xref: /netbsd-src/external/gpl3/gcc.old/dist/gcc/tree-ssa-propagate.c (revision b7b7574d3bf8eeb51a1fa3977b59142ec6434a55)
1 /* Generic SSA value propagation engine.
2    Copyright (C) 2004, 2005, 2006, 2007, 2008 Free Software Foundation, Inc.
3    Contributed by Diego Novillo <dnovillo@redhat.com>
4 
5    This file is part of GCC.
6 
7    GCC is free software; you can redistribute it and/or modify it
8    under the terms of the GNU General Public License as published by the
9    Free Software Foundation; either version 3, or (at your option) any
10    later version.
11 
12    GCC is distributed in the hope that it will be useful, but WITHOUT
13    ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14    FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
15    for more details.
16 
17    You should have received a copy of the GNU General Public License
18    along with GCC; see the file COPYING3.  If not see
19    <http://www.gnu.org/licenses/>.  */
20 
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "tree.h"
26 #include "flags.h"
27 #include "rtl.h"
28 #include "tm_p.h"
29 #include "ggc.h"
30 #include "basic-block.h"
31 #include "output.h"
32 #include "expr.h"
33 #include "function.h"
34 #include "diagnostic.h"
35 #include "timevar.h"
36 #include "tree-dump.h"
37 #include "tree-flow.h"
38 #include "tree-pass.h"
39 #include "tree-ssa-propagate.h"
40 #include "langhooks.h"
41 #include "varray.h"
42 #include "vec.h"
43 #include "value-prof.h"
44 #include "gimple.h"
45 
46 /* This file implements a generic value propagation engine based on
47    the same propagation used by the SSA-CCP algorithm [1].
48 
49    Propagation is performed by simulating the execution of every
50    statement that produces the value being propagated.  Simulation
51    proceeds as follows:
52 
53    1- Initially, all edges of the CFG are marked not executable and
54       the CFG worklist is seeded with all the statements in the entry
55       basic block (block 0).
56 
57    2- Every statement S is simulated with a call to the call-back
58       function SSA_PROP_VISIT_STMT.  This evaluation may produce 3
59       results:
60 
61       	SSA_PROP_NOT_INTERESTING: Statement S produces nothing of
62 	    interest and does not affect any of the work lists.
63 
64 	SSA_PROP_VARYING: The value produced by S cannot be determined
65 	    at compile time.  Further simulation of S is not required.
66 	    If S is a conditional jump, all the outgoing edges for the
67 	    block are considered executable and added to the work
68 	    list.
69 
70 	SSA_PROP_INTERESTING: S produces a value that can be computed
71 	    at compile time.  Its result can be propagated into the
72 	    statements that feed from S.  Furthermore, if S is a
73 	    conditional jump, only the edge known to be taken is added
74 	    to the work list.  Edges that are known not to execute are
75 	    never simulated.
76 
77    3- PHI nodes are simulated with a call to SSA_PROP_VISIT_PHI.  The
78       return value from SSA_PROP_VISIT_PHI has the same semantics as
79       described in #2.
80 
81    4- Three work lists are kept.  Statements are only added to these
82       lists if they produce one of SSA_PROP_INTERESTING or
83       SSA_PROP_VARYING.
84 
85    	CFG_BLOCKS contains the list of blocks to be simulated.
86 	    Blocks are added to this list if their incoming edges are
87 	    found executable.
88 
89 	VARYING_SSA_EDGES contains the list of statements that feed
90 	    from statements that produce an SSA_PROP_VARYING result.
91 	    These are simulated first to speed up processing.
92 
93 	INTERESTING_SSA_EDGES contains the list of statements that
94 	    feed from statements that produce an SSA_PROP_INTERESTING
95 	    result.
96 
97    5- Simulation terminates when all three work lists are drained.
98 
99    Before calling ssa_propagate, it is important to clear
100    prop_simulate_again_p for all the statements in the program that
101    should be simulated.  This initialization allows an implementation
102    to specify which statements should never be simulated.
103 
104    It is also important to compute def-use information before calling
105    ssa_propagate.
106 
107    References:
108 
109      [1] Constant propagation with conditional branches,
110          Wegman and Zadeck, ACM TOPLAS 13(2):181-210.
111 
112      [2] Building an Optimizing Compiler,
113 	 Robert Morgan, Butterworth-Heinemann, 1998, Section 8.9.
114 
115      [3] Advanced Compiler Design and Implementation,
116 	 Steven Muchnick, Morgan Kaufmann, 1997, Section 12.6  */
117 
118 /* Function pointers used to parameterize the propagation engine.  */
119 static ssa_prop_visit_stmt_fn ssa_prop_visit_stmt;
120 static ssa_prop_visit_phi_fn ssa_prop_visit_phi;
121 
122 /* Keep track of statements that have been added to one of the SSA
123    edges worklists.  This flag is used to avoid visiting statements
124    unnecessarily when draining an SSA edge worklist.  If while
125    simulating a basic block, we find a statement with
126    STMT_IN_SSA_EDGE_WORKLIST set, we clear it to prevent SSA edge
127    processing from visiting it again.
