xref: /netbsd-src/external/gpl3/gcc.old/dist/gcc/tree-ssa-loop-prefetch.c (revision 7c192b2a5e1093666e67801684f930ef49b3b363)
1 /* Array prefetching.
2    Copyright (C) 2005-2015 Free Software Foundation, Inc.
3 
4 This file is part of GCC.
5 
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
9 later version.
10 
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 for more details.
15 
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3.  If not see
18 <http://www.gnu.org/licenses/>.  */
19 
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24 #include "hash-set.h"
25 #include "machmode.h"
26 #include "vec.h"
27 #include "double-int.h"
28 #include "input.h"
29 #include "alias.h"
30 #include "symtab.h"
31 #include "wide-int.h"
32 #include "inchash.h"
33 #include "tree.h"
34 #include "fold-const.h"
35 #include "stor-layout.h"
36 #include "tm_p.h"
37 #include "predict.h"
38 #include "hard-reg-set.h"
39 #include "function.h"
40 #include "dominance.h"
41 #include "cfg.h"
42 #include "basic-block.h"
43 #include "tree-pretty-print.h"
44 #include "tree-ssa-alias.h"
45 #include "internal-fn.h"
46 #include "gimple-expr.h"
47 #include "is-a.h"
48 #include "gimple.h"
49 #include "gimplify.h"
50 #include "gimple-iterator.h"
51 #include "gimplify-me.h"
52 #include "gimple-ssa.h"
53 #include "tree-ssa-loop-ivopts.h"
54 #include "tree-ssa-loop-manip.h"
55 #include "tree-ssa-loop-niter.h"
56 #include "tree-ssa-loop.h"
57 #include "tree-into-ssa.h"
58 #include "cfgloop.h"
59 #include "tree-pass.h"
60 #include "insn-config.h"
61 #include "tree-chrec.h"
62 #include "tree-scalar-evolution.h"
63 #include "diagnostic-core.h"
64 #include "params.h"
65 #include "langhooks.h"
66 #include "tree-inline.h"
67 #include "tree-data-ref.h"
68 
69 
70 /* FIXME: Needed for optabs, but this should all be moved to a TBD interface
71    between the GIMPLE and RTL worlds.  */
72 #include "hashtab.h"
73 #include "rtl.h"
74 #include "flags.h"
75 #include "statistics.h"
76 #include "real.h"
77 #include "fixed-value.h"
78 #include "expmed.h"
79 #include "dojump.h"
80 #include "explow.h"
81 #include "calls.h"
82 #include "emit-rtl.h"
83 #include "varasm.h"
84 #include "stmt.h"
85 #include "expr.h"
86 #include "insn-codes.h"
87 #include "optabs.h"
88 #include "recog.h"
89 
90 /* This pass inserts prefetch instructions to optimize cache usage during
91    accesses to arrays in loops.  It processes loops sequentially and:
92 
93    1) Gathers all memory references in the single loop.
94    2) For each of the references it decides when it is profitable to prefetch
95       it.  To do it, we evaluate the reuse among the accesses, and determines
96       two values: PREFETCH_BEFORE (meaning that it only makes sense to do
97       prefetching in the first PREFETCH_BEFORE iterations of the loop) and
98       PREFETCH_MOD (meaning that it only makes sense to prefetch in the
99       iterations of the loop that are zero modulo PREFETCH_MOD).  For example
100       (assuming cache line size is 64 bytes, char has size 1 byte and there
101       is no hardware sequential prefetch):
102 
103       char *a;
104       for (i = 0; i < max; i++)
105 	{
106 	  a[255] = ...;		(0)
107 	  a[i] = ...;		(1)
108 	  a[i + 64] = ...;	(2)
109 	  a[16*i] = ...;	(3)
110 	  a[187*i] = ...;	(4)
111 	  a[187*i + 50] = ...;	(5)
112 	}
113 
114        (0) obviously has PREFETCH_BEFORE 1
115        (1) has PREFETCH_BEFORE 64, since (2) accesses the same memory
116            location 64 iterations before it, and PREFETCH_MOD 64 (since
117 	   it hits the same cache line otherwise).
118        (2) has PREFETCH_MOD 64
119        (3) has PREFETCH_MOD 4
120        (4) has PREFETCH_MOD 1.  We do not set PREFETCH_BEFORE here, since
121            the cache line accessed by (5) is the same with probability only
122 	   7/32.
123        (5) has PREFETCH_MOD 1 as well.
124 
125       Additionally, we use data dependence analysis to determine for each
126       reference the distance till the first reuse; this information is used
127       to determine the temporality of the issued prefetch instruction.
128 
129    3) We determine how much ahead we need to prefetch.  The number of
130       iterations needed is time to fetch / time spent in one iteration of
131       the loop.  The problem is that we do not know either of these values,
132       so we just make a heuristic guess based on a magic (possibly)
133       target-specific constant and size of the loop.
134 
135    4) Determine which of the references we prefetch.  We take into account
136       that there is a maximum number of simultaneous prefetches (provided
137       by machine description).  We prefetch as many prefetches as possible
138       while still within this bound (starting with those with lowest
139       prefetch_mod, since they are responsible for most of the cache
140       misses).
141 
142    5) We unroll and peel loops so that we are able to satisfy PREFETCH_MOD
143       and PREFETCH_BEFORE requirements (within some bounds), and to avoid
144       prefetching nonaccessed memory.
145       TODO -- actually implement peeling.
146 
147    6) We actually emit the prefetch instructions.  ??? Perhaps emit the
148       prefetch instructions with guards in cases where 5) was not sufficient
149       to satisfy the constraints?
150 
151    A cost model is implemented to determine whether or not prefetching is
152    profitable for a given loop.  The cost model has three heuristics:
153 
154    1. Function trip_count_to_ahead_ratio_too_small_p implements a
155       heuristic that determines whether or not the loop has too few
156       iterations (compared to ahead).  Prefetching is not likely to be
157       beneficial if the trip count to ahead ratio is below a certain
158       minimum.
159 
160    2. Function mem_ref_count_reasonable_p implements a heuristic that
161       determines whether the given loop has enough CPU ops that can be
162       overlapped with cache missing memory ops.  If not, the loop
163       won't benefit from prefetching.  In the implementation,
164       prefetching is not considered beneficial if the ratio between
165       the instruction count and the mem ref count is below a certain
166       minimum.
167 
168    3. Function insn_to_prefetch_ratio_too_small_p implements a
169       heuristic that disables prefetching in a loop if the prefetching
170       cost is above a certain limit.  The relative prefetching cost is
171       estimated by taking the ratio between the prefetch count and the
172       total intruction count (this models the I-cache cost).
173 
174    The limits used in these heuristics are defined as parameters with
175    reasonable default values. Machine-specific default values will be
176    added later.
177 
178    Some other TODO:
179       -- write and use more general reuse analysis (that could be also used
180 	 in other cache aimed loop optimizations)
181       -- make it behave sanely together with the prefetches given by user
182 	 (now we just ignore them; at the very least we should avoid
183 	 optimizing loops in that user put his own prefetches)
184       -- we assume cache line size alignment of arrays; this could be
185 	 improved.  */
186 
187 /* Magic constants follow.  These should be replaced by machine specific
188    numbers.  */
189 
190 /* True if write can be prefetched by a read prefetch.  */
191 
192 #ifndef WRITE_CAN_USE_READ_PREFETCH
193 #define WRITE_CAN_USE_READ_PREFETCH 1
194 #endif
195 
196 /* True if read can be prefetched by a write prefetch. */
197 
198 #ifndef READ_CAN_USE_WRITE_PREFETCH
199 #define READ_CAN_USE_WRITE_PREFETCH 0
200 #endif
201 
202 /* The size of the block loaded by a single prefetch.  Usually, this is
203    the same as cache line size (at the moment, we only consider one level
204    of cache hierarchy).  */
205 
206 #ifndef PREFETCH_BLOCK
207 #define PREFETCH_BLOCK L1_CACHE_LINE_SIZE
208 #endif
209 
210 /* Do we have a forward hardware sequential prefetching?  */
211 
212 #ifndef HAVE_FORWARD_PREFETCH
213 #define HAVE_FORWARD_PREFETCH 0
214 #endif
215 
216 /* Do we have a backward hardware sequential prefetching?  */
217 
218 #ifndef HAVE_BACKWARD_PREFETCH
219 #define HAVE_BACKWARD_PREFETCH 0
220 #endif
221 
222 /* In some cases we are only able to determine that there is a certain
223    probability that the two accesses hit the same cache line.  In this
224    case, we issue the prefetches for both of them if this probability
225    is less then (1000 - ACCEPTABLE_MISS_RATE) per thousand.  */
226 
227 #ifndef ACCEPTABLE_MISS_RATE
228 #define ACCEPTABLE_MISS_RATE 50
229 #endif
230 
231 #ifndef HAVE_prefetch
232 #define HAVE_prefetch 0
233 #endif
234 
235 #define L1_CACHE_SIZE_BYTES ((unsigned) (L1_CACHE_SIZE * 1024))
236 #define L2_CACHE_SIZE_BYTES ((unsigned) (L2_CACHE_SIZE * 1024))
237 
238 /* We consider a memory access nontemporal if it is not reused sooner than
239    after L2_CACHE_SIZE_BYTES of memory are accessed.  However, we ignore
240    accesses closer than L1_CACHE_SIZE_BYTES / NONTEMPORAL_FRACTION,
241    so that we use nontemporal prefetches e.g. if single memory location
242    is accessed several times in a single iteration of the loop.  */
243 #define NONTEMPORAL_FRACTION 16
244 
245 /* In case we have to emit a memory fence instruction after the loop that
246    uses nontemporal stores, this defines the builtin to use.  */
247 
248 #ifndef FENCE_FOLLOWING_MOVNT
249 #define FENCE_FOLLOWING_MOVNT NULL_TREE
250 #endif
251 
252 /* It is not profitable to prefetch when the trip count is not at
253    least TRIP_COUNT_TO_AHEAD_RATIO times the prefetch ahead distance.
