xref: /netbsd-src/external/gpl3/gcc.old/dist/gcc/tree-ssa-loop-prefetch.c (revision f14316bcbc544b96a93e884bc5c2b15fd60e22ae)
1 /* Array prefetching.
2    Copyright (C) 2005, 2007, 2008 Free Software Foundation, Inc.
3 
4 This file is part of GCC.
5 
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
9 later version.
10 
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 for more details.
15 
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3.  If not see
18 <http://www.gnu.org/licenses/>.  */
19 
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24 #include "tree.h"
25 #include "rtl.h"
26 #include "tm_p.h"
27 #include "hard-reg-set.h"
28 #include "basic-block.h"
29 #include "output.h"
30 #include "diagnostic.h"
31 #include "tree-flow.h"
32 #include "tree-dump.h"
33 #include "timevar.h"
34 #include "cfgloop.h"
35 #include "varray.h"
36 #include "expr.h"
37 #include "tree-pass.h"
38 #include "ggc.h"
39 #include "insn-config.h"
40 #include "recog.h"
41 #include "hashtab.h"
42 #include "tree-chrec.h"
43 #include "tree-scalar-evolution.h"
44 #include "toplev.h"
45 #include "params.h"
46 #include "langhooks.h"
47 #include "tree-inline.h"
48 #include "tree-data-ref.h"
49 #include "optabs.h"
50 
51 /* This pass inserts prefetch instructions to optimize cache usage during
52    accesses to arrays in loops.  It processes loops sequentially and:
53 
54    1) Gathers all memory references in the single loop.
55    2) For each of the references it decides when it is profitable to prefetch
56       it.  To do it, we evaluate the reuse among the accesses, and determines
57       two values: PREFETCH_BEFORE (meaning that it only makes sense to do
58       prefetching in the first PREFETCH_BEFORE iterations of the loop) and
59       PREFETCH_MOD (meaning that it only makes sense to prefetch in the
60       iterations of the loop that are zero modulo PREFETCH_MOD).  For example
61       (assuming cache line size is 64 bytes, char has size 1 byte and there
62       is no hardware sequential prefetch):
63 
64       char *a;
65       for (i = 0; i < max; i++)
66 	{
67 	  a[255] = ...;		(0)
68 	  a[i] = ...;		(1)
69 	  a[i + 64] = ...;	(2)
70 	  a[16*i] = ...;	(3)
71 	  a[187*i] = ...;	(4)
72 	  a[187*i + 50] = ...;	(5)
73 	}
74 
75        (0) obviously has PREFETCH_BEFORE 1
76        (1) has PREFETCH_BEFORE 64, since (2) accesses the same memory
77            location 64 iterations before it, and PREFETCH_MOD 64 (since
78 	   it hits the same cache line otherwise).
79        (2) has PREFETCH_MOD 64
80        (3) has PREFETCH_MOD 4
81        (4) has PREFETCH_MOD 1.  We do not set PREFETCH_BEFORE here, since
82            the cache line accessed by (4) is the same with probability only
83 	   7/32.
84        (5) has PREFETCH_MOD 1 as well.
85 
86       Additionally, we use data dependence analysis to determine for each
87       reference the distance till the first reuse; this information is used
88       to determine the temporality of the issued prefetch instruction.
89 
90    3) We determine how much ahead we need to prefetch.  The number of
91       iterations needed is time to fetch / time spent in one iteration of
92       the loop.  The problem is that we do not know either of these values,
93       so we just make a heuristic guess based on a magic (possibly)
94       target-specific constant and size of the loop.
95 
96    4) Determine which of the references we prefetch.  We take into account
97       that there is a maximum number of simultaneous prefetches (provided
98       by machine description).  We prefetch as many prefetches as possible
99       while still within this bound (starting with those with lowest
100       prefetch_mod, since they are responsible for most of the cache
101       misses).
102 
103    5) We unroll and peel loops so that we are able to satisfy PREFETCH_MOD
104       and PREFETCH_BEFORE requirements (within some bounds), and to avoid
105       prefetching nonaccessed memory.
106       TODO -- actually implement peeling.
107 
108    6) We actually emit the prefetch instructions.  ??? Perhaps emit the
109       prefetch instructions with guards in cases where 5) was not sufficient
110       to satisfy the constraints?
111 
112    The function is_loop_prefetching_profitable() implements a cost model
113    to determine if prefetching is profitable for a given loop. The cost
114    model has two heuristcs:
115    1. A heuristic that determines whether the given loop has enough CPU
116       ops that can be overlapped with cache missing memory ops.
117       If not, the loop won't benefit from prefetching. This is implemented
118       by requirung the ratio between the instruction count and the mem ref
119       count to be above a certain minimum.
120    2. A heuristic that disables prefetching in a loop with an unknown trip
121       count if the prefetching cost is above a certain limit. The relative
122       prefetching cost is estimated by taking the ratio between the
123       prefetch count and the total intruction count (this models the I-cache
124       cost).
125    The limits used in these heuristics are defined as parameters with
126    reasonable default values. Machine-specific default values will be
127    added later.
128 
129    Some other TODO:
130       -- write and use more general reuse analysis (that could be also used
131 	 in other cache aimed loop optimizations)
132       -- make it behave sanely together with the prefetches given by user
133 	 (now we just ignore them; at the very least we should avoid
134 	 optimizing loops in that user put his own prefetches)
135       -- we assume cache line size alignment of arrays; this could be
136 	 improved.  */
137 
138 /* Magic constants follow.  These should be replaced by machine specific
139    numbers.  */
140 
141 /* True if write can be prefetched by a read prefetch.  */
142 
143 #ifndef WRITE_CAN_USE_READ_PREFETCH
144 #define WRITE_CAN_USE_READ_PREFETCH 1
145 #endif
146 
147 /* True if read can be prefetched by a write prefetch. */
148 
149 #ifndef READ_CAN_USE_WRITE_PREFETCH
150 #define READ_CAN_USE_WRITE_PREFETCH 0
151 #endif
152 
153 /* The size of the block loaded by a single prefetch.  Usually, this is
154    the same as cache line size (at the moment, we only consider one level
155    of cache hierarchy).  */
156 
157 #ifndef PREFETCH_BLOCK
158 #define PREFETCH_BLOCK L1_CACHE_LINE_SIZE
159 #endif
160 
161 /* Do we have a forward hardware sequential prefetching?  */
162 
163 #ifndef HAVE_FORWARD_PREFETCH
164 #define HAVE_FORWARD_PREFETCH 0
165 #endif
166 
167 /* Do we have a backward hardware sequential prefetching?  */
168 
169 #ifndef HAVE_BACKWARD_PREFETCH
170 #define HAVE_BACKWARD_PREFETCH 0
171 #endif
172 
173 /* In some cases we are only able to determine that there is a certain
174    probability that the two accesses hit the same cache line.  In this
175    case, we issue the prefetches for both of them if this probability
176    is less then (1000 - ACCEPTABLE_MISS_RATE) per thousand.  */
177 
178 #ifndef ACCEPTABLE_MISS_RATE
179 #define ACCEPTABLE_MISS_RATE 50
180 #endif
181 
182 #ifndef HAVE_prefetch
183 #define HAVE_prefetch 0