128 
129    NOTE: users of the propagation engine are not allowed to use
130    the GF_PLF_1 flag.  */
131 #define STMT_IN_SSA_EDGE_WORKLIST	GF_PLF_1
132 
133 /* A bitmap to keep track of executable blocks in the CFG.  */
134 static sbitmap executable_blocks;
135 
136 /* Array of control flow edges on the worklist.  */
137 static VEC(basic_block,heap) *cfg_blocks;
138 
139 static unsigned int cfg_blocks_num = 0;
140 static int cfg_blocks_tail;
141 static int cfg_blocks_head;
142 
143 static sbitmap bb_in_list;
144 
145 /* Worklist of SSA edges which will need reexamination as their
146    definition has changed.  SSA edges are def-use edges in the SSA
147    web.  For each D-U edge, we store the target statement or PHI node
148    U.  */
149 static GTY(()) VEC(gimple,gc) *interesting_ssa_edges;
150 
151 /* Identical to INTERESTING_SSA_EDGES.  For performance reasons, the
152    list of SSA edges is split into two.  One contains all SSA edges
153    who need to be reexamined because their lattice value changed to
154    varying (this worklist), and the other contains all other SSA edges
155    to be reexamined (INTERESTING_SSA_EDGES).
156 
157    Since most values in the program are VARYING, the ideal situation
158    is to move them to that lattice value as quickly as possible.
159    Thus, it doesn't make sense to process any other type of lattice
160    value until all VARYING values are propagated fully, which is one
161    thing using the VARYING worklist achieves.  In addition, if we
162    don't use a separate worklist for VARYING edges, we end up with
163    situations where lattice values move from
164    UNDEFINED->INTERESTING->VARYING instead of UNDEFINED->VARYING.  */
165 static GTY(()) VEC(gimple,gc) *varying_ssa_edges;
166 
167 
168 /* Return true if the block worklist empty.  */
169 
170 static inline bool
171 cfg_blocks_empty_p (void)
172 {
173   return (cfg_blocks_num == 0);
174 }
175 
176 
177 /* Add a basic block to the worklist.  The block must not be already
178    in the worklist, and it must not be the ENTRY or EXIT block.  */
179 
180 static void
181 cfg_blocks_add (basic_block bb)
182 {
183   bool head = false;
184 
185   gcc_assert (bb != ENTRY_BLOCK_PTR && bb != EXIT_BLOCK_PTR);
186   gcc_assert (!TEST_BIT (bb_in_list, bb->index));
187 
188   if (cfg_blocks_empty_p ())
189     {
190       cfg_blocks_tail = cfg_blocks_head = 0;
191       cfg_blocks_num = 1;
192     }
193   else
194     {
195       cfg_blocks_num++;
196       if (cfg_blocks_num > VEC_length (basic_block, cfg_blocks))
197 	{
198 	  /* We have to grow the array now.  Adjust to queue to occupy
199 	     the full space of the original array.  We do not need to
200 	     initialize the newly allocated portion of the array
201 	     because we keep track of CFG_BLOCKS_HEAD and
202 	     CFG_BLOCKS_HEAD.  */
203 	  cfg_blocks_tail = VEC_length (basic_block, cfg_blocks);
204 	  cfg_blocks_head = 0;
205 	  VEC_safe_grow (basic_block, heap, cfg_blocks, 2 * cfg_blocks_tail);
206 	}
207       /* Minor optimization: we prefer to see blocks with more
208 	 predecessors later, because there is more of a chance that
209 	 the incoming edges will be executable.  */
210       else if (EDGE_COUNT (bb->preds)
211 	       >= EDGE_COUNT (VEC_index (basic_block, cfg_blocks,
212 					 cfg_blocks_head)->preds))
213 	cfg_blocks_tail = ((cfg_blocks_tail + 1)
214 			   % VEC_length (basic_block, cfg_blocks));
215       else
216 	{
217 	  if (cfg_blocks_head == 0)
218 	    cfg_blocks_head = VEC_length (basic_block, cfg_blocks);
219 	  --cfg_blocks_head;
220 	  head = true;
221 	}
222     }
223 
224   VEC_replace (basic_block, cfg_blocks,
225 	       head ? cfg_blocks_head : cfg_blocks_tail,
226 	       bb);
227   SET_BIT (bb_in_list, bb->index);
228 }
229 
230 
231 /* Remove a block from the worklist.  */
232 
233 static basic_block
234 cfg_blocks_get (void)
235 {
236   basic_block bb;
237 
238   bb = VEC_index (basic_block, cfg_blocks, cfg_blocks_head);
239 
240   gcc_assert (!cfg_blocks_empty_p ());
241   gcc_assert (bb);
242 
243   cfg_blocks_head = ((cfg_blocks_head + 1)
244 		     % VEC_length (basic_block, cfg_blocks));