254    For example, in a loop with a prefetch ahead distance of 10,
255    supposing that TRIP_COUNT_TO_AHEAD_RATIO is equal to 4, it is
256    profitable to prefetch when the trip count is greater or equal to
257    40.  In that case, 30 out of the 40 iterations will benefit from
258    prefetching.  */
259 
260 #ifndef TRIP_COUNT_TO_AHEAD_RATIO
261 #define TRIP_COUNT_TO_AHEAD_RATIO 4
262 #endif
263 
264 /* The group of references between that reuse may occur.  */
265 
266 struct mem_ref_group
267 {
268   tree base;			/* Base of the reference.  */
269   tree step;			/* Step of the reference.  */
270   struct mem_ref *refs;		/* References in the group.  */
271   struct mem_ref_group *next;	/* Next group of references.  */
272 };
273 
274 /* Assigned to PREFETCH_BEFORE when all iterations are to be prefetched.  */
275 
276 #define PREFETCH_ALL		(~(unsigned HOST_WIDE_INT) 0)
277 
278 /* Do not generate a prefetch if the unroll factor is significantly less
279    than what is required by the prefetch.  This is to avoid redundant
280    prefetches.  For example, when prefetch_mod is 16 and unroll_factor is
281    2, prefetching requires unrolling the loop 16 times, but
282    the loop is actually unrolled twice.  In this case (ratio = 8),
283    prefetching is not likely to be beneficial.  */
284 
285 #ifndef PREFETCH_MOD_TO_UNROLL_FACTOR_RATIO
286 #define PREFETCH_MOD_TO_UNROLL_FACTOR_RATIO 4
287 #endif
288 
289 /* Some of the prefetch computations have quadratic complexity.  We want to
290    avoid huge compile times and, therefore, want to limit the amount of
291    memory references per loop where we consider prefetching.  */
292 
293 #ifndef PREFETCH_MAX_MEM_REFS_PER_LOOP
294 #define PREFETCH_MAX_MEM_REFS_PER_LOOP 200
295 #endif
296 
297 /* The memory reference.  */
298 
299 struct mem_ref
300 {
301   gimple stmt;			/* Statement in that the reference appears.  */
302   tree mem;			/* The reference.  */
303   HOST_WIDE_INT delta;		/* Constant offset of the reference.  */
304   struct mem_ref_group *group;	/* The group of references it belongs to.  */
305   unsigned HOST_WIDE_INT prefetch_mod;
306 				/* Prefetch only each PREFETCH_MOD-th
307 				   iteration.  */
308   unsigned HOST_WIDE_INT prefetch_before;
309 				/* Prefetch only first PREFETCH_BEFORE
310 				   iterations.  */
311   unsigned reuse_distance;	/* The amount of data accessed before the first
312 				   reuse of this value.  */
313   struct mem_ref *next;		/* The next reference in the group.  */
314   unsigned write_p : 1;		/* Is it a write?  */
315   unsigned independent_p : 1;	/* True if the reference is independent on
316 				   all other references inside the loop.  */
317   unsigned issue_prefetch_p : 1;	/* Should we really issue the prefetch?  */
318   unsigned storent_p : 1;	/* True if we changed the store to a
319 				   nontemporal one.  */
320 };
321 
322 /* Dumps information about memory reference */
323 static void
324 dump_mem_details (FILE *file, tree base, tree step,
325 	    HOST_WIDE_INT delta, bool write_p)
326 {
327   fprintf (file, "(base ");
328   print_generic_expr (file, base, TDF_SLIM);
329   fprintf (file, ", step ");
330   if (cst_and_fits_in_hwi (step))
331     fprintf (file, HOST_WIDE_INT_PRINT_DEC, int_cst_value (step));
332   else
333     print_generic_expr (file, step, TDF_TREE);
334   fprintf (file, ")\n");
335   fprintf (file, "  delta ");
336   fprintf (file, HOST_WIDE_INT_PRINT_DEC, delta);
337   fprintf (file, "\n");
338   fprintf (file, "  %s\n", write_p ? "write" : "read");
339   fprintf (file, "\n");
340 }
341 
342 /* Dumps information about reference REF to FILE.  */
343 
344 static void
345 dump_mem_ref (FILE *file, struct mem_ref *ref)
346 {
347   fprintf (file, "Reference %p:\n", (void *) ref);
348 
349   fprintf (file, "  group %p ", (void *) ref->group);
350 
351   dump_mem_details (file, ref->group->base, ref->group->step, ref->delta,
352                    ref->write_p);
353 }
354 
355 /* Finds a group with BASE and STEP in GROUPS, or creates one if it does not
356    exist.  */
357 
358 static struct mem_ref_group *
359 find_or_create_group (struct mem_ref_group **groups, tree base, tree step)
360 {
361   struct mem_ref_group *group;
362 
363   for (; *groups; groups = &(*groups)->next)
364     {
365       if (operand_equal_p ((*groups)->step, step, 0)
366 	  && operand_equal_p ((*groups)->base, base, 0))
367 	return *groups;
368 
369       /* If step is an integer constant, keep the list of groups sorted
370          by decreasing step.  */
371         if (cst_and_fits_in_hwi ((*groups)->step) && cst_and_fits_in_hwi (step)
372             && int_cst_value ((*groups)->step) < int_cst_value (step))
373 	break;
374     }
375 
376   group = XNEW (struct mem_ref_group);
377   group->base = base;
378   group->step = step;
379   group->refs = NULL;
380   group->next = *groups;
381   *groups = group;
382 
383   return group;
384 }
385 
386 /* Records a memory reference MEM in GROUP with offset DELTA and write status
387    WRITE_P.  The reference occurs in statement STMT.  */
388 
389 static void
390 record_ref (struct mem_ref_group *group, gimple stmt, tree mem,
391 	    HOST_WIDE_INT delta, bool write_p)
392 {
393   struct mem_ref **aref;
394 
395   /* Do not record the same address twice.  */
396   for (aref = &group->refs; *aref; aref = &(*aref)->next)
397     {
398       /* It does not have to be possible for write reference to reuse the read
399 	 prefetch, or vice versa.  */
400       if (!WRITE_CAN_USE_READ_PREFETCH
401 	  && write_p
402 	  && !(*aref)->write_p)
403 	continue;
404       if (!READ_CAN_USE_WRITE_PREFETCH
405 	  && !write_p
406 	  && (*aref)->write_p)
407 	continue;
408 
409       if ((*aref)->delta == delta)
410 	return;
411     }
412 
413   (*aref) = XNEW (struct mem_ref);
414   (*aref)->stmt = stmt;
415   (*aref)->mem = mem;
416   (*aref)->delta = delta;
417   (*aref)->write_p = write_p;
418   (*aref)->prefetch_before = PREFETCH_ALL;
419   (*aref)->prefetch_mod = 1;
420   (*aref)->reuse_distance = 0;
421   (*aref)->issue_prefetch_p = false;
422   (*aref)->group = group;
423   (*aref)->next = NULL;
424   (*aref)->independent_p = false;
425   (*aref)->storent_p = false;
426 
427   if (dump_file && (dump_flags & TDF_DETAILS))
428     dump_mem_ref (dump_file, *aref);
429 }
430 
431 /* Release memory references in GROUPS.  */
432 
433 static void
434 release_mem_refs (struct mem_ref_group *groups)
435 {
436   struct mem_ref_group *next_g;
437   struct mem_ref *ref, *next_r;
438 
439   for (; groups; groups = next_g)
440     {
441       next_g = groups->next;
442       for (ref = groups->refs; ref; ref = next_r)
443 	{
444 	  next_r = ref->next;
445 	  free (ref);
446 	}
447       free (groups);
448     }
449 }
450 
451 /* A structure used to pass arguments to idx_analyze_ref.  */
452 
453 struct ar_data
454 {
455   struct loop *loop;			/* Loop of the reference.  */
456   gimple stmt;				/* Statement of the reference.  */
457   tree *step;				/* Step of the memory reference.  */
458   HOST_WIDE_INT *delta;			/* Offset of the memory reference.  */
459 };
460 
461 /* Analyzes a single INDEX of a memory reference to obtain information
462    described at analyze_ref.  Callback for for_each_index.  */
463 
464 static bool
465 idx_analyze_ref (tree base, tree *index, void *data)
466 {
467   struct ar_data *ar_data = (struct ar_data *) data;
468   tree ibase, step, stepsize;
469   HOST_WIDE_INT idelta = 0, imult = 1;
470   affine_iv iv;
471 
472   if (!simple_iv (ar_data->loop, loop_containing_stmt (ar_data->stmt),
473 		  *index, &iv, true))
474     return false;
475   ibase = iv.base;
476   step = iv.step;
477 
478   if (TREE_CODE (ibase) == POINTER_PLUS_EXPR
479       && cst_and_fits_in_hwi (TREE_OPERAND (ibase, 1)))
480     {
481       idelta = int_cst_value (TREE_OPERAND (ibase, 1));
482       ibase = TREE_OPERAND (ibase, 0);
483     }
484   if (cst_and_fits_in_hwi (ibase))
485     {
486       idelta += int_cst_value (ibase);
487       ibase = build_int_cst (TREE_TYPE (ibase), 0);
488     }
489 
490   if (TREE_CODE (base) == ARRAY_REF)
491     {
492       stepsize = array_ref_element_size (base);
493       if (!cst_and_fits_in_hwi (stepsize))
494 	return false;
495       imult = int_cst_value (stepsize);
496       step = fold_build2 (MULT_EXPR, sizetype,
497 			  fold_convert (sizetype, step),
498 			  fold_convert (sizetype, stepsize));
499       idelta *= imult;
500     }
501 
502   if (*ar_data->step == NULL_TREE)
503     *ar_data->step = step;
504   else
505     *ar_data->step = fold_build2 (PLUS_EXPR, sizetype,
506 				  fold_convert (sizetype, *ar_data->step),
507 				  fold_convert (sizetype, step));
508   *ar_data->delta += idelta;
509   *index = ibase;
510 
511   return true;
512 }
513 
514 /* Tries to express REF_P in shape &BASE + STEP * iter + DELTA, where DELTA and
515    STEP are integer constants and iter is number of iterations of LOOP.  The
516    reference occurs in statement STMT.  Strips nonaddressable component
517    references from REF_P.  */
518 
519 static bool
520 analyze_ref (struct loop *loop, tree *ref_p, tree *base,
521 	     tree *step, HOST_WIDE_INT *delta,
522 	     gimple stmt)
523 {
524   struct ar_data ar_data;
525   tree off;
526   HOST_WIDE_INT bit_offset;
527   tree ref = *ref_p;
528 
529   *step = NULL_TREE;
530   *delta = 0;
531 
532   /* First strip off the component references.  Ignore bitfields.
