1 /* Array prefetching. 2 Copyright (C) 2005-2013 Free Software Foundation, Inc. 3 4 This file is part of GCC. 5 6 GCC is free software; you can redistribute it and/or modify it 7 under the terms of the GNU General Public License as published by the 8 Free Software Foundation; either version 3, or (at your option) any 9 later version. 10 11 GCC is distributed in the hope that it will be useful, but WITHOUT 12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 14 for more details. 15 16 You should have received a copy of the GNU General Public License 17 along with GCC; see the file COPYING3. If not see 18 <http://www.gnu.org/licenses/>. */ 19 20 #include "config.h" 21 #include "system.h" 22 #include "coretypes.h" 23 #include "tm.h" 24 #include "tree.h" 25 #include "tm_p.h" 26 #include "basic-block.h" 27 #include "tree-pretty-print.h" 28 #include "tree-flow.h" 29 #include "cfgloop.h" 30 #include "tree-pass.h" 31 #include "insn-config.h" 32 #include "hashtab.h" 33 #include "tree-chrec.h" 34 #include "tree-scalar-evolution.h" 35 #include "diagnostic-core.h" 36 #include "params.h" 37 #include "langhooks.h" 38 #include "tree-inline.h" 39 #include "tree-data-ref.h" 40 41 42 /* FIXME: Needed for optabs, but this should all be moved to a TBD interface 43 between the GIMPLE and RTL worlds. */ 44 #include "expr.h" 45 #include "optabs.h" 46 #include "recog.h" 47 48 /* This pass inserts prefetch instructions to optimize cache usage during 49 accesses to arrays in loops. It processes loops sequentially and: 50 51 1) Gathers all memory references in the single loop. 52 2) For each of the references it decides when it is profitable to prefetch 53 it. To do it, we evaluate the reuse among the accesses, and determines 54 two values: PREFETCH_BEFORE (meaning that it only makes sense to do 55 prefetching in the first PREFETCH_BEFORE iterations of the loop) and 56 PREFETCH_MOD (meaning that it only makes sense to prefetch in the 57 iterations of the loop that are zero modulo PREFETCH_MOD). For example 58 (assuming cache line size is 64 bytes, char has size 1 byte and there 59 is no hardware sequential prefetch): 60 61 char *a; 62 for (i = 0; i < max; i++) 63 { 64 a[255] = ...; (0) 65 a[i] = ...; (1) 66 a[i + 64] = ...; (2) 67 a[16*i] = ...; (3) 68 a[187*i] = ...; (4) 69 a[187*i + 50] = ...; (5) 70 } 71 72 (0) obviously has PREFETCH_BEFORE 1 73 (1) has PREFETCH_BEFORE 64, since (2) accesses the same memory 74 location 64 iterations before it, and PREFETCH_MOD 64 (since 75 it hits the same cache line otherwise). 76 (2) has PREFETCH_MOD 64 77 (3) has PREFETCH_MOD 4 78 (4) has PREFETCH_MOD 1. We do not set PREFETCH_BEFORE here, since 79 the cache line accessed by (5) is the same with probability only 80 7/32. 81 (5) has PREFETCH_MOD 1 as well. 82 83 Additionally, we use data dependence analysis to determine for each 84 reference the distance till the first reuse; this information is used 85 to determine the temporality of the issued prefetch instruction. 86 87 3) We determine how much ahead we need to prefetch. The number of 88 iterations needed is time to fetch / time spent in one iteration of 89 the loop. The problem is that we do not know either of these values, 90 so we just make a heuristic guess based on a magic (possibly) 91 target-specific constant and size of the loop. 92 93 4) Determine which of the references we prefetch. We take into account 94 that there is a maximum number of simultaneous prefetches (provided 95 by machine description). We prefetch as many prefetches as possible 96 while still within this bound (starting with those with lowest 97 prefetch_mod, since they are responsible for most of the cache 98 misses). 99 100 5) We unroll and peel loops so that we are able to satisfy PREFETCH_MOD 101 and PREFETCH_BEFORE requirements (within some bounds), and to avoid 102 prefetching nonaccessed memory. 103 TODO -- actually implement peeling. 104 105 6) We actually emit the prefetch instructions. ??? Perhaps emit the 106 prefetch instructions with guards in cases where 5) was not sufficient 107 to satisfy the constraints? 108 109 A cost model is implemented to determine whether or not prefetching is 110 profitable for a given loop. The cost model has three heuristics: 111 112 1. Function trip_count_to_ahead_ratio_too_small_p implements a 113 heuristic that determines whether or not the loop has too few 114 iterations (compared to ahead). Prefetching is not likely to be 115 beneficial if the trip count to ahead ratio is below a certain 116 minimum. 117 118 2. Function mem_ref_count_reasonable_p implements a heuristic that 119 determines whether the given loop has enough CPU ops that can be 120 overlapped with cache missing memory ops. If not, the loop 121 won't benefit from prefetching. In the implementation, 122 prefetching is not considered beneficial if the ratio between 123 the instruction count and the mem ref count is below a certain 124 minimum. 125 126 3. Function insn_to_prefetch_ratio_too_small_p implements a 127 heuristic that disables prefetching in a loop if the prefetching 128 cost is above a certain limit. The relative prefetching cost is 129 estimated by taking the ratio between the prefetch count and the 130 total intruction count (this models the I-cache cost). 131 132 The limits used in these heuristics are defined as parameters with 133 reasonable default values. Machine-specific default values will be 134 added later. 135 136 Some other TODO: 137 -- write and use more general reuse analysis (that could be also used 138 in other cache aimed loop optimizations) 139 -- make it behave sanely together with the prefetches given by user 140 (now we just ignore them; at the very least we should avoid 141 optimizing loops in that user put his own prefetches) 142 -- we assume cache line size alignment of arrays; this could be 143 improved. */ 144 145 /* Magic constants follow. These should be replaced by machine specific 146 numbers. */ 147 148 /* True if write can be prefetched by a read prefetch. */ 149 150 #ifndef WRITE_CAN_USE_READ_PREFETCH 151 #define WRITE_CAN_USE_READ_PREFETCH 1 152 #endif 153 154 /* True if read can be prefetched by a write prefetch. */ 155 156 #ifndef READ_CAN_USE_WRITE_PREFETCH 157 #define READ_CAN_USE_WRITE_PREFETCH 0 158 #endif 159 160 /* The size of the block loaded by a single prefetch. Usually, this is 161 the same as cache line size (at the moment, we only consider one level 162 of cache hierarchy). */ 163 164 #ifndef PREFETCH_BLOCK 165 #define PREFETCH_BLOCK L1_CACHE_LINE_SIZE 166 #endif 167 168 /* Do we have a forward hardware sequential prefetching? */ 169 170 #ifndef HAVE_FORWARD_PREFETCH 171 #define HAVE_FORWARD_PREFETCH 0 172 #endif 173 174 /* Do we have a backward hardware sequential prefetching? */ 175 176 #ifndef HAVE_BACKWARD_PREFETCH 177 #define HAVE_BACKWARD_PREFETCH 0 178 #endif 179 180 /* In some cases we are only able to determine that there is a certain 181 probability that the two accesses hit the same cache line. In this 182 case, we issue the prefetches for both of them if this probability 183 is less then (1000 - ACCEPTABLE_MISS_RATE) per thousand. */ 184 185 #ifndef ACCEPTABLE_MISS_RATE 186 #define ACCEPTABLE_MISS_RATE 50 187 #endif 188 189 #ifndef HAVE_prefetch 190 #define HAVE_prefetch 0 191 #endif 192 193 #define L1_CACHE_SIZE_BYTES ((unsigned) (L1_CACHE_SIZE * 1024)) 194 #define L2_CACHE_SIZE_BYTES ((unsigned) (L2_CACHE_SIZE * 1024)) 195 196 /* We consider a memory access nontemporal if it is not reused sooner than 197 after L2_CACHE_SIZE_BYTES of memory are accessed. However, we ignore 198 accesses closer than L1_CACHE_SIZE_BYTES / NONTEMPORAL_FRACTION, 199 so that we use nontemporal prefetches e.g. if single memory location 200 is accessed several times in a single iteration of the loop. */ 201 #define NONTEMPORAL_FRACTION 16 202 203 /* In case we have to emit a memory fence instruction after the loop that 204 uses nontemporal stores, this defines the builtin to use. */ 205 206 #ifndef FENCE_FOLLOWING_MOVNT 207 #define FENCE_FOLLOWING_MOVNT NULL_TREE 208 #endif 209 210 /* It is not profitable to prefetch when the trip count is not at 211 least TRIP_COUNT_TO_AHEAD_RATIO times the prefetch ahead distance. 