1 /* Induction variable canonicalization and loop peeling. 2 Copyright (C) 2004-2017 Free Software Foundation, Inc. 3 4 This file is part of GCC. 5 6 GCC is free software; you can redistribute it and/or modify it 7 under the terms of the GNU General Public License as published by the 8 Free Software Foundation; either version 3, or (at your option) any 9 later version. 10 11 GCC is distributed in the hope that it will be useful, but WITHOUT 12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 14 for more details. 15 16 You should have received a copy of the GNU General Public License 17 along with GCC; see the file COPYING3. If not see 18 <http://www.gnu.org/licenses/>. */ 19 20 /* This pass detects the loops that iterate a constant number of times, 21 adds a canonical induction variable (step -1, tested against 0) 22 and replaces the exit test. This enables the less powerful rtl 23 level analysis to use this information. 24 25 This might spoil the code in some cases (by increasing register pressure). 26 Note that in the case the new variable is not needed, ivopts will get rid 27 of it, so it might only be a problem when there are no other linear induction 28 variables. In that case the created optimization possibilities are likely 29 to pay up. 30 31 We also perform 32 - complete unrolling (or peeling) when the loops is rolling few enough 33 times 34 - simple peeling (i.e. copying few initial iterations prior the loop) 35 when number of iteration estimate is known (typically by the profile 36 info). */ 37 38 #include "config.h" 39 #include "system.h" 40 #include "coretypes.h" 41 #include "backend.h" 42 #include "tree.h" 43 #include "gimple.h" 44 #include "cfghooks.h" 45 #include "tree-pass.h" 46 #include "ssa.h" 47 #include "cgraph.h" 48 #include "gimple-pretty-print.h" 49 #include "fold-const.h" 50 #include "profile.h" 51 #include "gimple-fold.h" 52 #include "tree-eh.h" 53 #include "gimple-iterator.h" 54 #include "tree-cfg.h" 55 #include "tree-ssa-loop-manip.h" 56 #include "tree-ssa-loop-niter.h" 57 #include "tree-ssa-loop.h" 58 #include "tree-into-ssa.h" 59 #include "cfgloop.h" 60 #include "tree-chrec.h" 61 #include "tree-scalar-evolution.h" 62 #include "params.h" 63 #include "tree-inline.h" 64 #include "tree-cfgcleanup.h" 65 #include "builtins.h" 66 67 /* Specifies types of loops that may be unrolled. */ 68 69 enum unroll_level 70 { 71 UL_SINGLE_ITER, /* Only loops that exit immediately in the first 72 iteration. */ 73 UL_NO_GROWTH, /* Only loops whose unrolling will not cause increase 74 of code size. */ 75 UL_ALL /* All suitable loops. */ 76 }; 77 78 /* Adds a canonical induction variable to LOOP iterating NITER times. EXIT 79 is the exit edge whose condition is replaced. */ 80 81 static void 82 create_canonical_iv (struct loop *loop, edge exit, tree niter) 83 { 84 edge in; 85 tree type, var; 86 gcond *cond; 87 gimple_stmt_iterator incr_at; 88 enum tree_code cmp; 89 90 if (dump_file && (dump_flags & TDF_DETAILS)) 91 { 92 fprintf (dump_file, "Added canonical iv to loop %d, ", loop->num); 93 print_generic_expr (dump_file, niter, TDF_SLIM); 94 fprintf (dump_file, " iterations.\n"); 95 } 96 97 cond = as_a <gcond *> (last_stmt (exit->src)); 98 in = EDGE_SUCC (exit->src, 0); 99 if (in == exit) 100 in = EDGE_SUCC (exit->src, 1); 101 102 /* Note that we do not need to worry about overflows, since 103 type of niter is always unsigned and all comparisons are 104 just for equality/nonequality -- i.e. everything works 105 with a modulo arithmetics. */ 106 107 type = TREE_TYPE (niter); 108 niter = fold_build2 (PLUS_EXPR, type, 109 niter, 110 build_int_cst (type, 1)); 111 incr_at = gsi_last_bb (in->src); 112 create_iv (niter, 113 build_int_cst (type, -1), 114 NULL_TREE, loop, 115 &incr_at, false, NULL, &var); 116 117 cmp = (exit->flags & EDGE_TRUE_VALUE) ? EQ_EXPR : NE_EXPR; 118 gimple_cond_set_code (cond, cmp); 119 gimple_cond_set_lhs (cond, var); 120 gimple_cond_set_rhs (cond, build_int_cst (type, 0)); 121 update_stmt (cond); 122 } 123 124 /* Describe size of loop as detected by tree_estimate_loop_size. */ 125 struct loop_size 126 { 127 /* Number of instructions in the loop. */ 128 int overall; 129 130 /* Number of instructions that will be likely optimized out in 131 peeled iterations of loop (i.e. computation based on induction 132 variable where induction variable starts at known constant.) */ 133 int eliminated_by_peeling; 134 135 /* Same statistics for last iteration of loop: it is smaller because 136 instructions after exit are not executed. */ 137 int last_iteration; 138 int last_iteration_eliminated_by_peeling; 139 140 /* If some IV computation will become constant. */ 141 bool constant_iv; 142 143 /* Number of call stmts that are not a builtin and are pure or const 144 present on the hot path. */ 145 int num_pure_calls_on_hot_path; 146 /* Number of call stmts that are not a builtin and are not pure nor const 147 present on the hot path. */ 148 int num_non_pure_calls_on_hot_path; 149 /* Number of statements other than calls in the loop. */ 150 int non_call_stmts_on_hot_path; 151 /* Number of branches seen on the hot path. */ 152 int num_branches_on_hot_path; 153 }; 154 155 /* Return true if OP in STMT will be constant after peeling LOOP. */ 156 157 static bool 158 constant_after_peeling (tree op, gimple *stmt, struct loop *loop) 159 { 160 affine_iv iv; 161 162 if (is_gimple_min_invariant (op)) 163 return true; 164 165 /* We can still fold accesses to constant arrays when index is known. */ 166 if (TREE_CODE (op) != SSA_NAME) 167 { 168 tree base = op; 169 170 /* First make fast look if we see constant array inside. */ 171 while (handled_component_p (base)) 172 base = TREE_OPERAND (base, 0); 173 if ((DECL_P (base) 174 && ctor_for_folding (base) != error_mark_node) 175 || CONSTANT_CLASS_P (base)) 176 { 177 /* If so, see if we understand all the indices. */ 178 base = op; 179 while (handled_component_p (base)) 180 { 181 if (TREE_CODE (base) == ARRAY_REF 182 && !constant_after_peeling (TREE_OPERAND (base, 1), stmt, loop)) 183 return false; 184 base = TREE_OPERAND (base, 0); 185 } 186 return true; 187 } 188 return false; 189 } 190 191 /* Induction variables are constants. */ 192 if (!simple_iv (loop, loop_containing_stmt (stmt), op, &iv, false)) 193 return false; 194 if (!is_gimple_min_invariant (iv.base)) 195 return false; 196 if (!is_gimple_min_invariant (iv.step)) 197 return false; 198 return true; 199 } 200 201 /* Computes an estimated number of