1 /* Generic SSA value propagation engine. 2 Copyright (C) 2004-2020 Free Software Foundation, Inc. 3 Contributed by Diego Novillo <dnovillo@redhat.com> 4 5 This file is part of GCC. 6 7 GCC is free software; you can redistribute it and/or modify it 8 under the terms of the GNU General Public License as published by the 9 Free Software Foundation; either version 3, or (at your option) any 10 later version. 11 12 GCC is distributed in the hope that it will be useful, but WITHOUT 13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 15 for more details. 16 17 You should have received a copy of the GNU General Public License 18 along with GCC; see the file COPYING3. If not see 19 <http://www.gnu.org/licenses/>. */ 20 21 #include "config.h" 22 #include "system.h" 23 #include "coretypes.h" 24 #include "backend.h" 25 #include "tree.h" 26 #include "gimple.h" 27 #include "ssa.h" 28 #include "gimple-pretty-print.h" 29 #include "dumpfile.h" 30 #include "gimple-fold.h" 31 #include "tree-eh.h" 32 #include "gimplify.h" 33 #include "gimple-iterator.h" 34 #include "tree-cfg.h" 35 #include "tree-ssa.h" 36 #include "tree-ssa-propagate.h" 37 #include "domwalk.h" 38 #include "cfgloop.h" 39 #include "tree-cfgcleanup.h" 40 #include "cfganal.h" 41 42 /* This file implements a generic value propagation engine based on 43 the same propagation used by the SSA-CCP algorithm [1]. 44 45 Propagation is performed by simulating the execution of every 46 statement that produces the value being propagated. Simulation 47 proceeds as follows: 48 49 1- Initially, all edges of the CFG are marked not executable and 50 the CFG worklist is seeded with all the statements in the entry 51 basic block (block 0). 52 53 2- Every statement S is simulated with a call to the call-back 54 function SSA_PROP_VISIT_STMT. This evaluation may produce 3 55 results: 56 57 SSA_PROP_NOT_INTERESTING: Statement S produces nothing of 58 interest and does not affect any of the work lists. 59 The statement may be simulated again if any of its input 60 operands change in future iterations of the simulator. 61 62 SSA_PROP_VARYING: The value produced by S cannot be determined 63 at compile time. Further simulation of S is not required. 64 If S is a conditional jump, all the outgoing edges for the 65 block are considered executable and added to the work 66 list. 67 68 SSA_PROP_INTERESTING: S produces a value that can be computed 69 at compile time. Its result can be propagated into the 70 statements that feed from S. Furthermore, if S is a 71 conditional jump, only the edge known to be taken is added 72 to the work list. Edges that are known not to execute are 73 never simulated. 74 75 3- PHI nodes are simulated with a call to SSA_PROP_VISIT_PHI. The 76 return value from SSA_PROP_VISIT_PHI has the same semantics as 77 described in #2. 78 79 4- Three work lists are kept. Statements are only added to these 80 lists if they produce one of SSA_PROP_INTERESTING or 81 SSA_PROP_VARYING. 82 83 CFG_BLOCKS contains the list of blocks to be simulated. 84 Blocks are added to this list if their incoming edges are 85 found executable. 86 87 SSA_EDGE_WORKLIST contains the list of statements that we 88 need to revisit. 89 90 5- Simulation terminates when all three work lists are drained. 91 92 Before calling ssa_propagate, it is important to clear 93 prop_simulate_again_p for all the statements in the program that 94 should be simulated. This initialization allows an implementation 95 to specify which statements should never be simulated. 96 97 It is also important to compute def-use information before calling 98 ssa_propagate. 99 100 References: 101 102 [1] Constant propagation with conditional branches, 103 Wegman and Zadeck, ACM TOPLAS 13(2):181-210. 104 105 [2] Building an Optimizing Compiler, 106 Robert Morgan, Butterworth-Heinemann, 1998, Section 8.9. 107 108 [3] Advanced Compiler Design and Implementation, 109 Steven Muchnick, Morgan Kaufmann, 1997, Section 12.6 */ 110 111 /* Worklists of control flow edge destinations. This contains 112 the CFG order number of the blocks so we can iterate in CFG 113 order by visiting in bit-order. We use two worklists to 114 first make forward progress before iterating. */ 115 static bitmap cfg_blocks; 116 static bitmap cfg_blocks_back; 117 static int *bb_to_cfg_order; 118 static int *cfg_order_to_bb; 119 120 /* Worklists of SSA edges which will need reexamination as their 121 definition has changed. SSA edges are def-use edges in the SSA 122 web. For each D-U edge, we store the target statement or PHI node 123 UID in a bitmap. UIDs order stmts in execution order. We use 124 two worklists to first make forward progress before iterating. */ 125 static bitmap ssa_edge_worklist; 126 static bitmap ssa_edge_worklist_back; 127 static vec<gimple *> uid_to_stmt; 128 129 /* Current RPO index in the iteration. */ 130 static int curr_order; 131 132 133 /* We have just defined a new value for VAR. If IS_VARYING is true, 134 add all immediate uses of VAR to VARYING_SSA_EDGES, otherwise add 135 them to INTERESTING_SSA_EDGES. */ 136 137 static void 138 add_ssa_edge (tree var) 139 { 140 imm_use_iterator iter; 141 use_operand_p use_p; 142 143 FOR_EACH_IMM_USE_FAST (use_p, iter, var) 144 { 145 gimple *use_stmt = USE_STMT (use_p); 146 if (!prop_simulate_again_p (use_stmt)) 147 continue; 148 149 /* If we did not yet simulate the block wait for this to happen 150 and do not add the stmt to the SSA edge worklist. */ 151 basic_block use_bb = gimple_bb (use_stmt); 152 if (! (use_bb->flags & BB_VISITED)) 153 continue; 154 155 /* If this is a use on a not yet executable edge do not bother to 156 queue it. */ 157 if (gimple_code (use_stmt) == GIMPLE_PHI 158 && !