245   --cfg_blocks_num;
246   RESET_BIT (bb_in_list, bb->index);
247 
248   return bb;
249 }
250 
251 
252 /* We have just defined a new value for VAR.  If IS_VARYING is true,
253    add all immediate uses of VAR to VARYING_SSA_EDGES, otherwise add
254    them to INTERESTING_SSA_EDGES.  */
255 
256 static void
257 add_ssa_edge (tree var, bool is_varying)
258 {
259   imm_use_iterator iter;
260   use_operand_p use_p;
261 
262   FOR_EACH_IMM_USE_FAST (use_p, iter, var)
263     {
264       gimple use_stmt = USE_STMT (use_p);
265 
266       if (prop_simulate_again_p (use_stmt)
267 	  && !gimple_plf (use_stmt, STMT_IN_SSA_EDGE_WORKLIST))
268 	{
269 	  gimple_set_plf (use_stmt, STMT_IN_SSA_EDGE_WORKLIST, true);
270 	  if (is_varying)
271 	    VEC_safe_push (gimple, gc, varying_ssa_edges, use_stmt);
272 	  else
273 	    VEC_safe_push (gimple, gc, interesting_ssa_edges, use_stmt);
274 	}
275     }
276 }
277 
278 
279 /* Add edge E to the control flow worklist.  */
280 
281 static void
282 add_control_edge (edge e)
283 {
284   basic_block bb = e->dest;
285   if (bb == EXIT_BLOCK_PTR)
286     return;
287 
288   /* If the edge had already been executed, skip it.  */
289   if (e->flags & EDGE_EXECUTABLE)
290     return;
291 
292   e->flags |= EDGE_EXECUTABLE;
293 
294   /* If the block is already in the list, we're done.  */
295   if (TEST_BIT (bb_in_list, bb->index))
296     return;
297 
298   cfg_blocks_add (bb);
299 
300   if (dump_file && (dump_flags & TDF_DETAILS))
301     fprintf (dump_file, "Adding Destination of edge (%d -> %d) to worklist\n\n",
302 	e->src->index, e->dest->index);
303 }
304 
305 
306 /* Simulate the execution of STMT and update the work lists accordingly.  */
307 
308 static void
309 simulate_stmt (gimple stmt)
310 {
311   enum ssa_prop_result val = SSA_PROP_NOT_INTERESTING;
312   edge taken_edge = NULL;
313   tree output_name = NULL_TREE;
314 
315   /* Don't bother visiting statements that are already
316      considered varying by the propagator.  */
317   if (!prop_simulate_again_p (stmt))
318     return;
319 
320   if (gimple_code (stmt) == GIMPLE_PHI)
321     {
322       val = ssa_prop_visit_phi (stmt);
323       output_name = gimple_phi_result (stmt);
324     }
325   else
326     val = ssa_prop_visit_stmt (stmt, &taken_edge, &output_name);
327 
328   if (val == SSA_PROP_VARYING)
329     {
330       prop_set_simulate_again (stmt, false);
331 
332       /* If the statement produced a new varying value, add the SSA
333 	 edges coming out of OUTPUT_NAME.  */
334       if (output_name)
335 	add_ssa_edge (output_name, true);
336 
337       /* If STMT transfers control out of its basic block, add
338 	 all outgoing edges to the work list.  */
339       if (stmt_ends_bb_p (stmt))
340 	{
341 	  edge e;
342 	  edge_iterator ei;
343 	  basic_block bb = gimple_bb (stmt);
344 	  FOR_EACH_EDGE (e, ei, bb->succs)
345 	    add_control_edge (e);
346 	}
347     }
348   else if (val == SSA_PROP_INTERESTING)
349     {
350       /* If the statement produced new value, add the SSA edges coming
351 	 out of OUTPUT_NAME.  */
352       if (output_name)
353 	add_ssa_edge (output_name, false);
354 
355       /* If we know which edge is going to be taken out of this block,
356 	 add it to the CFG work list.  */
357       if (taken_edge)
358 	add_control_edge (taken_edge);
359     }
360 }
361 
362 /* Process an SSA edge worklist.  WORKLIST is the SSA edge worklist to
363    drain.  This pops statements off the given WORKLIST and processes
364    them until there are no more statements on WORKLIST.
365    We take a pointer to WORKLIST because it may be reallocated when an
366    SSA edge is added to it in simulate_stmt.  */
367 
368 static void
369 process_ssa_edge_worklist (VEC(gimple,gc) **worklist)
370 {
371   /* Drain the entire worklist.  */
372   while (VEC_length (gimple, *worklist) > 0)
373     {
374       basic_block bb;
375 
376       /* Pull the statement to simulate off the worklist.  */
377       gimple stmt = VEC_pop (gimple, *worklist);
378 
379       /* If this statement was already visited by simulate_block, then
380 	 we don't need to visit it again here.  */
381       if (!gimple_plf (stmt, STMT_IN_SSA_EDGE_WORKLIST))
