1 /* High-level loop manipulation functions. 2 Copyright (C) 2004-2013 Free Software Foundation, Inc. 3 4 This file is part of GCC. 5 6 GCC is free software; you can redistribute it and/or modify it 7 under the terms of the GNU General Public License as published by the 8 Free Software Foundation; either version 3, or (at your option) any 9 later version. 10 11 GCC is distributed in the hope that it will be useful, but WITHOUT 12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 14 for more details. 15 16 You should have received a copy of the GNU General Public License 17 along with GCC; see the file COPYING3. If not see 18 <http://www.gnu.org/licenses/>. */ 19 20 #include "config.h" 21 #include "system.h" 22 #include "coretypes.h" 23 #include "tm.h" 24 #include "tree.h" 25 #include "tm_p.h" 26 #include "basic-block.h" 27 #include "tree-flow.h" 28 #include "dumpfile.h" 29 #include "gimple-pretty-print.h" 30 #include "cfgloop.h" 31 #include "tree-pass.h" /* ??? for TODO_update_ssa but this isn't a pass. */ 32 #include "tree-scalar-evolution.h" 33 #include "params.h" 34 #include "tree-inline.h" 35 #include "langhooks.h" 36 37 /* All bitmaps for rewriting into loop-closed SSA go on this obstack, 38 so that we can free them all at once. */ 39 static bitmap_obstack loop_renamer_obstack; 40 41 /* Creates an induction variable with value BASE + STEP * iteration in LOOP. 42 It is expected that neither BASE nor STEP are shared with other expressions 43 (unless the sharing rules allow this). Use VAR as a base var_decl for it 44 (if NULL, a new temporary will be created). The increment will occur at 45 INCR_POS (after it if AFTER is true, before it otherwise). INCR_POS and 46 AFTER can be computed using standard_iv_increment_position. The ssa versions 47 of the variable before and after increment will be stored in VAR_BEFORE and 48 VAR_AFTER (unless they are NULL). */ 49 50 void 51 create_iv (tree base, tree step, tree var, struct loop *loop, 52 gimple_stmt_iterator *incr_pos, bool after, 53 tree *var_before, tree *var_after) 54 { 55 gimple stmt; 56 tree initial, step1; 57 gimple_seq stmts; 58 tree vb, va; 59 enum tree_code incr_op = PLUS_EXPR; 60 edge pe = loop_preheader_edge (loop); 61 62 if (var != NULL_TREE) 63 { 64 vb = make_ssa_name (var, NULL); 65 va = make_ssa_name (var, NULL); 66 } 67 else 68 { 69 vb = make_temp_ssa_name (TREE_TYPE (base), NULL, "ivtmp"); 70 va = make_temp_ssa_name (TREE_TYPE (base), NULL, "ivtmp"); 71 } 72 if (var_before) 73 *var_before = vb; 74 if (var_after) 75 *var_after = va; 76 77 /* For easier readability of the created code, produce MINUS_EXPRs 78 when suitable. */ 79 if (TREE_CODE (step) == INTEGER_CST) 80 { 81 if (TYPE_UNSIGNED (TREE_TYPE (step))) 82 { 83 step1 = fold_build1 (NEGATE_EXPR, TREE_TYPE (step), step); 84 if (tree_int_cst_lt (step1, step)) 85 { 86 incr_op = MINUS_EXPR; 87 step = step1; 88 } 89 } 90 else 91 { 92 bool ovf; 93 94 if (!tree_expr_nonnegative_warnv_p (step, &ovf) 95 && may_negate_without_overflow_p (step)) 96 { 97 incr_op = MINUS_EXPR; 98 step = fold_build1 (NEGATE_EXPR, TREE_TYPE (step), step); 99 } 100 } 101 } 102 if (POINTER_TYPE_P (TREE_TYPE (base))) 103 { 104 if (TREE_CODE (base) == ADDR_EXPR) 105 mark_addressable (TREE_OPERAND (base, 0)); 106 step = convert_to_ptrofftype (step); 107 if (incr_op == MINUS_EXPR) 108 step = fold_build1 (NEGATE_EXPR, TREE_TYPE (step), step); 109 incr_op = POINTER_PLUS_EXPR; 110 } 111 /* Gimplify the step if necessary. We put the computations in front of the 112 loop (i.e. the step should be loop invariant). */ 113 step = force_gimple_operand (step, &stmts, true, NULL_TREE); 114 if (stmts) 115 gsi_insert_seq_on_edge_immediate (pe, stmts); 116 117 stmt = gimple_build_assign_with_ops (incr_op, va, vb, step); 118 if (after) 119 gsi_insert_after (incr_pos, stmt, GSI_NEW_STMT); 120 else 121 gsi_insert_before (incr_pos, stmt, GSI_NEW_STMT); 122 123 initial = force_gimple_operand (base, &stmts, true, var); 124 if (stmts) 125 gsi_insert_seq_on_edge_immediate (pe, stmts); 126 127 stmt = create_phi_node (vb, loop->header); 128 add_phi_arg (stmt, initial, loop_preheader_edge (loop), UNKNOWN_LOCATION); 129 add_phi_arg (stmt, va, loop_latch_edge (loop), UNKNOWN_LOCATION); 130 } 131 132 /* Return the innermost superloop LOOP of USE_LOOP that is a superloop of 133 both DEF_LOOP and USE_LOOP. */ 134 135 static inline struct loop * 136 find_sibling_superloop (struct loop *use_loop, struct loop *def_loop) 137 { 138 unsigned ud = loop_depth (use_loop); 139 unsigned dd = loop_depth (def_loop); 140 gcc_assert (ud > 0 && dd > 0); 141 if (ud > dd) 142 use_loop = superloop_at_depth (use_loop, dd); 143 if (ud < dd) 144 def_loop = superloop_at_depth (def_loop, ud); 145 while (loop_outer (use_loop) != loop_outer (def_loop)) 146 { 147 use_loop = loop_outer (use_loop); 148 def_loop = loop_outer (def_loop); 149 gcc_assert (use_loop && def_loop); 150 } 151 return use_loop; 152 } 153 154 /* DEF_BB is a basic block containing a DEF that needs rewriting into 155 loop-closed SSA form. USE_BLOCKS is the set of basic blocks containing 156 uses of DEF that "escape" from the loop containing DEF_BB (i.e. blocks in 157 USE_BLOCKS are dominated by DEF_BB but not in the loop father of DEF_B). 158 ALL_EXITS[I] is the set of all basic blocks that exit loop I. 159 160 Compute the subset of LOOP_EXITS that exit the loop containing DEF_BB 161 or one of its loop fathers, in which DEF is live. This set is returned 162 in the bitmap LIVE_EXITS. 