(EDGE_PRED (use_bb, PHI_ARG_INDEX_FROM_USE (use_p))->flags 159 & EDGE_EXECUTABLE)) 160 continue; 161 162 bitmap worklist; 163 if (bb_to_cfg_order[gimple_bb (use_stmt)->index] < curr_order) 164 worklist = ssa_edge_worklist_back; 165 else 166 worklist = ssa_edge_worklist; 167 if (bitmap_set_bit (worklist, gimple_uid (use_stmt))) 168 { 169 uid_to_stmt[gimple_uid (use_stmt)] = use_stmt; 170 if (dump_file && (dump_flags & TDF_DETAILS)) 171 { 172 fprintf (dump_file, "ssa_edge_worklist: adding SSA use in "); 173 print_gimple_stmt (dump_file, use_stmt, 0, TDF_SLIM); 174 } 175 } 176 } 177 } 178 179 180 /* Add edge E to the control flow worklist. */ 181 182 static void 183 add_control_edge (edge e) 184 { 185 basic_block bb = e->dest; 186 if (bb == EXIT_BLOCK_PTR_FOR_FN (cfun)) 187 return; 188 189 /* If the edge had already been executed, skip it. */ 190 if (e->flags & EDGE_EXECUTABLE) 191 return; 192 193 e->flags |= EDGE_EXECUTABLE; 194 195 int bb_order = bb_to_cfg_order[bb->index]; 196 if (bb_order < curr_order) 197 bitmap_set_bit (cfg_blocks_back, bb_order); 198 else 199 bitmap_set_bit (cfg_blocks, bb_order); 200 201 if (dump_file && (dump_flags & TDF_DETAILS)) 202 fprintf (dump_file, "Adding destination of edge (%d -> %d) to worklist\n", 203 e->src->index, e->dest->index); 204 } 205 206 207 /* Simulate the execution of STMT and update the work lists accordingly. */ 208 209 void 210 ssa_propagation_engine::simulate_stmt (gimple *stmt) 211 { 212 enum ssa_prop_result val = SSA_PROP_NOT_INTERESTING; 213 edge taken_edge = NULL; 214 tree output_name = NULL_TREE; 215 216 /* Pull the stmt off the SSA edge worklist. */ 217 bitmap_clear_bit (ssa_edge_worklist, gimple_uid (stmt)); 218 219 /* Don't bother visiting statements that are already 220 considered varying by the propagator. */ 221 if (!prop_simulate_again_p (stmt)) 222 return; 223 224 if (gimple_code (stmt) == GIMPLE_PHI) 225 { 226 val = visit_phi (as_a <gphi *> (stmt)); 227 output_name = gimple_phi_result (stmt); 228 } 229 else 230 val = visit_stmt (stmt, &taken_edge, &output_name); 231 232 if (val == SSA_PROP_VARYING) 233 { 234 prop_set_simulate_again (stmt, false); 235 236 /* If the statement produced a new varying value, add the SSA 237 edges coming out of OUTPUT_NAME. */ 238 if (output_name) 239 add_ssa_edge (output_name); 240 241 /* If STMT transfers control out of its basic block, add 242 all outgoing edges to the work list. */ 243 if (stmt_ends_bb_p (stmt)) 244 { 245 edge e; 246 edge_iterator ei; 247 basic_block bb = gimple_bb (stmt); 248 FOR_EACH_EDGE (e, ei, bb->succs) 249 add_control_edge (e); 250 } 251 return; 252 } 253 else if (val == SSA_PROP_INTERESTING) 254 { 255 /* If the statement produced new value, add the SSA edges coming 256 out of OUTPUT_NAME. */ 257 if (output_name) 258 add_ssa_edge (output_name); 259 260 /* If we know which edge is going to be taken out of this block, 261 add it to the CFG work list. */ 262 if (taken_edge) 263 add_control_edge (taken_edge); 264 } 265 266 /* If there are no SSA uses on the stmt whose defs are simulated 267 again then this stmt will be never visited again. */ 268 bool has_simulate_again_uses = false; 269 use_operand_p use_p; 270 ssa_op_iter iter; 271 if (gimple_code (stmt) == GIMPLE_PHI) 272 { 273 edge_iterator ei; 274 edge e; 275 tree arg; 276 FOR_EACH_EDGE (e, ei, gimple_bb (stmt)->preds) 277 if (!(e->flags & EDGE_EXECUTABLE) 278 || ((arg = PHI_ARG_DEF_FROM_EDGE (stmt, e)) 279 && TREE_CODE (arg) == SSA_NAME 280 && !SSA_NAME_IS_DEFAULT_DEF (arg) 281 && prop_simulate_again_p (SSA_NAME_DEF_STMT (arg)))) 282 { 283 has_simulate_again_uses = true; 284 break; 285 } 286 } 287 else 288 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_USE) 289 { 290 gimple *def_stmt = SSA_NAME_DEF_STMT (USE_FROM_PTR (use_p)); 291 if (!gimple_nop_p (def_stmt) 292 && prop_simulate_again_p (def_stmt)) 293 { 294 has_simulate_again_uses = true; 295 break; 296 } 297 } 298 if (!has_simulate_again_uses) 299 { 300 if (dump_file && (dump_flags & TDF_DETAILS)) 301 fprintf (dump_file, "marking stmt to be not simulated again\n"); 302 prop_set_simulate_again (stmt, false); 303 } 304 } 305 306 307 /* Simulate the execution of BLOCK. Evaluate the statement associated 308 with each variable reference inside the block. */ 309 310 void 311 ssa_propagation_engine::simulate_block (basic_block block) 312 { 313 gimple_stmt_iterator gsi; 314 315 /* There is nothing to do for the exit block. */ 316 if (block == EXIT_BLOCK_PTR_FOR_FN (cfun)) 317 return; 318 319 if (dump_file && (dump_flags & TDF_DETAILS)) 320 fprintf (dump_file, "\nSimulating block %d\n", block->index); 321 322 /* Always simulate PHI nodes, even if we have simulated this block 323 before. */ 324 for (gsi = gsi_start_phis (block); !gsi_end_p (gsi); gsi_next (&gsi)) 325 simulate_stmt (gsi_stmt (gsi)); 326 327 /* If this is the first time we've simulated this block, then we 328 must simulate each of its statements. */ 329 if (! (block->flags & BB_VISITED)) 330 { 331 gimple_stmt_iterator j; 332 unsigned int normal_edge_count; 333 edge e, normal_edge; 334 edge_iterator ei; 335 336 for (j = gsi_start_bb (block); !gsi_end_p (j); gsi_next (&j)) 337 simulate_stmt (gsi_stmt (j)); 338 339 /* Note that we have simulated this block. */ 340 block->flags |= BB_VISITED; 341 342 /* We cannot predict when abnormal and EH edges will be executed, so 343 once a block is considered executable, we consider any 344 outgoing abnormal edges as executable. 345 346 TODO: This is not exactly true. Simplifying statement might 347 prove it non-throwing and also computed goto can be handled 348 when destination is known. 