1 /* Array prefetching. 2 Copyright (C) 2005-2017 Free Software Foundation, Inc. 3 4 This file is part of GCC. 5 6 GCC is free software; you can redistribute it and/or modify it 7 under the terms of the GNU General Public License as published by the 8 Free Software Foundation; either version 3, or (at your option) any 9 later version. 10 11 GCC is distributed in the hope that it will be useful, but WITHOUT 12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 14 for more details. 15 16 You should have received a copy of the GNU General Public License 17 along with GCC; see the file COPYING3. If not see 18 <http://www.gnu.org/licenses/>. */ 19 20 #include "config.h" 21 #include "system.h" 22 #include "coretypes.h" 23 #include "backend.h" 24 #include "target.h" 25 #include "rtl.h" 26 #include "tree.h" 27 #include "gimple.h" 28 #include "predict.h" 29 #include "tree-pass.h" 30 #include "gimple-ssa.h" 31 #include "optabs-query.h" 32 #include "tree-pretty-print.h" 33 #include "fold-const.h" 34 #include "stor-layout.h" 35 #include "gimplify.h" 36 #include "gimple-iterator.h" 37 #include "gimplify-me.h" 38 #include "tree-ssa-loop-ivopts.h" 39 #include "tree-ssa-loop-manip.h" 40 #include "tree-ssa-loop-niter.h" 41 #include "tree-ssa-loop.h" 42 #include "ssa.h" 43 #include "tree-into-ssa.h" 44 #include "cfgloop.h" 45 #include "tree-scalar-evolution.h" 46 #include "params.h" 47 #include "langhooks.h" 48 #include "tree-inline.h" 49 #include "tree-data-ref.h" 50 #include "diagnostic-core.h" 51 52 /* This pass inserts prefetch instructions to optimize cache usage during 53 accesses to arrays in loops. It processes loops sequentially and: 54 55 1) Gathers all memory references in the single loop. 56 2) For each of the references it decides when it is profitable to prefetch 57 it. To do it, we evaluate the reuse among the accesses, and determines 58 two values: PREFETCH_BEFORE (meaning that it only makes sense to do 59 prefetching in the first PREFETCH_BEFORE iterations of the loop) and 60 PREFETCH_MOD (meaning that it only makes sense to prefetch in the 61 iterations of the loop that are zero modulo PREFETCH_MOD). For example 62 (assuming cache line size is 64 bytes, char has size 1 byte and there 63 is no hardware sequential prefetch): 64 65 char *a; 66 for (i = 0; i < max; i++) 67 { 68 a[255] = ...; (0) 69 a[i] = ...; (1) 70 a[i + 64] = ...; (2) 71 a[16*i] = ...; (3) 72 a[187*i] = ...; (4) 73 a[187*i + 50] = ...; (5) 74 } 75 76 (0) obviously has PREFETCH_BEFORE 1 77 (1) has PREFETCH_BEFORE 64, since (2) accesses the same memory 78 location 64 iterations before it, and PREFETCH_MOD 64 (since 79 it hits the same cache line otherwise). 80 (2) has PREFETCH_MOD 64 81 (3) has PREFETCH_MOD 4 82 (4) has PREFETCH_MOD 1. We do not set PREFETCH_BEFORE here, since 83 the cache line accessed by (5) is the same with probability only 84 7/32. 85 (5) has PREFETCH_MOD 1 as well. 86 87 Additionally, we use data dependence analysis to determine for each 88 reference the distance till the first reuse; this information is used 89 to determine the temporality of the issued prefetch instruction. 90 91 3) We determine how much ahead we need to prefetch. The number of 92 iterations needed is time to fetch / time spent in one iteration of 93 the loop. The problem is that we do not know either of these values, 94 so we just make a heuristic guess based on a magic (possibly) 95 target-specific constant and size of the loop. 96 97 4) Determine which of the references we prefetch. We take into account 98 that there is a maximum number of simultaneous prefetches (provided 99 by machine description). We prefetch as many prefetches as possible 100 while still within this bound (starting with those with lowest 101 prefetch_mod, since they are responsible for most of the cache 102 misses). 103 104 5) We unroll and peel loops so that we are able to satisfy PREFETCH_MOD 105 and PREFETCH_BEFORE requirements (within some bounds), and to avoid 106 prefetching nonaccessed memory. 107 TODO -- actually implement peeling. 108 109 6) We actually emit the prefetch instructions. ??? Perhaps emit the 110 prefetch instructions with guards in cases where 5) was not sufficient 111 to satisfy the constraints? 112 113 A cost model is implemented to determine whether or not prefetching is 114 profitable for a given loop. The cost model has three heuristics: 115 116 1. Function trip_count_to_ahead_ratio_too_small_p implements a 117 heuristic that determines whether or not the loop has too few 118 iterations (compared to ahead). Prefetching is not likely to be 119 beneficial if the trip count to ahead ratio is below a certain 120 minimum. 121 122 2. Function mem_ref_count_reasonable_p implements a heuristic that 123 determines whether the given loop has enough CPU ops that can be 124 overlapped with cache missing memory ops. If not, the loop 125 won't benefit from prefetching. In the implementation, 126 prefetching is not considered beneficial if the ratio between 127 the instruction count and the mem ref count is below a certain 128 minimum. 129 130 3. Function insn_to_prefetch_ratio_too_small_p implements a 131 heuristic that disables prefetching in a loop if the prefetching 132 cost is above a certain limit. The relative prefetching cost is 133 estimated by taking the ratio between the prefetch count and the 134 total intruction count (this models the I-cache cost). 135 136 The limits used in these heuristics are defined as parameters with 137 reasonable default values. Machine-specific default values will be 138 added later. 139 140 Some other TODO: 141 -- write and use more general reuse analysis (that could be also used 142 in other cache aimed loop optimizations) 143 -- make it behave sanely together with the prefetches given by user 144 (now we just ignore them; at the very least we should avoid 145 optimizing loops in that user put his own prefetches) 146 -- we assume cache line size alignment of arrays; this could be 147 improved. */ 148 149 /* Magic constants follow. These should be replaced by machine specific 150 numbers. */ 151 152 /* True if write can be prefetched by a read prefetch. */ 153 154 #ifndef WRITE_CAN_USE_READ_PREFETCH 155 #define WRITE_CAN_USE_READ_PREFETCH 1 156 #endif 157 158 /* True if read can be prefetched by a write prefetch. */ 159 160 #ifndef READ_CAN_USE_WRITE_PREFETCH 161 #define READ_CAN_USE_WRITE_PREFETCH 0 162 #endif 163 164 /* The size of the block loaded by a single prefetch. Usually, this is 165 the same as cache line size (at the moment, we only consider one level 166 of cache hierarchy). */ 167 168 #ifndef PREFETCH_BLOCK 169 #define PREFETCH_BLOCK L1_CACHE_LINE_SIZE 170 #endif 171 172 /* Do we have a forward hardware sequential prefetching? */ 173 174 #ifndef HAVE_FORWARD_PREFETCH 175 #define HAVE_FORWARD_PREFETCH 0 176 #endif 177 178 /* Do we have a backward hardware sequential prefetching? */ 179 180 #ifndef HAVE_BACKWARD_PREFETCH 181 #define HAVE_BACKWARD_PREFETCH 0 182 #endif 183 184 /* In some cases we are only able to determine that there is a certain 185 probability that the two accesses hit the same cache line. In this 186 case, we issue the prefetches for both of them if this probability 187 is less then (1000 - ACCEPTABLE_MISS_RATE) per thousand. */ 188 189 #ifndef ACCEPTABLE_MISS_RATE 190 #define ACCEPTABLE_MISS_RATE 50 191 #endif 192 193 #define L1_CACHE_SIZE_BYTES ((unsigned) (L1_CACHE_SIZE * 1024)) 194 #define L2_CACHE_SIZE_BYTES ((unsigned) (L2_CACHE_SIZE * 1024)) 195 196 /* We consider a memory access nontemporal if it is not reused sooner than 197 after L2_CACHE_SIZE_BYTES of memory are accessed. However, we ignore 198 accesses closer than L1_CACHE_SIZE_BYTES / NONTEMPORAL_FRACTION, 199 so that we use nontemporal prefetches e.g. if single memory location 200 is accessed several times in a single iteration of the loop. */ 201 #define NONTEMPORAL_FRACTION 16 202 203 /* In case we have to emit a memory fence instruction after the loop that 204 uses nontemporal stores, this defines the builtin to use. */ 205 206 #ifndef FENCE_FOLLOWING_MOVNT 207 #define FENCE_FOLLOWING_MOVNT NULL_TREE 208 #endif 209 210 /* It is not profitable to prefetch when the trip count is not at 211 least TRIP_COUNT_TO_AHEAD_RATIO times the prefetch ahead distance. 