533      Also strip off the real and imagine parts of a complex, so that
534      they can have the same base.  */
535   if (TREE_CODE (ref) == REALPART_EXPR
536       || TREE_CODE (ref) == IMAGPART_EXPR
537       || (TREE_CODE (ref) == COMPONENT_REF
538           && DECL_NONADDRESSABLE_P (TREE_OPERAND (ref, 1))))
539     {
540       if (TREE_CODE (ref) == IMAGPART_EXPR)
541         *delta += int_size_in_bytes (TREE_TYPE (ref));
542       ref = TREE_OPERAND (ref, 0);
543     }
544 
545   *ref_p = ref;
546 
547   for (; TREE_CODE (ref) == COMPONENT_REF; ref = TREE_OPERAND (ref, 0))
548     {
549       off = DECL_FIELD_BIT_OFFSET (TREE_OPERAND (ref, 1));
550       bit_offset = TREE_INT_CST_LOW (off);
551       gcc_assert (bit_offset % BITS_PER_UNIT == 0);
552 
553       *delta += bit_offset / BITS_PER_UNIT;
554     }
555 
556   *base = unshare_expr (ref);
557   ar_data.loop = loop;
558   ar_data.stmt = stmt;
559   ar_data.step = step;
560   ar_data.delta = delta;
561   return for_each_index (base, idx_analyze_ref, &ar_data);
562 }
563 
564 /* Record a memory reference REF to the list REFS.  The reference occurs in
565    LOOP in statement STMT and it is write if WRITE_P.  Returns true if the
566    reference was recorded, false otherwise.  */
567 
568 static bool
569 gather_memory_references_ref (struct loop *loop, struct mem_ref_group **refs,
570 			      tree ref, bool write_p, gimple stmt)
571 {
572   tree base, step;
573   HOST_WIDE_INT delta;
574   struct mem_ref_group *agrp;
575 
576   if (get_base_address (ref) == NULL)
577     return false;
578 
579   if (!analyze_ref (loop, &ref, &base, &step, &delta, stmt))
580     return false;
581   /* If analyze_ref fails the default is a NULL_TREE.  We can stop here.  */
582   if (step == NULL_TREE)
583     return false;
584 
585   /* Stop if the address of BASE could not be taken.  */
586   if (may_be_nonaddressable_p (base))
587     return false;
588 
589   /* Limit non-constant step prefetching only to the innermost loops and
590      only when the step is loop invariant in the entire loop nest. */
591   if (!cst_and_fits_in_hwi (step))
592     {
593       if (loop->inner != NULL)
594         {
595           if (dump_file && (dump_flags & TDF_DETAILS))
596             {
597               fprintf (dump_file, "Memory expression %p\n",(void *) ref );
598               print_generic_expr (dump_file, ref, TDF_TREE);
599               fprintf (dump_file,":");
600               dump_mem_details (dump_file, base, step, delta, write_p);
601               fprintf (dump_file,
602                        "Ignoring %p, non-constant step prefetching is "
603                        "limited to inner most loops \n",
604                        (void *) ref);
605             }
606             return false;
607          }
608       else
609         {
610           if (!expr_invariant_in_loop_p (loop_outermost (loop), step))
611           {
612             if (dump_file && (dump_flags & TDF_DETAILS))
613               {
614                 fprintf (dump_file, "Memory expression %p\n",(void *) ref );
615                 print_generic_expr (dump_file, ref, TDF_TREE);
616                 fprintf (dump_file,":");
617                 dump_mem_details (dump_file, base, step, delta, write_p);
618                 fprintf (dump_file,
619                          "Not prefetching, ignoring %p due to "
620                          "loop variant step\n",
621                          (void *) ref);
622               }
623               return false;
624             }
625         }
626     }
627 
628   /* Now we know that REF = &BASE + STEP * iter + DELTA, where DELTA and STEP
629      are integer constants.  */
630   agrp = find_or_create_group (refs, base, step);
631   record_ref (agrp, stmt, ref, delta, write_p);
632 
633   return true;
634 }
635 
636 /* Record the suitable memory references in LOOP.  NO_OTHER_REFS is set to
637    true if there are no other memory references inside the loop.  */
638 
639 static struct mem_ref_group *
640 gather_memory_references (struct loop *loop, bool *no_other_refs, unsigned *ref_count)
641 {
642   basic_block *body = get_loop_body_in_dom_order (loop);
643   basic_block bb;
644   unsigned i;
645   gimple_stmt_iterator bsi;
646   gimple stmt;
647   tree lhs, rhs;
648   struct mem_ref_group *refs = NULL;
649 
650   *no_other_refs = true;
651   *ref_count = 0;
652 
653   /* Scan the loop body in order, so that the former references precede the
654      later ones.  */
655   for (i = 0; i < loop->num_nodes; i++)
656     {
657       bb = body[i];
658       if (bb->loop_father != loop)
659 	continue;
660 
661       for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
662 	{
663 	  stmt = gsi_stmt (bsi);
664 
665 	  if (gimple_code (stmt) != GIMPLE_ASSIGN)
666 	    {
667 	      if (gimple_vuse (stmt)
668 		  || (is_gimple_call (stmt)
669 		      && !(gimple_call_flags (stmt) & ECF_CONST)))
670 		*no_other_refs = false;
671 	      continue;
672 	    }
673 
674 	  lhs = gimple_assign_lhs (stmt);
675 	  rhs = gimple_assign_rhs1 (stmt);
676 
677 	  if (REFERENCE_CLASS_P (rhs))
678 	    {
679 	    *no_other_refs &= gather_memory_references_ref (loop, &refs,
680 							    rhs, false, stmt);
681 	    *ref_count += 1;
682 	    }
683 	  if (REFERENCE_CLASS_P (lhs))
684 	    {
685 	    *no_other_refs &= gather_memory_references_ref (loop, &refs,
686 							    lhs, true, stmt);
687 	    *ref_count += 1;
688 	    }
689 	}
690     }
691   free (body);
692 
693   return refs;
694 }
695 
696 /* Prune the prefetch candidate REF using the self-reuse.  */
697 
698 static void
699 prune_ref_by_self_reuse (struct mem_ref *ref)
700 {
701   HOST_WIDE_INT step;
702   bool backward;
703 
704   /* If the step size is non constant, we cannot calculate prefetch_mod.  */
705   if (!cst_and_fits_in_hwi (ref->group->step))
706     return;
707 
708   step = int_cst_value (ref->group->step);
709 
710   backward = step < 0;
711 
712   if (step == 0)
713     {
714       /* Prefetch references to invariant address just once.  */
715       ref->prefetch_before = 1;
716       return;
717     }
718 
719   if (backward)
720     step = -step;
721 
722   if (step > PREFETCH_BLOCK)
723     return;
724 
725   if ((backward && HAVE_BACKWARD_PREFETCH)
726       || (!backward && HAVE_FORWARD_PREFETCH))
727     {
728       ref->prefetch_before = 1;
729       return;
730     }
731 
732   ref->prefetch_mod = PREFETCH_BLOCK / step;
733 }
734 
735 /* Divides X by BY, rounding down.  */
736 
737 static HOST_WIDE_INT
738 ddown (HOST_WIDE_INT x, unsigned HOST_WIDE_INT by)
739 {
740   gcc_assert (by > 0);
741 
742   if (x >= 0)
743     return x / by;
744   else
745     return (x + by - 1) / by;
746 }
747 
748 /* Given a CACHE_LINE_SIZE and two inductive memory references
749    with a common STEP greater than CACHE_LINE_SIZE and an address
750    difference DELTA, compute the probability that they will fall
751    in different cache lines.  Return true if the computed miss rate
752    is not greater than the ACCEPTABLE_MISS_RATE.  DISTINCT_ITERS is the
753    number of distinct iterations after which the pattern repeats itself.
754    ALIGN_UNIT is the unit of alignment in bytes.  */
755 
756 static bool
757 is_miss_rate_acceptable (unsigned HOST_WIDE_INT cache_line_size,
758 		   HOST_WIDE_INT step, HOST_WIDE_INT delta,
759 		   unsigned HOST_WIDE_INT distinct_iters,
760 		   int align_unit)
761 {
762   unsigned align, iter;
763   int total_positions, miss_positions, max_allowed_miss_positions;
764   int address1, address2, cache_line1, cache_line2;
765 
766   /* It always misses if delta is greater than or equal to the cache
767      line size.  */
768   if (delta >= (HOST_WIDE_INT) cache_line_size)
769     return false;
770 
771   miss_positions = 0;
772   total_positions = (cache_line_size / align_unit) * distinct_iters;
773   max_allowed_miss_positions = (ACCEPTABLE_MISS_RATE * total_positions) / 1000;
774 
775   /* Iterate through all possible alignments of the first
776      memory reference within its cache line.  */
777   for (align = 0; align < cache_line_size; align += align_unit)
778 
779     /* Iterate through all distinct iterations.  */
780     for (iter = 0; iter < distinct_iters; iter++)
781       {
782 	address1 = align + step * iter;
783 	address2 = address1 + delta;
784 	cache_line1 = address1 / cache_line_size;
785 	cache_line2 = address2 / cache_line_size;
786 	if (cache_line1 != cache_line2)
787 	  {
788 	    miss_positions += 1;
789             if (miss_positions > max_allowed_miss_positions)
790 	      return false;
791           }
792       }
793   return true;
794 }
795 
796 /* Prune the prefetch candidate REF using the reuse with BY.