349 350 At the same time, if this block has only one successor that is 351 reached by non-abnormal edges, then add that successor to the 352 worklist. */ 353 normal_edge_count = 0; 354 normal_edge = NULL; 355 FOR_EACH_EDGE (e, ei, block->succs) 356 { 357 if (e->flags & (EDGE_ABNORMAL | EDGE_EH)) 358 add_control_edge (e); 359 else 360 { 361 normal_edge_count++; 362 normal_edge = e; 363 } 364 } 365 366 if (normal_edge_count == 1) 367 add_control_edge (normal_edge); 368 } 369 } 370 371 372 /* Initialize local data structures and work lists. */ 373 374 static void 375 ssa_prop_init (void) 376 { 377 edge e; 378 edge_iterator ei; 379 basic_block bb; 380 381 /* Worklists of SSA edges. */ 382 ssa_edge_worklist = BITMAP_ALLOC (NULL); 383 ssa_edge_worklist_back = BITMAP_ALLOC (NULL); 384 bitmap_tree_view (ssa_edge_worklist); 385 bitmap_tree_view (ssa_edge_worklist_back); 386 387 /* Worklist of basic-blocks. */ 388 bb_to_cfg_order = XNEWVEC (int, last_basic_block_for_fn (cfun) + 1); 389 cfg_order_to_bb = XNEWVEC (int, n_basic_blocks_for_fn (cfun)); 390 int n = pre_and_rev_post_order_compute_fn (cfun, NULL, 391 cfg_order_to_bb, false); 392 for (int i = 0; i < n; ++i) 393 bb_to_cfg_order[cfg_order_to_bb[i]] = i; 394 cfg_blocks = BITMAP_ALLOC (NULL); 395 cfg_blocks_back = BITMAP_ALLOC (NULL); 396 397 /* Initially assume that every edge in the CFG is not executable. 398 (including the edges coming out of the entry block). Mark blocks 399 as not visited, blocks not yet visited will have all their statements 400 simulated once an incoming edge gets executable. */ 401 set_gimple_stmt_max_uid (cfun, 0); 402 for (int i = 0; i < n; ++i) 403 { 404 gimple_stmt_iterator si; 405 bb = BASIC_BLOCK_FOR_FN (cfun, cfg_order_to_bb[i]); 406 407 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si)) 408 { 409 gimple *stmt = gsi_stmt (si); 410 gimple_set_uid (stmt, inc_gimple_stmt_max_uid (cfun)); 411 } 412 413 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si)) 414 { 415 gimple *stmt = gsi_stmt (si); 416 gimple_set_uid (stmt, inc_gimple_stmt_max_uid (cfun)); 417 } 418 419 bb->flags &= ~BB_VISITED; 420 FOR_EACH_EDGE (e, ei, bb->succs) 421 e->flags &= ~EDGE_EXECUTABLE; 422 } 423 uid_to_stmt.safe_grow (gimple_stmt_max_uid (cfun)); 424 } 425 426 427 /* Free allocated storage. */ 428 429 static void 430 ssa_prop_fini (void) 431 { 432 BITMAP_FREE (cfg_blocks); 433 BITMAP_FREE (cfg_blocks_back); 434 free (bb_to_cfg_order); 435 free (cfg_order_to_bb); 436 BITMAP_FREE (ssa_edge_worklist); 437 BITMAP_FREE (ssa_edge_worklist_back); 438 uid_to_stmt.release (); 439 } 440 441 442 /* Return true if EXPR is an acceptable right-hand-side for a 443 GIMPLE assignment. We validate the entire tree, not just 444 the root node, thus catching expressions that embed complex 445 operands that are not permitted in GIMPLE. This function 446 is needed because the folding routines in fold-const.c 447 may return such expressions in some cases, e.g., an array 448 access with an embedded index addition. It may make more 449 sense to have folding routines that are sensitive to the 450 constraints on GIMPLE operands, rather than abandoning any 451 any attempt to fold if the usual folding turns out to be too 452 aggressive. */ 453 454 bool 455 valid_gimple_rhs_p (tree expr) 456 { 457 enum tree_code code = TREE_CODE (expr); 458 459 switch (TREE_CODE_CLASS (code)) 460 { 461 case tcc_declaration: 462 if (!is_gimple_variable (expr)) 463 return false; 464 break; 465 466 case tcc_constant: 467 /* All constants are ok. */ 468 break; 469 470 case tcc_comparison: 471 /* GENERIC allows comparisons with non-boolean types, reject 472 those for GIMPLE. Let vector-typed comparisons pass - rules 473 for GENERIC and GIMPLE are the same here. */ 474 if (!(INTEGRAL_TYPE_P (TREE_TYPE (expr)) 475 && (TREE_CODE (TREE_TYPE (expr)) == BOOLEAN_TYPE 476 || TYPE_PRECISION (TREE_TYPE (expr)) == 1)) 477 && ! VECTOR_TYPE_P (TREE_TYPE (expr))) 478 return false; 479 480 /* Fallthru. */ 481 case tcc_binary: 482 if (!is_gimple_val (TREE_OPERAND (expr, 0)) 483 || !is_gimple_val (TREE_OPERAND (expr, 1))) 484 return false; 485 break; 486 487 case tcc_unary: 488 if (!is_gimple_val (TREE_OPERAND (expr, 0))) 489 return false; 490 break; 491 492 case tcc_expression: 493 switch (code) 494 { 495 case ADDR_EXPR: 496 { 497 tree t; 498 if (is_gimple_min_invariant (expr)) 499 return true; 500 t = TREE_OPERAND (expr, 0); 501 while (handled_component_p (t)) 502 { 503 /* ??? More checks needed, see the GIMPLE verifier. */ 504 if ((TREE_CODE (t) == ARRAY_REF 505 || TREE_CODE (t) == ARRAY_RANGE_REF) 506 && !is_gimple_val (TREE_OPERAND (t, 1))) 507 return false; 508 t = TREE_OPERAND (t, 0); 509 } 510 if (!is_gimple_id (t)) 511 return false; 512 } 513 break; 514 515 default: 516 if (get_gimple_rhs_class (code) == GIMPLE_TERNARY_RHS) 517 { 518 if (((code == VEC_COND_EXPR || code == COND_EXPR) 519 ? !is_gimple_condexpr (TREE_OPERAND (expr, 0)) 520 : !is_gimple_val (TREE_OPERAND (expr, 0))) 521 || !is_gimple_val (TREE_OPERAND (expr, 1)) 522 || !is_gimple_val (TREE_OPERAND (expr, 2))) 523 return false; 524 break; 525 } 526 return false; 527 } 528 break; 529 530 case tcc_vl_exp: 531 return false; 532 533 case tcc_exceptional: 534 if (code == CONSTRUCTOR) 535 { 536 unsigned i; 537 tree elt; 538 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (expr), i, elt) 539 if (!is_gimple_val (elt)) 540 return false; 541 return true; 542 } 543 if (code != SSA_NAME) 544 return false; 545 break; 546 547 case tcc_reference: 548 if (code == BIT_FIELD_REF) 549 return is_gimple_val (TREE_OPERAND (expr, 0)); 550 return false; 551 552 default: 553 return false; 554 } 555 556 return true; 557 } 558 559 560 /* Return true if EXPR is a CALL_EXPR suitable for representation 561 as a single GIMPLE_CALL statement. If the arguments require 562 further gimplification, return false. */ 563 564 static bool 565 valid_gimple_call_p (tree expr) 566 { 567 unsigned i, nargs; 568 569 if (TREE_CODE (expr) != CALL_EXPR) 570 return false; 571 572 nargs = call_expr_nargs (expr); 573 for (i = 0; i < nargs; i++) 574 { 575 tree arg = CALL_EXPR_ARG (expr, i); 576 if (is_gimple_reg_type (TREE_TYPE (arg))) 577 { 578 if (!is_gimple_val (arg)) 579 return false; 580 } 581 else 582 if (!is_gimple_lvalue (arg)) 583 return false; 584 } 585 586 return true; 587 } 588 589 590 /* Make SSA names defined by OLD_STMT point to NEW_STMT 591 as their defining statement. */ 592 593 void 594 move_ssa_defining_stmt_for_defs (gimple *new_stmt, gimple *old_stmt) 595 { 596 tree var; 597 ssa_op_iter iter; 598 599 if (gimple_in_ssa_p (cfun)) 600 { 601 /* Make defined SSA_NAMEs point to the new 602 statement as their definition. */ 603 FOR_EACH_SSA_TREE_OPERAND (var, old_stmt, iter, SSA_OP_ALL_DEFS) 604 { 605 if (TREE_CODE (var) == SSA_NAME) 606 SSA_NAME_DEF_STMT (var) = new_stmt; 607 } 608 } 609 } 610 611 /* Helper function for update_gimple_call and update_call_from_tree. 612 A GIMPLE_CALL STMT is being replaced with GIMPLE_CALL NEW_STMT. */ 613 614 static void 615 finish_update_gimple_call (gimple_stmt_iterator *si_p, gimple *new_stmt, 616 gimple *stmt) 617 { 618 gimple_call_set_lhs (new_stmt, gimple_call_lhs (stmt)); 619 move_ssa_defining_stmt_for_defs (new_stmt, stmt); 620 gimple_move_vops (new_stmt, stmt); 621 gimple_set_location (new_stmt, gimple_location (stmt)); 622 if (gimple_block (new_stmt) == NULL_TREE) 623 gimple_set_block (new_stmt, gimple_block (stmt)); 624 gsi_replace (si_p, new_stmt, false); 625 } 626 627 /* Update a GIMPLE_CALL statement at iterator *SI_P to call to FN 628 with number of arguments NARGS, where the arguments in GIMPLE form 629 follow NARGS argument. */ 630 631 bool 632 update_gimple_call (gimple_stmt_iterator *si_p, tree fn, int nargs, ...) 633 { 634 va_list ap; 635 gcall *new_stmt, *stmt = as_a <gcall *> (gsi_stmt (*si_p)); 636 637 gcc_assert (is_gimple_call (stmt)); 638 va_start (ap, nargs); 639 new_stmt = gimple_build_call_valist (fn, nargs, ap); 640 finish_update_gimple_call (si_p, new_stmt, stmt); 641 va_end (ap); 642 return true; 643 } 644 645 /* Update a GIMPLE_CALL statement at iterator *SI_P to reflect the 646 value of EXPR, which is expected to be the result of folding the 647 call. This can only be done if EXPR is a CALL_EXPR with valid 648 GIMPLE operands as arguments, or if it is a suitable RHS expression 649 for a GIMPLE_ASSIGN. More complex expressions will require 650 gimplification, which will introduce additional statements. In this 651 event, no update is performed, and the function returns false. 652 Note that we cannot mutate a GIMPLE_CALL in-place, so we always 653 replace the statement at *SI_P with an entirely new statement. 654 The new statement need not be a call, e.g., if the original call 655 folded to a constant. */ 656 657 bool 658 update_call_from_tree (gimple_stmt_iterator *si_p, tree expr) 659 { 660 gimple *stmt = gsi_stmt (*si_p); 661 662 if (valid_gimple_call_p (expr)) 663 { 664 /* The call has simplified to another call. */ 665 tree fn = CALL_EXPR_FN (expr); 666 unsigned i; 667 unsigned nargs = call_expr_nargs (expr); 668 vec<tree> args = vNULL; 669 gcall *new_stmt; 670 671 if (nargs > 0) 672 { 673 args.create (nargs); 674 args.safe_grow_cleared (nargs); 675 676 for (i = 0; i < nargs; i++) 677 args[i] = CALL_EXPR_ARG (expr, i); 678 } 679 680 new_stmt = gimple_build_call_vec (fn, args); 681 finish_update_gimple_call (si_p, new_stmt, stmt); 682 args.release (); 683 684 return true; 685 } 686 else if (valid_gimple_rhs_p (expr)) 687 { 688 tree lhs = gimple_call_lhs (stmt); 689 gimple *new_stmt; 690 691 /* The call has simplified to an expression 692 that cannot be represented as a GIMPLE_CALL. */ 693 if (lhs) 694 { 695 /* A value is expected. 696 Introduce a new GIMPLE_ASSIGN statement. */ 697 STRIP_USELESS_TYPE_CONVERSION (expr); 698 new_stmt = gimple_build_assign (lhs, expr); 699 move_ssa_defining_stmt_for_defs (new_stmt, stmt); 700 gimple_move_vops (new_stmt, stmt); 701 } 702 else if (!TREE_SIDE_EFFECTS (expr)) 703 { 704 /* No value is expected, and EXPR has no effect. 705 Replace it with an empty statement. */ 706 new_stmt = gimple_build_nop (); 707 if (gimple_in_ssa_p (cfun)) 708 { 709 unlink_stmt_vdef (stmt); 710 release_defs (stmt); 711 } 712 } 713 else 714 { 715 /* No value is expected, but EXPR has an effect, 716 e.g., it could be a reference to a volatile 717 variable. Create an assignment statement 718 with a dummy (unused) lhs variable. */ 719 STRIP_USELESS_TYPE_CONVERSION (expr); 720 if (gimple_in_ssa_p (cfun)) 721 lhs = make_ssa_name (TREE_TYPE (expr)); 722 else 723 lhs = create_tmp_var (TREE_TYPE (expr)); 724 new_stmt = gimple_build_assign (lhs, expr); 725 gimple_move_vops (new_stmt, stmt); 726 move_ssa_defining_stmt_for_defs (new_stmt, stmt); 727 } 728 gimple_set_location (new_stmt, gimple_location (stmt)); 729 gsi_replace (si_p, new_stmt, false); 730 return true; 731 } 732 else 733 /* The call simplified to an expression that is 734 not a valid GIMPLE RHS. */ 735 return false; 736 } 737 738 /* Entry point to the propagation engine. 