1 /* Generic SSA value propagation engine. 2 Copyright (C) 2004-2013 Free Software Foundation, Inc. 3 Contributed by Diego Novillo <dnovillo@redhat.com> 4 5 This file is part of GCC. 6 7 GCC is free software; you can redistribute it and/or modify it 8 under the terms of the GNU General Public License as published by the 9 Free Software Foundation; either version 3, or (at your option) any 10 later version. 11 12 GCC is distributed in the hope that it will be useful, but WITHOUT 13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 15 for more details. 16 17 You should have received a copy of the GNU General Public License 18 along with GCC; see the file COPYING3. If not see 19 <http://www.gnu.org/licenses/>. */ 20 21 #include "config.h" 22 #include "system.h" 23 #include "coretypes.h" 24 #include "tm.h" 25 #include "tree.h" 26 #include "flags.h" 27 #include "tm_p.h" 28 #include "basic-block.h" 29 #include "function.h" 30 #include "gimple-pretty-print.h" 31 #include "dumpfile.h" 32 #include "tree-flow.h" 33 #include "tree-ssa-propagate.h" 34 #include "langhooks.h" 35 #include "vec.h" 36 #include "value-prof.h" 37 #include "gimple.h" 38 39 /* This file implements a generic value propagation engine based on 40 the same propagation used by the SSA-CCP algorithm [1]. 41 42 Propagation is performed by simulating the execution of every 43 statement that produces the value being propagated. Simulation 44 proceeds as follows: 45 46 1- Initially, all edges of the CFG are marked not executable and 47 the CFG worklist is seeded with all the statements in the entry 48 basic block (block 0). 49 50 2- Every statement S is simulated with a call to the call-back 51 function SSA_PROP_VISIT_STMT. This evaluation may produce 3 52 results: 53 54 SSA_PROP_NOT_INTERESTING: Statement S produces nothing of 55 interest and does not affect any of the work lists. 56 57 SSA_PROP_VARYING: The value produced by S cannot be determined 58 at compile time. Further simulation of S is not required. 59 If S is a conditional jump, all the outgoing edges for the 60 block are considered executable and added to the work 61 list. 62 63 SSA_PROP_INTERESTING: S produces a value that can be computed 64 at compile time. Its result can be propagated into the 65 statements that feed from S. Furthermore, if S is a 66 conditional jump, only the edge known to be taken is added 67 to the work list. Edges that are known not to execute are 68 never simulated. 69 70 3- PHI nodes are simulated with a call to SSA_PROP_VISIT_PHI. The 71 return value from SSA_PROP_VISIT_PHI has the same semantics as 72 described in #2. 73 74 4- Three work lists are kept. Statements are only added to these 75 lists if they produce one of SSA_PROP_INTERESTING or 76 SSA_PROP_VARYING. 77 78 CFG_BLOCKS contains the list of blocks to be simulated. 79 Blocks are added to this list if their incoming edges are 80 found executable. 81 82 VARYING_SSA_EDGES contains the list of statements that feed 83 from statements that produce an SSA_PROP_VARYING result. 84 These are simulated first to speed up processing. 85 86 INTERESTING_SSA_EDGES contains the list of statements that 87 feed from statements that produce an SSA_PROP_INTERESTING 88 result. 89 90 5- Simulation terminates when all three work lists are drained. 91 92 Before calling ssa_propagate, it is important to clear 93 prop_simulate_again_p for all the statements in the program that 94 should be simulated. This initialization allows an implementation 95 to specify which statements should never be simulated. 96 97 It is also important to compute def-use information before calling 98 ssa_propagate. 99 100 References: 101 102 [1] Constant propagation with conditional branches, 103 Wegman and Zadeck, ACM TOPLAS 13(2):181-210. 104 105 [2] Building an Optimizing Compiler, 106 Robert Morgan, Butterworth-Heinemann, 1998, Section 8.9. 107 108 [3] Advanced Compiler Design and Implementation, 109 Steven Muchnick, Morgan Kaufmann, 1997, Section 12.6 */ 110 111 /* Function pointers used to parameterize the propagation engine. */ 112 static ssa_prop_visit_stmt_fn ssa_prop_visit_stmt; 113 static ssa_prop_visit_phi_fn ssa_prop_visit_phi; 114 115 /* Keep track of statements that have been added to one of the SSA 116 edges worklists. This flag is used to avoid visiting statements 117 unnecessarily when draining an SSA edge worklist. If while 118 simulating a basic block, we find a statement with 119 STMT_IN_SSA_EDGE_WORKLIST set, we clear it to prevent SSA edge 120 processing from visiting it again. 