1 /* Generic SSA value propagation engine. 2 Copyright (C) 2004-2017 Free Software Foundation, Inc. 3 Contributed by Diego Novillo <dnovillo@redhat.com> 4 5 This file is part of GCC. 6 7 GCC is free software; you can redistribute it and/or modify it 8 under the terms of the GNU General Public License as published by the 9 Free Software Foundation; either version 3, or (at your option) any 10 later version. 11 12 GCC is distributed in the hope that it will be useful, but WITHOUT 13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 15 for more details. 16 17 You should have received a copy of the GNU General Public License 18 along with GCC; see the file COPYING3. If not see 19 <http://www.gnu.org/licenses/>. */ 20 21 #include "config.h" 22 #include "system.h" 23 #include "coretypes.h" 24 #include "backend.h" 25 #include "tree.h" 26 #include "gimple.h" 27 #include "ssa.h" 28 #include "gimple-pretty-print.h" 29 #include "dumpfile.h" 30 #include "gimple-fold.h" 31 #include "tree-eh.h" 32 #include "gimplify.h" 33 #include "gimple-iterator.h" 34 #include "tree-cfg.h" 35 #include "tree-ssa.h" 36 #include "tree-ssa-propagate.h" 37 #include "domwalk.h" 38 #include "cfgloop.h" 39 #include "tree-cfgcleanup.h" 40 #include "cfganal.h" 41 42 /* This file implements a generic value propagation engine based on 43 the same propagation used by the SSA-CCP algorithm [1]. 44 45 Propagation is performed by simulating the execution of every 46 statement that produces the value being propagated. Simulation 47 proceeds as follows: 48 49 1- Initially, all edges of the CFG are marked not executable and 50 the CFG worklist is seeded with all the statements in the entry 51 basic block (block 0). 52 53 2- Every statement S is simulated with a call to the call-back 54 function SSA_PROP_VISIT_STMT. This evaluation may produce 3 55 results: 56 57 SSA_PROP_NOT_INTERESTING: Statement S produces nothing of 58 interest and does not affect any of the work lists. 59 The statement may be simulated again if any of its input 60 operands change in future iterations of the simulator. 61 62 SSA_PROP_VARYING: The value produced by S cannot be determined 63 at compile time. Further simulation of S is not required. 64 If S is a conditional jump, all the outgoing edges for the 65 block are considered executable and added to the work 66 list. 67 68 SSA_PROP_INTERESTING: S produces a value that can be computed 69 at compile time. Its result can be propagated into the 70 statements that feed from S. Furthermore, if S is a 71 conditional jump, only the edge known to be taken is added 72 to the work list. Edges that are known not to execute are 73 never simulated. 74 75 3- PHI nodes are simulated with a call to SSA_PROP_VISIT_PHI. The 76 return value from SSA_PROP_VISIT_PHI has the same semantics as 77 described in #2. 78 79 4- Three work lists are kept. Statements are only added to these 80 lists if they produce one of SSA_PROP_INTERESTING or 81 SSA_PROP_VARYING. 82 83 CFG_BLOCKS contains the list of blocks to be simulated. 84 Blocks are added to this list if their incoming edges are 85 found executable. 86 87 SSA_EDGE_WORKLIST contains the list of statements that we 88 need to revisit. 89 90 5- Simulation terminates when all three work lists are drained. 91 92 Before calling ssa_propagate, it is important to clear 93 prop_simulate_again_p for all the statements in the program that 94 should be simulated. This initialization allows an implementation 95 to specify which statements should never be simulated. 96 97 It is also important to compute def-use information before calling 98 ssa_propagate. 99 100 References: 101 102 [1] Constant propagation with conditional branches, 103 Wegman and Zadeck, ACM TOPLAS 13(2):181-210. 104 105 [2] Building an Optimizing Compiler, 106 Robert Morgan, Butterworth-Heinemann, 1998, Section 8.9. 107 108 [3] Advanced Compiler Design and Implementation, 109 Steven Muchnick, Morgan Kaufmann, 1997, Section 12.6 */ 110 111 /* Function pointers used to parameterize the propagation engine. */ 112 static ssa_prop_visit_stmt_fn ssa_prop_visit_stmt; 113 static ssa_prop_visit_phi_fn ssa_prop_visit_phi; 114 115 /* Worklist of control flow edge destinations. This contains 116 the CFG order number of the blocks so we can iterate in CFG 117 order by visiting in bit-order. */ 118 static bitmap cfg_blocks; 119 static int *bb_to_cfg_order; 120 static int *cfg_order_to_bb; 121 122 /* Worklist of SSA edges which will need reexamination as their 123 definition has changed. SSA edges are def-use edges in the SSA 124 web. For each D-U edge, we store the target statement or PHI node 125 UID in a bitmap. UIDs order stmts in execution order. */ 126 static bitmap ssa_edge_worklist; 127 static vec<gimple *> uid_to_stmt; 128 129 /* Return true if the block worklist empty. */ 130 131 static inline bool 132 cfg_blocks_empty_p (void) 133 { 134 return bitmap_empty_p (cfg_blocks); 135 } 136 137 138 /* Add a basic block to the worklist. The block must not be the ENTRY 139 or EXIT block. */ 140 141 static void 142 cfg_blocks_add (basic_block bb) 143 { 144 gcc_assert (bb != ENTRY_BLOCK_PTR_FOR_FN (cfun) 145 && bb != EXIT_BLOCK_PTR_FOR_FN (cfun)); 146 bitmap_set_bit (cfg_blocks, bb_to_cfg_order[bb->index]); 147 } 148 149 150 /* Remove a block from the worklist. */ 151 152 static basic_block 153 cfg_blocks_get (void) 154 { 155 gcc_assert (!cfg_blocks_empty_p ()); 156 int order_index = bitmap_first_set_bit (cfg_blocks); 157 bitmap_clear_bit (cfg_blocks, order_index); 