739 740 The VISIT_STMT virtual function is called for every statement 741 visited and the VISIT_PHI virtual function is called for every PHI 742 node visited. */ 743 744 void 745 ssa_propagation_engine::ssa_propagate (void) 746 { 747 ssa_prop_init (); 748 749 curr_order = 0; 750 751 /* Iterate until the worklists are empty. We iterate both blocks 752 and stmts in RPO order, using sets of two worklists to first 753 complete the current iteration before iterating over backedges. 754 Seed the algorithm by adding the successors of the entry block to the 755 edge worklist. */ 756 edge e; 757 edge_iterator ei; 758 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs) 759 { 760 e->flags &= ~EDGE_EXECUTABLE; 761 add_control_edge (e); 762 } 763 while (1) 764 { 765 int next_block_order = (bitmap_empty_p (cfg_blocks) 766 ? -1 : bitmap_first_set_bit (cfg_blocks)); 767 int next_stmt_uid = (bitmap_empty_p (ssa_edge_worklist) 768 ? -1 : bitmap_first_set_bit (ssa_edge_worklist)); 769 if (next_block_order == -1 && next_stmt_uid == -1) 770 { 771 if (bitmap_empty_p (cfg_blocks_back) 772 && bitmap_empty_p (ssa_edge_worklist_back)) 773 break; 774 775 if (dump_file && (dump_flags & TDF_DETAILS)) 776 fprintf (dump_file, "Regular worklists empty, now processing " 777 "backedge destinations\n"); 778 std::swap (cfg_blocks, cfg_blocks_back); 779 std::swap (ssa_edge_worklist, ssa_edge_worklist_back); 780 continue; 781 } 782 783 int next_stmt_bb_order = -1; 784 gimple *next_stmt = NULL; 785 if (next_stmt_uid != -1) 786 { 787 next_stmt = uid_to_stmt[next_stmt_uid]; 788 next_stmt_bb_order = bb_to_cfg_order[gimple_bb (next_stmt)->index]; 789 } 790 791 /* Pull the next block to simulate off the worklist if it comes first. */ 792 if (next_block_order != -1 793 && (next_stmt_bb_order == -1 794 || next_block_order <= next_stmt_bb_order)) 795 { 796 curr_order = next_block_order; 797 bitmap_clear_bit (cfg_blocks, next_block_order); 798 basic_block bb 799 = BASIC_BLOCK_FOR_FN (cfun, cfg_order_to_bb [next_block_order]); 800 simulate_block (bb); 801 } 802 /* Else simulate from the SSA edge worklist. */ 803 else 804 { 805 curr_order = next_stmt_bb_order; 806 if (dump_file && (dump_flags & TDF_DETAILS)) 807 { 808 fprintf (dump_file, "\nSimulating statement: "); 809 print_gimple_stmt (dump_file, next_stmt, 0, dump_flags); 810 } 811 simulate_stmt (next_stmt); 812 } 813 } 814 815 ssa_prop_fini (); 816 } 817 818 /* Return true if STMT is of the form 'mem_ref = RHS', where 'mem_ref' 819 is a non-volatile pointer dereference, a structure reference or a 820 reference to a single _DECL. Ignore volatile memory references 821 because they are not interesting for the optimizers. */ 822 823 bool 824 stmt_makes_single_store (gimple *stmt) 825 { 826 tree lhs; 827 828 if (gimple_code (stmt) != GIMPLE_ASSIGN 829 && gimple_code (stmt) != GIMPLE_CALL) 830 return false; 831 832 if (!gimple_vdef (stmt)) 833 return false; 834 835 lhs = gimple_get_lhs (stmt); 836 837 /* A call statement may have a null LHS. */ 838 if (!lhs) 839 return false; 840 841 return (!TREE_THIS_VOLATILE (lhs) 842 && (DECL_P (lhs) 843 || REFERENCE_CLASS_P (lhs))); 844 } 845 846 847 /* Propagation statistics. */ 848 struct prop_stats_d 849 { 850 long num_const_prop; 851 long num_copy_prop; 852 long num_stmts_folded; 853 long num_dce; 854 }; 855 856 static struct prop_stats_d prop_stats; 857 858 /* Replace USE references in statement STMT with the values stored in 859 PROP_VALUE. Return true if at least one reference was replaced. */ 860 861 bool 862 substitute_and_fold_engine::replace_uses_in (gimple *stmt) 863 { 864 bool replaced = false; 865 use_operand_p use; 866 ssa_op_iter iter; 867 868 FOR_EACH_SSA_USE_OPERAND (use, stmt, iter, SSA_OP_USE) 869 { 870 tree tuse = USE_FROM_PTR (use); 871 tree val = get_value (tuse); 872 873 if (val == tuse || val == NULL_TREE) 874 continue; 875 876 if (gimple_code (stmt) == GIMPLE_ASM 877 && !may_propagate_copy_into_asm (tuse)) 878 continue; 879 880 if (!may_propagate_copy (tuse, val)) 881 continue; 882 883 if (TREE_CODE (val) != SSA_NAME) 884 prop_stats.num_const_prop++; 885 else 886 prop_stats.num_copy_prop++; 887 888 propagate_value (use, val); 889 890 replaced = true; 891 } 892 893 return replaced; 894 } 895 896 897 /* Replace propagated values into all the arguments for PHI using the 898 values from PROP_VALUE. */ 899 900 bool 901 substitute_and_fold_engine::replace_phi_args_in (gphi *phi) 902 { 903 size_t i; 904 bool replaced = false; 905 906 if (dump_file && (dump_flags & TDF_DETAILS)) 907 { 908 fprintf (dump_file, "Folding PHI node: "); 909 print_gimple_stmt (dump_file, phi, 0, TDF_SLIM); 910 } 911 912 for (i = 0; i < gimple_phi_num_args (phi); i++) 913 { 914 tree arg = gimple_phi_arg_def (phi, i); 915 916 if (TREE_CODE (arg) == SSA_NAME) 917 { 918 tree val = get_value (arg); 919 920 if (val && val != arg && may_propagate_copy (arg, val)) 921 { 922 edge e = gimple_phi_arg_edge (phi, i); 923 924 if (TREE_CODE (val) != SSA_NAME) 925 prop_stats.num_const_prop++; 926 else 927 prop_stats.num_copy_prop++; 928 929 propagate_value (PHI_ARG_DEF_PTR (phi, i), val); 930 replaced = true; 931 932 /* If we propagated a copy and this argument flows 933 through an abnormal edge, update the replacement 934 accordingly. */ 935 if (TREE_CODE (val) == SSA_NAME 936 && e->flags & EDGE_ABNORMAL 937 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val)) 938 { 939 /* This can only occur for virtual operands, since 940 for the real ones SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val)) 941 would prevent replacement. */ 942 gcc_checking_assert (virtual_operand_p (val)); 943 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val) = 1; 944 } 945 } 946 } 947 } 948 949 if (dump_file && (dump_flags & TDF_DETAILS)) 950 { 951 if (!replaced) 952 fprintf (dump_file, "No folding possible\n"); 953 else 954 { 955 fprintf (dump_file, "Folded into: "); 956 print_gimple_stmt (dump_file, phi, 0, TDF_SLIM); 957 fprintf (dump_file, "\n"); 958 } 959 } 960 961 return replaced; 962 } 963 964 965 class substitute_and_fold_dom_walker : public dom_walker 966 { 967 public: 968 substitute_and_fold_dom_walker (cdi_direction direction, 969 class substitute_and_fold_engine *engine) 970 : dom_walker (direction), 971 something_changed (false), 972 substitute_and_fold_engine (engine) 973 { 974 stmts_to_remove.create (0); 975 stmts_to_fixup.create (0); 976 need_eh_cleanup = BITMAP_ALLOC (NULL); 977 } 978 ~substitute_and_fold_dom_walker () 979 { 980 stmts_to_remove.release (); 981 stmts_to_fixup.release (); 982 BITMAP_FREE (need_eh_cleanup); 983 } 984 985 virtual edge before_dom_children (basic_block); 986 virtual void after_dom_children (basic_block) {} 987 988 bool something_changed; 989 vec<gimple *> stmts_to_remove; 990 vec<gimple *> stmts_to_fixup; 991 bitmap need_eh_cleanup; 992 993 class substitute_and_fold_engine *substitute_and_fold_engine; 994 }; 995 996 edge 997 substitute_and_fold_dom_walker::before_dom_children (basic_block bb) 998 { 999 /* Propagate known values into PHI nodes. */ 1000 for (gphi_iterator i = gsi_start_phis (bb); 1001 !gsi_end_p (i); 1002 gsi_next (&i)) 1003 { 1004 gphi *phi = i.phi (); 1005 tree res = gimple_phi_result (phi); 1006 if (virtual_operand_p (res)) 1007 continue; 1008 if (res && TREE_CODE (res) == SSA_NAME) 1009 { 1010 tree sprime = substitute_and_fold_engine->get_value (res); 1011 if (sprime 1012 && sprime != res 1013 && may_propagate_copy (res, sprime)) 1014 { 1015 stmts_to_remove.safe_push (phi); 1016 continue; 1017 } 1018 } 1019 something_changed |= substitute_and_fold_engine->replace_phi_args_in (phi); 1020 } 1021 1022 /* Propagate known values into stmts. In some case it exposes 1023 more trivially deletable stmts to walk backward. */ 1024 for (gimple_stmt_iterator i = gsi_start_bb (bb); 1025 !gsi_end_p (i); 1026 gsi_next (&i)) 1027 { 1028 bool did_replace; 1029 gimple *stmt = gsi_stmt (i); 1030 1031 /* No point propagating into a stmt we have a value for we 1032 can propagate into all uses. Mark it for removal instead. */ 1033 tree lhs = gimple_get_lhs (stmt); 1034 if (lhs && TREE_CODE (lhs) == SSA_NAME) 1035 { 1036 tree sprime = substitute_and_fold_engine->get_value (lhs); 1037 if (sprime 1038 && sprime != lhs 1039 && may_propagate_copy (lhs, sprime) 1040 && !stmt_could_throw_p (cfun, stmt) 1041 && !gimple_has_side_effects (stmt) 1042 /* We have to leave ASSERT_EXPRs around for jump-threading. */ 1043 && (!is_gimple_assign (stmt) 1044 || gimple_assign_rhs_code (stmt) != ASSERT_EXPR)) 1045 { 1046 stmts_to_remove.safe_push (stmt); 1047 continue; 1048 } 1049 } 1050 1051 /* Replace the statement with its folded version and mark it 1052 folded. */ 1053 did_replace = false; 1054 if (dump_file && (dump_flags & TDF_DETAILS)) 1055 { 1056 fprintf (dump_file, "Folding statement: "); 1057 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM); 1058 } 1059 1060 gimple *old_stmt = stmt; 1061 bool was_noreturn = (is_gimple_call (stmt) 1062 && gimple_call_noreturn_p (stmt)); 1063 1064 /* Replace real uses in the statement. */ 1065 did_replace |= substitute_and_fold_engine->replace_uses_in (stmt); 1066 1067 /* If we made a replacement, fold the statement. */ 1068 if (did_replace) 1069 { 1070 fold_stmt (&i, follow_single_use_edges); 1071 stmt = gsi_stmt (i); 1072 gimple_set_modified (stmt, true); 1073 } 1074 /* Also fold if we want to fold all statements. */ 1075 else if (substitute_and_fold_engine->fold_all_stmts 1076 && fold_stmt (&i, follow_single_use_edges)) 1077 { 1078 did_replace = true; 1079 stmt = gsi_stmt (i); 1080 gimple_set_modified (stmt, true); 1081 } 1082 1083 /* Some statements may be simplified using propagator 1084 specific information. Do this before propagating 1085 into the stmt to not disturb pass specific information. */ 1086 update_stmt_if_modified (stmt); 1087 if (substitute_and_fold_engine->fold_stmt(&i)) 1088 { 1089 did_replace = true; 1090 prop_stats.num_stmts_folded++; 1091 stmt = gsi_stmt (i); 1092 gimple_set_modified (stmt, true); 1093 } 1094 1095 /* If this is a control statement the propagator left edges 1096 unexecuted on force the condition in a way consistent with 1097 that. See PR66945 for cases where the propagator can end 1098 up with a different idea of a taken edge than folding 1099 (once undefined behavior is involved). */ 1100 if (gimple_code (stmt) == GIMPLE_COND) 1101 { 1102 if ((EDGE_SUCC (bb, 0)->flags & EDGE_EXECUTABLE) 1103 ^ (EDGE_SUCC (bb, 1)->flags & EDGE_EXECUTABLE)) 1104 { 1105 if (((EDGE_SUCC (bb, 0)->flags & EDGE_TRUE_VALUE) != 0) 1106 == ((EDGE_SUCC (bb, 0)->flags & EDGE_EXECUTABLE) != 0)) 1107 gimple_cond_make_true (as_a <gcond *> (stmt)); 1108 else 1109 gimple_cond_make_false (as_a <gcond *> (stmt)); 1110 gimple_set_modified (stmt, true); 1111 did_replace = true; 1112 } 1113 } 1114 1115 /* Now cleanup. */ 1116 if (did_replace) 1117 { 1118 /* If we cleaned up EH information from the statement, 1119 remove EH edges. */ 1120 if (maybe_clean_or_replace_eh_stmt (old_stmt, stmt)) 1121 bitmap_set_bit (need_eh_cleanup, bb->index); 1122 1123 /* If we turned a not noreturn call into a noreturn one 1124 schedule it for fixup. */ 1125 if (!was_noreturn 1126 && is_gimple_call (stmt) 1127 && gimple_call_noreturn_p (stmt)) 1128 stmts_to_fixup.safe_push (stmt); 1129 1130 if (gimple_assign_single_p (stmt)) 1131 { 1132 tree rhs = gimple_assign_rhs1 (stmt); 1133 1134 if (TREE_CODE (rhs) == ADDR_EXPR) 1135 recompute_tree_invariant_for_addr_expr (rhs); 1136 } 1137 1138 /* Determine what needs to be done to update the SSA form. */ 1139 update_stmt_if_modified (stmt); 1140 if (!is_gimple_debug (stmt)) 1141 something_changed = true; 1142 } 1143 1144 if (dump_file && (dump_flags & TDF_DETAILS)) 1145 { 1146 if (did_replace) 1147 { 1148 fprintf (dump_file, "Folded into: "); 1149 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM); 1150 fprintf (dump_file, "\n"); 1151 } 1152 else 1153 fprintf (dump_file, "Not folded\n"); 1154 } 1155 } 1156 return NULL; 1157 } 1158 1159 1160 1161 /* Perform final substitution and folding of propagated values. 