212 For example, in a loop with a prefetch ahead distance of 10, 213 supposing that TRIP_COUNT_TO_AHEAD_RATIO is equal to 4, it is 214 profitable to prefetch when the trip count is greater or equal to 215 40. In that case, 30 out of the 40 iterations will benefit from 216 prefetching. */ 217 218 #ifndef TRIP_COUNT_TO_AHEAD_RATIO 219 #define TRIP_COUNT_TO_AHEAD_RATIO 4 220 #endif 221 222 /* The group of references between that reuse may occur. */ 223 224 struct mem_ref_group 225 { 226 tree base; /* Base of the reference. */ 227 tree step; /* Step of the reference. */ 228 struct mem_ref *refs; /* References in the group. */ 229 struct mem_ref_group *next; /* Next group of references. */ 230 }; 231 232 /* Assigned to PREFETCH_BEFORE when all iterations are to be prefetched. */ 233 234 #define PREFETCH_ALL (~(unsigned HOST_WIDE_INT) 0) 235 236 /* Do not generate a prefetch if the unroll factor is significantly less 237 than what is required by the prefetch. This is to avoid redundant 238 prefetches. For example, when prefetch_mod is 16 and unroll_factor is 239 2, prefetching requires unrolling the loop 16 times, but 240 the loop is actually unrolled twice. In this case (ratio = 8), 241 prefetching is not likely to be beneficial. */ 242 243 #ifndef PREFETCH_MOD_TO_UNROLL_FACTOR_RATIO 244 #define PREFETCH_MOD_TO_UNROLL_FACTOR_RATIO 4 245 #endif 246 247 /* Some of the prefetch computations have quadratic complexity. We want to 248 avoid huge compile times and, therefore, want to limit the amount of 249 memory references per loop where we consider prefetching. */ 250 251 #ifndef PREFETCH_MAX_MEM_REFS_PER_LOOP 252 #define PREFETCH_MAX_MEM_REFS_PER_LOOP 200 253 #endif 254 255 /* The memory reference. */ 256 257 struct mem_ref 258 { 259 gimple stmt; /* Statement in that the reference appears. */ 260 tree mem; /* The reference. */ 261 HOST_WIDE_INT delta; /* Constant offset of the reference. */ 262 struct mem_ref_group *group; /* The group of references it belongs to. */ 263 unsigned HOST_WIDE_INT prefetch_mod; 264 /* Prefetch only each PREFETCH_MOD-th 265 iteration. */ 266 unsigned HOST_WIDE_INT prefetch_before; 267 /* Prefetch only first PREFETCH_BEFORE 268 iterations. */ 269 unsigned reuse_distance; /* The amount of data accessed before the first 270 reuse of this value. */ 271 struct mem_ref *next; /* The next reference in the group. */ 272 unsigned write_p : 1; /* Is it a write? */ 273 unsigned independent_p : 1; /* True if the reference is independent on 274 all other references inside the loop. */ 275 unsigned issue_prefetch_p : 1; /* Should we really issue the prefetch? */ 276 unsigned storent_p : 1; /* True if we changed the store to a 277 nontemporal one. */ 278 }; 279 280 /* Dumps information about memory reference */ 281 static void 282 dump_mem_details (FILE *file, tree base, tree step, 283 HOST_WIDE_INT delta, bool write_p) 284 { 285 fprintf (file, "(base "); 286 print_generic_expr (file, base, TDF_SLIM); 287 fprintf (file, ", step "); 288 if (cst_and_fits_in_hwi (step)) 289 fprintf (file, HOST_WIDE_INT_PRINT_DEC, int_cst_value (step)); 290 else 291 print_generic_expr (file, step, TDF_TREE); 292 fprintf (file, ")\n"); 293 fprintf (file, " delta "); 294 fprintf (file, HOST_WIDE_INT_PRINT_DEC, delta); 295 fprintf (file, "\n"); 296 fprintf (file, " %s\n", write_p ? "write" : "read"); 297 fprintf (file, "\n"); 298 } 299 300 /* Dumps information about reference REF to FILE. */ 301 302 static void 303 dump_mem_ref (FILE *file, struct mem_ref *ref) 304 { 305 fprintf (file, "Reference %p:\n", (void *) ref); 306 307 fprintf (file, " group %p ", (void *) ref->group); 308 309 dump_mem_details (file, ref->group->base, ref->group->step, ref->delta, 310 ref->write_p); 311 } 312 313 /* Finds a group with BASE and STEP in GROUPS, or creates one if it does not 314 exist. */ 315 316 static struct mem_ref_group * 317 find_or_create_group (struct mem_ref_group **groups, tree base, tree step) 318 { 319 struct mem_ref_group *group; 320 321 for (; *groups; groups = &(*groups)->next) 322 { 323 if (operand_equal_p ((*groups)->step, step, 0) 324 && operand_equal_p ((*groups)->base, base, 0)) 325 return *groups; 326 327 /* If step is an integer constant, keep the list of groups sorted 328 by decreasing step. */ 329 if (cst_and_fits_in_hwi ((*groups)->step) && cst_and_fits_in_hwi (step) 330 && int_cst_value ((*groups)->step) < int_cst_value (step)) 331 break; 332 } 333 334 group = XNEW (struct mem_ref_group); 335 group->base = base; 336 group->step = step; 337 group->refs = NULL; 338 group->next = *groups; 339 *groups = group; 340 341 return group; 342 } 343 344 /* Records a memory reference MEM in GROUP with offset DELTA and write status 345 WRITE_P. The reference occurs in statement STMT. */ 346 347 static void 348 record_ref (struct mem_ref_group *group, gimple stmt, tree mem, 349 HOST_WIDE_INT delta, bool write_p) 350 { 351 struct mem_ref **aref; 352 353 /* Do not record the same address twice. */ 354 for (aref = &group->refs; *aref; aref = &(*aref)->next) 355 { 356 /* It does not have to be possible for write reference to reuse the read 357 prefetch, or vice versa. */ 358 if (!WRITE_CAN_USE_READ_PREFETCH 359 && write_p 360 && !(*aref)->write_p) 361 continue; 362 if (!READ_CAN_USE_WRITE_PREFETCH 363 && !write_p 364 && (*aref)->write_p) 365 continue; 366 367 if ((*aref)->delta == delta) 368 return; 369 } 370 371 (*aref) = XNEW (struct mem_ref); 372 (*aref)->stmt = stmt; 373 (*aref)->mem = mem; 374 (*aref)->delta = delta; 375 (*aref)->write_p = write_p; 376 (*aref)->prefetch_before = PREFETCH_ALL; 377 (*aref)->prefetch_mod = 1; 378 (*aref)->reuse_distance = 0; 379 (*aref)->issue_prefetch_p = false; 380 (*aref)->group = group; 381 (*aref)->next = NULL; 382 (*aref)->independent_p = false; 383 (*aref)->storent_p = false; 384 385 if (dump_file && (dump_flags & TDF_DETAILS)) 386 dump_mem_ref (dump_file, *aref); 387 } 388 389 /* Release memory references in GROUPS. */ 390 391 static void 392 release_mem_refs (struct mem_ref_group *groups) 393 { 394 struct mem_ref_group *next_g; 395 struct mem_ref *ref, *next_r; 396 397 for (; groups; groups = next_g) 398 { 399 next_g = groups->next; 400 for (ref = groups->refs; ref; ref = next_r) 401 { 402 next_r = ref->next; 403 free (ref); 404 } 405 free (groups); 406 } 407 } 408 409 /* A structure used to pass arguments to idx_analyze_ref. */ 410 411 struct ar_data 412 { 413 struct loop *loop; /* Loop of the reference. */ 414 gimple stmt; /* Statement of the reference. */ 415 tree *step; /* Step of the memory reference. */ 416 HOST_WIDE_INT *delta; /* Offset of the memory reference. */ 417 }; 418 419 /* Analyzes a single INDEX of a memory reference to obtain information 420 described at analyze_ref. Callback for for_each_index. */ 421 422 static bool 423 idx_analyze_ref (tree base, tree *index, void *data) 424 { 425 struct ar_data *ar_data = (struct ar_data *) data; 426 tree ibase, step, stepsize; 427 HOST_WIDE_INT idelta = 0, imult = 1; 428 affine_iv iv; 429 430 if (!simple_iv (ar_data->loop, loop_containing_stmt (ar_data->stmt), 431 *index, &iv, true)) 432 return false; 433 ibase = iv.base; 434 step = iv.step; 435 436 if (TREE_CODE (ibase) == POINTER_PLUS_EXPR 437 && cst_and_fits_in_hwi (TREE_OPERAND (ibase, 1))) 438 { 439 idelta = int_cst_value (TREE_OPERAND (ibase, 1)); 440 ibase = TREE_OPERAND (ibase, 0); 441 } 442 if (cst_and_fits_in_hwi (ibase)) 443 { 444 idelta += int_cst_value (ibase); 445 ibase = build_int_cst (TREE_TYPE (ibase), 0); 446 } 447 448 if (TREE_CODE (base) == ARRAY_REF) 449 { 450 stepsize = array_ref_element_size (base); 451 if (!cst_and_fits_in_hwi (stepsize)) 452 return false; 453 imult = int_cst_value (stepsize); 454 step = fold_build2 (MULT_EXPR, sizetype, 455 fold_convert (sizetype, step), 456 fold_convert (sizetype, stepsize)); 457 idelta *= imult; 458 } 459 460 if (*ar_data->step == NULL_TREE) 461 *ar_data->step = step; 462 else 463 *ar_data->step = fold_build2 (PLUS_EXPR, sizetype, 464 fold_convert (sizetype, *ar_data->step), 465 fold_convert (sizetype, step)); 466 *ar_data->delta += idelta; 467 *index = ibase; 468 469 return true; 470 } 471 472 /* Tries to express REF_P in shape &BASE + STEP * iter + DELTA, where DELTA and 473 STEP are integer constants and iter is number of iterations of LOOP. The 474 reference occurs in statement STMT. Strips nonaddressable component 475 references from REF_P. */ 476 477 static bool 478 analyze_ref (struct loop *loop, tree *ref_p, tree *base, 479 tree *step, HOST_WIDE_INT *delta, 480 gimple stmt) 481 { 482 struct ar_data ar_data; 483 tree off; 484 HOST_WIDE_INT bit_offset; 485 tree ref = *ref_p; 486 487 *step = NULL_TREE; 488 *delta = 0; 489 490 /* First strip off the component references. Ignore bitfields. 