212 For example, in a loop with a prefetch ahead distance of 10, 213 supposing that TRIP_COUNT_TO_AHEAD_RATIO is equal to 4, it is 214 profitable to prefetch when the trip count is greater or equal to 215 40. In that case, 30 out of the 40 iterations will benefit from 216 prefetching. */ 217 218 #ifndef TRIP_COUNT_TO_AHEAD_RATIO 219 #define TRIP_COUNT_TO_AHEAD_RATIO 4 220 #endif 221 222 /* The group of references between that reuse may occur. */ 223 224 struct mem_ref_group 225 { 226 tree base; /* Base of the reference. */ 227 tree step; /* Step of the reference. */ 228 struct mem_ref *refs; /* References in the group. */ 229 struct mem_ref_group *next; /* Next group of references. */ 230 }; 231 232 /* Assigned to PREFETCH_BEFORE when all iterations are to be prefetched. */ 233 234 #define PREFETCH_ALL HOST_WIDE_INT_M1U 235 236 /* Do not generate a prefetch if the unroll factor is significantly less 237 than what is required by the prefetch. This is to avoid redundant 238 prefetches. For example, when prefetch_mod is 16 and unroll_factor is 239 2, prefetching requires unrolling the loop 16 times, but 240 the loop is actually unrolled twice. In this case (ratio = 8), 241 prefetching is not likely to be beneficial. */ 242 243 #ifndef PREFETCH_MOD_TO_UNROLL_FACTOR_RATIO 244 #define PREFETCH_MOD_TO_UNROLL_FACTOR_RATIO 4 245 #endif 246 247 /* Some of the prefetch computations have quadratic complexity. We want to 248 avoid huge compile times and, therefore, want to limit the amount of 249 memory references per loop where we consider prefetching. */ 250 251 #ifndef PREFETCH_MAX_MEM_REFS_PER_LOOP 252 #define PREFETCH_MAX_MEM_REFS_PER_LOOP 200 253 #endif 254 255 /* The memory reference. */ 256 257 struct mem_ref 258 { 259 gimple *stmt; /* Statement in that the reference appears. */ 260 tree mem; /* The reference. */ 261 HOST_WIDE_INT delta; /* Constant offset of the reference. */ 262 struct mem_ref_group *group; /* The group of references it belongs to. */ 263 unsigned HOST_WIDE_INT prefetch_mod; 264 /* Prefetch only each PREFETCH_MOD-th 265 iteration. */ 266 unsigned HOST_WIDE_INT prefetch_before; 267 /* Prefetch only first PREFETCH_BEFORE 268 iterations. */ 269 unsigned reuse_distance; /* The amount of data accessed before the first 270 reuse of this value. */ 271 struct mem_ref *next; /* The next reference in the group. */ 272 unsigned write_p : 1; /* Is it a write? */ 273 unsigned independent_p : 1; /* True if the reference is independent on 274 all other references inside the loop. */ 275 unsigned issue_prefetch_p : 1; /* Should we really issue the prefetch? */ 276 unsigned storent_p : 1; /* True if we changed the store to a 277 nontemporal one. */ 278 }; 279 280 /* Dumps information about memory reference */ 281 static void 282 dump_mem_details (FILE *file, tree base, tree step, 283 HOST_WIDE_INT delta, bool write_p) 284 { 285 fprintf (file, "(base "); 286 print_generic_expr (file, base, TDF_SLIM); 287 fprintf (file, ", step "); 288 if (cst_and_fits_in_hwi (step)) 289 fprintf (file, HOST_WIDE_INT_PRINT_DEC, int_cst_value (step)); 290 else 291 print_generic_expr (file, step, TDF_TREE); 292 fprintf (file, ")\n"); 293 fprintf (file, " delta "); 294 fprintf (file, HOST_WIDE_INT_PRINT_DEC, delta); 295 fprintf (file, "\n"); 296 fprintf (file, " %s\n", write_p ? "write" : "read"); 297 fprintf (file, "\n"); 298 } 299 300 /* Dumps information about reference REF to FILE. */ 301 302 static void 303 dump_mem_ref (FILE *file, struct mem_ref *ref) 304 { 305 fprintf (file, "Reference %p:\n", (void *) ref); 306 307 fprintf (file, " group %p ", (void *) ref->group); 308 309 dump_mem_details (file, ref->group->base, ref->group->step, ref->delta, 310 ref->write_p); 311 } 312 313 /* Finds a group with BASE and STEP in GROUPS, or creates one if it does not 314 exist. */ 315 316 static struct mem_ref_group * 317 find_or_create_group (struct mem_ref_group **groups, tree base, tree step) 318 { 319 struct mem_ref_group *group; 320 321 for (; *groups; groups = &(*groups)->next) 322 { 323 if (operand_equal_p ((*groups)->step, step, 0) 324 && operand_equal_p ((*groups)->base, base, 0)) 325 return *groups; 326 327 /* If step is an integer constant, keep the list of groups sorted 328 by decreasing step. */ 329 if (cst_and_fits_in_hwi ((*groups)->step) && cst_and_fits_in_hwi (step) 330 && int_cst_value ((*groups)->step) < int_cst_value (step)) 331 break; 332 } 333 334 group = XNEW (struct mem_ref_group); 335 group->base = base; 336 group->step = step; 337 group->refs = NULL; 338 group->next = *groups; 339 *groups = group; 340 341 return group; 342 } 343 344 /* Records a memory reference MEM in GROUP with offset DELTA and write status 345 WRITE_P. The reference occurs in statement STMT. */ 346 347 static void 348 record_ref (struct mem_ref_group *group, gimple *stmt, tree mem, 349 HOST_WIDE_INT delta, bool write_p) 350 { 351 struct mem_ref **aref; 352 353 /* Do not record the same address twice. */ 354 for (aref = &group->refs; *aref; aref = &(*aref)->next) 355 { 356 /* It does not have to be possible for write reference to reuse the read 357 prefetch, or vice versa. */ 358 if (!WRITE_CAN_USE_READ_PREFETCH 359 && write_p 360 && !(*aref)->write_p) 361 continue; 362 if (!READ_CAN_USE_WRITE_PREFETCH 363 && !write_p 364 && (*aref)->write_p) 365 continue; 366 367 if ((*aref)->delta == delta) 368 return; 369 } 370 371 (*aref) = XNEW (struct mem_ref); 372 (*aref)->stmt = stmt; 373 (*aref)->mem = mem; 374 (*aref)->delta = delta; 375 (*aref)->write_p = write_p; 376 (*aref)->prefetch_before = PREFETCH_ALL; 377 (*aref)->prefetch_mod = 1; 378 (*aref)->reuse_distance = 0; 379 (*aref)->issue_prefetch_p = false; 380 (*aref)->group = group; 381 (*aref)->next = NULL; 382 (*aref)->independent_p = false; 383 (*aref)->storent_p = false; 384 385 if (dump_file && (dump_flags & TDF_DETAILS)) 386 dump_mem_ref (dump_file, *aref); 387 } 388 389 /* Release memory references in GROUPS. */ 390 391 static void 392 release_mem_refs (struct mem_ref_group *groups) 393 { 394 struct mem_ref_group *next_g; 395 struct mem_ref *ref, *next_r; 396 397 for (; groups; groups = next_g) 398 { 399 next_g = groups->next; 400 for (ref = groups->refs; ref; ref = next_r) 401 { 402 next_r = ref->next; 403 free (ref); 404 } 405 free (groups); 406 } 407 } 408 409 /* A structure used to pass arguments to idx_analyze_ref. */ 410 411 struct ar_data 412 { 413 struct loop *loop; /* Loop of the reference. */ 414 gimple *stmt; /* Statement of the reference. */ 415 tree *step; /* Step of the memory reference. */ 416 HOST_WIDE_INT *delta; /* Offset of the memory reference. */ 417 }; 418 419 /* Analyzes a single INDEX of a memory reference to obtain information 420 described at analyze_ref. Callback for for_each_index. */ 421 422 static bool 423 idx_analyze_ref (tree base, tree *index, void *data) 424 { 425 struct ar_data *ar_data = (struct ar_data *) data; 426 tree ibase, step, stepsize; 427 HOST_WIDE_INT idelta = 0, imult = 1; 428 affine_iv iv; 429 430 if (!simple_iv (ar_data->loop, loop_containing_stmt (ar_data->stmt), 431 *index, &iv, true)) 432 return false; 433 ibase = iv.base; 434 step = iv.step; 435 436 if (TREE_CODE (ibase) == POINTER_PLUS_EXPR 437 && cst_and_fits_in_hwi (TREE_OPERAND (ibase, 1))) 438 { 439 idelta = int_cst_value (TREE_OPERAND (ibase, 1)); 440 ibase = TREE_OPERAND (ibase, 0); 441 } 442 if (cst_and_fits_in_hwi (ibase)) 443 { 444 idelta += int_cst_value (ibase); 445 ibase = build_int_cst (TREE_TYPE (ibase), 0); 446 } 447 448 if (TREE_CODE (base) == ARRAY_REF) 449 { 450 stepsize = array_ref_element_size (base); 451 if (!cst_and_fits_in_hwi (stepsize)) 452 return false; 453 imult = int_cst_value (stepsize); 454 step = fold_build2 (MULT_EXPR, sizetype, 455 fold_convert (sizetype, step), 456 fold_convert (sizetype, stepsize)); 457 idelta *= imult; 458 } 459 460 if (*ar_data->step == NULL_TREE) 461 *ar_data->step = step; 462 else 463 *ar_data->step = fold_build2 (PLUS_EXPR, sizetype, 464 fold_convert (sizetype, *ar_data->step), 465 fold_convert (sizetype, step)); 466 *ar_data->delta += idelta; 467 *index = ibase; 468 469 return true; 470 } 471 472 /* Tries to express REF_P in shape &BASE + STEP * iter + DELTA, where DELTA and 473 STEP are integer constants and iter is number of iterations of LOOP. The 474 reference occurs in statement STMT. Strips nonaddressable component 475 references from REF_P. */ 476 477 static bool 478 analyze_ref (struct loop *loop, tree *ref_p, tree *base, 479 tree *step, HOST_WIDE_INT *delta, 480 gimple *stmt) 481 { 482 struct ar_data ar_data; 483 tree off; 484 HOST_WIDE_INT bit_offset; 485 tree ref = *ref_p; 486 487 *step = NULL_TREE; 488 *delta = 0; 489 490 /* First strip off the component references. Ignore bitfields. 