797    If BY_IS_BEFORE is true, BY is before REF in the loop.  */
798 
799 static void
800 prune_ref_by_group_reuse (struct mem_ref *ref, struct mem_ref *by,
801 			  bool by_is_before)
802 {
803   HOST_WIDE_INT step;
804   bool backward;
805   HOST_WIDE_INT delta_r = ref->delta, delta_b = by->delta;
806   HOST_WIDE_INT delta = delta_b - delta_r;
807   HOST_WIDE_INT hit_from;
808   unsigned HOST_WIDE_INT prefetch_before, prefetch_block;
809   HOST_WIDE_INT reduced_step;
810   unsigned HOST_WIDE_INT reduced_prefetch_block;
811   tree ref_type;
812   int align_unit;
813 
814   /* If the step is non constant we cannot calculate prefetch_before.  */
815   if (!cst_and_fits_in_hwi (ref->group->step)) {
816     return;
817   }
818 
819   step = int_cst_value (ref->group->step);
820 
821   backward = step < 0;
822 
823 
824   if (delta == 0)
825     {
826       /* If the references has the same address, only prefetch the
827 	 former.  */
828       if (by_is_before)
829 	ref->prefetch_before = 0;
830 
831       return;
832     }
833 
834   if (!step)
835     {
836       /* If the reference addresses are invariant and fall into the
837 	 same cache line, prefetch just the first one.  */
838       if (!by_is_before)
839 	return;
840 
841       if (ddown (ref->delta, PREFETCH_BLOCK)
842 	  != ddown (by->delta, PREFETCH_BLOCK))
843 	return;
844 
845       ref->prefetch_before = 0;
846       return;
847     }
848 
849   /* Only prune the reference that is behind in the array.  */
850   if (backward)
851     {
852       if (delta > 0)
853 	return;
854 
855       /* Transform the data so that we may assume that the accesses
856 	 are forward.  */
857       delta = - delta;
858       step = -step;
859       delta_r = PREFETCH_BLOCK - 1 - delta_r;
860       delta_b = PREFETCH_BLOCK - 1 - delta_b;
861     }
862   else
863     {
864       if (delta < 0)
865 	return;
866     }
867 
868   /* Check whether the two references are likely to hit the same cache
869      line, and how distant the iterations in that it occurs are from
870      each other.  */
871 
872   if (step <= PREFETCH_BLOCK)
873     {
874       /* The accesses are sure to meet.  Let us check when.  */
875       hit_from = ddown (delta_b, PREFETCH_BLOCK) * PREFETCH_BLOCK;
876       prefetch_before = (hit_from - delta_r + step - 1) / step;
877 
878       /* Do not reduce prefetch_before if we meet beyond cache size.  */
879       if (prefetch_before > absu_hwi (L2_CACHE_SIZE_BYTES / step))
880         prefetch_before = PREFETCH_ALL;
881       if (prefetch_before < ref->prefetch_before)
882 	ref->prefetch_before = prefetch_before;
883 
884       return;
885     }
886 
887   /* A more complicated case with step > prefetch_block.  First reduce
888      the ratio between the step and the cache line size to its simplest
889      terms.  The resulting denominator will then represent the number of
890      distinct iterations after which each address will go back to its
891      initial location within the cache line.  This computation assumes
892      that PREFETCH_BLOCK is a power of two.  */
893   prefetch_block = PREFETCH_BLOCK;
894   reduced_prefetch_block = prefetch_block;
895   reduced_step = step;
896   while ((reduced_step & 1) == 0
897 	 && reduced_prefetch_block > 1)
898     {
899       reduced_step >>= 1;
900       reduced_prefetch_block >>= 1;
901     }
902 
903   prefetch_before = delta / step;
904   delta %= step;
905   ref_type = TREE_TYPE (ref->mem);
906   align_unit = TYPE_ALIGN (ref_type) / 8;
907   if (is_miss_rate_acceptable (prefetch_block, step, delta,
908 			       reduced_prefetch_block, align_unit))
909     {
910       /* Do not reduce prefetch_before if we meet beyond cache size.  */
911       if (prefetch_before > L2_CACHE_SIZE_BYTES / PREFETCH_BLOCK)
912         prefetch_before = PREFETCH_ALL;
913       if (prefetch_before < ref->prefetch_before)
914 	ref->prefetch_before = prefetch_before;
915 
916       return;
917     }
918 
919   /* Try also the following iteration.  */
920   prefetch_before++;
921   delta = step - delta;
922   if (is_miss_rate_acceptable (prefetch_block, step, delta,
923 			       reduced_prefetch_block, align_unit))
924     {
925       if (prefetch_before < ref->prefetch_before)
926 	ref->prefetch_before = prefetch_before;
927 
928       return;
929     }
930 
931   /* The ref probably does not reuse by.  */
932   return;
933 }
934 
935 /* Prune the prefetch candidate REF using the reuses with other references
936    in REFS.  */
937 
938 static void
939 prune_ref_by_reuse (struct mem_ref *ref, struct mem_ref *refs)
940 {
941   struct mem_ref *prune_by;
942   bool before = true;
943 
944   prune_ref_by_self_reuse (ref);
945 
946   for (prune_by = refs; prune_by; prune_by = prune_by->next)
947     {
948       if (prune_by == ref)
949 	{
950 	  before = false;
951 	  continue;
952 	}
953 
954       if (!WRITE_CAN_USE_READ_PREFETCH
955 	  && ref->write_p
956 	  && !prune_by->write_p)
957 	continue;
958       if (!READ_CAN_USE_WRITE_PREFETCH
959 	  && !ref->write_p
960 	  && prune_by->write_p)
961 	continue;
962 
963       prune_ref_by_group_reuse (ref, prune_by, before);
964     }
965 }
966 
967 /* Prune the prefetch candidates in GROUP using the reuse analysis.  */
968 
969 static void
970 prune_group_by_reuse (struct mem_ref_group *group)
971 {
972   struct mem_ref *ref_pruned;
973 
974   for (ref_pruned = group->refs; ref_pruned; ref_pruned = ref_pruned->next)
975     {
976       prune_ref_by_reuse (ref_pruned, group->refs);
977 
978       if (dump_file && (dump_flags & TDF_DETAILS))
979 	{
980 	  fprintf (dump_file, "Reference %p:", (void *) ref_pruned);
981 
982 	  if (ref_pruned->prefetch_before == PREFETCH_ALL
983 	      && ref_pruned->prefetch_mod == 1)
984 	    fprintf (dump_file, " no restrictions");
985 	  else if (ref_pruned->prefetch_before == 0)
986 	    fprintf (dump_file, " do not prefetch");
987 	  else if (ref_pruned->prefetch_before <= ref_pruned->prefetch_mod)
988 	    fprintf (dump_file, " prefetch once");
989 	  else
990 	    {
991 	      if (ref_pruned->prefetch_before != PREFETCH_ALL)
992 		{
993 		  fprintf (dump_file, " prefetch before ");
994 		  fprintf (dump_file, HOST_WIDE_INT_PRINT_DEC,
995 			   ref_pruned->prefetch_before);
996 		}
997 	      if (ref_pruned->prefetch_mod != 1)
998 		{
999 		  fprintf (dump_file, " prefetch mod ");
1000 		  fprintf (dump_file, HOST_WIDE_INT_PRINT_DEC,
1001 			   ref_pruned->prefetch_mod);
1002 		}
1003 	    }
1004 	  fprintf (dump_file, "\n");
1005 	}
1006     }
1007 }
1008 
1009 /* Prune the list of prefetch candidates GROUPS using the reuse analysis.  */
1010 
1011 static void
1012 prune_by_reuse (struct mem_ref_group *groups)
1013 {
1014   for (; groups; groups = groups->next)
1015     prune_group_by_reuse (groups);
1016 }
1017 
1018 /* Returns true if we should issue prefetch for REF.  */
1019 
1020 static bool
1021 should_issue_prefetch_p (struct mem_ref *ref)
1022 {
1023   /* For now do not issue prefetches for only first few of the
1024      iterations.  */
1025   if (ref->prefetch_before != PREFETCH_ALL)
1026     {
1027       if (dump_file && (dump_flags & TDF_DETAILS))
1028         fprintf (dump_file, "Ignoring %p due to prefetch_before\n",
1029 		 (void *) ref);
1030       return false;
1031     }
1032 
1033   /* Do not prefetch nontemporal stores.  */
1034   if (ref->storent_p)
1035     {
1036       if (dump_file && (dump_flags & TDF_DETAILS))
1037         fprintf (dump_file, "Ignoring nontemporal store %p\n", (void *) ref);
1038       return false;
1039     }
1040 
1041   return true;
1042 }
1043 
1044 /* Decide which of the prefetch candidates in GROUPS to prefetch.
1045    AHEAD is the number of iterations to prefetch ahead (which corresponds
1046    to the number of simultaneous instances of one prefetch running at a
1047    time).  UNROLL_FACTOR is the factor by that the loop is going to be
1048    unrolled.  Returns true if there is anything to prefetch.  */
1049 
1050 static bool
1051 schedule_prefetches (struct mem_ref_group *groups, unsigned unroll_factor,
1052 		     unsigned ahead)
1053 {
1054   unsigned remaining_prefetch_slots, n_prefetches, prefetch_slots;
1055   unsigned slots_per_prefetch;
1056   struct mem_ref *ref;
1057   bool any = false;
1058 
1059   /* At most SIMULTANEOUS_PREFETCHES should be running at the same time.  */
1060   remaining_prefetch_slots = SIMULTANEOUS_PREFETCHES;
1061 
1062   /* The prefetch will run for AHEAD iterations of the original loop, i.e.,
1063      AHEAD / UNROLL_FACTOR iterations of the unrolled loop.  In each iteration,
1064      it will need a prefetch slot.  */
1065   slots_per_prefetch = (ahead + unroll_factor / 2) / unroll_factor;
1066   if (dump_file && (dump_flags & TDF_DETAILS))
1067     fprintf (dump_file, "Each prefetch instruction takes %u prefetch slots.\n",
1068 	     slots_per_prefetch);
1069 
1070   /* For now we just take memory references one by one and issue
1071      prefetches for as many as possible.  The groups are sorted
1072      starting with the largest step, since the references with
1073      large step are more likely to cause many cache misses.  */
1074 
1075   for (; groups; groups = groups->next)
1076     for (ref = groups->refs; ref; ref = ref->next)
1077       {
1078 	if (!should_issue_prefetch_p (ref))
1079 	  continue;
1080 
1081         /* The loop is far from being sufficiently unrolled for this
1082            prefetch.  Do not generate prefetch to avoid many redudant
1083            prefetches.  */
1084         if (ref->prefetch_mod / unroll_factor > PREFETCH_MOD_TO_UNROLL_FACTOR_RATIO)
1085           continue;
1086 
1087 	/* If we need to prefetch the reference each PREFETCH_MOD iterations,
1088 	   and we unroll the loop UNROLL_FACTOR times, we need to insert
1089 	   ceil (UNROLL_FACTOR / PREFETCH_MOD) instructions in each
1090 	   iteration.  */
1091 	n_prefetches = ((unroll_factor + ref->prefetch_mod - 1)
1092 			/ ref->prefetch_mod);
1093 	prefetch_slots = n_prefetches * slots_per_prefetch;
1094 
1095 	/* If more than half of the prefetches would be lost anyway, do not
1096 	   issue the prefetch.  */
1097 	if (2 * remaining_prefetch_slots < prefetch_slots)
1098 	  continue;
1099 
1100 	ref->issue_prefetch_p = true;
1101 
1102 	if (remaining_prefetch_slots <= prefetch_slots)
1103 	  return true;
1104 	remaining_prefetch_slots -= prefetch_slots;
1105 	any = true;
1106       }
1107 
1108   return any;
1109 }
1110 
1111 /* Return TRUE if no prefetch is going to be generated in the given
1112    GROUPS.  */
1113 
1114 static bool
1115 nothing_to_prefetch_p (struct mem_ref_group *groups)
1116 {
1117   struct mem_ref *ref;
1118 
1119   for (; groups; groups = groups->next)
1120     for (ref = groups->refs; ref; ref = ref->next)
1121       if (should_issue_prefetch_p (ref))
1122 	return false;
1123 
1124   return true;
1125 }
1126 
1127 /* Estimate the number of prefetches in the given GROUPS.