184 #endif
185 
186 #define L1_CACHE_SIZE_BYTES ((unsigned) (L1_CACHE_SIZE * 1024))
187 #define L2_CACHE_SIZE_BYTES ((unsigned) (L2_CACHE_SIZE * 1024))
188 
189 /* We consider a memory access nontemporal if it is not reused sooner than
190    after L2_CACHE_SIZE_BYTES of memory are accessed.  However, we ignore
191    accesses closer than L1_CACHE_SIZE_BYTES / NONTEMPORAL_FRACTION,
192    so that we use nontemporal prefetches e.g. if single memory location
193    is accessed several times in a single iteration of the loop.  */
194 #define NONTEMPORAL_FRACTION 16
195 
196 /* In case we have to emit a memory fence instruction after the loop that
197    uses nontemporal stores, this defines the builtin to use.  */
198 
199 #ifndef FENCE_FOLLOWING_MOVNT
200 #define FENCE_FOLLOWING_MOVNT NULL_TREE
201 #endif
202 
203 /* The group of references between that reuse may occur.  */
204 
205 struct mem_ref_group
206 {
207   tree base;			/* Base of the reference.  */
208   HOST_WIDE_INT step;		/* Step of the reference.  */
209   struct mem_ref *refs;		/* References in the group.  */
210   struct mem_ref_group *next;	/* Next group of references.  */
211 };
212 
213 /* Assigned to PREFETCH_BEFORE when all iterations are to be prefetched.  */
214 
215 #define PREFETCH_ALL		(~(unsigned HOST_WIDE_INT) 0)
216 
217 /* The memory reference.  */
218 
219 struct mem_ref
220 {
221   gimple stmt;			/* Statement in that the reference appears.  */
222   tree mem;			/* The reference.  */
223   HOST_WIDE_INT delta;		/* Constant offset of the reference.  */
224   struct mem_ref_group *group;	/* The group of references it belongs to.  */
225   unsigned HOST_WIDE_INT prefetch_mod;
226 				/* Prefetch only each PREFETCH_MOD-th
227 				   iteration.  */
228   unsigned HOST_WIDE_INT prefetch_before;
229 				/* Prefetch only first PREFETCH_BEFORE
230 				   iterations.  */
231   unsigned reuse_distance;	/* The amount of data accessed before the first
232 				   reuse of this value.  */
233   struct mem_ref *next;		/* The next reference in the group.  */
234   unsigned write_p : 1;		/* Is it a write?  */
235   unsigned independent_p : 1;	/* True if the reference is independent on
236 				   all other references inside the loop.  */
237   unsigned issue_prefetch_p : 1;	/* Should we really issue the prefetch?  */
238   unsigned storent_p : 1;	/* True if we changed the store to a
239 				   nontemporal one.  */
240 };
241 
242 /* Dumps information about reference REF to FILE.  */
243 
244 static void
245 dump_mem_ref (FILE *file, struct mem_ref *ref)
246 {
247   fprintf (file, "Reference %p:\n", (void *) ref);
248 
249   fprintf (file, "  group %p (base ", (void *) ref->group);
250   print_generic_expr (file, ref->group->base, TDF_SLIM);
251   fprintf (file, ", step ");
252   fprintf (file, HOST_WIDE_INT_PRINT_DEC, ref->group->step);
253   fprintf (file, ")\n");
254 
255   fprintf (file, "  delta ");
256   fprintf (file, HOST_WIDE_INT_PRINT_DEC, ref->delta);
257   fprintf (file, "\n");
258 
259   fprintf (file, "  %s\n", ref->write_p ? "write" : "read");
260 
261   fprintf (file, "\n");
262 }
263 
264 /* Finds a group with BASE and STEP in GROUPS, or creates one if it does not
265    exist.  */
266 
267 static struct mem_ref_group *
268 find_or_create_group (struct mem_ref_group **groups, tree base,
269 		      HOST_WIDE_INT step)
270 {
271   struct mem_ref_group *group;
272 
273   for (; *groups; groups = &(*groups)->next)
274     {
275       if ((*groups)->step == step
276 	  && operand_equal_p ((*groups)->base, base, 0))
277 	return *groups;
278 
279       /* Keep the list of groups sorted by decreasing step.  */
280       if ((*groups)->step < step)
281 	break;
282     }
283 
284   group = XNEW (struct mem_ref_group);
285   group->base = base;
286   group->step = step;
287   group->refs = NULL;
288   group->next = *groups;
289   *groups = group;
290 
291   return group;
292 }
293 
294 /* Records a memory reference MEM in GROUP with offset DELTA and write status
295    WRITE_P.  The reference occurs in statement STMT.  */
296 
297 static void
298 record_ref (struct mem_ref_group *group, gimple stmt, tree mem,
299 	    HOST_WIDE_INT delta, bool write_p)
300 {
301   struct mem_ref **aref;
302 
303   /* Do not record the same address twice.  */
304   for (aref = &group->refs; *aref; aref = &(*aref)->next)
305     {
306       /* It does not have to be possible for write reference to reuse the read
307 	 prefetch, or vice versa.  */
308       if (!WRITE_CAN_USE_READ_PREFETCH
309 	  && write_p
310 	  && !(*aref)->write_p)
311 	continue;
312       if (!READ_CAN_USE_WRITE_PREFETCH
313 	  && !write_p
314 	  && (*aref)->write_p)
315 	continue;
316 
317       if ((*aref)->delta == delta)
318 	return;
319     }
320 
321   (*aref) = XNEW (struct mem_ref);
322   (*aref)->stmt = stmt;
323   (*aref)->mem = mem;
324   (*aref)->delta = delta;
325   (*aref)->write_p = write_p;
326   (*aref)->prefetch_before = PREFETCH_ALL;
327   (*aref)->prefetch_mod = 1;
328   (*aref)->reuse_distance = 0;
329   (*aref)->issue_prefetch_p = false;
330   (*aref)->group = group;
331   (*aref)->next = NULL;
332   (*aref)->independent_p = false;
333   (*aref)->storent_p = false;
334 
335   if (dump_file && (dump_flags & TDF_DETAILS))
336     dump_mem_ref (dump_file, *aref);
337 }
338 
339 /* Release memory references in GROUPS.  */
340 
341 static void
342 release_mem_refs (struct mem_ref_group *groups)
343 {
344   struct mem_ref_group *next_g;
345   struct mem_ref *ref, *next_r;
346 
347   for (; groups; groups = next_g)
348     {
349       next_g = groups->next;
350       for (ref = groups->refs; ref; ref = next_r)
351 	{
352 	  next_r = ref->next;
353 	  free (ref);
354 	}
355       free (groups);
356     }
357 }
358 
359 /* A structure used to pass arguments to idx_analyze_ref.  */
360 
361 struct ar_data
362 {
363   struct loop *loop;			/* Loop of the reference.  */
364   gimple stmt;				/* Statement of the reference.  */
365   HOST_WIDE_INT *step;			/* Step of the memory reference.  */
366   HOST_WIDE_INT *delta;			/* Offset of the memory reference.  */
367 };
368 
369 /* Analyzes a single INDEX of a memory reference to obtain information
370    described at analyze_ref.  Callback for for_each_index.  */
371 
372 static bool
373 idx_analyze_ref (tree base, tree *index, void *data)
374 {
375   struct ar_data *ar_data = (struct ar_data *) data;
376   tree ibase, step, stepsize;
377   HOST_WIDE_INT istep, idelta = 0, imult = 1;
378   affine_iv iv;
379 
380   if (TREE_CODE (base) == MISALIGNED_INDIRECT_REF
381       || TREE_CODE (base) == ALIGN_INDIRECT_REF)
382     return false;
383 
384   if (!simple_iv (ar_data->loop, loop_containing_stmt (ar_data->stmt),
385 		  *index, &iv, false))
386     return false;
387   ibase = iv.base;
388   step = iv.step;
389 
390   if (!cst_and_fits_in_hwi (step))
391     return false;
392   istep = int_cst_value (step);
393 
394   if (TREE_CODE (ibase) == POINTER_PLUS_EXPR
395       && cst_and_fits_in_hwi (TREE_OPERAND (ibase, 1)))
396     {
397       idelta = int_cst_value (TREE_OPERAND (ibase, 1));
398       ibase = TREE_OPERAND (ibase, 0);
399     }