491 Also strip off the real and imagine parts of a complex, so that 492 they can have the same base. */ 493 if (TREE_CODE (ref) == REALPART_EXPR 494 || TREE_CODE (ref) == IMAGPART_EXPR 495 || (TREE_CODE (ref) == COMPONENT_REF 496 && DECL_NONADDRESSABLE_P (TREE_OPERAND (ref, 1)))) 497 { 498 if (TREE_CODE (ref) == IMAGPART_EXPR) 499 *delta += int_size_in_bytes (TREE_TYPE (ref)); 500 ref = TREE_OPERAND (ref, 0); 501 } 502 503 *ref_p = ref; 504 505 for (; TREE_CODE (ref) == COMPONENT_REF; ref = TREE_OPERAND (ref, 0)) 506 { 507 off = DECL_FIELD_BIT_OFFSET (TREE_OPERAND (ref, 1)); 508 bit_offset = TREE_INT_CST_LOW (off); 509 gcc_assert (bit_offset % BITS_PER_UNIT == 0); 510 511 *delta += bit_offset / BITS_PER_UNIT; 512 } 513 514 *base = unshare_expr (ref); 515 ar_data.loop = loop; 516 ar_data.stmt = stmt; 517 ar_data.step = step; 518 ar_data.delta = delta; 519 return for_each_index (base, idx_analyze_ref, &ar_data); 520 } 521 522 /* Record a memory reference REF to the list REFS. The reference occurs in 523 LOOP in statement STMT and it is write if WRITE_P. Returns true if the 524 reference was recorded, false otherwise. */ 525 526 static bool 527 gather_memory_references_ref (struct loop *loop, struct mem_ref_group **refs, 528 tree ref, bool write_p, gimple *stmt) 529 { 530 tree base, step; 531 HOST_WIDE_INT delta; 532 struct mem_ref_group *agrp; 533 534 if (get_base_address (ref) == NULL) 535 return false; 536 537 if (!analyze_ref (loop, &ref, &base, &step, &delta, stmt)) 538 return false; 539 /* If analyze_ref fails the default is a NULL_TREE. We can stop here. */ 540 if (step == NULL_TREE) 541 return false; 542 543 /* Stop if the address of BASE could not be taken. */ 544 if (may_be_nonaddressable_p (base)) 545 return false; 546 547 /* Limit non-constant step prefetching only to the innermost loops and 548 only when the step is loop invariant in the entire loop nest. */ 549 if (!cst_and_fits_in_hwi (step)) 550 { 551 if (loop->inner != NULL) 552 { 553 if (dump_file && (dump_flags & TDF_DETAILS)) 554 { 555 fprintf (dump_file, "Memory expression %p\n",(void *) ref ); 556 print_generic_expr (dump_file, ref, TDF_TREE); 557 fprintf (dump_file,":"); 558 dump_mem_details (dump_file, base, step, delta, write_p); 559 fprintf (dump_file, 560 "Ignoring %p, non-constant step prefetching is " 561 "limited to inner most loops \n", 562 (void *) ref); 563 } 564 return false; 565 } 566 else 567 { 568 if (!expr_invariant_in_loop_p (loop_outermost (loop), step)) 569 { 570 if (dump_file && (dump_flags & TDF_DETAILS)) 571 { 572 fprintf (dump_file, "Memory expression %p\n",(void *) ref ); 573 print_generic_expr (dump_file, ref, TDF_TREE); 574 fprintf (dump_file,":"); 575 dump_mem_details (dump_file, base, step, delta, write_p); 576 fprintf (dump_file, 577 "Not prefetching, ignoring %p due to " 578 "loop variant step\n", 579 (void *) ref); 580 } 581 return false; 582 } 583 } 584 } 585 586 /* Now we know that REF = &BASE + STEP * iter + DELTA, where DELTA and STEP 587 are integer constants. */ 588 agrp = find_or_create_group (refs, base, step); 589 record_ref (agrp, stmt, ref, delta, write_p); 590 591 return true; 592 } 593 594 /* Record the suitable memory references in LOOP. NO_OTHER_REFS is set to 595 true if there are no other memory references inside the loop. */ 596 597 static struct mem_ref_group * 598 gather_memory_references (struct loop *loop, bool *no_other_refs, unsigned *ref_count) 599 { 600 basic_block *body = get_loop_body_in_dom_order (loop); 601 basic_block bb; 602 unsigned i; 603 gimple_stmt_iterator bsi; 604 gimple *stmt; 605 tree lhs, rhs; 606 struct mem_ref_group *refs = NULL; 607 608 *no_other_refs = true; 609 *ref_count = 0; 610 611 /* Scan the loop body in order, so that the former references precede the 612 later ones. */ 613 for (i = 0; i < loop->num_nodes; i++) 614 { 615 bb = body[i]; 616 if (bb->loop_father != loop) 617 continue; 618 619 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi)) 620 { 621 stmt = gsi_stmt (bsi); 622 623 if (gimple_code (stmt) != GIMPLE_ASSIGN) 624 { 625 if (gimple_vuse (stmt) 626 || (is_gimple_call (stmt) 627 && !(gimple_call_flags (stmt) & ECF_CONST))) 628 *no_other_refs = false; 629 continue; 630 } 631 632 if (! gimple_vuse (stmt)) 633 continue; 634 635 lhs = gimple_assign_lhs (stmt); 636 rhs = gimple_assign_rhs1 (stmt); 637 638 if (REFERENCE_CLASS_P (rhs)) 639 { 640 *no_other_refs &= gather_memory_references_ref (loop, &refs, 641 rhs, false, stmt); 642 *ref_count += 1; 643 } 644 if (REFERENCE_CLASS_P (lhs)) 645 { 646 *no_other_refs &= gather_memory_references_ref (loop, &refs, 647 lhs, true, stmt); 648 *ref_count += 1; 649 } 650 } 651 } 652 free (body); 653 654 return refs; 655 } 656 657 /* Prune the prefetch candidate REF using the self-reuse. */ 658 659 static void 660 prune_ref_by_self_reuse (struct mem_ref *ref) 661 { 662 HOST_WIDE_INT step; 663 bool backward; 664 665 /* If the step size is non constant, we cannot calculate prefetch_mod. */ 666 if (!cst_and_fits_in_hwi (ref->group->step)) 667 return; 668 669 step = int_cst_value (ref->group->step); 670 671 backward = step < 0; 672 673 if (step == 0) 674 { 675 /* Prefetch references to invariant address just once. */ 676 ref->prefetch_before = 1; 677 return; 678 } 679 680 if (backward) 681 step = -step; 682 683 if (step > PREFETCH_BLOCK) 684 return; 685 686 if ((backward && HAVE_BACKWARD_PREFETCH) 687 || (!backward && HAVE_FORWARD_PREFETCH)) 688 { 689 ref->prefetch_before = 1; 690 return; 691 } 692 693 ref->prefetch_mod = PREFETCH_BLOCK / step; 694 } 695 696 /* Divides X by BY, rounding down. */ 697 698 static HOST_WIDE_INT 699 ddown (HOST_WIDE_INT x, unsigned HOST_WIDE_INT by) 700 { 701 gcc_assert (by > 0); 702 703 if (x >= 0) 704 return x / (HOST_WIDE_INT) by; 705 else 706 return (x + (HOST_WIDE_INT) by - 1) / (HOST_WIDE_INT) by; 707 } 708 709 /* Given a CACHE_LINE_SIZE and two inductive memory references 710 with a common STEP greater than CACHE_LINE_SIZE and an address 711 difference DELTA, compute the probability that they will fall 712 in different cache lines. Return true if the computed miss rate 713 is not greater than the ACCEPTABLE_MISS_RATE. DISTINCT_ITERS is the 714 number of distinct iterations after which the pattern repeats itself. 715 ALIGN_UNIT is the unit of alignment in bytes. */ 716 717 static bool 718 is_miss_rate_acceptable (unsigned HOST_WIDE_INT cache_line_size, 719 HOST_WIDE_INT step, HOST_WIDE_INT delta, 720 unsigned HOST_WIDE_INT distinct_iters, 721 int align_unit) 722 { 723 unsigned align, iter; 724 int total_positions, miss_positions, max_allowed_miss_positions; 725 int address1, address2, cache_line1, cache_line2; 726 727 /* It always misses if delta is greater than or equal to the cache 728 line size. */ 729 if (delta >= (HOST_WIDE_INT) cache_line_size) 730 return false; 731 732 miss_positions = 0; 733 total_positions = (cache_line_size / align_unit) * distinct_iters; 734 max_allowed_miss_positions = (ACCEPTABLE_MISS_RATE * total_positions) / 1000; 735 736 /* Iterate through all possible alignments of the first 737 memory reference within its cache line. */ 738 for (align = 0; align < cache_line_size; align += align_unit) 739 740 /* Iterate through all distinct iterations. */ 741 for (iter = 0; iter < distinct_iters; iter++) 742 { 743 address1 = align + step * iter; 744 address2 = address1 + delta; 745 cache_line1 = address1 / cache_line_size; 746 cache_line2 = address2 / cache_line_size; 747 if (cache_line1 != cache_line2) 748 { 749 miss_positions += 1; 750 if (miss_positions > max_allowed_miss_positions) 751 return false; 752 } 753 } 754 return true; 755 } 756 757 /* Prune the prefetch candidate REF using the reuse with BY. 758 If BY_IS_BEFORE is true, BY is before REF in the loop. */ 759 760 static void 761 prune_ref_by_group_reuse (struct mem_ref *ref, struct mem_ref *by, 762 bool by_is_before) 763 { 764 HOST_WIDE_INT step; 765 bool backward; 766 HOST_WIDE_INT delta_r = ref->delta, delta_b = by->delta; 767 HOST_WIDE_INT delta = delta_b - delta_r; 768 HOST_WIDE_INT hit_from; 769 unsigned HOST_WIDE_INT prefetch_before, prefetch_block; 770 HOST_WIDE_INT reduced_step; 771 unsigned HOST_WIDE_INT reduced_prefetch_block; 772 tree ref_type; 773 int align_unit; 774 775 /* If the step is non constant we cannot calculate prefetch_before. */ 776 if (!cst_and_fits_in_hwi (ref->group->step)) { 777 return; 778 } 779 780 step = int_cst_value (ref->group->step); 781 782 backward = step < 0; 783 784 785 if (delta == 0) 786 { 787 /* If the references has the same address, only prefetch the 788 former. */ 789 if (by_is_before) 790 ref->prefetch_before = 0; 791 792 return; 793 } 794 795 if (!step) 796 { 797 /* If the reference addresses are invariant and fall into the 798 same cache line, prefetch just the first one. */ 799 if (!by_is_before) 800 return; 801 802 if (ddown (ref->delta, PREFETCH_BLOCK) 803 != ddown (by->delta, PREFETCH_BLOCK)) 804 return; 805 806 ref->prefetch_before = 0; 807 return; 808 } 809 810 /* Only prune the reference that is behind in the array. */ 811 if (backward) 812 { 813 if (delta > 0) 814 return; 815 816 /* Transform the data so that we may assume that the accesses 817 are forward. */ 818 delta = - delta; 819 step = -step; 820 delta_r = PREFETCH_BLOCK - 1 - delta_r; 821 delta_b = PREFETCH_BLOCK - 1 - delta_b; 822 } 823 else 824 { 825 if (delta < 0) 826 return; 827 } 828 829 /* Check whether the two references are likely to hit the same cache 830 line, and how distant the iterations in that it occurs are from 831 each other. */ 832 833 if (step <= PREFETCH_BLOCK) 834 { 835 /* The accesses are sure to meet. Let us check when. */ 836 hit_from = ddown (delta_b, PREFETCH_BLOCK) * PREFETCH_BLOCK; 837 prefetch_before = (hit_from - delta_r + step - 1) / step; 838 839 /* Do not reduce prefetch_before if we meet beyond cache size. */ 840 if (prefetch_before > absu_hwi (L2_CACHE_SIZE_BYTES / step)) 841 prefetch_before = PREFETCH_ALL; 842 if (prefetch_before < ref->prefetch_before) 843 ref->prefetch_before = prefetch_before; 844 845 return; 846 } 847 848 /* A more complicated case with step > prefetch_block. First reduce 849 the ratio between the step and the cache line size to its simplest 850 terms. The resulting denominator will then represent the number of 851 distinct iterations after which each address will go back to its 852 initial location within the cache line. This computation assumes 853 that PREFETCH_BLOCK is a power of two. */ 854 prefetch_block = PREFETCH_BLOCK; 855 reduced_prefetch_block = prefetch_block; 856 reduced_step = step; 857 while ((reduced_step & 1) == 0 858 && reduced_prefetch_block > 1) 859 { 860 reduced_step >>= 1; 861 reduced_prefetch_block >>= 1; 862 } 863 864 prefetch_before = delta / step; 865 delta %= step; 866 ref_type = TREE_TYPE (ref->mem); 867 align_unit = TYPE_ALIGN (ref_type) / 8; 868 if (is_miss_rate_acceptable (prefetch_block, step, delta, 869 reduced_prefetch_block, align_unit)) 870 { 871 /* Do not reduce prefetch_before if we meet beyond cache size. */ 872 if (prefetch_before > L2_CACHE_SIZE_BYTES / PREFETCH_BLOCK) 873 prefetch_before = PREFETCH_ALL; 874 if (prefetch_before < ref->prefetch_before) 875 ref->prefetch_before = prefetch_before; 876 877 return; 878 } 879 880 /* Try also the following iteration. */ 881 prefetch_before++; 882 delta = step - delta; 883 if (is_miss_rate_acceptable (prefetch_block, step, delta, 884 reduced_prefetch_block, align_unit)) 885 { 886 if (prefetch_before < ref->prefetch_before) 887 ref->prefetch_before = prefetch_before; 888 889 return; 890 } 891 892 /* The ref probably does not reuse by. */ 893 return; 894 } 895 896 /* Prune the prefetch candidate REF using the reuses with other references 897 in REFS. */ 898 899 static void 900 prune_ref_by_reuse (struct mem_ref *ref, struct mem_ref *refs) 901 { 902 struct mem_ref *prune_by; 903 bool before = true; 904 905 prune_ref_by_self_reuse (ref); 906 907 for (prune_by = refs; prune_by; prune_by = prune_by->next) 908 { 909 if (prune_by == ref) 910 { 911 before = false; 912 continue; 913 } 914 915 if (!WRITE_CAN_USE_READ_PREFETCH 916 && ref->write_p 917 && !prune_by->write_p) 918 continue; 919 if (!READ_CAN_USE_WRITE_PREFETCH 920 && !ref->write_p 921 && prune_by->write_p) 922 continue; 923 924 prune_ref_by_group_reuse (ref, prune_by, before); 925 } 926 } 927 928 /* Prune the prefetch candidates in GROUP using the reuse analysis. */ 929 930 static void 931 prune_group_by_reuse (struct mem_ref_group *group) 932 { 933 struct mem_ref *ref_pruned; 934 935 for (ref_pruned = group->refs; ref_pruned; ref_pruned = ref_pruned->next) 936 { 937 prune_ref_by_reuse (ref_pruned, group->refs); 938 939 if (dump_file && (dump_flags & TDF_DETAILS)) 940 { 941 fprintf (dump_file, "Reference %p:", (void *) ref_pruned); 942 943 if (ref_pruned->prefetch_before == PREFETCH_ALL 944 && ref_pruned->prefetch_mod == 1) 945 fprintf (dump_file, " no restrictions"); 946 else if (ref_pruned->prefetch_before == 0) 947 fprintf (dump_file, " do not prefetch"); 948 else if (ref_pruned->prefetch_before <= ref_pruned->prefetch_mod) 949 fprintf (dump_file, " prefetch once"); 950 else 951 { 952 if (ref_pruned->prefetch_before != PREFETCH_ALL) 953 { 954 fprintf (dump_file, " prefetch before "); 955 fprintf (dump_file, HOST_WIDE_INT_PRINT_DEC, 956 ref_pruned->prefetch_before); 957 } 958 if (ref_pruned->prefetch_mod != 1) 959 { 960 fprintf (dump_file, " prefetch mod "); 961 fprintf (dump_file, HOST_WIDE_INT_PRINT_DEC, 962 ref_pruned->prefetch_mod); 963 } 964 } 965 fprintf (dump_file, "\n"); 966 } 967 } 968 } 969 970 /* Prune the list of prefetch candidates GROUPS using the reuse analysis. */ 971 972 static void 973 prune_by_reuse (struct mem_ref_group *groups) 974 { 975 for (; groups; groups = groups->next) 976 prune_group_by_reuse (groups); 977 } 978 979 /* Returns true if we should issue prefetch for REF. */ 980 981 static bool 982 should_issue_prefetch_p (struct mem_ref *ref) 983 { 984 /* For now do not issue prefetches for only first few of the 985 iterations. */ 986 if (ref->prefetch_before != PREFETCH_ALL) 987 { 988 if (dump_file && (dump_flags & TDF_DETAILS)) 989 fprintf (dump_file, "Ignoring %p due to prefetch_before\n", 990 (void *) ref); 991 return false; 992 } 993 994 /* Do not prefetch nontemporal stores. */ 995 if (ref->storent_p) 996 { 997 if (dump_file && (dump_flags & TDF_DETAILS)) 998 fprintf (dump_file, "Ignoring nontemporal store %p\n", (void *) ref); 999 return false; 1000 } 1001 1002 return true; 1003 } 1004 1005 /* Decide which of the prefetch candidates in GROUPS to prefetch. 1006 AHEAD is the number of iterations to prefetch ahead (which corresponds 1007 to the number of simultaneous instances of one prefetch running at a 1008 time). UNROLL_FACTOR is the factor by that the loop is going to be 1009 unrolled. Returns true if there is anything to prefetch. */ 1010 1011 static bool 1012 schedule_prefetches (struct mem_ref_group *groups, unsigned unroll_factor, 1013 unsigned ahead) 1014 { 1015 unsigned remaining_prefetch_slots, n_prefetches, prefetch_slots; 1016 unsigned slots_per_prefetch; 1017 struct mem_ref *ref; 1018 bool any = false; 1019 1020 /* At most SIMULTANEOUS_PREFETCHES should be running at the same time. */ 1021 remaining_prefetch_slots = SIMULTANEOUS_PREFETCHES; 1022 1023 /* The prefetch will run for AHEAD iterations of the original loop, i.e., 1024 AHEAD / UNROLL_FACTOR iterations of the unrolled loop. In each iteration, 1025 it will need a prefetch slot. */ 1026 slots_per_prefetch = (ahead + unroll_factor / 2) / unroll_factor; 1027 if (dump_file && (dump_flags & TDF_DETAILS)) 1028 fprintf (dump_file, "Each prefetch instruction takes %u prefetch slots.