158 return BASIC_BLOCK_FOR_FN (cfun, cfg_order_to_bb [order_index]); 159 } 160 161 162 /* We have just defined a new value for VAR. If IS_VARYING is true, 163 add all immediate uses of VAR to VARYING_SSA_EDGES, otherwise add 164 them to INTERESTING_SSA_EDGES. */ 165 166 static void 167 add_ssa_edge (tree var) 168 { 169 imm_use_iterator iter; 170 use_operand_p use_p; 171 172 FOR_EACH_IMM_USE_FAST (use_p, iter, var) 173 { 174 gimple *use_stmt = USE_STMT (use_p); 175 176 /* If we did not yet simulate the block wait for this to happen 177 and do not add the stmt to the SSA edge worklist. */ 178 if (! (gimple_bb (use_stmt)->flags & BB_VISITED)) 179 continue; 180 181 if (prop_simulate_again_p (use_stmt) 182 && bitmap_set_bit (ssa_edge_worklist, gimple_uid (use_stmt))) 183 { 184 uid_to_stmt[gimple_uid (use_stmt)] = use_stmt; 185 if (dump_file && (dump_flags & TDF_DETAILS)) 186 { 187 fprintf (dump_file, "ssa_edge_worklist: adding SSA use in "); 188 print_gimple_stmt (dump_file, use_stmt, 0, TDF_SLIM); 189 } 190 } 191 } 192 } 193 194 195 /* Add edge E to the control flow worklist. */ 196 197 static void 198 add_control_edge (edge e) 199 { 200 basic_block bb = e->dest; 201 if (bb == EXIT_BLOCK_PTR_FOR_FN (cfun)) 202 return; 203 204 /* If the edge had already been executed, skip it. */ 205 if (e->flags & EDGE_EXECUTABLE) 206 return; 207 208 e->flags |= EDGE_EXECUTABLE; 209 210 cfg_blocks_add (bb); 211 212 if (dump_file && (dump_flags & TDF_DETAILS)) 213 fprintf (dump_file, "Adding destination of edge (%d -> %d) to worklist\n", 214 e->src->index, e->dest->index); 215 } 216 217 218 /* Simulate the execution of STMT and update the work lists accordingly. */ 219 220 static void 221 simulate_stmt (gimple *stmt) 222 { 223 enum ssa_prop_result val = SSA_PROP_NOT_INTERESTING; 224 edge taken_edge = NULL; 225 tree output_name = NULL_TREE; 226 227 /* Pull the stmt off the SSA edge worklist. */ 228 bitmap_clear_bit (ssa_edge_worklist, gimple_uid (stmt)); 229 230 /* Don't bother visiting statements that are already 231 considered varying by the propagator. */ 232 if (!prop_simulate_again_p (stmt)) 233 return; 234 235 if (gimple_code (stmt) == GIMPLE_PHI) 236 { 237 val = ssa_prop_visit_phi (as_a <gphi *> (stmt)); 238 output_name = gimple_phi_result (stmt); 239 } 240 else 241 val = ssa_prop_visit_stmt (stmt, &taken_edge, &output_name); 242 243 if (val == SSA_PROP_VARYING) 244 { 245 prop_set_simulate_again (stmt, false); 246 247 /* If the statement produced a new varying value, add the SSA 248 edges coming out of OUTPUT_NAME. */ 249 if (output_name) 250 add_ssa_edge (output_name); 251 252 /* If STMT transfers control out of its basic block, add 253 all outgoing edges to the work list. */ 254 if (stmt_ends_bb_p (stmt)) 255 { 256 edge e; 257 edge_iterator ei; 258 basic_block bb = gimple_bb (stmt); 259 FOR_EACH_EDGE (e, ei, bb->succs) 260 add_control_edge (e); 261 } 262 return; 263 } 264 else if (val == SSA_PROP_INTERESTING) 265 { 266 /* If the statement produced new value, add the SSA edges coming 267 out of OUTPUT_NAME. */ 268 if (output_name) 269 add_ssa_edge (output_name); 270 271 /* If we know which edge is going to be taken out of this block, 272 add it to the CFG work list. */ 273 if (taken_edge) 274 add_control_edge (taken_edge); 275 } 276 277 /* If there are no SSA uses on the stmt whose defs are simulated 278 again then this stmt will be never visited again. */ 279 bool has_simulate_again_uses = false; 280 use_operand_p use_p; 281 ssa_op_iter iter; 282 if (gimple_code (stmt) == GIMPLE_PHI) 283 { 284 edge_iterator ei; 285 edge e; 286 tree arg; 287 FOR_EACH_EDGE (e, ei, gimple_bb (stmt)->preds) 288 if (!(e->flags & EDGE_EXECUTABLE) 289 || ((arg = PHI_ARG_DEF_FROM_EDGE (stmt, e)) 290 && TREE_CODE (arg) == SSA_NAME 291 && !SSA_NAME_IS_DEFAULT_DEF (arg) 292 && prop_simulate_again_p (SSA_NAME_DEF_STMT (arg)))) 293 { 294 has_simulate_again_uses = true; 295 break; 296 } 297 } 298 else 299 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_USE) 300 { 301 gimple *def_stmt = SSA_NAME_DEF_STMT (USE_FROM_PTR (use_p)); 302 if (!gimple_nop_p (def_stmt) 303 && prop_simulate_again_p (def_stmt)) 304 { 305 has_simulate_again_uses = true; 306 break; 307 } 308 } 309 if (!has_simulate_again_uses) 310 { 311 if (dump_file && (dump_flags & TDF_DETAILS)) 312 fprintf (dump_file, "marking stmt to be not simulated again\n"); 313 prop_set_simulate_again (stmt, false); 314 } 315 } 316 317 /* Process an SSA edge worklist. WORKLIST is the SSA edge worklist to 318 drain. This pops statements off the given WORKLIST and processes 319 them until one statement was simulated or there are no more statements 320 on WORKLIST. We take a pointer to WORKLIST because it may be reallocated 321 when an SSA edge is added to it in simulate_stmt. Return true if a stmt 322 was simulated. */ 323 324 static void 325 process_ssa_edge_worklist () 326 { 327 /* Process the next entry from the worklist. */ 328 unsigned stmt_uid = bitmap_first_set_bit (ssa_edge_worklist); 329 bitmap_clear_bit (ssa_edge_worklist, stmt_uid); 330 gimple *stmt = uid_to_stmt[stmt_uid]; 331 332 /* We should not have stmts in not yet simulated BBs on the worklist. */ 333 gcc_assert (gimple_bb (stmt)->flags & BB_VISITED); 334 335 if (dump_file && (dump_flags & TDF_DETAILS)) 336 { 337 fprintf (dump_file, "\nSimulating statement: "); 338 print_gimple_stmt (dump_file, stmt, 0, dump_flags); 339 } 340 341 simulate_stmt (stmt); 342 } 343 344 345 /* Simulate the execution of BLOCK. Evaluate the statement associated 