xref: /netbsd-src/external/gpl3/gcc.old/dist/gcc/tree-ssa-phiopt.c (revision b7b7574d3bf8eeb51a1fa3977b59142ec6434a55)
1 /* Optimization of PHI nodes by converting them into straightline code.
2    Copyright (C) 2004, 2005, 2006, 2007, 2008 Free Software Foundation,
3    Inc.
4 
5 This file is part of GCC.
6 
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by the
9 Free Software Foundation; either version 3, or (at your option) any
10 later version.
11 
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
15 for more details.
16 
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3.  If not see
19 <http://www.gnu.org/licenses/>.  */
20 
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "ggc.h"
26 #include "tree.h"
27 #include "rtl.h"
28 #include "flags.h"
29 #include "tm_p.h"
30 #include "basic-block.h"
31 #include "timevar.h"
32 #include "diagnostic.h"
33 #include "tree-flow.h"
34 #include "tree-pass.h"
35 #include "tree-dump.h"
36 #include "langhooks.h"
37 #include "pointer-set.h"
38 #include "domwalk.h"
39 
40 static unsigned int tree_ssa_phiopt (void);
41 static unsigned int tree_ssa_phiopt_worker (bool);
42 static bool conditional_replacement (basic_block, basic_block,
43 				     edge, edge, gimple, tree, tree);
44 static bool value_replacement (basic_block, basic_block,
45 			       edge, edge, gimple, tree, tree);
46 static bool minmax_replacement (basic_block, basic_block,
47 				edge, edge, gimple, tree, tree);
48 static bool abs_replacement (basic_block, basic_block,
49 			     edge, edge, gimple, tree, tree);
50 static bool cond_store_replacement (basic_block, basic_block, edge, edge,
51 				    struct pointer_set_t *);
52 static struct pointer_set_t * get_non_trapping (void);
53 static void replace_phi_edge_with_variable (basic_block, edge, gimple, tree);
54 
55 /* This pass tries to replaces an if-then-else block with an
56    assignment.  We have four kinds of transformations.  Some of these
57    transformations are also performed by the ifcvt RTL optimizer.
58 
59    Conditional Replacement
60    -----------------------
61 
62    This transformation, implemented in conditional_replacement,
63    replaces
64 
65      bb0:
66       if (cond) goto bb2; else goto bb1;
67      bb1:
68      bb2:
69       x = PHI <0 (bb1), 1 (bb0), ...>;
70 
71    with
72 
73      bb0:
74       x' = cond;
75       goto bb2;
76      bb2:
77       x = PHI <x' (bb0), ...>;
78 
79    We remove bb1 as it becomes unreachable.  This occurs often due to
80    gimplification of conditionals.
81 
82    Value Replacement
83    -----------------
84 
85    This transformation, implemented in value_replacement, replaces
86 
87      bb0:
88        if (a != b) goto bb2; else goto bb1;
89      bb1:
90      bb2:
91        x = PHI <a (bb1), b (bb0), ...>;
92 
93    with
94 
95      bb0:
96      bb2:
97        x = PHI <b (bb0), ...>;
98 
99    This opportunity can sometimes occur as a result of other
100    optimizations.
101 
102    ABS Replacement
103    ---------------
104 
105    This transformation, implemented in abs_replacement, replaces
106 
107      bb0:
108        if (a >= 0) goto bb2; else goto bb1;
109      bb1:
110        x = -a;
111      bb2:
112        x = PHI <x (bb1), a (bb0), ...>;
113 
114    with
115 
116      bb0:
117        x' = ABS_EXPR< a >;
118      bb2:
119        x = PHI <x' (bb0), ...>;
120 
121    MIN/MAX Replacement
122    -------------------
123 
124    This transformation, minmax_replacement replaces
125 
126      bb0:
127        if (a <= b) goto bb2; else goto bb1;
128      bb1:
129      bb2:
130        x = PHI <b (bb1), a (bb0), ...>;
131 
132    with
133 
134      bb0:
135        x' = MIN_EXPR (a, b)
136      bb2:
137        x = PHI <x' (bb0), ...>;
138 
139    A similar transformation is done for MAX_EXPR.  */
140 
141 static unsigned int
142 tree_ssa_phiopt (void)
143 {
144   return tree_ssa_phiopt_worker (false);
145 }
146 
147 /* This pass tries to transform conditional stores into unconditional
148    ones, enabling further simplifications with the simpler then and else
149    blocks.  In particular it replaces this:
150 
151      bb0:
152        if (cond) goto bb2; else goto bb1;
153      bb1:
154        *p = RHS
155      bb2:
156 
157    with
158 
159      bb0:
160        if (cond) goto bb1; else goto bb2;
161      bb1:
162        condtmp' = *p;
163      bb2:
164        condtmp = PHI <RHS, condtmp'>
165        *p = condtmp
166 
167    This transformation can only be done under several constraints,
168    documented below.  */
169 
170 static unsigned int
171 tree_ssa_cs_elim (void)
172 {
173   return tree_ssa_phiopt_worker (true);
174 }
175 
176 /* For conditional store replacement we need a temporary to
177    put the old contents of the memory in.  */
178 static tree condstoretemp;
179 
180 /* The core routine of conditional store replacement and normal
181    phi optimizations.  Both share much of the infrastructure in how
182    to match applicable basic block patterns.  DO_STORE_ELIM is true
183    when we want to do conditional store replacement, false otherwise.  */
184 static unsigned int
185 tree_ssa_phiopt_worker (bool do_store_elim)
186 {
187   basic_block bb;
188   basic_block *bb_order;
189   unsigned n, i;
190   bool cfgchanged = false;
191   struct pointer_set_t *nontrap = 0;
192 
193   if (do_store_elim)
194     {
195       condstoretemp = NULL_TREE;
196       /* Calculate the set of non-trapping memory accesses.  */
197       nontrap = get_non_trapping ();
198     }
199 
200   /* Search every basic block for COND_EXPR we may be able to optimize.
201 
202      We walk the blocks in order that guarantees that a block with
203      a single predecessor is processed before the predecessor.