\n", 1029 slots_per_prefetch); 1030 1031 /* For now we just take memory references one by one and issue 1032 prefetches for as many as possible. The groups are sorted 1033 starting with the largest step, since the references with 1034 large step are more likely to cause many cache misses. */ 1035 1036 for (; groups; groups = groups->next) 1037 for (ref = groups->refs; ref; ref = ref->next) 1038 { 1039 if (!should_issue_prefetch_p (ref)) 1040 continue; 1041 1042 /* The loop is far from being sufficiently unrolled for this 1043 prefetch. Do not generate prefetch to avoid many redudant 1044 prefetches. */ 1045 if (ref->prefetch_mod / unroll_factor > PREFETCH_MOD_TO_UNROLL_FACTOR_RATIO) 1046 continue; 1047 1048 /* If we need to prefetch the reference each PREFETCH_MOD iterations, 1049 and we unroll the loop UNROLL_FACTOR times, we need to insert 1050 ceil (UNROLL_FACTOR / PREFETCH_MOD) instructions in each 1051 iteration. */ 1052 n_prefetches = ((unroll_factor + ref->prefetch_mod - 1) 1053 / ref->prefetch_mod); 1054 prefetch_slots = n_prefetches * slots_per_prefetch; 1055 1056 /* If more than half of the prefetches would be lost anyway, do not 1057 issue the prefetch. */ 1058 if (2 * remaining_prefetch_slots < prefetch_slots) 1059 continue; 1060 1061 ref->issue_prefetch_p = true; 1062 1063 if (remaining_prefetch_slots <= prefetch_slots) 1064 return true; 1065 remaining_prefetch_slots -= prefetch_slots; 1066 any = true; 1067 } 1068 1069 return any; 1070 } 1071 1072 /* Return TRUE if no prefetch is going to be generated in the given 1073 GROUPS. */ 1074 1075 static bool 1076 nothing_to_prefetch_p (struct mem_ref_group *groups) 1077 { 1078 struct mem_ref *ref; 1079 1080 for (; groups; groups = groups->next) 1081 for (ref = groups->refs; ref; ref = ref->next) 1082 if (should_issue_prefetch_p (ref)) 1083 return false; 1084 1085 return true; 1086 } 1087 1088 /* Estimate the number of prefetches in the given GROUPS. 1089 UNROLL_FACTOR is the factor by which LOOP was unrolled. */ 1090 1091 static int 1092 estimate_prefetch_count (struct mem_ref_group *groups, unsigned unroll_factor) 1093 { 1094 struct mem_ref *ref; 1095 unsigned n_prefetches; 1096 int prefetch_count = 0; 1097 1098 for (; groups; groups = groups->next) 1099 for (ref = groups->refs; ref; ref = ref->next) 1100 if (should_issue_prefetch_p (ref)) 1101 { 1102 n_prefetches = ((unroll_factor + ref->prefetch_mod - 1) 1103 / ref->prefetch_mod); 1104 prefetch_count += n_prefetches; 1105 } 1106 1107 return prefetch_count; 1108 } 1109 1110 /* Issue prefetches for the reference REF into loop as decided before. 1111 HEAD is the number of iterations to prefetch ahead. UNROLL_FACTOR 1112 is the factor by which LOOP was unrolled. */ 1113 1114 static void 1115 issue_prefetch_ref (struct mem_ref *ref, unsigned unroll_factor, unsigned ahead) 1116 { 1117 HOST_WIDE_INT delta; 1118 tree addr, addr_base, write_p, local, forward; 1119 gcall *prefetch; 1120 gimple_stmt_iterator bsi; 1121 unsigned n_prefetches, ap; 1122 bool nontemporal = ref->reuse_distance >= L2_CACHE_SIZE_BYTES; 1123 1124 if (dump_file && (dump_flags & TDF_DETAILS)) 1125 fprintf (dump_file, "Issued%s prefetch for %p.\n", 1126 nontemporal ? " nontemporal" : "", 1127 (void *) ref); 1128 1129 bsi = gsi_for_stmt (ref->stmt); 1130 1131 n_prefetches = ((unroll_factor + ref->prefetch_mod - 1) 1132 / ref->prefetch_mod); 1133 addr_base = build_fold_addr_expr_with_type (ref->mem, ptr_type_node); 1134 addr_base = force_gimple_operand_gsi (&bsi, unshare_expr (addr_base), 1135 true, NULL, true, GSI_SAME_STMT); 1136 write_p = ref->write_p ? integer_one_node : integer_zero_node; 1137 local = nontemporal ? integer_zero_node : integer_three_node; 1138 1139 for (ap = 0; ap < n_prefetches; ap++) 1140 { 1141 if (cst_and_fits_in_hwi (ref->group->step)) 1142 { 1143 /* Determine the address to prefetch. */ 1144 delta = (ahead + ap * ref->prefetch_mod) * 1145 int_cst_value (ref->group->step); 1146 addr = fold_build_pointer_plus_hwi (addr_base, delta); 1147 addr = force_gimple_operand_gsi (&bsi, unshare_expr (addr), true, NULL, 1148 true, GSI_SAME_STMT); 1149 } 1150 else 1151 { 1152 /* The step size is non-constant but loop-invariant. We use the 1153 heuristic to simply prefetch ahead iterations ahead. */ 1154 forward = fold_build2 (MULT_EXPR, sizetype, 1155 fold_convert (sizetype, ref->group->step), 1156 fold_convert (sizetype, size_int (ahead))); 1157 addr = fold_build_pointer_plus (addr_base, forward); 1158 addr = force_gimple_operand_gsi (&bsi, unshare_expr (addr), true, 1159 NULL, true, GSI_SAME_STMT); 1160 } 1161 1162 if (addr_base != addr 1163 && TREE_CODE (addr_base) == SSA_NAME 1164 && TREE_CODE (addr) == SSA_NAME) 1165 { 1166 duplicate_ssa_name_ptr_info (addr, SSA_NAME_PTR_INFO (addr_base)); 1167 /* As this isn't a plain copy we have to reset alignment 1168 information. */ 1169 if (SSA_NAME_PTR_INFO (addr)) 1170 mark_ptr_info_alignment_unknown (SSA_NAME_PTR_INFO (addr)); 1171 } 1172 1173 /* Create the prefetch instruction. */ 1174 prefetch = gimple_build_call (builtin_decl_explicit (BUILT_IN_PREFETCH), 1175 3, addr, write_p, local); 1176 gsi_insert_before (&bsi, prefetch, GSI_SAME_STMT); 1177 } 1178 } 1179 1180 /* Issue prefetches for the references in GROUPS into loop as decided before. 1181 HEAD is the number of iterations to prefetch ahead. UNROLL_FACTOR is the 1182 factor by that LOOP was unrolled. */ 1183 1184 static void 1185 issue_prefetches (struct mem_ref_group *groups, 1186 unsigned unroll_factor, unsigned ahead) 1187 { 1188 struct mem_ref *ref; 1189 1190 for (; groups; groups = groups->next) 1191 for (ref = groups->refs; ref; ref = ref->next) 1192 if (ref->issue_prefetch_p) 1193 issue_prefetch_ref (ref, unroll_factor, ahead); 1194 } 1195 1196 /* Returns true if REF is a memory write for that a nontemporal store insn 1197 can be used. */ 1198 1199 static bool 1200 nontemporal_store_p (struct mem_ref *ref) 1201 { 1202 machine_mode mode; 1203 enum insn_code code; 1204 1205 /* REF must be a write that is not reused. We require it to be independent 1206 on all other memory references in the loop, as the nontemporal stores may 1207 be reordered with respect to other memory references. */ 1208 if (!ref->write_p 1209 || !ref->independent_p 1210 || ref->reuse_distance < L2_CACHE_SIZE_BYTES) 1211 return false; 1212 1213 /* Check that we have the storent instruction for the mode. */ 1214 mode = TYPE_MODE (TREE_TYPE (ref->mem)); 1215 if (mode == BLKmode) 1216 return false; 1217 1218 code = optab_handler (storent_optab, mode); 1219 return code != CODE_FOR_nothing; 1220 } 1221 1222 /* If REF is a nontemporal store, we mark the corresponding modify statement 1223 and return true. Otherwise, we return false. */ 1224 1225 static bool 1226 mark_nontemporal_store (struct mem_ref *ref) 1227 { 1228 if (!nontemporal_store_p (ref)) 1229 return false; 1230 1231 if (dump_file && (dump_flags & TDF_DETAILS)) 1232 fprintf (dump_file, "Marked reference %p as a nontemporal store.\n", 1233 (void *) ref); 1234 1235 gimple_assign_set_nontemporal_move (ref->stmt, true); 1236 ref->storent_p = true; 1237 1238 return true; 1239 } 1240 1241 /* Issue a memory fence instruction after LOOP. */ 1242 1243 static void 1244 emit_mfence_after_loop (struct loop *loop) 1245 { 1246 vec<edge> exits = get_loop_exit_edges (loop); 1247 edge exit; 1248 gcall *call; 1249 gimple_stmt_iterator bsi; 1250 unsigned i; 1251 1252 FOR_EACH_VEC_ELT (exits, i, exit) 1253 { 1254 call = gimple_build_call (FENCE_FOLLOWING_MOVNT, 0); 1255 1256 if (!single_pred_p (exit->dest) 1257 /* If possible, we prefer not to insert the fence on other paths 1258 in cfg. */ 1259 && !(exit->flags & EDGE_ABNORMAL)) 1260 split_loop_exit_edge (exit); 1261 bsi = gsi_after_labels (exit->dest); 1262 1263 gsi_insert_before (&bsi, call, GSI_NEW_STMT); 1264 } 1265 1266 exits.release (); 1267 update_ssa (TODO_update_ssa_only_virtuals); 1268 } 1269 1270 /* Returns true if we can use storent in loop, false otherwise. */ 1271 1272 static bool 1273 may_use_storent_in_loop_p (struct loop *loop) 1274 { 1275 bool ret = true; 1276 1277 if (loop->inner != NULL) 1278 return false; 1279 1280 /* If we must issue a mfence insn after using storent, check that there 1281 is a suitable place for it at each of the loop exits. */ 1282 if (FENCE_FOLLOWING_MOVNT != NULL_TREE) 1283 { 1284 vec<edge> exits = get_loop_exit_edges (loop); 1285 unsigned i; 1286 edge exit; 1287 1288 FOR_EACH_VEC_ELT (exits, i, exit) 1289 if ((exit->flags & EDGE_ABNORMAL) 1290 && exit->dest == EXIT_BLOCK_PTR_FOR_FN (cfun)) 1291 ret = false; 1292 1293 exits.release (); 1294 } 1295 1296 return ret; 1297 } 1298 1299 /* Marks nontemporal stores in LOOP. GROUPS contains the description of memory 1300 references in the loop. */ 1301 1302 static void 1303 mark_nontemporal_stores (struct loop *loop, struct mem_ref_group *groups) 1304 { 1305 struct mem_ref *ref; 1306 bool any = false; 1307 1308 if (!may_use_storent_in_loop_p (loop)) 1309 