1 /* Optimization of PHI nodes by converting them into straightline code. 2 Copyright (C) 2004, 2005, 2006, 2007, 2008 Free Software Foundation, 3 Inc. 4 5 This file is part of GCC. 6 7 GCC is free software; you can redistribute it and/or modify it 8 under the terms of the GNU General Public License as published by the 9 Free Software Foundation; either version 3, or (at your option) any 10 later version. 11 12 GCC is distributed in the hope that it will be useful, but WITHOUT 13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 15 for more details. 16 17 You should have received a copy of the GNU General Public License 18 along with GCC; see the file COPYING3. If not see 19 <http://www.gnu.org/licenses/>. */ 20 21 #include "config.h" 22 #include "system.h" 23 #include "coretypes.h" 24 #include "tm.h" 25 #include "ggc.h" 26 #include "tree.h" 27 #include "rtl.h" 28 #include "flags.h" 29 #include "tm_p.h" 30 #include "basic-block.h" 31 #include "timevar.h" 32 #include "diagnostic.h" 33 #include "tree-flow.h" 34 #include "tree-pass.h" 35 #include "tree-dump.h" 36 #include "langhooks.h" 37 #include "pointer-set.h" 38 #include "domwalk.h" 39 40 static unsigned int tree_ssa_phiopt (void); 41 static unsigned int tree_ssa_phiopt_worker (bool); 42 static bool conditional_replacement (basic_block, basic_block, 43 edge, edge, gimple, tree, tree); 44 static bool value_replacement (basic_block, basic_block, 45 edge, edge, gimple, tree, tree); 46 static bool minmax_replacement (basic_block, basic_block, 47 edge, edge, gimple, tree, tree); 48 static bool abs_replacement (basic_block, basic_block, 49 edge, edge, gimple, tree, tree); 50 static bool cond_store_replacement (basic_block, basic_block, edge, edge, 51 struct pointer_set_t *); 52 static struct pointer_set_t * get_non_trapping (void); 53 static void replace_phi_edge_with_variable (basic_block, edge, gimple, tree); 54 55 /* This pass tries to replaces an if-then-else block with an 56 assignment. We have four kinds of transformations. Some of these 57 transformations are also performed by the ifcvt RTL optimizer. 58 59 Conditional Replacement 60 ----------------------- 61 62 This transformation, implemented in conditional_replacement, 63 replaces 64 65 bb0: 66 if (cond) goto bb2; else goto bb1; 67 bb1: 68 bb2: 69 x = PHI <0 (bb1), 1 (bb0), ...>; 70 71 with 72 73 bb0: 74 x' = cond; 75 goto bb2; 76 bb2: 77 x = PHI <x' (bb0), ...>; 78 79 We remove bb1 as it becomes unreachable. This occurs often due to 80 gimplification of conditionals. 81 82 Value Replacement 83 ----------------- 84 85 This transformation, implemented in value_replacement, replaces 86 87 bb0: 88 if (a != b) goto bb2; else goto bb1; 89 bb1: 90 bb2: 91 x = PHI <a (bb1), b (bb0), ...>; 92 93 with 94 95 bb0: 96 bb2: 97 x = PHI <b (bb0), ...>; 98 99 This opportunity can sometimes occur as a result of other 100 optimizations. 101 102 ABS Replacement 103 --------------- 104 105 This transformation, implemented in abs_replacement, replaces 106 107 bb0: 108 if (a >= 0) goto bb2; else goto bb1; 109 bb1: 110 x = -a; 111 bb2: 112 x = PHI <x (bb1), a (bb0), ...>; 113 114 with 115 116 bb0: 117 x' = ABS_EXPR< a >; 118 bb2: 119 x = PHI <x' (bb0), ...>; 120 121 MIN/MAX Replacement 122 ------------------- 123 124 This transformation, minmax_replacement replaces 125 126 bb0: 127 if (a <= b) goto bb2; else goto bb1; 128 bb1: 129 bb2: 130 x = PHI <b (bb1), a (bb0), ...>; 131 132 with 133 134 bb0: 135 x' = MIN_EXPR (a, b) 136 bb2: 137 x = PHI <x' (bb0), ...>; 138 139 A similar transformation is done for MAX_EXPR. */ 140 141 static unsigned int 142 tree_ssa_phiopt (void) 143 { 144 return tree_ssa_phiopt_worker (false); 145 } 146 147 /* This pass tries to transform conditional stores into unconditional 148 ones, enabling further simplifications with the simpler then and else 149 blocks. In particular it replaces this: 150 151 bb0: 152 if (cond) goto bb2; else goto bb1; 153 bb1: 154 *p = RHS 155 bb2: 156 157 with 158 159 bb0: 160 if (cond) goto bb1; else goto bb2; 161 bb1: 162 condtmp' = *p; 163 bb2: 164 condtmp = PHI <RHS, condtmp'> 165 *p = condtmp 166 167 This transformation can only be done under several constraints, 168 documented below. */ 169 170 static unsigned int 171 tree_ssa_cs_elim (void) 172 { 173 return tree_ssa_phiopt_worker (true); 174 } 175 176 /* For conditional store replacement we need a temporary to 177 put the old contents of the memory in. */ 178 static tree condstoretemp; 179 180 /* The core routine of conditional store replacement and normal 181 phi optimizations. Both share much of the infrastructure in how 182 to match applicable basic block patterns. DO_STORE_ELIM is true 183 when we want to do conditional store replacement, false otherwise. */ 184 static unsigned int 185 tree_ssa_phiopt_worker (bool do_store_elim) 186 { 187 basic_block bb; 188 basic_block *bb_order; 189 unsigned n, i; 190 bool cfgchanged = false; 191 struct pointer_set_t *nontrap = 0; 192 193 if (do_store_elim) 194 { 195 condstoretemp = NULL_TREE; 196 /* Calculate the set of non-trapping memory accesses. */ 197 nontrap = get_non_trapping (); 198 } 199 200 /* Search every basic block for COND_EXPR we may be able to optimize. 