insns in LOOP. 202 EXIT (if non-NULL) is an exite edge that will be eliminated in all but last 203 iteration of the loop. 204 EDGE_TO_CANCEL (if non-NULL) is an non-exit edge eliminated in the last iteration 205 of loop. 206 Return results in SIZE, estimate benefits for complete unrolling exiting by EXIT. 207 Stop estimating after UPPER_BOUND is met. Return true in this case. */ 208 209 static bool 210 tree_estimate_loop_size (struct loop *loop, edge exit, edge edge_to_cancel, 211 struct loop_size *size, int upper_bound) 212 { 213 basic_block *body = get_loop_body (loop); 214 gimple_stmt_iterator gsi; 215 unsigned int i; 216 bool after_exit; 217 vec<basic_block> path = get_loop_hot_path (loop); 218 219 size->overall = 0; 220 size->eliminated_by_peeling = 0; 221 size->last_iteration = 0; 222 size->last_iteration_eliminated_by_peeling = 0; 223 size->num_pure_calls_on_hot_path = 0; 224 size->num_non_pure_calls_on_hot_path = 0; 225 size->non_call_stmts_on_hot_path = 0; 226 size->num_branches_on_hot_path = 0; 227 size->constant_iv = 0; 228 229 if (dump_file && (dump_flags & TDF_DETAILS)) 230 fprintf (dump_file, "Estimating sizes for loop %i\n", loop->num); 231 for (i = 0; i < loop->num_nodes; i++) 232 { 233 if (edge_to_cancel && body[i] != edge_to_cancel->src 234 && dominated_by_p (CDI_DOMINATORS, body[i], edge_to_cancel->src)) 235 after_exit = true; 236 else 237 after_exit = false; 238 if (dump_file && (dump_flags & TDF_DETAILS)) 239 fprintf (dump_file, " BB: %i, after_exit: %i\n", body[i]->index, 240 after_exit); 241 242 for (gsi = gsi_start_bb (body[i]); !gsi_end_p (gsi); gsi_next (&gsi)) 243 { 244 gimple *stmt = gsi_stmt (gsi); 245 int num = estimate_num_insns (stmt, &eni_size_weights); 246 bool likely_eliminated = false; 247 bool likely_eliminated_last = false; 248 bool likely_eliminated_peeled = false; 249 250 if (dump_file && (dump_flags & TDF_DETAILS)) 251 { 252 fprintf (dump_file, " size: %3i ", num); 253 print_gimple_stmt (dump_file, gsi_stmt (gsi), 0, 0); 254 } 255 256 /* Look for reasons why we might optimize this stmt away. */ 257 258 if (!gimple_has_side_effects (stmt)) 259 { 260 /* Exit conditional. */ 261 if (exit && body[i] == exit->src 262 && stmt == last_stmt (exit->src)) 263 { 264 if (dump_file && (dump_flags & TDF_DETAILS)) 265 fprintf (dump_file, " Exit condition will be eliminated " 266 "in peeled copies.\n"); 267 likely_eliminated_peeled = true; 268 } 269 if (edge_to_cancel && body[i] == edge_to_cancel->src 270 && stmt == last_stmt (edge_to_cancel->src)) 271 { 272 if (dump_file && (dump_flags & TDF_DETAILS)) 273 fprintf (dump_file, " Exit condition will be eliminated " 274 "in last copy.\n"); 275 likely_eliminated_last = true; 276 } 277 /* Sets of IV variables */ 278 if (gimple_code (stmt) == GIMPLE_ASSIGN 279 && constant_after_peeling (gimple_assign_lhs (stmt), stmt, loop)) 280 { 281 if (dump_file && (dump_flags & TDF_DETAILS)) 282 fprintf (dump_file, " Induction variable computation will" 283 " be folded away.\n"); 284 likely_eliminated = true; 285 } 286 /* Assignments of IV variables. */ 287 else if (gimple_code (stmt) == GIMPLE_ASSIGN 288 && TREE_CODE (gimple_assign_lhs (stmt)) == SSA_NAME 289 && constant_after_peeling (gimple_assign_rhs1 (stmt), 290 stmt, loop) 291 && (gimple_assign_rhs_class (stmt) != GIMPLE_BINARY_RHS 292 || constant_after_peeling (gimple_assign_rhs2 (stmt), 293 stmt, loop))) 294 { 295 size->constant_iv = true; 296 if (dump_file && (dump_flags & TDF_DETAILS)) 297 fprintf (dump_file, 298 " Constant expression will be folded away.\n"); 299 likely_eliminated = true; 300 } 301 /* Conditionals. */ 302 else if ((gimple_code (stmt) == GIMPLE_COND 303 && constant_after_peeling (gimple_cond_lhs (stmt), stmt, 304 loop) 305 && constant_after_peeling (gimple_cond_rhs (stmt), stmt, 306 loop) 307 /* We don't simplify all constant compares so make sure 308 they are not both constant already. See PR70288. */ 309 && (! is_gimple_min_invariant (gimple_cond_lhs (stmt)) 310 || ! is_gimple_min_invariant 311 (gimple_cond_rhs (stmt)))) 312 || (gimple_code (stmt) == GIMPLE_SWITCH 313 && constant_after_peeling (gimple_switch_index ( 314 as_a <gswitch *> 315 (stmt)), 316 stmt, loop) 317 && ! is_gimple_min_invariant 318 (gimple_switch_index 319 (as_a <gswitch *> (stmt))))) 320 { 321 if (dump_file && (dump_flags & TDF_DETAILS)) 322 fprintf (dump_file, " Constant conditional.\n"); 323 likely_eliminated = true; 324 } 325 } 326 327 size->overall += num; 328 if (likely_eliminated || likely_eliminated_peeled) 329 size->eliminated_by_peeling += num; 330 if (!after_exit) 331 { 332 size->last_iteration += num; 333 if (likely_eliminated || likely_eliminated_last) 334 size->last_iteration_eliminated_by_peeling += num; 335 } 336 if ((size->overall * 3 / 2 - size->eliminated_by_peeling 337 - size->last_iteration_eliminated_by_peeling) > upper_bound) 338 { 339 free (body); 340 path.release (); 341 return true; 342 } 343 } 344 } 345 while (path.length ()) 346 { 347 basic_block bb = path.pop (); 348 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi)) 349 { 350 gimple *stmt = gsi_stmt (gsi); 351 if (gimple_code (stmt) == GIMPLE_CALL 352 && !gimple_inexpensive_call_p (as_a <gcall *> (stmt))) 353 { 354 int flags = gimple_call_flags (stmt); 355 if (flags & (ECF_PURE | ECF_CONST)) 356 size->num_pure_calls_on_hot_path++; 357 else 358 size->num_non_pure_calls_on_hot_path++; 359 size->num_branches_on_hot_path ++; 360 } 361 /* Count inexpensive calls as non-calls, because they will likely 362 expand inline. */ 363 else if (gimple_code (stmt) != GIMPLE_DEBUG) 364 size->non_call_stmts_on_hot_path++; 365 if (((gimple_code (stmt) == GIMPLE_COND 366 && (!constant_after_peeling (gimple_cond_lhs (stmt), stmt, loop) 367 || constant_after_peeling (gimple_cond_rhs (stmt), stmt, 368 loop))) 369 || (gimple_code (stmt) == GIMPLE_SWITCH 370 && !constant_after_peeling (gimple_switch_index ( 371 as_a <gswitch *> (stmt)), 372 stmt, loop))) 373 && (!exit || bb != exit->src)) 374 size->num_branches_on_hot_path++; 375 } 376 } 377 path.release (); 378 if (dump_file && (dump_flags & TDF_DETAILS)) 379 fprintf (dump_file, "size: %i-%i, last_iteration: %i-%i\n", size->overall, 380 size->eliminated_by_peeling, size->last_iteration, 381 size->last_iteration_eliminated_by_peeling); 382 383 free (body); 384 return false; 385 } 386 387 /* Estimate number of insns of completely unrolled loop. 388 It is (NUNROLL + 1) * size of loop body with taking into account 389 the fact that in last copy everything after exit conditional 390 is dead and that some instructions will be eliminated after 391 peeling. 