1 /* Array prefetching. 2 Copyright (C) 2005-2019 Free Software Foundation, Inc. 3 4 This file is part of GCC. 5 6 GCC is free software; you can redistribute it and/or modify it 7 under the terms of the GNU General Public License as published by the 8 Free Software Foundation; either version 3, or (at your option) any 9 later version. 10 11 GCC is distributed in the hope that it will be useful, but WITHOUT 12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 14 for more details. 15 16 You should have received a copy of the GNU General Public License 17 along with GCC; see the file COPYING3. If not see 18 <http://www.gnu.org/licenses/>. */ 19 20 #include "config.h" 21 #include "system.h" 22 #include "coretypes.h" 23 #include "backend.h" 24 #include "target.h" 25 #include "rtl.h" 26 #include "tree.h" 27 #include "gimple.h" 28 #include "predict.h" 29 #include "tree-pass.h" 30 #include "gimple-ssa.h" 31 #include "optabs-query.h" 32 #include "tree-pretty-print.h" 33 #include "fold-const.h" 34 #include "stor-layout.h" 35 #include "gimplify.h" 36 #include "gimple-iterator.h" 37 #include "gimplify-me.h" 38 #include "tree-ssa-loop-ivopts.h" 39 #include "tree-ssa-loop-manip.h" 40 #include "tree-ssa-loop-niter.h" 41 #include "tree-ssa-loop.h" 42 #include "ssa.h" 43 #include "tree-into-ssa.h" 44 #include "cfgloop.h" 45 #include "tree-scalar-evolution.h" 46 #include "params.h" 47 #include "langhooks.h" 48 #include "tree-inline.h" 49 #include "tree-data-ref.h" 50 #include "diagnostic-core.h" 51 #include "dbgcnt.h" 52 53 /* This pass inserts prefetch instructions to optimize cache usage during 54 accesses to arrays in loops. It processes loops sequentially and: 55 56 1) Gathers all memory references in the single loop. 57 2) For each of the references it decides when it is profitable to prefetch 58 it. To do it, we evaluate the reuse among the accesses, and determines 59 two values: PREFETCH_BEFORE (meaning that it only makes sense to do 60 prefetching in the first PREFETCH_BEFORE iterations of the loop) and 61 PREFETCH_MOD (meaning that it only makes sense to prefetch in the 62 iterations of the loop that are zero modulo PREFETCH_MOD). For example 63 (assuming cache line size is 64 bytes, char has size 1 byte and there 64 is no hardware sequential prefetch): 65 66 char *a; 67 for (i = 0; i < max; i++) 68 { 69 a[255] = ...; (0) 70 a[i] = ...; (1) 71 a[i + 64] = ...; (2) 72 a[16*i] = ...; (3) 73 a[187*i] = ...; (4) 74 a[187*i + 50] = ...; (5) 75 } 76 77 (0) obviously has PREFETCH_BEFORE 1 78 (1) has PREFETCH_BEFORE 64, since (2) accesses the same memory 79 location 64 iterations before it, and PREFETCH_MOD 64 (since 80 it hits the same cache line otherwise). 81 (2) has PREFETCH_MOD 64 82 (3) has PREFETCH_MOD 4 83 (4) has PREFETCH_MOD 1. We do not set PREFETCH_BEFORE here, since 84 the cache line accessed by (5) is the same with probability only 85 7/32. 86 (5) has PREFETCH_MOD 1 as well. 87 88 Additionally, we use data dependence analysis to determine for each 89 reference the distance till the first reuse; this information is used 90 to determine the temporality of the issued prefetch instruction. 91 92 3) We determine how much ahead we need to prefetch. The number of 93 iterations needed is time to fetch / time spent in one iteration of 94 the loop. The problem is that we do not know either of these values, 95 so we just make a heuristic guess based on a magic (possibly) 96 target-specific constant and size of the loop. 97 98 4) Determine which of the references we prefetch. We take into account 99 that there is a maximum number of simultaneous prefetches (provided 100 by machine description). We prefetch as many prefetches as possible 101 while still within this bound (starting with those with lowest 102 prefetch_mod, since they are responsible for most of the cache 103 misses). 104 105 5) We unroll and peel loops so that we are able to satisfy PREFETCH_MOD 106 and PREFETCH_BEFORE requirements (within some bounds), and to avoid 107 prefetching nonaccessed memory. 108 TODO -- actually implement peeling. 109 110 6) We actually emit the prefetch instructions. ??? Perhaps emit the 111 prefetch instructions with guards in cases where 5) was not sufficient 112 to satisfy the constraints? 113 114 A cost model is implemented to determine whether or not prefetching is 115 profitable for a given loop. The cost model has three heuristics: 116 117 1. Function trip_count_to_ahead_ratio_too_small_p implements a 118 heuristic that determines whether or not the loop has too few 119 iterations (compared to ahead). Prefetching is not likely to be 120 beneficial if the trip count to ahead ratio is below a certain 121 minimum. 122 123 2. Function mem_ref_count_reasonable_p implements a heuristic that 124 determines whether the given loop has enough CPU ops that can be 125 overlapped with cache missing memory ops. If not, the loop 126 won't benefit from prefetching. In the implementation, 127 prefetching is not considered beneficial if the ratio between 128 the instruction count and the mem ref count is below a certain 129 minimum. 130 131 3. Function insn_to_prefetch_ratio_too_small_p implements a 132 heuristic that disables prefetching in a loop if the prefetching 133 cost is above a certain limit. The relative prefetching cost is 134 estimated by taking the ratio between the prefetch count and the 135 total intruction count (this models the I-cache cost). 136 137 The limits used in these heuristics are defined as parameters with 138 reasonable default values. Machine-specific default values will be 139 added later. 140 141 Some other TODO: 142 -- write and use more general reuse analysis (that could be also used 143 in other cache aimed loop optimizations) 144 -- make it behave sanely together with the prefetches given by user 145 (now we just ignore them; at the very least we should avoid 146 optimizing loops in that user put his own prefetches) 147 -- we assume cache line size alignment of arrays; this could be 148 improved. */ 149 150 /* Magic constants follow. These should be replaced by machine specific 151 numbers. */ 152 153 /* True if write can be prefetched by a read prefetch. */ 154 155 #ifndef WRITE_CAN_USE_READ_PREFETCH 156 #define WRITE_CAN_USE_READ_PREFETCH 1 157 #endif 158 159 /* True if read can be prefetched by a write prefetch. */ 160 161 #ifndef READ_CAN_USE_WRITE_PREFETCH 162 #define READ_CAN_USE_WRITE_PREFETCH 0 163 #endif 164 165 /* The size of the block loaded by a single prefetch. Usually, this is 166 the same as cache line size (at the moment, we only consider one level 167 of cache hierarchy). */ 168 169 #ifndef PREFETCH_BLOCK 170 #define PREFETCH_BLOCK L1_CACHE_LINE_SIZE 171 #endif 172 173 /* Do we have a forward hardware sequential prefetching? */ 174 175 #ifndef HAVE_FORWARD_PREFETCH 176 #define HAVE_FORWARD_PREFETCH 0 177 #endif 178 179 /* Do we have a backward hardware sequential prefetching? */ 180 181 #ifndef HAVE_BACKWARD_PREFETCH 182 #define HAVE_BACKWARD_PREFETCH 0 183 #endif 184 185 /* In some cases we are only able to determine that there is a certain 186 probability that the two accesses hit the same cache line. In this 187 case, we issue the prefetches for both of them if this probability 188 is less then (1000 - ACCEPTABLE_MISS_RATE) per thousand. */ 189 190 #ifndef ACCEPTABLE_MISS_RATE 191 #define ACCEPTABLE_MISS_RATE 50 192 #endif 193 194 #define L1_CACHE_SIZE_BYTES ((unsigned) (L1_CACHE_SIZE * 1024)) 195 #define L2_CACHE_SIZE_BYTES ((unsigned) (L2_CACHE_SIZE * 1024)) 196 197 /* We consider a memory access nontemporal if it is not reused sooner than 198 after L2_CACHE_SIZE_BYTES of memory are accessed. However, we ignore 199 accesses closer than L1_CACHE_SIZE_BYTES / NONTEMPORAL_FRACTION, 200 so that we use nontemporal prefetches e.g. if single memory location 201 is accessed several times in a single iteration of the loop. */ 202 #define NONTEMPORAL_FRACTION 16 203 204 /* In case we have to emit a memory fence instruction after the loop that 205 uses nontemporal stores, this defines the builtin to use. */ 206 207 #ifndef FENCE_FOLLOWING_MOVNT 208 #define FENCE_FOLLOWING_MOVNT NULL_TREE 209 #endif 210 211 /* It is not profitable to prefetch when the trip count is not at 212 least TRIP_COUNT_TO_AHEAD_RATIO times the prefetch ahead distance. 