163 164 Instead of computing the complete livein set of the def, we use the loop 165 nesting tree as a form of poor man's structure analysis. This greatly 166 speeds up the analysis, which is important because this function may be 167 called on all SSA names that need rewriting, one at a time. */ 168 169 static void 170 compute_live_loop_exits (bitmap live_exits, bitmap use_blocks, 171 bitmap *loop_exits, basic_block def_bb) 172 { 173 unsigned i; 174 bitmap_iterator bi; 175 vec<basic_block> worklist; 176 struct loop *def_loop = def_bb->loop_father; 177 unsigned def_loop_depth = loop_depth (def_loop); 178 bitmap def_loop_exits; 179 180 /* Normally the work list size is bounded by the number of basic 181 blocks in the largest loop. We don't know this number, but we 182 can be fairly sure that it will be relatively small. */ 183 worklist.create (MAX (8, n_basic_blocks / 128)); 184 185 EXECUTE_IF_SET_IN_BITMAP (use_blocks, 0, i, bi) 186 { 187 basic_block use_bb = BASIC_BLOCK (i); 188 struct loop *use_loop = use_bb->loop_father; 189 gcc_checking_assert (def_loop != use_loop 190 && ! flow_loop_nested_p (def_loop, use_loop)); 191 if (! flow_loop_nested_p (use_loop, def_loop)) 192 use_bb = find_sibling_superloop (use_loop, def_loop)->header; 193 if (bitmap_set_bit (live_exits, use_bb->index)) 194 worklist.safe_push (use_bb); 195 } 196 197 /* Iterate until the worklist is empty. */ 198 while (! worklist.is_empty ()) 199 { 200 edge e; 201 edge_iterator ei; 202 203 /* Pull a block off the worklist. */ 204 basic_block bb = worklist.pop (); 205 206 /* Make sure we have at least enough room in the work list 207 for all predecessors of this block. */ 208 worklist.reserve (EDGE_COUNT (bb->preds)); 209 210 /* For each predecessor block. */ 211 FOR_EACH_EDGE (e, ei, bb->preds) 212 { 213 basic_block pred = e->src; 214 struct loop *pred_loop = pred->loop_father; 215 unsigned pred_loop_depth = loop_depth (pred_loop); 216 bool pred_visited; 217 218 /* We should have met DEF_BB along the way. */ 219 gcc_assert (pred != ENTRY_BLOCK_PTR); 220 221 if (pred_loop_depth >= def_loop_depth) 222 { 223 if (pred_loop_depth > def_loop_depth) 224 pred_loop = superloop_at_depth (pred_loop, def_loop_depth); 225 /* If we've reached DEF_LOOP, our train ends here. */ 226 if (pred_loop == def_loop) 227 continue; 228 } 229 else if (! flow_loop_nested_p (pred_loop, def_loop)) 230 pred = find_sibling_superloop (pred_loop, def_loop)->header; 231 232 /* Add PRED to the LIVEIN set. PRED_VISITED is true if 233 we had already added PRED to LIVEIN before. */ 234 pred_visited = !bitmap_set_bit (live_exits, pred->index); 235 236 /* If we have visited PRED before, don't add it to the worklist. 237 If BB dominates PRED, then we're probably looking at a loop. 238 We're only interested in looking up in the dominance tree 239 because DEF_BB dominates all the uses. */ 240 if (pred_visited || dominated_by_p (CDI_DOMINATORS, pred, bb)) 241 continue; 242 243 worklist.quick_push (pred); 244 } 245 } 246 worklist.release (); 247 248 def_loop_exits = BITMAP_ALLOC (&loop_renamer_obstack); 249 for (struct loop *loop = def_loop; 250 loop != current_loops->tree_root; 251 loop = loop_outer (loop)) 252 bitmap_ior_into (def_loop_exits, loop_exits[loop->num]); 253 bitmap_and_into (live_exits, def_loop_exits); 254 BITMAP_FREE (def_loop_exits); 255 } 256 257 /* Add a loop-closing PHI for VAR in basic block EXIT. */ 258 259 static void 260 add_exit_phi (basic_block exit, tree var) 261 { 262 gimple phi; 263 edge e; 264 edge_iterator ei; 265 266 #ifdef ENABLE_CHECKING 267 /* Check that at least one of the edges entering the EXIT block exits 268 the loop, or a superloop of that loop, that VAR is defined in. */ 269 gimple def_stmt = SSA_NAME_DEF_STMT (var); 270 basic_block def_bb = gimple_bb (def_stmt); 271 FOR_EACH_EDGE (e, ei, exit->preds) 272 { 273 struct loop *aloop = find_common_loop (def_bb->loop_father, 274 e->src->loop_father); 275 if (!flow_bb_inside_loop_p (aloop, e->dest)) 276 break; 277 } 278 279 gcc_checking_assert (e); 280 #endif 281 282 phi = create_phi_node (NULL_TREE, exit); 283 create_new_def_for (var, phi, gimple_phi_result_ptr (phi)); 284 FOR_EACH_EDGE (e, ei, exit->preds) 285 add_phi_arg (phi, var, e, UNKNOWN_LOCATION); 286 287 if (dump_file && (dump_flags & TDF_DETAILS)) 288 { 289 fprintf (dump_file, ";; Created LCSSA PHI: "); 290 print_gimple_stmt (dump_file, phi, 0, dump_flags); 291 } 292 } 293 294 /* Add exit phis for VAR that is used in LIVEIN. 295 Exits of the loops are stored in LOOP_EXITS. */ 296 297 static void 298 add_exit_phis_var (tree var, bitmap use_blocks, bitmap *loop_exits) 299 { 300 unsigned index; 301 bitmap_iterator bi; 302 basic_block def_bb = gimple_bb (SSA_NAME_DEF_STMT (var)); 303 bitmap live_exits = BITMAP_ALLOC (&loop_renamer_obstack); 304 305 gcc_checking_assert (! bitmap_bit_p (use_blocks, def_bb->index)); 306 307 compute_live_loop_exits (live_exits, use_blocks, loop_exits, def_bb); 308 309 EXECUTE_IF_SET_IN_BITMAP (live_exits, 0, index, bi) 310 { 311 add_exit_phi (BASIC_BLOCK (index), var); 312 } 313 314 BITMAP_FREE (live_exits); 315 } 316 317 /* Add exit phis for the names marked in NAMES_TO_RENAME. 