392 393 Loop body is likely going to simplify further, this is difficult 394 to guess, we just decrease the result by 1/3. */ 395 396 static unsigned HOST_WIDE_INT 397 estimated_unrolled_size (struct loop_size *size, 398 unsigned HOST_WIDE_INT nunroll) 399 { 400 HOST_WIDE_INT unr_insns = ((nunroll) 401 * (HOST_WIDE_INT) (size->overall 402 - size->eliminated_by_peeling)); 403 if (!nunroll) 404 unr_insns = 0; 405 unr_insns += size->last_iteration - size->last_iteration_eliminated_by_peeling; 406 407 unr_insns = unr_insns * 2 / 3; 408 if (unr_insns <= 0) 409 unr_insns = 1; 410 411 return unr_insns; 412 } 413 414 /* Loop LOOP is known to not loop. See if there is an edge in the loop 415 body that can be remove to make the loop to always exit and at 416 the same time it does not make any code potentially executed 417 during the last iteration dead. 418 419 After complete unrolling we still may get rid of the conditional 420 on the exit in the last copy even if we have no idea what it does. 421 This is quite common case for loops of form 422 423 int a[5]; 424 for (i=0;i<b;i++) 425 a[i]=0; 426 427 Here we prove the loop to iterate 5 times but we do not know 428 it from induction variable. 429 430 For now we handle only simple case where there is exit condition 431 just before the latch block and the latch block contains no statements 432 with side effect that may otherwise terminate the execution of loop 433 (such as by EH or by terminating the program or longjmp). 434 435 In the general case we may want to cancel the paths leading to statements 436 loop-niter identified as having undefined effect in the last iteration. 437 The other cases are hopefully rare and will be cleaned up later. */ 438 439 static edge 440 loop_edge_to_cancel (struct loop *loop) 441 { 442 vec<edge> exits; 443 unsigned i; 444 edge edge_to_cancel; 445 gimple_stmt_iterator gsi; 446 447 /* We want only one predecestor of the loop. */ 448 if (EDGE_COUNT (loop->latch->preds) > 1) 449 return NULL; 450 451 exits = get_loop_exit_edges (loop); 452 453 FOR_EACH_VEC_ELT (exits, i, edge_to_cancel) 454 { 455 /* Find the other edge than the loop exit 456 leaving the conditoinal. */ 457 if (EDGE_COUNT (edge_to_cancel->src->succs) != 2) 458 continue; 459 if (EDGE_SUCC (edge_to_cancel->src, 0) == edge_to_cancel) 460 edge_to_cancel = EDGE_SUCC (edge_to_cancel->src, 1); 461 else 462 edge_to_cancel = EDGE_SUCC (edge_to_cancel->src, 0); 463 464 /* We only can handle conditionals. */ 465 if (!(edge_to_cancel->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE))) 466 continue; 467 468 /* We should never have conditionals in the loop latch. */ 469 gcc_assert (edge_to_cancel->dest != loop->header); 470 471 /* Check that it leads to loop latch. */ 472 if (edge_to_cancel->dest != loop->latch) 473 continue; 474 475 exits.release (); 476 477 /* Verify that the code in loop latch does nothing that may end program 478 execution without really reaching the exit. This may include 479 non-pure/const function calls, EH statements, volatile ASMs etc. */ 480 for (gsi = gsi_start_bb (loop->latch); !gsi_end_p (gsi); gsi_next (&gsi)) 481 if (gimple_has_side_effects (gsi_stmt (gsi))) 482 return NULL; 483 return edge_to_cancel; 484 } 485 exits.release (); 486 return NULL; 487 } 488 489 /* Remove all tests for exits that are known to be taken after LOOP was 490 peeled NPEELED times. Put gcc_unreachable before every statement 491 known to not be executed. */ 492 493 static bool 494 remove_exits_and_undefined_stmts (struct loop *loop, unsigned int npeeled) 495 { 496 struct nb_iter_bound *elt; 497 bool changed = false; 498 499 for (elt = loop->bounds; elt; elt = elt->next) 500 { 501 /* If statement is known to be undefined after peeling, turn it 502 into unreachable (or trap when debugging experience is supposed 503 to be good). */ 504 if (!elt->is_exit 505 && wi::ltu_p (elt->bound, npeeled)) 506 { 507 gimple_stmt_iterator gsi = gsi_for_stmt (elt->stmt); 508 gcall *stmt = gimple_build_call 509 (builtin_decl_implicit (BUILT_IN_UNREACHABLE), 0); 510 gimple_set_location (stmt, gimple_location (elt->stmt)); 511 gsi_insert_before (&gsi, stmt, GSI_NEW_STMT); 512 split_block (gimple_bb (stmt), stmt); 513 changed = true; 514 if (dump_file && (dump_flags & TDF_DETAILS)) 515 { 516 fprintf (dump_file, "Forced statement unreachable: "); 517 print_gimple_stmt (dump_file, elt->stmt, 0, 0); 518 } 519 } 520 /* If we know the exit will be taken after peeling, update. */ 521 else if (elt->is_exit 522 && wi::leu_p (elt->bound, npeeled)) 523 { 524 basic_block bb = gimple_bb (elt->stmt); 525 edge exit_edge = EDGE_SUCC (bb, 0); 526 527 if (dump_file && (dump_flags & TDF_DETAILS)) 528 { 529 fprintf (dump_file, "Forced exit to be taken: "); 530 print_gimple_stmt (dump_file, elt->stmt, 0, 0); 531 } 532 if (!loop_exit_edge_p (loop, exit_edge)) 533 exit_edge = EDGE_SUCC (bb, 1); 534 gcc_checking_assert (loop_exit_edge_p (loop, exit_edge)); 535 gcond *cond_stmt = as_a <gcond *> (elt->stmt); 536 if (exit_edge->flags & EDGE_TRUE_VALUE) 537 gimple_cond_make_true (cond_stmt); 538 else 539 gimple_cond_make_false (cond_stmt); 540 update_stmt (cond_stmt); 541 changed = true; 542 } 543 } 544 return changed; 545 } 546 547 /* Remove all exits that are known to be never taken because of the loop bound 548 discovered. */ 549 550 static bool 551 remove_redundant_iv_tests (struct loop *loop) 552 { 553 struct nb_iter_bound *elt; 554 bool changed = false; 555 556 if (!loop->any_upper_bound) 557 return false; 558 for (elt = loop->bounds; elt; elt = elt->next) 559 { 560 /* Exit is pointless if it won't be taken before loop reaches 561 upper bound. */ 562 if (elt->is_exit && loop->any_upper_bound 563 && wi::ltu_p (loop->nb_iterations_upper_bound, elt->bound)) 564 { 565 basic_block bb = gimple_bb (elt->stmt); 566 edge exit_edge = EDGE_SUCC (bb, 0); 567 struct tree_niter_desc niter; 568 569 if (!loop_exit_edge_p (loop, exit_edge)) 570 exit_edge = EDGE_SUCC (bb, 1); 571 572 /* Only when we know the actual number of iterations, not 573 just a bound, we can remove the exit. */ 574 if (!number_of_iterations_exit (loop, exit_edge, 575 &niter, false, false) 576 || !integer_onep (niter.assumptions) 577 || !integer_zerop (niter.may_be_zero) 578 || !niter.niter 579 || TREE_CODE (niter.niter) != INTEGER_CST 580 || !wi::ltu_p (loop->nb_iterations_upper_bound, 581 