213 For example, in a loop with a prefetch ahead distance of 10, 214 supposing that TRIP_COUNT_TO_AHEAD_RATIO is equal to 4, it is 215 profitable to prefetch when the trip count is greater or equal to 216 40. In that case, 30 out of the 40 iterations will benefit from 217 prefetching. */ 218 219 #ifndef TRIP_COUNT_TO_AHEAD_RATIO 220 #define TRIP_COUNT_TO_AHEAD_RATIO 4 221 #endif 222 223 /* The group of references between that reuse may occur. */ 224 225 struct mem_ref_group 226 { 227 tree base; /* Base of the reference. */ 228 tree step; /* Step of the reference. */ 229 struct mem_ref *refs; /* References in the group. */ 230 struct mem_ref_group *next; /* Next group of references. */ 231 unsigned int uid; /* Group UID, used only for debugging. */ 232 }; 233 234 /* Assigned to PREFETCH_BEFORE when all iterations are to be prefetched. */ 235 236 #define PREFETCH_ALL HOST_WIDE_INT_M1U 237 238 /* Do not generate a prefetch if the unroll factor is significantly less 239 than what is required by the prefetch. This is to avoid redundant 240 prefetches. For example, when prefetch_mod is 16 and unroll_factor is 241 2, prefetching requires unrolling the loop 16 times, but 242 the loop is actually unrolled twice. In this case (ratio = 8), 243 prefetching is not likely to be beneficial. */ 244 245 #ifndef PREFETCH_MOD_TO_UNROLL_FACTOR_RATIO 246 #define PREFETCH_MOD_TO_UNROLL_FACTOR_RATIO 4 247 #endif 248 249 /* Some of the prefetch computations have quadratic complexity. We want to 250 avoid huge compile times and, therefore, want to limit the amount of 251 memory references per loop where we consider prefetching. */ 252 253 #ifndef PREFETCH_MAX_MEM_REFS_PER_LOOP 254 #define PREFETCH_MAX_MEM_REFS_PER_LOOP 200 255 #endif 256 257 /* The memory reference. */ 258 259 struct mem_ref 260 { 261 gimple *stmt; /* Statement in that the reference appears. */ 262 tree mem; /* The reference. */ 263 HOST_WIDE_INT delta; /* Constant offset of the reference. */ 264 struct mem_ref_group *group; /* The group of references it belongs to. */ 265 unsigned HOST_WIDE_INT prefetch_mod; 266 /* Prefetch only each PREFETCH_MOD-th 267 iteration. */ 268 unsigned HOST_WIDE_INT prefetch_before; 269 /* Prefetch only first PREFETCH_BEFORE 270 iterations. */ 271 unsigned reuse_distance; /* The amount of data accessed before the first 272 reuse of this value. */ 273 struct mem_ref *next; /* The next reference in the group. */ 274 unsigned int uid; /* Ref UID, used only for debugging. */ 275 unsigned write_p : 1; /* Is it a write? */ 276 unsigned independent_p : 1; /* True if the reference is independent on 277 all other references inside the loop. */ 278 unsigned issue_prefetch_p : 1; /* Should we really issue the prefetch? */ 279 unsigned storent_p : 1; /* True if we changed the store to a 280 nontemporal one. */ 281 }; 282 283 /* Dumps information about memory reference */ 284 static void 285 dump_mem_details (FILE *file, tree base, tree step, 286 HOST_WIDE_INT delta, bool write_p) 287 { 288 fprintf (file, "(base "); 289 print_generic_expr (file, base, TDF_SLIM); 290 fprintf (file, ", step "); 291 if (cst_and_fits_in_hwi (step)) 292 fprintf (file, HOST_WIDE_INT_PRINT_DEC, int_cst_value (step)); 293 else 294 print_generic_expr (file, step, TDF_SLIM); 295 fprintf (file, ")\n"); 296 fprintf (file, " delta " HOST_WIDE_INT_PRINT_DEC "\n", delta); 297 fprintf (file, " %s\n\n", write_p ? "write" : "read"); 298 } 299 300 /* Dumps information about reference REF to FILE. */ 301 302 static void 303 dump_mem_ref (FILE *file, struct mem_ref *ref) 304 { 305 fprintf (file, "reference %u:%u (", ref->group->uid, ref->uid); 306 print_generic_expr (file, ref->mem, TDF_SLIM); 307 fprintf (file, ")\n"); 308 } 309 310 /* Finds a group with BASE and STEP in GROUPS, or creates one if it does not 311 exist. */ 312 313 static struct mem_ref_group * 314 find_or_create_group (struct mem_ref_group **groups, tree base, tree step) 315 { 316 /* Global count for setting struct mem_ref_group->uid. */ 317 static unsigned int last_mem_ref_group_uid = 0; 318 319 struct mem_ref_group *group; 320 321 for (; *groups; groups = &(*groups)->next) 322 { 323 if (operand_equal_p ((*groups)->step, step, 0) 324 && operand_equal_p ((*groups)->base, base, 0)) 325 return *groups; 326 327 /* If step is an integer constant, keep the list of groups sorted 328 by decreasing step. */ 329 if (cst_and_fits_in_hwi ((*groups)->step) && cst_and_fits_in_hwi (step) 330 && int_cst_value ((*groups)->step) < int_cst_value (step)) 331 break; 332 } 333 334 group = XNEW (struct mem_ref_group); 335 group->base = base; 336 group->step = step; 337 group->refs = NULL; 338 group->uid = ++last_mem_ref_group_uid; 339 group->next = *groups; 340 *groups = group; 341 342 return group; 343 } 344 345 /* Records a memory reference MEM in GROUP with offset DELTA and write status 346 WRITE_P. The reference occurs in statement STMT. */ 347 348 static void 349 record_ref (struct mem_ref_group *group, gimple *stmt, tree mem, 350 HOST_WIDE_INT delta, bool write_p) 351 { 352 unsigned int last_mem_ref_uid = 0; 353 struct mem_ref **aref; 354 355 /* Do not record the same address twice. */ 356 for (aref = &group->refs; *aref; aref = &(*aref)->next) 357 { 358 last_mem_ref_uid = (*aref)->uid; 359 360 /* It does not have to be possible for write reference to reuse the read 361 prefetch, or vice versa. */ 362 if (!WRITE_CAN_USE_READ_PREFETCH 363 && write_p 364 && !(*aref)->write_p) 365 continue; 366 if (!READ_CAN_USE_WRITE_PREFETCH 367 && !write_p 368 && (*aref)->write_p) 369 continue; 370 371 if ((*aref)->delta == delta) 372 return; 373 } 374 375 (*aref) = XNEW (struct mem_ref); 376 (*aref)->stmt = stmt; 377 (*aref)->mem = mem; 378 (*aref)->delta = delta; 379 (*aref)->write_p = write_p; 380 (*aref)->prefetch_before = PREFETCH_ALL; 381 (*aref)->prefetch_mod = 1; 382 (*aref)->reuse_distance = 0; 383 (*aref)->issue_prefetch_p = false; 384 (*aref)->group = group; 385 (*aref)->next = NULL; 386 (*aref)->independent_p = false; 387 (*aref)->storent_p = false; 388 (*aref)->uid = last_mem_ref_uid + 1; 389 390 if (dump_file && (dump_flags & TDF_DETAILS)) 391 { 392 dump_mem_ref (dump_file, *aref); 393 394 fprintf (dump_file, " group %u ", group->uid); 395 dump_mem_details (dump_file, group->base, group->step, delta, 396 write_p); 397 } 398 } 399 400 /* Release memory references in GROUPS. */ 401 402 static void 403 release_mem_refs (struct mem_ref_group *groups) 404 { 405 struct mem_ref_group *next_g; 406 struct mem_ref *ref, *next_r; 407 408 for (; groups; groups = next_g) 409 { 410 next_g = groups->next; 411 for (ref = groups->refs; ref; ref = next_r) 412 { 413 next_r = ref->next; 414 free (ref); 415 } 416 free (groups); 417 } 418 } 419 420 /* A structure used to pass arguments to idx_analyze_ref. */ 421 422 struct ar_data 423 { 424 struct loop *loop; /* Loop of the reference. */ 425 gimple *stmt; /* Statement of the reference. */ 426 tree *step; /* Step of the memory reference. */ 427 HOST_WIDE_INT *delta; /* Offset of the memory reference. */ 428 }; 429 430 /* Analyzes a single INDEX of a memory reference to obtain information 431 described at analyze_ref. Callback for for_each_index. */ 432 433 static bool 434 idx_analyze_ref (tree base, tree *index, void *data) 435 { 436 struct ar_data *ar_data = (struct ar_data *) data; 437 tree ibase, step, stepsize; 438 HOST_WIDE_INT idelta = 0, imult = 1; 439 affine_iv iv; 440 441 if (!simple_iv (ar_data->loop, loop_containing_stmt (ar_data->stmt), 442 *index, &iv, true)) 443 return false; 444 ibase = iv.base; 445 step = iv.step; 446 447 if (TREE_CODE (ibase) == POINTER_PLUS_EXPR 448 && cst_and_fits_in_hwi (TREE_OPERAND (ibase, 1))) 449 { 450 idelta = int_cst_value (TREE_OPERAND (ibase, 1)); 451 ibase = TREE_OPERAND (ibase, 0); 452 } 453 if (cst_and_fits_in_hwi (ibase)) 454 { 455 idelta += int_cst_value (ibase); 456 ibase = build_int_cst (TREE_TYPE (ibase), 0); 457 } 458 459 if (TREE_CODE (base) == ARRAY_REF) 460 { 461 stepsize = array_ref_element_size (base); 462 if (!cst_and_fits_in_hwi (stepsize)) 463 return false; 464 imult = int_cst_value (stepsize); 465 step = fold_build2 (MULT_EXPR, sizetype, 466 fold_convert (sizetype, step), 467 fold_convert (sizetype, stepsize)); 468 idelta *= imult; 469 } 470 471 if (*ar_data->step == NULL_TREE) 472 *ar_data->step = step; 473 else 474 *ar_data->step = fold_build2 (PLUS_EXPR, sizetype, 475 fold_convert (sizetype, *ar_data->step), 476 fold_convert (sizetype, step)); 477 *ar_data->delta += idelta; 478 *index = ibase; 479 480 return true; 481 } 482 483 /* Tries to express REF_P in shape &BASE + STEP * iter + DELTA, where DELTA and 484 STEP are integer constants and iter is number of iterations of LOOP. The 485 reference occurs in statement STMT. Strips nonaddressable component 486 references from REF_P. */ 487 488 static bool 489 analyze_ref (struct loop *loop, tree *ref_p, tree *base, 490 tree *step, HOST_WIDE_INT *delta, 491 gimple *stmt) 492 { 493 struct ar_data ar_data; 494 tree off; 495 HOST_WIDE_INT bit_offset; 496 tree ref = *ref_p; 497 498 *step = NULL_TREE; 499 *delta = 0; 500 501 /* First strip off the component references. Ignore bitfields. 