201 202 We walk the blocks in order that guarantees that a block with 203 a single predecessor is processed before the predecessor. 204 This ensures that we collapse inner ifs before visiting the 205 outer ones, and also that we do not try to visit a removed 206 block. */ 207 bb_order = blocks_in_phiopt_order (); 208 n = n_basic_blocks - NUM_FIXED_BLOCKS; 209 210 for (i = 0; i < n; i++) 211 { 212 gimple cond_stmt, phi; 213 basic_block bb1, bb2; 214 edge e1, e2; 215 tree arg0, arg1; 216 217 bb = bb_order[i]; 218 219 cond_stmt = last_stmt (bb); 220 /* Check to see if the last statement is a GIMPLE_COND. */ 221 if (!cond_stmt 222 || gimple_code (cond_stmt) != GIMPLE_COND) 223 continue; 224 225 e1 = EDGE_SUCC (bb, 0); 226 bb1 = e1->dest; 227 e2 = EDGE_SUCC (bb, 1); 228 bb2 = e2->dest; 229 230 /* We cannot do the optimization on abnormal edges. */ 231 if ((e1->flags & EDGE_ABNORMAL) != 0 232 || (e2->flags & EDGE_ABNORMAL) != 0) 233 continue; 234 235 /* If either bb1's succ or bb2 or bb2's succ is non NULL. */ 236 if (EDGE_COUNT (bb1->succs) == 0 237 || bb2 == NULL 238 || EDGE_COUNT (bb2->succs) == 0) 239 continue; 240 241 /* Find the bb which is the fall through to the other. */ 242 if (EDGE_SUCC (bb1, 0)->dest == bb2) 243 ; 244 else if (EDGE_SUCC (bb2, 0)->dest == bb1) 245 { 246 basic_block bb_tmp = bb1; 247 edge e_tmp = e1; 248 bb1 = bb2; 249 bb2 = bb_tmp; 250 e1 = e2; 251 e2 = e_tmp; 252 } 253 else 254 continue; 255 256 e1 = EDGE_SUCC (bb1, 0); 257 258 /* Make sure that bb1 is just a fall through. */ 259 if (!single_succ_p (bb1) 260 || (e1->flags & EDGE_FALLTHRU) == 0) 261 continue; 262 263 /* Also make sure that bb1 only have one predecessor and that it 264 is bb. */ 265 if (!single_pred_p (bb1) 266 || single_pred (bb1) != bb) 267 continue; 268 269 if (do_store_elim) 270 { 271 /* bb1 is the middle block, bb2 the join block, bb the split block, 272 e1 the fallthrough edge from bb1 to bb2. We can't do the 273 optimization if the join block has more than two predecessors. */ 274 if (EDGE_COUNT (bb2->preds) > 2) 275 continue; 276 if (cond_store_replacement (bb1, bb2, e1, e2, nontrap)) 277 cfgchanged = true; 278 } 279 else 280 { 281 gimple_seq phis = phi_nodes (bb2); 282 283 /* Check to make sure that there is only one PHI node. 284 TODO: we could do it with more than one iff the other PHI nodes 285 have the same elements for these two edges. */ 286 if (! gimple_seq_singleton_p (phis)) 287 continue; 288 289 phi = gsi_stmt (gsi_start (phis)); 290 arg0 = gimple_phi_arg_def (phi, e1->dest_idx); 291 arg1 = gimple_phi_arg_def (phi, e2->dest_idx); 292 293 /* Something is wrong if we cannot find the arguments in the PHI 294 node. */ 295 gcc_assert (arg0 != NULL && arg1 != NULL); 296 297 /* Do the replacement of conditional if it can be done. */ 298 if (conditional_replacement (bb, bb1, e1, e2, phi, arg0, arg1)) 299 cfgchanged = true; 300 else if (value_replacement (bb, bb1, e1, e2, phi, arg0, arg1)) 301 cfgchanged = true; 302 else if (abs_replacement (bb, bb1, e1, e2, phi, arg0, arg1)) 303 cfgchanged = true; 304 else if (minmax_replacement (bb, bb1, e1, e2, phi, arg0, arg1)) 305 cfgchanged = true; 306 } 307 } 308 309 free (bb_order); 310 311 if (do_store_elim) 312 pointer_set_destroy (nontrap); 313 /* If the CFG has changed, we should cleanup the CFG. */ 314 if (cfgchanged && do_store_elim) 315 { 316 /* In cond-store replacement we have added some loads on edges 317 and new VOPS (as we moved the store, and created a load). */ 318 gsi_commit_edge_inserts (); 319 return TODO_cleanup_cfg | TODO_update_ssa_only_virtuals; 320 } 321 else if (cfgchanged) 322 return TODO_cleanup_cfg; 323 return 0; 324 } 325 326 /* Returns the list of basic blocks in the function in an order that guarantees 327 that if a block X has just a single predecessor Y, then Y is after X in the 328 ordering. */ 329 330 basic_block * 331 blocks_in_phiopt_order (void) 332 { 333 basic_block x, y; 334 basic_block *order = XNEWVEC (basic_block, n_basic_blocks); 335 unsigned n = n_basic_blocks - NUM_FIXED_BLOCKS; 336 unsigned np, i; 337 sbitmap visited = sbitmap_alloc (last_basic_block); 338 339 #define MARK_VISITED(BB) (SET_BIT (visited, (BB)->index)) 340 #define VISITED_P(BB) (TEST_BIT (visited, (BB)->index)) 341 342 sbitmap_zero (visited); 343 344 MARK_VISITED (ENTRY_BLOCK_PTR); 345 FOR_EACH_BB (x) 346 { 347 if (VISITED_P (x)) 348 continue; 349 350 /* Walk the predecessors of x as long as they have precisely one 351 predecessor and add them to the list, so that they get stored 352 after x. */ 353 for (y = x, np = 1; 354 single_pred_p (y) && !VISITED_P (single_pred (y)); 355 y = single_pred (y)) 356 np++; 357 for (y = x, i = n - np; 358 single_pred_p (y) && !VISITED_P (single_pred (y)); 359 y = single_pred (y), i++) 360 { 361 order[i] = y; 362 MARK_VISITED (y); 363 } 364 order[i] = y; 365 MARK_VISITED (y); 366 367 gcc_assert (i == n - 1); 368 n -= np; 369 } 370 371 sbitmap_free (visited); 372 gcc_assert (n == 0); 373 return order; 374 375 #undef