204      This ensures that we collapse inner ifs before visiting the
205      outer ones, and also that we do not try to visit a removed
206      block.  */
207   bb_order = blocks_in_phiopt_order ();
208   n = n_basic_blocks - NUM_FIXED_BLOCKS;
209 
210   for (i = 0; i < n; i++)
211     {
212       gimple cond_stmt, phi;
213       basic_block bb1, bb2;
214       edge e1, e2;
215       tree arg0, arg1;
216 
217       bb = bb_order[i];
218 
219       cond_stmt = last_stmt (bb);
220       /* Check to see if the last statement is a GIMPLE_COND.  */
221       if (!cond_stmt
222           || gimple_code (cond_stmt) != GIMPLE_COND)
223         continue;
224 
225       e1 = EDGE_SUCC (bb, 0);
226       bb1 = e1->dest;
227       e2 = EDGE_SUCC (bb, 1);
228       bb2 = e2->dest;
229 
230       /* We cannot do the optimization on abnormal edges.  */
231       if ((e1->flags & EDGE_ABNORMAL) != 0
232           || (e2->flags & EDGE_ABNORMAL) != 0)
233        continue;
234 
235       /* If either bb1's succ or bb2 or bb2's succ is non NULL.  */
236       if (EDGE_COUNT (bb1->succs) == 0
237           || bb2 == NULL
238 	  || EDGE_COUNT (bb2->succs) == 0)
239         continue;
240 
241       /* Find the bb which is the fall through to the other.  */
242       if (EDGE_SUCC (bb1, 0)->dest == bb2)
243         ;
244       else if (EDGE_SUCC (bb2, 0)->dest == bb1)
245         {
246 	  basic_block bb_tmp = bb1;
247 	  edge e_tmp = e1;
248 	  bb1 = bb2;
249 	  bb2 = bb_tmp;
250 	  e1 = e2;
251 	  e2 = e_tmp;
252 	}
253       else
254         continue;
255 
256       e1 = EDGE_SUCC (bb1, 0);
257 
258       /* Make sure that bb1 is just a fall through.  */
259       if (!single_succ_p (bb1)
260 	  || (e1->flags & EDGE_FALLTHRU) == 0)
261         continue;
262 
263       /* Also make sure that bb1 only have one predecessor and that it
264 	 is bb.  */
265       if (!single_pred_p (bb1)
266           || single_pred (bb1) != bb)
267 	continue;
268 
269       if (do_store_elim)
270 	{
271 	  /* bb1 is the middle block, bb2 the join block, bb the split block,
272 	     e1 the fallthrough edge from bb1 to bb2.  We can't do the
273 	     optimization if the join block has more than two predecessors.  */
274 	  if (EDGE_COUNT (bb2->preds) > 2)
275 	    continue;
276 	  if (cond_store_replacement (bb1, bb2, e1, e2, nontrap))
277 	    cfgchanged = true;
278 	}
279       else
280 	{
281 	  gimple_seq phis = phi_nodes (bb2);
282 
283 	  /* Check to make sure that there is only one PHI node.
284 	     TODO: we could do it with more than one iff the other PHI nodes
285 	     have the same elements for these two edges.  */
286 	  if (! gimple_seq_singleton_p (phis))
287 	    continue;
288 
289 	  phi = gsi_stmt (gsi_start (phis));
290 	  arg0 = gimple_phi_arg_def (phi, e1->dest_idx);
291 	  arg1 = gimple_phi_arg_def (phi, e2->dest_idx);
292 
293 	  /* Something is wrong if we cannot find the arguments in the PHI
294 	     node.  */
295 	  gcc_assert (arg0 != NULL && arg1 != NULL);
296 
297 	  /* Do the replacement of conditional if it can be done.  */
298 	  if (conditional_replacement (bb, bb1, e1, e2, phi, arg0, arg1))
299 	    cfgchanged = true;
300 	  else if (value_replacement (bb, bb1, e1, e2, phi, arg0, arg1))
301 	    cfgchanged = true;
302 	  else if (abs_replacement (bb, bb1, e1, e2, phi, arg0, arg1))
303 	    cfgchanged = true;
304 	  else if (minmax_replacement (bb, bb1, e1, e2, phi, arg0, arg1))
305 	    cfgchanged = true;
306 	}
307     }
308 
309   free (bb_order);
310 
311   if (do_store_elim)
312     pointer_set_destroy (nontrap);
313   /* If the CFG has changed, we should cleanup the CFG.  */
314   if (cfgchanged && do_store_elim)
315     {
316       /* In cond-store replacement we have added some loads on edges
317          and new VOPS (as we moved the store, and created a load).  */
318       gsi_commit_edge_inserts ();
319       return TODO_cleanup_cfg | TODO_update_ssa_only_virtuals;
320     }
321   else if (cfgchanged)
322     return TODO_cleanup_cfg;
323   return 0;
324 }
325 
326 /* Returns the list of basic blocks in the function in an order that guarantees
327    that if a block X has just a single predecessor Y, then Y is after X in the
328    ordering.  */
329 
330 basic_block *
331 blocks_in_phiopt_order (void)
332 {
333   basic_block x, y;
334   basic_block *order = XNEWVEC (basic_block, n_basic_blocks);
335   unsigned n = n_basic_blocks - NUM_FIXED_BLOCKS;
336   unsigned np, i;
337   sbitmap visited = sbitmap_alloc (last_basic_block);
338 
339 #define MARK_VISITED(BB) (SET_BIT (visited, (BB)->index))
340 #define VISITED_P(BB) (TEST_BIT (visited, (BB)->index))
341 
342   sbitmap_zero (visited);
343 
344   MARK_VISITED (ENTRY_BLOCK_PTR);
345   FOR_EACH_BB (x)
346     {
347       if (VISITED_P (x))
348 	continue;
349 
350       /* Walk the predecessors of x as long as they have precisely one
351 	 predecessor and add them to the list, so that they get stored
352 	 after x.  */
353       for (y = x, np = 1;
354 	   single_pred_p (y) && !VISITED_P (single_pred (y));
355 	   y = single_pred (y))
356 	np++;
357       for (y = x, i = n - np;
358 	   single_pred_p (y) && !VISITED_P (single_pred (y));
359 	   y = single_pred (y), i++)
360 	{
361 	  order[i] = y;
362 	  MARK_VISITED (y);
363 	}
364       order[i] = y;
365       MARK_VISITED (y);
366 
367       gcc_assert (i == n - 1);
368       n -= np;
369     }
370 
371   sbitmap_free (visited);
372   gcc_assert (n == 0);
373   return order;
374 
375 #undef MARK_VISITED
376 #undef VISITED_P
377 }
378 
379 
380 /* Return TRUE if block BB has no executable statements, otherwise return
381    FALSE.  */
382 
383 bool
384 empty_block_p (basic_block bb)
385 {
386   /* BB must have no executable statements.  */
387   gimple_stmt_iterator gsi = gsi_after_labels (bb);
388   if (gsi_end_p (gsi))
389     return true;
390   if (is_gimple_debug (gsi_stmt (gsi)))
391     gsi_next_nondebug (&gsi);
392   return gsi_end_p (gsi);
393 }
394 
395 /* Replace PHI node element whose edge is E in block BB with variable NEW.