502 Also strip off the real and imagine parts of a complex, so that 503 they can have the same base. */ 504 if (TREE_CODE (ref) == REALPART_EXPR 505 || TREE_CODE (ref) == IMAGPART_EXPR 506 || (TREE_CODE (ref) == COMPONENT_REF 507 && DECL_NONADDRESSABLE_P (TREE_OPERAND (ref, 1)))) 508 { 509 if (TREE_CODE (ref) == IMAGPART_EXPR) 510 *delta += int_size_in_bytes (TREE_TYPE (ref)); 511 ref = TREE_OPERAND (ref, 0); 512 } 513 514 *ref_p = ref; 515 516 for (; TREE_CODE (ref) == COMPONENT_REF; ref = TREE_OPERAND (ref, 0)) 517 { 518 off = DECL_FIELD_BIT_OFFSET (TREE_OPERAND (ref, 1)); 519 bit_offset = TREE_INT_CST_LOW (off); 520 gcc_assert (bit_offset % BITS_PER_UNIT == 0); 521 522 *delta += bit_offset / BITS_PER_UNIT; 523 } 524 525 *base = unshare_expr (ref); 526 ar_data.loop = loop; 527 ar_data.stmt = stmt; 528 ar_data.step = step; 529 ar_data.delta = delta; 530 return for_each_index (base, idx_analyze_ref, &ar_data); 531 } 532 533 /* Record a memory reference REF to the list REFS. The reference occurs in 534 LOOP in statement STMT and it is write if WRITE_P. Returns true if the 535 reference was recorded, false otherwise. */ 536 537 static bool 538 gather_memory_references_ref (struct loop *loop, struct mem_ref_group **refs, 539 tree ref, bool write_p, gimple *stmt) 540 { 541 tree base, step; 542 HOST_WIDE_INT delta; 543 struct mem_ref_group *agrp; 544 545 if (get_base_address (ref) == NULL) 546 return false; 547 548 if (!analyze_ref (loop, &ref, &base, &step, &delta, stmt)) 549 return false; 550 /* If analyze_ref fails the default is a NULL_TREE. We can stop here. */ 551 if (step == NULL_TREE) 552 return false; 553 554 /* Stop if the address of BASE could not be taken. */ 555 if (may_be_nonaddressable_p (base)) 556 return false; 557 558 /* Limit non-constant step prefetching only to the innermost loops and 559 only when the step is loop invariant in the entire loop nest. */ 560 if (!cst_and_fits_in_hwi (step)) 561 { 562 if (loop->inner != NULL) 563 { 564 if (dump_file && (dump_flags & TDF_DETAILS)) 565 { 566 fprintf (dump_file, "Memory expression %p\n",(void *) ref ); 567 print_generic_expr (dump_file, ref, TDF_SLIM); 568 fprintf (dump_file,":"); 569 dump_mem_details (dump_file, base, step, delta, write_p); 570 fprintf (dump_file, 571 "Ignoring %p, non-constant step prefetching is " 572 "limited to inner most loops \n", 573 (void *) ref); 574 } 575 return false; 576 } 577 else 578 { 579 if (!expr_invariant_in_loop_p (loop_outermost (loop), step)) 580 { 581 if (dump_file && (dump_flags & TDF_DETAILS)) 582 { 583 fprintf (dump_file, "Memory expression %p\n",(void *) ref ); 584 print_generic_expr (dump_file, ref, TDF_SLIM); 585 fprintf (dump_file,":"); 586 dump_mem_details (dump_file, base, step, delta, write_p); 587 fprintf (dump_file, 588 "Not prefetching, ignoring %p due to " 589 "loop variant step\n", 590 (void *) ref); 591 } 592 return false; 593 } 594 } 595 } 596 597 /* Now we know that REF = &BASE + STEP * iter + DELTA, where DELTA and STEP 598 are integer constants. */ 599 agrp = find_or_create_group (refs, base, step); 600 record_ref (agrp, stmt, ref, delta, write_p); 601 602 return true; 603 } 604 605 /* Record the suitable memory references in LOOP. NO_OTHER_REFS is set to 606 true if there are no other memory references inside the loop. */ 607 608 static struct mem_ref_group * 609 gather_memory_references (struct loop *loop, bool *no_other_refs, unsigned *ref_count) 610 { 611 basic_block *body = get_loop_body_in_dom_order (loop); 612 basic_block bb; 613 unsigned i; 614 gimple_stmt_iterator bsi; 615 gimple *stmt; 616 tree lhs, rhs; 617 struct mem_ref_group *refs = NULL; 618 619 *no_other_refs = true; 620 *ref_count = 0; 621 622 /* Scan the loop body in order, so that the former references precede the 623 later ones. */ 624 for (i = 0; i < loop->num_nodes; i++) 625 { 626 bb = body[i]; 627 if (bb->loop_father != loop) 628 continue; 629 630 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi)) 631 { 632 stmt = gsi_stmt (bsi); 633 634 if (gimple_code (stmt) != GIMPLE_ASSIGN) 635 { 636 if (gimple_vuse (stmt) 637 || (is_gimple_call (stmt) 638 && !(gimple_call_flags (stmt) & ECF_CONST))) 639 *no_other_refs = false; 640 continue; 641 } 642 643 if (! gimple_vuse (stmt)) 644 continue; 645 646 lhs = gimple_assign_lhs (stmt); 647 rhs = gimple_assign_rhs1 (stmt); 648 649 if (REFERENCE_CLASS_P (rhs)) 650 { 651 *no_other_refs &= gather_memory_references_ref (loop, &refs, 652 rhs, false, stmt); 653 *ref_count += 1; 654 } 655 if (REFERENCE_CLASS_P (lhs)) 656 { 657 *no_other_refs &= gather_memory_references_ref (loop, &refs, 658 lhs, true, stmt); 659 *ref_count += 1; 660 } 661 } 662 } 663 free (body); 664 665 return refs; 666 } 667 668 /* Prune the prefetch candidate REF using the self-reuse. */ 669 670 static void 671 prune_ref_by_self_reuse (struct mem_ref *ref) 672 { 673 HOST_WIDE_INT step; 674 bool backward; 675 676 /* If the step size is non constant, we cannot calculate prefetch_mod. */ 677 if (!cst_and_fits_in_hwi (ref->group->step)) 678 return; 679 680 step = int_cst_value (ref->group->step); 681 682 backward = step < 0; 683 684 if (step == 0) 685 { 686 /* Prefetch references to invariant address just once. */ 687 ref->prefetch_before = 1; 688 return; 689 } 690 691 if (backward) 692 step = -step; 693 694 if (step > PREFETCH_BLOCK) 695 return; 696 697 if ((backward && HAVE_BACKWARD_PREFETCH) 698 || (!backward && HAVE_FORWARD_PREFETCH)) 699 { 700 ref->prefetch_before = 1; 701 return; 702 } 703 704 ref->prefetch_mod = PREFETCH_BLOCK / step; 705 } 706 707 /* Divides X by BY, rounding down. */ 708 709 static HOST_WIDE_INT 710 ddown (HOST_WIDE_INT x, unsigned HOST_WIDE_INT by) 711 { 712 gcc_assert (by > 0); 713 714 if (x >= 0) 715 return x / (HOST_WIDE_INT) by; 716 else 717 return (x + (HOST_WIDE_INT) by - 1) / (HOST_WIDE_INT) by; 718 } 719 720 /* Given a CACHE_LINE_SIZE and two inductive memory references 721 with a common STEP greater than CACHE_LINE_SIZE and an address 722 difference DELTA, compute the probability that they will fall 723 in different cache lines. Return true if the computed miss rate 724 is not greater than the ACCEPTABLE_MISS_RATE. DISTINCT_ITERS is the 725 number of distinct iterations after which the pattern repeats itself. 726 ALIGN_UNIT is the unit of alignment in bytes. */ 727 728 static bool 729 is_miss_rate_acceptable (unsigned HOST_WIDE_INT cache_line_size, 730 HOST_WIDE_INT step, HOST_WIDE_INT delta, 731 unsigned HOST_WIDE_INT distinct_iters, 732 int align_unit) 733 { 734 unsigned align, iter; 735 int total_positions, miss_positions, max_allowed_miss_positions; 736 int address1, address2, cache_line1, cache_line2; 737 738 /* It always misses if delta is greater than or equal to the cache 739 line size. */ 740 if (delta >= (HOST_WIDE_INT) cache_line_size) 741 return false; 742 743 miss_positions = 0; 744 total_positions = (cache_line_size / align_unit) * distinct_iters; 745 max_allowed_miss_positions = (ACCEPTABLE_MISS_RATE * total_positions) / 1000; 746 747 /* Iterate through all possible alignments of the first 748 memory reference within its cache line. */ 749 for (align = 0; align < cache_line_size; align += align_unit) 750 751 /* Iterate through all distinct iterations. */ 752 for (iter = 0; iter < distinct_iters; iter++) 753 { 754 address1 = align + step * iter; 755 address2 = address1 + delta; 756 cache_line1 = address1 / cache_line_size; 757 cache_line2 = address2 / cache_line_size; 758 if (cache_line1 != cache_line2) 759 { 760 miss_positions += 1; 761 if (miss_positions > max_allowed_miss_positions) 762 return false; 763 } 764 } 765 return true; 766 } 767 768 /* Prune the prefetch candidate REF using the reuse with BY. 769 If BY_IS_BEFORE is true, BY is before REF in the loop. */ 770 771 static void 772 prune_ref_by_group_reuse (struct mem_ref *ref, struct mem_ref *by, 773 bool by_is_before) 774 { 775 HOST_WIDE_INT step; 776 bool backward; 777 HOST_WIDE_INT delta_r = ref->delta, delta_b = by->delta; 778 HOST_WIDE_INT delta = delta_b - delta_r; 779 HOST_WIDE_INT hit_from; 780 unsigned HOST_WIDE_INT prefetch_before, prefetch_block; 781 HOST_WIDE_INT reduced_step; 782 unsigned HOST_WIDE_INT reduced_prefetch_block; 783 tree ref_type; 784 int align_unit; 785 786 /* If the step