wi::to_widest (niter.niter))) 582 continue; 583 584 if (dump_file && (dump_flags & TDF_DETAILS)) 585 { 586 fprintf (dump_file, "Removed pointless exit: "); 587 print_gimple_stmt (dump_file, elt->stmt, 0, 0); 588 } 589 gcond *cond_stmt = as_a <gcond *> (elt->stmt); 590 if (exit_edge->flags & EDGE_TRUE_VALUE) 591 gimple_cond_make_false (cond_stmt); 592 else 593 gimple_cond_make_true (cond_stmt); 594 update_stmt (cond_stmt); 595 changed = true; 596 } 597 } 598 return changed; 599 } 600 601 /* Stores loops that will be unlooped and edges that will be removed 602 after we process whole loop tree. */ 603 static vec<loop_p> loops_to_unloop; 604 static vec<int> loops_to_unloop_nunroll; 605 static vec<edge> edges_to_remove; 606 /* Stores loops that has been peeled. */ 607 static bitmap peeled_loops; 608 609 /* Cancel all fully unrolled loops by putting __builtin_unreachable 610 on the latch edge. 611 We do it after all unrolling since unlooping moves basic blocks 612 across loop boundaries trashing loop closed SSA form as well 613 as SCEV info needed to be intact during unrolling. 614 615 IRRED_INVALIDATED is used to bookkeep if information about 616 irreducible regions may become invalid as a result 617 of the transformation. 618 LOOP_CLOSED_SSA_INVALIDATED is used to bookkepp the case 619 when we need to go into loop closed SSA form. */ 620 621 static void 622 unloop_loops (bitmap loop_closed_ssa_invalidated, 623 bool *irred_invalidated) 624 { 625 while (loops_to_unloop.length ()) 626 { 627 struct loop *loop = loops_to_unloop.pop (); 628 int n_unroll = loops_to_unloop_nunroll.pop (); 629 basic_block latch = loop->latch; 630 edge latch_edge = loop_latch_edge (loop); 631 int flags = latch_edge->flags; 632 location_t locus = latch_edge->goto_locus; 633 gcall *stmt; 634 gimple_stmt_iterator gsi; 635 636 remove_exits_and_undefined_stmts (loop, n_unroll); 637 638 /* Unloop destroys the latch edge. */ 639 unloop (loop, irred_invalidated, loop_closed_ssa_invalidated); 640 641 /* Create new basic block for the latch edge destination and wire 642 it in. */ 643 stmt = gimple_build_call (builtin_decl_implicit (BUILT_IN_UNREACHABLE), 0); 644 latch_edge = make_edge (latch, create_basic_block (NULL, NULL, latch), flags); 645 latch_edge->probability = 0; 646 latch_edge->count = 0; 647 latch_edge->flags |= flags; 648 latch_edge->goto_locus = locus; 649 650 add_bb_to_loop (latch_edge->dest, current_loops->tree_root); 651 latch_edge->dest->count = 0; 652 latch_edge->dest->frequency = 0; 653 set_immediate_dominator (CDI_DOMINATORS, latch_edge->dest, latch_edge->src); 654 655 gsi = gsi_start_bb (latch_edge->dest); 656 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT); 657 } 658 loops_to_unloop.release (); 659 loops_to_unloop_nunroll.release (); 660 661 /* Remove edges in peeled copies. */ 662 unsigned i; 663 edge e; 664 FOR_EACH_VEC_ELT (edges_to_remove, i, e) 665 { 666 bool ok = remove_path (e, irred_invalidated, loop_closed_ssa_invalidated); 667 gcc_assert (ok); 668 } 669 edges_to_remove.release (); 670 } 671 672 /* Tries to unroll LOOP completely, i.e. NITER times. 673 UL determines which loops we are allowed to unroll. 674 EXIT is the exit of the loop that should be eliminated. 675 MAXITER specfy bound on number of iterations, -1 if it is 676 not known or too large for HOST_WIDE_INT. The location 677 LOCUS corresponding to the loop is used when emitting 678 a summary of the unroll to the dump file. */ 679 680 static bool 681 try_unroll_loop_completely (struct loop *loop, 682 edge exit, tree niter, 683 enum unroll_level ul, 684 HOST_WIDE_INT maxiter, 685 location_t locus) 686 { 687 unsigned HOST_WIDE_INT n_unroll = 0, ninsns, unr_insns; 688 struct loop_size size; 689 bool n_unroll_found = false; 690 edge edge_to_cancel = NULL; 691 int report_flags = MSG_OPTIMIZED_LOCATIONS | TDF_RTL | TDF_DETAILS; 692 693 /* See if we proved number of iterations to be low constant. 694 695 EXIT is an edge that will be removed in all but last iteration of 696 the loop. 697 698 EDGE_TO_CACNEL is an edge that will be removed from the last iteration 699 of the unrolled sequence and is expected to make the final loop not 700 rolling. 701 702 If the number of execution of loop is determined by standard induction 703 variable test, then EXIT and EDGE_TO_CANCEL are the two edges leaving 704 from the iv test. */ 705 if (tree_fits_uhwi_p (niter)) 706 { 707 n_unroll = tree_to_uhwi (niter); 708 n_unroll_found = true; 709 edge_to_cancel = EDGE_SUCC (exit->src, 0); 710 if (edge_to_cancel == exit) 711 edge_to_cancel = EDGE_SUCC (exit->src, 1); 712 } 713 /* We do not know the number of iterations and thus we can not eliminate 714 the EXIT edge. */ 715 else 716 exit = NULL; 717 718 /* See if we can improve our estimate by using recorded loop bounds. */ 719 if (maxiter >= 0 720 && (!n_unroll_found || (unsigned HOST_WIDE_INT)maxiter < n_unroll)) 721 { 722 n_unroll = maxiter; 723 n_unroll_found = true; 724 /* Loop terminates before the IV variable test, so we can not 725 remove it in the last iteration. */ 726 edge_to_cancel = NULL; 727 } 728 729 if (!n_unroll_found) 730 return false; 731 732 if (n_unroll > (unsigned) PARAM_VALUE (PARAM_MAX_COMPLETELY_PEEL_TIMES)) 733 { 734 if (dump_file && (dump_flags & TDF_DETAILS)) 735 fprintf (dump_file, "Not unrolling loop %d " 736 "(--param max-completely-peel-times limit reached).\n", 737 loop->num); 738 return false; 739 } 740 741 if (!edge_to_cancel) 742 edge_to_cancel = loop_edge_to_cancel (loop); 743 744 if (n_unroll) 745 { 746 bool large; 747 if (ul == UL_SINGLE_ITER) 748 return false; 749 750 /* EXIT can be removed only if we are sure it passes first N_UNROLL 751 iterations. */ 752 bool remove_exit = (exit && niter 753 && TREE_CODE (niter) == INTEGER_CST 754 && wi::leu_p (n_unroll, wi::to_widest (niter))); 755 756 large = tree_estimate_loop_size 757 (loop, remove_exit ? exit : NULL, edge_to_cancel, &size, 758 PARAM_VALUE (PARAM_MAX_COMPLETELY_PEELED_INSNS)); 759 ninsns = size.overall; 760 if (large) 761 { 762 if (dump_file && (dump_flags & TDF_DETAILS)) 763 fprintf (dump_file, "Not unrolling loop %d: it is too large.