491 Also strip off the real and imagine parts of a complex, so that 492 they can have the same base. */ 493 if (TREE_CODE (ref) == REALPART_EXPR 494 || TREE_CODE (ref) == IMAGPART_EXPR 495 || (TREE_CODE (ref) == COMPONENT_REF 496 && DECL_NONADDRESSABLE_P (TREE_OPERAND (ref, 1)))) 497 { 498 if (TREE_CODE (ref) == IMAGPART_EXPR) 499 *delta += int_size_in_bytes (TREE_TYPE (ref)); 500 ref = TREE_OPERAND (ref, 0); 501 } 502 503 *ref_p = ref; 504 505 for (; TREE_CODE (ref) == COMPONENT_REF; ref = TREE_OPERAND (ref, 0)) 506 { 507 off = DECL_FIELD_BIT_OFFSET (TREE_OPERAND (ref, 1)); 508 bit_offset = TREE_INT_CST_LOW (off); 509 gcc_assert (bit_offset % BITS_PER_UNIT == 0); 510 511 *delta += bit_offset / BITS_PER_UNIT; 512 } 513 514 *base = unshare_expr (ref); 515 ar_data.loop = loop; 516 ar_data.stmt = stmt; 517 ar_data.step = step; 518 ar_data.delta = delta; 519 return for_each_index (base, idx_analyze_ref, &ar_data); 520 } 521 522 /* Record a memory reference REF to the list REFS. The reference occurs in 523 LOOP in statement STMT and it is write if WRITE_P. Returns true if the 524 reference was recorded, false otherwise. */ 525 526 static bool 527 gather_memory_references_ref (struct loop *loop, struct mem_ref_group **refs, 528 tree ref, bool write_p, gimple stmt) 529 { 530 tree base, step; 531 HOST_WIDE_INT delta; 532 struct mem_ref_group *agrp; 533 534 if (get_base_address (ref) == NULL) 535 return false; 536 537 if (!analyze_ref (loop, &ref, &base, &step, &delta, stmt)) 538 return false; 539 /* If analyze_ref fails the default is a NULL_TREE. We can stop here. */ 540 if (step == NULL_TREE) 541 return false; 542 543 /* Stop if the address of BASE could not be taken. */ 544 if (may_be_nonaddressable_p (base)) 545 return false; 546 547 /* Limit non-constant step prefetching only to the innermost loops and 548 only when the step is loop invariant in the entire loop nest. */ 549 if (!cst_and_fits_in_hwi (step)) 550 { 551 if (loop->inner != NULL) 552 { 553 if (dump_file && (dump_flags & TDF_DETAILS)) 554 { 555 fprintf (dump_file, "Memory expression %p\n",(void *) ref ); 556 print_generic_expr (dump_file, ref, TDF_TREE); 557 fprintf (dump_file,":"); 558 dump_mem_details( dump_file, base, step, delta, write_p); 559 fprintf (dump_file, 560 "Ignoring %p, non-constant step prefetching is " 561 "limited to inner most loops \n", 562 (void *) ref); 563 } 564 return false; 565 } 566 else 567 { 568 if (!expr_invariant_in_loop_p (loop_outermost (loop), step)) 569 { 570 if (dump_file && (dump_flags & TDF_DETAILS)) 571 { 572 fprintf (dump_file, "Memory expression %p\n",(void *) ref ); 573 print_generic_expr (dump_file, ref, TDF_TREE); 574 fprintf (dump_file,":"); 575 dump_mem_details(dump_file, base, step, delta, write_p); 576 fprintf (dump_file, 577 "Not prefetching, ignoring %p due to " 578 "loop variant step\n", 579 (void *) ref); 580 } 581 return false; 582 } 583 } 584 } 585 586 /* Now we know that REF = &BASE + STEP * iter + DELTA, where DELTA and STEP 587 are integer constants. */ 588 agrp = find_or_create_group (refs, base, step); 589 record_ref (agrp, stmt, ref, delta, write_p); 590 591 return true; 592 } 593 594 /* Record the suitable memory references in LOOP. NO_OTHER_REFS is set to 595 true if there are no other memory references inside the loop. */ 596 597 static struct mem_ref_group * 598 gather_memory_references (struct loop *loop, bool *no_other_refs, unsigned *ref_count) 599 { 600 basic_block *body = get_loop_body_in_dom_order (loop); 601 basic_block bb; 602 unsigned i; 603 gimple_stmt_iterator bsi; 604 gimple stmt; 605 tree lhs, rhs; 606 struct mem_ref_group *refs = NULL; 607 608 *no_other_refs = true; 609 *ref_count = 0; 610 611 /* Scan the loop body in order, so that the former references precede the 612 later ones. */ 613 for (i = 0; i < loop->num_nodes; i++) 614 { 615 bb = body[i]; 616 if (bb->loop_father != loop) 617 continue; 618 619 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi)) 620 { 621 stmt = gsi_stmt (bsi); 622 623 if (gimple_code (stmt) != GIMPLE_ASSIGN) 624 { 625 if (gimple_vuse (stmt) 626 || (is_gimple_call (stmt) 627 && !(gimple_call_flags (stmt) & ECF_CONST))) 628 *no_other_refs = false; 629 continue; 630 } 631 632 lhs = gimple_assign_lhs (stmt); 633 rhs = gimple_assign_rhs1 (stmt); 634 635 if (REFERENCE_CLASS_P (rhs)) 636 { 637 *no_other_refs &= gather_memory_references_ref (loop, &refs, 638 rhs, false, stmt); 639 *ref_count += 1; 640 } 641 if (REFERENCE_CLASS_P (lhs)) 642 { 643 *no_other_refs &= gather_memory_references_ref (loop, &refs, 644 lhs, true, stmt); 645 *ref_count += 1; 646 } 647 } 648 } 649 free (body); 650 651 return refs; 652 } 653 654 /* Prune the prefetch candidate REF using the self-reuse. */ 655 656 static void 657 prune_ref_by_self_reuse (struct mem_ref *ref) 658 { 659 HOST_WIDE_INT step; 660 bool backward; 661 662 /* If the step size is non constant, we cannot calculate prefetch_mod. */ 663 if (!cst_and_fits_in_hwi (ref->group->step)) 664 return; 665 666 step = int_cst_value (ref->group->step); 667 668 backward = step < 0; 669 670 if (step == 0) 671 { 672 /* Prefetch references to invariant address just once. */ 673 ref->prefetch_before = 1; 674 return; 675 } 676 677 if (backward) 678 step = -step; 679 680 if (step > PREFETCH_BLOCK) 681 return; 682 683 if ((backward && HAVE_BACKWARD_PREFETCH) 684 || (!backward && HAVE_FORWARD_PREFETCH)) 685 { 686 ref->prefetch_before = 1; 687 return; 688 } 689 690 ref->prefetch_mod = PREFETCH_BLOCK / step; 691 } 692 693 /* Divides X by BY, rounding down. */ 694 695 static HOST_WIDE_INT 696 ddown (HOST_WIDE_INT x, unsigned HOST_WIDE_INT by) 697 { 698 gcc_assert (by > 0); 699 700 if (x >= 0) 701 return x / by; 702 else 703 return (x + by - 1) / by; 704 } 705 706 /* Given a CACHE_LINE_SIZE and two inductive memory references 707 with a common STEP greater than CACHE_LINE_SIZE and an address 708 difference DELTA, compute the probability that they will fall 709 in different cache lines. Return true if the computed miss rate 710 is not greater than the ACCEPTABLE_MISS_RATE. DISTINCT_ITERS is the 711 number of distinct iterations after which the pattern repeats itself. 