is non constant we cannot calculate prefetch_before. */ 787 if (!cst_and_fits_in_hwi (ref->group->step)) { 788 return; 789 } 790 791 step = int_cst_value (ref->group->step); 792 793 backward = step < 0; 794 795 796 if (delta == 0) 797 { 798 /* If the references has the same address, only prefetch the 799 former. */ 800 if (by_is_before) 801 ref->prefetch_before = 0; 802 803 return; 804 } 805 806 if (!step) 807 { 808 /* If the reference addresses are invariant and fall into the 809 same cache line, prefetch just the first one. */ 810 if (!by_is_before) 811 return; 812 813 if (ddown (ref->delta, PREFETCH_BLOCK) 814 != ddown (by->delta, PREFETCH_BLOCK)) 815 return; 816 817 ref->prefetch_before = 0; 818 return; 819 } 820 821 /* Only prune the reference that is behind in the array. */ 822 if (backward) 823 { 824 if (delta > 0) 825 return; 826 827 /* Transform the data so that we may assume that the accesses 828 are forward. */ 829 delta = - delta; 830 step = -step; 831 delta_r = PREFETCH_BLOCK - 1 - delta_r; 832 delta_b = PREFETCH_BLOCK - 1 - delta_b; 833 } 834 else 835 { 836 if (delta < 0) 837 return; 838 } 839 840 /* Check whether the two references are likely to hit the same cache 841 line, and how distant the iterations in that it occurs are from 842 each other. */ 843 844 if (step <= PREFETCH_BLOCK) 845 { 846 /* The accesses are sure to meet. Let us check when. */ 847 hit_from = ddown (delta_b, PREFETCH_BLOCK) * PREFETCH_BLOCK; 848 prefetch_before = (hit_from - delta_r + step - 1) / step; 849 850 /* Do not reduce prefetch_before if we meet beyond cache size. */ 851 if (prefetch_before > absu_hwi (L2_CACHE_SIZE_BYTES / step)) 852 prefetch_before = PREFETCH_ALL; 853 if (prefetch_before < ref->prefetch_before) 854 ref->prefetch_before = prefetch_before; 855 856 return; 857 } 858 859 /* A more complicated case with step > prefetch_block. First reduce 860 the ratio between the step and the cache line size to its simplest 861 terms. The resulting denominator will then represent the number of 862 distinct iterations after which each address will go back to its 863 initial location within the cache line. This computation assumes 864 that PREFETCH_BLOCK is a power of two. */ 865 prefetch_block = PREFETCH_BLOCK; 866 reduced_prefetch_block = prefetch_block; 867 reduced_step = step; 868 while ((reduced_step & 1) == 0 869 && reduced_prefetch_block > 1) 870 { 871 reduced_step >>= 1; 872 reduced_prefetch_block >>= 1; 873 } 874 875 prefetch_before = delta / step; 876 delta %= step; 877 ref_type = TREE_TYPE (ref->mem); 878 align_unit = TYPE_ALIGN (ref_type) / 8; 879 if (is_miss_rate_acceptable (prefetch_block, step, delta, 880 reduced_prefetch_block, align_unit)) 881 { 882 /* Do not reduce prefetch_before if we meet beyond cache size. */ 883 if (prefetch_before > L2_CACHE_SIZE_BYTES / PREFETCH_BLOCK) 884 prefetch_before = PREFETCH_ALL; 885 if (prefetch_before < ref->prefetch_before) 886 ref->prefetch_before = prefetch_before; 887 888 return; 889 } 890 891 /* Try also the following iteration. */ 892 prefetch_before++; 893 delta = step - delta; 894 if (is_miss_rate_acceptable (prefetch_block, step, delta, 895 reduced_prefetch_block, align_unit)) 896 { 897 if (prefetch_before < ref->prefetch_before) 898 ref->prefetch_before = prefetch_before; 899 900 return; 901 } 902 903 /* The ref probably does not reuse by. */ 904 return; 905 } 906 907 /* Prune the prefetch candidate REF using the reuses with other references 908 in REFS. */ 909 910 static void 911 prune_ref_by_reuse (struct mem_ref *ref, struct mem_ref *refs) 912 { 913 struct mem_ref *prune_by; 914 bool before = true; 915 916 prune_ref_by_self_reuse (ref); 917 918 for (prune_by = refs; prune_by; prune_by = prune_by->next) 919 { 920 if (prune_by == ref) 921 { 922 before = false; 923 continue; 924 } 925 926 if (!WRITE_CAN_USE_READ_PREFETCH 927 && ref->write_p 928 && !prune_by->write_p) 929 continue; 930 if (!READ_CAN_USE_WRITE_PREFETCH 931 && !ref->write_p 932 && prune_by->write_p) 933 continue; 934 935 prune_ref_by_group_reuse (ref, prune_by, before); 936 } 937 } 938 939 /* Prune the prefetch candidates in GROUP using the reuse analysis. */ 940 941 static void 942 prune_group_by_reuse (struct mem_ref_group *group) 943 { 944 struct mem_ref *ref_pruned; 945 946 for (ref_pruned = group->refs; ref_pruned; ref_pruned = ref_pruned->next) 947 { 948 prune_ref_by_reuse (ref_pruned, group->refs); 949 950 if (dump_file && (dump_flags & TDF_DETAILS)) 951 { 952 dump_mem_ref (dump_file, ref_pruned); 953 954 if (ref_pruned->prefetch_before == PREFETCH_ALL 955 && ref_pruned->prefetch_mod == 1) 956 fprintf (dump_file, " no restrictions"); 957 else if (ref_pruned->prefetch_before == 0) 958 fprintf (dump_file, " do not prefetch"); 959 else if (ref_pruned->prefetch_before <= ref_pruned->prefetch_mod) 960 fprintf (dump_file, " prefetch once"); 961 else 962 { 963 if (ref_pruned->prefetch_before != PREFETCH_ALL) 964 { 965 fprintf (dump_file, " prefetch before "); 966 fprintf (dump_file, HOST_WIDE_INT_PRINT_DEC, 967 ref_pruned->prefetch_before); 968 } 969 if (ref_pruned->prefetch_mod != 1) 970 { 971 fprintf (dump_file, " prefetch mod "); 972 fprintf (dump_file, HOST_WIDE_INT_PRINT_DEC, 973 ref_pruned->prefetch_mod); 974 } 975 } 976 fprintf (dump_file, "\n"); 977 } 978 } 979 } 980 981 /* Prune the list of prefetch candidates GROUPS using the reuse analysis. */ 982 983 static void 984 prune_by_reuse (struct mem_ref_group *groups) 985 { 986 for (; groups; groups = groups->next) 987 prune_group_by_reuse (groups); 988 } 989 990 /* Returns true if we should issue prefetch for REF. */ 991 992 static bool 993 should_issue_prefetch_p (struct mem_ref *ref) 994 { 995 /* Do we want to issue prefetches for non-constant strides? */ 996 if (!cst_and_fits_in_hwi (ref->group->step) && PREFETCH_DYNAMIC_STRIDES == 0) 997 { 998 if (dump_file && (dump_flags & TDF_DETAILS)) 999 fprintf (dump_file, 1000 "Skipping non-constant step for reference %u:%u\n", 1001 ref->group->uid, ref->uid); 1002 return false; 1003 } 1004 1005 /* Some processors may have a hardware prefetcher that may conflict with 1006 prefetch hints for a range of strides. Make sure we don't issue 1007 prefetches for such cases if the stride is within this particular 1008 range. */ 1009 if (cst_and_fits_in_hwi (ref->group->step) 1010 && abs_hwi (int_cst_value (ref->group->step)) 1011 < (HOST_WIDE_INT) PREFETCH_MINIMUM_STRIDE) 1012 { 1013 if (dump_file && (dump_flags & TDF_DETAILS)) 1014 fprintf (dump_file, 1015 "Step for reference %u:%u (" HOST_WIDE_INT_PRINT_DEC 1016 ") is less than the mininum required stride of %d\n", 1017 ref->group->uid, ref->uid, int_cst_value (ref->group->step), 1018 PREFETCH_MINIMUM_STRIDE); 1019 return false; 1020 } 1021 1022 /* For now do not issue prefetches for only first few of the 1023 iterations. */ 1024 if (ref->prefetch_before != PREFETCH_ALL) 1025 { 1026 if (dump_file && (dump_flags & TDF_DETAILS)) 1027 fprintf (dump_file, "Ignoring reference %u:%u due to prefetch_before\n", 1028 ref->group->uid, ref->uid); 1029 return false; 1030 } 1031 1032 /* Do not prefetch nontemporal stores. */ 1033 if (ref->storent_p) 1034 { 1035 if (dump_file && (dump_flags & TDF_DETAILS)) 1036 fprintf (dump_file, "Ignoring nontemporal store reference %u:%u\n", ref->group->uid, ref->uid); 1037 return false; 1038 } 1039 1040 return true; 1041 } 1042 1043 /* Decide which of the prefetch candidates in GROUPS to prefetch. 1044 AHEAD is the number of iterations to prefetch ahead (which corresponds 1045 to the number of simultaneous instances of one prefetch running at a 1046 time). UNROLL_FACTOR is the factor by that the loop is going to be 1047 unrolled. Returns true if there is anything to prefetch. */ 1048 1049 static bool 1050 schedule_prefetches (struct mem_ref_group *groups, unsigned unroll_factor, 1051 unsigned ahead) 1052 { 1053 unsigned remaining_prefetch_slots, n_prefetches, prefetch_slots; 1054 unsigned slots_per_prefetch; 1055 struct mem_ref *ref; 1056 bool any = false; 1057 1058 /* At most SIMULTANEOUS_PREFETCHES should be running at the same time. */ 1059 remaining_prefetch_slots = SIMULTANEOUS_PREFETCHES; 1060 1061 /* The prefetch will run for AHEAD iterations of the original loop, i.e., 1062 AHEAD / UNROLL_FACTOR iterations of the unrolled loop. In each iteration, 1063 it will need a prefetch slot. */ 1064 slots_per_prefetch = (ahead + unroll_factor / 2) / unroll_factor; 1065 if (dump_file && (dump_flags & TDF_DETAILS)) 1066 fprintf (dump_file, "Each prefetch instruction takes %u prefetch slots.