346 with each variable reference inside the block. */ 347 348 static void 349 simulate_block (basic_block block) 350 { 351 gimple_stmt_iterator gsi; 352 353 /* There is nothing to do for the exit block. */ 354 if (block == EXIT_BLOCK_PTR_FOR_FN (cfun)) 355 return; 356 357 if (dump_file && (dump_flags & TDF_DETAILS)) 358 fprintf (dump_file, "\nSimulating block %d\n", block->index); 359 360 /* Always simulate PHI nodes, even if we have simulated this block 361 before. */ 362 for (gsi = gsi_start_phis (block); !gsi_end_p (gsi); gsi_next (&gsi)) 363 simulate_stmt (gsi_stmt (gsi)); 364 365 /* If this is the first time we've simulated this block, then we 366 must simulate each of its statements. */ 367 if (! (block->flags & BB_VISITED)) 368 { 369 gimple_stmt_iterator j; 370 unsigned int normal_edge_count; 371 edge e, normal_edge; 372 edge_iterator ei; 373 374 for (j = gsi_start_bb (block); !gsi_end_p (j); gsi_next (&j)) 375 simulate_stmt (gsi_stmt (j)); 376 377 /* Note that we have simulated this block. */ 378 block->flags |= BB_VISITED; 379 380 /* We can not predict when abnormal and EH edges will be executed, so 381 once a block is considered executable, we consider any 382 outgoing abnormal edges as executable. 383 384 TODO: This is not exactly true. Simplifying statement might 385 prove it non-throwing and also computed goto can be handled 386 when destination is known. 387 388 At the same time, if this block has only one successor that is 389 reached by non-abnormal edges, then add that successor to the 390 worklist. */ 391 normal_edge_count = 0; 392 normal_edge = NULL; 393 FOR_EACH_EDGE (e, ei, block->succs) 394 { 395 if (e->flags & (EDGE_ABNORMAL | EDGE_EH)) 396 add_control_edge (e); 397 else 398 { 399 normal_edge_count++; 400 normal_edge = e; 401 } 402 } 403 404 if (normal_edge_count == 1) 405 add_control_edge (normal_edge); 406 } 407 } 408 409 410 /* Initialize local data structures and work lists. */ 411 412 static void 413 ssa_prop_init (void) 414 { 415 edge e; 416 edge_iterator ei; 417 basic_block bb; 418 419 /* Worklists of SSA edges. */ 420 ssa_edge_worklist = BITMAP_ALLOC (NULL); 421 422 /* Worklist of basic-blocks. */ 423 bb_to_cfg_order = XNEWVEC (int, last_basic_block_for_fn (cfun) + 1); 424 cfg_order_to_bb = XNEWVEC (int, n_basic_blocks_for_fn (cfun)); 425 int n = pre_and_rev_post_order_compute_fn (cfun, NULL, 426 cfg_order_to_bb, false); 427 for (int i = 0; i < n; ++i) 428 bb_to_cfg_order[cfg_order_to_bb[i]] = i; 429 cfg_blocks = BITMAP_ALLOC (NULL); 430 431 if (dump_file && (dump_flags & TDF_DETAILS)) 432 dump_immediate_uses (dump_file); 433 434 /* Initially assume that every edge in the CFG is not executable. 435 (including the edges coming out of the entry block). Mark blocks 436 as not visited, blocks not yet visited will have all their statements 437 simulated once an incoming edge gets executable. */ 438 set_gimple_stmt_max_uid (cfun, 0); 439 for (int i = 0; i < n; ++i) 440 { 441 gimple_stmt_iterator si; 442 bb = BASIC_BLOCK_FOR_FN (cfun, cfg_order_to_bb[i]); 443 444 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si)) 445 { 446 gimple *stmt = gsi_stmt (si); 447 gimple_set_uid (stmt, inc_gimple_stmt_max_uid (cfun)); 448 } 449 450 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si)) 451 { 452 gimple *stmt = gsi_stmt (si); 453 gimple_set_uid (stmt, inc_gimple_stmt_max_uid (cfun)); 454 } 455 456 bb->flags &= ~BB_VISITED; 457 FOR_EACH_EDGE (e, ei, bb->succs) 458 e->flags &= ~EDGE_EXECUTABLE; 459 } 460 uid_to_stmt.safe_grow (gimple_stmt_max_uid (cfun)); 461 462 /* Seed the algorithm by adding the successors of the entry block to the 463 edge worklist. */ 464 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs) 465 { 466 e->flags &= ~EDGE_EXECUTABLE; 467 add_control_edge (e); 468 } 469 } 470 471 472 /* Free allocated storage. */ 473 474 static void 475 ssa_prop_fini (void) 476 { 477 BITMAP_FREE (cfg_blocks); 478 free (bb_to_cfg_order); 479 free (cfg_order_to_bb); 480 BITMAP_FREE (ssa_edge_worklist); 481 uid_to_stmt.release (); 482 } 483 484 485 /* Return true if EXPR is an acceptable right-hand-side for a 486 GIMPLE assignment. We validate the entire tree, not just 487 the root node, thus catching expressions that embed complex 488 operands that are not permitted in GIMPLE. This function 489 is needed because the folding routines in fold-const.c 490 may return such expressions in some cases, e.g., an array 491 access with an embedded index addition. It may make more 492 sense to have folding routines that are sensitive to the 493 constraints on GIMPLE operands, rather than abandoning any 494 any attempt to fold if the usual folding turns out to be too 495 aggressive. */ 496 497 bool 498 valid_gimple_rhs_p (tree expr) 499 { 500 enum tree_code code = TREE_CODE (expr); 501 502 switch (TREE_CODE_CLASS (code)) 503 { 504 case tcc_declaration: 505 if (!is_gimple_variable (expr)) 506 return false; 507 break; 508 509 case tcc_constant: 510 /* All constants are ok. */ 511 break; 512 513 case tcc_comparison: 514 /* GENERIC allows comparisons with non-boolean types, reject 515 those for GIMPLE. Let vector-typed comparisons pass - rules 516 for GENERIC and GIMPLE are the same here. */ 517 if (!