396    Remove the edge from COND_BLOCK which does not lead to BB (COND_BLOCK
397    is known to have two edges, one of which must reach BB).  */
398 
399 static void
400 replace_phi_edge_with_variable (basic_block cond_block,
401 				edge e, gimple phi, tree new_tree)
402 {
403   basic_block bb = gimple_bb (phi);
404   basic_block block_to_remove;
405   gimple_stmt_iterator gsi;
406 
407   /* Change the PHI argument to new.  */
408   SET_USE (PHI_ARG_DEF_PTR (phi, e->dest_idx), new_tree);
409 
410   /* Remove the empty basic block.  */
411   if (EDGE_SUCC (cond_block, 0)->dest == bb)
412     {
413       EDGE_SUCC (cond_block, 0)->flags |= EDGE_FALLTHRU;
414       EDGE_SUCC (cond_block, 0)->flags &= ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
415       EDGE_SUCC (cond_block, 0)->probability = REG_BR_PROB_BASE;
416       EDGE_SUCC (cond_block, 0)->count += EDGE_SUCC (cond_block, 1)->count;
417 
418       block_to_remove = EDGE_SUCC (cond_block, 1)->dest;
419     }
420   else
421     {
422       EDGE_SUCC (cond_block, 1)->flags |= EDGE_FALLTHRU;
423       EDGE_SUCC (cond_block, 1)->flags
424 	&= ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
425       EDGE_SUCC (cond_block, 1)->probability = REG_BR_PROB_BASE;
426       EDGE_SUCC (cond_block, 1)->count += EDGE_SUCC (cond_block, 0)->count;
427 
428       block_to_remove = EDGE_SUCC (cond_block, 0)->dest;
429     }
430   delete_basic_block (block_to_remove);
431 
432   /* Eliminate the COND_EXPR at the end of COND_BLOCK.  */
433   gsi = gsi_last_bb (cond_block);
434   gsi_remove (&gsi, true);
435 
436   if (dump_file && (dump_flags & TDF_DETAILS))
437     fprintf (dump_file,
438 	      "COND_EXPR in block %d and PHI in block %d converted to straightline code.\n",
439 	      cond_block->index,
440 	      bb->index);
441 }
442 
443 /*  The function conditional_replacement does the main work of doing the
444     conditional replacement.  Return true if the replacement is done.
445     Otherwise return false.
446     BB is the basic block where the replacement is going to be done on.  ARG0
447     is argument 0 from PHI.  Likewise for ARG1.  */
448 
449 static bool
450 conditional_replacement (basic_block cond_bb, basic_block middle_bb,
451 			 edge e0, edge e1, gimple phi,
452 			 tree arg0, tree arg1)
453 {
454   tree result;
455   gimple stmt, new_stmt;
456   tree cond;
457   gimple_stmt_iterator gsi;
458   edge true_edge, false_edge;
459   tree new_var, new_var2;
460 
461   /* FIXME: Gimplification of complex type is too hard for now.  */
462   if (TREE_CODE (TREE_TYPE (arg0)) == COMPLEX_TYPE
463       || TREE_CODE (TREE_TYPE (arg1)) == COMPLEX_TYPE)
464     return false;
465 
466   /* The PHI arguments have the constants 0 and 1, then convert
467      it to the conditional.  */
468   if ((integer_zerop (arg0) && integer_onep (arg1))
469       || (integer_zerop (arg1) && integer_onep (arg0)))
470     ;
471   else
472     return false;
473 
474   if (!empty_block_p (middle_bb))
475     return false;
476 
477   /* At this point we know we have a GIMPLE_COND with two successors.
478      One successor is BB, the other successor is an empty block which
479      falls through into BB.
480 
481      There is a single PHI node at the join point (BB) and its arguments
482      are constants (0, 1).
483 
484      So, given the condition COND, and the two PHI arguments, we can
485      rewrite this PHI into non-branching code:
486 
487        dest = (COND) or dest = COND'
488 
489      We use the condition as-is if the argument associated with the
490      true edge has the value one or the argument associated with the
491      false edge as the value zero.  Note that those conditions are not
492      the same since only one of the outgoing edges from the GIMPLE_COND
493      will directly reach BB and thus be associated with an argument.  */
494 
495   stmt = last_stmt (cond_bb);
496   result = PHI_RESULT (phi);
497 
498   /* To handle special cases like floating point comparison, it is easier and
499      less error-prone to build a tree and gimplify it on the fly though it is
500      less efficient.  */
501   cond = fold_build2 (gimple_cond_code (stmt), boolean_type_node,
502 		      gimple_cond_lhs (stmt), gimple_cond_rhs (stmt));
503 
504   /* We need to know which is the true edge and which is the false
505      edge so that we know when to invert the condition below.  */
506   extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);
507   if ((e0 == true_edge && integer_zerop (arg0))
508       || (e0 == false_edge && integer_onep (arg0))
509       || (e1 == true_edge && integer_zerop (arg1))
510       || (e1 == false_edge && integer_onep (arg1)))
511     cond = fold_build1 (TRUTH_NOT_EXPR, TREE_TYPE (cond), cond);
512 
513   /* Insert our new statements at the end of conditional block before the
514      COND_STMT.  */
515   gsi = gsi_for_stmt (stmt);
516   new_var = force_gimple_operand_gsi (&gsi, cond, true, NULL, true,
517 				      GSI_SAME_STMT);
518 
519   if (!useless_type_conversion_p (TREE_TYPE (result), TREE_TYPE (new_var)))
520     {
521       source_location locus_0, locus_1;
522 
523       new_var2 = create_tmp_var (TREE_TYPE (result), NULL);
524       add_referenced_var (new_var2);
525       new_stmt = gimple_build_assign_with_ops (CONVERT_EXPR, new_var2,
526 					       new_var, NULL);
527       new_var2 = make_ssa_name (new_var2, new_stmt);
528       gimple_assign_set_lhs (new_stmt, new_var2);
529       gsi_insert_before (&gsi, new_stmt, GSI_SAME_STMT);
530       new_var = new_var2;
531 
532       /* Set the locus to the first argument, unless is doesn't have one.  */
533       locus_0 = gimple_phi_arg_location (phi, 0);
534       locus_1 = gimple_phi_arg_location (phi, 1);
535       if (locus_0 == UNKNOWN_LOCATION)
536         locus_0 = locus_1;
537       gimple_set_location (new_stmt, locus_0);
538     }
539 
540   replace_phi_edge_with_variable (cond_bb, e1, phi, new_var);
541 
542   /* Note that we optimized this PHI.  */
543   return true;
544 }
545 
546 /*  The function value_replacement does the main work of doing the value
547     replacement.  Return true if the replacement is done.  Otherwise return
548     false.