1128    UNROLL_FACTOR is the factor by which LOOP was unrolled.  */
1129 
1130 static int
1131 estimate_prefetch_count (struct mem_ref_group *groups, unsigned unroll_factor)
1132 {
1133   struct mem_ref *ref;
1134   unsigned n_prefetches;
1135   int prefetch_count = 0;
1136 
1137   for (; groups; groups = groups->next)
1138     for (ref = groups->refs; ref; ref = ref->next)
1139       if (should_issue_prefetch_p (ref))
1140 	{
1141 	  n_prefetches = ((unroll_factor + ref->prefetch_mod - 1)
1142 			  / ref->prefetch_mod);
1143 	  prefetch_count += n_prefetches;
1144 	}
1145 
1146   return prefetch_count;
1147 }
1148 
1149 /* Issue prefetches for the reference REF into loop as decided before.
1150    HEAD is the number of iterations to prefetch ahead.  UNROLL_FACTOR
1151    is the factor by which LOOP was unrolled.  */
1152 
1153 static void
1154 issue_prefetch_ref (struct mem_ref *ref, unsigned unroll_factor, unsigned ahead)
1155 {
1156   HOST_WIDE_INT delta;
1157   tree addr, addr_base, write_p, local, forward;
1158   gcall *prefetch;
1159   gimple_stmt_iterator bsi;
1160   unsigned n_prefetches, ap;
1161   bool nontemporal = ref->reuse_distance >= L2_CACHE_SIZE_BYTES;
1162 
1163   if (dump_file && (dump_flags & TDF_DETAILS))
1164     fprintf (dump_file, "Issued%s prefetch for %p.\n",
1165 	     nontemporal ? " nontemporal" : "",
1166 	     (void *) ref);
1167 
1168   bsi = gsi_for_stmt (ref->stmt);
1169 
1170   n_prefetches = ((unroll_factor + ref->prefetch_mod - 1)
1171 		  / ref->prefetch_mod);
1172   addr_base = build_fold_addr_expr_with_type (ref->mem, ptr_type_node);
1173   addr_base = force_gimple_operand_gsi (&bsi, unshare_expr (addr_base),
1174 					true, NULL, true, GSI_SAME_STMT);
1175   write_p = ref->write_p ? integer_one_node : integer_zero_node;
1176   local = nontemporal ? integer_zero_node : integer_three_node;
1177 
1178   for (ap = 0; ap < n_prefetches; ap++)
1179     {
1180       if (cst_and_fits_in_hwi (ref->group->step))
1181         {
1182           /* Determine the address to prefetch.  */
1183           delta = (ahead + ap * ref->prefetch_mod) *
1184 		   int_cst_value (ref->group->step);
1185           addr = fold_build_pointer_plus_hwi (addr_base, delta);
1186           addr = force_gimple_operand_gsi (&bsi, unshare_expr (addr), true, NULL,
1187                                            true, GSI_SAME_STMT);
1188         }
1189       else
1190         {
1191           /* The step size is non-constant but loop-invariant.  We use the
1192              heuristic to simply prefetch ahead iterations ahead.  */
1193           forward = fold_build2 (MULT_EXPR, sizetype,
1194                                  fold_convert (sizetype, ref->group->step),
1195                                  fold_convert (sizetype, size_int (ahead)));
1196           addr = fold_build_pointer_plus (addr_base, forward);
1197           addr = force_gimple_operand_gsi (&bsi, unshare_expr (addr), true,
1198 					   NULL, true, GSI_SAME_STMT);
1199       }
1200       /* Create the prefetch instruction.  */
1201       prefetch = gimple_build_call (builtin_decl_explicit (BUILT_IN_PREFETCH),
1202 				    3, addr, write_p, local);
1203       gsi_insert_before (&bsi, prefetch, GSI_SAME_STMT);
1204     }
1205 }
1206 
1207 /* Issue prefetches for the references in GROUPS into loop as decided before.
1208    HEAD is the number of iterations to prefetch ahead.  UNROLL_FACTOR is the
1209    factor by that LOOP was unrolled.  */
1210 
1211 static void
1212 issue_prefetches (struct mem_ref_group *groups,
1213 		  unsigned unroll_factor, unsigned ahead)
1214 {
1215   struct mem_ref *ref;
1216 
1217   for (; groups; groups = groups->next)
1218     for (ref = groups->refs; ref; ref = ref->next)
1219       if (ref->issue_prefetch_p)
1220 	issue_prefetch_ref (ref, unroll_factor, ahead);
1221 }
1222 
1223 /* Returns true if REF is a memory write for that a nontemporal store insn
1224    can be used.  */
1225 
1226 static bool
1227 nontemporal_store_p (struct mem_ref *ref)
1228 {
1229   machine_mode mode;
1230   enum insn_code code;
1231 
1232   /* REF must be a write that is not reused.  We require it to be independent
1233      on all other memory references in the loop, as the nontemporal stores may
1234      be reordered with respect to other memory references.  */
1235   if (!ref->write_p
1236       || !ref->independent_p
1237       || ref->reuse_distance < L2_CACHE_SIZE_BYTES)
1238     return false;
1239 
1240   /* Check that we have the storent instruction for the mode.  */
1241   mode = TYPE_MODE (TREE_TYPE (ref->mem));
1242   if (mode == BLKmode)
1243     return false;
1244 
1245   code = optab_handler (storent_optab, mode);
1246   return code != CODE_FOR_nothing;
1247 }
1248 
1249 /* If REF is a nontemporal store, we mark the corresponding modify statement
1250    and return true.  Otherwise, we return false.  */
1251 
1252 static bool
1253 mark_nontemporal_store (struct mem_ref *ref)
1254 {
1255   if (!nontemporal_store_p (ref))
1256     return false;
1257 
1258   if (dump_file && (dump_flags & TDF_DETAILS))
1259     fprintf (dump_file, "Marked reference %p as a nontemporal store.\n",
1260 	     (void *) ref);
1261 
1262   gimple_assign_set_nontemporal_move (ref->stmt, true);
1263   ref->storent_p = true;
1264 
1265   return true;
1266 }
1267 
1268 /* Issue a memory fence instruction after LOOP.  */
1269 
1270 static void
1271 emit_mfence_after_loop (struct loop *loop)
1272 {
1273   vec<edge> exits = get_loop_exit_edges (loop);
1274   edge exit;
1275   gcall *call;
1276   gimple_stmt_iterator bsi;
1277   unsigned i;
1278 
1279   FOR_EACH_VEC_ELT (exits, i, exit)
1280     {
1281       call = gimple_build_call (FENCE_FOLLOWING_MOVNT, 0);
1282 
1283       if (!single_pred_p (exit->dest)
1284 	  /* If possible, we prefer not to insert the fence on other paths
1285 	     in cfg.  */
1286 	  && !(exit->flags & EDGE_ABNORMAL))
1287 	split_loop_exit_edge (exit);
1288       bsi = gsi_after_labels (exit->dest);
1289 
1290       gsi_insert_before (&bsi, call, GSI_NEW_STMT);
1291     }
1292 
1293   exits.release ();
1294   update_ssa (TODO_update_ssa_only_virtuals);
1295 }
1296 
1297 /* Returns true if we can use storent in loop, false otherwise.  */
1298 
1299 static bool
1300 may_use_storent_in_loop_p (struct loop *loop)
1301 {
1302   bool ret = true;
1303 
1304   if (loop->inner != NULL)
1305     return false;
1306 
1307   /* If we must issue a mfence insn after using storent, check that there
1308      is a suitable place for it at each of the loop exits.  */
1309   if (FENCE_FOLLOWING_MOVNT != NULL_TREE)
1310     {
1311       vec<edge> exits = get_loop_exit_edges (loop);
1312       unsigned i;
1313       edge exit;
1314 
1315       FOR_EACH_VEC_ELT (exits, i, exit)
1316 	if ((exit->flags & EDGE_ABNORMAL)
1317 	    && exit->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
1318 	  ret = false;
1319 
1320       exits.release ();
1321     }
1322 
1323   return ret;
1324 }
1325 
1326 /* Marks nontemporal stores in LOOP.  GROUPS contains the description of memory
1327    references in the loop.  */
1328 
1329 static void
1330 mark_nontemporal_stores (struct loop *loop, struct mem_ref_group *groups)
1331 {
1332   struct mem_ref *ref;
1333   bool any = false;
1334 
1335   if (!may_use_storent_in_loop_p (loop))
1336     return;
1337 
1338   for (; groups; groups = groups->next)
1339     for (ref = groups->refs; ref; ref = ref->next)
1340       any |= mark_nontemporal_store (ref);
1341 
1342   if (any && FENCE_FOLLOWING_MOVNT != NULL_TREE)
1343     emit_mfence_after_loop (loop);
1344 }
1345 
1346 /* Determines whether we can profitably unroll LOOP FACTOR times, and if
1347    this is the case, fill in DESC by the description of number of
1348    iterations.  */
1349 
1350 static bool
1351 should_unroll_loop_p (struct loop *loop, struct tree_niter_desc *desc,
1352 		      unsigned factor)
1353 {
1354   if (!can_unroll_loop_p (loop, factor, desc))
1355     return false;
1356 
1357   /* We only consider loops without control flow for unrolling.  This is not
1358      a hard restriction -- tree_unroll_loop works with arbitrary loops
1359      as well; but the unrolling/prefetching is usually more profitable for
1360      loops consisting of a single basic block, and we want to limit the
1361      code growth.  */
1362   if (loop->num_nodes > 2)
1363     return false;
1364 
1365   return true;
1366 }
1367 
1368 /* Determine the coefficient by that unroll LOOP, from the information
1369    contained in the list of memory references REFS.  Description of