712 ALIGN_UNIT is the unit of alignment in bytes. */ 713 714 static bool 715 is_miss_rate_acceptable (unsigned HOST_WIDE_INT cache_line_size, 716 HOST_WIDE_INT step, HOST_WIDE_INT delta, 717 unsigned HOST_WIDE_INT distinct_iters, 718 int align_unit) 719 { 720 unsigned align, iter; 721 int total_positions, miss_positions, max_allowed_miss_positions; 722 int address1, address2, cache_line1, cache_line2; 723 724 /* It always misses if delta is greater than or equal to the cache 725 line size. */ 726 if (delta >= (HOST_WIDE_INT) cache_line_size) 727 return false; 728 729 miss_positions = 0; 730 total_positions = (cache_line_size / align_unit) * distinct_iters; 731 max_allowed_miss_positions = (ACCEPTABLE_MISS_RATE * total_positions) / 1000; 732 733 /* Iterate through all possible alignments of the first 734 memory reference within its cache line. */ 735 for (align = 0; align < cache_line_size; align += align_unit) 736 737 /* Iterate through all distinct iterations. */ 738 for (iter = 0; iter < distinct_iters; iter++) 739 { 740 address1 = align + step * iter; 741 address2 = address1 + delta; 742 cache_line1 = address1 / cache_line_size; 743 cache_line2 = address2 / cache_line_size; 744 if (cache_line1 != cache_line2) 745 { 746 miss_positions += 1; 747 if (miss_positions > max_allowed_miss_positions) 748 return false; 749 } 750 } 751 return true; 752 } 753 754 /* Prune the prefetch candidate REF using the reuse with BY. 755 If BY_IS_BEFORE is true, BY is before REF in the loop. */ 756 757 static void 758 prune_ref_by_group_reuse (struct mem_ref *ref, struct mem_ref *by, 759 bool by_is_before) 760 { 761 HOST_WIDE_INT step; 762 bool backward; 763 HOST_WIDE_INT delta_r = ref->delta, delta_b = by->delta; 764 HOST_WIDE_INT delta = delta_b - delta_r; 765 HOST_WIDE_INT hit_from; 766 unsigned HOST_WIDE_INT prefetch_before, prefetch_block; 767 HOST_WIDE_INT reduced_step; 768 unsigned HOST_WIDE_INT reduced_prefetch_block; 769 tree ref_type; 770 int align_unit; 771 772 /* If the step is non constant we cannot calculate prefetch_before. */ 773 if (!cst_and_fits_in_hwi (ref->group->step)) { 774 return; 775 } 776 777 step = int_cst_value (ref->group->step); 778 779 backward = step < 0; 780 781 782 if (delta == 0) 783 { 784 /* If the references has the same address, only prefetch the 785 former. */ 786 if (by_is_before) 787 ref->prefetch_before = 0; 788 789 return; 790 } 791 792 if (!step) 793 { 794 /* If the reference addresses are invariant and fall into the 795 same cache line, prefetch just the first one. */ 796 if (!by_is_before) 797 return; 798 799 if (ddown (ref->delta, PREFETCH_BLOCK) 800 != ddown (by->delta, PREFETCH_BLOCK)) 801 return; 802 803 ref->prefetch_before = 0; 804 return; 805 } 806 807 /* Only prune the reference that is behind in the array. */ 808 if (backward) 809 { 810 if (delta > 0) 811 return; 812 813 /* Transform the data so that we may assume that the accesses 814 are forward. */ 815 delta = - delta; 816 step = -step; 817 delta_r = PREFETCH_BLOCK - 1 - delta_r; 818 delta_b = PREFETCH_BLOCK - 1 - delta_b; 819 } 820 else 821 { 822 if (delta < 0) 823 return; 824 } 825 826 /* Check whether the two references are likely to hit the same cache 827 line, and how distant the iterations in that it occurs are from 828 each other. */ 829 830 if (step <= PREFETCH_BLOCK) 831 { 832 /* The accesses are sure to meet. Let us check when. */ 833 hit_from = ddown (delta_b, PREFETCH_BLOCK) * PREFETCH_BLOCK; 834 prefetch_before = (hit_from - delta_r + step - 1) / step; 835 836 /* Do not reduce prefetch_before if we meet beyond cache size. */ 837 if (prefetch_before > absu_hwi (L2_CACHE_SIZE_BYTES / step)) 838 prefetch_before = PREFETCH_ALL; 839 if (prefetch_before < ref->prefetch_before) 840 ref->prefetch_before = prefetch_before; 841 842 return; 843 } 844 845 /* A more complicated case with step > prefetch_block. First reduce 846 the ratio between the step and the cache line size to its simplest 847 terms. The resulting denominator will then represent the number of 848 distinct iterations after which each address will go back to its 849 initial location within the cache line. This computation assumes 850 that PREFETCH_BLOCK is a power of two. */ 851 prefetch_block = PREFETCH_BLOCK; 852 reduced_prefetch_block = prefetch_block; 853 reduced_step = step; 854 while ((reduced_step & 1) == 0 855 && reduced_prefetch_block > 1) 856 { 857 reduced_step >>= 1; 858 reduced_prefetch_block >>= 1; 859 } 860 861 prefetch_before = delta / step; 862 delta %= step; 863 ref_type = TREE_TYPE (ref->mem); 864 align_unit = TYPE_ALIGN (ref_type) / 8; 865 if (is_miss_rate_acceptable (prefetch_block, step, delta, 866 reduced_prefetch_block, align_unit)) 867 { 868 /* Do not reduce prefetch_before if we meet beyond cache size. */ 869 if (prefetch_before > L2_CACHE_SIZE_BYTES / PREFETCH_BLOCK) 870 prefetch_before = PREFETCH_ALL; 871 if (prefetch_before < ref->prefetch_before) 872 ref->prefetch_before = prefetch_before; 873 874 return; 875 } 876 877 /* Try also the following iteration. */ 878 prefetch_before++; 879 delta = step - delta; 880 if (is_miss_rate_acceptable (prefetch_block, step, delta, 881 reduced_prefetch_block, align_unit)) 882 { 883 if (prefetch_before < ref->prefetch_before) 884 ref->prefetch_before = prefetch_before; 885 886 return; 887 } 888 889 /* The ref probably does not reuse by. */ 890 return; 891 } 892 893 /* Prune the prefetch candidate REF using the reuses with other references 894 in REFS. */ 895 896 static void 897 prune_ref_by_reuse (struct mem_ref *ref, struct mem_ref *refs) 898 { 899 struct mem_ref *prune_by; 900 bool before = true; 901 902 prune_ref_by_self_reuse (ref); 903 904 for (prune_by = refs; prune_by; prune_by = prune_by->next) 905 { 906 if (prune_by == ref) 907 { 908 before = false; 909 continue; 910 } 911 912 if (!WRITE_CAN_USE_READ_PREFETCH 913 && ref->write_p 914 && !prune_by->write_p) 915 continue; 916 if (!READ_CAN_USE_WRITE_PREFETCH 917 && !ref->write_p 918 && prune_by->write_p) 919 continue; 920 921 prune_ref_by_group_reuse (ref, prune_by, before); 922 } 923 } 924 925 /* Prune the prefetch candidates in GROUP using the reuse analysis. */ 926 927 static void 928 prune_group_by_reuse (struct mem_ref_group *group) 929 { 930 struct mem_ref *ref_pruned; 931 932 for (ref_pruned = group->refs; ref_pruned; ref_pruned = ref_pruned->next) 933 { 934 prune_ref_by_reuse (ref_pruned, group->refs); 935 936 if (dump_file && (dump_flags & TDF_DETAILS)) 937 { 938 fprintf (dump_file, "Reference %p:", (void *) ref_pruned); 939 940 if (ref_pruned->prefetch_before == PREFETCH_ALL 941 && ref_pruned->prefetch_mod == 1) 942 fprintf (dump_file, " no restrictions"); 943 else if (ref_pruned->prefetch_before == 0) 944 fprintf (dump_file, " do not prefetch"); 945 else if (ref_pruned->prefetch_before <= ref_pruned->prefetch_mod) 946 fprintf (dump_file, " prefetch once"); 947 else 948 { 949 if (ref_pruned->prefetch_before != PREFETCH_ALL) 950 { 951 fprintf (dump_file, " prefetch before "); 952 fprintf (dump_file, HOST_WIDE_INT_PRINT_DEC, 953 ref_pruned->prefetch_before); 954 } 955 if (ref_pruned->prefetch_mod != 1) 956 { 957 fprintf (dump_file, " prefetch mod "); 958 fprintf (dump_file, HOST_WIDE_INT_PRINT_DEC, 959 ref_pruned->prefetch_mod); 960 } 961 } 962 fprintf (dump_file, "\n"); 963 } 964 } 965 } 966 967 /* Prune the list of prefetch candidates GROUPS using the reuse analysis. */ 968 969 static void 970 prune_by_reuse (struct mem_ref_group *groups) 971 { 972 for (; groups; groups = groups->next) 973 prune_group_by_reuse (groups); 974 } 975 976 /* Returns true if we should issue prefetch for REF. */ 977 978 static bool 979 should_issue_prefetch_p (struct mem_ref *ref) 980 { 981 /* For now do not issue prefetches for only first few of the 982 iterations. */ 983 if (ref->prefetch_before != PREFETCH_ALL) 984 { 985 if (dump_file && (dump_flags & TDF_DETAILS)) 986 fprintf (dump_file, "Ignoring %p due to prefetch_before\n", 987 (void *) ref); 988 return false; 989 } 990 991 /* Do not prefetch nontemporal stores. */ 992 if (ref->storent_p) 993 { 994 if (dump_file && (dump_flags & TDF_DETAILS)) 995 fprintf (dump_file, "Ignoring nontemporal store %p\n", (void *) ref); 996 return false; 997 } 998 999 return true; 1000 } 1001 1002 /* Decide which of the prefetch candidates in GROUPS to prefetch. 1003 AHEAD is the number of iterations to prefetch ahead (which corresponds 1004 to the number of simultaneous instances of one prefetch running at a 1005 time). UNROLL_FACTOR is the factor by that the loop is going to be 1006 unrolled. Returns true if there is anything to prefetch. */ 1007 1008 static bool 1009 schedule_prefetches (struct mem_ref_group *groups, unsigned unroll_factor, 1010 unsigned ahead) 1011 { 1012 unsigned remaining_prefetch_slots, n_prefetches, prefetch_slots; 1013 unsigned slots_per_prefetch; 1014 struct mem_ref *ref; 1015 bool any = false; 1016 1017 /* At most SIMULTANEOUS_PREFETCHES should be running at the same time. */ 1018 remaining_prefetch_slots = SIMULTANEOUS_PREFETCHES; 1019 1020 /* The prefetch will run for AHEAD iterations of the original loop, i.e., 1021 AHEAD / UNROLL_FACTOR iterations of the unrolled loop. In each iteration, 1022 it will need a prefetch slot. */ 1023 slots_per_prefetch = (ahead + unroll_factor / 2) / unroll_factor; 1024 if (dump_file && (dump_flags & TDF_DETAILS)) 1025 fprintf (dump_file, "Each prefetch instruction takes %u prefetch slots.