318 Exits of the loops are stored in EXITS. Sets of blocks where the ssa 319 names are used are stored in USE_BLOCKS. */ 320 321 static void 322 add_exit_phis (bitmap names_to_rename, bitmap *use_blocks, bitmap *loop_exits) 323 { 324 unsigned i; 325 bitmap_iterator bi; 326 327 EXECUTE_IF_SET_IN_BITMAP (names_to_rename, 0, i, bi) 328 { 329 add_exit_phis_var (ssa_name (i), use_blocks[i], loop_exits); 330 } 331 } 332 333 /* Fill the array of bitmaps LOOP_EXITS with all loop exit edge targets. */ 334 335 static void 336 get_loops_exits (bitmap *loop_exits) 337 { 338 loop_iterator li; 339 struct loop *loop; 340 unsigned j; 341 edge e; 342 343 FOR_EACH_LOOP (li, loop, 0) 344 { 345 vec<edge> exit_edges = get_loop_exit_edges (loop); 346 loop_exits[loop->num] = BITMAP_ALLOC (&loop_renamer_obstack); 347 FOR_EACH_VEC_ELT (exit_edges, j, e) 348 bitmap_set_bit (loop_exits[loop->num], e->dest->index); 349 exit_edges.release (); 350 } 351 } 352 353 /* For USE in BB, if it is used outside of the loop it is defined in, 354 mark it for rewrite. Record basic block BB where it is used 355 to USE_BLOCKS. Record the ssa name index to NEED_PHIS bitmap. */ 356 357 static void 358 find_uses_to_rename_use (basic_block bb, tree use, bitmap *use_blocks, 359 bitmap need_phis) 360 { 361 unsigned ver; 362 basic_block def_bb; 363 struct loop *def_loop; 364 365 if (TREE_CODE (use) != SSA_NAME) 366 return; 367 368 ver = SSA_NAME_VERSION (use); 369 def_bb = gimple_bb (SSA_NAME_DEF_STMT (use)); 370 if (!def_bb) 371 return; 372 def_loop = def_bb->loop_father; 373 374 /* If the definition is not inside a loop, it is not interesting. */ 375 if (!loop_outer (def_loop)) 376 return; 377 378 /* If the use is not outside of the loop it is defined in, it is not 379 interesting. */ 380 if (flow_bb_inside_loop_p (def_loop, bb)) 381 return; 382 383 /* If we're seeing VER for the first time, we still have to allocate 384 a bitmap for its uses. */ 385 if (bitmap_set_bit (need_phis, ver)) 386 use_blocks[ver] = BITMAP_ALLOC (&loop_renamer_obstack); 387 bitmap_set_bit (use_blocks[ver], bb->index); 388 } 389 390 /* For uses in STMT, mark names that are used outside of the loop they are 391 defined to rewrite. Record the set of blocks in that the ssa 392 names are defined to USE_BLOCKS and the ssa names themselves to 393 NEED_PHIS. */ 394 395 static void 396 find_uses_to_rename_stmt (gimple stmt, bitmap *use_blocks, bitmap need_phis) 397 { 398 ssa_op_iter iter; 399 tree var; 400 basic_block bb = gimple_bb (stmt); 401 402 if (is_gimple_debug (stmt)) 403 return; 404 405 FOR_EACH_SSA_TREE_OPERAND (var, stmt, iter, SSA_OP_USE) 406 find_uses_to_rename_use (bb, var, use_blocks, need_phis); 407 } 408 409 /* Marks names that are used in BB and outside of the loop they are 410 defined in for rewrite. Records the set of blocks in that the ssa 411 names are defined to USE_BLOCKS. Record the SSA names that will 412 need exit PHIs in NEED_PHIS. */ 413 414 static void 415 find_uses_to_rename_bb (basic_block bb, bitmap *use_blocks, bitmap need_phis) 416 { 417 gimple_stmt_iterator bsi; 418 edge e; 419 edge_iterator ei; 420 421 FOR_EACH_EDGE (e, ei, bb->succs) 422 for (bsi = gsi_start_phis (e->dest); !gsi_end_p (bsi); gsi_next (&bsi)) 423 { 424 gimple phi = gsi_stmt (bsi); 425 if (! virtual_operand_p (gimple_phi_result (phi))) 426 find_uses_to_rename_use (bb, PHI_ARG_DEF_FROM_EDGE (phi, e), 427 use_blocks, need_phis); 428 } 429 430 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi)) 431 find_uses_to_rename_stmt (gsi_stmt (bsi), use_blocks, need_phis); 432 } 433 434 /* Marks names that are used outside of the loop they are defined in 435 for rewrite. Records the set of blocks in that the ssa 436 names are defined to USE_BLOCKS. If CHANGED_BBS is not NULL, 437 scan only blocks in this set. */ 438 439 static void 440 find_uses_to_rename (bitmap changed_bbs, bitmap *use_blocks, bitmap need_phis) 441 { 442 basic_block bb; 443 unsigned index; 444 bitmap_iterator bi; 445 446 /* ??? If CHANGED_BBS is empty we rewrite the whole function -- why? */ 447 if (changed_bbs && !bitmap_empty_p (changed_bbs)) 448 { 449 EXECUTE_IF_SET_IN_BITMAP (changed_bbs, 0, index, bi) 450 { 451 find_uses_to_rename_bb (BASIC_BLOCK (index), use_blocks, need_phis); 452 } 453 } 454 else 455 { 456 FOR_EACH_BB (bb) 457 { 458 find_uses_to_rename_bb (bb, use_blocks, need_phis); 459 } 460 } 461 } 462 463 /* Rewrites the program into a loop closed ssa form -- i.e. inserts extra 464 phi nodes to ensure that no variable is used outside the loop it is 465 defined in. 466 467 This strengthening of the basic ssa form has several advantages: 468 469 1) Updating it during unrolling/peeling/versioning is trivial, since 470 we do not need to care about the uses outside of the loop. 471 The same applies to virtual operands which are also rewritten into 472 loop closed SSA form. Note that virtual operands are always live 473 until function exit. 474 2) The behavior of all uses of an induction variable is the same. 475 Without this, you need to distinguish the case when the variable 476 is used outside of the loop it is defined in, for example 477 478 for (i = 0; i < 100; i++) 479 { 480 for (j = 0; j < 100; j++) 481 { 482 k = i + j; 483 use1 (k); 484 } 485 use2 (k); 486 } 487 488 Looking from the outer loop with the normal SSA form, the first use of k 489 is not well-behaved, while the second one is an induction variable with 490 base 99 and step 1. 491 492 If CHANGED_BBS is not NULL, we look for uses outside loops only in 493 the basic blocks in this set. 494 495 UPDATE_FLAG is used in the call to update_ssa. See 496 TODO_update_ssa* for documentation. */ 497 498 void 499 rewrite_into_loop_closed_ssa (bitmap changed_bbs, unsigned update_flag) 500 { 501 bitmap *loop_exits; 502 bitmap *use_blocks; 503 bitmap names_to_rename; 504 505 loops_state_set (LOOP_CLOSED_SSA); 506 if (number_of_loops () <= 1) 507 return; 508 509 /* If the pass has caused the SSA form to be out-of-date, update it 510 now. */ 511 update_ssa (update_flag); 512 513 bitmap_obstack_initialize (&loop_renamer_obstack); 514 515 names_to_rename = BITMAP_ALLOC (&loop_renamer_obstack); 516 517 /* An array of bitmaps where LOOP_EXITS[I] is the set of basic blocks 518 that are the destination of an edge exiting loop number I. */ 519 loop_exits = XNEWVEC (bitmap, number_of_loops ()); 520 get_loops_exits (loop_exits); 521 522 /* Uses of names to rename. We don't