(INTEGRAL_TYPE_P (TREE_TYPE (expr)) 518 && (TREE_CODE (TREE_TYPE (expr)) == BOOLEAN_TYPE 519 || TYPE_PRECISION (TREE_TYPE (expr)) == 1)) 520 && ! VECTOR_TYPE_P (TREE_TYPE (expr))) 521 return false; 522 523 /* Fallthru. */ 524 case tcc_binary: 525 if (!is_gimple_val (TREE_OPERAND (expr, 0)) 526 || !is_gimple_val (TREE_OPERAND (expr, 1))) 527 return false; 528 break; 529 530 case tcc_unary: 531 if (!is_gimple_val (TREE_OPERAND (expr, 0))) 532 return false; 533 break; 534 535 case tcc_expression: 536 switch (code) 537 { 538 case ADDR_EXPR: 539 { 540 tree t; 541 if (is_gimple_min_invariant (expr)) 542 return true; 543 t = TREE_OPERAND (expr, 0); 544 while (handled_component_p (t)) 545 { 546 /* ??? More checks needed, see the GIMPLE verifier. */ 547 if ((TREE_CODE (t) == ARRAY_REF 548 || TREE_CODE (t) == ARRAY_RANGE_REF) 549 && !is_gimple_val (TREE_OPERAND (t, 1))) 550 return false; 551 t = TREE_OPERAND (t, 0); 552 } 553 if (!is_gimple_id (t)) 554 return false; 555 } 556 break; 557 558 default: 559 if (get_gimple_rhs_class (code) == GIMPLE_TERNARY_RHS) 560 { 561 if (((code == VEC_COND_EXPR || code == COND_EXPR) 562 ? !is_gimple_condexpr (TREE_OPERAND (expr, 0)) 563 : !is_gimple_val (TREE_OPERAND (expr, 0))) 564 || !is_gimple_val (TREE_OPERAND (expr, 1)) 565 || !is_gimple_val (TREE_OPERAND (expr, 2))) 566 return false; 567 break; 568 } 569 return false; 570 } 571 break; 572 573 case tcc_vl_exp: 574 return false; 575 576 case tcc_exceptional: 577 if (code == CONSTRUCTOR) 578 { 579 unsigned i; 580 tree elt; 581 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (expr), i, elt) 582 if (!is_gimple_val (elt)) 583 return false; 584 return true; 585 } 586 if (code != SSA_NAME) 587 return false; 588 break; 589 590 case tcc_reference: 591 if (code == BIT_FIELD_REF) 592 return is_gimple_val (TREE_OPERAND (expr, 0)); 593 return false; 594 595 default: 596 return false; 597 } 598 599 return true; 600 } 601 602 603 /* Return true if EXPR is a CALL_EXPR suitable for representation 604 as a single GIMPLE_CALL statement. If the arguments require 605 further gimplification, return false. */ 606 607 static bool 608 valid_gimple_call_p (tree expr) 609 { 610 unsigned i, nargs; 611 612 if (TREE_CODE (expr) != CALL_EXPR) 613 return false; 614 615 nargs = call_expr_nargs (expr); 616 for (i = 0; i < nargs; i++) 617 { 618 tree arg = CALL_EXPR_ARG (expr, i); 619 if (is_gimple_reg_type (TREE_TYPE (arg))) 620 { 621 if (!is_gimple_val (arg)) 622 return false; 623 } 624 else 625 if (!is_gimple_lvalue (arg)) 626 return false; 627 } 628 629 return true; 630 } 631 632 633 /* Make SSA names defined by OLD_STMT point to NEW_STMT 634 as their defining statement. */ 635 636 void 637 move_ssa_defining_stmt_for_defs (gimple *new_stmt, gimple *old_stmt) 638 { 639 tree var; 640 ssa_op_iter iter; 641 642 if (gimple_in_ssa_p (cfun)) 643 { 644 /* Make defined SSA_NAMEs point to the new 645 statement as their definition. */ 646 FOR_EACH_SSA_TREE_OPERAND (var, old_stmt, iter, SSA_OP_ALL_DEFS) 647 { 648 if (TREE_CODE (var) == SSA_NAME) 649 SSA_NAME_DEF_STMT (var) = new_stmt; 650 } 651 } 652 } 653 654 /* Helper function for update_gimple_call and update_call_from_tree. 655 A GIMPLE_CALL STMT is being replaced with GIMPLE_CALL NEW_STMT. */ 656 657 static void 658 finish_update_gimple_call (gimple_stmt_iterator *si_p, gimple *new_stmt, 659 gimple *stmt) 660 { 661 gimple_call_set_lhs (new_stmt, gimple_call_lhs (stmt)); 662 move_ssa_defining_stmt_for_defs (new_stmt, stmt); 663 gimple_set_vuse (new_stmt, gimple_vuse (stmt)); 664 gimple_set_vdef (new_stmt, gimple_vdef (stmt)); 665 gimple_set_location (new_stmt, gimple_location (stmt)); 666 if (gimple_block (new_stmt) == NULL_TREE) 667 gimple_set_block (new_stmt, gimple_block (stmt)); 668 gsi_replace (si_p, new_stmt, false); 669 } 670 671 /* Update a GIMPLE_CALL statement at iterator *SI_P to call to FN 672 with number of arguments NARGS, where the arguments in GIMPLE form 673 follow NARGS argument. */ 674 675 bool 676 update_gimple_call (gimple_stmt_iterator *si_p, tree fn, int nargs, ...) 677 { 678 va_list ap; 679 gcall *new_stmt, *stmt = as_a <gcall *> (gsi_stmt (*si_p)); 680 681 gcc_assert (is_gimple_call (stmt)); 682 va_start (ap, nargs); 683 new_stmt = gimple_build_call_valist (fn, nargs, ap); 684 finish_update_gimple_call (si_p, new_stmt, stmt); 685 va_end (ap); 686 return true; 687 } 688 689 /* Update a GIMPLE_CALL statement at iterator *SI_P to reflect the 690 value of EXPR, which is expected to be the result of folding the 691 call. This can only be done if EXPR is a CALL_EXPR with valid 692 GIMPLE operands as arguments, or if it is a suitable RHS expression 693 for a GIMPLE_ASSIGN. More complex expressions will require 694 gimplification, which will introduce additional statements. In this 695 event, no update is performed, and the function returns false. 696 Note that we cannot mutate a GIMPLE_CALL in-place, so we always 697 replace the statement at *SI_P with an entirely new statement. 698 The new statement need not be a call, e.g., if the original call 699 folded to a constant. */ 700 701 bool 702 update_call_from_tree (gimple_stmt_iterator *si_p, tree expr) 703 { 704 gimple *stmt = gsi_stmt (*si_p); 705 706 if (valid_gimple_call_p (expr)) 707 { 708 /* The call has simplified to another call. */ 709 tree fn = CALL_EXPR_FN (expr); 710 unsigned i; 711 unsigned nargs = call_expr_nargs (expr); 712 vec<tree> args = vNULL; 713 gcall *new_stmt; 714 715 if (nargs > 0) 716 { 717 args.create (nargs); 718 args.safe_grow_cleared (nargs); 719 720 for (i = 0; i < nargs; i++) 721 args[i] = CALL_EXPR_ARG (expr, i); 722 } 723 724 new_stmt = gimple_build_call_vec (fn, args); 725 finish_update_gimple_call (si_p, new_stmt, stmt); 726 args.release (); 727 728 return true; 729 } 730 else if (valid_gimple_rhs_p (expr)) 731 { 732 tree lhs = gimple_call_lhs (stmt); 733 gimple *new_stmt; 734 735 /* The call has simplified to an expression 736 that cannot be represented as a GIMPLE_CALL. */ 737 if (lhs) 738 { 739 /* A value is expected. 