549     BB is the basic block where the replacement is going to be done on.  ARG0
550     is argument 0 from the PHI.  Likewise for ARG1.  */
551 
552 static bool
553 value_replacement (basic_block cond_bb, basic_block middle_bb,
554 		   edge e0, edge e1, gimple phi,
555 		   tree arg0, tree arg1)
556 {
557   gimple cond;
558   edge true_edge, false_edge;
559   enum tree_code code;
560 
561   /* If the type says honor signed zeros we cannot do this
562      optimization.  */
563   if (HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (arg1))))
564     return false;
565 
566   if (!empty_block_p (middle_bb))
567     return false;
568 
569   cond = last_stmt (cond_bb);
570   code = gimple_cond_code (cond);
571 
572   /* This transformation is only valid for equality comparisons.  */
573   if (code != NE_EXPR && code != EQ_EXPR)
574     return false;
575 
576   /* We need to know which is the true edge and which is the false
577       edge so that we know if have abs or negative abs.  */
578   extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);
579 
580   /* At this point we know we have a COND_EXPR with two successors.
581      One successor is BB, the other successor is an empty block which
582      falls through into BB.
583 
584      The condition for the COND_EXPR is known to be NE_EXPR or EQ_EXPR.
585 
586      There is a single PHI node at the join point (BB) with two arguments.
587 
588      We now need to verify that the two arguments in the PHI node match
589      the two arguments to the equality comparison.  */
590 
591   if ((operand_equal_for_phi_arg_p (arg0, gimple_cond_lhs (cond))
592        && operand_equal_for_phi_arg_p (arg1, gimple_cond_rhs (cond)))
593       || (operand_equal_for_phi_arg_p (arg1, gimple_cond_lhs (cond))
594 	  && operand_equal_for_phi_arg_p (arg0, gimple_cond_rhs (cond))))
595     {
596       edge e;
597       tree arg;
598 
599       /* For NE_EXPR, we want to build an assignment result = arg where
600 	 arg is the PHI argument associated with the true edge.  For
601 	 EQ_EXPR we want the PHI argument associated with the false edge.  */
602       e = (code == NE_EXPR ? true_edge : false_edge);
603 
604       /* Unfortunately, E may not reach BB (it may instead have gone to
605 	 OTHER_BLOCK).  If that is the case, then we want the single outgoing
606 	 edge from OTHER_BLOCK which reaches BB and represents the desired
607 	 path from COND_BLOCK.  */
608       if (e->dest == middle_bb)
609 	e = single_succ_edge (e->dest);
610 
611       /* Now we know the incoming edge to BB that has the argument for the
612 	 RHS of our new assignment statement.  */
613       if (e0 == e)
614 	arg = arg0;
615       else
616 	arg = arg1;
617 
618       replace_phi_edge_with_variable (cond_bb, e1, phi, arg);
619 
620       /* Note that we optimized this PHI.  */
621       return true;
622     }
623   return false;
624 }
625 
626 /*  The function minmax_replacement does the main work of doing the minmax
627     replacement.  Return true if the replacement is done.  Otherwise return
628     false.
629     BB is the basic block where the replacement is going to be done on.  ARG0
630     is argument 0 from the PHI.  Likewise for ARG1.  */
631 
632 static bool
633 minmax_replacement (basic_block cond_bb, basic_block middle_bb,
634 		    edge e0, edge e1, gimple phi,
635 		    tree arg0, tree arg1)
636 {
637   tree result, type;
638   gimple cond, new_stmt;
639   edge true_edge, false_edge;
640   enum tree_code cmp, minmax, ass_code;
641   tree smaller, larger, arg_true, arg_false;
642   gimple_stmt_iterator gsi, gsi_from;
643 
644   type = TREE_TYPE (PHI_RESULT (phi));
645 
646   /* The optimization may be unsafe due to NaNs.  */
647   if (HONOR_NANS (TYPE_MODE (type)))
648     return false;
649 
650   cond = last_stmt (cond_bb);
651   cmp = gimple_cond_code (cond);
652   result = PHI_RESULT (phi);
653 
654   /* This transformation is only valid for order comparisons.  Record which
655      operand is smaller/larger if the result of the comparison is true.  */
656   if (cmp == LT_EXPR || cmp == LE_EXPR)
657     {
658       smaller = gimple_cond_lhs (cond);
659       larger = gimple_cond_rhs (cond);
660     }
661   else if (cmp == GT_EXPR || cmp == GE_EXPR)
662     {
663       smaller = gimple_cond_rhs (cond);
664       larger = gimple_cond_lhs (cond);
665     }
666   else
667     return false;
668 
669   /* We need to know which is the true edge and which is the false
670       edge so that we know if have abs or negative abs.  */
671   extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);
672 
673   /* Forward the edges over the middle basic block.  */
674   if (true_edge->dest == middle_bb)
675     true_edge = EDGE_SUCC (true_edge->dest, 0);
676   if (false_edge->dest == middle_bb)
677     false_edge = EDGE_SUCC (false_edge->dest, 0);
678 
679   if (true_edge == e0)
680     {
681       gcc_assert (false_edge == e1);
682       arg_true = arg0;
683       arg_false = arg1;
684     }
685   else
686     {
687       gcc_assert (false_edge == e0);
688       gcc_assert (true_edge == e1);
689       arg_true = arg1;
690       arg_false = arg0;
691     }
692 
693   if (empty_block_p (middle_bb))
694     {
695       if (operand_equal_for_phi_arg_p (arg_true, smaller)