have to initialize this array, 523 because we know that we will only have entries for the SSA names 524 in NAMES_TO_RENAME. */ 525 use_blocks = XNEWVEC (bitmap, num_ssa_names); 526 527 /* Find the uses outside loops. */ 528 find_uses_to_rename (changed_bbs, use_blocks, names_to_rename); 529 530 /* Add the PHI nodes on exits of the loops for the names we need to 531 rewrite. */ 532 add_exit_phis (names_to_rename, use_blocks, loop_exits); 533 534 bitmap_obstack_release (&loop_renamer_obstack); 535 free (use_blocks); 536 free (loop_exits); 537 538 /* Fix up all the names found to be used outside their original 539 loops. */ 540 update_ssa (TODO_update_ssa); 541 } 542 543 /* Check invariants of the loop closed ssa form for the USE in BB. */ 544 545 static void 546 check_loop_closed_ssa_use (basic_block bb, tree use) 547 { 548 gimple def; 549 basic_block def_bb; 550 551 if (TREE_CODE (use) != SSA_NAME || virtual_operand_p (use)) 552 return; 553 554 def = SSA_NAME_DEF_STMT (use); 555 def_bb = gimple_bb (def); 556 gcc_assert (!def_bb 557 || flow_bb_inside_loop_p (def_bb->loop_father, bb)); 558 } 559 560 /* Checks invariants of loop closed ssa form in statement STMT in BB. */ 561 562 static void 563 check_loop_closed_ssa_stmt (basic_block bb, gimple stmt) 564 { 565 ssa_op_iter iter; 566 tree var; 567 568 if (is_gimple_debug (stmt)) 569 return; 570 571 FOR_EACH_SSA_TREE_OPERAND (var, stmt, iter, SSA_OP_USE) 572 check_loop_closed_ssa_use (bb, var); 573 } 574 575 /* Checks that invariants of the loop closed ssa form are preserved. 576 Call verify_ssa when VERIFY_SSA_P is true. */ 577 578 DEBUG_FUNCTION void 579 verify_loop_closed_ssa (bool verify_ssa_p) 580 { 581 basic_block bb; 582 gimple_stmt_iterator bsi; 583 gimple phi; 584 edge e; 585 edge_iterator ei; 586 587 if (number_of_loops () <= 1) 588 return; 589 590 if (verify_ssa_p) 591 verify_ssa (false); 592 593 timevar_push (TV_VERIFY_LOOP_CLOSED); 594 595 FOR_EACH_BB (bb) 596 { 597 for (bsi = gsi_start_phis (bb); !gsi_end_p (bsi); gsi_next (&bsi)) 598 { 599 phi = gsi_stmt (bsi); 600 FOR_EACH_EDGE (e, ei, bb->preds) 601 check_loop_closed_ssa_use (e->src, 602 PHI_ARG_DEF_FROM_EDGE (phi, e)); 603 } 604 605 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi)) 606 check_loop_closed_ssa_stmt (bb, gsi_stmt (bsi)); 607 } 608 609 timevar_pop (TV_VERIFY_LOOP_CLOSED); 610 } 611 612 /* Split loop exit edge EXIT. The things are a bit complicated by a need to 613 preserve the loop closed ssa form. The newly created block is returned. */ 614 615 basic_block 616 split_loop_exit_edge (edge exit) 617 { 618 basic_block dest = exit->dest; 619 basic_block bb = split_edge (exit); 620 gimple phi, new_phi; 621 tree new_name, name; 622 use_operand_p op_p; 623 gimple_stmt_iterator psi; 624 source_location locus; 625 626 for (psi = gsi_start_phis (dest); !gsi_end_p (psi); gsi_next (&psi)) 627 { 628 phi = gsi_stmt (psi); 629 op_p = PHI_ARG_DEF_PTR_FROM_EDGE (phi, single_succ_edge (bb)); 630 locus = gimple_phi_arg_location_from_edge (phi, single_succ_edge (bb)); 631 632 name = USE_FROM_PTR (op_p); 633 634 /* If the argument of the PHI node is a constant, we do not need 635 to keep it inside loop. */ 636 if (TREE_CODE (name) != SSA_NAME) 637 continue; 638 639 /* Otherwise create an auxiliary phi node that will copy the value 640 of the SSA name out of the loop. */ 641 new_name = duplicate_ssa_name (name, NULL); 642 new_phi = create_phi_node (new_name, bb); 643 add_phi_arg (new_phi, name, exit, locus); 644 SET_USE (op_p, new_name); 645 } 646 647 return bb; 648 } 649 650 /* Returns the basic block in that statements should be emitted for induction 651 variables incremented at the end of the LOOP. */ 652 653 basic_block 654 ip_end_pos (struct loop *loop) 655 { 656 return loop->latch; 657 } 658 659 /* Returns the basic block in that statements should be emitted for induction 660 variables incremented just before exit condition of a LOOP. */ 661 662 basic_block 663 ip_normal_pos (struct loop *loop) 664 { 665 gimple last; 666 basic_block bb; 667 edge exit; 668 669 if (!single_pred_p (loop->latch)) 670 return NULL; 671 672 bb = single_pred (loop->latch); 673 last = last_stmt (bb); 674 if (!last 675 || gimple_code (last) != GIMPLE_COND) 676 return NULL; 677 678 exit = EDGE_SUCC (bb, 0); 679 if (exit->dest == loop->latch) 680 exit = EDGE_SUCC (bb, 1); 681 682 if (flow_bb_inside_loop_p (loop, exit->dest)) 683 return NULL; 684 685 return bb; 686 } 687 688 /* Stores the standard position for induction variable increment in LOOP 689 (just before the exit condition if it is available and latch block is empty, 690 end of the latch block otherwise) to BSI. INSERT_AFTER is set to true if 691 the increment should be inserted after *BSI. */ 692 693 void 694 standard_iv_increment_position (struct loop *loop, gimple_stmt_iterator *bsi, 695 bool *insert_after) 696 { 697 basic_block bb = ip_normal_pos (loop), latch = ip_end_pos (loop); 698 gimple last = last_stmt (latch); 699 700 if (!bb 701 || (last && gimple_code (last) != GIMPLE_LABEL)) 702 { 703 *bsi = gsi_last_bb (latch); 704 *insert_after = true; 705 } 706 else 707 { 708 *bsi = gsi_last_bb (bb); 709 *insert_after = false; 710 } 711 } 712 713 /* Copies phi node arguments for duplicated blocks. The index of the first 714 duplicated block is FIRST_NEW_BLOCK. */ 715 716 static void 717 copy_phi_node_args (unsigned first_new_block) 718 { 719 unsigned i; 720 721 for (i = first_new_block; i < (unsigned) last_basic_block; i++) 722 BASIC_BLOCK (i)->flags |= BB_DUPLICATED; 723 724 for (i = first_new_block; i < (unsigned) last_basic_block; i++) 725 add_phi_args_after_copy_bb (BASIC_BLOCK (i)); 726 727 for (i = first_new_block; i < (unsigned) last_basic_block; i++) 728 BASIC_BLOCK (i)->flags &= ~BB_DUPLICATED; 729 } 730 731 732 /* The same as cfgloopmanip.c:duplicate_loop_to_header_edge, but also 733 updates the PHI nodes at start of the copied region. In order to 734 achieve this, only loops whose exits all lead to the same location 735 are handled. 