\n", 1067 slots_per_prefetch); 1068 1069 /* For now we just take memory references one by one and issue 1070 prefetches for as many as possible. The groups are sorted 1071 starting with the largest step, since the references with 1072 large step are more likely to cause many cache misses. */ 1073 1074 for (; groups; groups = groups->next) 1075 for (ref = groups->refs; ref; ref = ref->next) 1076 { 1077 if (!should_issue_prefetch_p (ref)) 1078 continue; 1079 1080 /* The loop is far from being sufficiently unrolled for this 1081 prefetch. Do not generate prefetch to avoid many redudant 1082 prefetches. */ 1083 if (ref->prefetch_mod / unroll_factor > PREFETCH_MOD_TO_UNROLL_FACTOR_RATIO) 1084 continue; 1085 1086 /* If we need to prefetch the reference each PREFETCH_MOD iterations, 1087 and we unroll the loop UNROLL_FACTOR times, we need to insert 1088 ceil (UNROLL_FACTOR / PREFETCH_MOD) instructions in each 1089 iteration. */ 1090 n_prefetches = ((unroll_factor + ref->prefetch_mod - 1) 1091 / ref->prefetch_mod); 1092 prefetch_slots = n_prefetches * slots_per_prefetch; 1093 1094 /* If more than half of the prefetches would be lost anyway, do not 1095 issue the prefetch. */ 1096 if (2 * remaining_prefetch_slots < prefetch_slots) 1097 continue; 1098 1099 /* Stop prefetching if debug counter is activated. */ 1100 if (!dbg_cnt (prefetch)) 1101 continue; 1102 1103 ref->issue_prefetch_p = true; 1104 if (dump_file && (dump_flags & TDF_DETAILS)) 1105 fprintf (dump_file, "Decided to issue prefetch for reference %u:%u\n", 1106 ref->group->uid, ref->uid); 1107 1108 if (remaining_prefetch_slots <= prefetch_slots) 1109 return true; 1110 remaining_prefetch_slots -= prefetch_slots; 1111 any = true; 1112 } 1113 1114 return any; 1115 } 1116 1117 /* Return TRUE if no prefetch is going to be generated in the given 1118 GROUPS. */ 1119 1120 static bool 1121 nothing_to_prefetch_p (struct mem_ref_group *groups) 1122 { 1123 struct mem_ref *ref; 1124 1125 for (; groups; groups = groups->next) 1126 for (ref = groups->refs; ref; ref = ref->next) 1127 if (should_issue_prefetch_p (ref)) 1128 return false; 1129 1130 return true; 1131 } 1132 1133 /* Estimate the number of prefetches in the given GROUPS. 1134 UNROLL_FACTOR is the factor by which LOOP was unrolled. */ 1135 1136 static int 1137 estimate_prefetch_count (struct mem_ref_group *groups, unsigned unroll_factor) 1138 { 1139 struct mem_ref *ref; 1140 unsigned n_prefetches; 1141 int prefetch_count = 0; 1142 1143 for (; groups; groups = groups->next) 1144 for (ref = groups->refs; ref; ref = ref->next) 1145 if (should_issue_prefetch_p (ref)) 1146 { 1147 n_prefetches = ((unroll_factor + ref->prefetch_mod - 1) 1148 / ref->prefetch_mod); 1149 prefetch_count += n_prefetches; 1150 } 1151 1152 return prefetch_count; 1153 } 1154 1155 /* Issue prefetches for the reference REF into loop as decided before. 1156 HEAD is the number of iterations to prefetch ahead. UNROLL_FACTOR 1157 is the factor by which LOOP was unrolled. */ 1158 1159 static void 1160 issue_prefetch_ref (struct mem_ref *ref, unsigned unroll_factor, unsigned ahead) 1161 { 1162 HOST_WIDE_INT delta; 1163 tree addr, addr_base, write_p, local, forward; 1164 gcall *prefetch; 1165 gimple_stmt_iterator bsi; 1166 unsigned n_prefetches, ap; 1167 bool nontemporal = ref->reuse_distance >= L2_CACHE_SIZE_BYTES; 1168 1169 if (dump_file && (dump_flags & TDF_DETAILS)) 1170 fprintf (dump_file, "Issued%s prefetch for reference %u:%u.\n", 1171 nontemporal ? " nontemporal" : "", 1172 ref->group->uid, ref->uid); 1173 1174 bsi = gsi_for_stmt (ref->stmt); 1175 1176 n_prefetches = ((unroll_factor + ref->prefetch_mod - 1) 1177 / ref->prefetch_mod); 1178 addr_base = build_fold_addr_expr_with_type (ref->mem, ptr_type_node); 1179 addr_base = force_gimple_operand_gsi (&bsi, unshare_expr (addr_base), 1180 true, NULL, true, GSI_SAME_STMT); 1181 write_p = ref->write_p ? integer_one_node : integer_zero_node; 1182 local = nontemporal ? integer_zero_node : integer_three_node; 1183 1184 for (ap = 0; ap < n_prefetches; ap++) 1185 { 1186 if (cst_and_fits_in_hwi (ref->group->step)) 1187 { 1188 /* Determine the address to prefetch. */ 1189 delta = (ahead + ap * ref->prefetch_mod) * 1190 int_cst_value (ref->group->step); 1191 addr = fold_build_pointer_plus_hwi (addr_base, delta); 1192 addr = force_gimple_operand_gsi (&bsi, unshare_expr (addr), true, 1193 NULL, true, GSI_SAME_STMT); 1194 } 1195 else 1196 { 1197 /* The step size is non-constant but loop-invariant. We use the 1198 heuristic to simply prefetch ahead iterations ahead. */ 1199 forward = fold_build2 (MULT_EXPR, sizetype, 1200 fold_convert (sizetype, ref->group->step), 1201 fold_convert (sizetype, size_int (ahead))); 1202 addr = fold_build_pointer_plus (addr_base, forward); 1203 addr = force_gimple_operand_gsi (&bsi, unshare_expr (addr), true, 1204 NULL, true, GSI_SAME_STMT); 1205 } 1206 1207 if (addr_base != addr 1208 && TREE_CODE (addr_base) == SSA_NAME 1209 && TREE_CODE (addr) == SSA_NAME) 1210 { 1211 duplicate_ssa_name_ptr_info (addr, SSA_NAME_PTR_INFO (addr_base)); 1212 /* As this isn't a plain copy we have to reset alignment 1213 information. */ 1214 if (SSA_NAME_PTR_INFO (addr)) 1215 mark_ptr_info_alignment_unknown (SSA_NAME_PTR_INFO (addr)); 1216 } 1217 1218 /* Create the prefetch instruction. */ 1219 prefetch = gimple_build_call (builtin_decl_explicit (BUILT_IN_PREFETCH), 1220 3, addr, write_p, local); 1221 gsi_insert_before (&bsi, prefetch, GSI_SAME_STMT); 1222 } 1223 } 1224 1225 /* Issue prefetches for the references in GROUPS into loop as decided before. 1226 HEAD is the number of iterations to prefetch ahead. UNROLL_FACTOR is the 1227 factor by that LOOP was unrolled. */ 1228 1229 static void 1230 issue_prefetches (struct mem_ref_group *groups, 1231 unsigned unroll_factor, unsigned ahead) 1232 { 1233 struct mem_ref *ref; 1234 1235 for (; groups; groups = groups->next) 1236 for (ref = groups->refs; ref; ref = ref->next) 1237 if (ref->issue_prefetch_p) 1238 issue_prefetch_ref (ref, unroll_factor, ahead); 1239 } 1240 1241 /* Returns true if REF is a memory write for that a nontemporal store insn 1242 can be used. */ 1243 1244 static bool 1245 nontemporal_store_p (struct mem_ref *ref) 1246 { 1247 machine_mode mode; 1248 enum insn_code code; 1249 1250 /* REF must be a write that is not reused. We require it to be independent 1251 on all other memory references in the loop, as the nontemporal stores may 1252 be reordered with respect to other memory references. */ 1253 if (!ref->write_p 1254 || !ref->independent_p 1255 || ref->reuse_distance < L2_CACHE_SIZE_BYTES) 1256 return false; 1257 1258 /* Check that we have the storent instruction for the mode. */ 1259 mode = TYPE_MODE (TREE_TYPE (ref->mem)); 1260 if (mode == BLKmode) 1261 return false; 1262 1263 code = optab_handler (storent_optab, mode); 1264 return code != CODE_FOR_nothing; 1265 } 1266 1267 /* If REF is a nontemporal store, we mark the corresponding modify statement 1268 and return true. Otherwise, we return false. */ 1269 1270 static bool 1271 mark_nontemporal_store (struct mem_ref *ref) 1272 { 1273 if (!nontemporal_store_p (ref)) 1274 return false; 1275 1276 if (dump_file && (dump_flags & TDF_DETAILS)) 1277 fprintf (dump_file, "Marked reference %u:%u as a nontemporal store.\n", 1278 ref->group->uid, ref->uid); 1279 1280 gimple_assign_set_nontemporal_move (ref->stmt, true); 1281 ref->storent_p = true; 1282 1283 return true; 1284 } 1285 1286 /* Issue a memory fence instruction after LOOP. */ 1287 1288 static void 1289 emit_mfence_after_loop (struct loop *loop) 1290 { 1291 vec<edge> exits = get_loop_exit_edges (loop); 1292 edge exit; 1293 gcall *call; 1294 gimple_stmt_iterator bsi; 1295 unsigned i; 1296 1297 FOR_EACH_VEC_ELT (exits, i, exit) 1298 { 1299 call = gimple_build_call (FENCE_FOLLOWING_MOVNT, 0); 1300 1301 if (!single_pred_p (exit->dest) 1302 /* If possible, we prefer not to insert the fence on other paths 1303 in cfg. */ 1304 && !