1370    umber of iterations of LOOP is stored to DESC.  NINSNS is the number of
1371    insns of the LOOP.  EST_NITER is the estimated number of iterations of
1372    the loop, or -1 if no estimate is available.  */
1373 
1374 static unsigned
1375 determine_unroll_factor (struct loop *loop, struct mem_ref_group *refs,
1376 			 unsigned ninsns, struct tree_niter_desc *desc,
1377 			 HOST_WIDE_INT est_niter)
1378 {
1379   unsigned upper_bound;
1380   unsigned nfactor, factor, mod_constraint;
1381   struct mem_ref_group *agp;
1382   struct mem_ref *ref;
1383 
1384   /* First check whether the loop is not too large to unroll.  We ignore
1385      PARAM_MAX_UNROLL_TIMES, because for small loops, it prevented us
1386      from unrolling them enough to make exactly one cache line covered by each
1387      iteration.  Also, the goal of PARAM_MAX_UNROLL_TIMES is to prevent
1388      us from unrolling the loops too many times in cases where we only expect
1389      gains from better scheduling and decreasing loop overhead, which is not
1390      the case here.  */
1391   upper_bound = PARAM_VALUE (PARAM_MAX_UNROLLED_INSNS) / ninsns;
1392 
1393   /* If we unrolled the loop more times than it iterates, the unrolled version
1394      of the loop would be never entered.  */
1395   if (est_niter >= 0 && est_niter < (HOST_WIDE_INT) upper_bound)
1396     upper_bound = est_niter;
1397 
1398   if (upper_bound <= 1)
1399     return 1;
1400 
1401   /* Choose the factor so that we may prefetch each cache just once,
1402      but bound the unrolling by UPPER_BOUND.  */
1403   factor = 1;
1404   for (agp = refs; agp; agp = agp->next)
1405     for (ref = agp->refs; ref; ref = ref->next)
1406       if (should_issue_prefetch_p (ref))
1407 	{
1408 	  mod_constraint = ref->prefetch_mod;
1409 	  nfactor = least_common_multiple (mod_constraint, factor);
1410 	  if (nfactor <= upper_bound)
1411 	    factor = nfactor;
1412 	}
1413 
1414   if (!should_unroll_loop_p (loop, desc, factor))
1415     return 1;
1416 
1417   return factor;
1418 }
1419 
1420 /* Returns the total volume of the memory references REFS, taking into account
1421    reuses in the innermost loop and cache line size.  TODO -- we should also
1422    take into account reuses across the iterations of the loops in the loop
1423    nest.  */
1424 
1425 static unsigned
1426 volume_of_references (struct mem_ref_group *refs)
1427 {
1428   unsigned volume = 0;
1429   struct mem_ref_group *gr;
1430   struct mem_ref *ref;
1431 
1432   for (gr = refs; gr; gr = gr->next)
1433     for (ref = gr->refs; ref; ref = ref->next)
1434       {
1435 	/* Almost always reuses another value?  */
1436 	if (ref->prefetch_before != PREFETCH_ALL)
1437 	  continue;
1438 
1439 	/* If several iterations access the same cache line, use the size of
1440 	   the line divided by this number.  Otherwise, a cache line is
1441 	   accessed in each iteration.  TODO -- in the latter case, we should
1442 	   take the size of the reference into account, rounding it up on cache
1443 	   line size multiple.  */
1444 	volume += L1_CACHE_LINE_SIZE / ref->prefetch_mod;
1445       }
1446   return volume;
1447 }
1448 
1449 /* Returns the volume of memory references accessed across VEC iterations of
1450    loops, whose sizes are described in the LOOP_SIZES array.  N is the number
1451    of the loops in the nest (length of VEC and LOOP_SIZES vectors).  */
1452 
1453 static unsigned
1454 volume_of_dist_vector (lambda_vector vec, unsigned *loop_sizes, unsigned n)
1455 {
1456   unsigned i;
1457 
1458   for (i = 0; i < n; i++)
1459     if (vec[i] != 0)
1460       break;
1461 
1462   if (i == n)
1463     return 0;
1464 
1465   gcc_assert (vec[i] > 0);
1466 
1467   /* We ignore the parts of the distance vector in subloops, since usually
1468      the numbers of iterations are much smaller.  */
1469   return loop_sizes[i] * vec[i];
1470 }
1471 
1472 /* Add the steps of ACCESS_FN multiplied by STRIDE to the array STRIDE
1473    at the position corresponding to the loop of the step.  N is the depth
1474    of the considered loop nest, and, LOOP is its innermost loop.  */
1475 
1476 static void
1477 add_subscript_strides (tree access_fn, unsigned stride,
1478 		       HOST_WIDE_INT *strides, unsigned n, struct loop *loop)
1479 {
1480   struct loop *aloop;
1481   tree step;
1482   HOST_WIDE_INT astep;
1483   unsigned min_depth = loop_depth (loop) - n;
1484 
1485   while (TREE_CODE (access_fn) == POLYNOMIAL_CHREC)
1486     {
1487       aloop = get_chrec_loop (access_fn);
1488       step = CHREC_RIGHT (access_fn);
1489       access_fn = CHREC_LEFT (access_fn);
1490 
1491       if ((unsigned) loop_depth (aloop) <= min_depth)
1492 	continue;
1493 
1494       if (tree_fits_shwi_p (step))
1495 	astep = tree_to_shwi (step);
1496       else
1497 	astep = L1_CACHE_LINE_SIZE;
1498 
1499       strides[n - 1 - loop_depth (loop) + loop_depth (aloop)] += astep * stride;
1500 
1501     }
1502 }
1503 
1504 /* Returns the volume of memory references accessed between two consecutive
1505    self-reuses of the reference DR.  We consider the subscripts of DR in N
1506    loops, and LOOP_SIZES contains the volumes of accesses in each of the
1507    loops.  LOOP is the innermost loop of the current loop nest.  */
1508 
1509 static unsigned
1510 self_reuse_distance (data_reference_p dr, unsigned *loop_sizes, unsigned n,
1511 		     struct loop *loop)
1512 {
1513   tree stride, access_fn;
1514   HOST_WIDE_INT *strides, astride;
1515   vec<tree> access_fns;
1516   tree ref = DR_REF (dr);
1517   unsigned i, ret = ~0u;
1518 
1519   /* In the following example:
1520 
1521      for (i = 0; i < N; i++)
1522        for (j = 0; j < N; j++)
1523          use (a[j][i]);
1524      the same cache line is accessed each N steps (except if the change from
1525      i to i + 1 crosses the boundary of the cache line).  Thus, for self-reuse,
1526      we cannot rely purely on the results of the data dependence analysis.
1527 
1528      Instead, we compute the stride of the reference in each loop, and consider
1529      the innermost loop in that the stride is less than cache size.  */
1530 
1531   strides = XCNEWVEC (HOST_WIDE_INT, n);
1532   access_fns = DR_ACCESS_FNS (dr);
1533 
1534   FOR_EACH_VEC_ELT (access_fns, i, access_fn)
1535     {
1536       /* Keep track of the reference corresponding to the subscript, so that we
1537 	 know its stride.  */
1538       while (handled_component_p (ref) && TREE_CODE (ref) != ARRAY_REF)
1539 	ref = TREE_OPERAND (ref, 0);
1540 
1541       if (TREE_CODE (ref) == ARRAY_REF)
1542 	{
1543 	  stride = TYPE_SIZE_UNIT (TREE_TYPE (ref));
1544 	  if (tree_fits_uhwi_p (stride))
1545 	    astride = tree_to_uhwi (stride);
1546 	  else
1547 	    astride = L1_CACHE_LINE_SIZE;
1548 
1549 	  ref = TREE_OPERAND (ref, 0);
1550 	}
1551       else
1552 	astride = 1;
1553 
1554       add_subscript_strides (access_fn, astride, strides, n, loop);
1555     }
1556 
1557   for (i = n; i-- > 0; )
1558     {
1559       unsigned HOST_WIDE_INT s;
1560 
1561       s = strides[i] < 0 ?  -strides[i] : strides[i];
1562 
1563       if (s < (unsigned) L1_CACHE_LINE_SIZE
1564 	  && (loop_sizes[i]
1565 	      > (unsigned) (L1_CACHE_SIZE_BYTES / NONTEMPORAL_FRACTION)))
1566 	{
1567 	  ret = loop_sizes[i];
1568 	  break;
1569 	}
1570     }
1571 
1572   free (strides);
1573   return ret;
1574 }
1575 
1576 /* Determines the distance till the first reuse of each reference in REFS
1577    in the loop nest of LOOP.  NO_OTHER_REFS is true if there are no other
1578    memory references in the loop.  Return false if the analysis fails.  */
1579 
1580 static bool
1581 determine_loop_nest_reuse (struct loop *loop, struct mem_ref_group *refs,
1582 			   bool no_other_refs)
1583 {
1584   struct loop *nest, *aloop;
1585   vec<data_reference_p> datarefs = vNULL;
1586   vec<ddr_p> dependences = vNULL;
1587   struct mem_ref_group *gr;
1588   struct mem_ref *ref, *refb;
1589   vec<loop_p> vloops = vNULL;
1590   unsigned *loop_data_size;
1591   unsigned i, j, n;
1592   unsigned volume, dist, adist;
1593   HOST_WIDE_INT vol;
1594   data_reference_p dr;
1595   ddr_p dep;
1596 
1597   if (loop->inner)
1598     return true;
1599 
1600   /* Find the outermost loop of the loop nest of loop (we require that
1601      there are no sibling loops inside the nest).  */
1602   nest = loop;
1603   while (1)
1604     {
1605       aloop = loop_outer (nest);
1606 
1607       if (aloop == current_loops->tree_root
1608 	  || aloop->inner->next)
1609 	break;
1610 
1611       nest = aloop;
1612     }
1613 
1614   /* For each loop, determine the amount of data accessed in each iteration.