400   if (cst_and_fits_in_hwi (ibase))
401     {
402       idelta += int_cst_value (ibase);
403       ibase = build_int_cst (TREE_TYPE (ibase), 0);
404     }
405 
406   if (TREE_CODE (base) == ARRAY_REF)
407     {
408       stepsize = array_ref_element_size (base);
409       if (!cst_and_fits_in_hwi (stepsize))
410 	return false;
411       imult = int_cst_value (stepsize);
412 
413       istep *= imult;
414       idelta *= imult;
415     }
416 
417   *ar_data->step += istep;
418   *ar_data->delta += idelta;
419   *index = ibase;
420 
421   return true;
422 }
423 
424 /* Tries to express REF_P in shape &BASE + STEP * iter + DELTA, where DELTA and
425    STEP are integer constants and iter is number of iterations of LOOP.  The
426    reference occurs in statement STMT.  Strips nonaddressable component
427    references from REF_P.  */
428 
429 static bool
430 analyze_ref (struct loop *loop, tree *ref_p, tree *base,
431 	     HOST_WIDE_INT *step, HOST_WIDE_INT *delta,
432 	     gimple stmt)
433 {
434   struct ar_data ar_data;
435   tree off;
436   HOST_WIDE_INT bit_offset;
437   tree ref = *ref_p;
438 
439   *step = 0;
440   *delta = 0;
441 
442   /* First strip off the component references.  Ignore bitfields.  */
443   if (TREE_CODE (ref) == COMPONENT_REF
444       && DECL_NONADDRESSABLE_P (TREE_OPERAND (ref, 1)))
445     ref = TREE_OPERAND (ref, 0);
446 
447   *ref_p = ref;
448 
449   for (; TREE_CODE (ref) == COMPONENT_REF; ref = TREE_OPERAND (ref, 0))
450     {
451       off = DECL_FIELD_BIT_OFFSET (TREE_OPERAND (ref, 1));
452       bit_offset = TREE_INT_CST_LOW (off);
453       gcc_assert (bit_offset % BITS_PER_UNIT == 0);
454 
455       *delta += bit_offset / BITS_PER_UNIT;
456     }
457 
458   *base = unshare_expr (ref);
459   ar_data.loop = loop;
460   ar_data.stmt = stmt;
461   ar_data.step = step;
462   ar_data.delta = delta;
463   return for_each_index (base, idx_analyze_ref, &ar_data);
464 }
465 
466 /* Record a memory reference REF to the list REFS.  The reference occurs in
467    LOOP in statement STMT and it is write if WRITE_P.  Returns true if the
468    reference was recorded, false otherwise.  */
469 
470 static bool
471 gather_memory_references_ref (struct loop *loop, struct mem_ref_group **refs,
472 			      tree ref, bool write_p, gimple stmt)
473 {
474   tree base;
475   HOST_WIDE_INT step, delta;
476   struct mem_ref_group *agrp;
477 
478   if (get_base_address (ref) == NULL)
479     return false;
480 
481   if (!analyze_ref (loop, &ref, &base, &step, &delta, stmt))
482     return false;
483 
484   /* Stop if the address of BASE could not be taken.  */
485   if (may_be_nonaddressable_p (base))
486     return false;
487 
488   /* Now we know that REF = &BASE + STEP * iter + DELTA, where DELTA and STEP
489      are integer constants.  */
490   agrp = find_or_create_group (refs, base, step);
491   record_ref (agrp, stmt, ref, delta, write_p);
492 
493   return true;
494 }
495 
496 /* Record the suitable memory references in LOOP.  NO_OTHER_REFS is set to
497    true if there are no other memory references inside the loop.  */
498 
499 static struct mem_ref_group *
500 gather_memory_references (struct loop *loop, bool *no_other_refs, unsigned *ref_count)
501 {
502   basic_block *body = get_loop_body_in_dom_order (loop);
503   basic_block bb;
504   unsigned i;
505   gimple_stmt_iterator bsi;
506   gimple stmt;
507   tree lhs, rhs;
508   struct mem_ref_group *refs = NULL;
509 
510   *no_other_refs = true;
511   *ref_count = 0;
512 
513   /* Scan the loop body in order, so that the former references precede the
514      later ones.  */
515   for (i = 0; i < loop->num_nodes; i++)
516     {
517       bb = body[i];
518       if (bb->loop_father != loop)
519 	continue;
520 
521       for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
522 	{
523 	  stmt = gsi_stmt (bsi);
524 
525 	  if (gimple_code (stmt) != GIMPLE_ASSIGN)
526 	    {
527 	      if (gimple_vuse (stmt)
528 		  || (is_gimple_call (stmt)
529 		      && !(gimple_call_flags (stmt) & ECF_CONST)))
530 		*no_other_refs = false;
531 	      continue;
532 	    }
533 
534 	  lhs = gimple_assign_lhs (stmt);
535 	  rhs = gimple_assign_rhs1 (stmt);
536 
537 	  if (REFERENCE_CLASS_P (rhs))
538 	    {
539 	    *no_other_refs &= gather_memory_references_ref (loop, &refs,
540 							    rhs, false, stmt);
541 	    *ref_count += 1;
542 	    }
543 	  if (REFERENCE_CLASS_P (lhs))
544 	    {
545 	    *no_other_refs &= gather_memory_references_ref (loop, &refs,
546 							    lhs, true, stmt);
547 	    *ref_count += 1;
548 	    }
549 	}
550     }
551   free (body);
552 
553   return refs;
554 }
555 
556 /* Prune the prefetch candidate REF using the self-reuse.  */
557 
558 static void
559 prune_ref_by_self_reuse (struct mem_ref *ref)
560 {
561   HOST_WIDE_INT step = ref->group->step;
562   bool backward = step < 0;
563 
564   if (step == 0)
565     {
566       /* Prefetch references to invariant address just once.  */
567       ref->prefetch_before = 1;
568       return;
569     }
570 
571   if (backward)
572     step = -step;
573 
574   if (step > PREFETCH_BLOCK)
575     return;
576 
577   if ((backward && HAVE_BACKWARD_PREFETCH)
578       || (!backward && HAVE_FORWARD_PREFETCH))
579     {
580       ref->prefetch_before = 1;
581       return;
582     }
583 
584   ref->prefetch_mod = PREFETCH_BLOCK / step;
585 }
586 
587 /* Divides X by BY, rounding down.  */
588 
589 static HOST_WIDE_INT
590 ddown (HOST_WIDE_INT x, unsigned HOST_WIDE_INT by)
591 {
592   gcc_assert (by > 0);
593 
594   if (x >= 0)
595     return x / by;
596   else
597     return (x + by - 1) / by;
598 }
599 
600 /* Given a CACHE_LINE_SIZE and two inductive memory references
601    with a common STEP greater than CACHE_LINE_SIZE and an address
602    difference DELTA, compute the probability that they will fall
603    in different cache lines.  DISTINCT_ITERS is the number of
604    distinct iterations after which the pattern repeats itself.
605    ALIGN_UNIT is the unit of alignment in bytes.  */
606 
607 static int
608 compute_miss_rate (unsigned HOST_WIDE_INT cache_line_size,
609 		   HOST_WIDE_INT step, HOST_WIDE_INT delta,
610 		   unsigned HOST_WIDE_INT distinct_iters,
611 		   int align_unit)
612 {
613   unsigned align, iter;
614   int total_positions, miss_positions, miss_rate;
615   int address1, address2, cache_line1, cache_line2;
616 
617   total_positions = 0;
618   miss_positions = 0;
619 
620   /* Iterate through all possible alignments of the first
621      memory reference within its cache line.  */
622   for (align = 0; align < cache_line_size; align += align_unit)
623 
624     /* Iterate through all distinct iterations.  */
625     for (iter = 0; iter < distinct_iters; iter++)
626       {
627 	address1 = align + step * iter;
628 	address2 = address1 + delta;
629 	cache_line1 = address1 / cache_line_size;
630 	cache_line2 = address2 / cache_line_size;
631 	total_positions += 1;
632 	if (cache_line1 != cache_line2)
633 	  miss_positions += 1;
634       }
635   miss_rate = 1000 * miss_positions / total_positions;
636   return miss_rate;
637 }
638 
639 /* Prune the prefetch candidate REF using the reuse with BY.