696 	  && operand_equal_for_phi_arg_p (arg_false, larger))
697 	{
698 	  /* Case
699 
700 	     if (smaller < larger)
701 	     rslt = smaller;
702 	     else
703 	     rslt = larger;  */
704 	  minmax = MIN_EXPR;
705 	}
706       else if (operand_equal_for_phi_arg_p (arg_false, smaller)
707 	       && operand_equal_for_phi_arg_p (arg_true, larger))
708 	minmax = MAX_EXPR;
709       else
710 	return false;
711     }
712   else
713     {
714       /* Recognize the following case, assuming d <= u:
715 
716 	 if (a <= u)
717 	   b = MAX (a, d);
718 	 x = PHI <b, u>
719 
720 	 This is equivalent to
721 
722 	 b = MAX (a, d);
723 	 x = MIN (b, u);  */
724 
725       gimple assign = last_and_only_stmt (middle_bb);
726       tree lhs, op0, op1, bound;
727 
728       if (!assign
729 	  || gimple_code (assign) != GIMPLE_ASSIGN)
730 	return false;
731 
732       lhs = gimple_assign_lhs (assign);
733       ass_code = gimple_assign_rhs_code (assign);
734       if (ass_code != MAX_EXPR && ass_code != MIN_EXPR)
735 	return false;
736       op0 = gimple_assign_rhs1 (assign);
737       op1 = gimple_assign_rhs2 (assign);
738 
739       if (true_edge->src == middle_bb)
740 	{
741 	  /* We got here if the condition is true, i.e., SMALLER < LARGER.  */
742 	  if (!operand_equal_for_phi_arg_p (lhs, arg_true))
743 	    return false;
744 
745 	  if (operand_equal_for_phi_arg_p (arg_false, larger))
746 	    {
747 	      /* Case
748 
749 		 if (smaller < larger)
750 		   {
751 		     r' = MAX_EXPR (smaller, bound)
752 		   }
753 		 r = PHI <r', larger>  --> to be turned to MIN_EXPR.  */
754 	      if (ass_code != MAX_EXPR)
755 		return false;
756 
757 	      minmax = MIN_EXPR;
758 	      if (operand_equal_for_phi_arg_p (op0, smaller))
759 		bound = op1;
760 	      else if (operand_equal_for_phi_arg_p (op1, smaller))
761 		bound = op0;
762 	      else
763 		return false;
764 
765 	      /* We need BOUND <= LARGER.  */
766 	      if (!integer_nonzerop (fold_build2 (LE_EXPR, boolean_type_node,
767 						  bound, larger)))
768 		return false;
769 	    }
770 	  else if (operand_equal_for_phi_arg_p (arg_false, smaller))
771 	    {
772 	      /* Case
773 
774 		 if (smaller < larger)
775 		   {
776 		     r' = MIN_EXPR (larger, bound)
777 		   }
778 		 r = PHI <r', smaller>  --> to be turned to MAX_EXPR.  */
779 	      if (ass_code != MIN_EXPR)
780 		return false;
781 
782 	      minmax = MAX_EXPR;
783 	      if (operand_equal_for_phi_arg_p (op0, larger))
784 		bound = op1;
785 	      else if (operand_equal_for_phi_arg_p (op1, larger))
786 		bound = op0;
787 	      else
788 		return false;
789 
790 	      /* We need BOUND >= SMALLER.  */
791 	      if (!integer_nonzerop (fold_build2 (GE_EXPR, boolean_type_node,
792 						  bound, smaller)))
793 		return false;
794 	    }
795 	  else
796 	    return false;
797 	}
798       else
799 	{
800 	  /* We got here if the condition is false, i.e., SMALLER > LARGER.  */
801 	  if (!operand_equal_for_phi_arg_p (lhs, arg_false))
802 	    return false;
803 
804 	  if (operand_equal_for_phi_arg_p (arg_true, larger))
805 	    {
806 	      /* Case
807 
808 		 if (smaller > larger)
809 		   {
810 		     r' = MIN_EXPR (smaller, bound)
811 		   }
812 		 r = PHI <r', larger>  --> to be turned to MAX_EXPR.  */
813 	      if (ass_code != MIN_EXPR)
814 		return false;
815 
816 	      minmax = MAX_EXPR;
817 	      if (operand_equal_for_phi_arg_p (op0, smaller))
818 		bound = op1;
819 	      else if (operand_equal_for_phi_arg_p (op1, smaller))
820 		bound = op0;
821 	      else
822 		return false;
823 
824 	      /* We need BOUND >= LARGER.  */
825 	      if (!integer_nonzerop (fold_build2 (GE_EXPR, boolean_type_node,
826 						  bound, larger)))
827 		return false;
828 	    }
829 	  else if (operand_equal_for_phi_arg_p (arg_true, smaller))
830 	    {
831 	      /* Case
832 
833 		 if (smaller > larger)
834 		   {
835 		     r' = MAX_EXPR (larger, bound)
836 		   }
837 		 r = PHI <r', smaller>  --> to be turned to MIN_EXPR.  */
838 	      if (ass_code != MAX_EXPR)
839 		return false;
840 
841 	      minmax = MIN_EXPR;
842 	      if (operand_equal_for_phi_arg_p (op0, larger))
843 		bound = op1;
844 	      else if (operand_equal_for_phi_arg_p (op1, larger))
845 		bound = op0;
846 	      else
847 		return false;
848 
849 	      /* We need BOUND <= SMALLER.  */
850 	      if (!integer_nonzerop (fold_build2 (LE_EXPR, boolean_type_node,
851 						  bound, smaller)))
852 		return false;
853 	    }
854 	  else
855 	    return false;
856 	}
857 
858       /* Move the statement from the middle block.  */
859       gsi = gsi_last_bb (cond_bb);
860       gsi_from = gsi_last_nondebug_bb (middle_bb);
861       gsi_move_before (&gsi_from, &gsi);
862     }
863 
864   /* Emit the statement to compute min/max.  */
865   result = duplicate_ssa_name (PHI_RESULT (phi), NULL);
866   new_stmt = gimple_build_assign_with_ops (minmax, result, arg0, arg1);
867   gsi = gsi_last_bb (cond_bb);
868   gsi_insert_before (&gsi, new_stmt, GSI_NEW_STMT);
869 
870   replace_phi_edge_with_variable (cond_bb, e1, phi, result);
871   return true;
872 }
873 
874 /*  The function absolute_replacement does the main work of doing the absolute
875     replacement.  Return true if the replacement is done.  Otherwise return
876     false.