\n", 1026 slots_per_prefetch); 1027 1028 /* For now we just take memory references one by one and issue 1029 prefetches for as many as possible. The groups are sorted 1030 starting with the largest step, since the references with 1031 large step are more likely to cause many cache misses. */ 1032 1033 for (; groups; groups = groups->next) 1034 for (ref = groups->refs; ref; ref = ref->next) 1035 { 1036 if (!should_issue_prefetch_p (ref)) 1037 continue; 1038 1039 /* The loop is far from being sufficiently unrolled for this 1040 prefetch. Do not generate prefetch to avoid many redudant 1041 prefetches. */ 1042 if (ref->prefetch_mod / unroll_factor > PREFETCH_MOD_TO_UNROLL_FACTOR_RATIO) 1043 continue; 1044 1045 /* If we need to prefetch the reference each PREFETCH_MOD iterations, 1046 and we unroll the loop UNROLL_FACTOR times, we need to insert 1047 ceil (UNROLL_FACTOR / PREFETCH_MOD) instructions in each 1048 iteration. */ 1049 n_prefetches = ((unroll_factor + ref->prefetch_mod - 1) 1050 / ref->prefetch_mod); 1051 prefetch_slots = n_prefetches * slots_per_prefetch; 1052 1053 /* If more than half of the prefetches would be lost anyway, do not 1054 issue the prefetch. */ 1055 if (2 * remaining_prefetch_slots < prefetch_slots) 1056 continue; 1057 1058 ref->issue_prefetch_p = true; 1059 1060 if (remaining_prefetch_slots <= prefetch_slots) 1061 return true; 1062 remaining_prefetch_slots -= prefetch_slots; 1063 any = true; 1064 } 1065 1066 return any; 1067 } 1068 1069 /* Return TRUE if no prefetch is going to be generated in the given 1070 GROUPS. */ 1071 1072 static bool 1073 nothing_to_prefetch_p (struct mem_ref_group *groups) 1074 { 1075 struct mem_ref *ref; 1076 1077 for (; groups; groups = groups->next) 1078 for (ref = groups->refs; ref; ref = ref->next) 1079 if (should_issue_prefetch_p (ref)) 1080 return false; 1081 1082 return true; 1083 } 1084 1085 /* Estimate the number of prefetches in the given GROUPS. 1086 UNROLL_FACTOR is the factor by which LOOP was unrolled. */ 1087 1088 static int 1089 estimate_prefetch_count (struct mem_ref_group *groups, unsigned unroll_factor) 1090 { 1091 struct mem_ref *ref; 1092 unsigned n_prefetches; 1093 int prefetch_count = 0; 1094 1095 for (; groups; groups = groups->next) 1096 for (ref = groups->refs; ref; ref = ref->next) 1097 if (should_issue_prefetch_p (ref)) 1098 { 1099 n_prefetches = ((unroll_factor + ref->prefetch_mod - 1) 1100 / ref->prefetch_mod); 1101 prefetch_count += n_prefetches; 1102 } 1103 1104 return prefetch_count; 1105 } 1106 1107 /* Issue prefetches for the reference REF into loop as decided before. 1108 HEAD is the number of iterations to prefetch ahead. UNROLL_FACTOR 1109 is the factor by which LOOP was unrolled. */ 1110 1111 static void 1112 issue_prefetch_ref (struct mem_ref *ref, unsigned unroll_factor, unsigned ahead) 1113 { 1114 HOST_WIDE_INT delta; 1115 tree addr, addr_base, write_p, local, forward; 1116 gimple prefetch; 1117 gimple_stmt_iterator bsi; 1118 unsigned n_prefetches, ap; 1119 bool nontemporal = ref->reuse_distance >= L2_CACHE_SIZE_BYTES; 1120 1121 if (dump_file && (dump_flags & TDF_DETAILS)) 1122 fprintf (dump_file, "Issued%s prefetch for %p.\n", 1123 nontemporal ? " nontemporal" : "", 1124 (void *) ref); 1125 1126 bsi = gsi_for_stmt (ref->stmt); 1127 1128 n_prefetches = ((unroll_factor + ref->prefetch_mod - 1) 1129 / ref->prefetch_mod); 1130 addr_base = build_fold_addr_expr_with_type (ref->mem, ptr_type_node); 1131 addr_base = force_gimple_operand_gsi (&bsi, unshare_expr (addr_base), 1132 true, NULL, true, GSI_SAME_STMT); 1133 write_p = ref->write_p ? integer_one_node : integer_zero_node; 1134 local = nontemporal ? integer_zero_node : integer_three_node; 1135 1136 for (ap = 0; ap < n_prefetches; ap++) 1137 { 1138 if (cst_and_fits_in_hwi (ref->group->step)) 1139 { 1140 /* Determine the address to prefetch. */ 1141 delta = (ahead + ap * ref->prefetch_mod) * 1142 int_cst_value (ref->group->step); 1143 addr = fold_build_pointer_plus_hwi (addr_base, delta); 1144 addr = force_gimple_operand_gsi (&bsi, unshare_expr (addr), true, NULL, 1145 true, GSI_SAME_STMT); 1146 } 1147 else 1148 { 1149 /* The step size is non-constant but loop-invariant. We use the 1150 heuristic to simply prefetch ahead iterations ahead. */ 1151 forward = fold_build2 (MULT_EXPR, sizetype, 1152 fold_convert (sizetype, ref->group->step), 1153 fold_convert (sizetype, size_int (ahead))); 1154 addr = fold_build_pointer_plus (addr_base, forward); 1155 addr = force_gimple_operand_gsi (&bsi, unshare_expr (addr), true, 1156 NULL, true, GSI_SAME_STMT); 1157 } 1158 /* Create the prefetch instruction. */ 1159 prefetch = gimple_build_call (builtin_decl_explicit (BUILT_IN_PREFETCH), 1160 3, addr, write_p, local); 1161 gsi_insert_before (&bsi, prefetch, GSI_SAME_STMT); 1162 } 1163 } 1164 1165 /* Issue prefetches for the references in GROUPS into loop as decided before. 1166 HEAD is the number of iterations to prefetch ahead. UNROLL_FACTOR is the 1167 factor by that LOOP was unrolled. */ 1168 1169 static void 1170 issue_prefetches (struct mem_ref_group *groups, 1171 unsigned unroll_factor, unsigned ahead) 1172 { 1173 struct mem_ref *ref; 1174 1175 for (; groups; groups = groups->next) 1176 for (ref = groups->refs; ref; ref = ref->next) 1177 if (ref->issue_prefetch_p) 1178 issue_prefetch_ref (ref, unroll_factor, ahead); 1179 } 1180 1181 /* Returns true if REF is a memory write for that a nontemporal store insn 1182 can be used. */ 1183 1184 static bool 1185 nontemporal_store_p (struct mem_ref *ref) 1186 { 1187 enum machine_mode mode; 1188 enum insn_code code; 1189 1190 /* REF must be a write that is not reused. We require it to be independent 1191 on all other memory references in the loop, as the nontemporal stores may 1192 be reordered with respect to other memory references. */ 1193 if (!ref->write_p 1194 || !ref->independent_p 1195 || ref->reuse_distance < L2_CACHE_SIZE_BYTES) 1196 return false; 1197 1198 /* Check that we have the storent instruction for the mode. */ 1199 mode = TYPE_MODE (TREE_TYPE (ref->mem)); 1200 if (mode == BLKmode) 1201 return false; 1202 1203 code = optab_handler (storent_optab, mode); 1204 return code != CODE_FOR_nothing; 1205 } 1206 1207 /* If REF is a nontemporal store, we mark the corresponding modify statement 1208 and return true. Otherwise, we return false. */ 1209 1210 static bool 1211 mark_nontemporal_store (struct mem_ref *ref) 1212 { 1213 if (!nontemporal_store_p (ref)) 1214 return false; 1215 1216 if (dump_file && (dump_flags & TDF_DETAILS)) 1217 fprintf (dump_file, "Marked reference %p as a nontemporal store.\n", 1218 (void *) ref); 1219 1220 gimple_assign_set_nontemporal_move (ref->stmt, true); 1221 ref->storent_p = true; 1222 1223 return true; 1224 } 1225 1226 /* Issue a memory fence instruction after LOOP. */ 1227 1228 static void 1229 emit_mfence_after_loop (struct loop *loop) 1230 { 1231 vec<edge> exits = get_loop_exit_edges (loop); 1232 edge exit; 1233 gimple call; 1234 gimple_stmt_iterator bsi; 1235 unsigned i; 1236 1237 FOR_EACH_VEC_ELT (exits, i, exit) 1238 { 1239 call = gimple_build_call (FENCE_FOLLOWING_MOVNT, 0); 1240 1241 if (!single_pred_p (exit->dest) 1242 /* If possible, we prefer not to insert the fence on other paths 1243 in cfg. */ 1244 && !