MARK_VISITED 376 #undef VISITED_P 377 } 378 379 380 /* Return TRUE if block BB has no executable statements, otherwise return 381 FALSE. */ 382 383 bool 384 empty_block_p (basic_block bb) 385 { 386 /* BB must have no executable statements. */ 387 gimple_stmt_iterator gsi = gsi_after_labels (bb); 388 if (gsi_end_p (gsi)) 389 return true; 390 if (is_gimple_debug (gsi_stmt (gsi))) 391 gsi_next_nondebug (&gsi); 392 return gsi_end_p (gsi); 393 } 394 395 /* Replace PHI node element whose edge is E in block BB with variable NEW. 396 Remove the edge from COND_BLOCK which does not lead to BB (COND_BLOCK 397 is known to have two edges, one of which must reach BB). */ 398 399 static void 400 replace_phi_edge_with_variable (basic_block cond_block, 401 edge e, gimple phi, tree new_tree) 402 { 403 basic_block bb = gimple_bb (phi); 404 basic_block block_to_remove; 405 gimple_stmt_iterator gsi; 406 407 /* Change the PHI argument to new. */ 408 SET_USE (PHI_ARG_DEF_PTR (phi, e->dest_idx), new_tree); 409 410 /* Remove the empty basic block. */ 411 if (EDGE_SUCC (cond_block, 0)->dest == bb) 412 { 413 EDGE_SUCC (cond_block, 0)->flags |= EDGE_FALLTHRU; 414 EDGE_SUCC (cond_block, 0)->flags &= ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE); 415 EDGE_SUCC (cond_block, 0)->probability = REG_BR_PROB_BASE; 416 EDGE_SUCC (cond_block, 0)->count += EDGE_SUCC (cond_block, 1)->count; 417 418 block_to_remove = EDGE_SUCC (cond_block, 1)->dest; 419 } 420 else 421 { 422 EDGE_SUCC (cond_block, 1)->flags |= EDGE_FALLTHRU; 423 EDGE_SUCC (cond_block, 1)->flags 424 &= ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE); 425 EDGE_SUCC (cond_block, 1)->probability = REG_BR_PROB_BASE; 426 EDGE_SUCC (cond_block, 1)->count += EDGE_SUCC (cond_block, 0)->count; 427 428 block_to_remove = EDGE_SUCC (cond_block, 0)->dest; 429 } 430 delete_basic_block (block_to_remove); 431 432 /* Eliminate the COND_EXPR at the end of COND_BLOCK. */ 433 gsi = gsi_last_bb (cond_block); 434 gsi_remove (&gsi, true); 435 436 if (dump_file && (dump_flags & TDF_DETAILS)) 437 fprintf (dump_file, 438 "COND_EXPR in block %d and PHI in block %d converted to straightline code.\n", 439 cond_block->index, 440 bb->index); 441 } 442 443 /* The function conditional_replacement does the main work of doing the 444 conditional replacement. Return true if the replacement is done. 445 Otherwise return false. 446 BB is the basic block where the replacement is going to be done on. ARG0 447 is argument 0 from PHI. Likewise for ARG1. */ 448 449 static bool 450 conditional_replacement (basic_block cond_bb, basic_block middle_bb, 451 edge e0, edge e1, gimple phi, 452 tree arg0, tree arg1) 453 { 454 tree result; 455 gimple stmt, new_stmt; 456 tree cond; 457 gimple_stmt_iterator gsi; 458 edge true_edge, false_edge; 459 tree new_var, new_var2; 460 461 /* FIXME: Gimplification of complex type is too hard for now. */ 462 if (TREE_CODE (TREE_TYPE (arg0)) == COMPLEX_TYPE 463 || TREE_CODE (TREE_TYPE (arg1)) == COMPLEX_TYPE) 464 return false; 465 466 /* The PHI arguments have the constants 0 and 1, then convert 467 it to the conditional. */ 468 if ((integer_zerop (arg0) && integer_onep (arg1)) 469 || (integer_zerop (arg1) && integer_onep (arg0))) 470 ; 471 else 472 return false; 473 474 if (!empty_block_p (middle_bb)) 475 return false; 476 477 /* At this point we know we have a GIMPLE_COND with two successors. 478 One successor is BB, the other successor is an empty block which 479 falls through into BB. 480 481 There is a single PHI node at the join point (BB) and its arguments 482 are constants (0, 1). 483 484 So, given the condition COND, and the two PHI arguments, we can 485 rewrite this PHI into non-branching code: 486 487 dest = (COND) or dest = COND' 488 489 We use the condition as-is if the argument associated with the 490 true edge has the value one or the argument associated with the 491 false edge as the value zero. Note that those conditions are not 492 the same since only one of the outgoing edges from the GIMPLE_COND 493 will directly reach BB and thus be associated with an argument. */ 494 495 stmt = last_stmt (cond_bb); 496 result = PHI_RESULT (phi); 497 498 /* To handle special cases like floating point comparison, it is easier and 499 less error-prone to build a tree and gimplify it on the fly though it is 500 less efficient. */ 501 cond = fold_build2 (gimple_cond_code (stmt), boolean_type_node, 502 gimple_cond_lhs (stmt), gimple_cond_rhs (stmt)); 503 504 /* We need to know which is the true edge and which is the false 505 edge so that we know when to invert the condition below. */ 506 extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge); 507 if ((e0 == true_edge && integer_zerop (arg0)) 508 || (e0 == false_edge && integer_onep (arg0)) 509 || (e1 == true_edge && integer_zerop (arg1)) 510 || (e1 == false_edge && integer_onep (arg1))) 511 cond = fold_build1 (TRUTH_NOT_EXPR, TREE_TYPE (cond), cond); 512 513 /* Insert our new statements at the end of conditional block before the 514 COND_STMT. */ 515 gsi = gsi_for_stmt (stmt); 516 new_var = force_gimple_operand_gsi (&gsi, cond, true, NULL, true, 517 GSI_SAME_STMT); 518 519 if (!useless_type_conversion_p (TREE_TYPE (result), TREE_TYPE (new_var))) 520 { 521 source_location locus_0, locus_1; 522 523 new_var2 = create_tmp_var (TREE_TYPE (result), NULL); 524 add_referenced_var (new_var2); 525 new_stmt = gimple_build_assign_with_ops (CONVERT_EXPR, new_var2, 526 new_var, NULL); 527 new_var2 = make_ssa_name (new_var2, new_stmt); 528 gimple_assign_set_lhs (new_stmt, new_var2); 529 gsi_insert_before (&gsi, new_stmt, GSI_SAME_STMT); 530 new_var = new_var2; 531 532 /* Set the locus to the first argument, unless is doesn't have one. */ 533 locus_0 = gimple_phi_arg_location (phi, 0); 534 locus_1 = gimple_phi_arg_location (phi, 1); 535 if (locus_0 == UNKNOWN_LOCATION) 536 locus_0 = locus_1; 537 gimple_set_location (new_stmt, locus_0); 538 } 539 540 replace_phi_edge_with_variable (cond_bb, e1, phi, new_var); 541 542 /* Note that we optimized this PHI. */ 543 return true; 544 } 545 546 /* The function value_replacement does the main work of doing the value 547 replacement. Return true if the replacement is done. Otherwise return 548 false. 549 BB is the basic block where the replacement is going to be done on. ARG0 550 is argument 0 from the PHI. Likewise for ARG1. */ 551 552 static bool 553 value_replacement (basic_block cond_bb, basic_block middle_bb, 554 edge e0, edge e1, gimple phi, 555 tree arg0, tree arg1) 556 { 557 gimple cond; 558 edge true_edge, false_edge; 559 enum tree_code code; 560 561 /* If the type says honor signed zeros we cannot do this 562 optimization. */ 563 if (HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (arg1)))) 564 return false; 565 566 if (!empty_block_p (middle_bb)) 567 return false; 568 569 cond = last_stmt (cond_bb); 570 code = gimple_cond_code (cond); 571 572 /* This transformation is only valid for equality comparisons. */ 573 if (code != NE_EXPR && code != EQ_EXPR) 574 return false; 575 576 /* We need to know which is the true edge and which is the false 577 edge so that we know if have abs or negative abs. */ 578 extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge); 579 580 /* At this point we know we have a COND_EXPR with two successors. 581 One successor is BB, the other successor is an empty block which 582 falls through into BB. 583 584 The condition for the COND_EXPR is known to be NE_EXPR or EQ_EXPR. 585 586 There is a single PHI node at the join point (BB) with two arguments. 587 588 We now need to verify that the two arguments in the PHI node match 589 the two arguments to the equality comparison. */ 590 591 if ((operand_equal_for_phi_arg_p (arg0, gimple_cond_lhs (cond)) 592 && operand_equal_for_phi_arg_p (arg1, gimple_cond_rhs (cond))) 593 || (operand_equal_for_phi_arg_p (arg1, gimple_cond_lhs (cond)) 594 && operand_equal_for_phi_arg_p (arg0, gimple_cond_rhs (cond)))) 595 { 596 edge e; 597 tree arg; 598 599 /* For NE_EXPR, we want to build an assignment result = arg where 600 arg is the PHI argument associated with the true edge. For 601 EQ_EXPR we want the PHI argument associated with the false edge. */ 602 e = (code == NE_EXPR ? true_edge : false_edge); 603 604 /* Unfortunately, E may not reach BB (it may instead have gone to 605 OTHER_BLOCK). If that is the case, then we want the single outgoing 606 edge from OTHER_BLOCK which reaches BB and represents the desired 607 path from COND_BLOCK. */ 608 if (e->dest == middle_bb) 609 e = single_succ_edge (e->dest); 610 611 /* Now we know the incoming edge to BB that has the argument for the 612 RHS of our new assignment statement. */ 613 if (e0 == e) 614 arg = arg0; 615 else 616 arg = arg1; 617 618 replace_phi_edge_with_variable (cond_bb, e1, phi, arg); 619 620 /* Note that we optimized this PHI. */ 621 return true; 622 } 623 return false; 624 } 625 626 /* The function minmax_replacement does the main work of doing the minmax 627 replacement. Return true if the replacement is done. Otherwise return 628 false. 629 BB is the basic block where the replacement is going to be done on. ARG0 630 is argument 0 from the PHI. Likewise for ARG1. */ 631 632 static bool 633 minmax_replacement (basic_block cond_bb, basic_block middle_bb, 634 edge e0, edge e1, gimple phi, 635 tree arg0, tree arg1) 636 { 637 tree result, type; 638 gimple cond, new_stmt; 639 edge true_edge, false_edge; 640 enum tree_code cmp, minmax, ass_code; 641 tree smaller, larger, arg_true, arg_false; 642 gimple_stmt_iterator gsi, gsi_from; 643 644 type = TREE_TYPE (PHI_RESULT (phi)); 645 646 /* The optimization may be unsafe due to NaNs. */ 647 if (HONOR_NANS (TYPE_MODE (type))) 648 return false; 649 650 cond = last_stmt (cond_bb); 651 cmp = gimple_cond_code (cond); 652 result = PHI_RESULT (phi); 653 654 /* This transformation is only valid for order comparisons. Record which 655 operand is smaller/larger if the result of the comparison is true. */ 656 if (cmp == LT_EXPR || cmp == LE_EXPR) 657 { 658 smaller = gimple_cond_lhs (cond); 659 larger = gimple_cond_rhs (cond); 660 } 661 else if (cmp == GT_EXPR || cmp == GE_EXPR) 662 { 663 smaller = gimple_cond_rhs (cond); 664 larger = gimple_cond_lhs (cond); 665 } 666 else 667 return false; 668 669 /* We need to know which is the true edge and which is the false 670 edge so that we know if have abs or negative abs. */ 671 extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge); 672 673 /* Forward the edges over the middle basic block. */ 674 if (true_edge->dest == middle_bb) 675 true_edge = EDGE_SUCC (true_edge->dest, 0); 676 if (false_edge->dest == middle_bb) 677 false_edge = EDGE_SUCC (false_edge->dest, 0); 678 679 if (true_edge == e0) 680 { 681 gcc_assert (false_edge == e1); 682 arg_true = arg0; 683 arg_false = arg1; 684 } 685 else 686 { 687 gcc_assert (false_edge == e0); 688 gcc_assert (true_edge == e1); 689 arg_true = arg1; 690 arg_false = arg0; 691 } 692 693 if (empty_block_p (middle_bb)) 694 { 695 if (operand_equal_for_phi_arg_p (arg_true, smaller) 696 && operand_equal_for_phi_arg_p (arg_false, larger)) 697 { 698 /* Case 699 700 if (smaller < larger) 701 rslt = smaller; 702 else 703 rslt = larger; */ 704 minmax = MIN_EXPR; 705 } 706 else if (operand_equal_for_phi_arg_p (arg_false, smaller) 707 && operand_equal_for_phi_arg_p (arg_true, larger)) 708 minmax = MAX_EXPR; 709 else 710 return false; 711 } 712 else 713 { 714 /* Recognize the following case, assuming d <= u: 715 716 if (a <= u) 717 b = MAX (a, d); 718 x = PHI <b, u> 719 720 This is equivalent to 721 722 b = MAX (a, d); 723 x = MIN (b, u); */ 724 725 gimple assign = last_and_only_stmt (middle_bb); 726 tree lhs, op0, op1, bound; 727 728 if (!assign 729 || gimple_code (assign) != GIMPLE_ASSIGN) 730 return false; 731 732 lhs = gimple_assign_lhs (assign); 733 ass_code = gimple_assign_rhs_code (assign); 734 if (ass_code != MAX_EXPR && ass_code != MIN_EXPR) 735 return false; 736 op0 = gimple_assign_rhs1 (assign); 737 op1 = gimple_assign_rhs2 (assign); 738 739 if (true_edge->src == middle_bb) 740 { 741 /* We got here if the condition is true, i.e., SMALLER < LARGER. */ 742 if (!operand_equal_for_phi_arg_p (lhs, arg_true)) 743 return false; 744 745 if (operand_equal_for_phi_arg_p (arg_false, larger)) 746 { 747 /* Case 748 749 if (smaller < larger) 750 { 751 r' = MAX_EXPR (smaller, bound) 752 } 753 r = PHI <r', larger> --> to be turned to MIN_EXPR. */ 754 if (ass_code != MAX_EXPR) 755 return false; 756 757 minmax = MIN_EXPR; 758 if (operand_equal_for_phi_arg_p (op0, smaller)) 759 bound = op1; 760 else if (operand_equal_for_phi_arg_p (op1, smaller)) 761 bound = op0; 762 else 763 return false; 764 765 /* We need BOUND <= LARGER. */ 766 if (!integer_nonzerop (fold_build2 (LE_EXPR, boolean_type_node, 767 bound, larger))) 768 return false; 769 } 770 else if (operand_equal_for_phi_arg_p (arg_false, smaller)) 771 { 772 /* Case 773 774 if (smaller < larger) 775 { 776 r' = MIN_EXPR (larger, bound) 777 } 778 r = PHI <r', smaller> --> to be turned to MAX_EXPR. */ 779 if (ass_code != MIN_EXPR) 780 return false; 781 782 minmax = MAX_EXPR; 783 if (operand_equal_for_phi_arg_p (op0, larger)) 784 bound = op1; 785 else if (operand_equal_for_phi_arg_p (op1, larger)) 786 bound = op0; 787 else 788 return false; 789 790 /* We need BOUND >= SMALLER. */ 791 if (!integer_nonzerop (fold_build2 (GE_EXPR, boolean_type_node, 792 bound, smaller))) 793 return false; 794 } 795 else 796 return false; 797 } 798 else 799 { 800 /* We got here if the condition is false, i.e., SMALLER > LARGER. */ 801 if (!operand_equal_for_phi_arg_p (lhs, arg_false)) 802 return false; 803 804 if (operand_equal_for_phi_arg_p (arg_true, larger)) 805 { 806 /* Case 807 808 if (smaller > larger) 809 { 810 r' = MIN_EXPR (smaller, bound) 811 } 812 r = PHI <r', larger> --> to be turned to MAX_EXPR. */ 813 if (ass_code != MIN_EXPR) 814 return false; 815 816 minmax = MAX_EXPR; 817 if (operand_equal_for_phi_arg_p (op0, smaller)) 818 bound = op1; 819 else if (operand_equal_for_phi_arg_p (op1, smaller)) 820 bound = op0; 821 else 822 return false; 823 824 /* We need BOUND >= LARGER. */ 825 if (!integer_nonzerop (fold_build2 (GE_EXPR, boolean_type_node, 826 bound, larger))) 827 return false; 828 } 829 else if (operand_equal_for_phi_arg_p (arg_true, smaller)) 830 { 831 /* Case 832 833 if (smaller > larger) 834 { 835 r' = MAX_EXPR (larger, bound) 836 } 837 r = PHI <r', smaller> --> to be turned to MIN_EXPR. */ 838 if (ass_code != MAX_EXPR) 839 return false; 840 841 minmax = MIN_EXPR; 842 if (operand_equal_for_phi_arg_p (op0, larger)) 843 bound = op1; 844 else if (operand_equal_for_phi_arg_p (op1, larger)) 845 bound = op0; 846 else 847 return false; 848 849 /* We need BOUND <= SMALLER. */ 850 if (!integer_nonzerop (fold_build2 (LE_EXPR, boolean_type_node, 851 bound, smaller))) 852 return false; 853 } 854 else 855 return false; 856 } 857 858 /* Move the statement from the middle block. */ 859 gsi = gsi_last_bb (cond_bb); 860 gsi_from = gsi_last_nondebug_bb (middle_bb); 861 gsi_move_before (&gsi_from, &gsi); 862 } 863 864 /* Emit the statement to compute min/max. */ 865 result = duplicate_ssa_name (PHI_RESULT (phi), NULL); 866 new_stmt = gimple_build_assign_with_ops (minmax, result, arg0, arg1); 867 gsi = gsi_last_bb (cond_bb); 868 gsi_insert_before (&gsi, new_stmt, GSI_NEW_STMT); 869 870 replace_phi_edge_with_variable (cond_bb, e1, phi, result); 871 return true; 872 } 873 874 /* The function absolute_replacement does the main work of doing the absolute 875 replacement. Return true if the replacement is done. Otherwise return 876 false. 