\n", 764 loop->num); 765 return false; 766 } 767 768 unr_insns = estimated_unrolled_size (&size, n_unroll); 769 if (dump_file && (dump_flags & TDF_DETAILS)) 770 { 771 fprintf (dump_file, " Loop size: %d\n", (int) ninsns); 772 fprintf (dump_file, " Estimated size after unrolling: %d\n", 773 (int) unr_insns); 774 } 775 776 /* If the code is going to shrink, we don't need to be extra cautious 777 on guessing if the unrolling is going to be profitable. */ 778 if (unr_insns 779 /* If there is IV variable that will become constant, we save 780 one instruction in the loop prologue we do not account 781 otherwise. */ 782 <= ninsns + (size.constant_iv != false)) 783 ; 784 /* We unroll only inner loops, because we do not consider it profitable 785 otheriwse. We still can cancel loopback edge of not rolling loop; 786 this is always a good idea. */ 787 else if (ul == UL_NO_GROWTH) 788 { 789 if (dump_file && (dump_flags & TDF_DETAILS)) 790 fprintf (dump_file, "Not unrolling loop %d: size would grow.\n", 791 loop->num); 792 return false; 793 } 794 /* Outer loops tend to be less interesting candidates for complete 795 unrolling unless we can do a lot of propagation into the inner loop 796 body. For now we disable outer loop unrolling when the code would 797 grow. */ 798 else if (loop->inner) 799 { 800 if (dump_file && (dump_flags & TDF_DETAILS)) 801 fprintf (dump_file, "Not unrolling loop %d: " 802 "it is not innermost and code would grow.\n", 803 loop->num); 804 return false; 805 } 806 /* If there is call on a hot path through the loop, then 807 there is most probably not much to optimize. */ 808 else if (size.num_non_pure_calls_on_hot_path) 809 { 810 if (dump_file && (dump_flags & TDF_DETAILS)) 811 fprintf (dump_file, "Not unrolling loop %d: " 812 "contains call and code would grow.\n", 813 loop->num); 814 return false; 815 } 816 /* If there is pure/const call in the function, then we 817 can still optimize the unrolled loop body if it contains 818 some other interesting code than the calls and code 819 storing or cumulating the return value. */ 820 else if (size.num_pure_calls_on_hot_path 821 /* One IV increment, one test, one ivtmp store 822 and one useful stmt. That is about minimal loop 823 doing pure call. */ 824 && (size.non_call_stmts_on_hot_path 825 <= 3 + size.num_pure_calls_on_hot_path)) 826 { 827 if (dump_file && (dump_flags & TDF_DETAILS)) 828 fprintf (dump_file, "Not unrolling loop %d: " 829 "contains just pure calls and code would grow.\n", 830 loop->num); 831 return false; 832 } 833 /* Complete unrolling is a major win when control flow is removed and 834 one big basic block is created. If the loop contains control flow 835 the optimization may still be a win because of eliminating the loop 836 overhead but it also may blow the branch predictor tables. 837 Limit number of branches on the hot path through the peeled 838 sequence. */ 839 else if (size.num_branches_on_hot_path * (int)n_unroll 840 > PARAM_VALUE (PARAM_MAX_PEEL_BRANCHES)) 841 { 842 if (dump_file && (dump_flags & TDF_DETAILS)) 843 fprintf (dump_file, "Not unrolling loop %d: " 844 " number of branches on hot path in the unrolled sequence" 845 " reach --param max-peel-branches limit.\n", 846 loop->num); 847 return false; 848 } 849 else if (unr_insns 850 > (unsigned) PARAM_VALUE (PARAM_MAX_COMPLETELY_PEELED_INSNS)) 851 { 852 if (dump_file && (dump_flags & TDF_DETAILS)) 853 fprintf (dump_file, "Not unrolling loop %d: " 854 "(--param max-completely-peeled-insns limit reached).\n", 855 loop->num); 856 return false; 857 } 858 dump_printf_loc (report_flags, locus, 859 "loop turned into non-loop; it never loops.\n"); 860 861 initialize_original_copy_tables (); 862 auto_sbitmap wont_exit (n_unroll + 1); 863 if (exit && niter 864 && TREE_CODE (niter) == INTEGER_CST 865 && wi::leu_p (n_unroll, wi::to_widest (niter))) 866 { 867 bitmap_ones (wont_exit); 868 if (wi::eq_p (wi::to_widest (niter), n_unroll) 869 || edge_to_cancel) 870 bitmap_clear_bit (wont_exit, 0); 871 } 872 else 873 { 874 exit = NULL; 875 bitmap_clear (wont_exit); 876 } 877 878 if (!gimple_duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop), 879 n_unroll, wont_exit, 880 exit, &edges_to_remove, 881 DLTHE_FLAG_UPDATE_FREQ 882 | DLTHE_FLAG_COMPLETTE_PEEL)) 883 { 884 free_original_copy_tables (); 885 if (dump_file && (dump_flags & TDF_DETAILS)) 886 fprintf (dump_file, "Failed to duplicate the loop\n"); 887 return false; 888 } 889 890 free_original_copy_tables (); 891 } 892 893 /* Remove the conditional from the last copy of the loop. */ 894 if (edge_to_cancel) 895 { 896 gcond *cond = as_a <gcond *> (last_stmt (edge_to_cancel->src)); 897 force_edge_cold (edge_to_cancel, true); 898 if (edge_to_cancel->flags & EDGE_TRUE_VALUE) 899 gimple_cond_make_false (cond); 900 else 901 gimple_cond_make_true (cond); 902 update_stmt (cond); 903 /* Do not remove the path. Doing so may remove outer loop 904 and confuse bookkeeping code in tree_unroll_loops_completelly. */ 905 } 906 907 /* Store the loop for later unlooping and exit removal. */ 908 loops_to_unloop.safe_push (loop); 909 loops_to_unloop_nunroll.safe_push (n_unroll); 910 911 if (dump_enabled_p ()) 912 { 913 if (!n_unroll) 914 dump_printf_loc (MSG_OPTIMIZED_LOCATIONS | TDF_DETAILS, locus, 915 "loop turned into non-loop; it never loops\n"); 916 else 917 { 918 dump_printf_loc (MSG_OPTIMIZED_LOCATIONS | TDF_DETAILS, locus, 919 "loop with %d iterations completely unrolled", 920 (int) (n_unroll + 1)); 921 if (profile_info) 922 dump_printf (MSG_OPTIMIZED_LOCATIONS | TDF_DETAILS, 923 " (header execution count %d)", 924 (int)loop->header->count); 925 dump_printf (MSG_OPTIMIZED_LOCATIONS | TDF_DETAILS, "\n"); 926 } 927 } 928 929 if (dump_file && (dump_flags & TDF_DETAILS)) 930 { 931 if (exit) 932 fprintf (dump_file, "Exit condition of peeled iterations was " 933 "eliminated.\n"); 934 if (edge_to_cancel) 935 fprintf (dump_file, "Last iteration exit edge was proved true.\n"); 936 else 937 fprintf (dump_file, "Latch of last iteration was marked by " 938 "__builtin_unreachable ().\n"); 939 } 940 941 return true; 942 } 943 944 /* Return number of instructions after peeling. */ 945 static unsigned HOST_WIDE_INT 946 estimated_peeled_sequence_size (struct loop_size *size, 947 unsigned HOST_WIDE_INT npeel) 948 { 949 return MAX (npeel * (HOST_WIDE_INT) (size->overall 950 - size->eliminated_by_peeling), 1); 951 } 952 953 /* If the loop is expected to iterate N times and is 954 small enough, duplicate the loop body N+1 times before 955 the loop itself. This way the hot path will never 956 enter the loop. 957 Parameters are the same as for try_unroll_loops_completely */ 958 959 static bool 960 try_peel_loop (struct loop *loop, 961 edge exit, tree niter, 962 HOST_WIDE_INT maxiter) 963 { 964 HOST_WIDE_INT npeel; 965 struct loop_size size; 966 int peeled_size; 967 968 if (!flag_peel_loops || PARAM_VALUE (PARAM_MAX_PEEL_TIMES) <= 0 969 || !peeled_loops) 970 return false; 971 972 if (bitmap_bit_p (peeled_loops, loop->num)) 973 { 974 if (dump_file) 975 fprintf (dump_file, "Not peeling: loop is already peeled\n"); 976 return false; 977 } 978 979 /* Peel only innermost loops. 