return; 1310 1311 for (; groups; groups = groups->next) 1312 for (ref = groups->refs; ref; ref = ref->next) 1313 any |= mark_nontemporal_store (ref); 1314 1315 if (any && FENCE_FOLLOWING_MOVNT != NULL_TREE) 1316 emit_mfence_after_loop (loop); 1317 } 1318 1319 /* Determines whether we can profitably unroll LOOP FACTOR times, and if 1320 this is the case, fill in DESC by the description of number of 1321 iterations. */ 1322 1323 static bool 1324 should_unroll_loop_p (struct loop *loop, struct tree_niter_desc *desc, 1325 unsigned factor) 1326 { 1327 if (!can_unroll_loop_p (loop, factor, desc)) 1328 return false; 1329 1330 /* We only consider loops without control flow for unrolling. This is not 1331 a hard restriction -- tree_unroll_loop works with arbitrary loops 1332 as well; but the unrolling/prefetching is usually more profitable for 1333 loops consisting of a single basic block, and we want to limit the 1334 code growth. */ 1335 if (loop->num_nodes > 2) 1336 return false; 1337 1338 return true; 1339 } 1340 1341 /* Determine the coefficient by that unroll LOOP, from the information 1342 contained in the list of memory references REFS. Description of 1343 umber of iterations of LOOP is stored to DESC. NINSNS is the number of 1344 insns of the LOOP. EST_NITER is the estimated number of iterations of 1345 the loop, or -1 if no estimate is available. */ 1346 1347 static unsigned 1348 determine_unroll_factor (struct loop *loop, struct mem_ref_group *refs, 1349 unsigned ninsns, struct tree_niter_desc *desc, 1350 HOST_WIDE_INT est_niter) 1351 { 1352 unsigned upper_bound; 1353 unsigned nfactor, factor, mod_constraint; 1354 struct mem_ref_group *agp; 1355 struct mem_ref *ref; 1356 1357 /* First check whether the loop is not too large to unroll. We ignore 1358 PARAM_MAX_UNROLL_TIMES, because for small loops, it prevented us 1359 from unrolling them enough to make exactly one cache line covered by each 1360 iteration. Also, the goal of PARAM_MAX_UNROLL_TIMES is to prevent 1361 us from unrolling the loops too many times in cases where we only expect 1362 gains from better scheduling and decreasing loop overhead, which is not 1363 the case here. */ 1364 upper_bound = PARAM_VALUE (PARAM_MAX_UNROLLED_INSNS) / ninsns; 1365 1366 /* If we unrolled the loop more times than it iterates, the unrolled version 1367 of the loop would be never entered. */ 1368 if (est_niter >= 0 && est_niter < (HOST_WIDE_INT) upper_bound) 1369 upper_bound = est_niter; 1370 1371 if (upper_bound <= 1) 1372 return 1; 1373 1374 /* Choose the factor so that we may prefetch each cache just once, 1375 but bound the unrolling by UPPER_BOUND. */ 1376 factor = 1; 1377 for (agp = refs; agp; agp = agp->next) 1378 for (ref = agp->refs; ref; ref = ref->next) 1379 if (should_issue_prefetch_p (ref)) 1380 { 1381 mod_constraint = ref->prefetch_mod; 1382 nfactor = least_common_multiple (mod_constraint, factor); 1383 if (nfactor <= upper_bound) 1384 factor = nfactor; 1385 } 1386 1387 if (!should_unroll_loop_p (loop, desc, factor)) 1388 return 1; 1389 1390 return factor; 1391 } 1392 1393 /* Returns the total volume of the memory references REFS, taking into account 1394 reuses in the innermost loop and cache line size. TODO -- we should also 1395 take into account reuses across the iterations of the loops in the loop 1396 nest. */ 1397 1398 static unsigned 1399 volume_of_references (struct mem_ref_group *refs) 1400 { 1401 unsigned volume = 0; 1402 struct mem_ref_group *gr; 1403 struct mem_ref *ref; 1404 1405 for (gr = refs; gr; gr = gr->next) 1406 for (ref = gr->refs; ref; ref = ref->next) 1407 { 1408 /* Almost always reuses another value? */ 1409 if (ref->prefetch_before != PREFETCH_ALL) 1410 continue; 1411 1412 /* If several iterations access the same cache line, use the size of 1413 the line divided by this number. Otherwise, a cache line is 1414 accessed in each iteration. TODO -- in the latter case, we should 1415 take the size of the reference into account, rounding it up on cache 1416 line size multiple. */ 1417 volume += L1_CACHE_LINE_SIZE / ref->prefetch_mod; 1418 } 1419 return volume; 1420 } 1421 1422 /* Returns the volume of memory references accessed across VEC iterations of 1423 loops, whose sizes are described in the LOOP_SIZES array. N is the number 1424 of the loops in the nest (length of VEC and LOOP_SIZES vectors). */ 1425 1426 static unsigned 1427 volume_of_dist_vector (lambda_vector vec, unsigned *loop_sizes, unsigned n) 1428 { 1429 unsigned i; 1430 1431 for (i = 0; i < n; i++) 1432 if (vec[i] != 0) 1433 break; 1434 1435 if (i == n) 1436 return 0; 1437 1438 gcc_assert (vec[i] > 0); 1439 1440 /* We ignore the parts of the distance vector in subloops, since usually 1441 the numbers of iterations are much smaller. */ 1442 return loop_sizes[i] * vec[i]; 1443 } 1444 1445 /* Add the steps of ACCESS_FN multiplied by STRIDE to the array STRIDE 1446 at the position corresponding to the loop of the step. N is the depth 1447 of the considered loop nest, and, LOOP is its innermost loop. */ 1448 1449 static void 1450 add_subscript_strides (tree access_fn, unsigned stride, 1451 HOST_WIDE_INT *strides, unsigned n, struct loop *loop) 1452 { 1453 struct loop *aloop; 1454 tree step; 1455 HOST_WIDE_INT astep; 1456 unsigned min_depth = loop_depth (loop) - n; 1457 1458 while (TREE_CODE (access_fn) == POLYNOMIAL_CHREC) 1459 { 1460 aloop = get_chrec_loop (access_fn); 1461 step = CHREC_RIGHT (access_fn); 1462 access_fn = CHREC_LEFT (access_fn); 1463 1464 if ((unsigned) loop_depth (aloop) <= min_depth) 1465 continue; 1466 1467 if (tree_fits_shwi_p (step)) 1468 astep = tree_to_shwi (step); 1469 else 1470 astep = L1_CACHE_LINE_SIZE; 1471 1472 strides[n - 1 - loop_depth (loop) + loop_depth (aloop)] += astep * stride; 1473 1474 } 1475 } 1476 1477 /* Returns the volume of memory references accessed between two consecutive 1478 self-reuses of the reference DR. We consider the subscripts of DR in N 1479 loops, and LOOP_SIZES contains the volumes of accesses in each of the 1480 loops. LOOP is the innermost loop of the current loop nest. */ 1481 1482 static unsigned 1483 self_reuse_distance (data_reference_p dr, unsigned *loop_sizes, unsigned n, 1484 struct loop *loop) 1485 { 1486 tree stride, access_fn; 1487 HOST_WIDE_INT *strides, astride; 1488 vec<tree> access_fns; 1489 tree ref = DR_REF (dr); 1490 unsigned i, ret = ~0u; 1491 1492 /* In the following example: 1493 1494 for (i = 0; i < N; i++) 1495 for (j = 0; j < N; j++) 1496 use (a[j][i]); 1497 the same cache line is accessed each N steps (except if the change from 1498 i to i + 1 crosses the boundary of the cache line). Thus, for self-reuse, 1499 we cannot rely purely on the results of the data dependence analysis. 1500 1501 Instead, we compute the stride of the reference in each loop, and consider 1502 the innermost loop in that the stride is less than cache size. */ 1503 1504 strides = XCNEWVEC (HOST_WIDE_INT, n); 1505 access_fns = DR_ACCESS_FNS (dr); 1506 1507 FOR_EACH_VEC_ELT (access_fns, i, access_fn) 1508 { 1509 /* Keep track of the reference corresponding to the subscript, so that we 1510 know its stride. */ 1511 while (handled_component_p (ref) && TREE_CODE (ref) != ARRAY_REF) 1512 ref = TREE_OPERAND (ref, 0); 1513 1514 if (TREE_CODE (ref) == ARRAY_REF) 1515 { 1516 stride = TYPE_SIZE_UNIT (TREE_TYPE (ref)); 1517 if (tree_fits_uhwi_p (stride)) 1518 astride = tree_to_uhwi (stride); 1519 else 1520 astride = L1_CACHE_LINE_SIZE; 1521 1522 ref = TREE_OPERAND (ref, 0); 1523 } 1524 else 1525 astride = 1; 1526 1527 add_subscript_strides (access_fn, astride, strides, n, loop); 1528 } 1529 1530 for (i = n; i-- > 0; ) 1531 { 1532 unsigned HOST_WIDE_INT s; 1533 1534 s = strides[i] < 0 ? -strides[i] : strides[i]; 1535 1536 if (s < (unsigned) L1_CACHE_LINE_SIZE 1537 && (loop_sizes[i] 1538 > (unsigned) (L1_CACHE_SIZE_BYTES / NONTEMPORAL_FRACTION))) 1539 { 1540 ret = loop_sizes[i]; 1541 break; 1542 } 1543 } 1544 1545 free (strides); 1546 return ret; 1547 } 1548 1549 /* Determines the distance till the first reuse of each reference in REFS 1550 in the loop nest of LOOP. NO_OTHER_REFS is true if there are no other 1551 memory references in the loop. Return false if the analysis fails. */ 1552 1553 static bool 1554 determine_loop_nest_reuse (struct loop *loop, struct mem_ref_group *refs, 1555 bool no_other_refs) 1556 { 1557 struct loop *nest, *aloop; 1558 vec<data_reference_p> datarefs = vNULL; 1559 vec<ddr_p> dependences = vNULL; 1560 struct mem_ref_group *gr; 1561 struct mem_ref *ref, *refb; 1562 auto_vec<loop_p> vloops; 1563 unsigned *loop_data_size; 1564 unsigned i, j, n; 1565 unsigned volume, dist, adist; 1566 HOST_WIDE_INT vol; 1567 data_reference_p dr; 1568 ddr_p dep; 1569 1570 if (loop->inner) 1571 return true; 1572 1573 /* Find the outermost loop of the loop nest of loop (we require that 1574 there are no sibling loops inside the nest). */ 1575 nest = loop; 1576 while (1) 1577 { 1578 aloop = loop_outer (nest); 1579 1580 if (aloop == current_loops->tree_root 1581 || aloop->inner->next) 1582 break; 1583 1584 nest = aloop; 1585 } 1586 1587 /* For each loop, determine the amount of data accessed in each iteration. 