1162 Process the whole function if BLOCK is null, otherwise only 1163 process the blocks that BLOCK dominates. In the latter case, 1164 it is the caller's responsibility to ensure that dominator 1165 information is available and up-to-date. 1166 1167 PROP_VALUE[I] contains the single value that should be substituted 1168 at every use of SSA name N_I. If PROP_VALUE is NULL, no values are 1169 substituted. 1170 1171 If FOLD_FN is non-NULL the function will be invoked on all statements 1172 before propagating values for pass specific simplification. 1173 1174 DO_DCE is true if trivially dead stmts can be removed. 1175 1176 If DO_DCE is true, the statements within a BB are walked from 1177 last to first element. Otherwise we scan from first to last element. 1178 1179 Return TRUE when something changed. */ 1180 1181 bool 1182 substitute_and_fold_engine::substitute_and_fold (basic_block block) 1183 { 1184 if (dump_file && (dump_flags & TDF_DETAILS)) 1185 fprintf (dump_file, "\nSubstituting values and folding statements\n\n"); 1186 1187 memset (&prop_stats, 0, sizeof (prop_stats)); 1188 1189 /* Don't call calculate_dominance_info when iterating over a subgraph. 1190 Callers that are using the interface this way are likely to want to 1191 iterate over several disjoint subgraphs, and it would be expensive 1192 in enable-checking builds to revalidate the whole dominance tree 1193 each time. */ 1194 if (block) 1195 gcc_assert (dom_info_state (CDI_DOMINATORS)); 1196 else 1197 calculate_dominance_info (CDI_DOMINATORS); 1198 substitute_and_fold_dom_walker walker (CDI_DOMINATORS, this); 1199 walker.walk (block ? block : ENTRY_BLOCK_PTR_FOR_FN (cfun)); 1200 1201 /* We cannot remove stmts during the BB walk, especially not release 1202 SSA names there as that destroys the lattice of our callers. 1203 Remove stmts in reverse order to make debug stmt creation possible. */ 1204 while (!walker.stmts_to_remove.is_empty ()) 1205 { 1206 gimple *stmt = walker.stmts_to_remove.pop (); 1207 if (dump_file && dump_flags & TDF_DETAILS) 1208 { 1209 fprintf (dump_file, "Removing dead stmt "); 1210 print_gimple_stmt (dump_file, stmt, 0); 1211 fprintf (dump_file, "\n"); 1212 } 1213 prop_stats.num_dce++; 1214 gimple_stmt_iterator gsi = gsi_for_stmt (stmt); 1215 if (gimple_code (stmt) == GIMPLE_PHI) 1216 remove_phi_node (&gsi, true); 1217 else 1218 { 1219 unlink_stmt_vdef (stmt); 1220 gsi_remove (&gsi, true); 1221 release_defs (stmt); 1222 } 1223 } 1224 1225 if (!bitmap_empty_p (walker.need_eh_cleanup)) 1226 gimple_purge_all_dead_eh_edges (walker.need_eh_cleanup); 1227 1228 /* Fixup stmts that became noreturn calls. This may require splitting 1229 blocks and thus isn't possible during the dominator walk. Do this 1230 in reverse order so we don't inadvertedly remove a stmt we want to 1231 fixup by visiting a dominating now noreturn call first. */ 1232 while (!walker.stmts_to_fixup.is_empty ()) 1233 { 1234 gimple *stmt = walker.stmts_to_fixup.pop (); 1235 if (dump_file && dump_flags & TDF_DETAILS) 1236 { 1237 fprintf (dump_file, "Fixing up noreturn call "); 1238 print_gimple_stmt (dump_file, stmt, 0); 1239 fprintf (dump_file, "\n"); 1240 } 1241 fixup_noreturn_call (stmt); 1242 } 1243 1244 statistics_counter_event (cfun, "Constants propagated", 1245 prop_stats.num_const_prop); 1246 statistics_counter_event (cfun, "Copies propagated", 1247 prop_stats.num_copy_prop); 1248 statistics_counter_event (cfun, "Statements folded", 1249 prop_stats.num_stmts_folded); 1250 statistics_counter_event (cfun, "Statements deleted", 1251 prop_stats.num_dce); 1252 1253 return walker.something_changed; 1254 } 1255 1256 1257 /* Return true if we may propagate ORIG into DEST, false otherwise. 1258 If DEST_NOT_PHI_ARG_P is true then assume the propagation does 1259 not happen into a PHI argument which relaxes some constraints. */ 1260 1261 bool 1262 may_propagate_copy (tree dest, tree orig, bool dest_not_phi_arg_p) 1263 { 1264 tree type_d = TREE_TYPE (dest); 1265 tree type_o = TREE_TYPE (orig); 1266 1267 /* If ORIG is a default definition which flows in from an abnormal edge 1268 then the copy can be propagated. It is important that we do so to avoid 1269 uninitialized copies. */ 1270 if (TREE_CODE (orig) == SSA_NAME 1271 && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (orig) 1272 && SSA_NAME_IS_DEFAULT_DEF (orig) 1273 && (SSA_NAME_VAR (orig) == NULL_TREE 1274 || TREE_CODE (SSA_NAME_VAR (orig)) == VAR_DECL)) 1275 ; 1276 /* Otherwise if ORIG just flows in from an abnormal edge then the copy cannot 1277 be propagated. */ 1278 else if (TREE_CODE (orig) == SSA_NAME 1279 && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (orig)) 1280 return false; 1281 /* Similarly if DEST flows in from an abnormal edge then the copy cannot be 1282 propagated. If we know we do not propagate into a PHI argument this 1283 does not apply. */ 1284 else if (!dest_not_phi_arg_p 1285 && TREE_CODE (dest) == SSA_NAME 1286 && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (dest)) 1287 return false; 1288 1289 /* Do not copy between types for which we *do* need a conversion. */ 1290 if (!useless_type_conversion_p (type_d, type_o)) 1291 return false; 1292 1293 /* Generally propagating virtual operands is not ok as that may 1294 create overlapping life-ranges. */ 1295 if (TREE_CODE (dest) == SSA_NAME && virtual_operand_p (dest)) 1296 return false; 1297 1298 /* Anything else is OK. */ 1299 return true; 1300 } 1301 1302 /* Like may_propagate_copy, but use as the destination expression 1303 the principal expression (typically, the RHS) contained in 1304 statement DEST. This is more efficient when working with the 1305 gimple tuples representation. */ 1306 1307 bool 1308 may_propagate_copy_into_stmt (gimple *dest, tree orig) 1309 { 1310 tree type_d; 1311 tree type_o; 1312 1313 /* If the statement is a switch or a single-rhs assignment, 1314 then the expression to be replaced by the propagation may 1315 be an SSA_NAME. Fortunately, there is an explicit tree 1316 for the expression, so we delegate to may_propagate_copy. */ 1317 1318 if (gimple_assign_single_p (dest)) 1319 return may_propagate_copy (gimple_assign_rhs1 (dest), orig, true); 1320 else if (gswitch *dest_swtch = dyn_cast <gswitch *> (dest)) 1321 return may_propagate_copy (gimple_switch_index (dest_swtch), orig, true); 1322 1323 /* In other cases, the expression is not materialized, so there 1324 is no destination to pass to may_propagate_copy. On the other 1325 hand, the expression cannot be an SSA_NAME, so the analysis 1326 is much simpler. */ 1327 1328 if (TREE_CODE (orig) == SSA_NAME 1329 && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (orig)) 1330 return false; 1331 1332 if (is_gimple_assign (dest)) 1333 type_d = TREE_TYPE (gimple_assign_lhs (dest)); 1334 else if (gimple_code (dest) == GIMPLE_COND) 1335 type_d = boolean_type_node; 1336 else if (is_gimple_call (dest) 1337 && gimple_call_lhs (dest) != NULL_TREE) 1338 type_d = TREE_TYPE (gimple_call_lhs (dest)); 1339 else 1340 gcc_unreachable (); 1341 1342 type_o = TREE_TYPE (orig); 1343 1344 if (!useless_type_conversion_p (type_d, type_o)) 1345 return false; 1346 1347 return true; 1348 } 1349 1350 /* Similarly, but we know that we're propagating into an ASM_EXPR. */ 1351 1352 bool 1353 may_propagate_copy_into_asm (tree dest ATTRIBUTE_UNUSED) 1354 { 1355 return true; 1356 } 1357 1358 1359 /* Replace *OP_P with value VAL (assumed to be a constant or another SSA_NAME). 1360 1361 Use this version when not const/copy propagating values. For example, 1362 PRE uses this version when building expressions as they would appear 1363 in specific blocks taking into account actions of PHI nodes. 1364 1365 The statement in which an expression has been replaced should be 1366 folded using fold_stmt_inplace. */ 1367 1368 void 1369 replace_exp (use_operand_p op_p, tree val) 1370 { 1371 if (TREE_CODE (val) == SSA_NAME || CONSTANT_CLASS_P (val)) 1372 SET_USE (op_p, val); 1373 else 1374 SET_USE (op_p, unshare_expr (val)); 1375 } 1376 1377 1378 /* Propagate the value VAL (assumed to be a constant or another SSA_NAME) 1379 into the operand pointed to by OP_P. 1380 1381 Use this version for const/copy propagation as it will perform additional 1382 checks to ensure validity of the const/copy propagation. */ 1383 1384 void 1385 propagate_value (use_operand_p op_p, tree val) 1386 { 1387 if (flag_checking) 1388 gcc_assert (may_propagate_copy (USE_FROM_PTR (op_p), val, 1389 !is_a <gphi *> (USE_STMT (op_p)))); 1390 replace_exp (op_p, val); 1391 } 1392 1393 1394 /* Propagate the value VAL (assumed to be a constant or another SSA_NAME) 1395 into the tree pointed to by OP_P. 1396 1397 Use this version for const/copy propagation when SSA operands are not 1398 available. It will perform the additional checks to ensure validity of 1399 the const/copy propagation, but will not update any operand information. 1400 Be sure to mark the stmt as modified. */ 1401 1402 void 1403 propagate_tree_value (tree *op_p, tree val) 1404 { 1405 if (TREE_CODE (val) == SSA_NAME) 1406 *op_p = val; 1407 else 1408 *op_p = unshare_expr (val); 1409 } 1410 1411 1412 /* Like propagate_tree_value, but use as the operand to replace 1413 the principal expression (typically, the RHS) contained in the 1414 statement referenced by iterator GSI. Note that it is not 1415 always possible to update the statement in-place, so a new 1416 statement may be created to replace the original. */ 1417 1418 void 1419 propagate_tree_value_into_stmt (gimple_stmt_iterator *gsi, tree val) 1420 { 1421 gimple *stmt = gsi_stmt (*gsi); 1422 1423 if (is_gimple_assign (stmt)) 1424 { 1425 tree expr = NULL_TREE; 1426 if (gimple_assign_single_p (stmt)) 1427 expr = gimple_assign_rhs1 (stmt); 1428 propagate_tree_value (&expr, val); 1429 gimple_assign_set_rhs_from_tree (gsi, expr); 1430 } 1431 else if (gcond *cond_stmt = dyn_cast <gcond *> (stmt)) 1432 { 1433 tree lhs = NULL_TREE; 1434 tree rhs = build_zero_cst (TREE_TYPE (val)); 1435 propagate_tree_value (&lhs, val); 1436 gimple_cond_set_code (cond_stmt, NE_EXPR); 1437 gimple_cond_set_lhs (cond_stmt, lhs); 1438 gimple_cond_set_rhs (cond_stmt, rhs); 1439 } 1440 else if (is_gimple_call (stmt) 1441 && gimple_call_lhs (stmt) != NULL_TREE) 1442 { 1443 tree expr = NULL_TREE; 1444 bool res; 1445 propagate_tree_value (&expr, val); 1446 res = update_call_from_tree (gsi, expr); 1447 gcc_assert (res); 1448 } 1449 else if (gswitch *swtch_stmt = dyn_cast <gswitch *> (stmt)) 1450 propagate_tree_value (gimple_switch_index_ptr (swtch_stmt), val); 1451 else 1452 gcc_unreachable (); 1453 } 1454