980 While the code is perfectly capable of peeling non-innermost loops, 981 the heuristics would probably need some improvements. */ 982 if (loop->inner) 983 { 984 if (dump_file) 985 fprintf (dump_file, "Not peeling: outer loop\n"); 986 return false; 987 } 988 989 if (!optimize_loop_for_speed_p (loop)) 990 { 991 if (dump_file) 992 fprintf (dump_file, "Not peeling: cold loop\n"); 993 return false; 994 } 995 996 /* Check if there is an estimate on the number of iterations. */ 997 npeel = estimated_loop_iterations_int (loop); 998 if (npeel < 0) 999 npeel = likely_max_loop_iterations_int (loop); 1000 if (npeel < 0) 1001 { 1002 if (dump_file) 1003 fprintf (dump_file, "Not peeling: number of iterations is not " 1004 "estimated\n"); 1005 return false; 1006 } 1007 if (maxiter >= 0 && maxiter <= npeel) 1008 { 1009 if (dump_file) 1010 fprintf (dump_file, "Not peeling: upper bound is known so can " 1011 "unroll completely\n"); 1012 return false; 1013 } 1014 1015 /* We want to peel estimated number of iterations + 1 (so we never 1016 enter the loop on quick path). Check against PARAM_MAX_PEEL_TIMES 1017 and be sure to avoid overflows. */ 1018 if (npeel > PARAM_VALUE (PARAM_MAX_PEEL_TIMES) - 1) 1019 { 1020 if (dump_file) 1021 fprintf (dump_file, "Not peeling: rolls too much " 1022 "(%i + 1 > --param max-peel-times)\n", (int) npeel); 1023 return false; 1024 } 1025 npeel++; 1026 1027 /* Check peeled loops size. */ 1028 tree_estimate_loop_size (loop, exit, NULL, &size, 1029 PARAM_VALUE (PARAM_MAX_PEELED_INSNS)); 1030 if ((peeled_size = estimated_peeled_sequence_size (&size, (int) npeel)) 1031 > PARAM_VALUE (PARAM_MAX_PEELED_INSNS)) 1032 { 1033 if (dump_file) 1034 fprintf (dump_file, "Not peeling: peeled sequence size is too large " 1035 "(%i insns > --param max-peel-insns)", peeled_size); 1036 return false; 1037 } 1038 1039 /* Duplicate possibly eliminating the exits. */ 1040 initialize_original_copy_tables (); 1041 auto_sbitmap wont_exit (npeel + 1); 1042 if (exit && niter 1043 && TREE_CODE (niter) == INTEGER_CST 1044 && wi::leu_p (npeel, wi::to_widest (niter))) 1045 { 1046 bitmap_ones (wont_exit); 1047 bitmap_clear_bit (wont_exit, 0); 1048 } 1049 else 1050 { 1051 exit = NULL; 1052 bitmap_clear (wont_exit); 1053 } 1054 if (!gimple_duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop), 1055 npeel, wont_exit, 1056 exit, &edges_to_remove, 1057 DLTHE_FLAG_UPDATE_FREQ)) 1058 { 1059 free_original_copy_tables (); 1060 return false; 1061 } 1062 free_original_copy_tables (); 1063 if (dump_file && (dump_flags & TDF_DETAILS)) 1064 { 1065 fprintf (dump_file, "Peeled loop %d, %i times.\n", 1066 loop->num, (int) npeel); 1067 } 1068 if (loop->any_estimate) 1069 { 1070 if (wi::ltu_p (npeel, loop->nb_iterations_estimate)) 1071 loop->nb_iterations_estimate -= npeel; 1072 else 1073 loop->nb_iterations_estimate = 0; 1074 } 1075 if (loop->any_upper_bound) 1076 { 1077 if (wi::ltu_p (npeel, loop->nb_iterations_upper_bound)) 1078 loop->nb_iterations_upper_bound -= npeel; 1079 else 1080 loop->nb_iterations_upper_bound = 0; 1081 } 1082 if (loop->any_likely_upper_bound) 1083 { 1084 if (wi::ltu_p (npeel, loop->nb_iterations_likely_upper_bound)) 1085 loop->nb_iterations_likely_upper_bound -= npeel; 1086 else 1087 { 1088 loop->any_estimate = true; 1089 loop->nb_iterations_estimate = 0; 1090 loop->nb_iterations_likely_upper_bound = 0; 1091 } 1092 } 1093 gcov_type entry_count = 0; 1094 int entry_freq = 0; 1095 1096 edge e; 1097 edge_iterator ei; 1098 FOR_EACH_EDGE (e, ei, loop->header->preds) 1099 if (e->src != loop->latch) 1100 { 1101 entry_count += e->src->count; 1102 entry_freq += e->src->frequency; 1103 gcc_assert (!flow_bb_inside_loop_p (loop, e->src)); 1104 } 1105 int scale = 1; 1106 if (loop->header->count) 1107 scale = RDIV (entry_count * REG_BR_PROB_BASE, loop->header->count); 1108 else if (loop->header->frequency) 1109 scale = RDIV (entry_freq * REG_BR_PROB_BASE, loop->header->frequency); 1110 scale_loop_profile (loop, scale, 0); 1111 bitmap_set_bit (peeled_loops, loop->num); 1112 return true; 1113 } 1114 /* Adds a canonical induction variable to LOOP if suitable. 1115 CREATE_IV is true if we may create a new iv. UL determines 1116 which loops we are allowed to completely unroll. If TRY_EVAL is true, we try 1117 to determine the number of iterations of a loop by direct evaluation. 1118 Returns true if cfg is changed. */ 1119 1120 static bool 1121 canonicalize_loop_induction_variables (struct loop *loop, 1122 bool create_iv, enum unroll_level ul, 1123 bool try_eval) 1124 { 1125 edge exit = NULL; 1126 tree niter; 1127 HOST_WIDE_INT maxiter; 1128 bool modified = false; 1129 location_t locus = UNKNOWN_LOCATION; 1130 1131 niter = number_of_latch_executions (loop); 1132 exit = single_exit (loop); 1133 if (TREE_CODE (niter) == INTEGER_CST) 1134 locus = gimple_location (last_stmt (exit->src)); 1135 else 1136 { 1137 /* If the loop has more than one exit, try checking all of them 1138 for # of iterations determinable through scev. */ 1139 if (!exit) 1140 niter = find_loop_niter (loop, &exit); 1141 1142 /* Finally if everything else fails, try brute force evaluation. */ 1143 if (try_eval 1144 && (chrec_contains_undetermined (niter) 1145 || TREE_CODE (niter) != INTEGER_CST)) 1146 niter = find_loop_niter_by_eval (loop, &exit); 1147 1148 if (exit) 1149 locus = gimple_location (last_stmt (exit->src)); 1150 1151 if (TREE_CODE (niter) != INTEGER_CST) 1152 exit = NULL; 1153 } 1154 1155 /* We work exceptionally hard here to estimate the bound 1156 by find_loop_niter_by_eval. Be sure to keep it for future. */ 1157 if (niter && TREE_CODE (niter) == INTEGER_CST) 1158 { 1159 record_niter_bound (loop, wi::to_widest (niter), 1160 exit == single_likely_exit (loop), true); 1161 } 1162 1163 /* Force re-computation of loop bounds so we can remove redundant exits. */ 1164 maxiter = max_loop_iterations_int (loop); 1165 1166 if (dump_file && (dump_flags & TDF_DETAILS) 1167 && TREE_CODE (niter) == INTEGER_CST) 1168 { 1169 fprintf (dump_file, "Loop %d iterates ", loop->num); 1170 print_generic_expr (dump_file, niter, TDF_SLIM); 1171 fprintf (dump_file, " times.