736 737 Notice that we do not completely update the SSA web after 738 duplication. The caller is responsible for calling update_ssa 739 after the loop has been duplicated. */ 740 741 bool 742 gimple_duplicate_loop_to_header_edge (struct loop *loop, edge e, 743 unsigned int ndupl, sbitmap wont_exit, 744 edge orig, vec<edge> *to_remove, 745 int flags) 746 { 747 unsigned first_new_block; 748 749 if (!loops_state_satisfies_p (LOOPS_HAVE_SIMPLE_LATCHES)) 750 return false; 751 if (!loops_state_satisfies_p (LOOPS_HAVE_PREHEADERS)) 752 return false; 753 754 #ifdef ENABLE_CHECKING 755 /* ??? This forces needless update_ssa calls after processing each 756 loop instead of just once after processing all loops. We should 757 instead verify that loop-closed SSA form is up-to-date for LOOP 758 only (and possibly SSA form). For now just skip verifying if 759 there are to-be renamed variables. */ 760 if (!need_ssa_update_p (cfun) 761 && loops_state_satisfies_p (LOOP_CLOSED_SSA)) 762 verify_loop_closed_ssa (true); 763 #endif 764 765 first_new_block = last_basic_block; 766 if (!duplicate_loop_to_header_edge (loop, e, ndupl, wont_exit, 767 orig, to_remove, flags)) 768 return false; 769 770 /* Readd the removed phi args for e. */ 771 flush_pending_stmts (e); 772 773 /* Copy the phi node arguments. */ 774 copy_phi_node_args (first_new_block); 775 776 scev_reset (); 777 778 return true; 779 } 780 781 /* Returns true if we can unroll LOOP FACTOR times. Number 782 of iterations of the loop is returned in NITER. */ 783 784 bool 785 can_unroll_loop_p (struct loop *loop, unsigned factor, 786 struct tree_niter_desc *niter) 787 { 788 edge exit; 789 790 /* Check whether unrolling is possible. We only want to unroll loops 791 for that we are able to determine number of iterations. We also 792 want to split the extra iterations of the loop from its end, 793 therefore we require that the loop has precisely one 794 exit. */ 795 796 exit = single_dom_exit (loop); 797 if (!exit) 798 return false; 799 800 if (!number_of_iterations_exit (loop, exit, niter, false) 801 || niter->cmp == ERROR_MARK 802 /* Scalar evolutions analysis might have copy propagated 803 the abnormal ssa names into these expressions, hence 804 emitting the computations based on them during loop 805 unrolling might create overlapping life ranges for 806 them, and failures in out-of-ssa. */ 807 || contains_abnormal_ssa_name_p (niter->may_be_zero) 808 || contains_abnormal_ssa_name_p (niter->control.base) 809 || contains_abnormal_ssa_name_p (niter->control.step) 810 || contains_abnormal_ssa_name_p (niter->bound)) 811 return false; 812 813 /* And of course, we must be able to duplicate the loop. */ 814 if (!can_duplicate_loop_p (loop)) 815 return false; 816 817 /* The final loop should be small enough. */ 818 if (tree_num_loop_insns (loop, &eni_size_weights) * factor 819 > (unsigned) PARAM_VALUE (PARAM_MAX_UNROLLED_INSNS)) 820 return false; 821 822 return true; 823 } 824 825 /* Determines the conditions that control execution of LOOP unrolled FACTOR 826 times. DESC is number of iterations of LOOP. ENTER_COND is set to 827 condition that must be true if the main loop can be entered. 828 EXIT_BASE, EXIT_STEP, EXIT_CMP and EXIT_BOUND are set to values describing 829 how the exit from the unrolled loop should be controlled. */ 830 831 static void 832 determine_exit_conditions (struct loop *loop, struct tree_niter_desc *desc, 833 unsigned factor, tree *enter_cond, 834 tree *exit_base, tree *exit_step, 835 enum tree_code *exit_cmp, tree *exit_bound) 836 { 837 gimple_seq stmts; 838 tree base = desc->control.base; 839 tree step = desc->control.step; 840 tree bound = desc->bound; 841 tree type = TREE_TYPE (step); 842 tree bigstep, delta; 843 tree min = lower_bound_in_type (type, type); 844 tree max = upper_bound_in_type (type, type); 845 enum tree_code cmp = desc->cmp; 846 tree cond = boolean_true_node, assum; 847 848 /* For pointers, do the arithmetics in the type of step. */ 849 base = fold_convert (type, base); 850 bound = fold_convert (type, bound); 851 852 *enter_cond = boolean_false_node; 853 *exit_base = NULL_TREE; 854 *exit_step = NULL_TREE; 855 *exit_cmp = ERROR_MARK; 856 *exit_bound = NULL_TREE; 857 gcc_assert (cmp != ERROR_MARK); 858 859 /* We only need to be correct when we answer question 860 "Do at least FACTOR more iterations remain?" in the unrolled loop. 861 Thus, transforming BASE + STEP * i <> BOUND to 862 BASE + STEP * i < BOUND is ok. */ 863 if (cmp == NE_EXPR) 864 { 865 if (tree_int_cst_sign_bit (step)) 866 cmp = GT_EXPR; 867 else 868 cmp = LT_EXPR; 869 } 870 else if (cmp == LT_EXPR) 871 { 872 gcc_assert (!tree_int_cst_sign_bit (step)); 873 } 874 else if (cmp == GT_EXPR) 875 { 876 gcc_assert (tree_int_cst_sign_bit (step)); 877 } 878 else 879 gcc_unreachable (); 880 881 /* The main body of the loop may be entered iff: 882 883 1) desc->may_be_zero is false. 884 2) it is possible to check that there are at least FACTOR iterations 885 of the loop, i.e., BOUND - step * FACTOR does not overflow. 