382 	continue;
383 
384       /* STMT is no longer in a worklist.  */
385       gimple_set_plf (stmt, STMT_IN_SSA_EDGE_WORKLIST, false);
386 
387       if (dump_file && (dump_flags & TDF_DETAILS))
388 	{
389 	  fprintf (dump_file, "\nSimulating statement (from ssa_edges): ");
390 	  print_gimple_stmt (dump_file, stmt, 0, dump_flags);
391 	}
392 
393       bb = gimple_bb (stmt);
394 
395       /* PHI nodes are always visited, regardless of whether or not
396 	 the destination block is executable.  Otherwise, visit the
397 	 statement only if its block is marked executable.  */
398       if (gimple_code (stmt) == GIMPLE_PHI
399 	  || TEST_BIT (executable_blocks, bb->index))
400 	simulate_stmt (stmt);
401     }
402 }
403 
404 
405 /* Simulate the execution of BLOCK.  Evaluate the statement associated
406    with each variable reference inside the block.  */
407 
408 static void
409 simulate_block (basic_block block)
410 {
411   gimple_stmt_iterator gsi;
412 
413   /* There is nothing to do for the exit block.  */
414   if (block == EXIT_BLOCK_PTR)
415     return;
416 
417   if (dump_file && (dump_flags & TDF_DETAILS))
418     fprintf (dump_file, "\nSimulating block %d\n", block->index);
419 
420   /* Always simulate PHI nodes, even if we have simulated this block
421      before.  */
422   for (gsi = gsi_start_phis (block); !gsi_end_p (gsi); gsi_next (&gsi))
423     simulate_stmt (gsi_stmt (gsi));
424 
425   /* If this is the first time we've simulated this block, then we
426      must simulate each of its statements.  */
427   if (!TEST_BIT (executable_blocks, block->index))
428     {
429       gimple_stmt_iterator j;
430       unsigned int normal_edge_count;
431       edge e, normal_edge;
432       edge_iterator ei;
433 
434       /* Note that we have simulated this block.  */
435       SET_BIT (executable_blocks, block->index);
436 
437       for (j = gsi_start_bb (block); !gsi_end_p (j); gsi_next (&j))
438 	{
439 	  gimple stmt = gsi_stmt (j);
440 
441 	  /* If this statement is already in the worklist then
442 	     "cancel" it.  The reevaluation implied by the worklist
443 	     entry will produce the same value we generate here and
444 	     thus reevaluating it again from the worklist is
445 	     pointless.  */
446 	  if (gimple_plf (stmt, STMT_IN_SSA_EDGE_WORKLIST))
447 	    gimple_set_plf (stmt, STMT_IN_SSA_EDGE_WORKLIST, false);
448 
449 	  simulate_stmt (stmt);
450 	}
451 
452       /* We can not predict when abnormal and EH edges will be executed, so
453 	 once a block is considered executable, we consider any
454 	 outgoing abnormal edges as executable.
455 
456 	 TODO: This is not exactly true.  Simplifying statement might
457 	 prove it non-throwing and also computed goto can be handled
458 	 when destination is known.
459 
460 	 At the same time, if this block has only one successor that is
461 	 reached by non-abnormal edges, then add that successor to the
462 	 worklist.  */
463       normal_edge_count = 0;
464       normal_edge = NULL;
465       FOR_EACH_EDGE (e, ei, block->succs)
466 	{
467 	  if (e->flags & (EDGE_ABNORMAL | EDGE_EH))
468 	    add_control_edge (e);
469 	  else
470 	    {
471 	      normal_edge_count++;
472 	      normal_edge = e;
473 	    }
474 	}
475 
476       if (normal_edge_count == 1)
477 	add_control_edge (normal_edge);
478     }
479 }
480 
481 
482 /* Initialize local data structures and work lists.  */
483 
484 static void
485 ssa_prop_init (void)
486 {
487   edge e;
488   edge_iterator ei;
489   basic_block bb;
490 
491   /* Worklists of SSA edges.  */
492   interesting_ssa_edges = VEC_alloc (gimple, gc, 20);
493   varying_ssa_edges = VEC_alloc (gimple, gc, 20);
494 
495   executable_blocks = sbitmap_alloc (last_basic_block);
496   sbitmap_zero (executable_blocks);
497 
498   bb_in_list = sbitmap_alloc (last_basic_block);
499   sbitmap_zero (bb_in_list);
500 
501   if (dump_file && (dump_flags & TDF_DETAILS))
502     dump_immediate_uses (dump_file);
503 
504   cfg_blocks = VEC_alloc (basic_block, heap, 20);
505   VEC_safe_grow (basic_block, heap, cfg_blocks, 20);
506 
507   /* Initially assume that every edge in the CFG is not executable.