121 122 NOTE: users of the propagation engine are not allowed to use 123 the GF_PLF_1 flag. */ 124 #define STMT_IN_SSA_EDGE_WORKLIST GF_PLF_1 125 126 /* A bitmap to keep track of executable blocks in the CFG. */ 127 static sbitmap executable_blocks; 128 129 /* Array of control flow edges on the worklist. */ 130 static vec<basic_block> cfg_blocks; 131 132 static unsigned int cfg_blocks_num = 0; 133 static int cfg_blocks_tail; 134 static int cfg_blocks_head; 135 136 static sbitmap bb_in_list; 137 138 /* Worklist of SSA edges which will need reexamination as their 139 definition has changed. SSA edges are def-use edges in the SSA 140 web. For each D-U edge, we store the target statement or PHI node 141 U. */ 142 static GTY(()) vec<gimple, va_gc> *interesting_ssa_edges; 143 144 /* Identical to INTERESTING_SSA_EDGES. For performance reasons, the 145 list of SSA edges is split into two. One contains all SSA edges 146 who need to be reexamined because their lattice value changed to 147 varying (this worklist), and the other contains all other SSA edges 148 to be reexamined (INTERESTING_SSA_EDGES). 149 150 Since most values in the program are VARYING, the ideal situation 151 is to move them to that lattice value as quickly as possible. 152 Thus, it doesn't make sense to process any other type of lattice 153 value until all VARYING values are propagated fully, which is one 154 thing using the VARYING worklist achieves. In addition, if we 155 don't use a separate worklist for VARYING edges, we end up with 156 situations where lattice values move from 157 UNDEFINED->INTERESTING->VARYING instead of UNDEFINED->VARYING. */ 158 static GTY(()) vec<gimple, va_gc> *varying_ssa_edges; 159 160 161 /* Return true if the block worklist empty. */ 162 163 static inline bool 164 cfg_blocks_empty_p (void) 165 { 166 return (cfg_blocks_num == 0); 167 } 168 169 170 /* Add a basic block to the worklist. The block must not be already 171 in the worklist, and it must not be the ENTRY or EXIT block. */ 172 173 static void 174 cfg_blocks_add (basic_block bb) 175 { 176 bool head = false; 177 178 gcc_assert (bb != ENTRY_BLOCK_PTR && bb != EXIT_BLOCK_PTR); 179 gcc_assert (!bitmap_bit_p (bb_in_list, bb->index)); 180 181 if (cfg_blocks_empty_p ()) 182 { 183 cfg_blocks_tail = cfg_blocks_head = 0; 184 cfg_blocks_num = 1; 185 } 186 else 187 { 188 cfg_blocks_num++; 189 if (cfg_blocks_num > cfg_blocks.length ()) 190 { 191 /* We have to grow the array now. Adjust to queue to occupy 192 the full space of the original array. We do not need to 193 initialize the newly allocated portion of the array 194 because we keep track of CFG_BLOCKS_HEAD and 195 CFG_BLOCKS_HEAD. */ 196 cfg_blocks_tail = cfg_blocks.length (); 197 cfg_blocks_head = 0; 198 cfg_blocks.safe_grow (2 * cfg_blocks_tail); 199 } 200 /* Minor optimization: we prefer to see blocks with more 201 predecessors later, because there is more of a chance that 202 the incoming edges will be executable. */ 203 else if (EDGE_COUNT (bb->preds) 204 >= EDGE_COUNT (cfg_blocks[cfg_blocks_head]->preds)) 205 cfg_blocks_tail = ((cfg_blocks_tail + 1) % cfg_blocks.length ()); 206 else 207 { 208 if (cfg_blocks_head == 0) 209 cfg_blocks_head = cfg_blocks.length (); 210 --cfg_blocks_head; 211 head = true; 212 } 213 } 214 215 cfg_blocks[head ? cfg_blocks_head : cfg_blocks_tail] = bb; 216 bitmap_set_bit (bb_in_list, bb->index); 217 } 218 219 220 /* Remove a block from the worklist. */ 221 222 static basic_block 223 cfg_blocks_get (void) 224 { 225 basic_block bb; 226 227 bb = cfg_blocks[cfg_blocks_head]; 228 229 gcc_assert (!cfg_blocks_empty_p ()); 230 gcc_assert (bb); 231 232 cfg_blocks_head = ((cfg_blocks_head + 1) % cfg_blocks.length ()); 233 --cfg_blocks_num; 234 bitmap_clear_bit (bb_in_list, bb->index); 235 236 return bb; 237 } 238 239 240 /* We have just defined a new value for VAR. If IS_VARYING is true, 241 add all immediate uses of VAR to VARYING_SSA_EDGES, otherwise add 242 them to INTERESTING_SSA_EDGES. */ 243 244 static void 245 add_ssa_edge (tree var, bool is_varying) 246 { 247 imm_use_iterator iter; 248 use_operand_p use_p; 249 250 FOR_EACH_IMM_USE_FAST (use_p, iter, var) 251 { 252 gimple use_stmt = USE_STMT (use_p); 253 254 if (prop_simulate_again_p (use_stmt) 255 && !gimple_plf (use_stmt, STMT_IN_SSA_EDGE_WORKLIST)) 256 { 257 gimple_set_plf (use_stmt, STMT_IN_SSA_EDGE_WORKLIST, true); 258 if (is_varying) 259 vec_safe_push (varying_ssa_edges, use_stmt); 260 else 261 vec_safe_push (interesting_ssa_edges, use_stmt); 262 } 263 } 264 } 265 266 267 /* Add edge E to the control flow worklist. */ 268 269 static void 270 add_control_edge (edge e) 271 { 272 basic_block bb = e->dest; 273 if (bb == EXIT_BLOCK_PTR) 274 return; 275 276 /* If the edge had already been executed, skip it. */ 277 if (e->flags & EDGE_EXECUTABLE) 278 return; 279 280 e->flags |= EDGE_EXECUTABLE; 281 282 /* If the block is already in the list, we're done. */ 283 if (bitmap_bit_p (bb_in_list, bb->index)) 284 return; 285 286 cfg_blocks_add (bb); 287 288 if (dump_file && (dump_flags & TDF_DETAILS)) 289 fprintf (dump_file, "Adding Destination of edge (%d -> %d) to worklist\n\n", 290 e->src->index, e->dest->index); 291 } 292 293 294 /* Simulate the execution of STMT and update the work lists accordingly. */ 295 296 static void 297 simulate_stmt (gimple stmt) 298 { 299 enum ssa_prop_result val = SSA_PROP_NOT_INTERESTING; 300 edge taken_edge = NULL; 301 tree output_name = NULL_TREE; 302 303 /* Don't bother visiting statements that are already 304 considered varying by the propagator. */ 305 if (!prop_simulate_again_p (stmt)) 306 return; 307 308 if (gimple_code (stmt) == GIMPLE_PHI) 309 { 310 val = ssa_prop_visit_phi (stmt); 311 output_name = gimple_phi_result (stmt); 312 } 313 else 314 val = ssa_prop_visit_stmt (stmt, &taken_edge, &output_name); 315 316 if (val == SSA_PROP_VARYING) 317 { 318 prop_set_simulate_again (stmt, false); 319 320 /* If the statement produced a new varying value, add the SSA 321 edges coming out of OUTPUT_NAME. */ 322 if (output_name) 323 add_ssa_edge (output_name, true); 324 325 /* If STMT transfers control out of its basic block, add 326 all outgoing edges to the work list. */ 327 if (stmt_ends_bb_p (stmt)) 328 { 329 edge e; 330 edge_iterator ei; 331 basic_block bb = gimple_bb (stmt); 332 FOR_EACH_EDGE (e, ei, bb->succs) 333 add_control_edge (e); 334 } 335 } 336 else if (val == SSA_PROP_INTERESTING) 337 { 338 /* If the statement produced new value, add the SSA edges coming 339 out of OUTPUT_NAME. */ 340 if (output_name) 341 add_ssa_edge (output_name, false); 342 343 /* If we know which edge is going to be taken out of this block, 344 add it to the CFG work list. */ 345 if (taken_edge) 346 add_control_edge (taken_edge); 347 } 348 } 349 350 /* Process an SSA edge worklist. WORKLIST is the SSA edge worklist to 351 drain. This pops statements off the given WORKLIST and processes 352 them until there are no more statements on WORKLIST. 353 We take a pointer to WORKLIST because it may be reallocated when an 354 SSA edge is added to it in simulate_stmt. */ 355 356 static void 357 process_ssa_edge_worklist (vec<gimple, va_gc> **worklist) 358 { 359 /* Drain the entire worklist. */ 360 while ((*worklist)->length () > 0) 361 { 362 basic_block bb; 363 364 /* Pull the statement to simulate off the worklist. */ 365 gimple stmt = (*worklist)->pop (); 366 367 /* If this statement was already visited by simulate_block, then 368 we don't need to visit it again here. */ 369 if (!gimple_plf (stmt, STMT_IN_SSA_EDGE_WORKLIST)) 370 continue; 371 372 /* STMT is no longer in a worklist. */ 373 gimple_set_plf (stmt, STMT_IN_SSA_EDGE_WORKLIST, false); 374 375 if (dump_file && (dump_flags & TDF_DETAILS)) 376 { 377 fprintf (dump_file, "\nSimulating statement (from ssa_edges): "); 378 print_gimple_stmt (dump_file, stmt, 0, dump_flags); 379 } 380 381 bb = gimple_bb (stmt); 382 383 /* PHI nodes are always visited, regardless of whether or not 384 the destination block is executable. Otherwise, visit the 385 statement only if its block is marked executable. */ 386 if (gimple_code (stmt) == GIMPLE_PHI 387 || bitmap_bit_p (executable_blocks, bb->index)) 388 simulate_stmt (stmt); 389 } 390 } 391 392 393 /* Simulate the execution of BLOCK. Evaluate the statement associated 394 with each variable reference inside the block. */ 395 396 static void 397 simulate_block (basic_block block) 398 { 399 gimple_stmt_iterator gsi; 400 401 /* There is nothing to do for the exit block. */ 402 if (block == EXIT_BLOCK_PTR) 403 return; 404 405 if (dump_file && (dump_flags & TDF_DETAILS)) 406 fprintf (dump_file, "\nSimulating block %d\n", block->index); 407 408 /* Always simulate PHI nodes, even if we have simulated this block 409 before. */ 410 for (gsi = gsi_start_phis (block); !gsi_end_p (gsi); gsi_next (&gsi)) 411 simulate_stmt (gsi_stmt (gsi)); 412 413 /* If this is the first time we've simulated this block, then we 414 must simulate each of its statements. */ 415 if (!bitmap_bit_p (executable_blocks, block->index)) 416 { 417 gimple_stmt_iterator j; 418 unsigned int normal_edge_count; 419 edge e, normal_edge; 420 edge_iterator ei; 421 422 /* Note that we have simulated this block. */ 423 bitmap_set_bit (executable_blocks, block->index); 424 425 for (j = gsi_start_bb (block); !gsi_end_p (j); gsi_next (&j)) 426 { 427 gimple stmt = gsi_stmt (j); 428 429 /* If this statement is already in the worklist then 430 "cancel" it. The reevaluation implied by the worklist 431 entry will produce the same value we generate here and 432 thus reevaluating it again from the worklist is 433 pointless. */ 434 if (gimple_plf (stmt, STMT_IN_SSA_EDGE_WORKLIST)) 435 gimple_set_plf (stmt, STMT_IN_SSA_EDGE_WORKLIST, false); 436 437 simulate_stmt (stmt); 438 } 439 440 /* We can not predict when abnormal and EH edges will be executed, so 441 once a block is considered executable, we consider any 442 outgoing abnormal edges as executable. 