1615      We use this to estimate whether the reference is evicted from the
1616      cache before its reuse.  */
1617   find_loop_nest (nest, &vloops);
1618   n = vloops.length ();
1619   loop_data_size = XNEWVEC (unsigned, n);
1620   volume = volume_of_references (refs);
1621   i = n;
1622   while (i-- != 0)
1623     {
1624       loop_data_size[i] = volume;
1625       /* Bound the volume by the L2 cache size, since above this bound,
1626 	 all dependence distances are equivalent.  */
1627       if (volume > L2_CACHE_SIZE_BYTES)
1628 	continue;
1629 
1630       aloop = vloops[i];
1631       vol = estimated_stmt_executions_int (aloop);
1632       if (vol == -1)
1633 	vol = expected_loop_iterations (aloop);
1634       volume *= vol;
1635     }
1636 
1637   /* Prepare the references in the form suitable for data dependence
1638      analysis.  We ignore unanalyzable data references (the results
1639      are used just as a heuristics to estimate temporality of the
1640      references, hence we do not need to worry about correctness).  */
1641   for (gr = refs; gr; gr = gr->next)
1642     for (ref = gr->refs; ref; ref = ref->next)
1643       {
1644 	dr = create_data_ref (nest, loop_containing_stmt (ref->stmt),
1645 			      ref->mem, ref->stmt, !ref->write_p);
1646 
1647 	if (dr)
1648 	  {
1649 	    ref->reuse_distance = volume;
1650 	    dr->aux = ref;
1651 	    datarefs.safe_push (dr);
1652 	  }
1653 	else
1654 	  no_other_refs = false;
1655       }
1656 
1657   FOR_EACH_VEC_ELT (datarefs, i, dr)
1658     {
1659       dist = self_reuse_distance (dr, loop_data_size, n, loop);
1660       ref = (struct mem_ref *) dr->aux;
1661       if (ref->reuse_distance > dist)
1662 	ref->reuse_distance = dist;
1663 
1664       if (no_other_refs)
1665 	ref->independent_p = true;
1666     }
1667 
1668   if (!compute_all_dependences (datarefs, &dependences, vloops, true))
1669     return false;
1670 
1671   FOR_EACH_VEC_ELT (dependences, i, dep)
1672     {
1673       if (DDR_ARE_DEPENDENT (dep) == chrec_known)
1674 	continue;
1675 
1676       ref = (struct mem_ref *) DDR_A (dep)->aux;
1677       refb = (struct mem_ref *) DDR_B (dep)->aux;
1678 
1679       if (DDR_ARE_DEPENDENT (dep) == chrec_dont_know
1680 	  || DDR_NUM_DIST_VECTS (dep) == 0)
1681 	{
1682 	  /* If the dependence cannot be analyzed, assume that there might be
1683 	     a reuse.  */
1684 	  dist = 0;
1685 
1686 	  ref->independent_p = false;
1687 	  refb->independent_p = false;
1688 	}
1689       else
1690 	{
1691 	  /* The distance vectors are normalized to be always lexicographically
1692 	     positive, hence we cannot tell just from them whether DDR_A comes
1693 	     before DDR_B or vice versa.  However, it is not important,
1694 	     anyway -- if DDR_A is close to DDR_B, then it is either reused in
1695 	     DDR_B (and it is not nontemporal), or it reuses the value of DDR_B
1696 	     in cache (and marking it as nontemporal would not affect
1697 	     anything).  */
1698 
1699 	  dist = volume;
1700 	  for (j = 0; j < DDR_NUM_DIST_VECTS (dep); j++)
1701 	    {
1702 	      adist = volume_of_dist_vector (DDR_DIST_VECT (dep, j),
1703 					     loop_data_size, n);
1704 
1705 	      /* If this is a dependence in the innermost loop (i.e., the
1706 		 distances in all superloops are zero) and it is not
1707 		 the trivial self-dependence with distance zero, record that
1708 		 the references are not completely independent.  */
1709 	      if (lambda_vector_zerop (DDR_DIST_VECT (dep, j), n - 1)
1710 		  && (ref != refb
1711 		      || DDR_DIST_VECT (dep, j)[n-1] != 0))
1712 		{
1713 		  ref->independent_p = false;
1714 		  refb->independent_p = false;
1715 		}
1716 
1717 	      /* Ignore accesses closer than
1718 		 L1_CACHE_SIZE_BYTES / NONTEMPORAL_FRACTION,
1719 	      	 so that we use nontemporal prefetches e.g. if single memory
1720 		 location is accessed several times in a single iteration of
1721 		 the loop.  */
1722 	      if (adist < L1_CACHE_SIZE_BYTES / NONTEMPORAL_FRACTION)
1723 		continue;
1724 
1725 	      if (adist < dist)
1726 		dist = adist;
1727 	    }
1728 	}
1729 
1730       if (ref->reuse_distance > dist)
1731 	ref->reuse_distance = dist;
1732       if (refb->reuse_distance > dist)
1733 	refb->reuse_distance = dist;
1734     }
1735 
1736   free_dependence_relations (dependences);
1737   free_data_refs (datarefs);
1738   free (loop_data_size);
1739 
1740   if (dump_file && (dump_flags & TDF_DETAILS))
1741     {
1742       fprintf (dump_file, "Reuse distances:\n");
1743       for (gr = refs; gr; gr = gr->next)
1744 	for (ref = gr->refs; ref; ref = ref->next)
1745 	  fprintf (dump_file, " ref %p distance %u\n",
1746 		   (void *) ref, ref->reuse_distance);
1747     }
1748 
1749   return true;
1750 }
1751 
1752 /* Determine whether or not the trip count to ahead ratio is too small based
1753    on prefitablility consideration.
1754    AHEAD: the iteration ahead distance,
1755    EST_NITER: the estimated trip count.  */
1756 
1757 static bool
1758 trip_count_to_ahead_ratio_too_small_p (unsigned ahead, HOST_WIDE_INT est_niter)
1759 {
1760   /* Assume trip count to ahead ratio is big enough if the trip count could not
1761      be estimated at compile time.  */
1762   if (est_niter < 0)
1763     return false;
1764 
1765   if (est_niter < (HOST_WIDE_INT) (TRIP_COUNT_TO_AHEAD_RATIO * ahead))
1766     {
1767       if (dump_file && (dump_flags & TDF_DETAILS))
1768 	fprintf (dump_file,
1769 		 "Not prefetching -- loop estimated to roll only %d times\n",
1770 		 (int) est_niter);
1771       return true;
1772     }
1773 
1774   return false;
1775 }
1776 
1777 /* Determine whether or not the number of memory references in the loop is
1778    reasonable based on the profitablity and compilation time considerations.
1779    NINSNS: estimated number of instructions in the loop,
1780    MEM_REF_COUNT: total number of memory references in the loop.  */
1781 
1782 static bool
1783 mem_ref_count_reasonable_p (unsigned ninsns, unsigned mem_ref_count)
1784 {
1785   int insn_to_mem_ratio;
1786 
1787   if (mem_ref_count == 0)
1788     return false;
1789 
1790   /* Miss rate computation (is_miss_rate_acceptable) and dependence analysis
1791      (compute_all_dependences) have high costs based on quadratic complexity.
1792      To avoid huge compilation time, we give up prefetching if mem_ref_count
1793      is too large.  */
1794   if (mem_ref_count > PREFETCH_MAX_MEM_REFS_PER_LOOP)
1795     return false;
1796 
1797   /* Prefetching improves performance by overlapping cache missing
1798      memory accesses with CPU operations.  If the loop does not have
1799      enough CPU operations to overlap with memory operations, prefetching
1800      won't give a significant benefit.  One approximate way of checking
1801      this is to require the ratio of instructions to memory references to
1802      be above a certain limit.  This approximation works well in practice.
1803      TODO: Implement a more precise computation by estimating the time
1804      for each CPU or memory op in the loop. Time estimates for memory ops
1805      should account for cache misses.  */
1806   insn_to_mem_ratio = ninsns / mem_ref_count;
1807 
1808   if (insn_to_mem_ratio < PREFETCH_MIN_INSN_TO_MEM_RATIO)
1809     {
1810       if (dump_file && (dump_flags & TDF_DETAILS))
1811         fprintf (dump_file,
1812 		 "Not prefetching -- instruction to memory reference ratio (%d) too small\n",
1813 		 insn_to_mem_ratio);
1814       return false;
1815     }
1816 
1817   return true;
1818 }
1819 
1820 /* Determine whether or not the instruction to prefetch ratio in the loop is
1821    too small based on the profitablity consideration.
1822    NINSNS: estimated number of instructions in the loop,
1823    PREFETCH_COUNT: an estimate of the number of prefetches,
1824    UNROLL_FACTOR:  the factor to unroll the loop if prefetching.  */
1825 
1826 static bool
1827 insn_to_prefetch_ratio_too_small_p (unsigned ninsns, unsigned prefetch_count,
1828                                      unsigned unroll_factor)
1829 {
1830   int insn_to_prefetch_ratio;
1831 
1832   /* Prefetching most likely causes performance degradation when the instruction
1833      to prefetch ratio is too small.  Too many prefetch instructions in a loop
1834      may reduce the I-cache performance.