877     bb is the basic block where the replacement is going to be done on.  arg0
878     is argument 0 from the phi.  Likewise for arg1.  */
879 
880 static bool
881 abs_replacement (basic_block cond_bb, basic_block middle_bb,
882 		 edge e0 ATTRIBUTE_UNUSED, edge e1,
883 		 gimple phi, tree arg0, tree arg1)
884 {
885   tree result;
886   gimple new_stmt, cond;
887   gimple_stmt_iterator gsi;
888   edge true_edge, false_edge;
889   gimple assign;
890   edge e;
891   tree rhs, lhs;
892   bool negate;
893   enum tree_code cond_code;
894 
895   /* If the type says honor signed zeros we cannot do this
896      optimization.  */
897   if (HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (arg1))))
898     return false;
899 
900   /* OTHER_BLOCK must have only one executable statement which must have the
901      form arg0 = -arg1 or arg1 = -arg0.  */
902 
903   assign = last_and_only_stmt (middle_bb);
904   /* If we did not find the proper negation assignment, then we can not
905      optimize.  */
906   if (assign == NULL)
907     return false;
908 
909   /* If we got here, then we have found the only executable statement
910      in OTHER_BLOCK.  If it is anything other than arg = -arg1 or
911      arg1 = -arg0, then we can not optimize.  */
912   if (gimple_code (assign) != GIMPLE_ASSIGN)
913     return false;
914 
915   lhs = gimple_assign_lhs (assign);
916 
917   if (gimple_assign_rhs_code (assign) != NEGATE_EXPR)
918     return false;
919 
920   rhs = gimple_assign_rhs1 (assign);
921 
922   /* The assignment has to be arg0 = -arg1 or arg1 = -arg0.  */
923   if (!(lhs == arg0 && rhs == arg1)
924       && !(lhs == arg1 && rhs == arg0))
925     return false;
926 
927   cond = last_stmt (cond_bb);
928   result = PHI_RESULT (phi);
929 
930   /* Only relationals comparing arg[01] against zero are interesting.  */
931   cond_code = gimple_cond_code (cond);
932   if (cond_code != GT_EXPR && cond_code != GE_EXPR
933       && cond_code != LT_EXPR && cond_code != LE_EXPR)
934     return false;
935 
936   /* Make sure the conditional is arg[01] OP y.  */
937   if (gimple_cond_lhs (cond) != rhs)
938     return false;
939 
940   if (FLOAT_TYPE_P (TREE_TYPE (gimple_cond_rhs (cond)))
941 	       ? real_zerop (gimple_cond_rhs (cond))
942 	       : integer_zerop (gimple_cond_rhs (cond)))
943     ;
944   else
945     return false;
946 
947   /* We need to know which is the true edge and which is the false
948      edge so that we know if have abs or negative abs.  */
949   extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);
950 
951   /* For GT_EXPR/GE_EXPR, if the true edge goes to OTHER_BLOCK, then we
952      will need to negate the result.  Similarly for LT_EXPR/LE_EXPR if
953      the false edge goes to OTHER_BLOCK.  */
954   if (cond_code == GT_EXPR || cond_code == GE_EXPR)
955     e = true_edge;
956   else
957     e = false_edge;
958 
959   if (e->dest == middle_bb)
960     negate = true;
961   else
962     negate = false;
963 
964   result = duplicate_ssa_name (result, NULL);
965 
966   if (negate)
967     {
968       tree tmp = create_tmp_var (TREE_TYPE (result), NULL);
969       add_referenced_var (tmp);
970       lhs = make_ssa_name (tmp, NULL);
971     }
972   else
973     lhs = result;
974 
975   /* Build the modify expression with abs expression.  */
976   new_stmt = gimple_build_assign_with_ops (ABS_EXPR, lhs, rhs, NULL);
977 
978   gsi = gsi_last_bb (cond_bb);
979   gsi_insert_before (&gsi, new_stmt, GSI_NEW_STMT);
980 
981   if (negate)
982     {
983       /* Get the right GSI.  We want to insert after the recently
984 	 added ABS_EXPR statement (which we know is the first statement
985 	 in the block.  */
986       new_stmt = gimple_build_assign_with_ops (NEGATE_EXPR, result, lhs, NULL);
987 
988       gsi_insert_after (&gsi, new_stmt, GSI_NEW_STMT);
989     }
990 
991   replace_phi_edge_with_variable (cond_bb, e1, phi, result);
992 
993   /* Note that we optimized this PHI.  */
994   return true;
995 }
996 
997 /* Auxiliary functions to determine the set of memory accesses which
998    can't trap because they are preceded by accesses to the same memory
999    portion.  We do that for INDIRECT_REFs, so we only need to track
1000    the SSA_NAME of the pointer indirectly referenced.  The algorithm
1001    simply is a walk over all instructions in dominator order.  When
1002    we see an INDIRECT_REF we determine if we've already seen a same
1003    ref anywhere up to the root of the dominator tree.  If we do the
1004    current access can't trap.  If we don't see any dominating access
1005    the current access might trap, but might also make later accesses
1006    non-trapping, so we remember it.  We need to be careful with loads
1007    or stores, for instance a load might not trap, while a store would,
1008    so if we see a dominating read access this doesn't mean that a later
1009    write access would not trap.  Hence we also need to differentiate the
1010    type of access(es) seen.