443 444 TODO: This is not exactly true. Simplifying statement might 445 prove it non-throwing and also computed goto can be handled 446 when destination is known. 447 448 At the same time, if this block has only one successor that is 449 reached by non-abnormal edges, then add that successor to the 450 worklist. */ 451 normal_edge_count = 0; 452 normal_edge = NULL; 453 FOR_EACH_EDGE (e, ei, block->succs) 454 { 455 if (e->flags & (EDGE_ABNORMAL | EDGE_EH)) 456 add_control_edge (e); 457 else 458 { 459 normal_edge_count++; 460 normal_edge = e; 461 } 462 } 463 464 if (normal_edge_count == 1) 465 add_control_edge (normal_edge); 466 } 467 } 468 469 470 /* Initialize local data structures and work lists. */ 471 472 static void 473 ssa_prop_init (void) 474 { 475 edge e; 476 edge_iterator ei; 477 basic_block bb; 478 479 /* Worklists of SSA edges. */ 480 vec_alloc (interesting_ssa_edges, 20); 481 vec_alloc (varying_ssa_edges, 20); 482 483 executable_blocks = sbitmap_alloc (last_basic_block); 484 bitmap_clear (executable_blocks); 485 486 bb_in_list = sbitmap_alloc (last_basic_block); 487 bitmap_clear (bb_in_list); 488 489 if (dump_file && (dump_flags & TDF_DETAILS)) 490 dump_immediate_uses (dump_file); 491 492 cfg_blocks.create (20); 493 cfg_blocks.safe_grow_cleared (20); 494 495 /* Initially assume that every edge in the CFG is not executable. 496 (including the edges coming out of ENTRY_BLOCK_PTR). */ 497 FOR_ALL_BB (bb) 498 { 499 gimple_stmt_iterator si; 500 501 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si)) 502 gimple_set_plf (gsi_stmt (si), STMT_IN_SSA_EDGE_WORKLIST, false); 503 504 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si)) 505 gimple_set_plf (gsi_stmt (si), STMT_IN_SSA_EDGE_WORKLIST, false); 506 507 FOR_EACH_EDGE (e, ei, bb->succs) 508 e->flags &= ~EDGE_EXECUTABLE; 509 } 510 511 /* Seed the algorithm by adding the successors of the entry block to the 512 edge worklist. */ 513 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs) 514 add_control_edge (e); 515 } 516 517 518 /* Free allocated storage. */ 519 520 static void 521 ssa_prop_fini (void) 522 { 523 vec_free (interesting_ssa_edges); 524 vec_free (varying_ssa_edges); 525 cfg_blocks.release (); 526 sbitmap_free (bb_in_list); 527 sbitmap_free (executable_blocks); 528 } 529 530 531 /* Return true if EXPR is an acceptable right-hand-side for a 532 GIMPLE assignment. We validate the entire tree, not just 533 the root node, thus catching expressions that embed complex 534 operands that are not permitted in GIMPLE. This function 535 is needed because the folding routines in fold-const.c 536 may return such expressions in some cases, e.g., an array 537 access with an embedded index addition. It may make more 538 sense to have folding routines that are sensitive to the 539 constraints on GIMPLE operands, rather than abandoning any 540 any attempt to fold if the usual folding turns out to be too 541 aggressive. */ 542 543 bool 544 valid_gimple_rhs_p (tree expr) 545 { 546 enum tree_code code = TREE_CODE (expr); 547 548 switch (TREE_CODE_CLASS (code)) 549 { 550 case tcc_declaration: 551 if (!is_gimple_variable (expr)) 552 return false; 553 break; 554 555 case tcc_constant: 556 /* All constants are ok. */ 557 break; 558 559 case tcc_comparison: 560 /* GENERIC allows comparisons with non-boolean types, reject 561 those for GIMPLE. Let vector-typed comparisons pass - rules 562 for GENERIC and GIMPLE are the same here. */ 563 if (!