1835      (unroll_factor * ninsns) is used to estimate the number of instructions in
1836      the unrolled loop.  This implementation is a bit simplistic -- the number
1837      of issued prefetch instructions is also affected by unrolling.  So,
1838      prefetch_mod and the unroll factor should be taken into account when
1839      determining prefetch_count.  Also, the number of insns of the unrolled
1840      loop will usually be significantly smaller than the number of insns of the
1841      original loop * unroll_factor (at least the induction variable increases
1842      and the exit branches will get eliminated), so it might be better to use
1843      tree_estimate_loop_size + estimated_unrolled_size.  */
1844   insn_to_prefetch_ratio = (unroll_factor * ninsns) / prefetch_count;
1845   if (insn_to_prefetch_ratio < MIN_INSN_TO_PREFETCH_RATIO)
1846     {
1847       if (dump_file && (dump_flags & TDF_DETAILS))
1848         fprintf (dump_file,
1849 		 "Not prefetching -- instruction to prefetch ratio (%d) too small\n",
1850 		 insn_to_prefetch_ratio);
1851       return true;
1852     }
1853 
1854   return false;
1855 }
1856 
1857 
1858 /* Issue prefetch instructions for array references in LOOP.  Returns
1859    true if the LOOP was unrolled.  */
1860 
1861 static bool
1862 loop_prefetch_arrays (struct loop *loop)
1863 {
1864   struct mem_ref_group *refs;
1865   unsigned ahead, ninsns, time, unroll_factor;
1866   HOST_WIDE_INT est_niter;
1867   struct tree_niter_desc desc;
1868   bool unrolled = false, no_other_refs;
1869   unsigned prefetch_count;
1870   unsigned mem_ref_count;
1871 
1872   if (optimize_loop_nest_for_size_p (loop))
1873     {
1874       if (dump_file && (dump_flags & TDF_DETAILS))
1875 	fprintf (dump_file, "  ignored (cold area)\n");
1876       return false;
1877     }
1878 
1879   /* FIXME: the time should be weighted by the probabilities of the blocks in
1880      the loop body.  */
1881   time = tree_num_loop_insns (loop, &eni_time_weights);
1882   if (time == 0)
1883     return false;
1884 
1885   ahead = (PREFETCH_LATENCY + time - 1) / time;
1886   est_niter = estimated_stmt_executions_int (loop);
1887   if (est_niter == -1)
1888     est_niter = max_stmt_executions_int (loop);
1889 
1890   /* Prefetching is not likely to be profitable if the trip count to ahead
1891      ratio is too small.  */
1892   if (trip_count_to_ahead_ratio_too_small_p (ahead, est_niter))
1893     return false;
1894 
1895   ninsns = tree_num_loop_insns (loop, &eni_size_weights);
1896 
1897   /* Step 1: gather the memory references.  */
1898   refs = gather_memory_references (loop, &no_other_refs, &mem_ref_count);
1899 
1900   /* Give up prefetching if the number of memory references in the
1901      loop is not reasonable based on profitablity and compilation time
1902      considerations.  */
1903   if (!mem_ref_count_reasonable_p (ninsns, mem_ref_count))
1904     goto fail;
1905 
1906   /* Step 2: estimate the reuse effects.  */
1907   prune_by_reuse (refs);
1908 
1909   if (nothing_to_prefetch_p (refs))
1910     goto fail;
1911 
1912   if (!determine_loop_nest_reuse (loop, refs, no_other_refs))
1913     goto fail;
1914 
1915   /* Step 3: determine unroll factor.  */
1916   unroll_factor = determine_unroll_factor (loop, refs, ninsns, &desc,
1917 					   est_niter);
1918 
1919   /* Estimate prefetch count for the unrolled loop.  */
1920   prefetch_count = estimate_prefetch_count (refs, unroll_factor);
1921   if (prefetch_count == 0)
1922     goto fail;
1923 
1924   if (dump_file && (dump_flags & TDF_DETAILS))
1925     fprintf (dump_file, "Ahead %d, unroll factor %d, trip count "
1926 	     HOST_WIDE_INT_PRINT_DEC "\n"
1927 	     "insn count %d, mem ref count %d, prefetch count %d\n",
1928 	     ahead, unroll_factor, est_niter,
1929 	     ninsns, mem_ref_count, prefetch_count);
1930 
1931   /* Prefetching is not likely to be profitable if the instruction to prefetch
1932      ratio is too small.  */
1933   if (insn_to_prefetch_ratio_too_small_p (ninsns, prefetch_count,
1934 					  unroll_factor))
1935     goto fail;
1936 
1937   mark_nontemporal_stores (loop, refs);
1938 
1939   /* Step 4: what to prefetch?  */
1940   if (!schedule_prefetches (refs, unroll_factor, ahead))
1941     goto fail;
1942 
1943   /* Step 5: unroll the loop.  TODO -- peeling of first and last few
1944      iterations so that we do not issue superfluous prefetches.  */
1945   if (unroll_factor != 1)
1946     {
1947       tree_unroll_loop (loop, unroll_factor,
1948 			single_dom_exit (loop), &desc);
1949       unrolled = true;
1950     }
1951 
1952   /* Step 6: issue the prefetches.  */
1953   issue_prefetches (refs, unroll_factor, ahead);
1954 
1955 fail:
1956   release_mem_refs (refs);
1957   return unrolled;
1958 }
1959 
1960 /* Issue prefetch instructions for array references in loops.  */
1961 
1962 unsigned int
1963 tree_ssa_prefetch_arrays (void)
1964 {
1965   struct loop *loop;
1966   bool unrolled = false;
1967   int todo_flags = 0;
1968 
1969   if (!HAVE_prefetch
1970       /* It is possible to ask compiler for say -mtune=i486 -march=pentium4.
1971 	 -mtune=i486 causes us having PREFETCH_BLOCK 0, since this is part
1972 	 of processor costs and i486 does not have prefetch, but
1973 	 -march=pentium4 causes HAVE_prefetch to be true.  Ugh.  */
1974       || PREFETCH_BLOCK == 0)
1975     return 0;
1976 
1977   if (dump_file && (dump_flags & TDF_DETAILS))
1978     {
1979       fprintf (dump_file, "Prefetching parameters:\n");
1980       fprintf (dump_file, "    simultaneous prefetches: %d\n",
1981 	       SIMULTANEOUS_PREFETCHES);
1982       fprintf (dump_file, "    prefetch latency: %d\n", PREFETCH_LATENCY);
1983       fprintf (dump_file, "    prefetch block size: %d\n", PREFETCH_BLOCK);
1984       fprintf (dump_file, "    L1 cache size: %d lines, %d kB\n",
1985 	       L1_CACHE_SIZE_BYTES / L1_CACHE_LINE_SIZE, L1_CACHE_SIZE);
1986       fprintf (dump_file, "    L1 cache line size: %d\n", L1_CACHE_LINE_SIZE);
1987       fprintf (dump_file, "    L2 cache size: %d kB\n", L2_CACHE_SIZE);
1988       fprintf (dump_file, "    min insn-to-prefetch ratio: %d \n",
1989 	       MIN_INSN_TO_PREFETCH_RATIO);
1990       fprintf (dump_file, "    min insn-to-mem ratio: %d \n",
1991 	       PREFETCH_MIN_INSN_TO_MEM_RATIO);
1992       fprintf (dump_file, "\n");
1993     }
1994 
1995   initialize_original_copy_tables ();
1996 
1997   if (!builtin_decl_explicit_p (BUILT_IN_PREFETCH))
1998     {
1999       tree type = build_function_type_list (void_type_node,
2000 					    const_ptr_type_node, NULL_TREE);
2001       tree decl = add_builtin_function ("__builtin_prefetch", type,
2002 					BUILT_IN_PREFETCH, BUILT_IN_NORMAL,
2003 					NULL, NULL_TREE);
2004       DECL_IS_NOVOPS (decl) = true;
2005       set_builtin_decl (BUILT_IN_PREFETCH, decl, false);
2006     }
2007 
2008   /* We assume that size of cache line is a power of two, so verify this
2009      here.  */
2010   gcc_assert ((PREFETCH_BLOCK & (PREFETCH_BLOCK - 1)) == 0);
2011 
2012   FOR_EACH_LOOP (loop, LI_FROM_INNERMOST)
2013     {
2014       if (dump_file && (dump_flags & TDF_DETAILS))
2015 	fprintf (dump_file, "Processing loop %d:\n", loop->num);
2016 
2017       unrolled |= loop_prefetch_arrays (loop);
2018 
2019       if (dump_file && (dump_flags & TDF_DETAILS))
2020 	fprintf (dump_file, "\n\n");
2021     }
2022 
2023   if (unrolled)
2024     {
2025       scev_reset ();
2026       todo_flags |= TODO_cleanup_cfg;
2027     }
2028 
2029   free_original_copy_tables ();
2030   return todo_flags;
2031 }
2032 
2033 /* Prefetching.  */
2034 
2035 namespace {
2036 
2037 const pass_data pass_data_loop_prefetch =
2038 {
2039   GIMPLE_PASS, /* type */
2040   "aprefetch", /* name */
2041   OPTGROUP_LOOP, /* optinfo_flags */
2042   TV_TREE_PREFETCH, /* tv_id */
2043   ( PROP_cfg | PROP_ssa ), /* properties_required */
2044   0, /* properties_provided */
2045   0, /* properties_destroyed */
2046   0, /* todo_flags_start */
2047   0, /* todo_flags_finish */
2048 };
2049 
2050 class pass_loop_prefetch : public gimple_opt_pass
2051 {
2052 public:
2053   pass_loop_prefetch (gcc::context *ctxt)
2054     : gimple_opt_pass (pass_data_loop_prefetch, ctxt)
2055   {}
2056 
2057   /* opt_pass methods: */
2058   virtual bool gate (function *) { return flag_prefetch_loop_arrays > 0; }
2059   virtual unsigned int execute (function *);
2060 
2061 }; // class pass_loop_prefetch
2062 
2063 unsigned int
2064 pass_loop_prefetch::execute (function *fun)
2065 {
2066   if (number_of_loops (fun) <= 1)
2067     return 0;
2068 
2069   return tree_ssa_prefetch_arrays ();
2070 }
2071 
2072 } // anon namespace
2073 
2074 gimple_opt_pass *
2075 make_pass_loop_prefetch (gcc::context *ctxt)
2076 {
2077   return new pass_loop_prefetch (ctxt);
2078 }
2079 
2080 
2081