(exit->flags & EDGE_ABNORMAL)) 1245 split_loop_exit_edge (exit); 1246 bsi = gsi_after_labels (exit->dest); 1247 1248 gsi_insert_before (&bsi, call, GSI_NEW_STMT); 1249 } 1250 1251 exits.release (); 1252 update_ssa (TODO_update_ssa_only_virtuals); 1253 } 1254 1255 /* Returns true if we can use storent in loop, false otherwise. */ 1256 1257 static bool 1258 may_use_storent_in_loop_p (struct loop *loop) 1259 { 1260 bool ret = true; 1261 1262 if (loop->inner != NULL) 1263 return false; 1264 1265 /* If we must issue a mfence insn after using storent, check that there 1266 is a suitable place for it at each of the loop exits. */ 1267 if (FENCE_FOLLOWING_MOVNT != NULL_TREE) 1268 { 1269 vec<edge> exits = get_loop_exit_edges (loop); 1270 unsigned i; 1271 edge exit; 1272 1273 FOR_EACH_VEC_ELT (exits, i, exit) 1274 if ((exit->flags & EDGE_ABNORMAL) 1275 && exit->dest == EXIT_BLOCK_PTR) 1276 ret = false; 1277 1278 exits.release (); 1279 } 1280 1281 return ret; 1282 } 1283 1284 /* Marks nontemporal stores in LOOP. GROUPS contains the description of memory 1285 references in the loop. */ 1286 1287 static void 1288 mark_nontemporal_stores (struct loop *loop, struct mem_ref_group *groups) 1289 { 1290 struct mem_ref *ref; 1291 bool any = false; 1292 1293 if (!may_use_storent_in_loop_p (loop)) 1294 return; 1295 1296 for (; groups; groups = groups->next) 1297 for (ref = groups->refs; ref; ref = ref->next) 1298 any |= mark_nontemporal_store (ref); 1299 1300 if (any && FENCE_FOLLOWING_MOVNT != NULL_TREE) 1301 emit_mfence_after_loop (loop); 1302 } 1303 1304 /* Determines whether we can profitably unroll LOOP FACTOR times, and if 1305 this is the case, fill in DESC by the description of number of 1306 iterations. */ 1307 1308 static bool 1309 should_unroll_loop_p (struct loop *loop, struct tree_niter_desc *desc, 1310 unsigned factor) 1311 { 1312 if (!can_unroll_loop_p (loop, factor, desc)) 1313 return false; 1314 1315 /* We only consider loops without control flow for unrolling. This is not 1316 a hard restriction -- tree_unroll_loop works with arbitrary loops 1317 as well; but the unrolling/prefetching is usually more profitable for 1318 loops consisting of a single basic block, and we want to limit the 1319 code growth. */ 1320 if (loop->num_nodes > 2) 1321 return false; 1322 1323 return true; 1324 } 1325 1326 /* Determine the coefficient by that unroll LOOP, from the information 1327 contained in the list of memory references REFS. Description of 1328 umber of iterations of LOOP is stored to DESC. NINSNS is the number of 1329 insns of the LOOP. EST_NITER is the estimated number of iterations of 1330 the loop, or -1 if no estimate is available. */ 1331 1332 static unsigned 1333 determine_unroll_factor (struct loop *loop, struct mem_ref_group *refs, 1334 unsigned ninsns, struct tree_niter_desc *desc, 1335 HOST_WIDE_INT est_niter) 1336 { 1337 unsigned upper_bound; 1338 unsigned nfactor, factor, mod_constraint; 1339 struct mem_ref_group *agp; 1340 struct mem_ref *ref; 1341 1342 /* First check whether the loop is not too large to unroll. We ignore 1343 PARAM_MAX_UNROLL_TIMES, because for small loops, it prevented us 1344 from unrolling them enough to make exactly one cache line covered by each 1345 iteration. Also, the goal of PARAM_MAX_UNROLL_TIMES is to prevent 1346 us from unrolling the loops too many times in cases where we only expect 1347 gains from better scheduling and decreasing loop overhead, which is not 1348 the case here. */ 1349 upper_bound = PARAM_VALUE (PARAM_MAX_UNROLLED_INSNS) / ninsns; 1350 1351 /* If we unrolled the loop more times than it iterates, the unrolled version 1352 of the loop would be never entered. */ 1353 if (est_niter >= 0 && est_niter < (HOST_WIDE_INT) upper_bound) 1354 upper_bound = est_niter; 1355 1356 if (upper_bound <= 1) 1357 return 1; 1358 1359 /* Choose the factor so that we may prefetch each cache just once, 1360 but bound the unrolling by UPPER_BOUND. */ 1361 factor = 1; 1362 for (agp = refs; agp; agp = agp->next) 1363 for (ref = agp->refs; ref; ref = ref->next) 1364 if (should_issue_prefetch_p (ref)) 1365 { 1366 mod_constraint = ref->prefetch_mod; 1367 nfactor = least_common_multiple (mod_constraint, factor); 1368 if (nfactor <= upper_bound) 1369 factor = nfactor; 1370 } 1371 1372 if (!should_unroll_loop_p (loop, desc, factor)) 1373 return 1; 1374 1375 return factor; 1376 } 1377 1378 /* Returns the total volume of the memory references REFS, taking into account 1379 reuses in the innermost loop and cache line size. TODO -- we should also 1380 take into account reuses across the iterations of the loops in the loop 1381 nest. */ 1382 1383 static unsigned 1384 volume_of_references (struct mem_ref_group *refs) 1385 { 1386 unsigned volume = 0; 1387 struct mem_ref_group *gr; 1388 struct mem_ref *ref; 1389 1390 for (gr = refs; gr; gr = gr->next) 1391 for (ref = gr->refs; ref; ref = ref->next) 1392 { 1393 /* Almost always reuses another value? */ 1394 if (ref->prefetch_before != PREFETCH_ALL) 1395 continue; 1396 1397 /* If several iterations access the same cache line, use the size of 1398 the line divided by this number. Otherwise, a cache line is 1399 accessed in each iteration. TODO -- in the latter case, we should 1400 take the size of the reference into account, rounding it up on cache 1401 line size multiple. */ 1402 volume += L1_CACHE_LINE_SIZE / ref->prefetch_mod; 1403 } 1404 return volume; 1405 } 1406 1407 /* Returns the volume of memory references accessed across VEC iterations of 1408 loops, whose sizes are described in the LOOP_SIZES array. N is the number 1409 of the loops in the nest (length of VEC and LOOP_SIZES vectors). */ 1410 1411 static unsigned 1412 volume_of_dist_vector (lambda_vector vec, unsigned *loop_sizes, unsigned n) 1413 { 1414 unsigned i; 1415 1416 for (i = 0; i < n; i++) 1417 if (vec[i] != 0) 1418 break; 1419 1420 if (i == n) 1421 return 0; 1422 1423 gcc_assert (vec[i] > 0); 1424 1425 /* We ignore the parts of the distance vector in subloops, since usually 1426 the numbers of iterations are much smaller. */ 1427 return loop_sizes[i] * vec[i]; 1428 } 1429 1430 /* Add the steps of ACCESS_FN multiplied by STRIDE to the array STRIDE 1431 at the position corresponding to the loop of the step. N is the depth 1432 of the considered loop nest, and, LOOP is its innermost loop. */ 1433 1434 static void 1435 add_subscript_strides (tree access_fn, unsigned stride, 1436 HOST_WIDE_INT *strides, unsigned n, struct loop *loop) 1437 { 1438 struct loop *aloop; 1439 tree step; 1440 HOST_WIDE_INT astep; 1441 unsigned min_depth = loop_depth (loop) - n; 1442 1443 while (TREE_CODE (access_fn) == POLYNOMIAL_CHREC) 1444 { 1445 aloop = get_chrec_loop (access_fn); 1446 step = CHREC_RIGHT (access_fn); 1447 access_fn = CHREC_LEFT (access_fn); 1448 1449 if ((unsigned) loop_depth (aloop) <= min_depth) 1450 continue; 1451 1452 if (host_integerp (step, 0)) 1453 astep = tree_low_cst (step, 0); 1454 else 1455 astep = L1_CACHE_LINE_SIZE; 1456 1457 strides[n - 1 - loop_depth (loop) + loop_depth (aloop)] += astep * stride; 1458 1459 } 1460 } 1461 1462 /* Returns the volume of memory references accessed between two consecutive 1463 self-reuses of the reference DR. We consider the subscripts of DR in N 1464 loops, and LOOP_SIZES contains the volumes of accesses in each of the 1465 loops. LOOP is the innermost loop of the current loop nest. */ 1466 1467 static unsigned 1468 self_reuse_distance (data_reference_p dr, unsigned *loop_sizes, unsigned n, 1469 struct loop *loop) 1470 { 1471 tree stride, access_fn; 1472 HOST_WIDE_INT *strides, astride; 1473 vec<tree> access_fns; 1474 tree ref = DR_REF (dr); 1475 unsigned i, ret = ~0u; 1476 1477 /* In the following example: 1478 1479 for (i = 0; i < N; i++) 1480 for (j = 0; j < N; j++) 1481 use (a[j][i]); 1482 the same cache line is accessed each N steps (except if the change from 1483 i to i + 1 crosses the boundary of the cache line). Thus, for self-reuse, 1484 we cannot rely purely on the results of the data dependence analysis. 