\n"); 1172 } 1173 if (dump_file && (dump_flags & TDF_DETAILS) 1174 && maxiter >= 0) 1175 { 1176 fprintf (dump_file, "Loop %d iterates at most %i times.\n", loop->num, 1177 (int)maxiter); 1178 } 1179 if (dump_file && (dump_flags & TDF_DETAILS) 1180 && likely_max_loop_iterations_int (loop) >= 0) 1181 { 1182 fprintf (dump_file, "Loop %d likely iterates at most %i times.\n", 1183 loop->num, (int)likely_max_loop_iterations_int (loop)); 1184 } 1185 1186 /* Remove exits that are known to be never taken based on loop bound. 1187 Needs to be called after compilation of max_loop_iterations_int that 1188 populates the loop bounds. */ 1189 modified |= remove_redundant_iv_tests (loop); 1190 1191 if (try_unroll_loop_completely (loop, exit, niter, ul, maxiter, locus)) 1192 return true; 1193 1194 if (create_iv 1195 && niter && !chrec_contains_undetermined (niter) 1196 && exit && just_once_each_iteration_p (loop, exit->src)) 1197 create_canonical_iv (loop, exit, niter); 1198 1199 if (ul == UL_ALL) 1200 modified |= try_peel_loop (loop, exit, niter, maxiter); 1201 1202 return modified; 1203 } 1204 1205 /* The main entry point of the pass. Adds canonical induction variables 1206 to the suitable loops. */ 1207 1208 unsigned int 1209 canonicalize_induction_variables (void) 1210 { 1211 struct loop *loop; 1212 bool changed = false; 1213 bool irred_invalidated = false; 1214 bitmap loop_closed_ssa_invalidated = BITMAP_ALLOC (NULL); 1215 1216 free_numbers_of_iterations_estimates (cfun); 1217 estimate_numbers_of_iterations (); 1218 1219 FOR_EACH_LOOP (loop, LI_FROM_INNERMOST) 1220 { 1221 changed |= canonicalize_loop_induction_variables (loop, 1222 true, UL_SINGLE_ITER, 1223 true); 1224 } 1225 gcc_assert (!need_ssa_update_p (cfun)); 1226 1227 unloop_loops (loop_closed_ssa_invalidated, &irred_invalidated); 1228 if (irred_invalidated 1229 && loops_state_satisfies_p (LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS)) 1230 mark_irreducible_loops (); 1231 1232 /* Clean up the information about numbers of iterations, since brute force 1233 evaluation could reveal new information. */ 1234 scev_reset (); 1235 1236 if (!bitmap_empty_p (loop_closed_ssa_invalidated)) 1237 { 1238 gcc_checking_assert (loops_state_satisfies_p (LOOP_CLOSED_SSA)); 1239 rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa); 1240 } 1241 BITMAP_FREE (loop_closed_ssa_invalidated); 1242 1243 if (changed) 1244 return TODO_cleanup_cfg; 1245 return 0; 1246 } 1247 1248 /* Propagate constant SSA_NAMEs defined in basic block BB. */ 1249 1250 static void 1251 propagate_constants_for_unrolling (basic_block bb) 1252 { 1253 /* Look for degenerate PHI nodes with constant argument. */ 1254 for (gphi_iterator gsi = gsi_start_phis (bb); !gsi_end_p (gsi); ) 1255 { 1256 gphi *phi = gsi.phi (); 1257 tree result = gimple_phi_result (phi); 1258 tree arg = gimple_phi_arg_def (phi, 0); 1259 1260 if (! SSA_NAME_OCCURS_IN_ABNORMAL_PHI (result) 1261 && gimple_phi_num_args (phi) == 1 1262 && TREE_CODE (arg) == INTEGER_CST) 1263 { 1264 replace_uses_by (result, arg); 1265 gsi_remove (&gsi, true); 1266 release_ssa_name (result); 1267 } 1268 else 1269 gsi_next (&gsi); 1270 } 1271 1272 /* Look for assignments to SSA names with constant RHS. */ 1273 for (gimple_stmt_iterator gsi = gsi_start_bb (bb); !gsi_end_p (gsi); ) 1274 { 1275 gimple *stmt = gsi_stmt (gsi); 1276 tree lhs; 1277 1278 if (is_gimple_assign (stmt) 1279 && gimple_assign_rhs_code (stmt) == INTEGER_CST 1280 && (lhs = gimple_assign_lhs (stmt), TREE_CODE (lhs) == SSA_NAME) 1281 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs)) 1282 { 1283 replace_uses_by (lhs, gimple_assign_rhs1 (stmt)); 1284 gsi_remove (&gsi, true); 1285 release_ssa_name (lhs); 1286 } 1287 else 1288 gsi_next (&gsi); 1289 } 1290 } 1291 1292 /* Process loops from innermost to outer, stopping at the innermost 1293 loop we unrolled. */ 1294 1295 static bool 1296 tree_unroll_loops_completely_1 (bool may_increase_size, bool unroll_outer, 1297 bitmap father_bbs, struct loop *loop) 1298 { 1299 struct loop *loop_father; 1300 bool changed = false; 1301 struct loop *inner; 1302 enum unroll_level ul; 1303 1304 /* Process inner loops first. */ 1305 for (inner = loop->inner; inner != NULL; inner = inner->next) 1306 changed |= tree_unroll_loops_completely_1 (may_increase_size, 1307 unroll_outer, father_bbs, 1308 inner); 1309 1310 /* If we changed an inner loop we cannot process outer loops in this 1311 iteration because SSA form is not up-to-date. Continue with 1312 siblings of outer loops instead. */ 1313 if (changed) 1314 return true; 1315 1316 /* Don't unroll #pragma omp simd loops until the vectorizer 1317 attempts to vectorize those. */ 1318 if (loop->force_vectorize) 1319 return false; 1320 1321 /* Try to unroll this loop. */ 1322 loop_father = loop_outer (loop); 1323 if (!loop_father) 1324 return false; 1325 1326 if (may_increase_size && optimize_loop_nest_for_speed_p (loop) 1327 /* Unroll outermost loops only if asked to do so or they do 1328 not cause code growth. */ 1329 && (unroll_outer || loop_outer (loop_father))) 1330 ul = UL_ALL; 1331 else 1332 ul = UL_NO_GROWTH; 1333 1334 if (canonicalize_loop_induction_variables 1335 (loop, false, ul, !flag_tree_loop_ivcanon)) 1336 { 1337 /* If we'll continue unrolling, we need to propagate constants 1338 within the new basic blocks to fold away induction variable 1339 computations; otherwise, the size might blow up before the 1340 iteration is complete and the IR eventually cleaned up. */ 1341 if (loop_outer (loop_father)) 1342 bitmap_set_bit (father_bbs, loop_father->header->index); 1343 1344 return true; 1345 } 1346 1347 return false; 1348 } 1349 1350 /* Unroll LOOPS completely if they iterate just few times. Unless 1351 MAY_INCREASE_SIZE is true, perform the unrolling only if the 1352 size of the code does not increase. */ 1353 1354 unsigned int 1355 tree_unroll_loops_completely (bool may_increase_size, bool unroll_outer) 1356 { 1357 bitmap father_bbs = BITMAP_ALLOC (NULL); 1358 bool changed; 1359 int iteration = 0; 1360 bool irred_invalidated = false; 1361 1362 do 1363 { 1364 changed = false; 1365 bitmap loop_closed_ssa_invalidated = NULL; 1366 1367 if (loops_state_satisfies_p (LOOP_CLOSED_SSA)) 1368 loop_closed_ssa_invalidated = BITMAP_ALLOC (NULL); 1369 1370 free_numbers_of_iterations_estimates (cfun); 1371 estimate_numbers_of_iterations (); 1372 1373 changed = tree_unroll_loops_completely_1 (may_increase_size, 1374 unroll_outer, father_bbs, 1375 current_loops->tree_root); 1376 if (changed) 1377 { 1378 unsigned i; 1379 1380 unloop_loops (loop_closed_ssa_invalidated, &irred_invalidated); 1381 1382 /* We can not use TODO_update_ssa_no_phi because VOPS gets confused. */ 1383 if (loop_closed_ssa_invalidated 1384 && !bitmap_empty_p (loop_closed_ssa_invalidated)) 1385 rewrite_into_loop_closed_ssa (loop_closed_ssa_invalidated, 1386 TODO_update_ssa); 1387 else 1388 update_ssa (TODO_update_ssa); 1389 1390 /* father_bbs is a bitmap of loop father header BB indices. 