508      (including the edges coming out of ENTRY_BLOCK_PTR).  */
509   FOR_ALL_BB (bb)
510     {
511       gimple_stmt_iterator si;
512 
513       for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
514 	gimple_set_plf (gsi_stmt (si), STMT_IN_SSA_EDGE_WORKLIST, false);
515 
516       for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
517 	gimple_set_plf (gsi_stmt (si), STMT_IN_SSA_EDGE_WORKLIST, false);
518 
519       FOR_EACH_EDGE (e, ei, bb->succs)
520 	e->flags &= ~EDGE_EXECUTABLE;
521     }
522 
523   /* Seed the algorithm by adding the successors of the entry block to the
524      edge worklist.  */
525   FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
526     add_control_edge (e);
527 }
528 
529 
530 /* Free allocated storage.  */
531 
532 static void
533 ssa_prop_fini (void)
534 {
535   VEC_free (gimple, gc, interesting_ssa_edges);
536   VEC_free (gimple, gc, varying_ssa_edges);
537   VEC_free (basic_block, heap, cfg_blocks);
538   cfg_blocks = NULL;
539   sbitmap_free (bb_in_list);
540   sbitmap_free (executable_blocks);
541 }
542 
543 
544 /* Return true if EXPR is an acceptable right-hand-side for a
545    GIMPLE assignment.  We validate the entire tree, not just
546    the root node, thus catching expressions that embed complex
547    operands that are not permitted in GIMPLE.  This function
548    is needed because the folding routines in fold-const.c
549    may return such expressions in some cases, e.g., an array
550    access with an embedded index addition.  It may make more
551    sense to have folding routines that are sensitive to the
552    constraints on GIMPLE operands, rather than abandoning any
553    any attempt to fold if the usual folding turns out to be too
554    aggressive.  */
555 
556 bool
557 valid_gimple_rhs_p (tree expr)
558 {
559   enum tree_code code = TREE_CODE (expr);
560 
561   switch (TREE_CODE_CLASS (code))
562     {
563     case tcc_declaration:
564       if (!is_gimple_variable (expr))
565 	return false;
566       break;
567 
568     case tcc_constant:
569       /* All constants are ok.  */
570       break;
571 
572     case tcc_binary:
573     case tcc_comparison:
574       if (!is_gimple_val (TREE_OPERAND (expr, 0))
575 	  || !is_gimple_val (TREE_OPERAND (expr, 1)))
576 	return false;
577       break;
578 
579     case tcc_unary:
580       if (!is_gimple_val (TREE_OPERAND (expr, 0)))
581 	return false;
582       break;
583 
584     case tcc_expression:
585       switch (code)
586         {
587         case ADDR_EXPR:
588           {
589 	    tree t;
590 	    if (is_gimple_min_invariant (expr))
591 	      return true;
592             t = TREE_OPERAND (expr, 0);
593             while (handled_component_p (t))
594               {
595                 /* ??? More checks needed, see the GIMPLE verifier.  */
596                 if ((TREE_CODE (t) == ARRAY_REF
597                      || TREE_CODE (t) == ARRAY_RANGE_REF)
598                     && !is_gimple_val (TREE_OPERAND (t, 1)))
599                   return false;
600                 t = TREE_OPERAND (t, 0);
601               }
602             if (!is_gimple_id (t))
603               return false;
604           }
605           break;
606 
607 	case TRUTH_NOT_EXPR:
608 	  if (!is_gimple_val (TREE_OPERAND (expr, 0)))
609 	    return false;
610 	  break;
611 
612 	case TRUTH_AND_EXPR:
613 	case TRUTH_XOR_EXPR:
614 	case TRUTH_OR_EXPR:
615 	  if (!is_gimple_val (TREE_OPERAND (expr, 0))
616 	      || !is_gimple_val (TREE_OPERAND (expr, 1)))
617 	    return false;
618 	  break;
619 
620 	default:
621 	  return false;
622 	}
623       break;
624 
625     case tcc_vl_exp:
626       return false;
627 
628     case tcc_exceptional:
629       if (code != SSA_NAME)
630         return false;
631       break;
632 
633     default:
634       return false;
635     }
636 
637   return true;
638 }
639 
640 
641 /* Return true if EXPR is a CALL_EXPR suitable for representation
642    as a single GIMPLE_CALL statement.  If the arguments require
643    further gimplification, return false.  */
644 
645 bool
646 valid_gimple_call_p (tree expr)
647 {
648   unsigned i, nargs;
649 
650   if (TREE_CODE (expr) != CALL_EXPR)
651     return false;
652 
653   nargs = call_expr_nargs (expr);
654   for (i = 0; i < nargs; i++)
655     if (! is_gimple_operand (CALL_EXPR_ARG (expr, i)))
656       return false;
657 
658   return true;
659 }
660 
661 
662 /* Make SSA names defined by OLD_STMT point to NEW_STMT
663    as their defining statement.  */
664 
665 void
666 move_ssa_defining_stmt_for_defs (gimple new_stmt, gimple old_stmt)
667 {
668   tree var;
669   ssa_op_iter iter;
670 
671   if (gimple_in_ssa_p (cfun))
672     {
673       /* Make defined SSA_NAMEs point to the new
674          statement as their definition.  */
675       FOR_EACH_SSA_TREE_OPERAND (var, old_stmt, iter, SSA_OP_ALL_DEFS)
676         {
677           if (TREE_CODE (var) == SSA_NAME)
678             SSA_NAME_DEF_STMT (var) = new_stmt;
679         }
680     }
681 }
682 
683 
684 /* Update a GIMPLE_CALL statement at iterator *SI_P to reflect the
685    value of EXPR, which is expected to be the result of folding the
686    call.  This can only be done if EXPR is a CALL_EXPR with valid
687    GIMPLE operands as arguments, or if it is a suitable RHS expression
688    for a GIMPLE_ASSIGN.  More complex expressions will require
689    gimplification, which will introduce addtional statements.  In this
690    event, no update is performed, and the function returns false.
691    Note that we cannot mutate a GIMPLE_CALL in-place, so we always
692    replace the statement at *SI_P with an entirely new statement.