886 3) # of iterations is at least FACTOR */ 887 888 if (!integer_zerop (desc->may_be_zero)) 889 cond = fold_build2 (TRUTH_AND_EXPR, boolean_type_node, 890 invert_truthvalue (desc->may_be_zero), 891 cond); 892 893 bigstep = fold_build2 (MULT_EXPR, type, step, 894 build_int_cst_type (type, factor)); 895 delta = fold_build2 (MINUS_EXPR, type, bigstep, step); 896 if (cmp == LT_EXPR) 897 assum = fold_build2 (GE_EXPR, boolean_type_node, 898 bound, 899 fold_build2 (PLUS_EXPR, type, min, delta)); 900 else 901 assum = fold_build2 (LE_EXPR, boolean_type_node, 902 bound, 903 fold_build2 (PLUS_EXPR, type, max, delta)); 904 cond = fold_build2 (TRUTH_AND_EXPR, boolean_type_node, assum, cond); 905 906 bound = fold_build2 (MINUS_EXPR, type, bound, delta); 907 assum = fold_build2 (cmp, boolean_type_node, base, bound); 908 cond = fold_build2 (TRUTH_AND_EXPR, boolean_type_node, assum, cond); 909 910 cond = force_gimple_operand (unshare_expr (cond), &stmts, false, NULL_TREE); 911 if (stmts) 912 gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop), stmts); 913 /* cond now may be a gimple comparison, which would be OK, but also any 914 other gimple rhs (say a && b). In this case we need to force it to 915 operand. */ 916 if (!is_gimple_condexpr (cond)) 917 { 918 cond = force_gimple_operand (cond, &stmts, true, NULL_TREE); 919 if (stmts) 920 gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop), stmts); 921 } 922 *enter_cond = cond; 923 924 base = force_gimple_operand (unshare_expr (base), &stmts, true, NULL_TREE); 925 if (stmts) 926 gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop), stmts); 927 bound = force_gimple_operand (unshare_expr (bound), &stmts, true, NULL_TREE); 928 if (stmts) 929 gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop), stmts); 930 931 *exit_base = base; 932 *exit_step = bigstep; 933 *exit_cmp = cmp; 934 *exit_bound = bound; 935 } 936 937 /* Scales the frequencies of all basic blocks in LOOP that are strictly 938 dominated by BB by NUM/DEN. */ 939 940 static void 941 scale_dominated_blocks_in_loop (struct loop *loop, basic_block bb, 942 int num, int den) 943 { 944 basic_block son; 945 946 if (den == 0) 947 return; 948 949 for (son = first_dom_son (CDI_DOMINATORS, bb); 950 son; 951 son = next_dom_son (CDI_DOMINATORS, son)) 952 { 953 if (!flow_bb_inside_loop_p (loop, son)) 954 continue; 955 scale_bbs_frequencies_int (&son, 1, num, den); 956 scale_dominated_blocks_in_loop (loop, son, num, den); 957 } 958 } 959 960 /* Unroll LOOP FACTOR times. DESC describes number of iterations of LOOP. 961 EXIT is the exit of the loop to that DESC corresponds. 962 963 If N is number of iterations of the loop and MAY_BE_ZERO is the condition 964 under that loop exits in the first iteration even if N != 0, 965 966 while (1) 967 { 968 x = phi (init, next); 969 970 pre; 971 if (st) 972 break; 973 post; 974 } 975 976 becomes (with possibly the exit conditions formulated a bit differently, 977 avoiding the need to create a new iv): 978 979 if (MAY_BE_ZERO || N < FACTOR) 980 goto rest; 981 982 do 983 { 984 x = phi (init, next); 985 986 pre; 987 post; 988 pre; 989 post; 990 ... 991 pre; 992 post; 993 N -= FACTOR; 994 995 } while (N >= FACTOR); 996 997 rest: 998 init' = phi (init, x); 999 1000 while (1) 1001 { 1002 x = phi (init', next); 1003 1004 pre; 1005 if (st) 1006 break; 1007 post; 1008 } 1009 1010 Before the loop is unrolled, TRANSFORM is called for it (only for the 1011 unrolled loop, but not for its versioned copy). DATA is passed to 1012 TRANSFORM. */ 1013 1014 /* Probability in % that the unrolled loop is entered. Just a guess. */ 1015 #define PROB_UNROLLED_LOOP_ENTERED 90 1016 1017 void 1018 tree_transform_and_unroll_loop (struct loop *loop, unsigned factor, 1019 edge exit, struct tree_niter_desc *desc, 1020 transform_callback transform, 1021 void *data) 1022 { 1023 gimple exit_if; 1024 tree ctr_before, ctr_after; 1025 tree enter_main_cond, exit_base, exit_step, exit_bound; 1026 enum tree_code exit_cmp; 1027 gimple phi_old_loop, phi_new_loop, phi_rest; 1028 gimple_stmt_iterator psi_old_loop, psi_new_loop; 1029 tree init, next, new_init; 1030 struct loop *new_loop; 1031 basic_block rest, exit_bb; 1032 edge old_entry, new_entry, old_latch, precond_edge, new_exit; 1033 edge new_nonexit, e; 1034 gimple_stmt_iterator bsi; 1035 use_operand_p op; 1036 bool ok; 1037 unsigned est_niter, prob_entry, scale_unrolled, scale_rest, freq_e, freq_h; 1038 unsigned new_est_niter, i, prob; 1039 unsigned irr = loop_preheader_edge (loop)->flags & EDGE_IRREDUCIBLE_LOOP; 1040 sbitmap wont_exit; 1041 vec<edge> to_remove = vNULL; 1042 1043 est_niter = expected_loop_iterations (loop); 1044 determine_exit_conditions (loop, desc, factor, 1045 &enter_main_cond, &exit_base, &exit_step, 1046 &exit_cmp, &exit_bound); 1047 1048 /* Let us assume that the unrolled loop is quite likely to be entered. */ 1049 if (integer_nonzerop (enter_main_cond)) 1050 prob_entry = REG_BR_PROB_BASE; 1051 else 1052 prob_entry = PROB_UNROLLED_LOOP_ENTERED * REG_BR_PROB_BASE / 100; 1053 1054 /* The values for scales should keep profile consistent, and somewhat close 1055 to correct. 1056 1057 TODO: The current value of SCALE_REST makes it appear that the loop that 1058 is created by splitting the remaining iterations of the unrolled loop is 1059 executed the same number of times as the original loop, and with the same 1060 frequencies, which is obviously wrong. This does not appear to cause 1061 problems, so we do not bother with fixing it for now. To make the profile 1062 correct, we would need to change the probability of the exit edge of the 1063 loop, and recompute the distribution of frequencies in its body because 1064 of this change (scale the frequencies of blocks before and after the exit 1065 by appropriate factors). */ 1066 scale_unrolled = prob_entry; 1067 scale_rest = REG_BR_PROB_BASE; 1068 1069 new_loop = loop_version (loop, enter_main_cond, NULL, 1070 prob_entry, scale_unrolled, scale_rest, true); 1071 gcc_assert (new_loop != NULL); 1072 update_ssa (TODO_update_ssa); 