640    If BY_IS_BEFORE is true, BY is before REF in the loop.  */
641 
642 static void
643 prune_ref_by_group_reuse (struct mem_ref *ref, struct mem_ref *by,
644 			  bool by_is_before)
645 {
646   HOST_WIDE_INT step = ref->group->step;
647   bool backward = step < 0;
648   HOST_WIDE_INT delta_r = ref->delta, delta_b = by->delta;
649   HOST_WIDE_INT delta = delta_b - delta_r;
650   HOST_WIDE_INT hit_from;
651   unsigned HOST_WIDE_INT prefetch_before, prefetch_block;
652   int miss_rate;
653   HOST_WIDE_INT reduced_step;
654   unsigned HOST_WIDE_INT reduced_prefetch_block;
655   tree ref_type;
656   int align_unit;
657 
658   if (delta == 0)
659     {
660       /* If the references has the same address, only prefetch the
661 	 former.  */
662       if (by_is_before)
663 	ref->prefetch_before = 0;
664 
665       return;
666     }
667 
668   if (!step)
669     {
670       /* If the reference addresses are invariant and fall into the
671 	 same cache line, prefetch just the first one.  */
672       if (!by_is_before)
673 	return;
674 
675       if (ddown (ref->delta, PREFETCH_BLOCK)
676 	  != ddown (by->delta, PREFETCH_BLOCK))
677 	return;
678 
679       ref->prefetch_before = 0;
680       return;
681     }
682 
683   /* Only prune the reference that is behind in the array.  */
684   if (backward)
685     {
686       if (delta > 0)
687 	return;
688 
689       /* Transform the data so that we may assume that the accesses
690 	 are forward.  */
691       delta = - delta;
692       step = -step;
693       delta_r = PREFETCH_BLOCK - 1 - delta_r;
694       delta_b = PREFETCH_BLOCK - 1 - delta_b;
695     }
696   else
697     {
698       if (delta < 0)
699 	return;
700     }
701 
702   /* Check whether the two references are likely to hit the same cache
703      line, and how distant the iterations in that it occurs are from
704      each other.  */
705 
706   if (step <= PREFETCH_BLOCK)
707     {
708       /* The accesses are sure to meet.  Let us check when.  */
709       hit_from = ddown (delta_b, PREFETCH_BLOCK) * PREFETCH_BLOCK;
710       prefetch_before = (hit_from - delta_r + step - 1) / step;
711 
712       if (prefetch_before < ref->prefetch_before)
713 	ref->prefetch_before = prefetch_before;
714 
715       return;
716     }
717 
718   /* A more complicated case with step > prefetch_block.  First reduce
719      the ratio between the step and the cache line size to its simplest
720      terms.  The resulting denominator will then represent the number of
721      distinct iterations after which each address will go back to its
722      initial location within the cache line.  This computation assumes
723      that PREFETCH_BLOCK is a power of two.  */
724   prefetch_block = PREFETCH_BLOCK;
725   reduced_prefetch_block = prefetch_block;
726   reduced_step = step;
727   while ((reduced_step & 1) == 0
728 	 && reduced_prefetch_block > 1)
729     {
730       reduced_step >>= 1;
731       reduced_prefetch_block >>= 1;
732     }
733 
734   prefetch_before = delta / step;
735   delta %= step;
736   ref_type = TREE_TYPE (ref->mem);
737   align_unit = TYPE_ALIGN (ref_type) / 8;
738   miss_rate = compute_miss_rate(prefetch_block, step, delta,
739 				reduced_prefetch_block, align_unit);
740   if (miss_rate <= ACCEPTABLE_MISS_RATE)
741     {
742       if (prefetch_before < ref->prefetch_before)
743 	ref->prefetch_before = prefetch_before;
744 
745       return;
746     }
747 
748   /* Try also the following iteration.  */
749   prefetch_before++;
750   delta = step - delta;
751   miss_rate = compute_miss_rate(prefetch_block, step, delta,
752 				reduced_prefetch_block, align_unit);
753   if (miss_rate <= ACCEPTABLE_MISS_RATE)
754     {
755       if (prefetch_before < ref->prefetch_before)
756 	ref->prefetch_before = prefetch_before;
757 
758       return;
759     }
760 
761   /* The ref probably does not reuse by.  */
762   return;
763 }
764 
765 /* Prune the prefetch candidate REF using the reuses with other references
766    in REFS.  */
767 
768 static void
769 prune_ref_by_reuse (struct mem_ref *ref, struct mem_ref *refs)
770 {
771   struct mem_ref *prune_by;
772   bool before = true;
773 
774   prune_ref_by_self_reuse (ref);
775 
776   for (prune_by = refs; prune_by; prune_by = prune_by->next)
777     {
778       if (prune_by == ref)
779 	{
780 	  before = false;
781 	  continue;
782 	}
783 
784       if (!WRITE_CAN_USE_READ_PREFETCH
785 	  && ref->write_p
786 	  && !prune_by->write_p)
787 	continue;
788       if (!READ_CAN_USE_WRITE_PREFETCH
789 	  && !ref->write_p
790 	  && prune_by->write_p)
791 	continue;
792 
793       prune_ref_by_group_reuse (ref, prune_by, before);
794     }
795 }
796 
797 /* Prune the prefetch candidates in GROUP using the reuse analysis.  */
798 
799 static void
800 prune_group_by_reuse (struct mem_ref_group *group)
801 {
802   struct mem_ref *ref_pruned;
803 
804   for (ref_pruned = group->refs; ref_pruned; ref_pruned = ref_pruned->next)
805     {
806       prune_ref_by_reuse (ref_pruned, group->refs);
807 
808       if (dump_file && (dump_flags & TDF_DETAILS))
809 	{
810 	  fprintf (dump_file, "Reference %p:", (void *) ref_pruned);
811 
812 	  if (ref_pruned->prefetch_before == PREFETCH_ALL
813 	      && ref_pruned->prefetch_mod == 1)
814 	    fprintf (dump_file, " no restrictions");
815 	  else if (ref_pruned->prefetch_before == 0)
816 	    fprintf (dump_file, " do not prefetch");
817 	  else if (ref_pruned->prefetch_before <= ref_pruned->prefetch_mod)
818 	    fprintf (dump_file, " prefetch once");
819 	  else
820 	    {
821 	      if (ref_pruned->prefetch_before != PREFETCH_ALL)
822 		{
823 		  fprintf (dump_file, " prefetch before ");
824 		  fprintf (dump_file, HOST_WIDE_INT_PRINT_DEC,
825 			   ref_pruned->prefetch_before);
826 		}
827 	      if (ref_pruned->prefetch_mod != 1)
828 		{
829 		  fprintf (dump_file, " prefetch mod ");
830 		  fprintf (dump_file, HOST_WIDE_INT_PRINT_DEC,
831 			   ref_pruned->prefetch_mod);
832 		}
833 	    }
834 	  fprintf (dump_file, "\n");
835 	}
836     }
837 }
838 
839 /* Prune the list of prefetch candidates GROUPS using the reuse analysis.  */
840 
841 static void
842 prune_by_reuse (struct mem_ref_group *groups)
843 {
844   for (; groups; groups = groups->next)
845     prune_group_by_reuse (groups);
846 }
847 
848 /* Returns true if we should issue prefetch for REF.  */
849 
850 static bool
851 should_issue_prefetch_p (struct mem_ref *ref)
852 {
853   /* For now do not issue prefetches for only first few of the
854      iterations.  */
855   if (ref->prefetch_before != PREFETCH_ALL)
856     return false;
857 
858   /* Do not prefetch nontemporal stores.  */
859   if (ref->storent_p)
860     return false;
861 
862   return true;
863 }
864 
865 /* Decide which of the prefetch candidates in GROUPS to prefetch.
866    AHEAD is the number of iterations to prefetch ahead (which corresponds
867    to the number of simultaneous instances of one prefetch running at a
868    time).  UNROLL_FACTOR is the factor by that the loop is going to be
869    unrolled.  Returns true if there is anything to prefetch.  */
870 
871 static bool
872 schedule_prefetches (struct mem_ref_group *groups, unsigned unroll_factor,
873 		     unsigned ahead)
874 {
875   unsigned remaining_prefetch_slots, n_prefetches, prefetch_slots;
876   unsigned slots_per_prefetch;
877   struct mem_ref *ref;
878   bool any = false;
879 
880   /* At most SIMULTANEOUS_PREFETCHES should be running at the same time.  */
881   remaining_prefetch_slots = SIMULTANEOUS_PREFETCHES;
882 
883   /* The prefetch will run for AHEAD iterations of the original loop, i.e.,
884      AHEAD / UNROLL_FACTOR iterations of the unrolled loop.  In each iteration,
885      it will need a prefetch slot.  */
886   slots_per_prefetch = (ahead + unroll_factor / 2) / unroll_factor;
887   if (dump_file && (dump_flags & TDF_DETAILS))
888     fprintf (dump_file, "Each prefetch instruction takes %u prefetch slots.\n",
889 	     slots_per_prefetch);
890 
891   /* For now we just take memory references one by one and issue
892      prefetches for as many as possible.  The groups are sorted
893      starting with the largest step, since the references with
894      large step are more likely to cause many cache misses.  */
895 
896   for (; groups; groups = groups->next)
897     for (ref = groups->refs; ref; ref = ref->next)
898       {
899 	if (!should_issue_prefetch_p (ref))
900 	  continue;
901 
902 	/* If we need to prefetch the reference each PREFETCH_MOD iterations,
903 	   and we unroll the loop UNROLL_FACTOR times, we need to insert
904 	   ceil (UNROLL_FACTOR / PREFETCH_MOD) instructions in each
905 	   iteration.  */
906 	n_prefetches = ((unroll_factor + ref->prefetch_mod - 1)
907 			/ ref->prefetch_mod);
908 	prefetch_slots = n_prefetches * slots_per_prefetch;
909 
910 	/* If more than half of the prefetches would be lost anyway, do not
911 	   issue the prefetch.  */
912 	if (2 * remaining_prefetch_slots < prefetch_slots)
913 	  continue;
914 
915 	ref->issue_prefetch_p = true;
916 
917 	if (remaining_prefetch_slots <= prefetch_slots)
918 	  return true;
919 	remaining_prefetch_slots -= prefetch_slots;
920 	any = true;
921       }
922 
923   return any;
924 }
925 
926 /* Estimate the number of prefetches in the given GROUPS.  */
927 
928 static int
929 estimate_prefetch_count (struct mem_ref_group *groups)
930 {
931   struct mem_ref *ref;
932   int prefetch_count = 0;
933 
934   for (; groups; groups = groups->next)
935     for (ref = groups->refs; ref; ref = ref->next)
936       if (should_issue_prefetch_p (ref))
937 	  prefetch_count++;
938 
939   return prefetch_count;
940 }
941 
942 /* Issue prefetches for the reference REF into loop as decided before.