740 Introduce a new GIMPLE_ASSIGN statement. */ 741 STRIP_USELESS_TYPE_CONVERSION (expr); 742 new_stmt = gimple_build_assign (lhs, expr); 743 move_ssa_defining_stmt_for_defs (new_stmt, stmt); 744 gimple_set_vuse (new_stmt, gimple_vuse (stmt)); 745 gimple_set_vdef (new_stmt, gimple_vdef (stmt)); 746 } 747 else if (!TREE_SIDE_EFFECTS (expr)) 748 { 749 /* No value is expected, and EXPR has no effect. 750 Replace it with an empty statement. */ 751 new_stmt = gimple_build_nop (); 752 if (gimple_in_ssa_p (cfun)) 753 { 754 unlink_stmt_vdef (stmt); 755 release_defs (stmt); 756 } 757 } 758 else 759 { 760 /* No value is expected, but EXPR has an effect, 761 e.g., it could be a reference to a volatile 762 variable. Create an assignment statement 763 with a dummy (unused) lhs variable. */ 764 STRIP_USELESS_TYPE_CONVERSION (expr); 765 if (gimple_in_ssa_p (cfun)) 766 lhs = make_ssa_name (TREE_TYPE (expr)); 767 else 768 lhs = create_tmp_var (TREE_TYPE (expr)); 769 new_stmt = gimple_build_assign (lhs, expr); 770 gimple_set_vuse (new_stmt, gimple_vuse (stmt)); 771 gimple_set_vdef (new_stmt, gimple_vdef (stmt)); 772 move_ssa_defining_stmt_for_defs (new_stmt, stmt); 773 } 774 gimple_set_location (new_stmt, gimple_location (stmt)); 775 gsi_replace (si_p, new_stmt, false); 776 return true; 777 } 778 else 779 /* The call simplified to an expression that is 780 not a valid GIMPLE RHS. */ 781 return false; 782 } 783 784 785 /* Entry point to the propagation engine. 786 787 VISIT_STMT is called for every statement visited. 788 VISIT_PHI is called for every PHI node visited. */ 789 790 void 791 ssa_propagate (ssa_prop_visit_stmt_fn visit_stmt, 792 ssa_prop_visit_phi_fn visit_phi) 793 { 794 ssa_prop_visit_stmt = visit_stmt; 795 ssa_prop_visit_phi = visit_phi; 796 797 ssa_prop_init (); 798 799 /* Iterate until the worklists are empty. */ 800 while (! cfg_blocks_empty_p () 801 || ! bitmap_empty_p (ssa_edge_worklist)) 802 { 803 /* First simulate whole blocks. */ 804 if (! cfg_blocks_empty_p ()) 805 { 806 /* Pull the next block to simulate off the worklist. */ 807 basic_block dest_block = cfg_blocks_get (); 808 simulate_block (dest_block); 809 continue; 810 } 811 812 /* Then simulate from the SSA edge worklist. */ 813 process_ssa_edge_worklist (); 814 } 815 816 ssa_prop_fini (); 817 } 818 819 820 /* Return true if STMT is of the form 'mem_ref = RHS', where 'mem_ref' 821 is a non-volatile pointer dereference, a structure reference or a 822 reference to a single _DECL. Ignore volatile memory references 823 because they are not interesting for the optimizers. */ 824 825 bool 826 stmt_makes_single_store (gimple *stmt) 827 { 828 tree lhs; 829 830 if (gimple_code (stmt) != GIMPLE_ASSIGN 831 && gimple_code (stmt) != GIMPLE_CALL) 832 return false; 833 834 if (!gimple_vdef (stmt)) 835 return false; 836 837 lhs = gimple_get_lhs (stmt); 838 839 /* A call statement may have a null LHS. */ 840 if (!lhs) 841 return false; 842 843 return (!TREE_THIS_VOLATILE (lhs) 844 && (DECL_P (lhs) 845 || REFERENCE_CLASS_P (lhs))); 846 } 847 848 849 /* Propagation statistics. */ 850 struct prop_stats_d 851 { 852 long num_const_prop; 853 long num_copy_prop; 854 long num_stmts_folded; 855 long num_dce; 856 }; 857 858 static struct prop_stats_d prop_stats; 859 860 /* Replace USE references in statement STMT with the values stored in 861 PROP_VALUE. Return true if at least one reference was replaced. */ 862 863 bool 864 replace_uses_in (gimple *stmt, ssa_prop_get_value_fn get_value) 865 { 866 bool replaced = false; 867 use_operand_p use; 868 ssa_op_iter iter; 869 870 FOR_EACH_SSA_USE_OPERAND (use, stmt, iter, SSA_OP_USE) 871 { 872 tree tuse = USE_FROM_PTR (use); 873 tree val = (*get_value) (tuse); 874 875 if (val == tuse || val == NULL_TREE) 876 continue; 877 878 if (gimple_code (stmt) == GIMPLE_ASM 879 && !may_propagate_copy_into_asm (tuse)) 880 continue; 881 882 if (!may_propagate_copy (tuse, val)) 883 continue; 884 885 if (TREE_CODE (val) != SSA_NAME) 886 prop_stats.num_const_prop++; 887 else 888 prop_stats.num_copy_prop++; 889 890 propagate_value (use, val); 891 892 replaced = true; 893 } 894 895 return replaced; 896 } 897 898 899 /* Replace propagated values into all the arguments for PHI using the 900 values from PROP_VALUE. */ 901 902 static bool 903 replace_phi_args_in (gphi *phi, ssa_prop_get_value_fn get_value) 904 { 905 size_t i; 906 bool replaced = false; 907 908 if (dump_file && (dump_flags & TDF_DETAILS)) 909 { 910 fprintf (dump_file, "Folding PHI node: "); 911 print_gimple_stmt (dump_file, phi, 0, TDF_SLIM); 912 } 913 914 for (i = 0; i < gimple_phi_num_args (phi); i++) 915 { 916 tree arg = gimple_phi_arg_def (phi, i); 917 918 if (TREE_CODE (arg) == SSA_NAME) 919 { 920 tree val = (*get_value) (arg); 921 922 if (val && val != arg && may_propagate_copy (arg, val)) 923 { 924 edge e = gimple_phi_arg_edge (phi, i); 925 926 if (TREE_CODE (val) != SSA_NAME) 927 prop_stats.num_const_prop++; 928 else 929 prop_stats.num_copy_prop++; 930 931 propagate_value (PHI_ARG_DEF_PTR (phi, i), val); 932 replaced = true; 933 934 /* If we propagated a copy and this argument flows 935 through an abnormal edge, update the replacement 936 accordingly. */ 937 if (TREE_CODE (val) == SSA_NAME 938 && e->flags & EDGE_ABNORMAL 939 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val)) 