1588 We use this to estimate whether the reference is evicted from the 1589 cache before its reuse. */ 1590 find_loop_nest (nest, &vloops); 1591 n = vloops.length (); 1592 loop_data_size = XNEWVEC (unsigned, n); 1593 volume = volume_of_references (refs); 1594 i = n; 1595 while (i-- != 0) 1596 { 1597 loop_data_size[i] = volume; 1598 /* Bound the volume by the L2 cache size, since above this bound, 1599 all dependence distances are equivalent. */ 1600 if (volume > L2_CACHE_SIZE_BYTES) 1601 continue; 1602 1603 aloop = vloops[i]; 1604 vol = estimated_stmt_executions_int (aloop); 1605 if (vol == -1) 1606 vol = expected_loop_iterations (aloop); 1607 volume *= vol; 1608 } 1609 1610 /* Prepare the references in the form suitable for data dependence 1611 analysis. We ignore unanalyzable data references (the results 1612 are used just as a heuristics to estimate temporality of the 1613 references, hence we do not need to worry about correctness). */ 1614 for (gr = refs; gr; gr = gr->next) 1615 for (ref = gr->refs; ref; ref = ref->next) 1616 { 1617 dr = create_data_ref (nest, loop_containing_stmt (ref->stmt), 1618 ref->mem, ref->stmt, !ref->write_p); 1619 1620 if (dr) 1621 { 1622 ref->reuse_distance = volume; 1623 dr->aux = ref; 1624 datarefs.safe_push (dr); 1625 } 1626 else 1627 no_other_refs = false; 1628 } 1629 1630 FOR_EACH_VEC_ELT (datarefs, i, dr) 1631 { 1632 dist = self_reuse_distance (dr, loop_data_size, n, loop); 1633 ref = (struct mem_ref *) dr->aux; 1634 if (ref->reuse_distance > dist) 1635 ref->reuse_distance = dist; 1636 1637 if (no_other_refs) 1638 ref->independent_p = true; 1639 } 1640 1641 if (!compute_all_dependences (datarefs, &dependences, vloops, true)) 1642 return false; 1643 1644 FOR_EACH_VEC_ELT (dependences, i, dep) 1645 { 1646 if (DDR_ARE_DEPENDENT (dep) == chrec_known) 1647 continue; 1648 1649 ref = (struct mem_ref *) DDR_A (dep)->aux; 1650 refb = (struct mem_ref *) DDR_B (dep)->aux; 1651 1652 if (DDR_ARE_DEPENDENT (dep) == chrec_dont_know 1653 || DDR_NUM_DIST_VECTS (dep) == 0) 1654 { 1655 /* If the dependence cannot be analyzed, assume that there might be 1656 a reuse. */ 1657 dist = 0; 1658 1659 ref->independent_p = false; 1660 refb->independent_p = false; 1661 } 1662 else 1663 { 1664 /* The distance vectors are normalized to be always lexicographically 1665 positive, hence we cannot tell just from them whether DDR_A comes 1666 before DDR_B or vice versa. However, it is not important, 1667 anyway -- if DDR_A is close to DDR_B, then it is either reused in 1668 DDR_B (and it is not nontemporal), or it reuses the value of DDR_B 1669 in cache (and marking it as nontemporal would not affect 1670 anything). */ 1671 1672 dist = volume; 1673 for (j = 0; j < DDR_NUM_DIST_VECTS (dep); j++) 1674 { 1675 adist = volume_of_dist_vector (DDR_DIST_VECT (dep, j), 1676 loop_data_size, n); 1677 1678 /* If this is a dependence in the innermost loop (i.e., the 1679 distances in all superloops are zero) and it is not 1680 the trivial self-dependence with distance zero, record that 1681 the references are not completely independent. */ 1682 if (lambda_vector_zerop (DDR_DIST_VECT (dep, j), n - 1) 1683 && (ref != refb 1684 || DDR_DIST_VECT (dep, j)[n-1] != 0)) 1685 { 1686 ref->independent_p = false; 1687 refb->independent_p = false; 1688 } 1689 1690 /* Ignore accesses closer than 1691 L1_CACHE_SIZE_BYTES / NONTEMPORAL_FRACTION, 1692 so that we use nontemporal prefetches e.g. if single memory 1693 location is accessed several times in a single iteration of 1694 the loop. */ 1695 if (adist < L1_CACHE_SIZE_BYTES / NONTEMPORAL_FRACTION) 1696 continue; 1697 1698 if (adist < dist) 1699 dist = adist; 1700 } 1701 } 1702 1703 if (ref->reuse_distance > dist) 1704 ref->reuse_distance = dist; 1705 if (refb->reuse_distance > dist) 1706 refb->reuse_distance = dist; 1707 } 1708 1709 free_dependence_relations (dependences); 1710 free_data_refs (datarefs); 1711 free (loop_data_size); 1712 1713 if (dump_file && (dump_flags & TDF_DETAILS)) 1714 { 1715 fprintf (dump_file, "Reuse distances:\n"); 1716 for (gr = refs; gr; gr = gr->next) 1717 for (ref = gr->refs; ref; ref = ref->next) 1718 fprintf (dump_file, " ref %p distance %u\n", 1719 (void *) ref, ref->reuse_distance); 1720 } 1721 1722 return true; 1723 } 1724 1725 /* Determine whether or not the trip count to ahead ratio is too small based 1726 on prefitablility consideration. 1727 AHEAD: the iteration ahead distance, 1728 EST_NITER: the estimated trip count. */ 1729 1730 static bool 1731 trip_count_to_ahead_ratio_too_small_p (unsigned ahead, HOST_WIDE_INT est_niter) 1732 { 1733 /* Assume trip count to ahead ratio is big enough if the trip count could not 1734 be estimated at compile time. */ 1735 if (est_niter < 0) 1736 return false; 1737 1738 if (est_niter < (HOST_WIDE_INT) (TRIP_COUNT_TO_AHEAD_RATIO * ahead)) 1739 { 1740 if (dump_file && (dump_flags & TDF_DETAILS)) 1741 fprintf (dump_file, 1742 "Not prefetching -- loop estimated to roll only %d times\n", 1743 (int) est_niter); 1744 return true; 1745 } 1746 1747 return false; 1748 } 1749 1750 /* Determine whether or not the number of memory references in the loop is 1751 reasonable based on the profitablity and compilation time considerations. 1752 NINSNS: estimated number of instructions in the loop, 1753 MEM_REF_COUNT: total number of memory references in the loop. */ 1754 1755 static bool 1756 mem_ref_count_reasonable_p (unsigned ninsns, unsigned mem_ref_count) 1757 { 1758 int insn_to_mem_ratio; 1759 1760 if (mem_ref_count == 0) 1761 return false; 1762 1763 /* Miss rate computation (is_miss_rate_acceptable) and dependence analysis 1764 (compute_all_dependences) have high costs based on quadratic complexity. 1765 To avoid huge compilation time, we give up prefetching if mem_ref_count 1766 is too large. */ 1767 if (mem_ref_count > PREFETCH_MAX_MEM_REFS_PER_LOOP) 1768 return false; 1769 1770 /* Prefetching improves performance by overlapping cache missing 1771 memory accesses with CPU operations. If the loop does not have 1772 enough CPU operations to overlap with memory operations, prefetching 1773 won't give a significant benefit. One approximate way of checking 1774 this is to require the ratio of instructions to memory references to 1775 be above a certain limit. This approximation works well in practice. 1776 TODO: Implement a more precise computation by estimating the time 1777 for each CPU or memory op in the loop. Time estimates for memory ops 1778 should account for cache misses. */ 1779 insn_to_mem_ratio = ninsns / mem_ref_count; 1780 1781 if (insn_to_mem_ratio < PREFETCH_MIN_INSN_TO_MEM_RATIO) 1782 { 1783 if (dump_file && (dump_flags & TDF_DETAILS)) 1784 fprintf (dump_file, 1785 "Not prefetching -- instruction to memory reference ratio (%d) too small\n", 1786 insn_to_mem_ratio); 1787 return false; 1788 } 1789 1790 return true; 1791 } 1792 1793 /* Determine whether or not the instruction to prefetch ratio in the loop is 1794 too small based on the profitablity consideration. 1795 NINSNS: estimated number of instructions in the loop, 1796 PREFETCH_COUNT: an estimate of the number of prefetches, 1797 UNROLL_FACTOR: the factor to unroll the loop if prefetching. */ 1798 1799 static bool 1800 insn_to_prefetch_ratio_too_small_p (unsigned ninsns, unsigned prefetch_count, 1801 unsigned unroll_factor) 1802 { 1803 int insn_to_prefetch_ratio; 1804 1805 /* Prefetching most likely causes performance degradation when the instruction 1806 to prefetch ratio is too small. Too many prefetch instructions in a loop 1807 may reduce the I-cache performance. 