943    HEAD is the number of iterations to prefetch ahead.  UNROLL_FACTOR
944    is the factor by which LOOP was unrolled.  */
945 
946 static void
947 issue_prefetch_ref (struct mem_ref *ref, unsigned unroll_factor, unsigned ahead)
948 {
949   HOST_WIDE_INT delta;
950   tree addr, addr_base, write_p, local;
951   gimple prefetch;
952   gimple_stmt_iterator bsi;
953   unsigned n_prefetches, ap;
954   bool nontemporal = ref->reuse_distance >= L2_CACHE_SIZE_BYTES;
955 
956   if (dump_file && (dump_flags & TDF_DETAILS))
957     fprintf (dump_file, "Issued%s prefetch for %p.\n",
958 	     nontemporal ? " nontemporal" : "",
959 	     (void *) ref);
960 
961   bsi = gsi_for_stmt (ref->stmt);
962 
963   n_prefetches = ((unroll_factor + ref->prefetch_mod - 1)
964 		  / ref->prefetch_mod);
965   addr_base = build_fold_addr_expr_with_type (ref->mem, ptr_type_node);
966   addr_base = force_gimple_operand_gsi (&bsi, unshare_expr (addr_base),
967 					true, NULL, true, GSI_SAME_STMT);
968   write_p = ref->write_p ? integer_one_node : integer_zero_node;
969   local = build_int_cst (integer_type_node, nontemporal ? 0 : 3);
970 
971   for (ap = 0; ap < n_prefetches; ap++)
972     {
973       /* Determine the address to prefetch.  */
974       delta = (ahead + ap * ref->prefetch_mod) * ref->group->step;
975       addr = fold_build2 (POINTER_PLUS_EXPR, ptr_type_node,
976 			  addr_base, size_int (delta));
977       addr = force_gimple_operand_gsi (&bsi, unshare_expr (addr), true, NULL,
978 				       true, GSI_SAME_STMT);
979 
980       /* Create the prefetch instruction.  */
981       prefetch = gimple_build_call (built_in_decls[BUILT_IN_PREFETCH],
982 				    3, addr, write_p, local);
983       gsi_insert_before (&bsi, prefetch, GSI_SAME_STMT);
984     }
985 }
986 
987 /* Issue prefetches for the references in GROUPS into loop as decided before.
988    HEAD is the number of iterations to prefetch ahead.  UNROLL_FACTOR is the
989    factor by that LOOP was unrolled.  */
990 
991 static void
992 issue_prefetches (struct mem_ref_group *groups,
993 		  unsigned unroll_factor, unsigned ahead)
994 {
995   struct mem_ref *ref;
996 
997   for (; groups; groups = groups->next)
998     for (ref = groups->refs; ref; ref = ref->next)
999       if (ref->issue_prefetch_p)
1000 	issue_prefetch_ref (ref, unroll_factor, ahead);
1001 }
1002 
1003 /* Returns true if REF is a memory write for that a nontemporal store insn
1004    can be used.  */
1005 
1006 static bool
1007 nontemporal_store_p (struct mem_ref *ref)
1008 {
1009   enum machine_mode mode;
1010   enum insn_code code;
1011 
1012   /* REF must be a write that is not reused.  We require it to be independent
1013      on all other memory references in the loop, as the nontemporal stores may
1014      be reordered with respect to other memory references.  */
1015   if (!ref->write_p
1016       || !ref->independent_p
1017       || ref->reuse_distance < L2_CACHE_SIZE_BYTES)
1018     return false;
1019 
1020   /* Check that we have the storent instruction for the mode.  */
1021   mode = TYPE_MODE (TREE_TYPE (ref->mem));
1022   if (mode == BLKmode)
1023     return false;
1024 
1025   code = optab_handler (storent_optab, mode)->insn_code;
1026   return code != CODE_FOR_nothing;
1027 }
1028 
1029 /* If REF is a nontemporal store, we mark the corresponding modify statement
1030    and return true.  Otherwise, we return false.  */
1031 
1032 static bool
1033 mark_nontemporal_store (struct mem_ref *ref)
1034 {
1035   if (!nontemporal_store_p (ref))
1036     return false;
1037 
1038   if (dump_file && (dump_flags & TDF_DETAILS))
1039     fprintf (dump_file, "Marked reference %p as a nontemporal store.\n",
1040 	     (void *) ref);
1041 
1042   gimple_assign_set_nontemporal_move (ref->stmt, true);
1043   ref->storent_p = true;
1044 
1045   return true;
1046 }
1047 
1048 /* Issue a memory fence instruction after LOOP.  */
1049 
1050 static void
1051 emit_mfence_after_loop (struct loop *loop)
1052 {
1053   VEC (edge, heap) *exits = get_loop_exit_edges (loop);
1054   edge exit;
1055   gimple call;
1056   gimple_stmt_iterator bsi;
1057   unsigned i;
1058 
1059   for (i = 0; VEC_iterate (edge, exits, i, exit); i++)
1060     {
1061       call = gimple_build_call (FENCE_FOLLOWING_MOVNT, 0);
1062 
1063       if (!single_pred_p (exit->dest)
1064 	  /* If possible, we prefer not to insert the fence on other paths
1065 	     in cfg.  */
1066 	  && !(exit->flags & EDGE_ABNORMAL))
1067 	split_loop_exit_edge (exit);
1068       bsi = gsi_after_labels (exit->dest);
1069 
1070       gsi_insert_before (&bsi, call, GSI_NEW_STMT);
1071       mark_virtual_ops_for_renaming (call);
1072     }
1073 
1074   VEC_free (edge, heap, exits);
1075   update_ssa (TODO_update_ssa_only_virtuals);
1076 }
1077 
1078 /* Returns true if we can use storent in loop, false otherwise.  */
1079 
1080 static bool
1081 may_use_storent_in_loop_p (struct loop *loop)
1082 {
1083   bool ret = true;
1084 
1085   if (loop->inner != NULL)
1086     return false;
1087 
1088   /* If we must issue a mfence insn after using storent, check that there
1089      is a suitable place for it at each of the loop exits.  */
1090   if (FENCE_FOLLOWING_MOVNT != NULL_TREE)
1091     {
1092       VEC (edge, heap) *exits = get_loop_exit_edges (loop);
1093       unsigned i;
1094       edge exit;
1095 
1096       for (i = 0; VEC_iterate (edge, exits, i, exit); i++)
1097 	if ((exit->flags & EDGE_ABNORMAL)
1098 	    && exit->dest == EXIT_BLOCK_PTR)
1099 	  ret = false;
1100 
1101       VEC_free (edge, heap, exits);
1102     }
1103 
1104   return ret;
1105 }
1106 
1107 /* Marks nontemporal stores in LOOP.  GROUPS contains the description of memory
1108    references in the loop.  */
1109 
1110 static void
1111 mark_nontemporal_stores (struct loop *loop, struct mem_ref_group *groups)
1112 {
1113   struct mem_ref *ref;
1114   bool any = false;
1115 
1116   if (!may_use_storent_in_loop_p (loop))
1117     return;
1118 
1119   for (; groups; groups = groups->next)
1120     for (ref = groups->refs; ref; ref = ref->next)
1121       any |= mark_nontemporal_store (ref);
1122 
1123   if (any && FENCE_FOLLOWING_MOVNT != NULL_TREE)
1124     emit_mfence_after_loop (loop);
1125 }
1126 
1127 /* Determines whether we can profitably unroll LOOP FACTOR times, and if
1128    this is the case, fill in DESC by the description of number of
1129    iterations.  */
1130 
1131 static bool
1132 should_unroll_loop_p (struct loop *loop, struct tree_niter_desc *desc,
1133 		      unsigned factor)
1134 {
1135   if (!can_unroll_loop_p (loop, factor, desc))
1136     return false;
1137 
1138   /* We only consider loops without control flow for unrolling.  This is not
1139      a hard restriction -- tree_unroll_loop works with arbitrary loops
1140      as well; but the unrolling/prefetching is usually more profitable for
1141      loops consisting of a single basic block, and we want to limit the
1142      code growth.  */
1143   if (loop->num_nodes > 2)
1144     return false;
1145 
1146   return true;
1147 }
1148 
1149 /* Determine the coefficient by that unroll LOOP, from the information
1150    contained in the list of memory references REFS.  Description of
1151    umber of iterations of LOOP is stored to DESC.  NINSNS is the number of
1152    insns of the LOOP.  EST_NITER is the estimated number of iterations of
1153    the loop, or -1 if no estimate is available.  */
1154 
1155 static unsigned
1156 determine_unroll_factor (struct loop *loop, struct mem_ref_group *refs,
1157 			 unsigned ninsns, struct tree_niter_desc *desc,
1158 			 HOST_WIDE_INT est_niter)
1159 {
1160   unsigned upper_bound;
1161   unsigned nfactor, factor, mod_constraint;
1162   struct mem_ref_group *agp;
1163   struct mem_ref *ref;
1164 
1165   /* First check whether the loop is not too large to unroll.  We ignore
1166      PARAM_MAX_UNROLL_TIMES, because for small loops, it prevented us