(INTEGRAL_TYPE_P (TREE_TYPE (expr)) 564 && (TREE_CODE (TREE_TYPE (expr)) == BOOLEAN_TYPE 565 || TYPE_PRECISION (TREE_TYPE (expr)) == 1)) 566 && TREE_CODE (TREE_TYPE (expr)) != VECTOR_TYPE) 567 return false; 568 569 /* Fallthru. */ 570 case tcc_binary: 571 if (!is_gimple_val (TREE_OPERAND (expr, 0)) 572 || !is_gimple_val (TREE_OPERAND (expr, 1))) 573 return false; 574 break; 575 576 case tcc_unary: 577 if (!is_gimple_val (TREE_OPERAND (expr, 0))) 578 return false; 579 break; 580 581 case tcc_expression: 582 switch (code) 583 { 584 case ADDR_EXPR: 585 { 586 tree t; 587 if (is_gimple_min_invariant (expr)) 588 return true; 589 t = TREE_OPERAND (expr, 0); 590 while (handled_component_p (t)) 591 { 592 /* ??? More checks needed, see the GIMPLE verifier. */ 593 if ((TREE_CODE (t) == ARRAY_REF 594 || TREE_CODE (t) == ARRAY_RANGE_REF) 595 && !is_gimple_val (TREE_OPERAND (t, 1))) 596 return false; 597 t = TREE_OPERAND (t, 0); 598 } 599 if (!is_gimple_id (t)) 600 return false; 601 } 602 break; 603 604 default: 605 if (get_gimple_rhs_class (code) == GIMPLE_TERNARY_RHS) 606 { 607 if (((code == VEC_COND_EXPR || code == COND_EXPR) 608 ? !is_gimple_condexpr (TREE_OPERAND (expr, 0)) 609 : !is_gimple_val (TREE_OPERAND (expr, 0))) 610 || !is_gimple_val (TREE_OPERAND (expr, 1)) 611 || !is_gimple_val (TREE_OPERAND (expr, 2))) 612 return false; 613 break; 614 } 615 return false; 616 } 617 break; 618 619 case tcc_vl_exp: 620 return false; 621 622 case tcc_exceptional: 623 if (code == CONSTRUCTOR) 624 { 625 unsigned i; 626 tree elt; 627 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (expr), i, elt) 628 if (!is_gimple_val (elt)) 629 return false; 630 return true; 631 } 632 if (code != SSA_NAME) 633 return false; 634 break; 635 636 case tcc_reference: 637 if (code == BIT_FIELD_REF) 638 return is_gimple_val (TREE_OPERAND (expr, 0)); 639 return false; 640 641 default: 642 return false; 643 } 644 645 return true; 646 } 647 648 649 /* Return true if EXPR is a CALL_EXPR suitable for representation 650 as a single GIMPLE_CALL statement. If the arguments require 651 further gimplification, return false. */ 652 653 static bool 654 valid_gimple_call_p (tree expr) 655 { 656 unsigned i, nargs; 657 658 if (TREE_CODE (expr) != CALL_EXPR) 659 return false; 660 661 nargs = call_expr_nargs (expr); 662 for (i = 0; i < nargs; i++) 663 { 664 tree arg = CALL_EXPR_ARG (expr, i); 665 if (is_gimple_reg_type (arg)) 666 { 667 if (!is_gimple_val (arg)) 668 return false; 669 } 670 else 671 if (!is_gimple_lvalue (arg)) 672 return false; 673 } 674 675 return true; 676 } 677 678 679 /* Make SSA names defined by OLD_STMT point to NEW_STMT 680 as their defining statement. */ 681 682 void 683 move_ssa_defining_stmt_for_defs (gimple new_stmt, gimple old_stmt) 684 { 685 tree var; 686 ssa_op_iter iter; 687 688 if (gimple_in_ssa_p (cfun)) 689 { 690 /* Make defined SSA_NAMEs point to the new 691 statement as their definition. */ 692 FOR_EACH_SSA_TREE_OPERAND (var, old_stmt, iter, SSA_OP_ALL_DEFS) 693 { 694 if (TREE_CODE (var) == SSA_NAME) 695 SSA_NAME_DEF_STMT (var) = new_stmt; 696 } 697 } 698 } 699 700 /* Helper function for update_gimple_call and update_call_from_tree. 701 A GIMPLE_CALL STMT is being replaced with GIMPLE_CALL NEW_STMT. */ 702 703 static void 704 finish_update_gimple_call (gimple_stmt_iterator *si_p, gimple new_stmt, 705 gimple stmt) 706 { 707 gimple_call_set_lhs (new_stmt, gimple_call_lhs (stmt)); 708 move_ssa_defining_stmt_for_defs (new_stmt, stmt); 709 gimple_set_vuse (new_stmt, gimple_vuse (stmt)); 710 gimple_set_vdef (new_stmt, gimple_vdef (stmt)); 711 gimple_set_location (new_stmt, gimple_location (stmt)); 712 if (gimple_block (new_stmt) == NULL_TREE) 713 gimple_set_block (new_stmt, gimple_block (stmt)); 714 gsi_replace (si_p, new_stmt, false); 715 } 716 717 /* Update a GIMPLE_CALL statement at iterator *SI_P to call to FN 718 with number of arguments NARGS, where the arguments in GIMPLE form 719 follow NARGS argument. */ 720 721 bool 722 update_gimple_call (gimple_stmt_iterator *si_p, tree fn, int nargs, ...) 723 { 724 va_list ap; 725 gimple new_stmt, stmt = gsi_stmt (*si_p); 726 727 gcc_assert (is_gimple_call (stmt)); 728 va_start (ap, nargs); 729 new_stmt = gimple_build_call_valist (fn, nargs, ap); 730 finish_update_gimple_call (si_p, new_stmt, stmt); 731 va_end (ap); 732 return true; 733 } 734 735 /* Update a GIMPLE_CALL statement at iterator *SI_P to reflect the 736 value of EXPR, which is expected to be the result of folding the 737 call. This can only be done if EXPR is a CALL_EXPR with valid 738 GIMPLE operands as arguments, or if it is a suitable RHS expression 739 for a GIMPLE_ASSIGN. More complex expressions will require 740 gimplification, which will introduce additional statements. In this 741 event, no update is performed, and the function returns false. 742 Note that we cannot mutate a GIMPLE_CALL in-place, so we always 743 replace the statement at *SI_P with an entirely new statement. 