1808 (unroll_factor * ninsns) is used to estimate the number of instructions in 1809 the unrolled loop. This implementation is a bit simplistic -- the number 1810 of issued prefetch instructions is also affected by unrolling. So, 1811 prefetch_mod and the unroll factor should be taken into account when 1812 determining prefetch_count. Also, the number of insns of the unrolled 1813 loop will usually be significantly smaller than the number of insns of the 1814 original loop * unroll_factor (at least the induction variable increases 1815 and the exit branches will get eliminated), so it might be better to use 1816 tree_estimate_loop_size + estimated_unrolled_size. */ 1817 insn_to_prefetch_ratio = (unroll_factor * ninsns) / prefetch_count; 1818 if (insn_to_prefetch_ratio < MIN_INSN_TO_PREFETCH_RATIO) 1819 { 1820 if (dump_file && (dump_flags & TDF_DETAILS)) 1821 fprintf (dump_file, 1822 "Not prefetching -- instruction to prefetch ratio (%d) too small\n", 1823 insn_to_prefetch_ratio); 1824 return true; 1825 } 1826 1827 return false; 1828 } 1829 1830 1831 /* Issue prefetch instructions for array references in LOOP. Returns 1832 true if the LOOP was unrolled. */ 1833 1834 static bool 1835 loop_prefetch_arrays (struct loop *loop) 1836 { 1837 struct mem_ref_group *refs; 1838 unsigned ahead, ninsns, time, unroll_factor; 1839 HOST_WIDE_INT est_niter; 1840 struct tree_niter_desc desc; 1841 bool unrolled = false, no_other_refs; 1842 unsigned prefetch_count; 1843 unsigned mem_ref_count; 1844 1845 if (optimize_loop_nest_for_size_p (loop)) 1846 { 1847 if (dump_file && (dump_flags & TDF_DETAILS)) 1848 fprintf (dump_file, " ignored (cold area)\n"); 1849 return false; 1850 } 1851 1852 /* FIXME: the time should be weighted by the probabilities of the blocks in 1853 the loop body. */ 1854 time = tree_num_loop_insns (loop, &eni_time_weights); 1855 if (time == 0) 1856 return false; 1857 1858 ahead = (PREFETCH_LATENCY + time - 1) / time; 1859 est_niter = estimated_stmt_executions_int (loop); 1860 if (est_niter == -1) 1861 est_niter = likely_max_stmt_executions_int (loop); 1862 1863 /* Prefetching is not likely to be profitable if the trip count to ahead 1864 ratio is too small. */ 1865 if (trip_count_to_ahead_ratio_too_small_p (ahead, est_niter)) 1866 return false; 1867 1868 ninsns = tree_num_loop_insns (loop, &eni_size_weights); 1869 1870 /* Step 1: gather the memory references. */ 1871 refs = gather_memory_references (loop, &no_other_refs, &mem_ref_count); 1872 1873 /* Give up prefetching if the number of memory references in the 1874 loop is not reasonable based on profitablity and compilation time 1875 considerations. */ 1876 if (!mem_ref_count_reasonable_p (ninsns, mem_ref_count)) 1877 goto fail; 1878 1879 /* Step 2: estimate the reuse effects. */ 1880 prune_by_reuse (refs); 1881 1882 if (nothing_to_prefetch_p (refs)) 1883 goto fail; 1884 1885 if (!determine_loop_nest_reuse (loop, refs, no_other_refs)) 1886 goto fail; 1887 1888 /* Step 3: determine unroll factor. */ 1889 unroll_factor = determine_unroll_factor (loop, refs, ninsns, &desc, 1890 est_niter); 1891 1892 /* Estimate prefetch count for the unrolled loop. */ 1893 prefetch_count = estimate_prefetch_count (refs, unroll_factor); 1894 if (prefetch_count == 0) 1895 goto fail; 1896 1897 if (dump_file && (dump_flags & TDF_DETAILS)) 1898 fprintf (dump_file, "Ahead %d, unroll factor %d, trip count " 1899 HOST_WIDE_INT_PRINT_DEC "\n" 1900 "insn count %d, mem ref count %d, prefetch count %d\n", 1901 ahead, unroll_factor, est_niter, 1902 ninsns, mem_ref_count, prefetch_count); 1903 1904 /* Prefetching is not likely to be profitable if the instruction to prefetch 1905 ratio is too small. */ 1906 if (insn_to_prefetch_ratio_too_small_p (ninsns, prefetch_count, 1907 unroll_factor)) 1908 goto fail; 1909 1910 mark_nontemporal_stores (loop, refs); 1911 1912 /* Step 4: what to prefetch? */ 1913 if (!schedule_prefetches (refs, unroll_factor, ahead)) 1914 goto fail; 1915 1916 /* Step 5: unroll the loop. TODO -- peeling of first and last few 1917 iterations so that we do not issue superfluous prefetches. */ 1918 if (unroll_factor != 1) 1919 { 1920 tree_unroll_loop (loop, unroll_factor, 1921 single_dom_exit (loop), &desc); 1922 unrolled = true; 1923 } 1924 1925 /* Step 6: issue the prefetches. */ 1926 issue_prefetches (refs, unroll_factor, ahead); 1927 1928 fail: 1929 release_mem_refs (refs); 1930 return unrolled; 1931 } 1932 1933 /* Issue prefetch instructions for array references in loops. */ 1934 1935 unsigned int 1936 tree_ssa_prefetch_arrays (void) 1937 { 1938 struct loop *loop; 1939 bool unrolled = false; 1940 int todo_flags = 0; 1941 1942 if (!targetm.have_prefetch () 1943 /* It is possible to ask compiler for say -mtune=i486 -march=pentium4. 1944 -mtune=i486 causes us having PREFETCH_BLOCK 0, since this is part 1945 of processor costs and i486 does not have prefetch, but 1946 -march=pentium4 causes targetm.have_prefetch to be true. Ugh. */ 1947 || PREFETCH_BLOCK == 0) 1948 return 0; 1949 1950 if (dump_file && (dump_flags & TDF_DETAILS)) 1951 { 1952 fprintf (dump_file, "Prefetching parameters:\n"); 1953 fprintf (dump_file, " simultaneous prefetches: %d\n", 1954 SIMULTANEOUS_PREFETCHES); 1955 fprintf (dump_file, " prefetch latency: %d\n", PREFETCH_LATENCY); 1956 fprintf (dump_file, " prefetch block size: %d\n", PREFETCH_BLOCK); 1957 fprintf (dump_file, " L1 cache size: %d lines, %d kB\n", 1958 L1_CACHE_SIZE_BYTES / L1_CACHE_LINE_SIZE, L1_CACHE_SIZE); 1959 fprintf (dump_file, " L1 cache line size: %d\n", L1_CACHE_LINE_SIZE); 1960 fprintf (dump_file, " L2 cache size: %d kB\n", L2_CACHE_SIZE); 1961 fprintf (dump_file, " min insn-to-prefetch ratio: %d \n", 1962 MIN_INSN_TO_PREFETCH_RATIO); 1963 fprintf (dump_file, " min insn-to-mem ratio: %d \n", 1964 PREFETCH_MIN_INSN_TO_MEM_RATIO); 1965 fprintf (dump_file, "\n"); 1966 } 1967 1968 initialize_original_copy_tables (); 1969 1970 if (!builtin_decl_explicit_p (BUILT_IN_PREFETCH)) 1971 { 1972 tree type = build_function_type_list (void_type_node, 1973 const_ptr_type_node, NULL_TREE); 1974 tree decl = add_builtin_function ("__builtin_prefetch", type, 1975 BUILT_IN_PREFETCH, BUILT_IN_NORMAL, 1976 NULL, NULL_TREE); 1977 DECL_IS_NOVOPS (decl) = true; 1978 set_builtin_decl (BUILT_IN_PREFETCH, decl, false); 1979 } 1980 1981 FOR_EACH_LOOP (loop, LI_FROM_INNERMOST) 1982 { 1983 if (dump_file && (dump_flags & TDF_DETAILS)) 1984 fprintf (dump_file, "Processing loop %d:\n", loop->num); 1985 1986 unrolled |= loop_prefetch_arrays (loop); 1987 1988 if (dump_file && (dump_flags & TDF_DETAILS)) 1989 fprintf (dump_file, "\n\n"); 1990 } 1991 1992 if (unrolled) 1993 { 1994 scev_reset (); 1995 todo_flags |= TODO_cleanup_cfg; 1996 } 1997 1998 free_original_copy_tables (); 1999 return todo_flags; 2000 } 2001 2002 /* Prefetching. */ 2003 2004 namespace { 2005 2006 const pass_data pass_data_loop_prefetch = 2007 { 2008 GIMPLE_PASS, /* type */ 2009 "aprefetch", /* name */ 2010 OPTGROUP_LOOP, /* optinfo_flags */ 2011 TV_TREE_PREFETCH, /* tv_id */ 2012 ( PROP_cfg | PROP_ssa ), /* properties_required */ 2013 0, /* properties_provided */ 2014 0, /* properties_destroyed */ 2015 0, /* todo_flags_start */ 2016 0, /* todo_flags_finish */ 2017 }; 2018 2019 class pass_loop_prefetch : public gimple_opt_pass 2020 { 2021 public: 2022 pass_loop_prefetch (gcc::context *ctxt) 2023 : gimple_opt_pass (pass_data_loop_prefetch, ctxt) 2024 {} 2025 2026 /* opt_pass methods: */ 2027 virtual bool gate (function *) { return flag_prefetch_loop_arrays > 0; } 2028 virtual unsigned int execute (function *); 2029 2030 }; // class pass_loop_prefetch 2031 2032 unsigned int 2033 pass_loop_prefetch::execute (function *fun) 2034 { 2035 if (number_of_loops (fun) <= 1) 2036 return 0; 2037 2038 if ((PREFETCH_BLOCK & (PREFETCH_BLOCK - 1)) != 0) 2039 { 2040 static bool warned = false; 2041 2042 if (!warned) 2043 { 2044 warning (OPT_Wdisabled_optimization, 2045 "%<l1-cache-size%> parameter is not a power of two %d", 2046 PREFETCH_BLOCK); 2047 warned = true; 2048 } 2049 return 0; 2050 } 2051 2052 return tree_ssa_prefetch_arrays (); 2053 } 2054 2055 } // anon namespace 2056 2057 gimple_opt_pass * 2058 make_pass_loop_prefetch (gcc::context *ctxt) 2059 { 2060 return new pass_loop_prefetch (ctxt); 2061 } 2062 2063 2064