1485 1486 Instead, we compute the stride of the reference in each loop, and consider 1487 the innermost loop in that the stride is less than cache size. */ 1488 1489 strides = XCNEWVEC (HOST_WIDE_INT, n); 1490 access_fns = DR_ACCESS_FNS (dr); 1491 1492 FOR_EACH_VEC_ELT (access_fns, i, access_fn) 1493 { 1494 /* Keep track of the reference corresponding to the subscript, so that we 1495 know its stride. */ 1496 while (handled_component_p (ref) && TREE_CODE (ref) != ARRAY_REF) 1497 ref = TREE_OPERAND (ref, 0); 1498 1499 if (TREE_CODE (ref) == ARRAY_REF) 1500 { 1501 stride = TYPE_SIZE_UNIT (TREE_TYPE (ref)); 1502 if (host_integerp (stride, 1)) 1503 astride = tree_low_cst (stride, 1); 1504 else 1505 astride = L1_CACHE_LINE_SIZE; 1506 1507 ref = TREE_OPERAND (ref, 0); 1508 } 1509 else 1510 astride = 1; 1511 1512 add_subscript_strides (access_fn, astride, strides, n, loop); 1513 } 1514 1515 for (i = n; i-- > 0; ) 1516 { 1517 unsigned HOST_WIDE_INT s; 1518 1519 s = strides[i] < 0 ? -strides[i] : strides[i]; 1520 1521 if (s < (unsigned) L1_CACHE_LINE_SIZE 1522 && (loop_sizes[i] 1523 > (unsigned) (L1_CACHE_SIZE_BYTES / NONTEMPORAL_FRACTION))) 1524 { 1525 ret = loop_sizes[i]; 1526 break; 1527 } 1528 } 1529 1530 free (strides); 1531 return ret; 1532 } 1533 1534 /* Determines the distance till the first reuse of each reference in REFS 1535 in the loop nest of LOOP. NO_OTHER_REFS is true if there are no other 1536 memory references in the loop. Return false if the analysis fails. */ 1537 1538 static bool 1539 determine_loop_nest_reuse (struct loop *loop, struct mem_ref_group *refs, 1540 bool no_other_refs) 1541 { 1542 struct loop *nest, *aloop; 1543 vec<data_reference_p> datarefs = vNULL; 1544 vec<ddr_p> dependences = vNULL; 1545 struct mem_ref_group *gr; 1546 struct mem_ref *ref, *refb; 1547 vec<loop_p> vloops = vNULL; 1548 unsigned *loop_data_size; 1549 unsigned i, j, n; 1550 unsigned volume, dist, adist; 1551 HOST_WIDE_INT vol; 1552 data_reference_p dr; 1553 ddr_p dep; 1554 1555 if (loop->inner) 1556 return true; 1557 1558 /* Find the outermost loop of the loop nest of loop (we require that 1559 there are no sibling loops inside the nest). */ 1560 nest = loop; 1561 while (1) 1562 { 1563 aloop = loop_outer (nest); 1564 1565 if (aloop == current_loops->tree_root 1566 || aloop->inner->next) 1567 break; 1568 1569 nest = aloop; 1570 } 1571 1572 /* For each loop, determine the amount of data accessed in each iteration. 1573 We use this to estimate whether the reference is evicted from the 1574 cache before its reuse. */ 1575 find_loop_nest (nest, &vloops); 1576 n = vloops.length (); 1577 loop_data_size = XNEWVEC (unsigned, n); 1578 volume = volume_of_references (refs); 1579 i = n; 1580 while (i-- != 0) 1581 { 1582 loop_data_size[i] = volume; 1583 /* Bound the volume by the L2 cache size, since above this bound, 1584 all dependence distances are equivalent. */ 1585 if (volume > L2_CACHE_SIZE_BYTES) 1586 continue; 1587 1588 aloop = vloops[i]; 1589 vol = estimated_stmt_executions_int (aloop); 1590 if (vol == -1) 1591 vol = expected_loop_iterations (aloop); 1592 volume *= vol; 1593 } 1594 1595 /* Prepare the references in the form suitable for data dependence 1596 analysis. We ignore unanalyzable data references (the results 1597 are used just as a heuristics to estimate temporality of the 1598 references, hence we do not need to worry about correctness). */ 1599 for (gr = refs; gr; gr = gr->next) 1600 for (ref = gr->refs; ref; ref = ref->next) 1601 { 1602 dr = create_data_ref (nest, loop_containing_stmt (ref->stmt), 1603 ref->mem, ref->stmt, !ref->write_p); 1604 1605 if (dr) 1606 { 1607 ref->reuse_distance = volume; 1608 dr->aux = ref; 1609 datarefs.safe_push (dr); 1610 } 1611 else 1612 no_other_refs = false; 1613 } 1614 1615 FOR_EACH_VEC_ELT (datarefs, i, dr) 1616 { 1617 dist = self_reuse_distance (dr, loop_data_size, n, loop); 1618 ref = (struct mem_ref *) dr->aux; 1619 if (ref->reuse_distance > dist) 1620 ref->reuse_distance = dist; 1621 1622 if (no_other_refs) 1623 ref->independent_p = true; 1624 } 1625 1626 if (!compute_all_dependences (datarefs, &dependences, vloops, true)) 1627 return false; 1628 1629 FOR_EACH_VEC_ELT (dependences, i, dep) 1630 { 1631 if (DDR_ARE_DEPENDENT (dep) == chrec_known) 1632 continue; 1633 1634 ref = (struct mem_ref *) DDR_A (dep)->aux; 1635 refb = (struct mem_ref *) DDR_B (dep)->aux; 1636 1637 if (DDR_ARE_DEPENDENT (dep) == chrec_dont_know 1638 || DDR_NUM_DIST_VECTS (dep) == 0) 1639 { 1640 /* If the dependence cannot be analyzed, assume that there might be 1641 a reuse. */ 1642 dist = 0; 1643 1644 ref->independent_p = false; 1645 refb->independent_p = false; 1646 } 1647 else 1648 { 1649 /* The distance vectors are normalized to be always lexicographically 1650 positive, hence we cannot tell just from them whether DDR_A comes 1651 before DDR_B or vice versa. However, it is not important, 1652 anyway -- if DDR_A is close to DDR_B, then it is either reused in 1653 DDR_B (and it is not nontemporal), or it reuses the value of DDR_B 1654 in cache (and marking it as nontemporal would not affect 1655 anything). */ 1656 1657 dist = volume; 1658 for (j = 0; j < DDR_NUM_DIST_VECTS (dep); j++) 1659 { 1660 adist = volume_of_dist_vector (DDR_DIST_VECT (dep, j), 1661 loop_data_size, n); 1662 1663 /* If this is a dependence in the innermost loop (i.e., the 1664 distances in all superloops are zero) and it is not 1665 the trivial self-dependence with distance zero, record that 1666 the references are not completely independent. */ 1667 if (lambda_vector_zerop (DDR_DIST_VECT (dep, j), n - 1) 1668 && (ref != refb 1669 || DDR_DIST_VECT (dep, j)[n-1] != 0)) 1670 { 1671 ref->independent_p = false; 1672 refb->independent_p = false; 1673 } 1674 1675 /* Ignore accesses closer than 1676 L1_CACHE_SIZE_BYTES / NONTEMPORAL_FRACTION, 1677 so that we use nontemporal prefetches e.g. if single memory 1678 location is accessed several times in a single iteration of 1679 the loop. */ 1680 if (adist < L1_CACHE_SIZE_BYTES / NONTEMPORAL_FRACTION) 1681 continue; 1682 1683 if (adist < dist) 1684 dist = adist; 1685 } 1686 } 1687 1688 if (ref->reuse_distance > dist) 1689 ref->reuse_distance = dist; 1690 if (refb->reuse_distance > dist) 1691 refb->reuse_distance = dist; 1692 } 1693 1694 free_dependence_relations (dependences); 1695 free_data_refs (datarefs); 1696 free (loop_data_size); 1697 1698 if (dump_file && (dump_flags & TDF_DETAILS)) 1699 { 1700 fprintf (dump_file, "Reuse distances:\n"); 1701 for (gr = refs; gr; gr = gr->next) 1702 for (ref = gr->refs; ref; ref = ref->next) 1703 fprintf (dump_file, " ref %p distance %u\n", 1704 (void *) ref, ref->reuse_distance); 1705 } 1706 1707 return true; 1708 } 1709 1710 /* Determine whether or not the trip count to ahead ratio is too small based 1711 on prefitablility consideration. 1712 AHEAD: the iteration ahead distance, 1713 EST_NITER: the estimated trip count. */ 1714 1715 static bool 1716 trip_count_to_ahead_ratio_too_small_p (unsigned ahead, HOST_WIDE_INT est_niter) 1717 { 1718 /* Assume trip count to ahead ratio is big enough if the trip count could not 1719 be estimated at compile time. */ 1720 if (est_niter < 0) 1721 return false; 1722 1723 if (est_niter < (HOST_WIDE_INT) (TRIP_COUNT_TO_AHEAD_RATIO * ahead)) 1724 { 1725 if (dump_file && (dump_flags & TDF_DETAILS)) 1726 fprintf (dump_file, 1727 "Not prefetching -- loop estimated to roll only %d times\n", 1728 (int) est_niter); 1729 return true; 1730 } 1731 1732 return false; 1733 } 1734 1735 /* Determine whether or not the number of memory references in the loop is 1736 reasonable based on the profitablity and compilation time considerations. 1737 NINSNS: estimated number of instructions in the loop, 1738 MEM_REF_COUNT: total number of memory references in the loop. */ 1739 1740 static bool 1741 mem_ref_count_reasonable_p (unsigned ninsns, unsigned mem_ref_count) 1742 { 1743 int insn_to_mem_ratio; 1744 1745 if (mem_ref_count == 0) 1746 return false; 1747 1748 /* Miss rate computation (is_miss_rate_acceptable) and dependence analysis 1749 (compute_all_dependences) have high costs based on quadratic complexity. 1750 To avoid huge compilation time, we give up prefetching if mem_ref_count 1751 is too large. */ 1752 if (mem_ref_count > PREFETCH_MAX_MEM_REFS_PER_LOOP) 1753 return false; 1754 1755 /* Prefetching improves performance by overlapping cache missing 1756 memory accesses with CPU operations. If the loop does not have 1757 enough CPU operations to overlap with memory operations, prefetching 1758 won't give a significant benefit. One approximate way of checking 1759 this is to require the ratio of instructions to memory references to 1760 be above a certain limit. This approximation works well in practice. 