1011 
1012    ??? We currently are very conservative and assume that a load might
1013    trap even if a store doesn't (write-only memory).  This probably is
1014    overly conservative.  */
1015 
1016 /* A hash-table of SSA_NAMEs, and in which basic block an INDIRECT_REF
1017    through it was seen, which would constitute a no-trap region for
1018    same accesses.  */
1019 struct name_to_bb
1020 {
1021   tree ssa_name;
1022   basic_block bb;
1023   unsigned store : 1;
1024 };
1025 
1026 /* The hash table for remembering what we've seen.  */
1027 static htab_t seen_ssa_names;
1028 
1029 /* The set of INDIRECT_REFs which can't trap.  */
1030 static struct pointer_set_t *nontrap_set;
1031 
1032 /* The hash function, based on the pointer to the pointer SSA_NAME.  */
1033 static hashval_t
1034 name_to_bb_hash (const void *p)
1035 {
1036   const_tree n = ((const struct name_to_bb *)p)->ssa_name;
1037   return htab_hash_pointer (n) ^ ((const struct name_to_bb *)p)->store;
1038 }
1039 
1040 /* The equality function of *P1 and *P2.  SSA_NAMEs are shared, so
1041    it's enough to simply compare them for equality.  */
1042 static int
1043 name_to_bb_eq (const void *p1, const void *p2)
1044 {
1045   const struct name_to_bb *n1 = (const struct name_to_bb *)p1;
1046   const struct name_to_bb *n2 = (const struct name_to_bb *)p2;
1047 
1048   return n1->ssa_name == n2->ssa_name && n1->store == n2->store;
1049 }
1050 
1051 /* We see the expression EXP in basic block BB.  If it's an interesting
1052    expression (an INDIRECT_REF through an SSA_NAME) possibly insert the
1053    expression into the set NONTRAP or the hash table of seen expressions.
1054    STORE is true if this expression is on the LHS, otherwise it's on
1055    the RHS.  */
1056 static void
1057 add_or_mark_expr (basic_block bb, tree exp,
1058 		  struct pointer_set_t *nontrap, bool store)
1059 {
1060   if (INDIRECT_REF_P (exp)
1061       && TREE_CODE (TREE_OPERAND (exp, 0)) == SSA_NAME)
1062     {
1063       tree name = TREE_OPERAND (exp, 0);
1064       struct name_to_bb map;
1065       void **slot;
1066       struct name_to_bb *n2bb;
1067       basic_block found_bb = 0;
1068 
1069       /* Try to find the last seen INDIRECT_REF through the same
1070          SSA_NAME, which can trap.  */
1071       map.ssa_name = name;
1072       map.bb = 0;
1073       map.store = store;
1074       slot = htab_find_slot (seen_ssa_names, &map, INSERT);
1075       n2bb = (struct name_to_bb *) *slot;
1076       if (n2bb)
1077         found_bb = n2bb->bb;
1078 
1079       /* If we've found a trapping INDIRECT_REF, _and_ it dominates EXP
1080          (it's in a basic block on the path from us to the dominator root)
1081 	 then we can't trap.  */
1082       if (found_bb && found_bb->aux == (void *)1)
1083 	{
1084 	  pointer_set_insert (nontrap, exp);
1085 	}
1086       else
1087         {
1088 	  /* EXP might trap, so insert it into the hash table.  */
1089 	  if (n2bb)
1090 	    {
1091 	      n2bb->bb = bb;
1092 	    }
1093 	  else
1094 	    {
1095 	      n2bb = XNEW (struct name_to_bb);
1096 	      n2bb->ssa_name = name;
1097 	      n2bb->bb = bb;
1098 	      n2bb->store = store;
1099 	      *slot = n2bb;
1100 	    }
1101 	}
1102     }
1103 }
1104 
1105 /* Called by walk_dominator_tree, when entering the block BB.  */
1106 static void
1107 nt_init_block (struct dom_walk_data *data ATTRIBUTE_UNUSED, basic_block bb)
1108 {
1109   gimple_stmt_iterator gsi;
1110   /* Mark this BB as being on the path to dominator root.  */
1111   bb->aux = (void*)1;
1112 
1113   /* And walk the statements in order.  */
1114   for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1115     {
1116       gimple stmt = gsi_stmt (gsi);
1117 
1118       if (is_gimple_assign (stmt))
1119 	{
1120 	  add_or_mark_expr (bb, gimple_assign_lhs (stmt), nontrap_set, true);
1121 	  add_or_mark_expr (bb, gimple_assign_rhs1 (stmt), nontrap_set, false);
1122 	  if (get_gimple_rhs_num_ops (gimple_assign_rhs_code (stmt)) > 1)
1123 	    add_or_mark_expr (bb, gimple_assign_rhs2 (stmt), nontrap_set,
1124 			      false);
1125 	}
1126     }
1127 }
1128 
1129 /* Called by walk_dominator_tree, when basic block BB is exited.  */
1130 static void
1131 nt_fini_block (struct dom_walk_data *data ATTRIBUTE_UNUSED, basic_block bb)
1132 {
1133   /* This BB isn't on the path to dominator root anymore.  */
1134   bb->aux = NULL;
1135 }
1136 
1137 /* This is the entry point of gathering non trapping memory accesses.