877 bb is the basic block where the replacement is going to be done on. arg0 878 is argument 0 from the phi. Likewise for arg1. */ 879 880 static bool 881 abs_replacement (basic_block cond_bb, basic_block middle_bb, 882 edge e0 ATTRIBUTE_UNUSED, edge e1, 883 gimple phi, tree arg0, tree arg1) 884 { 885 tree result; 886 gimple new_stmt, cond; 887 gimple_stmt_iterator gsi; 888 edge true_edge, false_edge; 889 gimple assign; 890 edge e; 891 tree rhs, lhs; 892 bool negate; 893 enum tree_code cond_code; 894 895 /* If the type says honor signed zeros we cannot do this 896 optimization. */ 897 if (HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (arg1)))) 898 return false; 899 900 /* OTHER_BLOCK must have only one executable statement which must have the 901 form arg0 = -arg1 or arg1 = -arg0. */ 902 903 assign = last_and_only_stmt (middle_bb); 904 /* If we did not find the proper negation assignment, then we can not 905 optimize. */ 906 if (assign == NULL) 907 return false; 908 909 /* If we got here, then we have found the only executable statement 910 in OTHER_BLOCK. If it is anything other than arg = -arg1 or 911 arg1 = -arg0, then we can not optimize. */ 912 if (gimple_code (assign) != GIMPLE_ASSIGN) 913 return false; 914 915 lhs = gimple_assign_lhs (assign); 916 917 if (gimple_assign_rhs_code (assign) != NEGATE_EXPR) 918 return false; 919 920 rhs = gimple_assign_rhs1 (assign); 921 922 /* The assignment has to be arg0 = -arg1 or arg1 = -arg0. */ 923 if (!(lhs == arg0 && rhs == arg1) 924 && !(lhs == arg1 && rhs == arg0)) 925 return false; 926 927 cond = last_stmt (cond_bb); 928 result = PHI_RESULT (phi); 929 930 /* Only relationals comparing arg[01] against zero are interesting. */ 931 cond_code = gimple_cond_code (cond); 932 if (cond_code != GT_EXPR && cond_code != GE_EXPR 933 && cond_code != LT_EXPR && cond_code != LE_EXPR) 934 return false; 935 936 /* Make sure the conditional is arg[01] OP y. */ 937 if (gimple_cond_lhs (cond) != rhs) 938 return false; 939 940 if (FLOAT_TYPE_P (TREE_TYPE (gimple_cond_rhs (cond))) 941 ? real_zerop (gimple_cond_rhs (cond)) 942 : integer_zerop (gimple_cond_rhs (cond))) 943 ; 944 else 945 return false; 946 947 /* We need to know which is the true edge and which is the false 948 edge so that we know if have abs or negative abs. */ 949 extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge); 950 951 /* For GT_EXPR/GE_EXPR, if the true edge goes to OTHER_BLOCK, then we 952 will need to negate the result. Similarly for LT_EXPR/LE_EXPR if 953 the false edge goes to OTHER_BLOCK. */ 954 if (cond_code == GT_EXPR || cond_code == GE_EXPR) 955 e = true_edge; 956 else 957 e = false_edge; 958 959 if (e->dest == middle_bb) 960 negate = true; 961 else 962 negate = false; 963 964 result = duplicate_ssa_name (result, NULL); 965 966 if (negate) 967 { 968 tree tmp = create_tmp_var (TREE_TYPE (result), NULL); 969 add_referenced_var (tmp); 970 lhs = make_ssa_name (tmp, NULL); 971 } 972 else 973 lhs = result; 974 975 /* Build the modify expression with abs expression. */ 976 new_stmt = gimple_build_assign_with_ops (ABS_EXPR, lhs, rhs, NULL); 977 978 gsi = gsi_last_bb (cond_bb); 979 gsi_insert_before (&gsi, new_stmt, GSI_NEW_STMT); 980 981 if (negate) 982 { 983 /* Get the right GSI. We want to insert after the recently 984 added ABS_EXPR statement (which we know is the first statement 985 in the block. */ 986 new_stmt = gimple_build_assign_with_ops (NEGATE_EXPR, result, lhs, NULL); 987 988 gsi_insert_after (&gsi, new_stmt, GSI_NEW_STMT); 989 } 990 991 replace_phi_edge_with_variable (cond_bb, e1, phi, result); 992 993 /* Note that we optimized this PHI. */ 994 return true; 995 } 996 997 /* Auxiliary functions to determine the set of memory accesses which 998 can't trap because they are preceded by accesses to the same memory 999 portion. We do that for INDIRECT_REFs, so we only need to track 1000 the SSA_NAME of the pointer indirectly referenced. The algorithm 1001 simply is a walk over all instructions in dominator order. When 1002 we see an INDIRECT_REF we determine if we've already seen a same 1003 ref anywhere up to the root of the dominator tree. If we do the 1004 current access can't trap. If we don't see any dominating access 1005 the current access might trap, but might also make later accesses 1006 non-trapping, so we remember it. We need to be careful with loads 1007 or stores, for instance a load might not trap, while a store would, 1008 so if we see a dominating read access this doesn't mean that a later 1009 write access would not trap. Hence we also need to differentiate the 1010 type of access(es) seen. 1011 1012 ??? We currently are very conservative and assume that a load might 1013 trap even if a store doesn't (write-only memory). This probably is 1014 overly conservative. */ 1015 1016 /* A hash-table of SSA_NAMEs, and in which basic block an INDIRECT_REF 1017 through it was seen, which would constitute a no-trap region for 1018 same accesses. */ 1019 struct name_to_bb 1020 { 1021 tree ssa_name; 1022 basic_block bb; 1023 unsigned store : 1; 1024 }; 1025 1026 /* The hash table for remembering what we've seen. */ 1027 static htab_t seen_ssa_names; 1028 1029 /* The set of INDIRECT_REFs which can't trap. */ 1030 static struct pointer_set_t *nontrap_set; 1031 1032 /* The hash function, based on the pointer to the pointer SSA_NAME. */ 1033 static hashval_t 1034 name_to_bb_hash (const void *p) 1035 { 1036 const_tree n = ((const struct name_to_bb *)p)->ssa_name; 1037 return htab_hash_pointer (n) ^ ((const struct name_to_bb *)p)->store; 1038 } 1039 1040 /* The equality function of *P1 and *P2. SSA_NAMEs are shared, so 1041 it's enough to simply compare them for equality. */ 1042 static int 1043 name_to_bb_eq (const void *p1, const void *p2) 1044 { 1045 const struct name_to_bb *n1 = (const struct name_to_bb *)p1; 1046 const struct name_to_bb *n2 = (const struct name_to_bb *)p2; 1047 1048 return n1->ssa_name == n2->ssa_name && n1->store == n2->store; 1049 } 1050 1051 /* We see the expression EXP in basic block BB. If it's an interesting 1052 expression (an INDIRECT_REF through an SSA_NAME) possibly insert the 1053 expression into the set NONTRAP or the hash table of seen expressions. 1054 STORE is true if this expression is on the LHS, otherwise it's on 1055 the RHS. */ 1056 static void 1057 add_or_mark_expr (basic_block bb, tree exp, 1058 struct pointer_set_t *nontrap, bool store) 1059 { 1060 if (INDIRECT_REF_P (exp) 1061 && TREE_CODE (TREE_OPERAND (exp, 0)) == SSA_NAME) 1062 { 1063 tree name = TREE_OPERAND (exp, 0); 1064 struct name_to_bb map; 1065 void **slot; 1066 struct name_to_bb *n2bb; 1067 basic_block found_bb = 0; 1068 1069 /* Try to find the last seen INDIRECT_REF through the same 1070 SSA_NAME, which can trap. */ 1071 map.ssa_name = name; 1072 map.bb = 0; 1073 map.store = store; 1074 slot = htab_find_slot (seen_ssa_names, &map, INSERT); 1075 n2bb = (struct name_to_bb *) *slot; 1076 if (n2bb) 1077 found_bb = n2bb->bb; 1078 1079 /* If we've found a trapping INDIRECT_REF, _and_ it dominates EXP 1080 (it's in a basic block on the path from us to the dominator root) 1081 then we can't trap. */ 1082 if (found_bb && found_bb->aux == (void *)1) 1083 { 1084 pointer_set_insert (nontrap, exp); 1085 } 1086 else 1087 { 1088 /* EXP might trap, so insert it into the hash table. */ 1089 if (n2bb) 1090 { 1091 n2bb->bb = bb; 1092 } 1093 else 1094 { 1095 n2bb = XNEW (struct name_to_bb); 1096 n2bb->ssa_name = name; 1097 n2bb->bb = bb; 1098 n2bb->store = store; 1099 *slot = n2bb; 1100 } 1101 } 1102 } 1103 } 1104 1105 /* Called by walk_dominator_tree, when entering the block BB. */ 1106 static void 1107 nt_init_block (struct dom_walk_data *data ATTRIBUTE_UNUSED, basic_block bb) 1108 { 1109 gimple_stmt_iterator gsi; 1110 /* Mark this BB as being on the path to dominator root. */ 1111 bb->aux = (void*)1; 1112 1113 /* And walk the statements in order. */ 1114 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi)) 1115 { 1116 gimple stmt = gsi_stmt (gsi); 1117 1118 if (is_gimple_assign (stmt)) 1119 { 1120 add_or_mark_expr (bb, gimple_assign_lhs (stmt), nontrap_set, true); 1121 add_or_mark_expr (bb, gimple_assign_rhs1 (stmt), nontrap_set, false); 1122 if (get_gimple_rhs_num_ops (gimple_assign_rhs_code (stmt)) > 1) 1123 add_or_mark_expr (bb, gimple_assign_rhs2 (stmt), nontrap_set, 1124 false); 1125 } 1126 } 1127 } 1128 1129 /* Called by walk_dominator_tree, when basic block BB is exited. */ 1130 static void 1131 nt_fini_block (struct dom_walk_data *data ATTRIBUTE_UNUSED, basic_block bb) 1132 { 1133 /* This BB isn't on the path to dominator root anymore. */ 1134 bb->aux = NULL; 1135 } 1136 1137 /* This is the entry point of gathering non trapping memory accesses. 1138 It will do a dominator walk over the whole function, and it will 1139 make use of the bb->aux pointers. It returns a set of trees 1140 (the INDIRECT_REFs itself) which can't trap. */ 1141 static struct pointer_set_t * 1142 get_non_trapping (void) 1143 { 1144 struct pointer_set_t *nontrap; 1145 struct dom_walk_data walk_data; 1146 1147 nontrap = pointer_set_create (); 1148 seen_ssa_names = htab_create (128, name_to_bb_hash, name_to_bb_eq, 1149 free); 1150 /* We're going to do a dominator walk, so ensure that we have 1151 dominance information. */ 1152 calculate_dominance_info (CDI_DOMINATORS); 1153 1154 /* Setup callbacks for the generic dominator tree walker. */ 1155 nontrap_set = nontrap; 1156 walk_data.dom_direction = CDI_DOMINATORS; 1157 walk_data.initialize_block_local_data = NULL; 1158 walk_data.before_dom_children = nt_init_block; 1159 walk_data.after_dom_children = nt_fini_block; 1160 walk_data.global_data = NULL; 1161 walk_data.block_local_data_size = 0; 1162 1163 init_walk_dominator_tree (&walk_data); 1164 walk_dominator_tree (&walk_data, ENTRY_BLOCK_PTR); 1165 fini_walk_dominator_tree (&walk_data); 1166 htab_delete (seen_ssa_names); 1167 