744 The new statement need not be a call, e.g., if the original call 745 folded to a constant. */ 746 747 bool 748 update_call_from_tree (gimple_stmt_iterator *si_p, tree expr) 749 { 750 gimple stmt = gsi_stmt (*si_p); 751 752 if (valid_gimple_call_p (expr)) 753 { 754 /* The call has simplified to another call. */ 755 tree fn = CALL_EXPR_FN (expr); 756 unsigned i; 757 unsigned nargs = call_expr_nargs (expr); 758 vec<tree> args = vNULL; 759 gimple new_stmt; 760 761 if (nargs > 0) 762 { 763 args.create (nargs); 764 args.safe_grow_cleared (nargs); 765 766 for (i = 0; i < nargs; i++) 767 args[i] = CALL_EXPR_ARG (expr, i); 768 } 769 770 new_stmt = gimple_build_call_vec (fn, args); 771 finish_update_gimple_call (si_p, new_stmt, stmt); 772 args.release (); 773 774 return true; 775 } 776 else if (valid_gimple_rhs_p (expr)) 777 { 778 tree lhs = gimple_call_lhs (stmt); 779 gimple new_stmt; 780 781 /* The call has simplified to an expression 782 that cannot be represented as a GIMPLE_CALL. */ 783 if (lhs) 784 { 785 /* A value is expected. 786 Introduce a new GIMPLE_ASSIGN statement. */ 787 STRIP_USELESS_TYPE_CONVERSION (expr); 788 new_stmt = gimple_build_assign (lhs, expr); 789 move_ssa_defining_stmt_for_defs (new_stmt, stmt); 790 gimple_set_vuse (new_stmt, gimple_vuse (stmt)); 791 gimple_set_vdef (new_stmt, gimple_vdef (stmt)); 792 } 793 else if (!TREE_SIDE_EFFECTS (expr)) 794 { 795 /* No value is expected, and EXPR has no effect. 796 Replace it with an empty statement. */ 797 new_stmt = gimple_build_nop (); 798 if (gimple_in_ssa_p (cfun)) 799 { 800 unlink_stmt_vdef (stmt); 801 release_defs (stmt); 802 } 803 } 804 else 805 { 806 /* No value is expected, but EXPR has an effect, 807 e.g., it could be a reference to a volatile 808 variable. Create an assignment statement 809 with a dummy (unused) lhs variable. */ 810 STRIP_USELESS_TYPE_CONVERSION (expr); 811 if (gimple_in_ssa_p (cfun)) 812 lhs = make_ssa_name (TREE_TYPE (expr), NULL); 813 else 814 lhs = create_tmp_var (TREE_TYPE (expr), NULL); 815 new_stmt = gimple_build_assign (lhs, expr); 816 gimple_set_vuse (new_stmt, gimple_vuse (stmt)); 817 gimple_set_vdef (new_stmt, gimple_vdef (stmt)); 818 move_ssa_defining_stmt_for_defs (new_stmt, stmt); 819 } 820 gimple_set_location (new_stmt, gimple_location (stmt)); 821 gsi_replace (si_p, new_stmt, false); 822 return true; 823 } 824 else 825 /* The call simplified to an expression that is 826 not a valid GIMPLE RHS. */ 827 return false; 828 } 829 830 831 /* Entry point to the propagation engine. 832 833 VISIT_STMT is called for every statement visited. 834 VISIT_PHI is called for every PHI node visited. */ 835 836 void 837 ssa_propagate (ssa_prop_visit_stmt_fn visit_stmt, 838 ssa_prop_visit_phi_fn visit_phi) 839 { 840 ssa_prop_visit_stmt = visit_stmt; 841 ssa_prop_visit_phi = visit_phi; 842 843 ssa_prop_init (); 844 845 /* Iterate until the worklists are empty. */ 846 while (!cfg_blocks_empty_p () 847 || interesting_ssa_edges->length () > 0 848 || varying_ssa_edges->length () > 0) 849 { 850 if (!cfg_blocks_empty_p ()) 851 { 852 /* Pull the next block to simulate off the worklist. */ 853 basic_block dest_block = cfg_blocks_get (); 854 simulate_block (dest_block); 855 } 856 857 /* In order to move things to varying as quickly as 858 possible,process the VARYING_SSA_EDGES worklist first. */ 859 process_ssa_edge_worklist (&varying_ssa_edges); 860 861 /* Now process the INTERESTING_SSA_EDGES worklist. */ 862 process_ssa_edge_worklist (&interesting_ssa_edges); 863 } 864 865 ssa_prop_fini (); 866 } 867 868 869 /* Return true if STMT is of the form 'mem_ref = RHS', where 'mem_ref' 870 is a non-volatile pointer dereference, a structure reference or a 871 reference to a single _DECL. Ignore volatile memory references 872 because they are not interesting for the optimizers. */ 873 874 bool 875 stmt_makes_single_store (gimple stmt) 876 { 877 tree lhs; 878 879 if (gimple_code (stmt) != GIMPLE_ASSIGN 880 && gimple_code (stmt) != GIMPLE_CALL) 881 return false; 882 883 if (!gimple_vdef (stmt)) 884 return false; 885 886 lhs = gimple_get_lhs (stmt); 887 888 /* A call statement may have a null LHS. */ 889 if (!lhs) 890 return false; 891 892 return (!TREE_THIS_VOLATILE (lhs) 893 && (DECL_P (lhs) 894 || REFERENCE_CLASS_P (lhs))); 895 } 896 897 898 /* Propagation statistics. */ 899 struct prop_stats_d 900 { 901 long num_const_prop; 902 long num_copy_prop; 903 long num_stmts_folded; 904 long num_dce; 905 }; 906 907 static struct prop_stats_d prop_stats; 908 909 /* Replace USE references in statement STMT with the values stored in 910 PROP_VALUE. Return true if at least one reference was replaced. */ 911 912 static bool 913 replace_uses_in (gimple stmt, ssa_prop_get_value_fn get_value) 914 { 915 bool replaced = false; 916 use_operand_p use; 917 ssa_op_iter iter; 918 919 FOR_EACH_SSA_USE_OPERAND (use, stmt, iter, SSA_OP_USE) 