1167      from unrolling them enough to make exactly one cache line covered by each
1168      iteration.  Also, the goal of PARAM_MAX_UNROLL_TIMES is to prevent
1169      us from unrolling the loops too many times in cases where we only expect
1170      gains from better scheduling and decreasing loop overhead, which is not
1171      the case here.  */
1172   upper_bound = PARAM_VALUE (PARAM_MAX_UNROLLED_INSNS) / ninsns;
1173 
1174   /* If we unrolled the loop more times than it iterates, the unrolled version
1175      of the loop would be never entered.  */
1176   if (est_niter >= 0 && est_niter < (HOST_WIDE_INT) upper_bound)
1177     upper_bound = est_niter;
1178 
1179   if (upper_bound <= 1)
1180     return 1;
1181 
1182   /* Choose the factor so that we may prefetch each cache just once,
1183      but bound the unrolling by UPPER_BOUND.  */
1184   factor = 1;
1185   for (agp = refs; agp; agp = agp->next)
1186     for (ref = agp->refs; ref; ref = ref->next)
1187       if (should_issue_prefetch_p (ref))
1188 	{
1189 	  mod_constraint = ref->prefetch_mod;
1190 	  nfactor = least_common_multiple (mod_constraint, factor);
1191 	  if (nfactor <= upper_bound)
1192 	    factor = nfactor;
1193 	}
1194 
1195   if (!should_unroll_loop_p (loop, desc, factor))
1196     return 1;
1197 
1198   return factor;
1199 }
1200 
1201 /* Returns the total volume of the memory references REFS, taking into account
1202    reuses in the innermost loop and cache line size.  TODO -- we should also
1203    take into account reuses across the iterations of the loops in the loop
1204    nest.  */
1205 
1206 static unsigned
1207 volume_of_references (struct mem_ref_group *refs)
1208 {
1209   unsigned volume = 0;
1210   struct mem_ref_group *gr;
1211   struct mem_ref *ref;
1212 
1213   for (gr = refs; gr; gr = gr->next)
1214     for (ref = gr->refs; ref; ref = ref->next)
1215       {
1216 	/* Almost always reuses another value?  */
1217 	if (ref->prefetch_before != PREFETCH_ALL)
1218 	  continue;
1219 
1220 	/* If several iterations access the same cache line, use the size of
1221 	   the line divided by this number.  Otherwise, a cache line is
1222 	   accessed in each iteration.  TODO -- in the latter case, we should
1223 	   take the size of the reference into account, rounding it up on cache
1224 	   line size multiple.  */
1225 	volume += L1_CACHE_LINE_SIZE / ref->prefetch_mod;
1226       }
1227   return volume;
1228 }
1229 
1230 /* Returns the volume of memory references accessed across VEC iterations of
1231    loops, whose sizes are described in the LOOP_SIZES array.  N is the number
1232    of the loops in the nest (length of VEC and LOOP_SIZES vectors).  */
1233 
1234 static unsigned
1235 volume_of_dist_vector (lambda_vector vec, unsigned *loop_sizes, unsigned n)
1236 {
1237   unsigned i;
1238 
1239   for (i = 0; i < n; i++)
1240     if (vec[i] != 0)
1241       break;
1242 
1243   if (i == n)
1244     return 0;
1245 
1246   gcc_assert (vec[i] > 0);
1247 
1248   /* We ignore the parts of the distance vector in subloops, since usually
1249      the numbers of iterations are much smaller.  */
1250   return loop_sizes[i] * vec[i];
1251 }
1252 
1253 /* Add the steps of ACCESS_FN multiplied by STRIDE to the array STRIDE
1254    at the position corresponding to the loop of the step.  N is the depth
1255    of the considered loop nest, and, LOOP is its innermost loop.  */
1256 
1257 static void
1258 add_subscript_strides (tree access_fn, unsigned stride,
1259 		       HOST_WIDE_INT *strides, unsigned n, struct loop *loop)
1260 {
1261   struct loop *aloop;
1262   tree step;
1263   HOST_WIDE_INT astep;
1264   unsigned min_depth = loop_depth (loop) - n;
1265 
1266   while (TREE_CODE (access_fn) == POLYNOMIAL_CHREC)
1267     {
1268       aloop = get_chrec_loop (access_fn);
1269       step = CHREC_RIGHT (access_fn);
1270       access_fn = CHREC_LEFT (access_fn);
1271 
1272       if ((unsigned) loop_depth (aloop) <= min_depth)
1273 	continue;
1274 
1275       if (host_integerp (step, 0))
1276 	astep = tree_low_cst (step, 0);
1277       else
1278 	astep = L1_CACHE_LINE_SIZE;
1279 
1280       strides[n - 1 - loop_depth (loop) + loop_depth (aloop)] += astep * stride;
1281 
1282     }
1283 }
1284 
1285 /* Returns the volume of memory references accessed between two consecutive
1286    self-reuses of the reference DR.  We consider the subscripts of DR in N
1287    loops, and LOOP_SIZES contains the volumes of accesses in each of the
1288    loops.  LOOP is the innermost loop of the current loop nest.  */
1289 
1290 static unsigned
1291 self_reuse_distance (data_reference_p dr, unsigned *loop_sizes, unsigned n,
1292 		     struct loop *loop)
1293 {
1294   tree stride, access_fn;
1295   HOST_WIDE_INT *strides, astride;
1296   VEC (tree, heap) *access_fns;
1297   tree ref = DR_REF (dr);
1298   unsigned i, ret = ~0u;
1299 
1300   /* In the following example:
1301 
1302      for (i = 0; i < N; i++)
1303        for (j = 0; j < N; j++)
1304          use (a[j][i]);
1305      the same cache line is accessed each N steps (except if the change from
1306      i to i + 1 crosses the boundary of the cache line).  Thus, for self-reuse,
1307      we cannot rely purely on the results of the data dependence analysis.
1308 
1309      Instead, we compute the stride of the reference in each loop, and consider
1310      the innermost loop in that the stride is less than cache size.  */
1311 
1312   strides = XCNEWVEC (HOST_WIDE_INT, n);
1313   access_fns = DR_ACCESS_FNS (dr);
1314 
1315   for (i = 0; VEC_iterate (tree, access_fns, i, access_fn); i++)
1316     {
1317       /* Keep track of the reference corresponding to the subscript, so that we
1318 	 know its stride.  */
1319       while (handled_component_p (ref) && TREE_CODE (ref) != ARRAY_REF)
1320 	ref = TREE_OPERAND (ref, 0);
1321 
1322       if (TREE_CODE (ref) == ARRAY_REF)
1323 	{
1324 	  stride = TYPE_SIZE_UNIT (TREE_TYPE (ref));
1325 	  if (host_integerp (stride, 1))
1326 	    astride = tree_low_cst (stride, 1);
1327 	  else
1328 	    astride = L1_CACHE_LINE_SIZE;
1329 
1330 	  ref = TREE_OPERAND (ref, 0);
1331 	}
1332       else
1333 	astride = 1;
1334 
1335       add_subscript_strides (access_fn, astride, strides, n, loop);
1336     }
1337 
1338   for (i = n; i-- > 0; )
1339     {
1340       unsigned HOST_WIDE_INT s;
1341 
1342       s = strides[i] < 0 ?  -strides[i] : strides[i];
1343 
1344       if (s < (unsigned) L1_CACHE_LINE_SIZE
1345 	  && (loop_sizes[i]
1346 	      > (unsigned) (L1_CACHE_SIZE_BYTES / NONTEMPORAL_FRACTION)))
1347 	{
1348 	  ret = loop_sizes[i];
1349 	  break;
1350 	}
1351     }
1352 
1353   free (strides);
1354   return ret;
1355 }
1356 
1357 /* Determines the distance till the first reuse of each reference in REFS
1358    in the loop nest of LOOP.  NO_OTHER_REFS is true if there are no other
1359    memory references in the loop.  */
1360 
1361 static void
1362 determine_loop_nest_reuse (struct loop *loop, struct mem_ref_group *refs,
1363 			   bool no_other_refs)
1364 {
1365   struct loop *nest, *aloop;
1366   VEC (data_reference_p, heap) *datarefs = NULL;
1367   VEC (ddr_p, heap) *dependences = NULL;
1368   struct mem_ref_group *gr;
1369   struct mem_ref *ref, *refb;
1370   VEC (loop_p, heap) *vloops = NULL;
1371   unsigned *loop_data_size;
1372   unsigned i, j, n;
1373   unsigned volume, dist, adist;
1374   HOST_WIDE_INT vol;
1375   data_reference_p dr;
1376   ddr_p dep;
1377 
1378   if (loop->inner)
1379     return;
1380 
1381   /* Find the outermost loop of the loop nest of loop (we require that
1382      there are no sibling loops inside the nest).  */
1383   nest = loop;
1384   while (1)
1385     {
1386       aloop = loop_outer (nest);
1387 
1388       if (aloop == current_loops->tree_root
1389 	  || aloop->inner->next)
1390 	break;
1391 
1392       nest = aloop;
1393     }
1394 
1395   /* For each loop, determine the amount of data accessed in each iteration.