1391 Translate that to what non-root loops these BBs belong to now. */ 1392 bitmap_iterator bi; 1393 bitmap fathers = BITMAP_ALLOC (NULL); 1394 EXECUTE_IF_SET_IN_BITMAP (father_bbs, 0, i, bi) 1395 { 1396 basic_block unrolled_loop_bb = BASIC_BLOCK_FOR_FN (cfun, i); 1397 if (! unrolled_loop_bb) 1398 continue; 1399 if (loop_outer (unrolled_loop_bb->loop_father)) 1400 bitmap_set_bit (fathers, 1401 unrolled_loop_bb->loop_father->num); 1402 } 1403 bitmap_clear (father_bbs); 1404 /* Propagate the constants within the new basic blocks. */ 1405 EXECUTE_IF_SET_IN_BITMAP (fathers, 0, i, bi) 1406 { 1407 loop_p father = get_loop (cfun, i); 1408 basic_block *body = get_loop_body_in_dom_order (father); 1409 for (unsigned j = 0; j < father->num_nodes; j++) 1410 propagate_constants_for_unrolling (body[j]); 1411 free (body); 1412 } 1413 BITMAP_FREE (fathers); 1414 1415 /* This will take care of removing completely unrolled loops 1416 from the loop structures so we can continue unrolling now 1417 innermost loops. */ 1418 if (cleanup_tree_cfg ()) 1419 update_ssa (TODO_update_ssa_only_virtuals); 1420 1421 /* Clean up the information about numbers of iterations, since 1422 complete unrolling might have invalidated it. */ 1423 scev_reset (); 1424 if (flag_checking && loops_state_satisfies_p (LOOP_CLOSED_SSA)) 1425 verify_loop_closed_ssa (true); 1426 } 1427 if (loop_closed_ssa_invalidated) 1428 BITMAP_FREE (loop_closed_ssa_invalidated); 1429 } 1430 while (changed 1431 && ++iteration <= PARAM_VALUE (PARAM_MAX_UNROLL_ITERATIONS)); 1432 1433 BITMAP_FREE (father_bbs); 1434 1435 if (irred_invalidated 1436 && loops_state_satisfies_p (LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS)) 1437 mark_irreducible_loops (); 1438 1439 return 0; 1440 } 1441 1442 /* Canonical induction variable creation pass. */ 1443 1444 namespace { 1445 1446 const pass_data pass_data_iv_canon = 1447 { 1448 GIMPLE_PASS, /* type */ 1449 "ivcanon", /* name */ 1450 OPTGROUP_LOOP, /* optinfo_flags */ 1451 TV_TREE_LOOP_IVCANON, /* tv_id */ 1452 ( PROP_cfg | PROP_ssa ), /* properties_required */ 1453 0, /* properties_provided */ 1454 0, /* properties_destroyed */ 1455 0, /* todo_flags_start */ 1456 0, /* todo_flags_finish */ 1457 }; 1458 1459 class pass_iv_canon : public gimple_opt_pass 1460 { 1461 public: 1462 pass_iv_canon (gcc::context *ctxt) 1463 : gimple_opt_pass (pass_data_iv_canon, ctxt) 1464 {} 1465 1466 /* opt_pass methods: */ 1467 virtual bool gate (function *) { return flag_tree_loop_ivcanon != 0; } 1468 virtual unsigned int execute (function *fun); 1469 1470 }; // class pass_iv_canon 1471 1472 unsigned int 1473 pass_iv_canon::execute (function *fun) 1474 { 1475 if (number_of_loops (fun) <= 1) 1476 return 0; 1477 1478 return canonicalize_induction_variables (); 1479 } 1480 1481 } // anon namespace 1482 1483 gimple_opt_pass * 1484 make_pass_iv_canon (gcc::context *ctxt) 1485 { 1486 return new pass_iv_canon (ctxt); 1487 } 1488 1489 /* Complete unrolling of loops. */ 1490 1491 namespace { 1492 1493 const pass_data pass_data_complete_unroll = 1494 { 1495 GIMPLE_PASS, /* type */ 1496 "cunroll", /* name */ 1497 OPTGROUP_LOOP, /* optinfo_flags */ 1498 TV_COMPLETE_UNROLL, /* tv_id */ 1499 ( PROP_cfg | PROP_ssa ), /* properties_required */ 1500 0, /* properties_provided */ 1501 0, /* properties_destroyed */ 1502 0, /* todo_flags_start */ 1503 0, /* todo_flags_finish */ 1504 }; 1505 1506 class pass_complete_unroll : public gimple_opt_pass 1507 { 1508 public: 1509 pass_complete_unroll (gcc::context *ctxt) 1510 : gimple_opt_pass (pass_data_complete_unroll, ctxt) 1511 {} 1512 1513 /* opt_pass methods: */ 1514 virtual unsigned int execute (function *); 1515 1516 }; // class pass_complete_unroll 1517 1518 unsigned int 1519 pass_complete_unroll::execute (function *fun) 1520 { 1521 if (number_of_loops (fun) <= 1) 1522 return 0; 1523 1524 /* If we ever decide to run loop peeling more than once, we will need to 1525 track loops already peeled in loop structures themselves to avoid 1526 re-peeling the same loop multiple times. */ 1527 if (flag_peel_loops) 1528 peeled_loops = BITMAP_ALLOC (NULL); 1529 int val = tree_unroll_loops_completely (flag_unroll_loops 1530 || flag_peel_loops 1531 || optimize >= 3, true); 1532 if (peeled_loops) 1533 { 1534 BITMAP_FREE (peeled_loops); 1535 peeled_loops = NULL; 1536 } 1537 return val; 1538 } 1539 1540 } // anon namespace 1541 1542 gimple_opt_pass * 1543 make_pass_complete_unroll (gcc::context *ctxt) 1544 { 1545 return new pass_complete_unroll (ctxt); 1546 } 1547 1548 /* Complete unrolling of inner loops. */ 1549 1550 namespace { 1551 1552 const pass_data pass_data_complete_unrolli = 1553 { 1554 GIMPLE_PASS, /* type */ 1555 "cunrolli", /* name */ 1556 OPTGROUP_LOOP, /* optinfo_flags */ 1557 TV_COMPLETE_UNROLL, /* tv_id */ 1558 ( PROP_cfg | PROP_ssa ), /* properties_required */ 1559 0, /* properties_provided */ 1560 0, /* properties_destroyed */ 1561 0, /* todo_flags_start */ 1562 0, /* todo_flags_finish */ 1563 }; 1564 1565 class pass_complete_unrolli : public gimple_opt_pass 1566 { 1567 public: 1568 pass_complete_unrolli (gcc::context *ctxt) 1569 : gimple_opt_pass (pass_data_complete_unrolli, ctxt) 1570 {} 1571 1572 /* opt_pass methods: */ 1573 virtual bool gate (function *) { return optimize >= 2; } 1574 virtual unsigned int execute (function *); 1575 1576 }; // class pass_complete_unrolli 1577 1578 unsigned int 1579 pass_complete_unrolli::execute (function *fun) 1580 { 1581 unsigned ret = 0; 1582 1583 loop_optimizer_init (LOOPS_NORMAL 1584 | LOOPS_HAVE_RECORDED_EXITS); 1585 if (number_of_loops (fun) > 1) 1586 { 1587 scev_initialize (); 1588 ret = tree_unroll_loops_completely (optimize >= 3, false); 1589 free_numbers_of_iterations_estimates (fun); 1590 scev_finalize (); 1591 } 1592 loop_optimizer_finalize (); 1593 1594 return ret; 1595 } 1596 1597 } // anon namespace 1598 1599 gimple_opt_pass * 1600 make_pass_complete_unrolli (gcc::context *ctxt) 1601 { 1602 return new pass_complete_unrolli (ctxt); 1603 } 1604 1605 1606