920 { 921 tree tuse = USE_FROM_PTR (use); 922 tree val = (*get_value) (tuse); 923 924 if (val == tuse || val == NULL_TREE) 925 continue; 926 927 if (gimple_code (stmt) == GIMPLE_ASM 928 && !may_propagate_copy_into_asm (tuse)) 929 continue; 930 931 if (!may_propagate_copy (tuse, val)) 932 continue; 933 934 if (TREE_CODE (val) != SSA_NAME) 935 prop_stats.num_const_prop++; 936 else 937 prop_stats.num_copy_prop++; 938 939 propagate_value (use, val); 940 941 replaced = true; 942 } 943 944 return replaced; 945 } 946 947 948 /* Replace propagated values into all the arguments for PHI using the 949 values from PROP_VALUE. */ 950 951 static void 952 replace_phi_args_in (gimple phi, ssa_prop_get_value_fn get_value) 953 { 954 size_t i; 955 bool replaced = false; 956 957 if (dump_file && (dump_flags & TDF_DETAILS)) 958 { 959 fprintf (dump_file, "Folding PHI node: "); 960 print_gimple_stmt (dump_file, phi, 0, TDF_SLIM); 961 } 962 963 for (i = 0; i < gimple_phi_num_args (phi); i++) 964 { 965 tree arg = gimple_phi_arg_def (phi, i); 966 967 if (TREE_CODE (arg) == SSA_NAME) 968 { 969 tree val = (*get_value) (arg); 970 971 if (val && val != arg && may_propagate_copy (arg, val)) 972 { 973 if (TREE_CODE (val) != SSA_NAME) 974 prop_stats.num_const_prop++; 975 else 976 prop_stats.num_copy_prop++; 977 978 propagate_value (PHI_ARG_DEF_PTR (phi, i), val); 979 replaced = true; 980 981 /* If we propagated a copy and this argument flows 982 through an abnormal edge, update the replacement 983 accordingly. */ 984 if (TREE_CODE (val) == SSA_NAME 985 && gimple_phi_arg_edge (phi, i)->flags & EDGE_ABNORMAL) 986 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val) = 1; 987 } 988 } 989 } 990 991 if (dump_file && (dump_flags & TDF_DETAILS)) 992 { 993 if (!replaced) 994 fprintf (dump_file, "No folding possible\n"); 995 else 996 { 997 fprintf (dump_file, "Folded into: "); 998 print_gimple_stmt (dump_file, phi, 0, TDF_SLIM); 999 fprintf (dump_file, "\n"); 1000 } 1001 } 1002 } 1003 1004 1005 /* Perform final substitution and folding of propagated values. 1006 1007 PROP_VALUE[I] contains the single value that should be substituted 1008 at every use of SSA name N_I. If PROP_VALUE is NULL, no values are 1009 substituted. 1010 1011 If FOLD_FN is non-NULL the function will be invoked on all statements 1012 before propagating values for pass specific simplification. 1013 1014 DO_DCE is true if trivially dead stmts can be removed. 1015 1016 If DO_DCE is true, the statements within a BB are walked from 1017 last to first element. Otherwise we scan from first to last element. 1018 1019 Return TRUE when something changed. */ 1020 1021 bool 1022 substitute_and_fold (ssa_prop_get_value_fn get_value_fn, 1023 ssa_prop_fold_stmt_fn fold_fn, 1024 bool do_dce) 1025 { 1026 basic_block bb; 1027 bool something_changed = false; 1028 unsigned i; 1029 1030 if (!get_value_fn && !fold_fn) 1031 return false; 1032 1033 if (dump_file && (dump_flags & TDF_DETAILS)) 1034 fprintf (dump_file, "\nSubstituting values and folding statements\n\n"); 1035 1036 memset (&prop_stats, 0, sizeof (prop_stats)); 1037 1038 /* Substitute lattice values at definition sites. */ 1039 if (get_value_fn) 1040 for (i = 1; i < num_ssa_names; ++i) 1041 { 1042 tree name = ssa_name (i); 1043 tree val; 1044 gimple def_stmt; 1045 gimple_stmt_iterator gsi; 1046 1047 if (!name 1048 || virtual_operand_p (name)) 1049 continue; 1050 1051 def_stmt = SSA_NAME_DEF_STMT (name); 1052 if (gimple_nop_p (def_stmt) 1053 /* Do not substitute ASSERT_EXPR rhs, this will confuse VRP. */ 1054 || (gimple_assign_single_p (def_stmt) 1055 && gimple_assign_rhs_code (def_stmt) == ASSERT_EXPR) 1056 || !(val = (*get_value_fn) (name)) 1057 || !may_propagate_copy (name, val)) 1058 continue; 1059 1060 gsi = gsi_for_stmt (def_stmt); 1061 if (is_gimple_assign (def_stmt)) 1062 { 1063 gimple_assign_set_rhs_with_ops (&gsi, TREE_CODE (val), 1064 val, NULL_TREE); 1065 gcc_assert (gsi_stmt (gsi) == def_stmt); 1066 if (maybe_clean_eh_stmt (def_stmt)) 1067 gimple_purge_dead_eh_edges (gimple_bb (def_stmt)); 1068 update_stmt (def_stmt); 1069 } 1070 else if (is_gimple_call (def_stmt)) 1071 { 1072 int flags = gimple_call_flags (def_stmt); 1073 1074 /* Don't optimize away calls that have side-effects. */ 1075 if ((flags & (ECF_CONST|ECF_PURE)) == 0 1076 || (flags & ECF_LOOPING_CONST_OR_PURE)) 1077 continue; 1078 if (update_call_from_tree (&gsi, val) 1079 && maybe_clean_or_replace_eh_stmt (def_stmt, gsi_stmt (gsi))) 1080 gimple_purge_dead_eh_edges (gimple_bb (gsi_stmt (gsi))); 1081 } 1082 else if (gimple_code (def_stmt) == GIMPLE_PHI) 1083 { 1084 gimple new_stmt = gimple_build_assign (name, val); 1085 gimple_stmt_iterator gsi2; 1086 SSA_NAME_DEF_STMT (name) = new_stmt; 1087 gsi2 = gsi_after_labels (gimple_bb (def_stmt)); 1088 gsi_insert_before (&gsi2, new_stmt, GSI_SAME_STMT); 1089 remove_phi_node (&gsi, false); 1090 } 1091 1092 something_changed = true; 1093 } 1094 1095 /* Propagate into all uses and fold. */ 1096 FOR_EACH_BB (bb) 1097 { 1098 gimple_stmt_iterator i; 1099 1100 /* Propagate known values into PHI nodes. */ 1101 if (get_value_fn) 1102 for (i = gsi_start_phis (bb); !gsi_end_p (i); gsi_next (&i)) 1103 replace_phi_args_in (gsi_stmt (i), get_value_fn); 1104 1105 /* Propagate known values into stmts. Do a backward walk if 1106 do_dce is true. In some case it exposes 1107 more trivially deletable stmts to walk backward. */ 1108 for (i = (do_dce ? gsi_last_bb (bb) : gsi_start_bb (bb)); !gsi_end_p (i);) 1109 { 1110 bool did_replace; 1111 gimple stmt = gsi_stmt (i); 1112 gimple old_stmt; 1113 enum gimple_code code = gimple_code (stmt); 1114 gimple_stmt_iterator oldi; 1115 1116 oldi = i; 1117 if (do_dce) 1118 gsi_prev (&i); 1119 else 1120 gsi_next (&i); 1121 1122 /* Ignore ASSERT_EXPRs. They are used by VRP to generate 1123 range information for names and they are discarded 1124 afterwards. */ 1125 1126 if (code == GIMPLE_ASSIGN 1127 && TREE_CODE (gimple_assign_rhs1 (stmt)) == ASSERT_EXPR) 1128 continue; 1129 1130 /* No point propagating into a stmt whose result is not used, 1131 but instead we might be able to remove a trivially dead stmt. 1132 Don't do this when called from VRP, since the SSA_NAME which 1133 is going to be released could be still referenced in VRP 1134 ranges. */ 1135 if (do_dce 1136 && gimple_get_lhs (stmt) 1137 && TREE_CODE (gimple_get_lhs (stmt)) == SSA_NAME 1138 && has_zero_uses (gimple_get_lhs (stmt)) 1139 && !stmt_could_throw_p (stmt) 1140 && !gimple_has_side_effects (stmt)) 1141 { 1142 gimple_stmt_iterator i2; 1143 1144 if (dump_file && dump_flags & TDF_DETAILS) 1145 { 1146 fprintf (dump_file, "Removing dead stmt "); 1147 print_gimple_stmt (dump_file, stmt, 0, 0); 1148 fprintf (dump_file, "\n"); 1149 } 1150 prop_stats.num_dce++; 1151 i2 = gsi_for_stmt (stmt); 1152 gsi_remove (&i2, true); 1153 release_defs (stmt); 1154 continue; 1155 } 1156 1157 /* Replace the statement with its folded version and mark it 1158 folded. */ 1159 did_replace = false; 1160 if (dump_file && (dump_flags & TDF_DETAILS)) 1161 { 1162 fprintf (dump_file, "Folding statement: "); 1163 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM); 1164 } 1165 1166 old_stmt = stmt; 1167 1168 /* Some statements may be simplified using propagator 1169 specific information. Do this before propagating 1170 into the stmt to not disturb pass specific information. */ 1171 if (fold_fn 1172 && (*fold_fn)(&oldi)) 1173 { 1174 did_replace = true; 1175 prop_stats.num_stmts_folded++; 1176 stmt = gsi_stmt (oldi); 1177 update_stmt (stmt); 1178 } 1179 1180 /* Replace real uses in the statement. */ 1181 if (get_value_fn) 1182 did_replace |= replace_uses_in (stmt, get_value_fn); 1183 1184 /* If we made a replacement, fold the statement. */ 1185 if (did_replace) 1186 fold_stmt (&oldi); 1187 1188 /* Now cleanup. */ 1189 if (did_replace) 1190 { 1191 stmt = gsi_stmt (oldi); 1192 1193 /* If we cleaned up EH information from the statement, 1194 remove EH edges. */ 1195 if (maybe_clean_or_replace_eh_stmt (old_stmt, stmt)) 1196 gimple_purge_dead_eh_edges (bb); 1197 1198 if (is_gimple_assign (stmt) 1199 && (get_gimple_rhs_class (gimple_assign_rhs_code (stmt)) 1200 == GIMPLE_SINGLE_RHS)) 1201 { 1202 tree rhs = gimple_assign_rhs1 (stmt); 1203 1204 if (TREE_CODE (rhs) == ADDR_EXPR) 1205 recompute_tree_invariant_for_addr_expr (rhs); 1206 } 1207 1208 /* Determine what needs to be done to update the SSA form. */ 1209 update_stmt (stmt); 1210 if (!is_gimple_debug (stmt)) 1211 something_changed = true; 1212 } 1213 1214 if (dump_file && (dump_flags & TDF_DETAILS)) 1215 { 1216 if (did_replace) 1217 { 1218 fprintf (dump_file, "Folded into: "); 1219 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM); 1220 fprintf (dump_file, "\n"); 1221 } 1222 else 1223 fprintf (dump_file, "Not folded\n"); 1224 } 1225 } 1226 } 1227 1228 statistics_counter_event (cfun, "Constants propagated", 1229 prop_stats.num_const_prop); 1230 statistics_counter_event (cfun, "Copies propagated", 1231 prop_stats.num_copy_prop); 1232 statistics_counter_event (cfun, "Statements folded", 1233 prop_stats.num_stmts_folded); 1234 statistics_counter_event (cfun, "Statements deleted", 1235 prop_stats.num_dce); 1236 return something_changed; 1237 } 1238 1239 #include "gt-tree-ssa-propagate.h" 1240