(exit->flags & EDGE_ABNORMAL)) 1305 split_loop_exit_edge (exit); 1306 bsi = gsi_after_labels (exit->dest); 1307 1308 gsi_insert_before (&bsi, call, GSI_NEW_STMT); 1309 } 1310 1311 exits.release (); 1312 update_ssa (TODO_update_ssa_only_virtuals); 1313 } 1314 1315 /* Returns true if we can use storent in loop, false otherwise. */ 1316 1317 static bool 1318 may_use_storent_in_loop_p (struct loop *loop) 1319 { 1320 bool ret = true; 1321 1322 if (loop->inner != NULL) 1323 return false; 1324 1325 /* If we must issue a mfence insn after using storent, check that there 1326 is a suitable place for it at each of the loop exits. */ 1327 if (FENCE_FOLLOWING_MOVNT != NULL_TREE) 1328 { 1329 vec<edge> exits = get_loop_exit_edges (loop); 1330 unsigned i; 1331 edge exit; 1332 1333 FOR_EACH_VEC_ELT (exits, i, exit) 1334 if ((exit->flags & EDGE_ABNORMAL) 1335 && exit->dest == EXIT_BLOCK_PTR_FOR_FN (cfun)) 1336 ret = false; 1337 1338 exits.release (); 1339 } 1340 1341 return ret; 1342 } 1343 1344 /* Marks nontemporal stores in LOOP. GROUPS contains the description of memory 1345 references in the loop. */ 1346 1347 static void 1348 mark_nontemporal_stores (struct loop *loop, struct mem_ref_group *groups) 1349 { 1350 struct mem_ref *ref; 1351 bool any = false; 1352 1353 if (!may_use_storent_in_loop_p (loop)) 1354 return; 1355 1356 for (; groups; groups = groups->next) 1357 for (ref = groups->refs; ref; ref = ref->next) 1358 any |= mark_nontemporal_store (ref); 1359 1360 if (any && FENCE_FOLLOWING_MOVNT != NULL_TREE) 1361 emit_mfence_after_loop (loop); 1362 } 1363 1364 /* Determines whether we can profitably unroll LOOP FACTOR times, and if 1365 this is the case, fill in DESC by the description of number of 1366 iterations. */ 1367 1368 static bool 1369 should_unroll_loop_p (struct loop *loop, struct tree_niter_desc *desc, 1370 unsigned factor) 1371 { 1372 if (!can_unroll_loop_p (loop, factor, desc)) 1373 return false; 1374 1375 /* We only consider loops without control flow for unrolling. This is not 1376 a hard restriction -- tree_unroll_loop works with arbitrary loops 1377 as well; but the unrolling/prefetching is usually more profitable for 1378 loops consisting of a single basic block, and we want to limit the 1379 code growth. */ 1380 if (loop->num_nodes > 2) 1381 return false; 1382 1383 return true; 1384 } 1385 1386 /* Determine the coefficient by that unroll LOOP, from the information 1387 contained in the list of memory references REFS. Description of 1388 number of iterations of LOOP is stored to DESC. NINSNS is the number of 1389 insns of the LOOP. EST_NITER is the estimated number of iterations of 1390 the loop, or -1 if no estimate is available. */ 1391 1392 static unsigned 1393 determine_unroll_factor (struct loop *loop, struct mem_ref_group *refs, 1394 unsigned ninsns, struct tree_niter_desc *desc, 1395 HOST_WIDE_INT est_niter) 1396 { 1397 unsigned upper_bound; 1398 unsigned nfactor, factor, mod_constraint; 1399 struct mem_ref_group *agp; 1400 struct mem_ref *ref; 1401 1402 /* First check whether the loop is not too large to unroll. We ignore 1403 PARAM_MAX_UNROLL_TIMES, because for small loops, it prevented us 1404 from unrolling them enough to make exactly one cache line covered by each 1405 iteration. Also, the goal of PARAM_MAX_UNROLL_TIMES is to prevent 1406 us from unrolling the loops too many times in cases where we only expect 1407 gains from better scheduling and decreasing loop overhead, which is not 1408 the case here. */ 1409 upper_bound = PARAM_VALUE (PARAM_MAX_UNROLLED_INSNS) / ninsns; 1410 1411 /* If we unrolled the loop more times than it iterates, the unrolled version 1412 of the loop would be never entered. */ 1413 if (est_niter >= 0 && est_niter < (HOST_WIDE_INT) upper_bound) 1414 upper_bound = est_niter; 1415 1416 if (upper_bound <= 1) 1417 return 1; 1418 1419 /* Choose the factor so that we may prefetch each cache just once, 1420 but bound the unrolling by UPPER_BOUND. */ 1421 factor = 1; 1422 for (agp = refs; agp; agp = agp->next) 1423 for (ref = agp->refs; ref; ref = ref->next) 1424 if (should_issue_prefetch_p (ref)) 1425 { 1426 mod_constraint = ref->prefetch_mod; 1427 nfactor = least_common_multiple (mod_constraint, factor); 1428 if (nfactor <= upper_bound) 1429 factor = nfactor; 1430 } 1431 1432 if (!should_unroll_loop_p (loop, desc, factor)) 1433 return 1; 1434 1435 return factor; 1436 } 1437 1438 /* Returns the total volume of the memory references REFS, taking into account 1439 reuses in the innermost loop and cache line size. TODO -- we should also 1440 take into account reuses across the iterations of the loops in the loop 1441 nest. */ 1442 1443 static unsigned 1444 volume_of_references (struct mem_ref_group *refs) 1445 { 1446 unsigned volume = 0; 1447 struct mem_ref_group *gr; 1448 struct mem_ref *ref; 1449 1450 for (gr = refs; gr; gr = gr->next) 1451 for (ref = gr->refs; ref; ref = ref->next) 1452 { 1453 /* Almost always reuses another value? */ 1454 if (ref->prefetch_before != PREFETCH_ALL) 1455 continue; 1456 1457 /* If several iterations access the same cache line, use the size of 1458 the line divided by this number. Otherwise, a cache line is 1459 accessed in each iteration. TODO -- in the latter case, we should 1460 take the size of the reference into account, rounding it up on cache 1461 line size multiple. */ 1462 volume += L1_CACHE_LINE_SIZE / ref->prefetch_mod; 1463 } 1464 return volume; 1465 } 1466 1467 /* Returns the volume of memory references accessed across VEC iterations of 1468 loops, whose sizes are described in the LOOP_SIZES array. N is the number 1469 of the loops in the nest (length of VEC and LOOP_SIZES vectors). */ 1470 1471 static unsigned 1472 volume_of_dist_vector (lambda_vector vec, unsigned *loop_sizes, unsigned n) 1473 { 1474 unsigned i; 1475 1476 for (i = 0; i < n; i++) 1477 if (vec[i] != 0) 1478 break; 1479 1480 if (i == n) 1481 return 0; 1482 1483 gcc_assert (vec[i] > 0); 1484 1485 /* We ignore the parts of the distance vector in subloops, since usually 1486 the numbers of iterations are much smaller. */ 1487 return loop_sizes[i] * vec[i]; 1488 } 1489 1490 /* Add the steps of ACCESS_FN multiplied by STRIDE to the array STRIDE 1491 at the position corresponding to the loop of the step. N is the depth 1492 of the considered loop nest, and, LOOP is its innermost loop. */ 1493 1494 static void 1495 add_subscript_strides (tree access_fn, unsigned stride, 1496 HOST_WIDE_INT *strides, unsigned n, struct loop *loop) 1497 { 1498 struct loop *aloop; 1499 tree step; 1500 HOST_WIDE_INT astep; 1501 unsigned min_depth = loop_depth (loop) - n; 1502 1503 while (TREE_CODE (access_fn) == POLYNOMIAL_CHREC) 1504 { 1505 aloop = get_chrec_loop (access_fn); 1506 step = CHREC_RIGHT (access_fn); 1507 access_fn = CHREC_LEFT (access_fn); 1508 1509 if ((unsigned) loop_depth (aloop) <= min_depth) 1510 continue; 1511 1512 if (tree_fits_shwi_p (step)) 1513 astep = tree_to_shwi (step); 1514 else 1515 astep = L1_CACHE_LINE_SIZE; 1516 1517 strides[n - 1 - loop_depth (loop) + loop_depth (aloop)] += astep * stride; 1518 1519 } 1520 } 1521 1522 /* Returns the volume of memory references accessed between two consecutive 1523 self-reuses of the reference DR. We consider the subscripts of DR in N 1524 loops, and LOOP_SIZES contains the volumes of accesses in each of the 1525 loops. LOOP is the innermost loop of the current loop nest. */ 1526 1527 static unsigned 1528 self_reuse_distance (data_reference_p dr, unsigned *loop_sizes, unsigned n, 1529 struct loop *loop) 1530 { 1531 tree stride, access_fn; 1532 HOST_WIDE_INT *strides, astride; 1533 vec<tree> access_fns; 1534 tree ref = DR_REF (dr); 1535 unsigned i, ret = ~0u; 1536 1537 /* In the following example: 1538 1539 for (i = 0; i < N; i++) 1540 for (j = 0; j < N; j++) 1541 use (a[j][i]); 1542 the same cache line is accessed each N steps (except if the change from 1543 i to i + 1 crosses the boundary of the cache line). Thus, for self-reuse, 1544 we cannot rely purely on the results of the data dependence analysis. 