1168 return nontrap; 1169 } 1170 1171 /* Do the main work of conditional store replacement. We already know 1172 that the recognized pattern looks like so: 1173 1174 split: 1175 if (cond) goto MIDDLE_BB; else goto JOIN_BB (edge E1) 1176 MIDDLE_BB: 1177 something 1178 fallthrough (edge E0) 1179 JOIN_BB: 1180 some more 1181 1182 We check that MIDDLE_BB contains only one store, that that store 1183 doesn't trap (not via NOTRAP, but via checking if an access to the same 1184 memory location dominates us) and that the store has a "simple" RHS. */ 1185 1186 static bool 1187 cond_store_replacement (basic_block middle_bb, basic_block join_bb, 1188 edge e0, edge e1, struct pointer_set_t *nontrap) 1189 { 1190 gimple assign = last_and_only_stmt (middle_bb); 1191 tree lhs, rhs, name; 1192 gimple newphi, new_stmt; 1193 gimple_stmt_iterator gsi; 1194 source_location locus; 1195 enum tree_code code; 1196 1197 /* Check if middle_bb contains of only one store. */ 1198 if (!assign 1199 || gimple_code (assign) != GIMPLE_ASSIGN) 1200 return false; 1201 1202 locus = gimple_location (assign); 1203 lhs = gimple_assign_lhs (assign); 1204 rhs = gimple_assign_rhs1 (assign); 1205 if (!INDIRECT_REF_P (lhs)) 1206 return false; 1207 1208 /* RHS is either a single SSA_NAME or a constant. */ 1209 code = gimple_assign_rhs_code (assign); 1210 if (get_gimple_rhs_class (code) != GIMPLE_SINGLE_RHS 1211 || (code != SSA_NAME && !is_gimple_min_invariant (rhs))) 1212 return false; 1213 /* Prove that we can move the store down. We could also check 1214 TREE_THIS_NOTRAP here, but in that case we also could move stores, 1215 whose value is not available readily, which we want to avoid. */ 1216 if (!pointer_set_contains (nontrap, lhs)) 1217 return false; 1218 1219 /* Now we've checked the constraints, so do the transformation: 1220 1) Remove the single store. */ 1221 mark_symbols_for_renaming (assign); 1222 gsi = gsi_for_stmt (assign); 1223 gsi_remove (&gsi, true); 1224 1225 /* 2) Create a temporary where we can store the old content 1226 of the memory touched by the store, if we need to. */ 1227 if (!condstoretemp || TREE_TYPE (lhs) != TREE_TYPE (condstoretemp)) 1228 { 1229 condstoretemp = create_tmp_var (TREE_TYPE (lhs), "cstore"); 1230 get_var_ann (condstoretemp); 1231 if (TREE_CODE (TREE_TYPE (lhs)) == COMPLEX_TYPE 1232 || TREE_CODE (TREE_TYPE (lhs)) == VECTOR_TYPE) 1233 DECL_GIMPLE_REG_P (condstoretemp) = 1; 1234 } 1235 add_referenced_var (condstoretemp); 1236 1237 /* 3) Insert a load from the memory of the store to the temporary 1238 on the edge which did not contain the store. */ 1239 lhs = unshare_expr (lhs); 1240 new_stmt = gimple_build_assign (condstoretemp, lhs); 1241 name = make_ssa_name (condstoretemp, new_stmt); 1242 gimple_assign_set_lhs (new_stmt, name); 1243 gimple_set_location (new_stmt, locus); 1244 mark_symbols_for_renaming (new_stmt); 1245 gsi_insert_on_edge (e1, new_stmt); 1246 1247 /* 4) Create a PHI node at the join block, with one argument 1248 holding the old RHS, and the other holding the temporary 1249 where we stored the old memory contents. */ 1250 newphi = create_phi_node (condstoretemp, join_bb); 1251 add_phi_arg (newphi, rhs, e0, locus); 1252 add_phi_arg (newphi, name, e1, locus); 1253 1254 lhs = unshare_expr (lhs); 1255 new_stmt = gimple_build_assign (lhs, PHI_RESULT (newphi)); 1256 mark_symbols_for_renaming (new_stmt); 1257 1258 /* 5) Insert that PHI node. */ 1259 gsi = gsi_after_labels (join_bb); 1260 if (gsi_end_p (gsi)) 1261 { 1262 gsi = gsi_last_bb (join_bb); 1263 gsi_insert_after (&gsi, new_stmt, GSI_NEW_STMT); 1264 } 1265 else 1266 gsi_insert_before (&gsi, new_stmt, GSI_NEW_STMT); 1267 1268 return true; 1269 } 1270 1271 /* Always do these optimizations if we have SSA 1272 trees to work on. */ 1273 static bool 1274 gate_phiopt (void) 1275 { 1276 return 1; 1277 } 1278 1279 struct gimple_opt_pass pass_phiopt = 1280 { 1281 { 1282 GIMPLE_PASS, 1283 "phiopt", /* name */ 1284 gate_phiopt, /* gate */ 1285 tree_ssa_phiopt, /* execute */ 1286 NULL, /* sub */ 1287 NULL, /* next */ 1288 0, /* static_pass_number */ 1289 TV_TREE_PHIOPT, /* tv_id */ 1290 PROP_cfg | PROP_ssa, /* properties_required */ 1291 0, /* properties_provided */ 1292 0, /* properties_destroyed */ 1293 0, /* todo_flags_start */ 1294 TODO_dump_func 1295 | TODO_ggc_collect 1296 | TODO_verify_ssa 1297 | TODO_verify_flow 1298 | TODO_verify_stmts /* todo_flags_finish */ 1299 } 1300 }; 1301 1302 static bool 1303 gate_cselim (void) 1304 { 1305 return flag_tree_cselim; 1306 } 1307 1308 struct gimple_opt_pass pass_cselim = 1309 { 1310 { 1311 GIMPLE_PASS, 1312 "cselim", /* name */ 1313 gate_cselim, /* gate */ 1314 tree_ssa_cs_elim, /* execute */ 1315 NULL, /* sub */ 1316 NULL, /* next */ 1317 0, /* static_pass_number */ 1318 TV_TREE_PHIOPT, /* tv_id */ 1319 PROP_cfg | PROP_ssa, /* properties_required */ 1320 0, /* properties_provided */ 1321 0, /* properties_destroyed */ 1322 0, /* todo_flags_start */ 1323 TODO_dump_func 1324 | TODO_ggc_collect 1325 | TODO_verify_ssa 1326 | TODO_verify_flow 1327 | TODO_verify_stmts /* todo_flags_finish */ 1328 } 1329 }; 1330