1073 1074 /* Determine the probability of the exit edge of the unrolled loop. */ 1075 new_est_niter = est_niter / factor; 1076 1077 /* Without profile feedback, loops for that we do not know a better estimate 1078 are assumed to roll 10 times. When we unroll such loop, it appears to 1079 roll too little, and it may even seem to be cold. To avoid this, we 1080 ensure that the created loop appears to roll at least 5 times (but at 1081 most as many times as before unrolling). */ 1082 if (new_est_niter < 5) 1083 { 1084 if (est_niter < 5) 1085 new_est_niter = est_niter; 1086 else 1087 new_est_niter = 5; 1088 } 1089 1090 /* Prepare the cfg and update the phi nodes. Move the loop exit to the 1091 loop latch (and make its condition dummy, for the moment). */ 1092 rest = loop_preheader_edge (new_loop)->src; 1093 precond_edge = single_pred_edge (rest); 1094 split_edge (loop_latch_edge (loop)); 1095 exit_bb = single_pred (loop->latch); 1096 1097 /* Since the exit edge will be removed, the frequency of all the blocks 1098 in the loop that are dominated by it must be scaled by 1099 1 / (1 - exit->probability). */ 1100 scale_dominated_blocks_in_loop (loop, exit->src, 1101 REG_BR_PROB_BASE, 1102 REG_BR_PROB_BASE - exit->probability); 1103 1104 bsi = gsi_last_bb (exit_bb); 1105 exit_if = gimple_build_cond (EQ_EXPR, integer_zero_node, 1106 integer_zero_node, 1107 NULL_TREE, NULL_TREE); 1108 1109 gsi_insert_after (&bsi, exit_if, GSI_NEW_STMT); 1110 new_exit = make_edge (exit_bb, rest, EDGE_FALSE_VALUE | irr); 1111 rescan_loop_exit (new_exit, true, false); 1112 1113 /* Set the probability of new exit to the same of the old one. Fix 1114 the frequency of the latch block, by scaling it back by 1115 1 - exit->probability. */ 1116 new_exit->count = exit->count; 1117 new_exit->probability = exit->probability; 1118 new_nonexit = single_pred_edge (loop->latch); 1119 new_nonexit->probability = REG_BR_PROB_BASE - exit->probability; 1120 new_nonexit->flags = EDGE_TRUE_VALUE; 1121 new_nonexit->count -= exit->count; 1122 if (new_nonexit->count < 0) 1123 new_nonexit->count = 0; 1124 scale_bbs_frequencies_int (&loop->latch, 1, new_nonexit->probability, 1125 REG_BR_PROB_BASE); 1126 1127 old_entry = loop_preheader_edge (loop); 1128 new_entry = loop_preheader_edge (new_loop); 1129 old_latch = loop_latch_edge (loop); 1130 for (psi_old_loop = gsi_start_phis (loop->header), 1131 psi_new_loop = gsi_start_phis (new_loop->header); 1132 !gsi_end_p (psi_old_loop); 1133 gsi_next (&psi_old_loop), gsi_next (&psi_new_loop)) 1134 { 1135 phi_old_loop = gsi_stmt (psi_old_loop); 1136 phi_new_loop = gsi_stmt (psi_new_loop); 1137 1138 init = PHI_ARG_DEF_FROM_EDGE (phi_old_loop, old_entry); 1139 op = PHI_ARG_DEF_PTR_FROM_EDGE (phi_new_loop, new_entry); 1140 gcc_assert (operand_equal_for_phi_arg_p (init, USE_FROM_PTR (op))); 1141 next = PHI_ARG_DEF_FROM_EDGE (phi_old_loop, old_latch); 1142 1143 /* Prefer using original variable as a base for the new ssa name. 1144 This is necessary for virtual ops, and useful in order to avoid 1145 losing debug info for real ops. */ 1146 if (TREE_CODE (next) == SSA_NAME 1147 && useless_type_conversion_p (TREE_TYPE (next), 1148 TREE_TYPE (init))) 1149 new_init = copy_ssa_name (next, NULL); 1150 else if (TREE_CODE (init) == SSA_NAME 1151 && useless_type_conversion_p (TREE_TYPE (init), 1152 TREE_TYPE (next))) 1153 new_init = copy_ssa_name (init, NULL); 1154 else if (useless_type_conversion_p (TREE_TYPE (next), TREE_TYPE (init))) 1155 new_init = make_temp_ssa_name (TREE_TYPE (next), NULL, "unrinittmp"); 1156 else 1157 new_init = make_temp_ssa_name (TREE_TYPE (init), NULL, "unrinittmp"); 1158 1159 phi_rest = create_phi_node (new_init, rest); 1160 1161 add_phi_arg (phi_rest, init, precond_edge, UNKNOWN_LOCATION); 1162 add_phi_arg (phi_rest, next, new_exit, UNKNOWN_LOCATION); 1163 SET_USE (op, new_init); 1164 } 1165 1166 remove_path (exit); 1167 1168 /* Transform the loop. */ 1169 if (transform) 1170 (*transform) (loop, data); 1171 1172 /* Unroll the loop and remove the exits in all iterations except for the 1173 last one. */ 1174 wont_exit = sbitmap_alloc (factor); 1175 bitmap_ones (wont_exit); 1176 bitmap_clear_bit (wont_exit, factor - 1); 1177 1178 ok = gimple_duplicate_loop_to_header_edge 1179 (loop, loop_latch_edge (loop), factor - 1, 1180 wont_exit, new_exit, &to_remove, DLTHE_FLAG_UPDATE_FREQ); 1181 free (wont_exit); 1182 gcc_assert (ok); 1183 1184 FOR_EACH_VEC_ELT (to_remove, i, e) 1185 { 1186 ok = remove_path (e); 1187 gcc_assert (ok); 1188 } 1189 to_remove.release (); 1190 update_ssa (TODO_update_ssa); 1191 1192 /* Ensure that the frequencies in the loop match the new estimated 1193 number of iterations, and change the probability of the new 1194 exit edge. */ 1195 freq_h = loop->header->frequency; 1196 freq_e = EDGE_FREQUENCY (loop_preheader_edge (loop)); 1197 if (freq_h != 0) 1198 scale_loop_frequencies (loop, freq_e * (new_est_niter + 1), freq_h); 1199 1200 exit_bb = single_pred (loop->latch); 1201 new_exit = find_edge (exit_bb, rest); 1202 new_exit->count = loop_preheader_edge (loop)->count; 1203 new_exit->probability = REG_BR_PROB_BASE / (new_est_niter + 1); 1204 1205 rest->count += new_exit->count; 1206 rest->frequency += EDGE_FREQUENCY (new_exit); 1207 1208 new_nonexit = single_pred_edge (loop->latch); 1209 prob = new_nonexit->probability; 1210 new_nonexit->probability = REG_BR_PROB_BASE - new_exit->probability; 1211 new_nonexit->count = exit_bb->count - new_exit->count; 1212 if (new_nonexit->count < 0) 1213 new_nonexit->count = 0; 1214 if (prob > 0) 1215 scale_bbs_frequencies_int (&loop->latch, 1, new_nonexit->probability, 1216 prob); 1217 1218 /* Finally create the new counter for number