940 { 941 /* This can only occur for virtual operands, since 942 for the real ones SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val)) 943 would prevent replacement. */ 944 gcc_checking_assert (virtual_operand_p (val)); 945 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val) = 1; 946 } 947 } 948 } 949 } 950 951 if (dump_file && (dump_flags & TDF_DETAILS)) 952 { 953 if (!replaced) 954 fprintf (dump_file, "No folding possible\n"); 955 else 956 { 957 fprintf (dump_file, "Folded into: "); 958 print_gimple_stmt (dump_file, phi, 0, TDF_SLIM); 959 fprintf (dump_file, "\n"); 960 } 961 } 962 963 return replaced; 964 } 965 966 967 class substitute_and_fold_dom_walker : public dom_walker 968 { 969 public: 970 substitute_and_fold_dom_walker (cdi_direction direction, 971 ssa_prop_get_value_fn get_value_fn_, 972 ssa_prop_fold_stmt_fn fold_fn_) 973 : dom_walker (direction), get_value_fn (get_value_fn_), 974 fold_fn (fold_fn_), something_changed (false) 975 { 976 stmts_to_remove.create (0); 977 stmts_to_fixup.create (0); 978 need_eh_cleanup = BITMAP_ALLOC (NULL); 979 } 980 ~substitute_and_fold_dom_walker () 981 { 982 stmts_to_remove.release (); 983 stmts_to_fixup.release (); 984 BITMAP_FREE (need_eh_cleanup); 985 } 986 987 virtual edge before_dom_children (basic_block); 988 virtual void after_dom_children (basic_block) {} 989 990 ssa_prop_get_value_fn get_value_fn; 991 ssa_prop_fold_stmt_fn fold_fn; 992 bool something_changed; 993 vec<gimple *> stmts_to_remove; 994 vec<gimple *> stmts_to_fixup; 995 bitmap need_eh_cleanup; 996 }; 997 998 edge 999 substitute_and_fold_dom_walker::before_dom_children (basic_block bb) 1000 { 1001 /* Propagate known values into PHI nodes. */ 1002 for (gphi_iterator i = gsi_start_phis (bb); 1003 !gsi_end_p (i); 1004 gsi_next (&i)) 1005 { 1006 gphi *phi = i.phi (); 1007 tree res = gimple_phi_result (phi); 1008 if (virtual_operand_p (res)) 1009 continue; 1010 if (res && TREE_CODE (res) == SSA_NAME) 1011 { 1012 tree sprime = get_value_fn (res); 1013 if (sprime 1014 && sprime != res 1015 && may_propagate_copy (res, sprime)) 1016 { 1017 stmts_to_remove.safe_push (phi); 1018 continue; 1019 } 1020 } 1021 something_changed |= replace_phi_args_in (phi, get_value_fn); 1022 } 1023 1024 /* Propagate known values into stmts. In some case it exposes 1025 more trivially deletable stmts to walk backward. */ 1026 for (gimple_stmt_iterator i = gsi_start_bb (bb); 1027 !gsi_end_p (i); 1028 gsi_next (&i)) 1029 { 1030 bool did_replace; 1031 gimple *stmt = gsi_stmt (i); 1032 1033 /* No point propagating into a stmt we have a value for we 1034 can propagate into all uses. Mark it for removal instead. */ 1035 tree lhs = gimple_get_lhs (stmt); 1036 if (lhs && TREE_CODE (lhs) == SSA_NAME) 1037 { 1038 tree sprime = get_value_fn (lhs); 1039 if (sprime 1040 && sprime != lhs 1041 && may_propagate_copy (lhs, sprime) 1042 && !stmt_could_throw_p (stmt) 1043 && !gimple_has_side_effects (stmt) 1044 /* We have to leave ASSERT_EXPRs around for jump-threading. */ 1045 && (!is_gimple_assign (stmt) 1046 || gimple_assign_rhs_code (stmt) != ASSERT_EXPR)) 1047 { 1048 stmts_to_remove.safe_push (stmt); 1049 continue; 1050 } 1051 } 1052 1053 /* Replace the statement with its folded version and mark it 1054 folded. */ 1055 did_replace = false; 1056 if (dump_file && (dump_flags & TDF_DETAILS)) 1057 { 1058 fprintf (dump_file, "Folding statement: "); 1059 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM); 1060 } 1061 1062 gimple *old_stmt = stmt; 1063 bool was_noreturn = (is_gimple_call (stmt) 1064 && gimple_call_noreturn_p (stmt)); 1065 1066 /* Replace real uses in the statement. */ 1067 did_replace |= replace_uses_in (stmt, get_value_fn); 1068 1069 /* If we made a replacement, fold the statement. */ 1070 if (did_replace) 1071 { 1072 fold_stmt (&i, follow_single_use_edges); 1073 stmt = gsi_stmt (i); 1074 gimple_set_modified (stmt, true); 1075 } 1076 1077 /* Some statements may be simplified using propagator 1078 specific information. Do this before propagating 1079 into the stmt to not disturb pass specific information. */ 1080 if (fold_fn) 1081 { 1082 update_stmt_if_modified (stmt); 1083 if ((*fold_fn)(&i)) 1084 { 1085 did_replace = true; 1086 prop_stats.num_stmts_folded++; 1087 stmt = gsi_stmt (i); 1088 gimple_set_modified (stmt, true); 1089 } 1090 } 1091 1092 /* If this is a control statement the propagator left edges 1093 unexecuted on force the condition in a way consistent with 1094 that. See PR66945 for cases where the propagator can end 1095 up with a different idea of a taken edge than folding 1096 (once undefined behavior is involved). */ 1097 if (gimple_code (stmt) == GIMPLE_COND) 1098 { 1099 if ((EDGE_SUCC (bb, 0)->flags & EDGE_EXECUTABLE) 1100 ^ (EDGE_SUCC (bb, 1)->flags & EDGE_EXECUTABLE)) 1101 { 1102 if (((EDGE_SUCC (bb, 0)->flags & EDGE_TRUE_VALUE) != 0) 1103 == ((EDGE_SUCC (bb, 0)->flags & EDGE_EXECUTABLE) != 0)) 1104 gimple_cond_make_true (as_a <gcond *> (stmt)); 1105 else 1106 gimple_cond_make_false (as_a <gcond *> (stmt)); 1107 gimple_set_modified (stmt, true); 1108 did_replace = true; 1109 } 1110 } 1111 1112 /* Now cleanup. */ 1113 if (did_replace) 1114 { 1115 /* If we cleaned up EH information from the statement, 1116 remove EH edges. */ 1117 if (maybe_clean_or_replace_eh_stmt (old_stmt, stmt)) 1118 bitmap_set_bit (need_eh_cleanup, bb->index); 1119 1120 /* If we turned a not noreturn call into a noreturn one 1121 schedule it for fixup. */ 1122 if (!was_noreturn 1123 && is_gimple_call (stmt) 1124 && gimple_call_noreturn_p (stmt)) 1125 stmts_to_fixup.safe_push (stmt); 1126 1127 if (gimple_assign_single_p (stmt)) 1128 { 1129 tree rhs = gimple_assign_rhs1 (stmt); 1130 1131 if (TREE_CODE (rhs) == ADDR_EXPR) 1132 recompute_tree_invariant_for_addr_expr (rhs); 1133 } 1134 1135 /* Determine what needs to be done to update the SSA form. */ 1136 update_stmt_if_modified (stmt); 1137 if (!is_gimple_debug (stmt)) 1138 something_changed = true; 1139 } 1140 1141 if (dump_file && (dump_flags & TDF_DETAILS)) 1142 { 1143 if (did_replace) 1144 { 1145 fprintf (dump_file, "Folded into: "); 1146 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM); 1147 fprintf (dump_file, "\n"); 1148 } 1149 else 1150 fprintf (dump_file, "Not folded\n"); 1151 } 1152 } 1153 return NULL; 1154 } 1155 1156 1157 1158 /* Perform final substitution and folding of propagated values. 1159 1160 PROP_VALUE[I] contains the single value that should be substituted 1161 at every use of SSA name N_I. If PROP_VALUE is NULL, no values are 1162 substituted. 1163 1164 If FOLD_FN is non-NULL the function will be invoked on all statements 1165 before propagating values for pass specific simplification. 1166 1167 DO_DCE is true if trivially dead stmts can be removed. 1168 1169 If DO_DCE is true, the statements within a BB are walked from 1170 last to first element. Otherwise we scan from first to last element. 1171 1172 Return TRUE when something changed. */ 1173 1174 bool 1175 substitute_and_fold (ssa_prop_get_value_fn get_value_fn, 1176 ssa_prop_fold_stmt_fn fold_fn) 1177 { 1178 gcc_assert (get_value_fn); 1179 1180 if (dump_file && (dump_flags & TDF_DETAILS)) 1181 fprintf (dump_file, "\nSubstituting values and folding statements\n\n"); 1182 1183 memset (&prop_stats, 0, sizeof (prop_stats)); 1184 1185 calculate_dominance_info (CDI_DOMINATORS); 1186 substitute_and_fold_dom_walker walker(CDI_DOMINATORS, 1187 get_value_fn, fold_fn); 1188 walker.walk (ENTRY_BLOCK_PTR_FOR_FN (cfun)); 1189 1190 /* We cannot remove stmts during the BB walk, especially not release 1191 SSA names there as that destroys the lattice of our callers. 1192 Remove stmts in reverse order to make debug stmt creation possible. */ 1193 while (!walker.stmts_to_remove.is_empty ()) 1194 { 1195 gimple *stmt = walker.stmts_to_remove.pop (); 1196 if (dump_file && dump_flags & TDF_DETAILS) 1197 { 1198 fprintf (dump_file, "Removing dead stmt "); 1199 print_gimple_stmt (dump_file, stmt, 0, 0); 1200 fprintf (dump_file, "\n"); 1201 } 1202 prop_stats.num_dce++; 1203 gimple_stmt_iterator gsi = gsi_for_stmt (stmt); 1204 if (gimple_code (stmt) == GIMPLE_PHI) 1205 remove_phi_node (&gsi, true); 1206 else 1207 { 1208 unlink_stmt_vdef (stmt); 1209 gsi_remove (&gsi, true); 1210 release_defs (stmt); 1211 } 1212 } 1213 1214 if (!bitmap_empty_p (walker.need_eh_cleanup)) 1215 gimple_purge_all_dead_eh_edges (walker.need_eh_cleanup); 1216 1217 /* Fixup stmts that became noreturn calls. This may require splitting 1218 blocks and thus isn't possible during the dominator walk. Do this 1219 in reverse order so we don't inadvertedly remove a stmt we want to 1220 fixup by visiting a dominating now noreturn call first. */ 1221 while (!walker.stmts_to_fixup.is_empty ()) 1222 { 1223 gimple *stmt = walker.stmts_to_fixup.pop (); 1224 if (dump_file && dump_flags & TDF_DETAILS) 1225 { 1226 fprintf (dump_file, "Fixing up noreturn call "); 1227 print_gimple_stmt (dump_file, stmt, 0, 0); 1228 fprintf (dump_file, "\n"); 1229 } 1230 fixup_noreturn_call (stmt); 1231 } 1232 1233 statistics_counter_event (cfun, "Constants propagated", 1234 prop_stats.num_const_prop); 1235 statistics_counter_event (cfun, "Copies propagated", 1236 prop_stats.num_copy_prop); 1237 statistics_counter_event (cfun, "Statements folded", 1238 prop_stats.num_stmts_folded); 1239 statistics_counter_event (cfun, "Statements deleted", 1240 prop_stats.num_dce); 1241 1242 return walker.something_changed; 1243 } 1244 1245 1246 /* Return true if we may propagate ORIG into DEST, false otherwise. */ 1247 1248 bool 1249 may_propagate_copy (tree dest, tree orig) 1250 { 1251 tree type_d = TREE_TYPE (dest); 1252 tree type_o = TREE_TYPE (orig); 1253 1254 /* If ORIG is a default definition which flows in from an abnormal edge 1255 then the copy can be propagated. It is important that we do so to avoid 1256 uninitialized copies. */ 1257 if (TREE_CODE (orig) == SSA_NAME 1258 && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (orig) 1259 && SSA_NAME_IS_DEFAULT_DEF (orig) 1260 && (SSA_NAME_VAR (orig) == NULL_TREE 1261 || TREE_CODE (SSA_NAME_VAR (orig)) == VAR_DECL)) 1262 ; 1263 /* Otherwise if ORIG just flows in from an abnormal edge then the copy cannot 1264 be propagated. */ 1265 else if (TREE_CODE (orig) == SSA_NAME 1266 && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (orig)) 1267 return false; 1268 /* Similarly if DEST flows in from an abnormal edge then the copy cannot be 1269 propagated. */ 1270 else if (TREE_CODE (dest) == SSA_NAME 1271 && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (dest)) 1272 return false; 1273 1274 /* Do not copy between types for which we *do* need a conversion. */ 1275 if (!useless_type_conversion_p (type_d, type_o)) 1276 return false; 1277 1278 /* Generally propagating virtual operands is not ok as that may 1279 create overlapping life-ranges. */ 1280 if (TREE_CODE (dest) == SSA_NAME && virtual_operand_p (dest)) 1281 return false; 1282 1283 /* Anything else is OK. */ 1284 return true; 1285 } 1286 1287 /* Like may_propagate_copy, but use as the