1138    It will do a dominator walk over the whole function, and it will
1139    make use of the bb->aux pointers.  It returns a set of trees
1140    (the INDIRECT_REFs itself) which can't trap.  */
1141 static struct pointer_set_t *
1142 get_non_trapping (void)
1143 {
1144   struct pointer_set_t *nontrap;
1145   struct dom_walk_data walk_data;
1146 
1147   nontrap = pointer_set_create ();
1148   seen_ssa_names = htab_create (128, name_to_bb_hash, name_to_bb_eq,
1149 				free);
1150   /* We're going to do a dominator walk, so ensure that we have
1151      dominance information.  */
1152   calculate_dominance_info (CDI_DOMINATORS);
1153 
1154   /* Setup callbacks for the generic dominator tree walker.  */
1155   nontrap_set = nontrap;
1156   walk_data.dom_direction = CDI_DOMINATORS;
1157   walk_data.initialize_block_local_data = NULL;
1158   walk_data.before_dom_children = nt_init_block;
1159   walk_data.after_dom_children = nt_fini_block;
1160   walk_data.global_data = NULL;
1161   walk_data.block_local_data_size = 0;
1162 
1163   init_walk_dominator_tree (&walk_data);
1164   walk_dominator_tree (&walk_data, ENTRY_BLOCK_PTR);
1165   fini_walk_dominator_tree (&walk_data);
1166   htab_delete (seen_ssa_names);
1167 
1168   return nontrap;
1169 }
1170 
1171 /* Do the main work of conditional store replacement.  We already know
1172    that the recognized pattern looks like so:
1173 
1174    split:
1175      if (cond) goto MIDDLE_BB; else goto JOIN_BB (edge E1)
1176    MIDDLE_BB:
1177      something
1178      fallthrough (edge E0)
1179    JOIN_BB:
1180      some more
1181 
1182    We check that MIDDLE_BB contains only one store, that that store
1183    doesn't trap (not via NOTRAP, but via checking if an access to the same
1184    memory location dominates us) and that the store has a "simple" RHS.  */
1185 
1186 static bool
1187 cond_store_replacement (basic_block middle_bb, basic_block join_bb,
1188 			edge e0, edge e1, struct pointer_set_t *nontrap)
1189 {
1190   gimple assign = last_and_only_stmt (middle_bb);
1191   tree lhs, rhs, name;
1192   gimple newphi, new_stmt;
1193   gimple_stmt_iterator gsi;
1194   source_location locus;
1195   enum tree_code code;
1196 
1197   /* Check if middle_bb contains of only one store.  */
1198   if (!assign
1199       || gimple_code (assign) != GIMPLE_ASSIGN)
1200     return false;
1201 
1202   locus = gimple_location (assign);
1203   lhs = gimple_assign_lhs (assign);
1204   rhs = gimple_assign_rhs1 (assign);
1205   if (!INDIRECT_REF_P (lhs))
1206     return false;
1207 
1208   /* RHS is either a single SSA_NAME or a constant. */
1209   code = gimple_assign_rhs_code (assign);
1210   if (get_gimple_rhs_class (code) != GIMPLE_SINGLE_RHS
1211       || (code != SSA_NAME && !is_gimple_min_invariant (rhs)))
1212     return false;
1213   /* Prove that we can move the store down.  We could also check
1214      TREE_THIS_NOTRAP here, but in that case we also could move stores,
1215      whose value is not available readily, which we want to avoid.  */
1216   if (!pointer_set_contains (nontrap, lhs))
1217     return false;
1218 
1219   /* Now we've checked the constraints, so do the transformation:
1220      1) Remove the single store.  */
1221   mark_symbols_for_renaming (assign);
1222   gsi = gsi_for_stmt (assign);
1223   gsi_remove (&gsi, true);
1224 
1225   /* 2) Create a temporary where we can store the old content
1226         of the memory touched by the store, if we need to.  */
1227   if (!condstoretemp || TREE_TYPE (lhs) != TREE_TYPE (condstoretemp))
1228     {
1229       condstoretemp = create_tmp_var (TREE_TYPE (lhs), "cstore");
1230       get_var_ann (condstoretemp);
1231       if (TREE_CODE (TREE_TYPE (lhs)) == COMPLEX_TYPE
1232           || TREE_CODE (TREE_TYPE (lhs)) == VECTOR_TYPE)
1233 	DECL_GIMPLE_REG_P (condstoretemp) = 1;
1234     }
1235   add_referenced_var (condstoretemp);
1236 
1237   /* 3) Insert a load from the memory of the store to the temporary
1238         on the edge which did not contain the store.  */
1239   lhs = unshare_expr (lhs);
1240   new_stmt = gimple_build_assign (condstoretemp, lhs);
1241   name = make_ssa_name (condstoretemp, new_stmt);
1242   gimple_assign_set_lhs (new_stmt, name);
1243   gimple_set_location (new_stmt, locus);
1244   mark_symbols_for_renaming (new_stmt);
1245   gsi_insert_on_edge (e1, new_stmt);
1246 
1247   /* 4) Create a PHI node at the join block, with one argument
1248         holding the old RHS, and the other holding the temporary
1249         where we stored the old memory contents.  */
1250   newphi = create_phi_node (condstoretemp, join_bb);
1251   add_phi_arg (newphi, rhs, e0, locus);
1252   add_phi_arg (newphi, name, e1, locus);
1253 
1254   lhs = unshare_expr (lhs);
1255   new_stmt = gimple_build_assign (lhs, PHI_RESULT (newphi));
1256   mark_symbols_for_renaming (new_stmt);
1257 
1258   /* 5) Insert that PHI node.  */
1259   gsi = gsi_after_labels (join_bb);
1260   if (gsi_end_p (gsi))
1261     {
1262       gsi = gsi_last_bb (join_bb);
1263       gsi_insert_after (&gsi, new_stmt, GSI_NEW_STMT);
1264     }
1265   else
1266     gsi_insert_before (&gsi, new_stmt, GSI_NEW_STMT);
1267 
1268   return true;
1269 }
1270 
1271 /* Always do these optimizations if we have SSA
1272    trees to work on.  */
1273 static bool
1274 gate_phiopt (void)
1275 {
1276   return 1;
1277 }
1278 
1279 struct gimple_opt_pass pass_phiopt =
1280 {
1281  {
1282   GIMPLE_PASS,
1283   "phiopt",				/* name */
1284   gate_phiopt,				/* gate */
1285   tree_ssa_phiopt,			/* execute */
1286   NULL,					/* sub */
1287   NULL,					/* next */
1288   0,					/* static_pass_number */
1289   TV_TREE_PHIOPT,			/* tv_id */
1290   PROP_cfg | PROP_ssa,			/* properties_required */
1291   0,					/* properties_provided */
1292   0,					/* properties_destroyed */
1293   0,					/* todo_flags_start */
1294   TODO_dump_func
1295     | TODO_ggc_collect
1296     | TODO_verify_ssa
1297     | TODO_verify_flow
1298     | TODO_verify_stmts	 		/* todo_flags_finish */
1299  }
1300 };
1301 
1302 static bool
1303 gate_cselim (void)
1304 {
1305   return flag_tree_cselim;
1306 }
1307 
1308 struct gimple_opt_pass pass_cselim =
1309 {
1310  {
1311   GIMPLE_PASS,
1312   "cselim",				/* name */
1313   gate_cselim,				/* gate */
1314   tree_ssa_cs_elim,			/* execute */
1315   NULL,					/* sub */
1316   NULL,					/* next */
1317   0,					/* static_pass_number */
1318   TV_TREE_PHIOPT,			/* tv_id */
1319   PROP_cfg | PROP_ssa,			/* properties_required */
1320   0,					/* properties_provided */
1321   0,					/* properties_destroyed */
1322   0,					/* todo_flags_start */
1323   TODO_dump_func
1324     | TODO_ggc_collect
1325     | TODO_verify_ssa
1326     | TODO_verify_flow
1327     | TODO_verify_stmts	 		/* todo_flags_finish */
1328  }
1329 };
1330