1396      We use this to estimate whether the reference is evicted from the
1397      cache before its reuse.  */
1398   find_loop_nest (nest, &vloops);
1399   n = VEC_length (loop_p, vloops);
1400   loop_data_size = XNEWVEC (unsigned, n);
1401   volume = volume_of_references (refs);
1402   i = n;
1403   while (i-- != 0)
1404     {
1405       loop_data_size[i] = volume;
1406       /* Bound the volume by the L2 cache size, since above this bound,
1407 	 all dependence distances are equivalent.  */
1408       if (volume > L2_CACHE_SIZE_BYTES)
1409 	continue;
1410 
1411       aloop = VEC_index (loop_p, vloops, i);
1412       vol = estimated_loop_iterations_int (aloop, false);
1413       if (vol < 0)
1414 	vol = expected_loop_iterations (aloop);
1415       volume *= vol;
1416     }
1417 
1418   /* Prepare the references in the form suitable for data dependence
1419      analysis.  We ignore unanalyzable data references (the results
1420      are used just as a heuristics to estimate temporality of the
1421      references, hence we do not need to worry about correctness).  */
1422   for (gr = refs; gr; gr = gr->next)
1423     for (ref = gr->refs; ref; ref = ref->next)
1424       {
1425 	dr = create_data_ref (nest, ref->mem, ref->stmt, !ref->write_p);
1426 
1427 	if (dr)
1428 	  {
1429 	    ref->reuse_distance = volume;
1430 	    dr->aux = ref;
1431 	    VEC_safe_push (data_reference_p, heap, datarefs, dr);
1432 	  }
1433 	else
1434 	  no_other_refs = false;
1435       }
1436 
1437   for (i = 0; VEC_iterate (data_reference_p, datarefs, i, dr); i++)
1438     {
1439       dist = self_reuse_distance (dr, loop_data_size, n, loop);
1440       ref = (struct mem_ref *) dr->aux;
1441       if (ref->reuse_distance > dist)
1442 	ref->reuse_distance = dist;
1443 
1444       if (no_other_refs)
1445 	ref->independent_p = true;
1446     }
1447 
1448   compute_all_dependences (datarefs, &dependences, vloops, true);
1449 
1450   for (i = 0; VEC_iterate (ddr_p, dependences, i, dep); i++)
1451     {
1452       if (DDR_ARE_DEPENDENT (dep) == chrec_known)
1453 	continue;
1454 
1455       ref = (struct mem_ref *) DDR_A (dep)->aux;
1456       refb = (struct mem_ref *) DDR_B (dep)->aux;
1457 
1458       if (DDR_ARE_DEPENDENT (dep) == chrec_dont_know
1459 	  || DDR_NUM_DIST_VECTS (dep) == 0)
1460 	{
1461 	  /* If the dependence cannot be analyzed, assume that there might be
1462 	     a reuse.  */
1463 	  dist = 0;
1464 
1465 	  ref->independent_p = false;
1466 	  refb->independent_p = false;
1467 	}
1468       else
1469 	{
1470 	  /* The distance vectors are normalized to be always lexicographically
1471 	     positive, hence we cannot tell just from them whether DDR_A comes
1472 	     before DDR_B or vice versa.  However, it is not important,
1473 	     anyway -- if DDR_A is close to DDR_B, then it is either reused in
1474 	     DDR_B (and it is not nontemporal), or it reuses the value of DDR_B
1475 	     in cache (and marking it as nontemporal would not affect
1476 	     anything).  */
1477 
1478 	  dist = volume;
1479 	  for (j = 0; j < DDR_NUM_DIST_VECTS (dep); j++)
1480 	    {
1481 	      adist = volume_of_dist_vector (DDR_DIST_VECT (dep, j),
1482 					     loop_data_size, n);
1483 
1484 	      /* If this is a dependence in the innermost loop (i.e., the
1485 		 distances in all superloops are zero) and it is not
1486 		 the trivial self-dependence with distance zero, record that
1487 		 the references are not completely independent.  */
1488 	      if (lambda_vector_zerop (DDR_DIST_VECT (dep, j), n - 1)
1489 		  && (ref != refb
1490 		      || DDR_DIST_VECT (dep, j)[n-1] != 0))
1491 		{
1492 		  ref->independent_p = false;
1493 		  refb->independent_p = false;
1494 		}
1495 
1496 	      /* Ignore accesses closer than
1497 		 L1_CACHE_SIZE_BYTES / NONTEMPORAL_FRACTION,
1498 	      	 so that we use nontemporal prefetches e.g. if single memory
1499 		 location is accessed several times in a single iteration of
1500 		 the loop.  */
1501 	      if (adist < L1_CACHE_SIZE_BYTES / NONTEMPORAL_FRACTION)
1502 		continue;
1503 
1504 	      if (adist < dist)
1505 		dist = adist;
1506 	    }
1507 	}
1508 
1509       if (ref->reuse_distance > dist)
1510 	ref->reuse_distance = dist;
1511       if (refb->reuse_distance > dist)
1512 	refb->reuse_distance = dist;
1513     }
1514 
1515   free_dependence_relations (dependences);
1516   free_data_refs (datarefs);
1517   free (loop_data_size);
1518 
1519   if (dump_file && (dump_flags & TDF_DETAILS))
1520     {
1521       fprintf (dump_file, "Reuse distances:\n");
1522       for (gr = refs; gr; gr = gr->next)
1523 	for (ref = gr->refs; ref; ref = ref->next)
1524 	  fprintf (dump_file, " ref %p distance %u\n",
1525 		   (void *) ref, ref->reuse_distance);
1526     }
1527 }
1528 
1529 /* Do a cost-benefit analysis to determine if prefetching is profitable
1530    for the current loop given the following parameters:
1531    AHEAD: the iteration ahead distance,
1532    EST_NITER: the estimated trip count,
1533    NINSNS: estimated number of instructions in the loop,
1534    PREFETCH_COUNT: an estimate of the number of prefetches
1535    MEM_REF_COUNT: total number of memory references in the loop.  */
1536 
1537 static bool
1538 is_loop_prefetching_profitable (unsigned ahead, HOST_WIDE_INT est_niter,
1539 				unsigned ninsns, unsigned prefetch_count,
1540 				unsigned mem_ref_count)
1541 {
1542   int insn_to_mem_ratio, insn_to_prefetch_ratio;
1543 
1544   if (mem_ref_count == 0)
1545     return false;
1546 
1547   /* Prefetching improves performance by overlapping cache missing
1548      memory accesses with CPU operations.  If the loop does not have
1549      enough CPU operations to overlap with memory operations, prefetching
1550      won't give a significant benefit.  One approximate way of checking
1551      this is to require the ratio of instructions to memory references to
1552      be above a certain limit.  This approximation works well in practice.
1553      TODO: Implement a more precise computation by estimating the time
1554      for each CPU or memory op in the loop. Time estimates for memory ops
1555      should account for cache misses.  */
1556   insn_to_mem_ratio = ninsns / mem_ref_count;
1557 
1558   if (insn_to_mem_ratio < PREFETCH_MIN_INSN_TO_MEM_RATIO)
1559     return false;
1560 
1561   /* Profitability of prefetching is highly dependent on the trip count.
