PROP_ssa, /* properties_required */ 603 0, /* properties_provided */ 604 0, /* properties_destroyed */ 605 0, /* todo_flags_start */ 606 TODO_update_ssa 607 | TODO_verify_ssa 608 | TODO_verify_flow 609 | TODO_ggc_collect /* todo_flags_finish */ 610 } 611 }; 612