693    The new statement need not be a call, e.g., if the original call
694    folded to a constant.  */
695 
696 bool
697 update_call_from_tree (gimple_stmt_iterator *si_p, tree expr)
698 {
699   tree lhs;
700 
701   gimple stmt = gsi_stmt (*si_p);
702 
703   gcc_assert (is_gimple_call (stmt));
704 
705   lhs = gimple_call_lhs (stmt);
706 
707   if (valid_gimple_call_p (expr))
708     {
709       /* The call has simplified to another call.  */
710       tree fn = CALL_EXPR_FN (expr);
711       unsigned i;
712       unsigned nargs = call_expr_nargs (expr);
713       VEC(tree, heap) *args = NULL;
714       gimple new_stmt;
715 
716       if (nargs > 0)
717         {
718           args = VEC_alloc (tree, heap, nargs);
719           VEC_safe_grow (tree, heap, args, nargs);
720 
721           for (i = 0; i < nargs; i++)
722             VEC_replace (tree, args, i, CALL_EXPR_ARG (expr, i));
723         }
724 
725       new_stmt = gimple_build_call_vec (fn, args);
726       gimple_call_set_lhs (new_stmt, lhs);
727       move_ssa_defining_stmt_for_defs (new_stmt, stmt);
728       gimple_set_vuse (new_stmt, gimple_vuse (stmt));
729       gimple_set_vdef (new_stmt, gimple_vdef (stmt));
730       gimple_set_location (new_stmt, gimple_location (stmt));
731       gsi_replace (si_p, new_stmt, false);
732       VEC_free (tree, heap, args);
733 
734       return true;
735     }
736   else if (valid_gimple_rhs_p (expr))
737     {
738       gimple new_stmt;
739 
740       /* The call has simplified to an expression
741          that cannot be represented as a GIMPLE_CALL. */
742       if (lhs)
743         {
744           /* A value is expected.
745              Introduce a new GIMPLE_ASSIGN statement.  */
746           STRIP_USELESS_TYPE_CONVERSION (expr);
747           new_stmt = gimple_build_assign (lhs, expr);
748           move_ssa_defining_stmt_for_defs (new_stmt, stmt);
749 	  gimple_set_vuse (new_stmt, gimple_vuse (stmt));
750 	  gimple_set_vdef (new_stmt, gimple_vdef (stmt));
751         }
752       else if (!TREE_SIDE_EFFECTS (expr))
753         {
754           /* No value is expected, and EXPR has no effect.
755              Replace it with an empty statement.  */
756           new_stmt = gimple_build_nop ();
757 	  unlink_stmt_vdef (stmt);
758 	  release_defs (stmt);
759         }
760       else
761         {
762           /* No value is expected, but EXPR has an effect,
763              e.g., it could be a reference to a volatile
764              variable.  Create an assignment statement
765              with a dummy (unused) lhs variable.  */
766           STRIP_USELESS_TYPE_CONVERSION (expr);
767           lhs = create_tmp_var (TREE_TYPE (expr), NULL);
768           new_stmt = gimple_build_assign (lhs, expr);
769           add_referenced_var (lhs);
770           lhs = make_ssa_name (lhs, new_stmt);
771           gimple_assign_set_lhs (new_stmt, lhs);
772 	  gimple_set_vuse (new_stmt, gimple_vuse (stmt));
773 	  gimple_set_vdef (new_stmt, gimple_vdef (stmt));
774           move_ssa_defining_stmt_for_defs (new_stmt, stmt);
775         }
776       gimple_set_location (new_stmt, gimple_location (stmt));
777       gsi_replace (si_p, new_stmt, false);
778       return true;
779     }
780   else
781     /* The call simplified to an expression that is
782        not a valid GIMPLE RHS.  */
783     return false;
784 }
785 
786 
787 /* Entry point to the propagation engine.
788 
789    VISIT_STMT is called for every statement visited.
790    VISIT_PHI is called for every PHI node visited.  */
791 
792 void
793 ssa_propagate (ssa_prop_visit_stmt_fn visit_stmt,
794 	       ssa_prop_visit_phi_fn visit_phi)
795 {
796   ssa_prop_visit_stmt = visit_stmt;
797   ssa_prop_visit_phi = visit_phi;
798 
799   ssa_prop_init ();
800 
801   /* Iterate until the worklists are empty.  */
802   while (!cfg_blocks_empty_p ()
803 	 || VEC_length (gimple, interesting_ssa_edges) > 0
804 	 || VEC_length (gimple, varying_ssa_edges) > 0)
805     {
806       if (!cfg_blocks_empty_p ())
807 	{
808 	  /* Pull the next block to simulate off the worklist.  */
809 	  basic_block dest_block = cfg_blocks_get ();
810 	  simulate_block (dest_block);
811 	}
812 
813       /* In order to move things to varying as quickly as
814 	 possible,process the VARYING_SSA_EDGES worklist first.  */
815       process_ssa_edge_worklist (&varying_ssa_edges);
816 
817       /* Now process the INTERESTING_SSA_EDGES worklist.  */
818       process_ssa_edge_worklist (&interesting_ssa_edges);
819     }
820 
821   ssa_prop_fini ();
822 }
823 
824 
825 /* Return true if STMT is of the form 'mem_ref = RHS', where 'mem_ref'
826    is a non-volatile pointer dereference, a structure reference or a
827    reference to a single _DECL.  Ignore volatile memory references
828    because they are not interesting for the optimizers.  */
829 
830 bool
831 stmt_makes_single_store (gimple stmt)
832 {
833   tree lhs;
834 
835   if (gimple_code (stmt) != GIMPLE_ASSIGN
836       && gimple_code (stmt) != GIMPLE_CALL)
837     return false;
838 
839   if (!gimple_vdef (stmt))
840     return false;
841 
842   lhs = gimple_get_lhs (stmt);
843 
844   /* A call statement may have a null LHS.  */
845   if (!lhs)