destination expression 1288 the principal expression (typically, the RHS) contained in 1289 statement DEST. This is more efficient when working with the 1290 gimple tuples representation. */ 1291 1292 bool 1293 may_propagate_copy_into_stmt (gimple *dest, tree orig) 1294 { 1295 tree type_d; 1296 tree type_o; 1297 1298 /* If the statement is a switch or a single-rhs assignment, 1299 then the expression to be replaced by the propagation may 1300 be an SSA_NAME. Fortunately, there is an explicit tree 1301 for the expression, so we delegate to may_propagate_copy. */ 1302 1303 if (gimple_assign_single_p (dest)) 1304 return may_propagate_copy (gimple_assign_rhs1 (dest), orig); 1305 else if (gswitch *dest_swtch = dyn_cast <gswitch *> (dest)) 1306 return may_propagate_copy (gimple_switch_index (dest_swtch), orig); 1307 1308 /* In other cases, the expression is not materialized, so there 1309 is no destination to pass to may_propagate_copy. On the other 1310 hand, the expression cannot be an SSA_NAME, so the analysis 1311 is much simpler. */ 1312 1313 if (TREE_CODE (orig) == SSA_NAME 1314 && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (orig)) 1315 return false; 1316 1317 if (is_gimple_assign (dest)) 1318 type_d = TREE_TYPE (gimple_assign_lhs (dest)); 1319 else if (gimple_code (dest) == GIMPLE_COND) 1320 type_d = boolean_type_node; 1321 else if (is_gimple_call (dest) 1322 && gimple_call_lhs (dest) != NULL_TREE) 1323 type_d = TREE_TYPE (gimple_call_lhs (dest)); 1324 else 1325 gcc_unreachable (); 1326 1327 type_o = TREE_TYPE (orig); 1328 1329 if (!useless_type_conversion_p (type_d, type_o)) 1330 return false; 1331 1332 return true; 1333 } 1334 1335 /* Similarly, but we know that we're propagating into an ASM_EXPR. */ 1336 1337 bool 1338 may_propagate_copy_into_asm (tree dest ATTRIBUTE_UNUSED) 1339 { 1340 return true; 1341 } 1342 1343 1344 /* Common code for propagate_value and replace_exp. 1345 1346 Replace use operand OP_P with VAL. FOR_PROPAGATION indicates if the 1347 replacement is done to propagate a value or not. */ 1348 1349 static void 1350 replace_exp_1 (use_operand_p op_p, tree val, 1351 bool for_propagation ATTRIBUTE_UNUSED) 1352 { 1353 if (flag_checking) 1354 { 1355 tree op = USE_FROM_PTR (op_p); 1356 gcc_assert (!(for_propagation 1357 && TREE_CODE (op) == SSA_NAME 1358 && TREE_CODE (val) == SSA_NAME 1359 && !may_propagate_copy (op, val))); 1360 } 1361 1362 if (TREE_CODE (val) == SSA_NAME) 1363 SET_USE (op_p, val); 1364 else 1365 SET_USE (op_p, unshare_expr (val)); 1366 } 1367 1368 1369 /* Propagate the value VAL (assumed to be a constant or another SSA_NAME) 1370 into the operand pointed to by OP_P. 1371 1372 Use this version for const/copy propagation as it will perform additional 1373 checks to ensure validity of the const/copy propagation. */ 1374 1375 void 1376 propagate_value (use_operand_p op_p, tree val) 1377 { 1378 replace_exp_1 (op_p, val, true); 1379 } 1380 1381 /* Replace *OP_P with value VAL (assumed to be a constant or another SSA_NAME). 1382 1383 Use this version when not const/copy propagating values. For example, 1384 PRE uses this version when building expressions as they would appear 1385 in specific blocks taking into account actions of PHI nodes. 1386 1387 The statement in which an expression has been replaced should be 1388 folded using fold_stmt_inplace. */ 1389 1390 void 1391 replace_exp (use_operand_p op_p, tree val) 1392 { 1393 replace_exp_1 (op_p, val, false); 1394 } 1395 1396 1397 /* Propagate the value VAL (assumed to be a constant or another SSA_NAME) 1398 into the tree pointed to by OP_P. 1399 1400 Use this version for const/copy propagation when SSA operands are not 1401 available. It will perform the additional checks to ensure validity of 1402 the const/copy propagation, but will not update any operand information. 1403 Be sure to mark the stmt as modified. */ 1404 1405 void 1406 propagate_tree_value (tree *op_p, tree val) 1407 { 1408 if (TREE_CODE (val) == SSA_NAME) 1409 *op_p = val; 1410 else 1411 *op_p = unshare_expr (val); 1412 } 1413 1414 1415 /* Like propagate_tree_value, but use as the operand to replace 1416 the principal expression (typically, the RHS) contained in the 1417 statement referenced by iterator GSI. Note that it is not 1418 always possible to update the statement in-place, so a new 1419 statement may be created to replace the original. */ 1420 1421 void 1422 propagate_tree_value_into_stmt (gimple_stmt_iterator *gsi, tree val) 1423 { 1424 gimple *stmt = gsi_stmt (*gsi); 1425 1426 if (is_gimple_assign (stmt)) 1427 { 1428 tree expr = NULL_TREE; 1429 if (gimple_assign_single_p (stmt)) 1430 expr = gimple_assign_rhs1 (stmt); 1431 propagate_tree_value (&expr, val); 1432 gimple_assign_set_rhs_from_tree (gsi, expr); 1433 } 1434 else if (gcond *cond_stmt = dyn_cast <gcond *> (stmt)) 1435 { 1436 tree lhs = NULL_TREE; 1437 tree rhs = build_zero_cst (TREE_TYPE (val)); 1438 propagate_tree_value (&lhs, val); 1439 gimple_cond_set_code (cond_stmt, NE_EXPR); 1440 gimple_cond_set_lhs (cond_stmt, lhs); 1441 gimple_cond_set_rhs (cond_stmt, rhs); 1442 } 1443 else if (is_gimple_call (stmt) 1444 && gimple_call_lhs (stmt) != NULL_TREE) 1445 { 1446 tree expr = NULL_TREE; 1447 bool res; 1448 propagate_tree_value (&expr, val); 1449 res = update_call_from_tree (gsi, expr); 1450 gcc_assert (res); 1451 } 1452 else if (gswitch *swtch_stmt = dyn_cast <gswitch *> (stmt)) 1453 propagate_tree_value (gimple_switch_index_ptr (swtch_stmt), val); 1454 else 1455 gcc_unreachable (); 1456 } 1457