1562      For a given AHEAD distance, the first AHEAD iterations do not benefit
1563      from prefetching, and the last AHEAD iterations execute useless
1564      prefetches.  So, if the trip count is not large enough relative to AHEAD,
1565      prefetching may cause serious performance degradation.  To avoid this
1566      problem when the trip count is not known at compile time, we
1567      conservatively skip loops with high prefetching costs.  For now, only
1568      the I-cache cost is considered.  The relative I-cache cost is estimated
1569      by taking the ratio between the number of prefetches and the total
1570      number of instructions.  Since we are using integer arithmetic, we
1571      compute the reciprocal of this ratio.
1572      TODO: Account for loop unrolling, which may reduce the costs of
1573      shorter stride prefetches.  Note that not accounting for loop
1574      unrolling over-estimates the cost and hence gives more conservative
1575      results.  */
1576   if (est_niter < 0)
1577     {
1578       insn_to_prefetch_ratio = ninsns / prefetch_count;
1579       return insn_to_prefetch_ratio >= MIN_INSN_TO_PREFETCH_RATIO;
1580     }
1581 
1582   if (est_niter <= (HOST_WIDE_INT) ahead)
1583     {
1584       if (dump_file && (dump_flags & TDF_DETAILS))
1585 	fprintf (dump_file,
1586 		 "Not prefetching -- loop estimated to roll only %d times\n",
1587 		 (int) est_niter);
1588       return false;
1589     }
1590   return true;
1591 }
1592 
1593 
1594 /* Issue prefetch instructions for array references in LOOP.  Returns
1595    true if the LOOP was unrolled.  */
1596 
1597 static bool
1598 loop_prefetch_arrays (struct loop *loop)
1599 {
1600   struct mem_ref_group *refs;
1601   unsigned ahead, ninsns, time, unroll_factor;
1602   HOST_WIDE_INT est_niter;
1603   struct tree_niter_desc desc;
1604   bool unrolled = false, no_other_refs;
1605   unsigned prefetch_count;
1606   unsigned mem_ref_count;
1607 
1608   if (optimize_loop_nest_for_size_p (loop))
1609     {
1610       if (dump_file && (dump_flags & TDF_DETAILS))
1611 	fprintf (dump_file, "  ignored (cold area)\n");
1612       return false;
1613     }
1614 
1615   /* Step 1: gather the memory references.  */
1616   refs = gather_memory_references (loop, &no_other_refs, &mem_ref_count);
1617 
1618   /* Step 2: estimate the reuse effects.  */
1619   prune_by_reuse (refs);
1620 
1621   prefetch_count = estimate_prefetch_count (refs);
1622   if (prefetch_count == 0)
1623     goto fail;
1624 
1625   determine_loop_nest_reuse (loop, refs, no_other_refs);
1626 
1627   /* Step 3: determine the ahead and unroll factor.  */
1628 
1629   /* FIXME: the time should be weighted by the probabilities of the blocks in
1630      the loop body.  */
1631   time = tree_num_loop_insns (loop, &eni_time_weights);
1632   ahead = (PREFETCH_LATENCY + time - 1) / time;
1633   est_niter = estimated_loop_iterations_int (loop, false);
1634 
1635   ninsns = tree_num_loop_insns (loop, &eni_size_weights);
1636   unroll_factor = determine_unroll_factor (loop, refs, ninsns, &desc,
1637 					   est_niter);
1638   if (dump_file && (dump_flags & TDF_DETAILS))
1639     fprintf (dump_file, "Ahead %d, unroll factor %d, trip count "
1640 	     HOST_WIDE_INT_PRINT_DEC "\n"
1641 	     "insn count %d, mem ref count %d, prefetch count %d\n",
1642 	     ahead, unroll_factor, est_niter,
1643 	     ninsns, mem_ref_count, prefetch_count);
1644 
1645   if (!is_loop_prefetching_profitable (ahead, est_niter, ninsns,
1646 				       prefetch_count, mem_ref_count))
1647     goto fail;
1648 
1649   mark_nontemporal_stores (loop, refs);
1650 
1651   /* Step 4: what to prefetch?  */
1652   if (!schedule_prefetches (refs, unroll_factor, ahead))
1653     goto fail;
1654 
1655   /* Step 5: unroll the loop.  TODO -- peeling of first and last few
1656      iterations so that we do not issue superfluous prefetches.  */
1657   if (unroll_factor != 1)
1658     {
1659       tree_unroll_loop (loop, unroll_factor,
1660 			single_dom_exit (loop), &desc);
1661       unrolled = true;
1662     }
1663 
1664   /* Step 6: issue the prefetches.  */
1665   issue_prefetches (refs, unroll_factor, ahead);
1666 
1667 fail:
1668   release_mem_refs (refs);
1669   return unrolled;
1670 }
1671 
1672 /* Issue prefetch instructions for array references in loops.  */
1673 
1674 unsigned int
1675 tree_ssa_prefetch_arrays (void)
1676 {
1677   loop_iterator li;
1678   struct loop *loop;
1679   bool unrolled = false;
1680   int todo_flags = 0;
1681 
1682   if (!HAVE_prefetch
1683       /* It is possible to ask compiler for say -mtune=i486 -march=pentium4.
1684 	 -mtune=i486 causes us having PREFETCH_BLOCK 0, since this is part
1685 	 of processor costs and i486 does not have prefetch, but
1686 	 -march=pentium4 causes HAVE_prefetch to be true.  Ugh.  */
1687       || PREFETCH_BLOCK == 0)
1688     return 0;
1689 
1690   if (dump_file && (dump_flags & TDF_DETAILS))
1691     {
1692       fprintf (dump_file, "Prefetching parameters:\n");
1693       fprintf (dump_file, "    simultaneous prefetches: %d\n",
1694 	       SIMULTANEOUS_PREFETCHES);
1695       fprintf (dump_file, "    prefetch latency: %d\n", PREFETCH_LATENCY);
1696       fprintf (dump_file, "    prefetch block size: %d\n", PREFETCH_BLOCK);
1697       fprintf (dump_file, "    L1 cache size: %d lines, %d kB\n",
1698 	       L1_CACHE_SIZE_BYTES / L1_CACHE_LINE_SIZE, L1_CACHE_SIZE);
1699       fprintf (dump_file, "    L1 cache line size: %d\n", L1_CACHE_LINE_SIZE);
1700       fprintf (dump_file, "    L2 cache size: %d kB\n", L2_CACHE_SIZE);
1701       fprintf (dump_file, "    min insn-to-prefetch ratio: %d \n",
1702 	       MIN_INSN_TO_PREFETCH_RATIO);
1703       fprintf (dump_file, "    min insn-to-mem ratio: %d \n",
1704 	       PREFETCH_MIN_INSN_TO_MEM_RATIO);
1705       fprintf (dump_file, "\n");
1706     }
1707 
1708   initialize_original_copy_tables ();
1709 
1710   if (!built_in_decls[BUILT_IN_PREFETCH])
1711     {
1712       tree type = build_function_type (void_type_node,
1713 				       tree_cons (NULL_TREE,
1714 						  const_ptr_type_node,
1715 						  NULL_TREE));
1716       tree decl = add_builtin_function ("__builtin_prefetch", type,
1717 					BUILT_IN_PREFETCH, BUILT_IN_NORMAL,
1718 					NULL, NULL_TREE);
1719       DECL_IS_NOVOPS (decl) = true;
1720       built_in_decls[BUILT_IN_PREFETCH] = decl;
1721     }
1722 
1723   /* We assume that size of cache line is a power of two, so verify this
1724      here.  */
1725   gcc_assert ((PREFETCH_BLOCK & (PREFETCH_BLOCK - 1)) == 0);
1726 
1727   FOR_EACH_LOOP (li, loop, LI_FROM_INNERMOST)
1728     {
1729       if (dump_file && (dump_flags & TDF_DETAILS))
1730 	fprintf (dump_file, "Processing loop %d:\n", loop->num);
1731 
1732       unrolled |= loop_prefetch_arrays (loop);
1733 
1734       if (dump_file && (dump_flags & TDF_DETAILS))
1735 	fprintf (dump_file, "\n\n");
1736     }
1737 
1738   if (unrolled)
1739     {
1740       scev_reset ();
1741       todo_flags |= TODO_cleanup_cfg;
1742     }
1743 
1744   free_original_copy_tables ();
1745   return todo_flags;
1746 }
1747