1761 TODO: Implement a more precise computation by estimating the time 1762 for each CPU or memory op in the loop. Time estimates for memory ops 1763 should account for cache misses. */ 1764 insn_to_mem_ratio = ninsns / mem_ref_count; 1765 1766 if (insn_to_mem_ratio < PREFETCH_MIN_INSN_TO_MEM_RATIO) 1767 { 1768 if (dump_file && (dump_flags & TDF_DETAILS)) 1769 fprintf (dump_file, 1770 "Not prefetching -- instruction to memory reference ratio (%d) too small\n", 1771 insn_to_mem_ratio); 1772 return false; 1773 } 1774 1775 return true; 1776 } 1777 1778 /* Determine whether or not the instruction to prefetch ratio in the loop is 1779 too small based on the profitablity consideration. 1780 NINSNS: estimated number of instructions in the loop, 1781 PREFETCH_COUNT: an estimate of the number of prefetches, 1782 UNROLL_FACTOR: the factor to unroll the loop if prefetching. */ 1783 1784 static bool 1785 insn_to_prefetch_ratio_too_small_p (unsigned ninsns, unsigned prefetch_count, 1786 unsigned unroll_factor) 1787 { 1788 int insn_to_prefetch_ratio; 1789 1790 /* Prefetching most likely causes performance degradation when the instruction 1791 to prefetch ratio is too small. Too many prefetch instructions in a loop 1792 may reduce the I-cache performance. 1793 (unroll_factor * ninsns) is used to estimate the number of instructions in 1794 the unrolled loop. This implementation is a bit simplistic -- the number 1795 of issued prefetch instructions is also affected by unrolling. So, 1796 prefetch_mod and the unroll factor should be taken into account when 1797 determining prefetch_count. Also, the number of insns of the unrolled 1798 loop will usually be significantly smaller than the number of insns of the 1799 original loop * unroll_factor (at least the induction variable increases 1800 and the exit branches will get eliminated), so it might be better to use 1801 tree_estimate_loop_size + estimated_unrolled_size. */ 1802 insn_to_prefetch_ratio = (unroll_factor * ninsns) / prefetch_count; 1803 if (insn_to_prefetch_ratio < MIN_INSN_TO_PREFETCH_RATIO) 1804 { 1805 if (dump_file && (dump_flags & TDF_DETAILS)) 1806 fprintf (dump_file, 1807 "Not prefetching -- instruction to prefetch ratio (%d) too small\n", 1808 insn_to_prefetch_ratio); 1809 return true; 1810 } 1811 1812 return false; 1813 } 1814 1815 1816 /* Issue prefetch instructions for array references in LOOP. Returns 1817 true if the LOOP was unrolled. */ 1818 1819 static bool 1820 loop_prefetch_arrays (struct loop *loop) 1821 { 1822 struct mem_ref_group *refs; 1823 unsigned ahead, ninsns, time, unroll_factor; 1824 HOST_WIDE_INT est_niter; 1825 struct tree_niter_desc desc; 1826 bool unrolled = false, no_other_refs; 1827 unsigned prefetch_count; 1828 unsigned mem_ref_count; 1829 1830 if (optimize_loop_nest_for_size_p (loop)) 1831 { 1832 if (dump_file && (dump_flags & TDF_DETAILS)) 1833 fprintf (dump_file, " ignored (cold area)\n"); 1834 return false; 1835 } 1836 1837 /* FIXME: the time should be weighted by the probabilities of the blocks in 1838 the loop body. */ 1839 time = tree_num_loop_insns (loop, &eni_time_weights); 1840 if (time == 0) 1841 return false; 1842 1843 ahead = (PREFETCH_LATENCY + time - 1) / time; 1844 est_niter = estimated_stmt_executions_int (loop); 1845 if (est_niter == -1) 1846 est_niter = max_stmt_executions_int (loop); 1847 1848 /* Prefetching is not likely to be profitable if the trip count to ahead 1849 ratio is too small. */ 1850 if (trip_count_to_ahead_ratio_too_small_p (ahead, est_niter)) 1851 return false; 1852 1853 ninsns = tree_num_loop_insns (loop, &eni_size_weights); 1854 1855 /* Step 1: gather the memory references. */ 1856 refs = gather_memory_references (loop, &no_other_refs, &mem_ref_count); 1857 1858 /* Give up prefetching if the number of memory references in the 1859 loop is not reasonable based on profitablity and compilation time 1860 considerations. */ 1861 if (!mem_ref_count_reasonable_p (ninsns, mem_ref_count)) 1862 goto fail; 1863 1864 /* Step 2: estimate the reuse effects. */ 1865 prune_by_reuse (refs); 1866 1867 if (nothing_to_prefetch_p (refs)) 1868 goto fail; 1869 1870 if (!determine_loop_nest_reuse (loop, refs, no_other_refs)) 1871 goto fail; 1872 1873 /* Step 3: determine unroll factor. */ 1874 unroll_factor = determine_unroll_factor (loop, refs, ninsns, &desc, 1875 est_niter); 1876 1877 /* Estimate prefetch count for the unrolled loop. */ 1878 prefetch_count = estimate_prefetch_count (refs, unroll_factor); 1879 if (prefetch_count == 0) 1880 goto fail; 1881 1882 if (dump_file && (dump_flags & TDF_DETAILS)) 1883 fprintf (dump_file, "Ahead %d, unroll factor %d, trip count " 1884 HOST_WIDE_INT_PRINT_DEC "\n" 1885 "insn count %d, mem ref count %d, prefetch count %d\n", 1886 ahead, unroll_factor, est_niter, 1887 ninsns, mem_ref_count, prefetch_count); 1888 1889 /* Prefetching is not likely to be profitable if the instruction to prefetch 1890 ratio is too small. */ 1891 if (insn_to_prefetch_ratio_too_small_p (ninsns, prefetch_count, 1892 unroll_factor)) 1893 goto fail; 1894 1895 mark_nontemporal_stores (loop, refs); 1896 1897 /* Step 4: what to prefetch? */ 1898 if (!schedule_prefetches (refs, unroll_factor, ahead)) 1899 goto fail; 1900 1901 /* Step 5: unroll the loop. TODO -- peeling of first and last few 1902 iterations so that we do not issue superfluous prefetches. */ 1903 if (unroll_factor != 1) 1904 { 1905 tree_unroll_loop (loop, unroll_factor, 1906 single_dom_exit (loop), &desc); 1907 unrolled = true; 1908 } 1909 1910 /* Step 6: issue the prefetches. */ 1911 issue_prefetches (refs, unroll_factor, ahead); 1912 1913 fail: 1914 release_mem_refs (refs); 1915 return unrolled; 1916 } 1917 1918 /* Issue prefetch instructions for array references in loops. */ 1919 1920 unsigned int 1921 tree_ssa_prefetch_arrays (void) 1922 { 1923 loop_iterator li; 1924 struct loop *loop; 1925 bool unrolled = false; 1926 int todo_flags = 0; 1927 1928 if (!HAVE_prefetch 1929 /* It is possible to ask compiler for say -mtune=i486 -march=pentium4. 1930 -mtune=i486 causes us having PREFETCH_BLOCK 0, since this is part 1931 of processor costs and i486 does not have prefetch, but 1932 -march=pentium4 causes HAVE_prefetch to be true. Ugh. */ 1933 || PREFETCH_BLOCK == 0) 1934 return 0; 1935 1936 if (dump_file && (dump_flags & TDF_DETAILS)) 1937 { 1938 fprintf (dump_file, "Prefetching parameters:\n"); 1939 fprintf (dump_file, " simultaneous prefetches: %d\n", 1940 SIMULTANEOUS_PREFETCHES); 1941 fprintf (dump_file, " prefetch latency: %d\n", PREFETCH_LATENCY); 1942 fprintf (dump_file, " prefetch block size: %d\n", PREFETCH_BLOCK); 1943 fprintf (dump_file, " L1 cache size: %d lines, %d kB\n", 1944 L1_CACHE_SIZE_BYTES / L1_CACHE_LINE_SIZE, L1_CACHE_SIZE); 1945 fprintf (dump_file, " L1 cache line size: %d\n", L1_CACHE_LINE_SIZE); 1946 fprintf (dump_file, " L2 cache size: %d kB\n", L2_CACHE_SIZE); 1947 fprintf (dump_file, " min insn-to-prefetch ratio: %d \n", 1948 MIN_INSN_TO_PREFETCH_RATIO); 1949 fprintf (dump_file, " min insn-to-mem ratio: %d \n", 1950 PREFETCH_MIN_INSN_TO_MEM_RATIO); 1951 fprintf (dump_file, "\n"); 1952 } 1953 1954 initialize_original_copy_tables (); 1955 1956 if (!builtin_decl_explicit_p (BUILT_IN_PREFETCH)) 1957 { 1958 tree type = build_function_type_list (void_type_node, 1959 const_ptr_type_node, NULL_TREE); 1960 tree decl = add_builtin_function ("__builtin_prefetch", type, 1961 BUILT_IN_PREFETCH, BUILT_IN_NORMAL, 1962 NULL, NULL_TREE); 1963 DECL_IS_NOVOPS (decl) = true; 1964 set_builtin_decl (BUILT_IN_PREFETCH, decl, false); 1965 } 1966 1967 /* We assume that size of cache line is a power of two, so verify this 1968 here. */ 1969 gcc_assert ((PREFETCH_BLOCK & (PREFETCH_BLOCK - 1)) == 0); 1970 1971 FOR_EACH_LOOP (li, loop, LI_FROM_INNERMOST) 1972 { 1973 if (dump_file && (dump_flags & TDF_DETAILS)) 1974 fprintf (dump_file, "Processing loop %d:\n", loop->num); 1975 1976 unrolled |= loop_prefetch_arrays (loop); 1977 1978 if (dump_file && (dump_flags & TDF_DETAILS)) 1979 fprintf (dump_file, "\n\n"); 1980 } 1981 1982 if (unrolled) 1983 { 1984 scev_reset (); 1985 todo_flags |= TODO_cleanup_cfg; 1986 } 1987 1988 free_original_copy_tables (); 1989 return todo_flags; 1990 } 1991