1545 1546 Instead, we compute the stride of the reference in each loop, and consider 1547 the innermost loop in that the stride is less than cache size. */ 1548 1549 strides = XCNEWVEC (HOST_WIDE_INT, n); 1550 access_fns = DR_ACCESS_FNS (dr); 1551 1552 FOR_EACH_VEC_ELT (access_fns, i, access_fn) 1553 { 1554 /* Keep track of the reference corresponding to the subscript, so that we 1555 know its stride. */ 1556 while (handled_component_p (ref) && TREE_CODE (ref) != ARRAY_REF) 1557 ref = TREE_OPERAND (ref, 0); 1558 1559 if (TREE_CODE (ref) == ARRAY_REF) 1560 { 1561 stride = TYPE_SIZE_UNIT (TREE_TYPE (ref)); 1562 if (tree_fits_uhwi_p (stride)) 1563 astride = tree_to_uhwi (stride); 1564 else 1565 astride = L1_CACHE_LINE_SIZE; 1566 1567 ref = TREE_OPERAND (ref, 0); 1568 } 1569 else 1570 astride = 1; 1571 1572 add_subscript_strides (access_fn, astride, strides, n, loop); 1573 } 1574 1575 for (i = n; i-- > 0; ) 1576 { 1577 unsigned HOST_WIDE_INT s; 1578 1579 s = strides[i] < 0 ? -strides[i] : strides[i]; 1580 1581 if (s < (unsigned) L1_CACHE_LINE_SIZE 1582 && (loop_sizes[i] 1583 > (unsigned) (L1_CACHE_SIZE_BYTES / NONTEMPORAL_FRACTION))) 1584 { 1585 ret = loop_sizes[i]; 1586 break; 1587 } 1588 } 1589 1590 free (strides); 1591 return ret; 1592 } 1593 1594 /* Determines the distance till the first reuse of each reference in REFS 1595 in the loop nest of LOOP. NO_OTHER_REFS is true if there are no other 1596 memory references in the loop. Return false if the analysis fails. */ 1597 1598 static bool 1599 determine_loop_nest_reuse (struct loop *loop, struct mem_ref_group *refs, 1600 bool no_other_refs) 1601 { 1602 struct loop *nest, *aloop; 1603 vec<data_reference_p> datarefs = vNULL; 1604 vec<ddr_p> dependences = vNULL; 1605 struct mem_ref_group *gr; 1606 struct mem_ref *ref, *refb; 1607 auto_vec<loop_p> vloops; 1608 unsigned *loop_data_size; 1609 unsigned i, j, n; 1610 unsigned volume, dist, adist; 1611 HOST_WIDE_INT vol; 1612 data_reference_p dr; 1613 ddr_p dep; 1614 1615 if (loop->inner) 1616 return true; 1617 1618 /* Find the outermost loop of the loop nest of loop (we require that 1619 there are no sibling loops inside the nest). */ 1620 nest = loop; 1621 while (1) 1622 { 1623 aloop = loop_outer (nest); 1624 1625 if (aloop == current_loops->tree_root 1626 || aloop->inner->next) 1627 break; 1628 1629 nest = aloop; 1630 } 1631 1632 /* For each loop, determine the amount of data accessed in each iteration. 1633 We use this to estimate whether the reference is evicted from the 1634 cache before its reuse. */ 1635 find_loop_nest (nest, &vloops); 1636 n = vloops.length (); 1637 loop_data_size = XNEWVEC (unsigned, n); 1638 volume = volume_of_references (refs); 1639 i = n; 1640 while (i-- != 0) 1641 { 1642 loop_data_size[i] = volume; 1643 /* Bound the volume by the L2 cache size, since above this bound, 1644 all dependence distances are equivalent. */ 1645 if (volume > L2_CACHE_SIZE_BYTES) 1646 continue; 1647 1648 aloop = vloops[i]; 1649 vol = estimated_stmt_executions_int (aloop); 1650 if (vol == -1) 1651 vol = expected_loop_iterations (aloop); 1652 volume *= vol; 1653 } 1654 1655 /* Prepare the references in the form suitable for data dependence 1656 analysis. We ignore unanalyzable data references (the results 1657 are used just as a heuristics to estimate temporality of the 1658 references, hence we do not need to worry about correctness). */ 1659 for (gr = refs; gr; gr = gr->next) 1660 for (ref = gr->refs; ref; ref = ref->next) 1661 { 1662 dr = create_data_ref (loop_preheader_edge (nest), 1663 loop_containing_stmt (ref->stmt), 1664 ref->mem, ref->stmt, !ref->write_p, false); 1665 1666 if (dr) 1667 { 1668 ref->reuse_distance = volume; 1669 dr->aux = ref; 1670 datarefs.safe_push (dr); 1671 } 1672 else 1673 no_other_refs = false; 1674 } 1675 1676 FOR_EACH_VEC_ELT (datarefs, i, dr) 1677 { 1678 dist = self_reuse_distance (dr, loop_data_size, n, loop); 1679 ref = (struct mem_ref *) dr->aux; 1680 if (ref->reuse_distance > dist) 1681 ref->reuse_distance = dist; 1682 1683 if (no_other_refs) 1684 ref->independent_p = true; 1685 } 1686 1687 if (!compute_all_dependences (datarefs, &dependences, vloops, true)) 1688 return false; 1689 1690 FOR_EACH_VEC_ELT (dependences, i, dep) 1691 { 1692 if (DDR_ARE_DEPENDENT (dep) == chrec_known) 1693 continue; 1694 1695 ref = (struct mem_ref *) DDR_A (dep)->aux; 1696 refb = (struct mem_ref *) DDR_B (dep)->aux; 1697 1698 if (DDR_ARE_DEPENDENT (dep) == chrec_dont_know 1699 || DDR_COULD_BE_INDEPENDENT_P (dep) 1700 || DDR_NUM_DIST_VECTS (dep) == 0) 1701 { 1702 /* If the dependence cannot be analyzed, assume that there might be 1703 a reuse. */ 1704 dist = 0; 1705 1706 ref->independent_p = false; 1707 refb->independent_p = false; 1708 } 1709 else 1710 { 1711 /* The distance vectors are normalized to be always lexicographically 1712 positive, hence we cannot tell just from them whether DDR_A comes 1713 before DDR_B or vice versa. However, it is not important, 1714 anyway -- if DDR_A is close to DDR_B, then it is either reused in 1715 DDR_B (and it is not nontemporal), or it reuses the value of DDR_B 1716 in cache (and marking it as nontemporal would not affect 1717 anything). */ 1718 1719 dist = volume; 1720 for (j = 0; j < DDR_NUM_DIST_VECTS (dep); j++) 1721 { 1722 adist = volume_of_dist_vector (DDR_DIST_VECT (dep, j), 1723 loop_data_size, n); 1724 1725 /* If this is a dependence in the innermost loop (i.e., the 1726 distances in all superloops are zero) and it is not 1727 the trivial self-dependence with distance zero, record that 1728 the references are not completely independent. */ 1729 if (lambda_vector_zerop (DDR_DIST_VECT (dep, j), n - 1) 1730 && (ref != refb 1731 || DDR_DIST_VECT (dep, j)[n-1] != 0)) 1732 { 1733 ref->independent_p = false; 1734 refb->independent_p = false; 1735 } 1736 1737 /* Ignore accesses closer than 1738 L1_CACHE_SIZE_BYTES / NONTEMPORAL_FRACTION, 1739 so that we use nontemporal prefetches e.g. if single memory 1740 location is accessed several times in a single iteration of 1741 the loop. */ 1742 if (adist < L1_CACHE_SIZE_BYTES / NONTEMPORAL_FRACTION) 1743 continue; 1744 1745 if (adist < dist) 1746 dist = adist; 1747 } 1748 } 1749 1750 if (ref->reuse_distance > dist) 1751 ref->reuse_distance = dist; 1752 if (refb->reuse_distance > dist) 1753 refb->reuse_distance = dist; 1754 } 1755 1756 free_dependence_relations (dependences); 1757 free_data_refs (datarefs); 1758 free (loop_data_size); 1759 1760 if (dump_file && (dump_flags & TDF_DETAILS)) 1761 { 1762 fprintf (dump_file, "Reuse distances:\n"); 1763 for (gr = refs; gr; gr = gr->next) 1764 for (ref = gr->refs; ref; ref = ref->next) 1765 fprintf (dump_file, " reference %u:%u distance %u\n", 1766 ref->group->uid, ref->uid, ref->reuse_distance); 1767 } 1768 1769 return true; 1770 } 1771 1772 /* Determine whether or not the trip count to ahead ratio is too small based 1773 on prefitablility consideration. 1774 AHEAD: the iteration ahead distance, 1775 EST_NITER: the estimated trip count. */ 1776 1777 static bool 1778 trip_count_to_ahead_ratio_too_small_p (unsigned ahead, HOST_WIDE_INT est_niter) 1779 { 1780 /* Assume trip count to ahead ratio is big enough if the trip count could not 1781 be estimated at compile time. */ 1782 if (est_niter < 0) 1783 return false; 1784 1785 if (est_niter < (HOST_WIDE_INT) (TRIP_COUNT_TO_AHEAD_RATIO * ahead)) 1786 { 1787 if (dump_file && (dump_flags & TDF_DETAILS)) 1788 fprintf (dump_file, 1789 "Not prefetching -- loop estimated to roll only %d times\n", 1790 (int) est_niter); 1791 return true; 1792 } 1793 1794 return false; 1795 } 1796 1797 /* Determine whether or not the number of memory references in the loop is 1798 reasonable based on the profitablity and compilation time considerations. 1799 NINSNS: estimated number of instructions in the loop, 1800 MEM_REF_COUNT: total number of memory references in the loop. */ 1801 1802 static bool 1803 mem_ref_count_reasonable_p (unsigned ninsns, unsigned mem_ref_count) 1804 { 1805 int insn_to_mem_ratio; 1806 1807 if (mem_ref_count == 0) 1808 return false; 1809 1810 /* Miss rate computation (is_miss_rate_acceptable) and dependence analysis 1811 (compute_all_dependences) have high costs based on quadratic complexity. 1812 To avoid huge compilation time, we give up prefetching if mem_ref_count 1813 is too large. */ 1814 if (mem_ref_count > PREFETCH_MAX_MEM_REFS_PER_LOOP) 1815 return false; 1816 1817 /* Prefetching improves performance by overlapping cache missing 1818 memory accesses with CPU operations. If the loop does not have 1819 enough CPU operations to overlap with memory operations, prefetching 1820 won't give a significant benefit. One approximate way of checking 1821 this is to require the ratio of instructions to memory references to 1822 be above a certain limit. This approximation works well in practice. 1823 TODO: Implement a more precise computation by estimating the time 1824 for each CPU or memory op in the loop. Time estimates for memory ops 1825 should account for cache misses. */ 1826 insn_to_mem_ratio = ninsns / mem_ref_count; 1827 1828 if (insn_to_mem_ratio < PREFETCH_MIN_INSN_TO_MEM_RATIO) 1829 { 1830 if (dump_file && (dump_flags & TDF_DETAILS)) 1831 fprintf (dump_file, 1832 "Not prefetching -- instruction to memory reference ratio (%d) too small\n", 1833 insn_to_mem_ratio); 1834 return false; 1835 } 1836 1837 return true; 1838 } 1839 1840 /* Determine whether or not the instruction to prefetch ratio in the loop is 1841 too small based on the profitablity consideration. 