846     return false;
847 
848   return (!TREE_THIS_VOLATILE (lhs)
849           && (DECL_P (lhs)
850 	      || REFERENCE_CLASS_P (lhs)));
851 }
852 
853 
854 /* Propagation statistics.  */
855 struct prop_stats_d
856 {
857   long num_const_prop;
858   long num_copy_prop;
859   long num_stmts_folded;
860   long num_dce;
861 };
862 
863 static struct prop_stats_d prop_stats;
864 
865 /* Replace USE references in statement STMT with the values stored in
866    PROP_VALUE. Return true if at least one reference was replaced.  */
867 
868 static bool
869 replace_uses_in (gimple stmt, prop_value_t *prop_value)
870 {
871   bool replaced = false;
872   use_operand_p use;
873   ssa_op_iter iter;
874 
875   FOR_EACH_SSA_USE_OPERAND (use, stmt, iter, SSA_OP_USE)
876     {
877       tree tuse = USE_FROM_PTR (use);
878       tree val = prop_value[SSA_NAME_VERSION (tuse)].value;
879 
880       if (val == tuse || val == NULL_TREE)
881 	continue;
882 
883       if (gimple_code (stmt) == GIMPLE_ASM
884 	  && !may_propagate_copy_into_asm (tuse))
885 	continue;
886 
887       if (!may_propagate_copy (tuse, val))
888 	continue;
889 
890       if (TREE_CODE (val) != SSA_NAME)
891 	prop_stats.num_const_prop++;
892       else
893 	prop_stats.num_copy_prop++;
894 
895       propagate_value (use, val);
896 
897       replaced = true;
898     }
899 
900   return replaced;
901 }
902 
903 
904 /* Replace propagated values into all the arguments for PHI using the
905    values from PROP_VALUE.  */
906 
907 static void
908 replace_phi_args_in (gimple phi, prop_value_t *prop_value)
909 {
910   size_t i;
911   bool replaced = false;
912 
913   if (dump_file && (dump_flags & TDF_DETAILS))
914     {
915       fprintf (dump_file, "Folding PHI node: ");
916       print_gimple_stmt (dump_file, phi, 0, TDF_SLIM);
917     }
918 
919   for (i = 0; i < gimple_phi_num_args (phi); i++)
920     {
921       tree arg = gimple_phi_arg_def (phi, i);
922 
923       if (TREE_CODE (arg) == SSA_NAME)
924 	{
925 	  tree val = prop_value[SSA_NAME_VERSION (arg)].value;
926 
927 	  if (val && val != arg && may_propagate_copy (arg, val))
928 	    {
929 	      if (TREE_CODE (val) != SSA_NAME)
930 		prop_stats.num_const_prop++;
931 	      else
932 		prop_stats.num_copy_prop++;
933 
934 	      propagate_value (PHI_ARG_DEF_PTR (phi, i), val);
935 	      replaced = true;
936 
937 	      /* If we propagated a copy and this argument flows
938 		 through an abnormal edge, update the replacement
939 		 accordingly.  */
940 	      if (TREE_CODE (val) == SSA_NAME
941 		  && gimple_phi_arg_edge (phi, i)->flags & EDGE_ABNORMAL)
942 		SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val) = 1;
943 	    }
944 	}
945     }
946 
947   if (dump_file && (dump_flags & TDF_DETAILS))
948     {
949       if (!replaced)
950 	fprintf (dump_file, "No folding possible\n");
951       else
952 	{
953 	  fprintf (dump_file, "Folded into: ");
954 	  print_gimple_stmt (dump_file, phi, 0, TDF_SLIM);
955 	  fprintf (dump_file, "\n");
956 	}
957     }
958 }
959 
960 
961 /* Perform final substitution and folding of propagated values.
962 
963    PROP_VALUE[I] contains the single value that should be substituted
964    at every use of SSA name N_I.  If PROP_VALUE is NULL, no values are
965    substituted.
966 
967    If FOLD_FN is non-NULL the function will be invoked on all statements
968    before propagating values for pass specific simplification.
969 
970    DO_DCE is true if trivially dead stmts can be removed.
971 
972    Return TRUE when something changed.  */
973 
974 bool
975 substitute_and_fold (prop_value_t *prop_value, ssa_prop_fold_stmt_fn fold_fn,
976 		     bool do_dce)
977 {
978   basic_block bb;
979   bool something_changed = false;
980 
981   if (prop_value == NULL && !fold_fn)
982     return false;
983 
984   if (dump_file && (dump_flags & TDF_DETAILS))
985     fprintf (dump_file, "\nSubstituting values and folding statements\n\n");
986 
987   memset (&prop_stats, 0, sizeof (prop_stats));
988 
989   /* Substitute values in every statement of every basic block.  */
990   FOR_EACH_BB (bb)
991     {
992       gimple_stmt_iterator i;
993 
994       /* Propagate known values into PHI nodes.  */
995       if (prop_value)
996 	for (i = gsi_start_phis (bb); !gsi_end_p (i); gsi_next (&i))
997 	  replace_phi_args_in (gsi_stmt (i), prop_value);
998 
999       /* Propagate known values into stmts.  Do a backward walk to expose
1000 	 more trivially deletable stmts.  */
1001       for (i = gsi_last_bb (bb); !gsi_end_p (i);)
1002 	{
1003           bool did_replace;
1004 	  gimple stmt = gsi_stmt (i);
1005 	  gimple old_stmt;
1006 	  enum gimple_code code = gimple_code (stmt);
1007 	  gimple_stmt_iterator oldi;
1008 
1009 	  oldi = i;
1010 	  gsi_prev (&i);
1011 
1012 	  /* Ignore ASSERT_EXPRs.  They are used by VRP to generate
1013 	     range information for names and they are discarded
1014 	     afterwards.  */
1015 
1016 	  if (code == GIMPLE_ASSIGN
1017 	      && TREE_CODE (gimple_assign_rhs1 (stmt)) == ASSERT_EXPR)
1018 	    continue;
1019 
1020 	  /* No point propagating into a stmt whose result is not used,
1021 	     but instead we might be able to remove a trivially dead stmt.