of iterations and add the new 1219 exit instruction. */ 1220 bsi = gsi_last_nondebug_bb (exit_bb); 1221 exit_if = gsi_stmt (bsi); 1222 create_iv (exit_base, exit_step, NULL_TREE, loop, 1223 &bsi, false, &ctr_before, &ctr_after); 1224 gimple_cond_set_code (exit_if, exit_cmp); 1225 gimple_cond_set_lhs (exit_if, ctr_after); 1226 gimple_cond_set_rhs (exit_if, exit_bound); 1227 update_stmt (exit_if); 1228 1229 #ifdef ENABLE_CHECKING 1230 verify_flow_info (); 1231 verify_loop_structure (); 1232 verify_loop_closed_ssa (true); 1233 #endif 1234 } 1235 1236 /* Wrapper over tree_transform_and_unroll_loop for case we do not 1237 want to transform the loop before unrolling. The meaning 1238 of the arguments is the same as for tree_transform_and_unroll_loop. */ 1239 1240 void 1241 tree_unroll_loop (struct loop *loop, unsigned factor, 1242 edge exit, struct tree_niter_desc *desc) 1243 { 1244 tree_transform_and_unroll_loop (loop, factor, exit, desc, 1245 NULL, NULL); 1246 } 1247 1248 /* Rewrite the phi node at position PSI in function of the main 1249 induction variable MAIN_IV and insert the generated code at GSI. */ 1250 1251 static void 1252 rewrite_phi_with_iv (loop_p loop, 1253 gimple_stmt_iterator *psi, 1254 gimple_stmt_iterator *gsi, 1255 tree main_iv) 1256 { 1257 affine_iv iv; 1258 gimple stmt, phi = gsi_stmt (*psi); 1259 tree atype, mtype, val, res = PHI_RESULT (phi); 1260 1261 if (virtual_operand_p (res) || res == main_iv) 1262 { 1263 gsi_next (psi); 1264 return; 1265 } 1266 1267 if (!simple_iv (loop, loop, res, &iv, true)) 1268 { 1269 gsi_next (psi); 1270 return; 1271 } 1272 1273 remove_phi_node (psi, false); 1274 1275 atype = TREE_TYPE (res); 1276 mtype = POINTER_TYPE_P (atype) ? sizetype : atype; 1277 val = fold_build2 (MULT_EXPR, mtype, unshare_expr (iv.step), 1278 fold_convert (mtype, main_iv)); 1279 val = fold_build2 (POINTER_TYPE_P (atype) 1280 ? POINTER_PLUS_EXPR : PLUS_EXPR, 1281 atype, unshare_expr (iv.base), val); 1282 val = force_gimple_operand_gsi (gsi, val, false, NULL_TREE, true, 1283 GSI_SAME_STMT); 1284 stmt = gimple_build_assign (res, val); 1285 gsi_insert_before (gsi, stmt, GSI_SAME_STMT); 1286 SSA_NAME_DEF_STMT (res) = stmt; 1287 } 1288 1289 /* Rewrite all the phi nodes of LOOP in function of the main induction 1290 variable MAIN_IV. */ 1291 1292 static void 1293 rewrite_all_phi_nodes_with_iv (loop_p loop, tree main_iv) 1294 { 1295 unsigned i; 1296 basic_block *bbs = get_loop_body_in_dom_order (loop); 1297 gimple_stmt_iterator psi; 1298 1299 for (i = 0; i < loop->num_nodes; i++) 1300 { 1301 basic_block bb = bbs[i]; 1302 gimple_stmt_iterator gsi = gsi_after_labels (bb); 1303 1304 if (bb->loop_father != loop) 1305 continue; 1306 1307 for (psi = gsi_start_phis (bb); !gsi_end_p (psi); ) 1308 rewrite_phi_with_iv (loop, &psi, &gsi, main_iv); 1309 } 1310 1311 free (bbs); 1312 } 1313 1314 /* Bases all the induction variables in LOOP on a single induction 1315 variable (unsigned with base 0 and step 1), whose final value is 1316 compared with *NIT. When the IV type precision has to be larger 1317 than *NIT type precision, *NIT is converted to the larger type, the 1318 conversion code is inserted before the loop, and *NIT is updated to 1319 the new definition. When BUMP_IN_LATCH is true, the induction 1320 variable is incremented in the loop latch, otherwise it is 1321 incremented in the loop header. Return the induction variable that 1322 was created. */ 1323 1324 tree 1325 canonicalize_loop_ivs (struct loop *loop, tree *nit, bool bump_in_latch) 1326 { 1327 unsigned precision = TYPE_PRECISION (TREE_TYPE (*nit)); 1328 unsigned original_precision = precision; 1329 tree type, var_before; 1330 gimple_stmt_iterator gsi, psi; 1331 gimple stmt; 1332 edge exit = single_dom_exit (loop); 1333 gimple_seq stmts; 1334 enum machine_mode mode; 1335 bool unsigned_p = false; 1336 1337 for (psi = gsi_start_phis (loop->header); 1338 !gsi_end_p (psi); gsi_next (&psi)) 1339 { 1340 gimple phi = gsi_stmt (psi); 1341 tree res = PHI_RESULT (phi); 1342 bool uns; 1343 1344 type = TREE_TYPE (res); 1345 if (virtual_operand_p (res) 1346 || (!INTEGRAL_TYPE_P (type) 1347 && !POINTER_TYPE_P (type)) 1348 || TYPE_PRECISION (type) < precision) 1349 continue; 1350 1351 uns = POINTER_TYPE_P (type) | TYPE_UNSIGNED (type); 1352 1353 if (TYPE_PRECISION (type) > precision) 1354 unsigned_p = uns; 1355 else 1356 unsigned_p |= uns; 1357 1358 precision = TYPE_PRECISION (type); 1359 } 1360 1361 mode = smallest_mode_for_size (precision, MODE_INT); 1362 precision = GET_MODE_PRECISION (mode); 1363 type = build_nonstandard_integer_type (precision, unsigned_p); 1364 1365 if (original_precision != precision) 1366 { 1367 *nit = fold_convert (type, *nit); 1368 *nit = force_gimple_operand (*nit, &stmts, true, NULL_TREE); 1369 if (stmts) 1370 gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop), stmts); 1371 } 1372 1373 if (bump_in_latch) 1374 gsi = gsi_last_bb (loop->latch); 1375 else 1376 gsi = gsi_last_nondebug_bb (loop->header); 1377 create_iv (build_int_cst_type (type, 0), build_int_cst (type, 1), NULL_TREE, 1378 loop, &gsi, bump_in_latch, &var_before, NULL); 1379 1380 rewrite_all_phi_nodes_with_iv (loop, var_before); 1381 1382 stmt = last_stmt (exit->src); 1383 /* Make the loop exit if the control condition is not satisfied. */ 1384 if (exit->flags & EDGE_TRUE_VALUE) 1385 { 1386 edge te, fe; 1387 1388 extract_true_false_edges_from_block (exit->src, &te, &fe); 1389 te->flags = EDGE_FALSE_VALUE; 1390 fe->flags = EDGE_TRUE_VALUE; 1391 } 1392 gimple_cond_set_code (stmt, LT_EXPR); 1393 gimple_cond_set_lhs (stmt, var_before); 1394 gimple_cond_set_rhs (stmt, *nit); 1395 update_stmt (stmt); 1396 1397 return var_before; 1398 } 1399