1842 NINSNS: estimated number of instructions in the loop, 1843 PREFETCH_COUNT: an estimate of the number of prefetches, 1844 UNROLL_FACTOR: the factor to unroll the loop if prefetching. */ 1845 1846 static bool 1847 insn_to_prefetch_ratio_too_small_p (unsigned ninsns, unsigned prefetch_count, 1848 unsigned unroll_factor) 1849 { 1850 int insn_to_prefetch_ratio; 1851 1852 /* Prefetching most likely causes performance degradation when the instruction 1853 to prefetch ratio is too small. Too many prefetch instructions in a loop 1854 may reduce the I-cache performance. 1855 (unroll_factor * ninsns) is used to estimate the number of instructions in 1856 the unrolled loop. This implementation is a bit simplistic -- the number 1857 of issued prefetch instructions is also affected by unrolling. So, 1858 prefetch_mod and the unroll factor should be taken into account when 1859 determining prefetch_count. Also, the number of insns of the unrolled 1860 loop will usually be significantly smaller than the number of insns of the 1861 original loop * unroll_factor (at least the induction variable increases 1862 and the exit branches will get eliminated), so it might be better to use 1863 tree_estimate_loop_size + estimated_unrolled_size. */ 1864 insn_to_prefetch_ratio = (unroll_factor * ninsns) / prefetch_count; 1865 if (insn_to_prefetch_ratio < MIN_INSN_TO_PREFETCH_RATIO) 1866 { 1867 if (dump_file && (dump_flags & TDF_DETAILS)) 1868 fprintf (dump_file, 1869 "Not prefetching -- instruction to prefetch ratio (%d) too small\n", 1870 insn_to_prefetch_ratio); 1871 return true; 1872 } 1873 1874 return false; 1875 } 1876 1877 1878 /* Issue prefetch instructions for array references in LOOP. Returns 1879 true if the LOOP was unrolled. */ 1880 1881 static bool 1882 loop_prefetch_arrays (struct loop *loop) 1883 { 1884 struct mem_ref_group *refs; 1885 unsigned ahead, ninsns, time, unroll_factor; 1886 HOST_WIDE_INT est_niter; 1887 struct tree_niter_desc desc; 1888 bool unrolled = false, no_other_refs; 1889 unsigned prefetch_count; 1890 unsigned mem_ref_count; 1891 1892 if (optimize_loop_nest_for_size_p (loop)) 1893 { 1894 if (dump_file && (dump_flags & TDF_DETAILS)) 1895 fprintf (dump_file, " ignored (cold area)\n"); 1896 return false; 1897 } 1898 1899 /* FIXME: the time should be weighted by the probabilities of the blocks in 1900 the loop body. */ 1901 time = tree_num_loop_insns (loop, &eni_time_weights); 1902 if (time == 0) 1903 return false; 1904 1905 ahead = (PREFETCH_LATENCY + time - 1) / time; 1906 est_niter = estimated_stmt_executions_int (loop); 1907 if (est_niter == -1) 1908 est_niter = likely_max_stmt_executions_int (loop); 1909 1910 /* Prefetching is not likely to be profitable if the trip count to ahead 1911 ratio is too small. */ 1912 if (trip_count_to_ahead_ratio_too_small_p (ahead, est_niter)) 1913 return false; 1914 1915 ninsns = tree_num_loop_insns (loop, &eni_size_weights); 1916 1917 /* Step 1: gather the memory references. */ 1918 refs = gather_memory_references (loop, &no_other_refs, &mem_ref_count); 1919 1920 /* Give up prefetching if the number of memory references in the 1921 loop is not reasonable based on profitablity and compilation time 1922 considerations. */ 1923 if (!mem_ref_count_reasonable_p (ninsns, mem_ref_count)) 1924 goto fail; 1925 1926 /* Step 2: estimate the reuse effects. */ 1927 prune_by_reuse (refs); 1928 1929 if (nothing_to_prefetch_p (refs)) 1930 goto fail; 1931 1932 if (!determine_loop_nest_reuse (loop, refs, no_other_refs)) 1933 goto fail; 1934 1935 /* Step 3: determine unroll factor. */ 1936 unroll_factor = determine_unroll_factor (loop, refs, ninsns, &desc, 1937 est_niter); 1938 1939 /* Estimate prefetch count for the unrolled loop. */ 1940 prefetch_count = estimate_prefetch_count (refs, unroll_factor); 1941 if (prefetch_count == 0) 1942 goto fail; 1943 1944 if (dump_file && (dump_flags & TDF_DETAILS)) 1945 fprintf (dump_file, "Ahead %d, unroll factor %d, trip count " 1946 HOST_WIDE_INT_PRINT_DEC "\n" 1947 "insn count %d, mem ref count %d, prefetch count %d\n", 1948 ahead, unroll_factor, est_niter, 1949 ninsns, mem_ref_count, prefetch_count); 1950 1951 /* Prefetching is not likely to be profitable if the instruction to prefetch 1952 ratio is too small. */ 1953 if (insn_to_prefetch_ratio_too_small_p (ninsns, prefetch_count, 1954 unroll_factor)) 1955 goto fail; 1956 1957 mark_nontemporal_stores (loop, refs); 1958 1959 /* Step 4: what to prefetch? */ 1960 if (!schedule_prefetches (refs, unroll_factor, ahead)) 1961 goto fail; 1962 1963 /* Step 5: unroll the loop. TODO -- peeling of first and last few 1964 iterations so that we do not issue superfluous prefetches. */ 1965 if (unroll_factor != 1) 1966 { 1967 tree_unroll_loop (loop, unroll_factor, 1968 single_dom_exit (loop), &desc); 1969 unrolled = true; 1970 } 1971 1972 /* Step 6: issue the prefetches. */ 1973 issue_prefetches (refs, unroll_factor, ahead); 1974 1975 fail: 1976 release_mem_refs (refs); 1977 return unrolled; 1978 } 1979 1980 /* Issue prefetch instructions for array references in loops. */ 1981 1982 unsigned int 1983 tree_ssa_prefetch_arrays (void) 1984 { 1985 struct loop *loop; 1986 bool unrolled = false; 1987 int todo_flags = 0; 1988 1989 if (!targetm.have_prefetch () 1990 /* It is possible to ask compiler for say -mtune=i486 -march=pentium4. 1991 -mtune=i486 causes us having PREFETCH_BLOCK 0, since this is part 1992 of processor costs and i486 does not have prefetch, but 1993 -march=pentium4 causes targetm.have_prefetch to be true. Ugh. */ 1994 || PREFETCH_BLOCK == 0) 1995 return 0; 1996 1997 if (dump_file && (dump_flags & TDF_DETAILS)) 1998 { 1999 fprintf (dump_file, "Prefetching parameters:\n"); 2000 fprintf (dump_file, " simultaneous prefetches: %d\n", 2001 SIMULTANEOUS_PREFETCHES); 2002 fprintf (dump_file, " prefetch latency: %d\n", PREFETCH_LATENCY); 2003 fprintf (dump_file, " prefetch block size: %d\n", PREFETCH_BLOCK); 2004 fprintf (dump_file, " L1 cache size: %d lines, %d kB\n", 2005 L1_CACHE_SIZE_BYTES / L1_CACHE_LINE_SIZE, L1_CACHE_SIZE); 2006 fprintf (dump_file, " L1 cache line size: %d\n", L1_CACHE_LINE_SIZE); 2007 fprintf (dump_file, " L2 cache size: %d kB\n", L2_CACHE_SIZE); 2008 fprintf (dump_file, " min insn-to-prefetch ratio: %d \n", 2009 MIN_INSN_TO_PREFETCH_RATIO); 2010 fprintf (dump_file, " min insn-to-mem ratio: %d \n", 2011 PREFETCH_MIN_INSN_TO_MEM_RATIO); 2012 fprintf (dump_file, "\n"); 2013 } 2014 2015 initialize_original_copy_tables (); 2016 2017 if (!builtin_decl_explicit_p (BUILT_IN_PREFETCH)) 2018 { 2019 tree type = build_function_type_list (void_type_node, 2020 const_ptr_type_node, NULL_TREE); 2021 tree decl = add_builtin_function ("__builtin_prefetch", type, 2022 BUILT_IN_PREFETCH, BUILT_IN_NORMAL, 2023 NULL, NULL_TREE); 2024 DECL_IS_NOVOPS (decl) = true; 2025 set_builtin_decl (BUILT_IN_PREFETCH, decl, false); 2026 } 2027 2028 FOR_EACH_LOOP (loop, LI_FROM_INNERMOST) 2029 { 2030 if (dump_file && (dump_flags & TDF_DETAILS)) 2031 fprintf (dump_file, "Processing loop %d:\n", loop->num); 2032 2033 unrolled |= loop_prefetch_arrays (loop); 2034 2035 if (dump_file && (dump_flags & TDF_DETAILS)) 2036 fprintf (dump_file, "\n\n"); 2037 } 2038 2039 if (unrolled) 2040 { 2041 scev_reset (); 2042 todo_flags |= TODO_cleanup_cfg; 2043 } 2044 2045 free_original_copy_tables (); 2046 return todo_flags; 2047 } 2048 2049 /* Prefetching. */ 2050 2051 namespace { 2052 2053 const pass_data pass_data_loop_prefetch = 2054 { 2055 GIMPLE_PASS, /* type */ 2056 "aprefetch", /* name */ 2057 OPTGROUP_LOOP, /* optinfo_flags */ 2058 TV_TREE_PREFETCH, /* tv_id */ 2059 ( PROP_cfg | PROP_ssa ), /* properties_required */ 2060 0, /* properties_provided */ 2061 0, /* properties_destroyed */ 2062 0, /* todo_flags_start */ 2063 0, /* todo_flags_finish */ 2064 }; 2065 2066 class pass_loop_prefetch : public gimple_opt_pass 2067 { 2068 public: 2069 pass_loop_prefetch (gcc::context *ctxt) 2070 : gimple_opt_pass (pass_data_loop_prefetch, ctxt) 2071 {} 2072 2073 /* opt_pass methods: */ 2074 virtual bool gate (function *) { return flag_prefetch_loop_arrays > 0; } 2075 virtual unsigned int execute (function *); 2076 2077 }; // class pass_loop_prefetch 2078 2079 unsigned int 2080 pass_loop_prefetch::execute (function *fun) 2081 { 2082 if (number_of_loops (fun) <= 1) 2083 return 0; 2084 2085 if ((PREFETCH_BLOCK & (PREFETCH_BLOCK - 1)) != 0) 2086 { 2087 static bool warned = false; 2088 2089 if (!warned) 2090 { 2091 warning (OPT_Wdisabled_optimization, 2092 "%<l1-cache-size%> parameter is not a power of two %d", 2093 PREFETCH_BLOCK); 2094 warned = true; 2095 } 2096 return 0; 2097 } 2098 2099 return tree_ssa_prefetch_arrays (); 2100 } 2101 2102 } // anon namespace 2103 2104 gimple_opt_pass * 2105 make_pass_loop_prefetch (gcc::context *ctxt) 2106 { 2107 return new pass_loop_prefetch (ctxt); 2108 } 2109 2110 2111