1022 	     Don't do this when called from VRP, since the SSA_NAME which
1023 	     is going to be released could be still referenced in VRP
1024 	     ranges.  */
1025 	  if (do_dce
1026 	      && gimple_get_lhs (stmt)
1027 	      && TREE_CODE (gimple_get_lhs (stmt)) == SSA_NAME
1028 	      && has_zero_uses (gimple_get_lhs (stmt))
1029 	      && !stmt_could_throw_p (stmt)
1030 	      && !gimple_has_side_effects (stmt))
1031 	    {
1032 	      gimple_stmt_iterator i2;
1033 
1034 	      if (dump_file && dump_flags & TDF_DETAILS)
1035 		{
1036 		  fprintf (dump_file, "Removing dead stmt ");
1037 		  print_gimple_stmt (dump_file, stmt, 0, 0);
1038 		  fprintf (dump_file, "\n");
1039 		}
1040 	      prop_stats.num_dce++;
1041 	      i2 = gsi_for_stmt (stmt);
1042 	      gsi_remove (&i2, true);
1043 	      release_defs (stmt);
1044 	      continue;
1045 	    }
1046 
1047 	  /* Replace the statement with its folded version and mark it
1048 	     folded.  */
1049 	  did_replace = false;
1050 	  if (dump_file && (dump_flags & TDF_DETAILS))
1051 	    {
1052 	      fprintf (dump_file, "Folding statement: ");
1053 	      print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
1054 	    }
1055 
1056 	  old_stmt = stmt;
1057 
1058 	  /* Some statements may be simplified using propagator
1059 	     specific information.  Do this before propagating
1060 	     into the stmt to not disturb pass specific information.  */
1061 	  if (fold_fn
1062 	      && (*fold_fn)(&oldi))
1063 	    {
1064 	      did_replace = true;
1065 	      prop_stats.num_stmts_folded++;
1066 	    }
1067 
1068 	  /* Only replace real uses if we couldn't fold the
1069 	     statement using value range information.  */
1070 	  if (prop_value
1071 	      && !did_replace)
1072 	    did_replace |= replace_uses_in (stmt, prop_value);
1073 
1074 	  /* If we made a replacement, fold the statement.  */
1075 	  if (did_replace)
1076 	    fold_stmt (&oldi);
1077 
1078 	  /* Now cleanup.  */
1079 	  if (did_replace)
1080 	    {
1081 	      stmt = gsi_stmt (oldi);
1082 
1083               /* If we cleaned up EH information from the statement,
1084                  remove EH edges.  */
1085 	      if (maybe_clean_or_replace_eh_stmt (old_stmt, stmt))
1086 		gimple_purge_dead_eh_edges (bb);
1087 
1088               if (is_gimple_assign (stmt)
1089                   && (get_gimple_rhs_class (gimple_assign_rhs_code (stmt))
1090                       == GIMPLE_SINGLE_RHS))
1091               {
1092                 tree rhs = gimple_assign_rhs1 (stmt);
1093 
1094                 if (TREE_CODE (rhs) == ADDR_EXPR)
1095                   recompute_tree_invariant_for_addr_expr (rhs);
1096               }
1097 
1098 	      /* Determine what needs to be done to update the SSA form.  */
1099 	      update_stmt (stmt);
1100 	      if (!is_gimple_debug (stmt))
1101 		something_changed = true;
1102 	    }
1103 
1104 	  if (dump_file && (dump_flags & TDF_DETAILS))
1105 	    {
1106 	      if (did_replace)
1107 		{
1108 		  fprintf (dump_file, "Folded into: ");
1109 		  print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
1110 		  fprintf (dump_file, "\n");
1111 		}
1112 	      else
1113 		fprintf (dump_file, "Not folded\n");
1114 	    }
1115 	}
1116     }
1117 
1118   statistics_counter_event (cfun, "Constants propagated",
1119 			    prop_stats.num_const_prop);
1120   statistics_counter_event (cfun, "Copies propagated",
1121 			    prop_stats.num_copy_prop);
1122   statistics_counter_event (cfun, "Statements folded",
1123 			    prop_stats.num_stmts_folded);
1124   statistics_counter_event (cfun, "Statements deleted",
1125 			    prop_stats.num_dce);
1126   return something_changed;
1127 }
1128 
1129 #include "gt-tree-ssa-propagate.h"
1130